
Informal Report

•v.,^3
t

UC-32

Issued: December 1976

n

CRAY-1 Evaluation
Final Report

by

T. W. Keller

1

I o s'sZVa I a m o s
scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 87545

/ ;
An Affirmative Action/Equal Opportunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION 

CONTRACT W-740S-ENG. 36

DISTRIBUTION OFTHI



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



Publication of this report does not imply endorsement of the products described herein

Printed in the United States of America. Available from 
National Technical Information Service 

U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161

Price: Printed Copy $5.50 Microfiche $3.00

This rrport whs prepared as an accuunl of work sponsored 
by (he I’niled States Government. Neither the United Slates 
nor the United States KnerRy Research and Development Ad­
ministration. nor any of their employees, nor any of their con­
tractors. subcontractors, or their employees, makes any 
warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or 
represepts that its use would not infringe privately owned 
rights.



iii
TABLE OF 
CONTENTS

I. EXECUTIVE SUMMARY..

- NOTICE -
Tim report was prepared as an amount of work 
!h^n‘f,|r^n ye,h' Uni"<l SU"S Govcrnment. Neither 
rL.Yi, ,'0' lhe Uni"d S'3''1 Energy
Research and Development Administration, nor any of
tZ'""’,'0*'"' n°' an>' of ,h'i' “"tractors, 
subcontractors, or their employees, makes any 
wananty, express implied, assumes any legi 
habdity o, responsibility fo, the accuracy, completeness 
or usefulness of any information, apparatus, product or 
process disclosed, or represents that its use would not 
infnnge pnvately owned rights.

1

II. INTRODUCTION 6
Context of Evaluation............................ 6
Qualification Criteria........................... 7

III. SCALAR PERFORMANCE................................ 9

Introauction and Approach........................ 9
Preliminary Scalar Performance Test............. 12
Workload Determination........................... 14
Execution and Monitoring......................... 20
Kernel Selection................................. 21
Kernel Implementation...........................  24
Timing Results...................................  26
Impact of Hardware Features......................  28
Conclusions ...................................... 29

IV. VECTOR PERFORMANCE...............................  31

V. RELIABILITY.......................................  34

Approach .........................................  34
The EXERCISER Program............................  35
Results and Conclusions.......................... 36

VI. INPUT/OUTPUT PERFORMANCE.........................  43

Disk Performance Tests...........................  43
Computation and I/O Interference................  47

VII. INFORMAL ESTIMATES................................ 52

VIII. CONCLUSIONS.......................................  54

Scalar Performance...............................  54
Vector Performance...............................  54
Reliability ...................................... 54
Input/Output Studies.............................  55
Conclusion ....................................... 56

APPENDIX A 57
Configuration Being Evaluated.... 
Summary of CrAY-1 Characteristics
Evaluation Plan..................
Statistics Addendum.............
I/O Studies......................
Vectorization Criteria..........
Decision Rule...................
Evaluation Plan Figures.........

57
58 
66

• 79 . 
8 3

• 84 
- 86
• 86

y} i

APPENDIX B FIGURES..................

DISTRIBUTION OF THIS DOCl

.......  87

1ENT IS UNLIMITED'





V

SIGNA rUHES

Ronala S. Schwartz, director 
Office of ADP Management
Energy Research ana Development Administration

£
Ronald bartell. Deputy Assistant Director for 
Program Analysis and Budget 
Division of Military Application 
Energy Research and Development Administration

bJ. 
Fred w. uorr. Division Leader 
Computer Science and Services Division 
Los Alamos Scientific Laooratory



1

SECTION I

EXECUTIVE
SUMMARY The performance evaluation of the CRAY-1 

computer was structured to determine if the CRAY-1 
meets the minimum performance standards set forth 
by the Los Alamos Scientific Laboratory (LASL) ana 
the Energy Research and Development Administration 
(ERDA) to qualify the machine for further 
consideration for procurement.

The performance standards are divided into 
specific qualification criteria in three main 
areas: scalar performance, vector performance and 
reliability. The qualification criteria are 
summarized in Table 1-1. The final Evaluation 
Plan, including precise definitions of the 
qualification criteria, is presented in Appendix A 
of tnis document.

It was impossible to convert large segments of' 
tne LASL computing workload to the CRAY-1 because 
programs to be run on the machine would require 
assembly language coding. Thus, for the scalar 
test, a sampling scheme was adopted that selected 
small computational kernels to be run on both the 
CDC 7600 and the CRAY-1. Kernels were drawn from a 
program by a method that weighted the probability 
of drawing a specific kernel by its contribution to 
the total execution time of the program. The 
sampling process was defined to a level of detail 
that eliminated tne chances of Diasing the 
selection toward either machine. By statistical 
methods it was possible to establish a test of the 
hypothesis that the CRAY-1 (in scalar mode) is 
greater than two times faster than tne CDC 7600 
with 90 percent confidence for any sampled program. 
To assure that the code kernels were representative 
of the potential LASL workload for the ChAY-1 , the 
code kernels were drawn from the actual programs 
expected to comprise the eventual Class VI 
workload. Only programs consuming greater than one 
CDC 7600 hour per run and requiring more than one 
run per week were considered as potential workload 
candidates.

A secona workloaa for tne CRAY-1 was 
established from a sample that included 
frequently run coaes not expected to be included in 
the immeaiate LASL workload for the machine. This 
was done as an attempt to establish a performance 
index of the machine based upon a more general 
workload, and one tnat might be more representative 
of computing tnroughout ERDA.
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In order to eliminate the impact of compiler 
efficiency, kernels were coded as efficiently as 
was feasible in both CRAY-1 assembly language and 
CDC 7600 assembly language. »

It was not possible to rigorously establish 
"representative" kernels for testing the vector r
performance of the CRAY-1. This was because none 
of the existing codes comprising the workload had 
been converted for vector operations, and such 
conversion efforts were outside the evaluation's 
time frame.

At the risk of oversimplifying, the vector 
computational speed of the CRAY-1 relative to the 
CDC 7600 is a function of both vector length and 
complexity of the vectorized arithmetic function.
Relative performance of the CRAY-1 increases with 
vector length and complexity of operation.
Performance criteria using vector lengths of 20,
100 and 500 were established, and tne complexity of
vector operations remained to be chosen. The
simplest expressions, such as R=A+B, result in the
lowest relative performance. Relative performance
increases with greater numbers of different
operators and operands (increasing complexity), as
this allows increased overlap of functional units
and chaining to occur. Chaining refers to an
increase in parallelism resulting from the ability
of the machine to store the result of a computation
in a vector register while the result is re-entered
as an operand to another vector computation in tne
same clock period. Thus, two or more primitive
vector operations may be "chained" together. The
more complex tne evaluated expression, the greater
the likelihood that chaining can occur. The
Applications Support and Research Group of the
Computer Science and Services Division at LASL was
asked to furnish vector kernels that, in their
judgement, represented common vector operations
that user codes would perform on the CRAY-1. Five
expressions of medium complexity, such as R=A*B+C,
were chosen to evaluate the machine's vector
performance as a function of vector length. The
average of tne five performance ratios was chosen
to compare against the qualification criteria. .
Each vector kernel was coded as efficiently as was
feasible in assembly language for each machine. In
particular, the CDC 7600 kernels were coded as *
"in-stack" loops--a scheme tnat pushes the CDC 7600
toward its theoretical maximum performance for
these algorithms.

The reliability of the CRAY-1 was evaluated by 
establishing a reliability test code to run on the
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machine for long periods of time. This "exerciser" 
was designed to utilize as many different hardware 
units of the machine as possible, at as rapid a 
rate as possible, for extended periods. The 
exerciser underwent several evolutionary stages 
toward this goal. The latest version of the 
exerciser accesses the machine's memory at a 
sustained rate several times greater than that 
plausible for a production workload. The 
reliability figures were determined for contiguous 
20-workday periods in orcer to "smooth" short-term 
fluctuations in reliability.

In addition to the tests against the 
qualification criteria outlined above, the 
evaluation also investigated the CRAY-1 disk system 
performance and made other miscellaneous studies. 
For sake of brevity these studies will not be 
discussed in the Executive Summary.

Clearly, many aspects of the CRAY-1's 
performance were evaluated, some in considerable 
detail. An impartial study was accomplished 
despite the constraints of a primitive CRAY-1 
operating system, the absence of a Fortran 
compiler, the relatively short evaluation period, 
and the necessity of agreement by LASL, ERDA, and 
the Federal Computer Performance Evaluation and 
Simulation Center (FEDSIM) upon an evaluation plan. 
Rigorously defensible results were obtained by 
adopting metnods of known accuracy wherever 
possible. Although the constraints confined the 
scope of the evaluation, they did not hinder the 
objectivity nor accuracy of its results.

Results

A brief summary of the evaluation results is 
presented in Table 1-1.

Scalar. Timing results for the scalar kernels 
are summarized in Table III-6 of Section III. On 
the basis of these results the hypothesis that the 
CRAY-1 is at least two times faster than the 
CDC 7600 for scalar kernels was satisfied in all 
tests.

Vector. Results of the vector kernel timings 
are summarized in Table 1-1 . The machine met the 
vector performance qualification criteria for the 
three vector lengths.

Reliability. The machine met the reliability 
criteria for many reported 20-day periods. The 
Mean-Time-To-Failure (MTTF) fluctuated from a low 
of approximately 2.5 hours to a high of
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approximately 7.5 hours during the six-month 
period. No trend was observed.

Approximately 89 percent of all machine 
failures during the evaluation were memory parity 
errors. If one assumes that all memory errors were 
correctable single-bit errors, then installation of 
single-bit memory error correction would have 
resulted in an increase in MTTF by a factor of 
nine. Such an increase would result in extremely 
good reliability for a machine of this complexity.

Tne conclusion of the evaluation is tnat the 
CRAY-1 satisfies the threshold performance criteria 
in all categories. FEDSIM, in a separate report to 
be issued, concurs in this conclusion.

*
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Table 1-1. Summary of Qualification Criteria 
and Evaluation Results.

A. Qualification Criteria
*

Scalar Performance.

Scalar operations

Vector Performance.

Short vector operations 
Medium vector operations 
Long vector operations

Reliability.

Mean-Time-To-Failure 
Mean-Time-To-Repair 
System availability

B

>2 X CDC 7600 in speed

>3 X CDC 7600 in speed
>4 X CDC 7000 in speed
>5 X CDC 7000 in speed

>4 hrs. 
<1 hr.>o.a

Results

4

Scalar.

Vector.

Reliability

The hypothesis that the CRAY-1 is >2 x the 
CDC 7600 in speed tests as true for each of 
the three codes comprising the LASL 
"applications" workload. The hypothesis tests 
as true for a more general workload consisting 
of five codes.

Average CRAY-1/CDC 7b00 speed ratio of five 
vector functions by vector length:

Vector length 20 (short) 3.30
Vector length 100 (medium) 4.50
Vector length 500 (long) 5.12

For the period 5-14-76 to 0-11-76:

Mean-Time-To-Failure 7.00 hrs.
Mean-Time-To-Repair 0.36 hr.
System Availability 0.950

4
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SECTION II 

INTRODUCTION

Tne growing complexity of the programmatic *
efforts at the Los Alamos Scientific Laboratory 
(LASL) in weapons design, laser fusion and isotope 
separation, magnetic fusion energy research, 
reactor safety, and other basic and exploratory 
research requires calculations that are beyond the 
capability of the fastest computer currently 
installed in the LASL Central Computing 
Facility--the CDC 7600. Thus, LASL needs a 
computer that can meet the growing requirements for 
computational speed. For this reason, LASL, in 
conjunction with the Energy Research and 
Development Administration (ERDA) and the Federal 
Computer Performance Evaluation and Simulation 
Center (FEDSIM), undertook to evaluate a new class 
of scientific computer system. This class has been 
identified by ERDA as "Class VI"—one that is 
capable of executing 20 to 60 million floating 
point operations per second.

Context of
Evaluation

To avoid a repetition of previous ERDA 
experiences with similar computers, a plan was 
designed that offered vendors an equal opportunity 
to compete and yet proviaed a large measure of 
protection for the Government.

The plan to implement these desired policies 
of competition and protection consisted of the 
following steps.

a. Offer all potential vendors an opportunity 
to have tneir computers evaluated with respect to 
stated performance criteria within approximately a

Because computers of this class are 
necessarily pushing the state of the art of both 
computer architecture and electronic technology, 
there have been worries expressed in ERDA and 
Congress that the usual procurement procedures did 
not afford adequate protection to the Government 
against failure of these machines to fulfill their 
specifications for reliability and performance.
The basic reason for this is that Class VI 
computers are very complex, and considerable time 
is required to convert previous application 
programs so that an adequate evaluation of the 
product can be assured. By the time reliability 
and performance evaluations can be conducted, the 
usual protections for the Government have elapsed.
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six-month time scale. A letter was sent on 2-26-76 
by ERDA to a number of vendors.

b. Determine the set of computers to be 
evaluated. In tne words of the letter to the 
vendors, "....a demonstration and evaluation of 
machine capabilities must precede a decision to 
acquire a new class of computers." Thus, all 
vendors were given an opportunity to have their 
products evaluated; however, only tnose with a 
product available for immediate evaluation which 
met the minimum evaluation criteria would qualify 
to provide the equipment for later acquisition at 
LASL.

Responses were received from two 
vendors--Control Data Corporation (CDC) and Cray 
Research, Incorporated (CRI). The CDC response did 
not offer a computer for immediate evaluation; tne 
proposed product was not scheduled for availability 
until about eighteen montns after the beginning of 
tne evaluation period. Thus, tne policy of 
"evaluation before acquisition" could not be 
implemented with respect to the CDC proposal, and 
tne CDC proposal was judged non-responsive to 
LASL’s requirements.

c. Evaluate the products 
proposal by CRI was consistent 
criteria and that computer was 
April 1, 1976. The evaluation 
effort between LASL, ERDA and 
to tne performance criteria sp

proposed. Tne 
with the specified 
evaluated, beginning 
was a cooperative 
FEDSIM and conformed 
ecified to vendors.

d. On the basis of evaluation results (c), 
determine whether to pursue a procurement action.

In summary, a plan was implemented that 
offered vendors an equal opportunity to compete, 
yet afforded the Government extra protection in an 
area of high technological risk.

Tne performance standards necessary to qualify 
a computer for procurement were establisned in the 
ERDA letter to vendors. Qualification criteria for 
the CRAY-1, incorporating these standards, are 
formalized in tne Evaluation Plan (Appendix A of 
tnis document). An informal description of tne 
criteria follows. The criteria are divided into 
three general areas: scalar operations, vector 
operations and reliability.

Tne scalar operations criterion is tnat by 
metnods discussed in Section III and formalized in 
the Evaluation Plan, the hypothesis that the CRAY-1
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is at least two times faster than the CDC 7600 for 
two specified workloads must be satisfied.

The vector operations criteria are defined for 
three vector lengths. The criteria are that the 
CRAY-1 be capable of executing vector operations at 
a rate at least 3, 4 and 5 times that at which the 
CDC 7b00 can perform the equivalent functions for 
vectors of lengths 20. 100 and 500, respectively.

Reliability is determined by three metrics: 
System Availability (SA), Mean-Time-to-Failure 
(MTTF) and Mean-Time-to-Repair (MTTR). Informally,
SA is the fraction of time the system is available 
for use, MTTF is the expected time to system 
failure, and MTTR is the expected "down-bime" 
interval. The reliability criteria are that MTTF 
be at least 4 hours, MTTR be at most 1 hour, and SA 
be at least O.d. Furtnermore, the three criteria 
must collectively be met during any contiguous 
20-workday period.

These criteria are summarized in Table 1-1 of 
the Executive Summary (Section I) of this report.

It now appears that there is an existing 
computer system that meets LASL Class VI computing 
requirements -- the Cray Research, CRAY-1. The 
ChAY-1 was installed at LASL for six months for 
evaluation against the threshold performance 
criteria specified by LASL and ErtDA to qualify the 
machine for procurement. The purpose of this 
document is to describe the approach taken by LASL, 
ERDA and FEDSIM in evaluating tne CrAY-1 and the 
results of the evaluation. This document was 
preceded by a preliminary version of this report 
("Interim Report of the CRAY-1 Evaluation") issued 
July 1, which consisted of the CRAY-1 Evaluation 
Plan and gave results of the evaluation to that date.
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Introduction
and
Approach The scalar operations performance criterion is

that the CRAY-1 must perform scalar operations at a 
rate at least twice that of the CDC 7600 for each 
of two workloads. The approach to testing the 
machine against this criterion is specified in 
detail in the Evaluation Plan (Appendix A). Some 
of the constraints and requirements which shaped 
this approach are described nere.

Since no compiler was available on the CRAY-1 , 
any code implemented on the machine was written in 
assembly language. The decision was made to 
implement "optimal" code on both machines, instead 
of attempting to emulate compiler-generated code. 
The fundamental reason for this approach was that 
the CRAY-1 and CDC 7b00 have different 
architectures. For example, the B and T 
programmer-controlled register caches on the CRAY-1 
have no equivalent on the CDC 7600. Attempts to 
emulate compilers would raise such questions as: 
"How well will a (hypothetical) CRAY-1 compiler 
take advantage of this cache for the storage of 
temporaries?" It soon became obvious that no 
satisfactory solution to the problem of functional 
differences existed where the problem was 
compounded by questions of compiler "intelligence" 
and convention.

Another reason that code optimization was 
undertaken was because "optimal" is a yardstick for 
comparison. For very short modules it is 
reasonable to expect that careful coding, 
cross-checking by other programmers, the use of 
software tools that test efficiencies, etc., will 
result in nearly optimal code. The metric for 
optimality is simple. If two approaches are 
considered, the approach resulting in the least 
execution time is more optimal. tohen emulating 
compiler-generated code, any question of approach 
becomes a debate between compiler implementation 
philosophies.

The next decision to be made was whether 
Input/Output operations (I/O) should be included in 
the analysis or whether computational kernels 
should oe compared alone. A complete analysis 
would require inclusion of the properties of CPU/10
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overlap. This would necessitate a complete 
analysis of the program's CPU burst, 1/0 burst 
profile. Unfortunately, tools did not exist for 
such complete analysis, nor could they be 
constructed within the time frame of the 
evaluation. Furthermore, at the time the 
evaluation was started, the complete operating 
characteristics of the eventual CHAi-1 I/O 
subsystem were not well-determined. The only

which to gather such statistics would be 
modifications in the running codes and 
system. This approach was not considered 

A modeling approach was suggested, but 
a trivial I/O system was available, it

manner m 
extensive 
operating 
tractable. 
since only
was not thought that models could be validated with 
the necessary rigor. Thus the decision was made to 
limit the comparison to the machines' mainframe 
hardware. An analysis of the CRAY-1 I/O subsystem
was formulated to determine if any pathol ogies
existed in the subsystem.

The next decisions facing the evalua tion
design committee were 1) what c ode s would be
analyzed and 2) how would kerne Is be sele cted from
these codes to run on the machine? A workload
determination was considered es sential fo r
select in g "representative" code s . Since the
workload of the Class VI comput er would c onsist of
long-run ning codes, the manner of the sel ection of
criteria defining the potential wo rkloao for the
machine was relatively straight forward. These
criteria are put forth in the Evaluation Rian. A
more ticklish question was how to draw
"representative" kernels from the codes. Since 
kernels would have to be written in assembly 
language for both machines and "optimized", the 
amount of code that could be implemented was 
obviously small. The general question of 
"representativeness" is still a very active area of 
research in computer performance prediction. Many 
opinions were put fortn by the evaluation design 
committee. The constraint that blocked most 
approaches was tne desire to attain rigorously 
defensible estimates. There is no metric of 
"representativeness" that can be applied. Error 
bounds for performance estimates for workloads 
attainable from kernels are usually impossible to 
attain. Thus a new approach was considered 
necessary.

It was 
which prove 
in order to 
estimates. 
formulated 
Informally.

decided to adopt a sampling scheme to 
n statistical methods could be applied 
attain error bounds for tne performance 
Tne sequential sampling scheme that was 

is described in the Statistics Addendum, 
the approach assumes that any code can
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be partitioned into small, nonoverlapping code 
segments. If we ignore I/O, then the total 
execution time for any code will be the sum of the 
total execution times for the segments. What we 
desire to estimate is the ratio of the CDC 7600 
execution time to CRAY-1 execution time for the 
code. If this speed ratio is at least two then the 
CRAY-1 meets the scalar qualification criterion for 
that code. The sampling scheme draws a number of 
these segments from the code. These computational 
kernels are then implemented in assembly language 
on each machine and timed. The speed ratios of 
these kernels are thus related to the actual speed 
ratio for the code. The larger the sample size 
from a particular code, the more confident we are 
that the sampled speed ratio is close to the code's 
actual speed ratio.

Unfortunately, it became apparent that the 
sample size necessary to estimate a code's speed 
ratio with adequate confidence was too large to be 
tractable. However, the hypothesis that the CRAY-1 
is greater than twice as fast as the CDC 7600 (the 
qualification criterion) can be tested with a 
tractable sample size. A procedure can be 
constructed so that the number of kernels drawn is 
not fixed, but is a function of tne fraction of 
kernels that have speed ratios in excess of two.
The hypothesis is tested each time the sample size 
is increased by one. The number of samples drawn 
must be at least six if we wish the probabilities 
of accepting the hypothesis when it is false or 
rejecting it when it is true to each be less than
0.1. The practical significance of this scheme is 
that no more kernels than necessary need be 
programmed, thus avoiding the wasted effort of 
unnecessarily large sample sizes. Again, the 
reader is referred to Appendix A for a more 
thorough explanation of the scheme.

An estimate can be made of the actual speed 
ratio for a code, although the small sample size 
precludes determining the error bounds on the 
estimate. Such estimates are included in the 
Informal Estimates Section of this report.

A final complication for the workload 
determination was tne concern that the LASL 
workloaa would not oe "representative" of the 
broader ERDA-wide workload for the machine. LASL, 
of course, was primarily interested in the 
performance of a small set of codes that, for 
programmatic reasons, would be candidates for 
conversion to the Class VI computer. Thus a second 
set of codes, including the LASL set, was also 
tested. The first set was designated the Class VI
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applications workload, while the extended set was 
labeled the Class VI workload. It was decided to 
test the hypothesis for each of the applications 
codes and to test the hypothesis for the Class VI 
workload as a whole. At that time the problem of 
determining a rule attaching a weighting to the 
importance of each code in the applications 
workload became apparent. It was decided to use a 
decision rule that is applied against the results 
of the hypothesis test for each applications code 
and which determines whether or not CRAY-1 
performance over the entire workload is 
satisfactory. The decision rule was formulated by 
LASL and approved by the ERDA Division of Military 
Application before the testing was initiated. The 
rule adopted was that the hypothesis must test as 
true for one or more of the three applications 
codes in order for the CRAY-1 to meet the 
applications workload threshold criterion. An 
indeterminate test result was to be considered a 
negative result when applying the decision rule.

Preliminary 
Scalar Performance
Test A preliminary test of the CRAY-1 scalar

performance was desired in order to estimate if the 
CRAY-1 might meet the scalar performance criteria 
prior to beginning the extensive sampling procedure 
outlined above. Since the kernels selected by the 
sampling method would by necessity be very small, 
on the order of three to ten Fortran statements, a 
preliminary test program an order of magnitude 
larger was desired in order to provide a rough 
check on tne sensitivity to kernel size of the 
CRAY-1/CDC 7b00 speed ratio when determined by the 
sampling method.

The test routine chosen is a kernel of the 
Equation of State (EOS) algorithm. EOS is common 
to many LASL production codes. The algorithm 
consumes approximately 3.and 1.2$, respectively, 
of the CPU time for representative runs of two of 
tne production codes comprising the Class VI 
workload.

The kernel TLU extracted from EOS is given in 
Figure B-1 and consists of over 70 lines of Fortran 
code. Tne kernel was hand translated into CDC 7b00 
assembly language and CRAY-1 assembly language as 
efficiently as was feasible for each machine. The 
assembly language code is available in a separate 
document. In order to factor out the impact of 
possible differences in efficiency between the 
CRAY-1 and CDC 7b00 library versions of the 
functions ALOG and EXP, the functions were 
re-defined as ALOG(x) = x and EXP(x) = x.
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Naturally, the CRAY-1 version of TLU consisted of 
purely scalar calculations. It can be noted from 
Figure B-1 that the test routine is characterized 
by much address computation, numerous tests and 
branches, and a moderate amount of floating-point 
arithmetic.

For each machine, the test routine was timed 
for 5400 calls with a different parameter set for 
each call in order to fully exploit all paths in 
the routine. This was accomplished by using a 
driver. A Fortran listing of the CDC 7600 driver 
is given in Figure B-2. The equivalent CRAY-1 
driver was written in PASCAL and CRAY-1 assembly 
language.

Results of these timings are given in Table 
III-1. The timing ratio of 2.55, greater than the 
criterion of 2.0, indicated that the more extensive 
sampling procedure was worthwhile.

Table III-1. Scalar Test Routine Timings.

A. CDC 7600 Execution Time .Od77 sec.

B. CRAY-1 Execution Time .0344 sec.

C. Ratio A/B 2.55
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Workload
Determination For a code to be included in the Class VI

workload, the following criteria were established:

1. The code consumes enough CDC 7b00 CPU time to 
merit conversion to a Class VI computer.

2. The code will continue to be used at current 
or increased levels.

3. Support for the code's conversion to a Class 
VI computer exists within the user group.

A measure of at least one run per week greater than 
one hour on the CDC 7600 was chosen as the level of 
significance to merit conversion (Criterion 1). To 
accomplish this, a detailed analysis of LASL's 
production workload was undertaken utilizing historical 
accounting data provided by LASL's computer operations 
group.

Statistics are collected and maintained on the two 
CDC 7600 operating systems utilized for production work:
CROS and LTSS. CROS is a batch operating system suited 
to a production environment, while LTSS is a timesharing 
operating system suited to an interactive environment.
Both systems run on the CDC 7b00. Accounting 
methodologies between these two systems differ.
Statistics on the CROS system are detailed and flexible 
enough to summarize and tabulate requested data to the 
level of a single run. LTSS statistics, however, are 
logged by account number, the accounting philosophy 
being that an account number is associated with a 
"family" of codes programmatically related. Thus, many 
codes may charge to a single account and the charged 
time cannot be easily apportioned among individual 
codes, as in the CROS system.

A summary of compiled results is presented in 
Tables III-2 and III-3. The CROS data is 
straightforward. The criterion of "greater than one 
hour" could not be as easily applied to the LTSS 
workload because of the previously discussed accounting 
methodology. The approach taken on LTSS was to 
determine usage by account number. The codes associated 
with an account number were then determined by 
interviewing the holder of the account. Since it was 
not possible to break down the run times by code, short 
runs within a "family" are lumped together with
production runs. Thus, the method of ascertaining the t
production workload on LTSS was to conduct a user survey
to discover the account numbers and associated codes
active during the production shifts. Fortunately, LTSS
production codes are few in number and highly visible,
since they were only recently transferred from CROS to
LTSS.
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The total LTSS charged time, by family of codes, is 
presented in Table III-3 for three months of usage. The 
reader will note that the values of charged time are low 
when compared to the CROS figures, especially when one 
considers that the CPU time includes all runs charged to 
an account, not merely runs of one-hour duration or 
more. This is explained by 1) at that time, there was 
only one CDC 7b00 running LTSS in a production 
environment while three CDC 7600s were running CROS, and 
2) LTSS currently has a smaller population of production 
codes.

The complete set of codes enumerated in Tables 
III-2 and III-3 comprise the potential Class VI 
workload. The significance criterion (Criterion 1) 
determines that a code must have more than 12 one-hour 
or greater runs in three months to be considered in the 
Class VI workload. On the basis of Criterion 1 all 
codes consuming less than 12 hours of CDC 7600 time in 
greater than one-hour runs were eliminated from 
consideration.

Additionally, programmatic requirements dictated 
that certain codes would receive little or no support 
for conversion to the CRAY-1 . A user review process 
eliminated many codes from consideration on the basis of 
Criterion 2; namely, ZORK, TD4TW0D, TIGER, and the MAGEE 
and MCN families. MCRAD, E0T0T0, GUANO, TORUS-M and 
SIMMER were left to comprise the Class VI workload.

Of these five codes, MCRAD, GUANO, and E0T0T0 were 
selected to comprise the Class VI applications workload. 
Table III-4 tabulates the final results of the workload 
study.



16

Table III-2.
Potential Class VI Workload from CHOS.

System: CROS

Period Evaluated: 1/1/76 to 3/31/76

Source of Data: CROS HISTORICAL DAYFILE DATABASE

Total CPU % of Total
Time used (hrs.) CPU time for

Code User Supplied Description for Jobs >1 hr. Jobs >1 hr.

GUANO 2-D Lagrangian explosion code 271.2b 31.06
ZORK 1-D explosion code 92.75 10.62
EOTOTO 2D Monte Carlo particle-in­

cell code
79.27 9.00

TD4TW0D Controller for Magee family 
of codes

72.90 0.36

TIGER 2-D particle-in-cell S/N code 64.57 7.40

TORUS-M 3-D toroidal geometry fluid code; 
magnetic fusion research

40.50 5.56

SIMMER Hydrodynamic-neutronics-equation of 
state code; reactor safety

39.00 4.47

MAGEE 2-D hydrodynamic code 36.51 4. 10

MCNGACE 3-D Monte Carlo neutron and gamma 
transport code

17.05 1.95

MCNG 3-D Monte Carlo neutron and gamma 
transport code

10.03 1. 15

MCRAD Monte Carlo radiation output code 11.02 1. 15
DITTO 1-D Lagrangian explosion code 0.67 0.99
MCMD Monte Carlo molecular dynamics 

for hard spheres and hard aisks
7.59 0.07

MOOP Weapons diagnostics 6.01 0.70

DYNSTAR Weapons diagnostics 5.09 0.60

LONGWALK Weapons diagnostics 4.47 0.51
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SPECTOR

YAQM

UNDETER­
MINED

TOTAL

2-D radiation transfer code; 
astrophysics research

3.31 x>
ono

2-D radiation transfer code 3.04 0.35

No identification--unable to 
infer from other dayfile 
data the code ID.

91.22 10.45

873.04 100.00
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Table III-3. Potential Class VI Workload from LTSS.

System: LTSS

Period Evaluated: 1/1/75 to 3/31/76

Source Data: Account Number Data Base and User Survey t

Total Time (hrs.) 
Charged

Code User Supplied Description for all Runs Percent

MCRAD Monte Carlo radiation output code 453 65.42
MAGCON Controller for MAGEE family of codes 49 9.04

LASNIX 2-D hydrodynamic code for laser 
fusion pellet design

14 2.56

WAVE 2-D electrodynamic relativistic 
particle simulation code; 
laser fusion

11 2.03

SIMMER Hydrodynamic-neutronics-equation 
of state code; reactor safety

5 0.92

TOTAL 542 99.99
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Table III-4. LASL Class VI Workload and 
Class VI Applications Workload.

Class VI Workload

Code lb User Supplied Description

MCRAD

GUANO

EOTOTO

TORUS-M

SIMMER

Monte Carlo radiation output code 

2-D Lagrangian explosion code

2- D Monte Carlo particle-in-cell code

3- D toroidal geometry fluid code; 
magnetic fusion energy research

Hydrodynamic-neutronics-equation of state code 
reactor safety

Class VI Applications Workload

Code ID User Supplied Description

MCRAD Monte Carlo radiation output code

GUANO 2-D Lagrangian explosion code

2-D Monte Carlo particle-in-cell code.EOTOTO
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Execution
and Monitoring After the LASL Class VI workload and its

subset, the Class VI applications workload, had 
been determined, each user of a selected code was 
asked to provide files of the code's Fortran source 
and all data and control card files necessary for a 
typical execution of the program. The source code 
and associated data files were copied in order to 
insulate the "evaluation" code from the normal 
evolutionary changes of a production environment. 
Isolation was desired in order that monitoring 
results be reproducible during the entire 
evaluation period.

Monitoring proceeded utilizing the 
LASL-written software monitor STAT. For a given 
code, the entire field length of a particular 
overlay and its suboverlays was divided into 
non-overlapping address ranges labeled "buckets." 
STAT samples the program address counter and 
determines which bucket encompasses the address. 
STAT then increments a count for that bucket and 
subsequently summarizes these results into a 
cumulative distribution that gives the fraction of 
time spent by the sampled overlay in execution in 
or below the address range for each bucket. 
Implementation does not allow the generation of a 
cumulative distribution over more than one overlay. 
Additionally, the bucket size was chosen to be 16 
words--a size large enough to encompass a 
meaningful Fortran segment yet small enough to 
result in assembly language segments of tractable 
size.

The subject codes were run and monitored over 
a sufficiently long period to exercise the normally 
used features of each code--typically five to 
fifteen minutes of CDC 7600 time. Monitoring was 
done on those overlays that encompassed the main 
iterative loop. The five to fifteen minutes 
includes pre- and post-processing which were 
ignored because this processing consumes 
insignificant portions of a code's production 
execution time.
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Kernel
Selection In order to achieve a single cumulative

distribution for an entire code execution, a 
separate program was written to integrate 
STAT-generated overlay cumulative distributions. 
This integration is accomplished by weighting the 
individual overlay distributions by the percent of 
time spent in each overlay. From this data a 
single cumulative distribution can be inferred.

The same program then generates a random 
number, evenly distributed from 0 to 1, utilizing 
the Fortran library function HANF. The generated 
random number is applied to the cutoff points of 
the cumulative distribution associated with each 
overlay. For example, assume three overlays (A, B 
and C) were sampled by STAT and consumed 10 sec.,
20 sec., and 35 sec., respectively, of run time.
The fraction of the total time spent by each 
overlay would be 10/b5, 20/65 and 35/65, 
respectively. This would imply cutoff points of 
10/65 and 30/65 for overlays A and B, respectively. 
Thus, if the random number .31417 was obtained, it 
would be associated with overlay B. Furthermore, 
the bucket associated with .31417 would be 
associated with the B overlay cumulative 
distribution value .31417 - 10/65.

An initial sample size of six from each of the 
three Class VI applications workload codes was 
drawn for the Class VI applications workload 
sample. This is because the minimum sample size 
for testing the speed ratio hypotnesis is six (see 
the Statistics Addendum). Ten kernels were drawn 
for the test of the Class VI workload, two from 
each of the five codes comprising the workload.
The initial sample size of ten allows each code to 
be equally weighted in the test. The random number 
which determined the location of each kernel (the 
"bucket") in the coae and the overlay block in 
which the kernel resides is presented in Table 
III-5. Each kernel is identified by a unique 
label. Kernel labels begin with the first letter 
of the code from which they were drawn, and are 
numbered in the order in which they were drawn. 
Kernels drawn for the Class VI workload test are 
specified by an "H" in their label.

In this initial drawing of 26 kernels, four 
were duplicates, namely G2/G3, E3/E6, M2/MH1 and 
SH1/SH2. Duplication occurs when two random 
numbers are so close in value that they "fall" into 
the same bucket.
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Table III-5.
Random Numbers Associated with Kernels.

Code Kernel Random OverlayName ID Number Block
E0T0T0 El .0b7H473 (1,3)

E2 .39d6746 (2,2)
E3 .905d777 (2,2)
E4 .i7aoodi (2,2)
E5 .ti1074H9 (2,2)
E6 .6754135 (2,2)
EH 1 .6468114 (2,2)
EH2 .6430924 (2,2)

GUANO G1 .0063286 (2,0)
G2 .8719697 (7,0)
G3 .9059678 (7,0)
G4 .9562930 (8,0)
G5 .3848960 (2,0)
G6 .2780379 (2,0)
GH1 .2046974 (2,0)
GH2 .4215584 (2,0)

MCRAD Ml .3130292 (2,0)
M2 .0574023 (0,0)
M3 .0409673 (0,0)
M4 .6274798 (2,1 )
M5 .6945399 (2,1 )
M6 .7010670 (2,1 )
MH 1 .0700280 (0,0)
MH2 .6218473 (2,1 )

TORUS-M TH 1 .2906896 (0,0)
TH2 .5704439 (0,0)

SIMMER SHI . 1 1 15372 (3,5)
SH2 .2733280 (3,5)
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A portion of the segment of Fortran statements 
associated with the bucket was selected as the 
Fortran kernel. This was accomplished according to 
the following procedure.

a. If the adaress boundaries of the bucket 
resulted in incomplete Fortran 
statements, the segment was expanded to 
include entire statements.

b. Starting at the selected address one went 
"backward in execution" to either the 
segment boundary or a labeled statement 
actively accessed Irom outside the 
segment. "Active" execution paths are 
those taKen during execution of tne code. 
Whether an execution path was active or 
inactive was inferred from the STAT 
histogram of execution within the 
segment. The selected statement formed 
the first statement of the Fortran 
kernel.

c. From the first statement of the Fortran 
kernel one went "forward in execution" to 
either the segment boundary or an active 
jump outside the segment. The subsegment 
encountered in tnis action comprises the 
Fortran kernel.

If at any time in this selection process 
additional knowledge of program flow was required, 
STAT was rerun over the kernel in question with a 
one-woro bucket size. It snould be noted that 
seldom were two possible program flow paths active 
in tne same segment. Thus steps b and c usually 
consisted of merely identifying the active portion 
of the segment. The active portion then comprised 
tne kernel.

In summary, kernel selection was accomplished 
in a straightforward ano unbiased manner. The 
methodology yielded representative samples weighted 
by frequency of execution in a code.
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Kernel
Implementation The code selection yielded an initial 2d

kernels to be coded botn in COMPASS (CDC 7600 
assembly language) and in CAL (CRAY-1 assembly 
language). A careful examination of the segments, 
from which each kernel was selected, established 
coding assumptions for each kernel. Some examples 
of coding assumptions follow. By examining the 
section of code from which the kernel was extracted 
one could determine variables local to the kernel. 
These variables were left in registers after 
calculation but not stored to memory. If a 
variable was a DO loop index, it was assumed to be 
in a register and not fetched from memory every 
time it was used. On the CRAY-1, B and T registers 
were used for temporary storage whenever feasible. 
Both the Fortran statements and the coding 
assumptions were incorporated as comments at the 
beginning of each kernel.

The evaluation team was assigned two full-time 
programmers and the services of two data analysts. 
One programmer was the primary author of the 
majority of the COMPASS kernels, while the other 
was the primary author of the CAL kernels. The 
data analysts took the handwritten code, punched 
the decks, and assembled and executed the kernels. 
They corrected some assembly errors and kept a file 
of all the decks and listings. This technique let 
the programmers concentrate their efforts on 
writing correct and efficient kernels. The success 
of this technique is indicated by the fact that it 
took only five weeks to completely write, assemble, 
and make the first debug pass over 52 assembly 
language kernels--2b COMPASS and 2b CAL. Two of 
the 26 kernels were nothing more than a block 
transfer of data from Large Core Memory (LCM) to 
Small Core Memory (SCM) on the CDC 7600. Since no 
such transfer is necessary on the CRAY-1, the 
kernels "exceeded" the speed ratio criterion and no 
coding was necessary.

Following the programming of the kernels the 
programmers spent four weeks debugging the kernels, 
"tuning" the code for efficiency, and verifying 
that the kernels satisfied the execution 
assumptions. Both programmers verified all kernels 
for accuracy and efficiency. The CAL and COMPASS 
versions of each kernel were checked against each 
other, instruction by instruction, by both 
programmers to verify their functional equivalence. 
The data analysts continued making all changes, 
executing the kernels, and updating the files.

A further pass over all the kernels was made 
by other experienced assembly language programmers.



25

These people looked for errors in the documentation 
and the coding and checked to see if any 
improvement could be made in the efficiency of the 
kernels. This pass revealed few substantial 
errors. Most corrections were aimed toward 
improvement in documentation. Once this process 
was complete the suggested changes were 
incorporated, and the kernels sent to FEDSIM for 
final review. Changes suggested by FEDSIM were 
then incorporated to produce the finished kernels.

The following steps were taken to guarantee 
that the implemented kernels are efficient and 
accurate.

1. The authors of the kernels were chosen for 
their experience in efficient coding. They 
were extremely knowledgeable about the 
architecture of the two machines that were 
programmed.

2. REGREF, a LASL-developed software tool that 
statically analyzes COMPASS code for 
efficiency, was used as an aid in optimizing 
the COMPASS kernels.

3. Both the two-man checkout and the 
cross-checking by other programmers were done 
to correct inefficiencies and to minimize any 
differences in efficiency attributable to 
individual programmers.

The assembly language listings of the kernels, 
timing information and driver programs comprise about 
350 pages of output. In addition, from one to ten pages 
of Fortran text were extracted for each kernel in order 
to define the kernel and establish the coding 
assumptions relevant to the kernel. The STAT-generated 
output used to locate and define the kernels is 
approximately 500 pages long for the five monitored 
codes. Source listings of the monitored codes were so 
lengthy that they were tractable only in microfiche 
format.

Because of the length of this material, no listings 
can be reproduced in this report. However, listings of 
kernel El are presented as an example in Figure B-3.



26

Timing
Results Results of the kernel timings are displayed in

Table Ill-b. A sorted histogram of the kernel 
speed ratios is displayed in Figure III-1.

Table III-6. Timing Results.

Code Kernel Subprogram
Absolute 
Address (CRAY-1 CDC 7600 CDC 7600 Time/

Name ID Name Octal iCycles Cycles CRAY-1 Time
E0T0T0 El HYDRO 130020-130040 60 81 2.23

£2 FLYPART 1 12760-1 13000 92 117 2.80
E3 ALNLOG 1 34120-1 34,140 93 100 2.37
E4 FLYPART 110140-1 10160 75 89 2.61
E5 ACECASE 131660-131700 100 108 2.38
E6 ALNLOG 134120-134140 93 100 2.37
EH1 ACETOTN 127070-127100 64 83 2.85
EH2 ACETOTN 127020-127040 51 94 4.05

GUANO G 1 EOSE 61200-61220 121 163 2.96
G2 NSOLV 123220-123240 130 157 2.66
G3 NSOLV 123220-123240 130 157 2.66
G4 UDDER 101020-101040 117 138 2.59
G5 CSOLV 115440-115460 117 106 2.03
G6 CSOLV 115320-115340 44 46 2.30
GH 1 \/EPQT 107760-1 10000 121 195 3.55
GH2 CSOLV 1 15460-1 15500 70 63 2.61

MCRAD Ml RADSWP 71640-71660 47 88 4. 12
M2 TEXP 44463-44512 49 58 2.60
M3 TLOG 44463-44512 46 54 2.56
M4 H2200 103620-103640 51 52 2.24
M5 H2200 105120-105160 72 76 2.38
M6 H2200 105200-105220 72 75 2.29
MH 1 TEXP 44463-44512 49 56 2.60
MH2 H2100 103600-103620 67 65 2.13

TORUS-M TH1 BAAL 31460-31500 64 77 2.65
TH2 BAAL3 44660-44700 111 106 2.10

SIMMER SHI* ECSRW 15520-15540 _ __
SH2* ECSRW 15520-15540 — — —

*These two kernels perform large core memory/small core memory 
transfers on the CDC 7600. No such transfers are necessary 
on the CRAY-1. hence, these kernels "exceed" the speed ratio 
criterion and did not require implementation.
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Impact of
Hardware
Features

All kernels drawn displayed a speed ratio that 
was in excess of 2.0. Thus it was not necessary to 
draw more than six kernels per test (with the 
exception of the Class VI workload test in which 
two kernels from each of the five codes were 
chosen). This result was unexpected because of the 
following simple analysis. The ratio of CPU cycle 
times for the two machines is 2.2. The ratio of 
memory access times is 1.8. If one assumes the 
cycle counts for instructions to be roughly 
equivalent, then one would expect the speed ratio 
to bracket this range. A careful analysis of the 
coded kernels revealed that certain hardware 
features of the CRAY-1 resulted in the kernels 
being coded in fewer CRAY-1 instructions than 
CDC 7b00 instructions, resulting in speed ratios 
greater than 2.2 in many cases. A summary of these 
features follows.

Out of the 2b kernels that were coded, 23 took 
fewer cycles to execute on the CRAY-1 than on the 
CDC 7600. In the opinion of the programmers, the 
CRAY-1 was also easier to program. Both of these 
facts can be attributed to hardware features that 
exist on the CRAY-1 and not on the CDC 7600. Some 
of these features are given here.

1. The B and T registers are available for 
temporary storage. These registers 
eliminate the use of memory for partial 
results that are calculated in a fairly 
elaborate Fortran expression.

2. Data can be fetched and stored out of all 
eight S registers. Given the Fortran 
expression I = J, it is necessary to 
fetch J and store it to location I.
Since the fetch times are 10 and 6 cycles 
for the CRAY-1 and the CDC 7600, 
respectively, it would appear at first 
glance that the CDC 7600 should take 
fewer cycles than the CRAY-1. This is 
not true because the CDC 7600 fetches 
data into X registers 1-b and stores out 
of X registers 6 and 7. So after J is 
fetched into XI, for example, it must be 
moved to Xb before being stored. Thus in 
tnis case the operation takes the same 
number of cycles on both machines.

3. Data can be fetched and stored directly 
to all A registers. This allows index 
calculations to be completely independent 
of the S registers and other floating
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Conclusions

point calculations.

4. Results from the floating add unit are 
normalized before being returned to the S 
register. The floating add unit takes 6 
cycles on the CRAY-1 and only 4 cycles on 
the CDC 7600. But if one adds the cost 
of normalizing, which is 3 cycles, the 
add and subtract times are better on the 
CRAY-1 than on the CDC 7600.
Furthermore, because it takes two 
instructions to complete the add on the 
CDC 7600 there is always the chance of 
adding extra cycles due to access path 
delays.

5. All functional units are fully segmented. 
On the CDC 7600 the multiply and divide 
functional units are only partially 
segmented. The cycle times for the 
multiply units are 7 and 5 for the CRAY-1 
and the CDC 7600, respectively. The full 
segmentation for the CRAY-1 overcomes 
this cycle count disadvantage at three 
successive multiplies. That is, if three 
successive multiplies are issued on both 
machines, the last result will be 
available on both machines at the same 
cycle.

6. The instruction buffer on the CRAY-1 is 
much larger than that of the CDC 7600. 
Forward branching on the CRAY-1 does not 
necessarily clear the instruction buffer, 
and in fact most of the forward branches 
in the kernels were to instructions 
contained in the instruction buffer.

The hypothesis that the CRAY-1 in scalar mode 
is greater than two times faster than the CDC 7600 
was tested individually for three codes (the 
Class VI applications workload) and for a group of 
five codes (the Class VI workload). The hypothesis 
tested as true in all cases. Thus the CRAY-1 meets 
the scalar performance criterion for each of the 
three Class VI applications workload codes and for 
the Class VI workload.

The reader is cautioned that a careful 
interpretation of these results is necessary.
First, the manner in which the kernels were 
implemented upon each machine was designed to be a 
test of the hardware, not software, of the system. 
The performance effects of compilers were not 
considered. If one assumes that the ability of a 
compiler to produce efficient code increases with
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the man-years invested in the compiler, then one 
must assume that any CRAY-1 compiler when 
implemented because of its relative immaturity will 
produce less efficient code than the very mature 
optimizing compiler available on the CDC 7600. 
Second, the tests were made with the CRAY-1 in 
scalar mode. Since CRAY-1 vector operations are 
faster than the equivalent scalar operations, 
vectorization will normally result in higher speed 
ratios. Third, input/output was not considered in 
this test. Performance of input/output-bound coaes 
will be determined by the relative performances of 
the two machines' I/O subsystems. However, it 
should be noted that on the basis of statistics 
generated by the STAT sampling routine, the 
Class VI applications workload codes are heavily 
CPU-bound on the CDC 7600. Finally, the sample 
size drawn, while statistically valid for the 
hypothesis test, is too small to provide us with 
statistically valid estimates of the total code's 
speed ratio. The CRAY-1 was tested against a 
performance threshold for efficient machine 
language computational kernels, and exceeded this 
threshold.
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SECTION IV

VECTOR
PERFORMANCE

CRAY-1 vector algorithms are typically two to 
five times faster than equivalent scalar 
algorithms, depending upon vector length and the 
algorithm's complexity. It is then obvious that 
the performance of the CRAY-1 relative to the 
CDC 7600 for a particular code will depend upon the 
vector operations that can be exploited by that 
code. Although it would be very desirable to 
characterize precisely the type and proportion of 
vector operations each code would employ on the 
CRAY-1, this is presently an unmanageable task. 
Converting codes to employ a significant amount of 
vector operations inevitably requires restructuring 
of the algorithms. This restructuring may be so 
trivial that it can be done during compilation or, 
more typically, may require the efforts of an 
experienced programmer. Such restructuring was 
beyond the resources, both time and human, of this 
evaluation.

The approach of categorizing the 
"vectorizability" and type of vector operations by 
automatic examination of source code is 
meaningless. Any such examination results in a 
"vectorized" proportion that inevitably increases, 
possibly by an order of magnitude, when the code is 
restructured for a vector machine. See Ref. 1 for 
a more detailed discussion of automatic 
"vectorization" of programs.

Thus, at this time it is not possible to 
obtain rigorously "representative" vector functions 
in order to test the CRAY-1 against the vector 
criteria. "Vectorized" codes exist at other 
installations, but none duplicate the LASL 
workload, and few have been written for the CRAY-1. 
The approach adopted was to test the CRAY-1 against 
vector algorithms submitted by the Applications 
Support and Research Group of the Computer Science 
and Services Division of LASL that, in their 
judgement, represented typical vector operations 
that user codes would perform on the machine. Five 
operations were chosen to evaluate the machine's 
vector performance versus vector length. The 
average of the five speed ratios was chosen to 
compare against the qualification criteria. Each 
vector kernel was coded as efficiently as was 
feasible in assembly language for each machine. In 
particular, the CDC 7600 kernels were coded so that
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all instructions were maintained in the instruction 
stack of the machine during the operation loop, 
with functional units overlapped to the fullest 
extent--a scheme representing very efficient 
utilization of the CDC 7b00.

The five functions were timed on both machines 
and speed ratios calculated. Timings are presented 
in Table IV-1. Fortran versions of the five 
functions are presented in Figure B-4. The average 
speed ratios of the CDC 7b00 execution times to the 
CkAY-1 execution times for the five functions are 
3.39, 4.50 and 5.12 for vector lengths of 20, 100 
and 500, respectively. Thus the CRAY-1 meets the 
vector operations performance criteria as specified 
in Section III.A.2 of the Evaluation Plan (Appendix 
A) . 1

1. Optimal Utilization of Supercomputers, Volume I - The 
Control Data 7b00, April 1976, R&D Associates, P. 0. Box 9695, 
Marina Del Rey, California.
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A. Execution times of tne algorithms (milliseconds):

Table IV-1. Vector Performance Summary.

Vector Length: 
Machine:

20
CRAY-1 7 bOU

100
CRAY-1 7 bOO

500
CRAY-1 7 bOO

VVSPVS .00190 .00732 .00537 .02712 .02266 .12012
VVVPVV .00235 . OOdb1 . 007dd .03509 .03003 .10701
VVVPV .00213 .0072b .0oob0 .02d1b .02945 . 13200
DOTPRO .00312 . 00o49 .00551 .02109 .01050 .09dd9
ADDVEC .OOldO .00715 .00523 .024d9 .02270 .11275

B. Ratios of CDC 7b00 execution times to CRAY- 1 execution time

VVSPVS 3.d5 5.05 5.51
VVVPVV 3. bo 4.45 cr J=

V VVPV 3.41 4.27 4.50

DOTPRO 2 .Od 3.97 5.99
ADDVEC 3.97 4.7b 4.9o

3.3^ 4.50 5.12C. Average Ratio:
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SECTION 1 

RELIABILITY

Approach It was considered crucial tnat any Class VI 
computer considered for purchase be very reliable. 
Extended periods of downtime would be intolerable 
since the programmatic functions servea by the 
computer could not be absorbed by other machines at 
the Laboratory. Thus rigorous reliability 
standards were formulated. In addition to "system 
availability," the single measure that is commonly 
used to define reliability, two additional 
reliability criteria were specified. Threshold 
reliability criteria of at least dO percent system 
availability, at least four hours 
Mean-Time-to-Failure (MTTF) and at most one hour 
Mean-Time-to-Repair (MTTR) were established by LASL 
and ERDA as defining an acceptable level of 
reliability. The reader is referred to the 
Evaluation Plan (Appendix A) for a precise 
definition of these measures.

The reliability criteria would have to be met 
for a contiguous twenty-workday period for the 
machine to be considered for further procurement. 
The twenty-day period was established in order to 
smooth daily fluctuations expected for the 
measures; the period was considered long enough to 
prevent a machine meeting the criteria during a 
"fluke" period of good behavior. In order not to 
unfairly penalize newly constructed machines, tne 
measures from the best twenty-workday period would 
be applied against the criteria.

Commonly adopted logging procedures for 
aetermining machine reliability were deemed 
inappropriate due to the special evaluation 
environment of the CRAY-1. This conclusion is the 
result of the two observations that:

1 .

2 .

The burden of logging machine reliability 
falls upon a large number of operators 
and programmers, and is vulnerable to 
human error; and

Tne complex environment and primitive 
operating system of the CRAY-1 make it 
difficult to isolate CRaY-1 hardware 
failures from a) operator errors, b) 
ECLIPSE hardware/software failures, and 
c) CRAY-1 benchmark operating system 
software errors (unless a hardware error
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interrupt occurs and is handled correctly 
by the system).

The evaluation environment of the CRAY-1 
resulted in the CPU being idle the greatest 
fraction of time. The mode of operation for 
running on the machine typically consists of a 
programmer performing nearly all tasks on the 
ECLIPSE and running a program on the CRAY-1 for 
only brief intervals. The CRAY-1 benchmark 
operating system presently does not have 
implemented the capability of running a 
"background" job to keep the machine busy.

The EXERCISER
Program The EXERCISER program was written in an

attempt to overcome these limitations. The 
objective of the program is to approximate a 
production environment on the CRAY-1 by utilizing 
as many hardware features of the machine as 
possible for substantial periods of time. The 
EXERCISER program is self-verifying so that all 
machine failures, detected at the hardware level or 
not, will be noted. The program keeps a printed 
log of tne time of each failure. Reliability 
statistics may be gathered from the printed log, 
thus minimizing the possibility of human error.

Hardware components specifically being tested 
are the vector and scalar functional units of the 
CPU, the memory, and input/output (1/0) components. 
Unfortunately, I/O was not available on the machine 
during the first two months of the evaluation.

EXERCISER was adapted from one of the first 
programs written for the CRAY-1 at LASL. Coaed in 
CAL with PASCAL drivers, it solves for the vector x 
the matrix equation Ax=y by LU decomposition.

For each NXN matrix, N+1 systems of equations 
are solved. The A and y are parameterized such 
that every element of x in the N + 1t*1 system is near 
unity. Before N is incremented, every element of x 
is tested against unity. If a "near" unity test 
fails for any component of x, a message is 
dispatched to the operator and the event is logged 
by the program to a print file. The program then 
restarts the cycle until it is terminated by the 
operator. Most failures, such as parity errors, 
cause termination of the program and a message is 
dispatched to the operator by the operating system.

After June 15 substantial changes were made in 
the program in order for it to more fully meet its 
objective. First, N was fixed at 705, so as to 
"exercise" almost all of available memory. The
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EXERCISER code and data require approximately 
501 000 words.

The second substantial change was the addition 
of I/O to a DD-19 disk. The control flow of the 
EXERCISER program remains unchanged with the 
following exception. At the completion of solving 
the system, the LU matrix is written to disk
and then read from disk. The N+1th system is then 
solved and the test against unity is made. Any 
disk errors will result in this test failing. As 
before, upon detection of a failure, the program 
logs the failure and transmits a message to the 
operator.

EXERCISER was run from five to eight hours per 
day, five days a week throughout the entire six- 
month period. A sample of the daily log is shown 
in Figure V-1.

Results and
Conclusions Results, by twenty-workday interval,

calculated weekly, are displayed in Table V-1. The 
MTTF measures are also displayed graphically in 
Figure V-2. Failures are categorized in Table V-2. 
One sees that the CRAY-1 meets the threshold 
criteria for numerous periods.

An analysis of failures occuring during 
EXERCISER runs revealed that "intermittent" memory 
parity errors dominate. Hardware detection of a 
memory parity error prompts an interrupt which 
idles the machine and saves the program counter. 
EXERCISER is so constructed that from the program 
counter value and a memory dump, the exact memory 
bit causing the failure can be determined.
According to Cray Research, Inc. (CRI), roughly 50 
percent of the intermittent failures were diagnosed 
to this level of detail, of which all were caused 
by failure of a single bit. In all but 12 of the 
memory parity error failures the memory module 
incorporating that bit could not be made to fail 
again, neither during EXERCISER nor during various 
CRI memory diagnostic routines. In the 12 cases of 
reproducible failure, the memory module was judged 
defective and replaced. In the remaining cases, 
tests of the modules by CRI could determine no 
differences in operating characteristics between 
"once failing" and "never failing" modules. Once 
reinstalled in the machine, no module failed again.

CRI made various hardware changes in an 
attempt to eliminate tne failure mode or cause it 
to replicate at a more rapid rate. None of the 
hardware changes appeared to affect the failure 
rate. An obstacle to diagnosing this problem was
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the relatively long average interval between 
failures (4 hours), which implied very long running 
times during a change to determine if the failure 
rate had been changed.

Since the "once failing" module was seldom 
replaced, the MTTR measure should be more 
accurately labeled "mean-time-to-return," since 
hardware repairs were infrequent. In order to 
obtain a more accurate estimate of repair times, 
the mean-time-to-repair for all EXERCISER failures 
during which a repair was effected was calculated. 
For these 20 failures the total down-time was b.37 
hours, resulting in a MTTR of 0.41 hours. From 
this measure we conclude that only a minor portion 
of repair time was consumed, by the actual hardware 
change, the major portion being consumed by 
alerting the engineer and running diagnostic 
routines.

Since memory parity errors so clearly dominate 
the statistics, an analysis of EXERCISER was made 
in an effort to relate its memory access rate to 
that of a production environment. Memory 
utilization by EXERCISER is divided into two 
phases. In the I/O phase, 497 025 memory locations 
are accessed twice during a 3.10-second period.
This results in a memory access rate of 
approximately 0.0062 times the theoretical maximum 
of 60 million accesses per second (60 MAPS). In 
the computation phase of the program, a 705 by 705 
matrix is initialized and decomposed and a system 
of 705 linear equations is solved. This phase 
lasts 14.11 seconds. The use of vector 
instructions in the inner computational loop 
results in 64 memory accesses every 76 clock 
cycles. The inner loop consumes roughly 90% of the 
time for this phase. Thus memory is driven at 
approximately 0.9 x 64/7d = .74 of its maximum of 
60 MAPS. Ignoring the memory accesses during the 
I/O phase, EXERCISER drives the CRAY-1 memory at 
.74 of its capacity for 14.11/(14.11 + 3.10) = .62 
of the program's execution, for an overall memory 
access rate that is 0.61 of its maximum.

Predicting a typical memory access rate for a 
production environment with the above accuracy is 
not possible. However, it is plausible that the 
EXERCISER bandwidth is at least several times 
higher than that expected for a production 
workload. Thus we would expect the MTTF for a 
production workload on the CRAY-1 to be 
significantly higher than that observed under 
EXERCISER.
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Figure V-1. Daily EXERCISER Log. 
EXERCISER LOG

EXERCISER VERSION: DATE:

SYSTEM VERSION: 

COMMENTS:

EXERCISER BEGIN TIME: 
EXERCISER END TIME: 
OPERATOR'S INITIALS:
CE'S INITIALS:

SUMMARY
Time between EXERCISER start and failure/between failures (minutes).
1._____  2._____  3._____  4._____  5._____
6.________ 7.________ 8.________ 9.________  10.________

Time CE has machine for repair (minutes) Time from last failure to
n 0 ^ . shut off
5. 6. 7._________ 8. 1’--------------

No time intervals
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Figure V-2. MTTF urapn.

1 JUNE i JULY i AUG 1 SEPT

DAYS INTO EVALUATION
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Table V-1.

Reliability Statistics Summarized by Week.

Twe nty- 
Workday 
Period

Operational 
Use time 

(Mrs. )

Remedial 
Maintenance 
Time (Hrs.)

No. of 
failures

MTTF 
(Hrs.)

MTTR 
(Hrs.) SA

4/5 -5/7 115.15 17.72 40 2.88 .44 .874/14-5/14 113.50 16.35 38 2.99 .43 .674/23-5/21 112.05 1 1.83 29 3.86 .41 .90
4/30-5/2b 115.37 9.25 23 5.02 .40 .93
5/b -6/4 110.13 7.08 19 5.80 .37 .94
5/14-6/11 106.25 5.65 15 7.08 .38 .955/21-6/18 104.98 6.33 17 6.18 .37 .94
5/28-6/25 109.02 7.07 19 5.74 .37 .94
0/6 -7/2 100.78 10.40 24 4.20 .43 .91
6/15-7/9 97. 12 9.55 25 3.68 .36 .916/22-7/16 67.42 16.67 31 2.62 .54 . 64
6/29-7/23 88.57 16. 12 35 2.53 .52 .83
7/6 -7/30 99.45 15.67 33 3.01 .47 . 66
7/13-8/6 97.55 17.66 34 2.87 .52 .65
7/19-8/13 108.45 13.25 35 3. 10 .36 .697/27-6/20 102.77 12.47 33 3.11 .36 .69
6/4 -6/27 104.60 8.77 24 4.36 .37 .92
6/10-9/3 104.73 10.85 28 3.74 .39 .918/12-9/10 105.85 9.62 27 3.92 .36 .92
8/17-9/17 106.45 10.02 26 3.87 .36 .92
8/23-9/24 114.25 10.43 31 3.69 .34 .92
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Table V-2.

Failures Classified by Type.

Memory parity errors* 152 

Disk 1 

Vector modules 12 

Instruction buffer module 1 

Floating add module 4

Total 170

Of the 152 memory parity errors, 12 were found to 
be reproducible.

NOTE: Of the 18 non-memory related failures, ti repairs were 
effected at the time of failure.
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If the cause of the intermittent memory 
failures cannot be diagnosed and eliminated, the 
advantages of a machine with memory error 
correction are obvious. If one assumes all 
intermittent memory failures (139) could have been 
avoided by a single bit correction technique, then 
the MTTF for such a machine over the entire 
evaluation period would have increased by a factor 
of 170/(170-139) = 5.5.

This estimate assumes that a reproducible 
memory parity error, of which 12 were observed, 
would result in the machine failing. CRI reported 
that all 12 memory modules replaced were single bit 
failures. If one assumes that error correction 
would allow deferring module replacement into the 
scheduled maintenance period, then it is possible 
that single bit correction would have resulted in a 
MTTF increase by a factor of 170/(170-152) = 9.4 
over the entire evaluation period.
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SECTION VI

INPUT/OUTPUT
PERFORMANCE

Disk
Performance
Tests Four tests were designed to test the 

capability of the CRAY-1 DD-19 disk system.

Routine DISKI measures the instantaneous data 
rate for the DD-19 disk system. One track (8192 
64-bit words) is written to disk and then read back 
1000 times, with the writes and reads timed. No 
arm movement or head switching is required, since 
the same track is repeatedly read and written.

Routine DISK2 determines the maximum data rate 
the DD-19 will sustain. A large file is written 
sequentially on the disk and read back several 
times, with the read and write operations timed. 
This test is designed to determine the maximum data 
transfer rate that can be expected for large files.

Disk arm positioning times are measured by 
routine DISKS. A file is written to the disk 
across many cylinder boundaries, then read back in 
one sector (512-word) blocks. Read requests are 
arranged to force arm movement across a fixed 
number of cylinders. The time to position across a 
minimum of 21 cylinders, i=0,...,O, is recorded.

DISK4 measures the data error rate for the 
disk. A large file of approximately two million 
sequential integers (256 tracks) is written to the 
disk, then read back and verified.

Table VI-1 summarizes the test results and 
Table VI-2 summarizes expected disk 
characteristics. All test routines were written in 
CRAY-1 assembly language and run under the existing 
benchmark operating system.

The benchmark operating system imposed 
constraints that are discussed later. All timings 
were made using the CRAY-1 real-time CPU clock. 
Tests were run on both DD-19 disk units available 
and no significant differences between units were 
detected.
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Table VI-1. Disk Test Results.

Total Time (sec) Rate (1000 words/sec)
No. Words Write Read Write Read

DISKI:

16 sectors/track 
( 1 track buffer) 8 192 000 33.04 33.03 248 248

16 sectors/track 
(1 cylinder 
buffer) 8 192 000 33.04 14.37 248 446

15 sectors/track 7 6d0 000 16.52 16.52 465 465

DISK2:

1b sectors/track 8 192 000 33.06 18.20 248 450

15 sectors/track 7 680 000 18.20 18.20 422 422

DISKR:

Positioning Time 
Cylinders Moved Time (Sec)

369
256
128
64
32
16

8
4
2
1

.Odd

.067

.050

.050

.033

.033

.033

.017

.017

.017

No. Words Errors Error Rate
4.23 x 109 0 0

DISk.4 :
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Table VI-2.

Summary of Expected Disk Characteristics.

(from Interim Disk Storage Subsystem, publication 2240005 and 
Mass Storage Subsystem Reference Manual, publication 2240630, 
Cray Research, Inc.)

Available cylinders:

Number of head addresses:

Sectors/head address/cylinder: 

CPU (64-bit) words/sector:

CPU (64-bit) words/disk: 

Rotation:

Seek timing.

410 cylinder move:

1 cylinder move:

average:

Latency.

411 (404 plus 7 spare)

10 (10 groups of
4 physical heads each)

16

512

33 669 120 
3 600 RPM {±2%)

60 ms maximum 

15 ms maximum 

50 ms

maximum: 16.7 ms
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DISKI uses a 8192-word (one-track) buffer. A 
one track block is transferred to the disk and then 
back 1000 times. Results are given in Table VI-1.

This test revealed tnat a disk revolution was 
being missed on every read or write attempt, since 
the overall transfer rate was half that expected. 
The buffer size was increased by a factor of 10 and 
the test run again. Results revealed that reads 
were proceeding at the expected rate but writes 
proceeded at the old rate. Analysis revealed that 
this anomaly was caused by a combination of 
hardware and software factors. Tne interim disk 
controller allows 1b sectors per track. In the 
case of disk reads, after the sixteenth sector is 
read the controller's one-sector buffer must be 
transmitted into central memory (CM) and another 
read request for the track of data initiated. The 
time required to empty the buffer and for the CPU 
to manage the new read request prevents issuing a 
controller read before the intersector gap has 
passed, thus missing a disk revolution. The larger 
buffer eliminates 9 of the 10 occurrences of the 
missed revolution as only 1 request is made by 
DISKI.

An analysis of the anomaly affecting writes in 
the 1b sectors/track case revealed the following. 
After the sixteenth sector is written, the CPU must 
initiate a head switch (not to be confused with a 
seek). In addition, the data for tne first sector 
of the next track must be transferred from the CPU 
to the disk controller. The transfer of data to 
the disk controller cannot occur until the CPU has 
completed the head switching operation. By the 
time both have been completed, the disk has 
revolved too far for the transfer of data from the 
controller to the first sector of the new track to 
take place on the current revolution. Thus data 
can be written only every other revolution of the 
disk. This situation is caused by both command 
information and data being transferred on the same 
channel for writes.

In the case of reads, data transfer and 
commands are on different channels and can proceed 
simultaneously. When only 15 sectors are written 
there is sufficient time during the intersector gap 
for the head switch and data transfer to take 
place.

The maximum expected transfer rate of the disk 
with Id sector tracks is 491 520 words/sec (±2ik). 
For the large buffer case the results are within 
this two percent range.
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DISK2 is implemented by reading or writing a 
1000-traek file to disk sequentially across track 
and cylinder boundaries. A ten-track (one 
cylinder) central memory buffer is used. The 
software/hardware anomaly that plagued DISKI was 
observed. For this reason the test was also run 
transferring 15 sectors per track. Results are 
summarized in Table VI-1. Note that the 15 
sector/track results are identical and close to 
optimum.

The missed revolution problem discovered by 
DISKI and DISK2 should not exist for systems 
utilizing the product-line controller. Electronic 
head switching for a contiguous block of data is 
handled automatically by the controller.

Due to system limitations, DISKS could only 
measure positioning timings to the resolution of 
one disk revolution (17 ms). This is not judged a 
serious problem because it corresponds to actual 
usage in most cases. However, the timings recorded 
are conservative because disk flaws, while present, 
are not included in the distances recorded. Since 
the system records as flawed a full cylinder at a 
time, this represents an extra cylinder to traverse 
per flaw. Thus, the timing for 3b9 cylinders 
actually represents about 390. Also, the full 411- 
cylinder seek could not be tested due to a software 
limitation in the operating system. Timing results 
are presented in Table VI-1. The timings are close 
to the expected capabilities of the disk unit.

DISK4 was implemented so that it could be run 
in a piecemeal fashion whenever time was available 
on the machine. The file was written and read 
2,017 times during the course of a month. No 
errors occurred.

On the basis of these results we conclude that 
the performance of the disk system should be as 
expected under the new controller. Several 
deficiencies in the interim controller were 
discovered which should be corrected by the 
product-line controller. The practice of recording 
the disk space as flawed by cylinder is wasteful of 
space; production software should allow "flawing" 
by track or sector. Reliability of the disk system 
appears to be excellent.

Computation and 
I/O Interference

The bandwidths of the computation and I/O 
sections of the CRAY-1 may be degraded from nominal 
values through conflict for memory access. A 
detailed analysis of the cases of memory conflict
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is possible but laborious, and results would be 
difficult to validate. Tests on tne current 
configuration (which has only a single disk 
controller) suffer because tne single controller 
cannot support the different levels of traffic 
intensity necessary to measure bandwidth 
degradation versus traffic rate.

Cray Research, Inc.,(CRI) estimates that the 
memory access bandwidth is capable of sustaining up 
to four disk and three interface channel transfers 
without degrading tne compute rate of a mix of 
scalar and vector instructions. A cursory analysis 
sustains this claim.

The disk controller can deliver four words per 
microsecond (us). However, four disks, the maximum 
number a single controller will support, can 
deliver a maximum of only 2.4 words/us. Thus, four 
simultaneous controller transfers can deliver a 
maximum of 9.6 words/ys. This is approximately 1/6 
of the maximum memory bandwidth. Actual operating 
conditions will seldom generate such high degrees 
of I/O overlap for extensive time periods. Note 
tnat bank conflicts are ignored in the above 
analysis. This is because the nature of I/O 
transfers themselves will minimize bank conflicts. 
Thus, it is plausible that "normal" I/O activity 
will cause insignificant degradation of CPU 
performance.

Worst case degradation will occur for a 
program requiring continuous memory accesses during 
long vector transfers if I/O transfers are being 
attempted at the maximum rate. This degradation 
will result from the delays imposed upon the issue 
of vector instructions accessing central memory due 
to memory cycle stealing by the I/O transfers. CkI 
estimates that such degradation would be less than 
10 percent over the same program running without 
I/O interference.

Tne analysis of degradation of I/O system 
performance through lost data, missed disk 
revolution and repeated transfers is not quite so 
straightforward. Tne disk system operates tnrough 
a double buffering of 512 word sectors. It is only 
necessary for the I/O system to obtain enough 
memory accesses (512) to fill a sector buffer in 
the approximately 847 us taken for the disk 
controller to fill or empty the alternate sector 
buffer. The I/O system must, therefore, obtain 
memory accesses at a minimum average rate of .604 
words per ys per controller or approximately 0.76 
percent of the maximum memory bandwidth. This 
suggests a very low performance loss due to word
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transfers in ordinary circumstances. A worst case 
would be continuing execution of memory-to-vector 
register transfers. Each such transfer could in 
principle block I/O memory access for approximately .85 Ps. 1

A test was devised to measure the degradation 
to computation and to I/O performance for an I/O 
process and a computational process competing for 
memory. The computational kernel is characterized 
by sustained 64 element vector transfers to and 
from memory. The I/O kernel is characterized by 
block transfers between memory and disk proceeding 
at the maximum rate the existing operating system 
will support. The routine embodying both kernels 
is labeled I0TEST.

In IOTEST, an inner loop loads two vectors, 
performs an integer add, tnen stores the result.
The operation is simply C=A+b. where A, B, and C 
are vectors of logical length 7.680. Since the 
vector registers of the machine are 64 elements 
long, the loop performs the operation in multiples 
of 64 words. An outer loop performs the vector add 
262 144 times. These values were chosen to be 
large in order to result in sustained memory 
accesses via vector instructions.

The I/O kernel of IOTEST continuously 
overwrites 15 sector blocks to a single disk track. 
This results in the maximum transfer rate the 
current configuration will sustain by avoiding 
missed disk revolutions. Because of interim disk 
controller limitations, two I/O interrupts occur 
per sector transferred, requiring processing by the 
CPU monitor. An I/O interrupt is not honored while 
a vector instruction is being executed. There is 
no limit to the number of blocks written. The 
number of written blocks is determined upon 
completion of the vector additions.

IOTEST was also implemented with a vector 
kernel that performs no memory references in either 
loop. This was done in an attempt to factor out 
the effect of the overhead of two I/O interrupts 
per sector transferred from the missed chaining due 
to memory cycle stealing by I/O transfers. This 
version, labeled IOTEST', is identical to IOTEST 
with the exception that no vectors are fetched from 
or stored to memory. Only register-to-register 
operations are performed. The I/O kernels in both 
IOTEST and IOTEST' are identical.

1. CRAY-1 Computer System Reference Manual, publication 
number 2240004, Cray Research, Inc., p. 5-1.
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Table VI-3.

Results of IOTEST and IOTEST'.

Time (sec.) 
without I/O

Time (sec.) 
with I/O

Vector kernel 
run time 

deeradation
IOTEST 64.30 90.36 7.2%

IOTEST' 27.50 OO<\J 3.7%

Blocks written 
with I/O

I/O
Interrupts

Transfer rate 
(words/sec)

IOTEST 5,456 153,660 463,621

IOTEST' 1 ,727 51,610 462,621

NOTE: IOTEST, without I/O, makes roughly 6 x 10^ memory
accesses in CM.3 seconds, which is 69 percent of the 
memory bandwidth.

Table VI-3 shows the results of IOTEST and 
IOTEST'.

The I/O transfer rate for both tests is nearly 
identical to the maximum rate determined earlier. 
Differences are well within the two percent range 
in disk spindle speed. We conclude that an I/O 
transfer rate of .453 megaworas/sec is not impacted 
by a memory-bound computation. Since ,4b3 
megaworas/sec is only 0.55 percent of the memory 
bandwidth, no degradation to the I/O process woula 
be expected. An analysis of degradation to the 
computational process is not so straightforward.

Complicating matters are the two degradation 
effects contributing to the decrease in the vector 
kernel performance: first, overhead of system I/O 
routines and second, the I/O access to memory that 
inhibits vector chaining. There can be no 
degradation to vector chaining caused by the 
execution of the I/O routines. IOTEST', which 
performs essentially no memory references, 
experiences a degradation of 3.7 percent. This is 
assigned to the overhead of the I/O routines, since 
no memory conflicts are likely. IOTEST experiences
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a degradation of 7.2 percent, which includes the 
effect of memory conflict. A casual analysis 
allows assigning an upper bound of 3.5 percent 
degradation to the vector kernel due to memory 
conflicts. Four simultaneous disk transfers would 
drive this upper bound to 14 percent, which is near 
Cray Research, Inc.'s claim of a 10 percent 
degradation.

The product-line performance of the CRAY-1 I/O 
system should be significantly better than that 
reported in these tests because of improved 
performance and features in the product-line 
controller.^ Improvements impacting these tests 
are summarized.

The new controller will support Id-sector 
tracks on the disks as opposed to the current 
16-sector tracks, thus leading to a higher I/O 
transfer rate. The new controller will also 
eliminate the timing/control problem responsible 
for the "half-speed” writes. Finally, the 
product-line controller will relieve the CPU 
monitor from the responsibility of handling I/O 
transfers sector by sector. Monitor calls will be 
reduced to two per block (a block may be an 
arbitrary number of sectors) from the present 
system's two per sector. Thus the software 
overhead recorded in these tests should be 
significantly reduced.

These test results support our cursory 
analysis of degradation due to computation and I/O 
interference for memory access. We conclude that 
degradation should not be a serious concern, 
excepting the unlikely case of long periods of bank 
conflicts.

2. CRAY-1 Computer System Mass Storage Subsystem 
Reference Manual. Publication 2240630, Cray Research, 
Inc. , 197b.
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SECTION VII 

INFORMAL
ESTIMATES In accordance with Section V of the Evaluation

Plan (Appendix A), an informal estimate of the 
CRAY-1 scalar speed relative to the CDC 7600 is 
provided for the Class VI workload. Referring to 
Table Ill-b, the sum of the CRAY-1 CPU cycles for 
eight modules comprising the sample is 597, while 
for the CDC 7600 the sum of the CPU cycles is 761. 
This provides a preliminary speed ratio of 2.60.
The two kernels that performed LCM (large core 
memory) to SCM (small core memory) transfers were 
ignored.

Adding a zero cycle count to the CRAY-1 total 
for these two kernels and the appropriate cycle 
count to the CDC 7600 total would result in a much 
larger ratio. However, considering the very small 
sample size, the value of this estimate did not 
justify implementing the kernels on the CDC 7600.

In accordance with Section V of the Evaluation 
Plan an informal estimate of the CRAY-1 scalar 
speed ratio relative to the CDC 7600 is shown for 
each of the Class VI applications workload codes in 
Table VII-1.

Table VII-1.
Informal estimates of Speed Ratios for the Three 

Applications Workload Codes.

Sum of Sum of CDC 7600 Time/
CODE CRAY-1 Cycles CDC 7600 Cycles CRAY-1 Time

E0T0T0 533 595 2.46
GUANO 659 769 2.57
MCRAD 337 405 2.64

Because of the very small sample size for each 
code, the reader is advised to make assumptions 
based on these values with caution.

An informal estimate of the percentage of coae 
"vectorizable" from inspection of the sample was to 
be provided in this section as per Section V of the 
Evaluation Plan. However, the small sample size 
(six) for each code limits the resolution of such 
an estimate to 1b percent. The reader may inspect
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Table VII-2 and draw his own conclusions. The 
vectorization criteria referenced in the table are 
those established in the Evaluation Plan. The true 
vectorization potential of each code can be 
achieved only by the restructuring of its 
algorithms.

Table VII-2. Module "Vectorizability."

KERNEL VECTORIZABLE?
ID (IF YES IDENTIFY CRITERION)

El NO
E2 NO
E3 NO
E4 NO
E5 NO
Eb NO
EH 1 NO
EH2 NO

G1 NO
G2 YES 1 , 2 AND
03 YES 1 , 2 AND
G4 YES 1 , 2 AND
G5 NO
G6 YES 1 , 2 AND
GH 1 YES 1
GH2 YES 1 , 2 AND

Ml NO
M2 NO
M3 NO
M4 NO
M5 NO
Mb NO
MH 1 NO
MH2 NO

TH1 NO
TH2 NO

SHI — -
SH2 - -
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SECTION VIII

CONCLUSIONS The purpose of this evaluation was to 
determine if the CRAY-1 computer meets the minimum 
performance standards set forth by LASL and ERDA to 
qualify the machine for further consideration for 
procurement. These standards are divided into 
specific qualification criteria in three main 
areas: scalar performance, vector performance and 
reliability.

Scalar
Performance The hypothesis that the CRAY-1 in scalar mode 

is at least two times faster tnan the CDC 7600 was 
tested on samples drawn from each of the three 
codes comprising the Class VI applications 
workload, and from a sample drawn equally from the 
five codes comprising the Class VI workload. The 
hypothesis test was structured so that the 
probability of a wrong result is less than 0.1.
The hypothesis tested as true in all cases, with 
the minimum number of kernels necessary to test the 
hypothesis. Thus the CRAY-1 meets both the
Class VI workload scalar performance criterion and 
the Class VI applications workload scalar 
performance criterion.

Kernel timings also provided estimates of the 
CDC 7600/CRAY-1 execution time ratios (speed 
ratios) for scalar computation. The speed ratios 
for all four workload samples ranged from about 2.5 
to greater than 2.6. In addition, the speed ratio 
for the preliminary scalar test code was 2.5. From 
these results we conclude that the CRAY-1 in scalar 
mode has the potential for executing CPU-bound 
codes 2.5 times faster than the CDC 7600.

Vector
Perf ormance Five operations were chosen to evaluate the 

CRAY-1's vector performance versus vector length. 
Each operation was coded as efficiently as was 
feasible for both the CDC 7600 and the CRAY-1 .
Each operation yielded a CDC 7600/CrAY-I speed 
ratio for three vector lengths. The average of the 
five speed ratios was compared against the 
qualification criterion for each vector length.
The average speed ratios were 3.39, 4.50 and 5.12 
for vector lengths of 20, 100 and 500, 
respectively. Thus, speed ratio criteria of 3, 4 
and 5 for vector lengths of 20, 100 and 500, 
respectively, were met.

Reliability
Reliability of the CRAY-1 was evaluated by
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running a reliability test code on the machine for 
long periods of time. The EXERCISER program was 
designed to access as many different hardware units 
of the machine as possible, at a rapid rate, for 
extended periods. The test program is 
characterized by access rates significantly higher 
than those of an initial production workload, and 
above those of longer term workloads. 
Mean-time-to-failure ranged from 2.53 hrs. to 7.0b 
hrs. for the reported periods. The criterion of at 
least four hours was exceeded for 7 of the 21 
overlapping periods. Mean-time-to-repair ranged 
from 0.3^ hrs. to 0.52 hrs., exceeding the 
criterion of no more than 1 hour for all reported 
periods. Likewise, system availability ranged from 
0.85 to 0.95, exceeding the criterion of at least 
0.80 for all reported periods. Reliability was 
good for a serial number one machine of this size 
and speed.

An analysis of machine failures revealed that 
memory parity errors dominated the statistics. If 
one assumes that single-bit memory error correction 
would have eliminated all memory failures, then a 
CRAY-1 with this feature would have resulted in a 
mean-time-to-failure measure approximately nine 
times greater than that observed over the entire 
six-month evaluation period, with a less dramatic 
increase in system availability. The indications 
are that the CRAY-1 with error correcting memory 
would be an exceptionally reliable machine.

Input/
Output
Studies Although no qualification criteria were

established in the area of input/output (I/O) 
operations, a study of the CRAY-1 I/O subsystem was 
undertaken to determine if any pathologies existed. 
Performance tests uncovered the fact that disk 
revolutions were being missed during disk writes, 
due primarily to limitations in the interim disk 
controller. These limitations should not exist for 
the product-line controller. With this exception, 
expected transfer rates for the disk were observed. 
Head positioning times were close to expected 
values. An error detection test wrote and read 
over four billion words to disk with no errors.

The degradation to vector computation due to 
I/O interference by memory cycle stealing and I/O 
interrupts was measured to determine if this might 
pose a serious problem to CRAY-1 vector 
performance. Execution time degradations to vector 
computation in a worst case test with the single 
disk yielded degradations of 3.5 percent and 3.7 
percent, which were assigned to memory cycle
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stealing and I/O interrupts, respectively. These 
low values, and a memory bandwidth analysis of the 
system, indicate that I/O interference to vector 
computation should not be a matter of serious 
concern.

In summary, disk performance for a production 
system should be close to that expected. Early 
detection of the write problem has prompted Cray 
Research, Inc.,to attempt a hardware modification 
to the interim disk controller in order to bring 
write transfer rates up to expected values.

Conclusion
The conclusion of this evaluation is that the 

CRAY-1 meets every performance criterion established 
by LASL and ERDA to qualify the machine for furtner 
consideration for procurement.
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APPENDIX A

The computer configuration being evaluated includes the 
following units.

• The CRAY-1 central processing unit, with 524 288 words (64 
bits plus one parity bit) of memory arranged in 16 banks;

• One disk control unit (DCU);

• Two 819 disk units;

• Twelve independent channels (asynchronous, full duplex);

• One Data General Eclipse station, with the following 
input-output units:

• One TEC 455 display,

• One TEC 1440 display,

• One Gould 5000 printer,
• One Documation M1000 card reader,

• One Century Data disk, and

• One Data General nine-track tape.
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Summary of CRAY-1 Characteristics

THE CRAY-1 COMPUTER

The Cray Research, Inc. CRAY-1 Computer System is a 
large-scale, general-purpose digital computer featuring vector 
as well as scalar processing, a 12.5 nanosecond clock period, 
and a 50 nanosecond memory cycle time. The CRAY-1 is 
capable of executing over 80 million floating point operations 
per second. Even higher rates are possible with programs that 
take advantage of the vector features of the computer.

The CRAY-1 is particularly adapted to the needs of the 
scientific community and is especially useful in solving 
problems requiring the analysis and prediction of the behavior 
of physical phenomena through computer simulation. The 
fields of weather forecasting, aircraft design, nuclear research, 
geophysical research, and seismic analysis involve this process. 
For example, the movements of global air masses for weather 
forecasting, air flows over wing and airframe surfaces for 
aircraft design, and the movements of particles for nuclear 
research, all lend themselves to such simulations. In each 
scientific field, the equations are known but the solutions 
require extensive computations involving large quantities of 
data. The quality of a solution depends heavily on the number 
of data points that can be considered and the number of 
computations that can be performed. The CRAY-1 provides 
substantial increases with respect to both the number of data 
points and computations so that researchers can apply the 
CRAY-1 to problems not feasibly solvable in the past.

CONFIGURATION

The basic configuration of the CRAY-1 consists of the central 
processor unit (CPU), power and cooling equipment, one or 
more minicomputer consoles, and a mass storage (disk) 
subsystem. The CPU holds the computation, memory, and I/O 
sections of the computer. A minicomputer serves either as a 
maintenance control unit or a job entry station.

INPUT/OUTPUT

Input/output is via twenty-four I/O channels, twelve of which 
are input and twelve output. Any number of channels maybe 
active at a given time. The channel transfer rate is based on the 
channel width (currently 8 or 16 bits). For a 16 bit channel, 
maximum rates of 160 million bits per second are attainable. 
Higher rates are possible with wider channels. In practice, this 
theoretical transfer rate is limited by the speed of peripheral 
devices and by memory reference activity of the CPU.

I_____

MASS STORAGE 
SUBSYSTEM

12 full duplex I/O channels

I/O SECTION

FRONT-END COMPUTERS.
I/O STATIONS AND 

PERIPHERAL EQUIPMENT

COMPUTATION SECTION

• Registers
• Functional units
• Instruction buffers

0.25 M or 0.5 M or 1 M

MEMORY SECTION

64-bit words

BASIC COMPUTER SYSTEM

MEMORY

The CRAY-1 memory is constructed of 1024-bit LSI chips. Up 
to 1,048,576 (generally referred to as one million) 64-bit 
words are arranged in 16 banks. The bank cycle time, that is, 
the time required to remove or insert an element of data in 
memory, is 50 nanoseconds. This short cycle time provides an 
extremely efficient rdndom-access memory. One parity bit per 
word is maintained in 16 modules of the central processor. 
There is no inherent memory degradation for machines with 
less than one million words of memory.
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COMPUTATION SECTION

CPU
Instruction size 16 or 32 bits
Clock period 12.5 nsec
1 nstruction stack/buffers 64 words (4096 bits)

Functional units twelve:
3 integer add
1 integer multiply
2 shift
2 logical
1 floating add
1 floating multiply
1 reciprocal approx.
1 population count

Programmable registers 8x64 64-bit
73 64-bit
72 24-bit
1 7-bit

Max. vector result rate 12.5 nsec / unit

FLOATING POINT COMPUTATION RATES (results per second)
Addition 80 x 106 / sec
Multiplication 80 x 106 / sec
Division 25 x 106 / sec

MEMORY
Technology bipolar semiconductor
Word length 64 bits
Address space 4M words
Data path width (bits) 64 (1 word)
Cycle time 50 nsec.
Size 262,144 words 

or 524,288 words 
or 1,048,576 words

Organization / interleave 16 banks
Maximum band width 80 x 106 words / sec 

(5.1 x 109 bits / sec)
Error checking 1 parity bit / word

PHYSICAL CHARACTERISTICS / ELECTRONIC TECHNOLOGY
Size of CPU cabinet 9 ft diameter base

4.5 ft diameter center
6 ft height

Weight of mainframe 5 tons

Cooling F reon

Plug-in modules 1506

Module types 109

PC boards 5 layer

Circuitry (equivalent no. 
of transistors)

2.5M

Logic ECL, 1 nsec.

High-density logic SSI

The computation section as illustrated on page 4 is composed 
of instruction buffers, registers, and functional units which 
operate together to execute sequences of instructions.

Data structure

Internal character representation in the CRAY-1 is in ASCII 
with each 64-bit word able to accommodate eight characters.

Numeric representation is either in two’s complement form 
(24-bit or 64-bit) or in 64-bit floating point form using a 
signed magnitude binary coefficient and a biased exponent. 
Exponent overflow and underflow is caused if the exponent is 
greater than 57777g or less than 20000g. For scalar opera­
tions, either of these conditions causes an interrupt except 
where the interrupt has been inhibited. For vector operations, 
these conditions do not cause an interrupt.

0 23rr 1
SIGN

2's COMPLEMENT INTEGER (24 BITS)

0 63
1 1 1

SIGN
2's COMPLEMENT INTEGER (64 BITS)

0 1
BINARY POINTT

15 16 63
LL 1 □

SIGN EXPONENT COEFFICIENT
SIGNED MAGNITUDE FLOATING POINT (64 BITS)'

DATA FORMATS

Instruction set

The CRAY-1 executes 128 operation codes as either. 16-bit 
(one parcel) or 32-bit (two-parcel) instructions. Operation 
codes provide for both scalar and vector processing.

In general, an instruction that references registers occupies one 
parcel; an instruction that references memory occupies two 
parcels. All of the arithmetic arid logical instructions reference 
registers.

Floating point instructions provide for addition, subtraction, 
multiplication, and reciprocal approximation. The reciprocal 
approximation instruction allows for the computation of a 
floating point divide operation using a multiple instruction 
sequence.



Memory

60

COMPUTATION SECTION
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Integer or fixed point operations arc provided for as follows: 
integer addition, integer subtraction, and integer multiplica­
tion. An integer multiply operation produces a 24-bit result; 
additions and subtractions produce cither 24-bit or 64-bit 
results. No integer divide instruction is provided. The opera­
tion can be accomplished through a software algorithm using 
floating point hardware.

The instruction set includes Boolean operations for OR, AND, 
and exclusive OR and for a mask-controlled merge operation. 
Shift operations allow the manipulation of 64- or 128-bit 
operands to produce a 64-bit result. Similar 64-bit arithmetic 
capability is provided for both scalar and vector processing. 
Full indexing capability allows the programmer to index 
throughout memory in either scalar or vector modes of 
processing. This allows matrix operations in vector mode to be 
performed on rows, on columns, or on the diagonal.

Addressing

Instructions that reference data do so on a word basis. 
Instructions that alter the sequence of instructions being 
executed, that is, the branch instructions, reference parcels of 
words. In this case, the lower two bits of an address identify 
the location of an instruction parcel in a word.

Instruction buffers

All instructions are executed from four instruction buffers, 
each consisting of 64 16-bit registers. Associated with each 
instruction buffer is a base address register that is used to 
determine if the current instruction resides in a buffer. Since 
the four instruction buffers are large, substantial program 
segments can reside in them. Forward and backward branching 
within the buffers is possible and the program segments may 
be noncontiguous. When the current instruction does not 
reside in a buffer, one of the instruction buffers is filled from 
memory. Four memory words are transferred per clock period. 
The buffer that is filled is the one least recently filled, that is, 
the buffers are filled in rotation. To allow the current 
instruction to issue as soon as possible, the memory word 
containing the current instruction is among the first four 
transferred. A parcel counter register (P) points to the next 
parcel to exit from the buffers. Prior to issue, instruction 
parcels may be held in the next instruction parcel (NIP), lower 
instruction parcel (LIP) and current instruction parcel (CIP) 
registers.

Operating registers

The CRAY-1 has five sets of registers, three primary and two 
intermediate. Primary registers can be accessed directly by 
functional units. Intermediate registers are not accessible by 
functional units but act as buffers between primary registers 
and memory.

The figure on page 4 represents the CRAY-1 registers and 
functional units. The 64 address and 64 scalar intermediate 
registers can be filled by block transfers from memory. Their 
purpose is to reduce memory references made by the scalar 
and address registers.



The eight address registers are each 24 bits and can be used to 
count loops, provide shift counts, and act as index registers in 
addition to their main use for memory references.

The eight 64-bit scalar registers in addition to contributing 
operands and receiving results for scalar operations can provide 
one operand for vector operations.

Each of the eight vector (V) registers is actually a set of 64 
64-bil registers, called elements. The number of vector 
operations to be performed (that is. the vector length) 
determines how many of the elements of a register are used to 
supply operands in a vector set or receive results of the vector 
operation. The hardware accommodates vectors with lengths 
up to 64: longer vectors are handled by the software dividing 
the vector into 64-element segments and a remainder.

Associated with the vector registers are a 7-bit vector length 
register and a 64-bit vector mask register. The vector length 
register, as its name implies, determines the number of 
operations performed by a vector instruction. Each bit of the 
vector mask register corresponds to an element of a V register. 
The mask is used with vector merge and test instructions to 
allow operations to be performed on individual vector ele­
ments.

Supporting registers

In addition to the operating registers, the CPU contains a 
variety of auxiliary and control registers. For example, there is 
a channel address (CA) register and a channel limit register 
(CL) for each I/O channel.

Functional units

Instructions other than simple transmits or control operations 
are performed by hardware organizations known as functional 
units. Each of the twelve units in the CRAY-1 executes an 
algorithm or a portion of the instruction set. Units dre 
independent. A number of functional units can be in operation

A functional unit receives operands from registers and delivers 
the result to a register when the function has been performed. 
The units operate essentially in three-address mode with 
source and destination addressing limited to register designa­
tors.

All functional units perform their algorithms in a fixed 
amount of time. No delays arc possible once the operands have 
been delivered to the unit. The amount of time required from 
delivery of the operands to the unit to the completion of the 
calculation is termed the “functional unit time" and is 
measured in 12.5 nsec clock periods.

The functional units are all fully segmented. This means that a 
new set of 0|>erands for unrelated computation may enter a 
functional unit each clock period even though the functional 
unit time may be more than one clock period. This segmenta­

tion is made possible by capturing and holding the information 
arriving at the unit or moving within the unit at the end of 
every clock period.

The twelve functional units can be arbitrarily assigned to four 
groups: address, scalar, vector, and floating point. The first 
three groups each acts in conjunction with one of the three 
primary register types, to support address, scalar, and vector 
modes of processing. The fourth group, floating point, can 
support either scalar or vector operations and will accept 
operands from or deliver results to scalar or vector registers 
accordingly.

FUNCTIONAL UNITS

Functional Unit
Unit Tima 

(Clock Periods) Instructions
Address integer add 2 030, 031
Address multiply 6 032
Scalar integer add 3 060, 061
Scalar logical 1 042 - 051
Scalar shift 2 052 - 955

3 056, 057
Scalar leading zero/pop count 4 026

3 027
Vector integer add 3 154- 157
Vector logical 2 140- 147,175
Vector shift 4 150-153
Floating point add 6 062, 063,170- 173
Floating point multiply 7 060-067, 160- 167
Floating point reciprocal 14 070, 174

Memory field protection

Each object program has a designated field of memory. Field 
limits are defined by a base address register and a limit address 
register. Any attempt to reference instructions or data beyond 
these limits results in a range error.

Exchange mechanism

The technique employed in the CRAY-1 to switch execution 
from one program to another is termed the exchange 
mechanism. A 16-word block of program parameters is 
maintained for .each program. When another program is to 
begin execution, an operation known as an exchange sequence 
is initiated. This sequence causes the program parameters for 
the next program to be executed to be exchanged with the 
information in the operating registers to be saved. The 
operating register contents are thus saved for the terminating 
program and entered with data for the new program.

Exchange sequences may be initiated automatically upon 
occurrence of an interrupt condition or may be voluntarily 
initiated by the user or by the operating system through 
normal and error exit instructions.
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The speed of the CPU is derived largely by keeping wire 
lengths extremely short in the mainframe. This, in turn, 
necessitates a dense concentration of components with an 
accompanying problem of heat dissipation. The Freon cooling 
system used in the CRAY-1 employs the latest in refrigeration 
technology to maintain a column temperature of about 68° in 
the unit.

MAINTENANCE CONTROL UNIT (MCU)

A 16-bit minicomputer system serves as a maintenance control 
unit. The MCU performs system initialization and basic 
recovery for the operating system. Included in the MCU 
system is a software package that enables the minicomputer to 
monitor CRAY-1 performance during production hours.

STATIONS

The CRAY-1 computer system may be equipped witii one or 
more 16-bit minicomputer systems that provide input data to 
the CRAY-1 and receive output from the CRAY-1 for

Cooling

Flags* Modes* distribution to a variety of slow-speed peripheral equipment. A
31 Console Interrupt 37 Interrupt on Floating Point station consists of a Data General S-200 minicomputer or
32 RTC 1 nterrupt 38 Interrupt on Storage Parity equivalent. Peripherals attached to the station vary depending
33 Floating Point Error 39 Monitor Mode on whether the station is a local or remote job entry station or

(Scalar Reference Only) a data concentrator used for multiplexing several remote
34 Operand Range stations.
35 Program R ange P = Program Address EXTERNAL INTERFACE
36 Storage Parity BA = Base Address
37 I/O Interrupt LA = Limit Address The CRAY-1 may be interfaced to front-end host systems
38 Error Exit XA = Exchange Address through special controllers that compensate for differences in
39 Normal E xit VL = Vector Length channel widths, machine word size, electrical logic levels, and

* Bit position from left of word

EXCHANGE PACKAGE

control protocols. The interface is a Cray Research, Inc. 
product implemented in logic compatible with the host 
system.

SYSTEM MASS STORAGE

ARCHITECTURE

Construction

The CRAY-1 is modularly constructed of 1506 modules held 
by 24 chassis. Each module contains two 6 in. by 8 in. printed 
circuit boards on which are mounted a maximum of 144 
integrated circuit packages per board. Emitter coupled logic 
(ECL) is used throughout. Four basic chip types are used: a 
high-speed 5/4 NAND gate, a slow-speed 5/4 NAND gate, a 
16x1 register chip, and a 1024x1 memory chip.

Appearance

The esthetics of the machine have not been neglected. The 
CPU is attractively housed in a cylindrical cabinet. The chassis 
are arranged two per each of the twelve wedge-shaped 
columns. At the base are the twelve power supplies. The 
power supply cabinets, which extend outward from the base 
are vinyl padded to provide seating for computer personnel.

The compact mainframe occupies a mere 70 sq. ft. of floor 
space.

System mass storage consists of two or more Cray Research, 
Inc. DCU-2 Disk Controllers and multiple DD-19 Disk Storage 
Units. The disk controller is a Cray Research. Inc. product and 
is implemented in ECL logic similar to that used in the 
mainframe. Each controller may have four DD-19 disk storage 
units attached to it. Operational characteristics of the DD-19 
units are summarized in the accompanying table.

CHARACTERISTICS 
OF DD-19 DISK STORAGE UNIT

Bit capacity per drive 2.424 x 109

Tracks per surface 411
Sectors per track 18
Bits per sector 32,768
Number of head groups 10
Recording surfaces per drive 40
Latency 16.6 msec
Access time 15-80 msec
Data transfer rate (average bits per sec.) 35.4 x 106
Total bits that can be streamed to a unit 
(disk cylinder capacity)

5.9 x 106
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CRAY-1 COMPUTER 
SYSTEM

USER SUPPLIED 
SUPPORTING 
EQUIPMENT

STATION
DISK

DISK UNITS

Mass Storage 
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TAPE
UNIT CARD
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DISK ’ 
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MCU DISK INTER­
FACEPRINTER/

PLOTTER

CARD
READER

Front-End
Processor

Maintenance 
Control Unit

MCU CONSOLE

DATA FLOW THROUGH SYSTEM

MAINTENANCE SERVICES

Cray Research, Inc. provides resident maintenance engineers 
on a contractual basis.
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Evaluation Plan

I. INTRODUCTION

The growing complexity of the programmatic efforts at the Los 
Alamos Scientific Laboratory (LASL) in weapons design, laser 
fusion and isotope separation, controlled thermo-nuclear research, 
reactor safety, and other basic and exploratory research requires 
calculations that are beyond the capability of the fastest comput­
er currently installed in the LASL Central Computing Facility-the 
CDC 7600. For this reason, LASL, in conjunction with the Energy 
Research and Development Administration (ERDA) is evaluating a new 
class of scientific computer system. This class has been 
identified by ERDA as "Class VI."

A Class VI computer system is one that is capable of 
executing 20 to 60 million floating point operations per second 
(MFLOPS). Table 1 lists the various classes of computer systems 
currently identified by ERDA.

CLASS MFLOPS REPRESENTATIVE
COMPUTERS

III .5-2 CDC 6600, IBM 370/158
IV 2-6 CDC 7600, IBM 370/195
V 6-20 CDC STAR 100, TI-ASC4X
VI 20 - 60 (NEW)

TABLE 1. ERDA COMPUTER SYSTEM CLASS DEFINITIONS.

It now appears that there is at least one existing computer 
system that may meet LASL Class VI computing requirements-the Cray 
Research CRAY-1. The purpose of this document is to specify the 
approach to be taken by LASL and ERDA in evaluating the CRAY-1 
computer system.

The CRAY-1 computer is installed at LASL for approximately 
six months, during which time the evaluation described in this 
document is taking place. The CRAY-1 configuration being 
evaluated is described in Appendix A. A summary of CRAY-1 
characteristics is shown in Appendix A.
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II. ObJECTIVES OF THE CRAY-1 EVALUATION

This evaluation has two main objectives. The first is to 
assess the hardware performance of the CRAY-1 system. The second 
is to determine the performance characteristics of the CRAY-1 
system as it applies to a specifically chosen LASL workload. To 
meet these two major objectives, the CRAY-1 evaluation has been 
divided into two closely related phases: hardware performance and 
applications performance.
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III. MANDATORY REQUIREMENT AND QUALIFICATION CRITERIA

The mandatory requirement is that the CRAY-1 must 
substantially meet the qualification criteria described in this 
section. Details of the evaluation methodology are given in 
section IV.

A. Hardware Performance Qualification Criteria

1. Scalar Operations.

The CRAY-1 must be capable of executing scalar 
operations at a rate at least twice that of the CDC 7600, 
while operating upon floating point data at least 48 bits in 
length.

2. Vector Operations.

The CRAY-1 is capable of performing vector operations; 
the CDC 7600 does not have this capability. Therefore, the 
following vector hardware qualification criteria for the 
CRAY-1 are specified with respect to the rate at which a 
CDC 7600 can perform the equivalent function. Both machines 
must operate upon floating point data at least 48 bits in 
length.

a. Short Vectors. Short vectors are defined to 
have a vector length of 20. The CRAY-1 must be capable of 
executing vector operations of this length at a rate at least 
three times that at which the CDC 7600 can perform the 
equivalent function.

b. Medium Vectors. Medium vectors are defined to 
have a vector length of 100. The CRAY-1 must be capable of 
executing vector operations of this length at a rate at least 
four times that at which the CDC 7600 can perform the 
equivalent function.

c. Long Vectors. Long vectors are defined to have 
a vector length of 500. The CRAY-1 must be capable of 
executing vector operations of this length at a rate at least 
five times that at which the CDC 7600 can perform the 
equivalent function.

3. Reliability.

There are three evaluation areas with respect to CRAY-1 
reliability characteristics. These areas are System 
Availability (SA), Mean Time to Failure (MTTF) and Mean Time 
to Repair (MTTR). The criteria specified for all three areas 
must be met for any single contiguous period of 20 workdays 
during the six-month evaluation period. The following 
measures will be used in determining the CRAY-1 reliability 
characteristics:

•Wall Clock Time (WC) - the elapsed time of the
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measured period.

•Remedial Maintenance (RM) - that portion of WC during 
which the CRAY-1 is in use by Cray Research, Inc.,to 
rectify a problem.

•No Time (NT) - that portion of WC that is 
nonproductive because of such things as no work 
available, building facilities failure, preventive 
maintenance, Cray Research software development or 
Cray Research engineering modifications.

•Operational Use Time (OUT) - that portion of WC 
during which the CRAY-1 is performing productive 
work. It is specifically defined as:

OUT = WC-RM-NT.

The qualification criteria in each reliability area are 
identified below.

a. System Availability. System Availability (SA) is 
defined as follows:

SA = OUT/(OUT + RM).

System availability on the CRAY-1 must equal or exceed 0.8 
for a contiguous 20-workday period during the evaluation.

b. Mean Time To Failure (MTTF). Mean Time to 
Failure is defined as the ratio of OUT to the number of OUT 
periods (OUT periods not terminated by a machine failure are 
concatenated with succeeding OUT periods). MTTF for the CRAY-1 
system must equal or exceed four hours for a contiguous 20- 
workday period during the evaluation.

c. Mean Time To Repair (MTTR). Mean Time to Repair 
is the ratio of RM to the number of RM periods. MTTR must be 
less than or equal to one hour for a contiguous 20-workday 
period during the evaluation.

Table 2 summarizes the hardware qualification criteria for 
the CRAY-1 evaluation.

!
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FUNCTIONS QUALIFICATION CRITERIA

Scalar Operations 
Short Vector Operations 
Medium Vector Operations 
Long Vector Operations 
MTTF 
MTTR
System Availability

> 2 X (CDC 7600)
> 3 X (CDC 7600)
> 4 X (CDC 7600)
> 5 X (CDC 7600)
> 4 hours*
< 1 hour* 

: 0.8*

*These three criteria must collectively be met during any 
contiguous 20 workday period.

TABLE 2. Hardware Performance Qualification Criteria.

B. Applications Performance Qualification Criterion

Using the procedures defined in section IV.B, the 
hypothesis that the CRAY-1 is two times faster than the 
CDC 7600 upon the specified LASL Class VI applications workload 
must be satisfied.
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IV. EVALUATION METHODOLOGY

As stated earlier, the CRAY-1 evaluation will be accomplished 
in two closely related phases: the hardware performance evaluation 
and the application performance evaluation. Each is discussed 
separately.

Much of the evaluation methodology uses statistical sampling 
methods. Some specific techniques of sampling and evaluation to 
be used are currently being determined and will be attached as an 
addendum to this plan. If during the course of the evaluation it 
is evident that a change in methods would result in more accurate 
results, this plan will be modified accordingly. Any changes in 
the methodology will be thoroughly documented.

A. Hardware Performance

1. Preliminary Scalar Performance Estimate

Since the scalar performance of the CRAY-1 on the LASL 
Class VI workload cannot be reliably estimated until the 
evaluation is complete, a preliminary test of the CRAY-1 
scalar performance is being conducted for the interim report. 
A test routine extracted from LASL production codes will be 
executed on both the CDC 7600 and the CRAY-1. This routine 
is documented in Appendix B. The routine is coded in 
assembly language as efficiently as is feasible for each 
machine. A preliminary estimate of CRAY-1 scalar performance 
is the ratio of execution times for the two machines. This 
estimate will be included in the final report for informative 
purposes only.

In addition, a summary of the results obtained from the 
module timings (Steps 3 and 5 below) completed by June 15 
will be included in the interim report.

2. Scalar Operations

Step 1 . Workload Analysis. To determine which LASL 
codes are potential candidates for execution on the Class 
VI computer system, it is necessary to investigate the codes 
currently active at LASL. This will be accomplished for 
codes executing under the CROS operating system by examining 
the historical data base maintained by LASL. All codes 
requiring more than one CDC 7600 CPU hour per execution will 
be identified for further individual analysis. Similarly, 
the LTSS historical data base will be examined for those 
accounts that consume more than one CDC 7600 CPU hour in one 
24-hour day. These codes are labeled the "potential Class VI 
workload ."

A review process with the users will then be conducted 
in order to finalize and establish the set of LASL codes that 
will comprise the LASL Class VI workload. These codes will 
be documented on forms shown in Figures 1 and 2.
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Step 2. Code Execution. Each code selected will be 
executed in a typical manner on the CDC 7600. This execution 
will be monitored by the LASL-written software monitor STAT. 
The entire program field length (of size FL) will be divided 
into b "buckets", each of size i words, such that b*l= FL. 
STAT samples the P-counter value (the execution address) 
every 3-6 ms, determines which bucket encompasses the 
address, and increments a count for that bucket. At the 
completion of the program execution, one obtains the 
frequency f- that the program was found executing within the 
i words of bucket i. A cumulative distribution is then 
obtained for the code by bucket i, giving the fraction of 
time spent by the code in execution in or below the addresses 
of bucket i.

The measurements will be conducted during a sufficiently 
long period to exercise the normally used features of each 
code during a representative run. The object of this step is 
the acquisition of representative cumulative distributions, 
as described above, for each code.

Step 3. Module Selection. A module is a segment of 
Fortran statements residing in a Class VI workload code. A 
number of modules (the sample size) will be drawn from each 
code. The sample size required to provide a statistically 
valid result is currently being determined and will be 
documented before Step 3 is completed and will be part of the 
statistics addendum to this plan.

The procedure for drawing a module will be to obtain a 
random number, evenly distributed from 0 to 1, from the 
Fortran library function RANF. The generated random number, 
x, will be applied to the inverse of the cumulative 
distribution of Step 2 above to identify the bucket 
associated with x. An additional STAT run with one-word 
resolution will be made to identify the address associated 
with x and to further characterize program behavior within 
the selected bucket.

A portion of the segment of Fortran statements 
associated with the bucket will be selected as the Fortran 
module. This will be accomplished according to the following 
procedure .

a. If the address boundaries of the bucket result 
in incomplete Fortran statements, expand the segments to 
include entire statements.

b. Starting at the selected address go "backward 
in execution" to either the segment boundary or a labeled 
statement actively accessed from outside the segment.
"Active" execution paths are those taken during execution of 
the code in the previous step. Whether an execution path is 
active or inactive may be inferred from the STAT histogram of
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execution within the segment. The selected statement forms 
the first statement of the Fortran module.

c. From the first statement of the Fortran module 
go "forward in execution" to either the segment boundary or 
an active jump outside the segment. The subsegment 
encountered in this action comprises the Fortran module.
Those modules selected will be listed on the form shown in 
Figure 3.

The bucket size is presently being defined and will be 
included in the statistics addendum to this plan.

Step 4. Module Optimization. Each module chosen from 
Step 3 will be coded as efficiently as is feasible in 
assembly language for each machine. Only scalar operations 
will be used for the CRAY-1. The source language statements 
will be consulted as an aid in determining the algorithm a 
selected code segment represents.

Step 5. Module Timings. The assembly language versions 
of the modules will be executed and timed on the two ma­
chines. Timings will be listed on the form shown in Figure
3.

Step 6. Evaluation Code Scalar Speed Ratio Hypoth­
esis Test. The hypothesis that the CRAY-1, in scalar mode, 
is two times faster than the CDC 7600 will be tested using 
the module timings obtained in Step 5. The specific 
procedure to perform this test is currently being determined. 
It will be part of the statistics addendum to this plan.

3• Vector Operations

a. A parameter-driven test routine will be written 
as efficiently as is feasible for each machine in assembly 
language to determine the vector performance of the CRAY-1. 
The test routine will consist of vector algorithms extracted 
from LASL production codes. The algorithms comprising the 
test routine are presented in Appendix B.

b. The vector length for the test routine will be 
an input parameter modified according to the vector length 
being tested (short, medium, or long).

c. The test routine will be executed on both the 
CDC 7600 and the CRAY-1 systems, and a ratio of execution 
times will be obtained.

d. The qualification criterion, as stated in 
section III for each vector length, must be met by the test 
routine timings. The timing results will be documented on 
the form shown in Figure 4.
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The reliability evaluation will be accomplished using 
the EXERCISER program currently in existence at LASL.
Figure 5 shows the form to be used to document the operation 
of the CRAY-1 when running the EXERCISER program.

Data collected on the form shown in Figure 5 will then 
be used as the basis for calculating reliability statistics 
for a 20-workday sliding window as follows:

a. System Availability. System availability (SA) 
will be calculated weekly from Figure 5 data as follows:

4. Reliability

SA = OUT/(OUT+RM)

OUT
N

OUTi and RM 
i = 1

M
RMj

where OUT^ is an "OUT" period, RM- is an "RM" period, N is 
the number of machine failures (the number of "OUT" periods) 
and M is the number of remedial maintenance (RM) periods.

b. Mean Time To Failure (MTTF). The MTTF will be 
calculated weekly from data recorded on the form shown in 
Figure 5 as:

MTTF = OUT/N.

c. Mean Time To Repair (MTTR). The MTTR will be 
calculated weekly from data recorded on the form shown in 
Figure 5 as:

MTTR = RM/M.

The statistics described above in sections 3a-c will 
each be calculated weekly during the evaluation period. The 
qualification criteria for all three must be satisfied during 
the same 20—contiguous-workday period. The form shown in 
Figure 6 will be used to document the reliability phase of 
the CRAY-1 evaluation.

B. Applications Performance

Step_1. Workload Analysis. To determine which LASL
codes are potential candidates for the Class VI computer 
system it is necessary to investigate the codes currently 
active at LASL. This will be accomplished for those codes 
executing under the CROS operating system by examining the 
historical data base on CROS code execution maintained by 
LASL. All codes requiring more than one CDC 7600 CPU hour 
per execution will be identified for further individual
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analysis. Similarly, the LTSS historical data base will be 
examined for those executions consuming more than one 
CDC 7600 CPU hour in a 24-hour day under the LTSS operating 
system. These codes are labeled the "potential Class VI 
workload."

A review process with the users will then be conducted 
in order to finalize and establish the set of LASL codes that 
will comprise the LASL Class VI workload. These codes will 
be documented on forms shown in Figures 1 and 2.

Step 2. Applications Workload Performance 
Specifications. LASL will specify a subset of the Class VI 
workload to be used for the applications performance phase of 
the evaluation. This list of codes is termed the Class VI 
applications workload. LASL will also provide a decision 
rule to determine if the CRAY-1 meets the applications 
performance criterion. This specification must be provided 
by LASL before Step 3 is begun, and it must then be approved 
by the Division of Military Application (DMA). This list and 
the associated decision rule will be documented as an 
addendum to this plan.

Step 3. Code Execution. Each code selected will be 
executed in a typical manner on the CDC 7600. This execution 
will be monitored by the LASL-written software monitor STAT. 
The entire field length of the program will be divided into 
buckets. STAT samples the P-counter, determines which bucket 
encompasses the address, and increments a count for that 
bucket. A cumulative distribution is then obtained which 
gives the fraction of time spent by the code in execution in 
or below the address range for each bucket.

The measurements will be conducted during a sufficiently 
long period to exercise the normally used features of each 
code during a representative run. The object of this step is 
the acquisition of representative cumulative distributions, 
as described above, for each code.

Step 4. Module Selection. A module is a segment of 
Fortran statements residing in a Class VI workload code. A 
number of modules (the sample size) will be drawn from each 
code. The sample size required to provide a statistically 
valid result is currently being determined and will be 
documented before Step 4 is completed and will be part of the 
statistics addendum to this plan.

The procedure for drawing a module will be to obtain a 
random number, evenly distributed from 0 to 1, from the 
Fortran library function RANF. The generated random number, 
x, will be applied to the inverse of the cumulative distri­
bution of Step 3 above to identify the bucket associated with 
x. An additional STAT run with one-word resolution will be 
made to identify the address associated with x and to further



75

A portion of the segment of Fortran statements 
associated with the bucket will be selected as the Fortran 
module. This will be accomplished according to the following 
procedure.

characterize program behavior within the selected bucket.

a. If the address boundaries of the bucket result 
in incomplete Fortran statements, the segment will be 
expanded to include entire statements.

b. Starting at the selected address go "backward 
in execution" to either the segment boundary or a labeled 
statement actively accessed from outside the segment.
"Active" execution paths are those taken during execution of 
the code in the previous step. Whether an execution path is 
active or inactive may be inferred from the STAT histogram of 
execution within the segment. The selected statement forms 
the first statement of the Fortran module.

c. From the first statement of the Fortran module 
go "forward in execution" to either the segment boundary or 
an active jump outside the segment. The subsegment 
encountered in this action comprises the Fortran module.
Those modules selected will be listed on the form shown in 
Figure 3.

Step 5. Module Optimization. Each module chosen from 
Step 4 will be coded as efficiently as is feasible in 
assembly language for each machine. Only scalar operations 
will be used for the CRAY-1. The source language statements 
will be consulted as an aid in determining the algorithm a 
selected code segment represents.

Step 6. Module Timings. The assembly language versions 
of the modules will be executed and timed on the two machin­
es. Timings will be listed on the form shown in Figure 3-

Step 7. Evaluation Code Scalar Speed Ratio Hypoth­
esis Test. The hypothesis that the CRAY-1, in scalar mode, 
is two times faster than the CDC 7600 will be tested for each 
Class VI applications workload code using the module timings 
obtained in Step 6. (The specific procedure to perform this 
test is currently being determined and will be part of the 
statistics addendum to this plan.) The decision rule 
specified in Step 2 will then be applied.

C. Input/Output Studies

Although the configuration delivered with the CRAY-1 
precludes a complete evaluation of the I/O capabilities of 
the system, a series of disk studies will be performed. At 
this time, the specific disk requirements and evaluations are 
undetermined. It is, however, anticipated that tests in the 
following areas will be accomplished:
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•data rate - sustained and instantaneous 

•positioning times 

•data integrity 

•error recovery

•impact of I/O on the CPU and memory.

Specific tests will be developed by the project team and 
documented as an addendum to this plan. This documentation 
will be accomplished by approximately June 30.
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V. INFORMAL ESTIMATES

A. Scalar Performance Estimate

The CRAY-1/CDC 7600 scalar speed ratio will also be 
estimated based on the module timings obtained during the 
scalar performance evaluation.

Since the accuracy of this estimate cannot be verified 
statistically within the time constraints of this evaluation, 
it will be included in the final report for informative 
purposes only.

B. Applications Performance Estimate
The CRAY-1/CDC 7600 scalar applications speed ratio will 

be estimated based on the module timings obtained during the 
applications performance evaluation. Since the accuracy of 
this estimate cannot be verified statistically within the 
time constraints of this evaluation, it will be included in 
the final report for informative purposes only.

C. Class VI Applications Workload Vectorization Estimate

An estimate of the percentage of vectorization 
immediately obtainable for the Class VI applications workload 
will be provided in the final report for informative purposes 
only.

This estimate will be obtained by examining the source 
code surrounding each selected module of the Class VI 
applications workload and determining if it is vectorizable. 
Vectorization criteria will be established and documented 
before the modules are examined for vectorizability. Module 
vectorizability will be summarized on the form shown in 
Figure 7.

An attempt will also be made to provide an estimate of a 
representative vector length for vectorizable sections of 
code .
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VI. REPORTS

A. Interim Report

An interim evaluation report will be issued on 
approximately July 1. It will describe the preliminary 
results of the hardware performance phase of the evaluation. 
The results presented in this report will, of necessity, be 
subject to modification in the final report. This report is 
intended to provide an early summary of the CRAY-1 
evaluation.

B. Final Report

A final evaluation report will be available on 
approximately October 1. This report will describe the 
objectives, methodology, findings, results and conclusions 
made as a result of this evaluation.
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STATISTICS ADDENDUM

I. HYPOTHESIS

Let a code be partitioned into m modules. Let s. be the 
CRAY-1 running time for module i, let t, be the CDC 7600 running 
time for module i and let n^ be the number of times module i is 
executed in the complete code. It is the intent to test that the 
CDC 7600 run time for the entire code is greater than two times 
the CRAY-1 run time for the entire code, or

J(niti-2nisi) > 0
and hence that the CRAY-1 is at least two times faster than the 
CDC 7600 for the code.

II. SAMPLING

Sampling to test the hypothesis for the Class VI workload 
(section IV.A) will consist of the following procedure.

Assume that l codes comprise the Class VI workload. / 
modules will initially be drawn, one from each code. If more than 
£ modules are required initially, then z£ modules, two from each 
code, will be drawn. The hypothesis will be tested at k=i-i, for 
the ith batch of modules.

The procedure for drawing a module from a Class VI workload 
code is specified in section IV.A., Step 3 of the Evaluation Plan.

Sampling to test the hypothesis for each Class VI 
applications workload code (section IV.B) will consist of the 
procedure outlined in section IV.B., Step 4 of the Evaluation 
Plan .

Samples drawn for applications performance testing will not 
be used for hardware performance testing, and samples drawn for 
hardware performance testing will not be used for applications 
performance testing.

The bucket size is initially 16 words. From preliminary 
studies this size has resulted in tractable module sizes. The 
bucket size will be changed if the resulting code segments are 
trivial or of intractable length.

III. TESTING

It is clear that we would like to test the hypothesis that 
the mean of the population of the n^-Pn^ for i = 1,2,...,m is 
greater than zero. However, every statistical test of hypothesis 
on the mean of a population requires that an assumption be made 
about the distribution of the population. In the case of the 
n.t.-2n.s., we have no idea of the general shape of the 
distribution, let alone the type. Therefore the statistical
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testing will be done on the median of the distribution.

In testing the hypothesis that the median of the population 
°f n^ti-2n.si is zero, we are in effect asking if 50% of the 
values of the nit^-2n^s-L are greater than zero and 50% are 1<less
than zero. If we denote the true median by um, then we can 
formulate the above in the two statements

H0: hm>0 vs. Ha: Pm<0 or 

H0 • hjjj^O vs • Ha . Ujjj^O •
It is obvious that we could make either of two types of errors.
We could accept H0 when Ha is true, or we could accept Ha when H0 
is true. One usually can control only the probability of 
accepting Ha when is true. The probability of making the other
type of error can be as large as 1-Pr{accepting H when H is 
true}. Usual statistical tests of hypotheses require almost 
conclusive "proof" to accept H and require very little "proof" to 
accept H In the case of testing the performance of the CRAY-1, 
the usual procedure of hypothesis tests will be unfair to one of 
the parties involved.

Therefore, the following set of hypotheses will be tested using 
sequential sampling [1].

At least 60% of the population of niti-2nisi

is greater than zero. (The CRAY-1 is greater than two

times faster than the CDC 7600.)

H2: No more than 40% of the population of

nit^-2nisi is greater than zero. (The CRAY-1
is two or less times faster than the CDC 7600.)

The probability of accepting when Hp is true will be fixed at 
.10, and the probability of accepting when H1 is true will be 
fixed at .10. For tractability the maximum number of samples to 
be taken on any one code will be set at 50 from the Class VI 
applications workload and 50 total from the Class VI workload.
The procedure is: 1
(1) Take the kth sample and determine s^ and t., the CRAY-1 

run time and the CDC 7600 run time, and let

Zk=1 if niti-2nisi>0, or ti-2si>0

=0 otherwise;

(2) Let = Zj£+T^_i , where Tq = 0,

(3) If accept H^,
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If accept H2,

If Lk<Tk<U^ and k<50, increment k by 1 
and go to Step 1.
The values of and are calculated from [1] and given by:

k uk Lk k 8k Lk k Uk Lk
1 — — 21 14 7 41 24 17
2 - - 22 14 8 42 24 18
3 - - 23 15 8 43 25 18
4 - - 24 15 9 44 25 19
5 - - 25 16 9 45 26 19
6 6 0 26 16 10 46 26 20
7 7 0 27 17 10 47 27 20
8 7 1 28 17 11 48 27 21
9 8 1 29 18 1 1 49 28 21

10 8 2 30 18 12 50 28 22
11 9 2 31 19 12
12 9 3 32 19 13
13 10 3 33 20 13
14 10 4 34 20 14
15 11 4 35 21 14
16 11 5 36 21 15
17 12 5 37 22 15
18 12 6 38 22 16
19 13 6 39 23 16
20 13 7 40 23 17

Therefore, after 50 samples, H1 will be accepted, or H2 will 
be accepted or no decision will be made. When no decision is 
made, it means that there is not enough information available to 
choose either H-j or H2, and probably indicates that the proportion 
of the nit^-2n^s^ which is greater than zero is between .4 and .6. 
In order for the CRAY-1 to meet the performance criteria specified 
in the Evaluation Plan, H-| must be accepted.

The following simulation study of 1 000 tests of maximum 
sample size of 50 demonstrates this point. P is the true 
proportion of the population greater than zero, A.samp is the 
average sample size needed to make a decision, Pass is the number 
of samples in which H1 (CRAY-1 passes) is accepted, Fail is the 
number of samples in which H2 (CRAY-1 fails) is accepted, and Ques 
is the number of samples in which no decision is made after 50 
samples.
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p A.Samp Pass Fail Ques
. 10 7.62 0 1000 0
. 12 7.75 0 1 000 0
.14 8.32 0 1000 0
.16 8.85 0 1000 0
.18 9.32 0 1000 0
.20 9.96 0 1000 0
.22 10.53 0 1000 0
.24 11.44 0 1000 0
.26 12.27 1 999 0
.28 13.50 3 996 1
.30 15. 18 7 988 5
.32 16.11 8 976 16
.34 17.94 22 949 29.36 19.15 23 945 32
.38 21.85 53 879 68
.40 23.71 89 814 97.42 25.39 97 776 127.44 27.72 171 659 170
.46 28.72 220 571 209
.48 28.64 305 482 213
.50 29.94 358 409 233.52 29.37 481 293 226
.54 27.21 602 234 164
.56 26.81 692 153 155
.58 24.88 762 113 125
.60 23.57 830 71 99.62 21.64 888 55 57.64 19.59 937 25 38
.66 17.87 950 21 29.68 15.97 981 11 8
.70 14.62 992 5 3
.72 13.26 996 3 1
.74 12.46 999 1 0
.76 11.59 998 1 1
.78 10.81 999 1 0
.80 10.02 999 1 0
.82 9.48 1000 0 0
.84 8.72 1000 0 0
.86 8.20 1000 0 0
.88 7.81 1000 0 0
.90 7.46 1000 0 0

Reference
[1] Wald, A., Sequential Analysis. John Wiley and Sons, 1947.
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I/O STUDIES

Five tests have been devised to test the capability of the 
CRAY-1 I/O System.

DISKI. This test is designed to measure the instantaneous 
data rate for the DD-19 disk system. One track (8192 words) 
will be written to the disk and read back 1 000 times and 
timed. No arm movement or head switching will be required.

DISKS. This test is designed to determine the maximum data 
rate the DD-19 disk will sustain. A file of approximately 
two million words will be written sequentially on the disk 
then read back. The operation will be timed.

DISKS. This test is designed to measure arm positioning 
times. A large file will be written to the disk across many 
cylinder boundaries, then read back in one sector (512 word) 
blocks. Read requests will be arranged to force arm movement 
across a fixed number of cylinders in order to satisfy the 
request. The time required to position across 21 cylinders, 
i=0,...,8, will be recorded.

DISK4. This test is designed to gauge data integrity. A 
large file of approximately two million words of sequential 
integers will be written to the disk. The file will then be 
read back and verified.

DISK5. This test is designed to measure the impact of I/O 
upon the CPU and memory. Three timings will be made: 1) The 
time required to execute a program characterized by memory 
references. The program will consist of one million passes 
through a loop which adds two vectors of length 1 000 (A and 
B) and stores the result in C, of length 1 000. 2) The time
to execute the above program when one disk is kept busy at 
its maximum sustained rate writing a 10 000 word block. Upon 
disk completion, the CPU will immediately issue another write 
request for the block. Disk positioning times will be 
minimized by issuing the write request at the next address 
from where the disk left off. Hence many copies of the 
blocks will be written into consecutive disk addresses. 3)
If possible, the above test will be conducted with both disks 
active .
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VECTORIZATION CRITERIA

(This appendix fulfills the requirements of section V.C. of 
the Evaluation Plan by establishing vectorization criteria to be 
used in the informal estimates of vectorizability.)

Mathematically, a vector is defined as an n-tuple of numbers 
that can be thought of as a function on the first n positive 
integers. Conceptually, components of a vector may have some 
natural ordering, for example, 3-dimensional Cartesian 
coordinates. On the other hand, the components of a vector often 
do not have any natural ordering, for example, each component may 
denote the velocity of a particle whose position is random in 
space. The important point is that when a scientist conceives of 
a vector, he is at liberty to specify its components and their 
ordering in whatever fashion he desires. Of course, convenience 
in algebraic manipulation may force him to order them in such a 
fashion that he can formulate the associated function on the first 
n positive integers.

Computer designers have incorporated an increasing amount of 
parallelism into general purpose computers in order to meet the 
constant demand for greater speed. The introduction of this 
parallelism has naturally led to the concept of vectors and vector 
operations in a computer with the following constraints.

1. Vectors must be stored such that the memory spacing 
between successive elements is constant.

2. Components of vector operations must be mutually
independent, i.e., the component of the result must
be independent of all other components of the result.

Thus the concept of a vector in a computer is somewhat less 
general than that normally encountered in mathematics. In 
addition, the CRAY-1 computer only performs vector operations on 
the contents of vector registers, and these registers can contain 
at most 64 elements. These registers offer high arithmetic 
efficiency in situations where much arithmetic is performed on a 
few operand vectors. However, because of the fixed register size, 
a "pure vector" operation on the CRAY-1 will usually incorporate 
some small amount of scalar overhead associated with partitioning 
a vector into segments that are compatible with the length of 
vector registers.

These considerations lead to the following criteria for 
vectorization on the CRAY-1 computer.

1. The computation must be expressible as a repeated 
calculation. For example, a computation expressible as 
a Fortran DO loop may be vectorizable.

2. With few exceptions, elements of source operands 
must be independent of the elements of result operands.
For example:
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DO 1 I = 1,N
1 R(I) = R(I) + B(I) is vectorizable,

DO 2 I = 1 ,N
2 R(I) = R(I) + R(I-1) is not vectorizable.

3. Elements of operand vectors and result vectors must
be stored with constant memory spacing, respectively.
For example:

DO 1 1=1,N,M
1 V(I) = S1*U(I) + T(I) is vectorizable,

DO 2 1=1,N
M=J(I)

2 R(M) = R(M) + A(I) is not vectorizable.

These three criteria will be applied to samples drawn from 
the Class VI applications workload codes in order to determine the 
proportion of the code that is immediately vectorizable as per 
section V.C of the Evaluation Plan. If the function performed by 
a sample can be re-written so as to satisfy the above criteria, 
that sample will be considered vectorizable.
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DECISION RULE

In accordance with section IV.B of the Evaluation Plan the 
following decision rule was provided by LASL and approved by the 
Division of Military Application as the applications workload 
performance specifications.

The applications performance specification is that by the 
techniques specified in the statistics addendum, the 
hypothesis H-j that the CRAY-1 is greater than two times 
faster than the CDC 7600 must be accepted for one or more of 
the three Class VI applications workload codes.

Evaluation Plan Figures

Since Figures 1 thru 7 are presented in the 
body of the report, they are not repeated.
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APPENDIX B

FIGURES
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Figure B-1. Preliminary Scalar Test Routine Algorithms.

subroutine tlu
common/rmat/matid(12),at(12),rho(12),rhom(12),bep(12),psp(12), 
Ipolg(8,12),plg(16,16,12),eolg(8,12),elg(16,16,12),pelg(11,28,12) 
common/meos/arg1,arg2,func1,func2,maex,ifx,arg3(20),t6,t7

c
r\

dimension temp(40)

c
c t(i)is t**4 coming in
c if x funcl func2 ifx
c 1 P 8 arg 3(1) = t(1) arg3(2) = t(2)
c 2 e 8 arg3(3)=rho(1) arg3(4)=rho(2)
c 3 op 8 arg 3(5) = rho(3) arg3(6)=m(1)
c 4 p dp/dr 8 arg 3(7)=m(2) arg3(8)=m(3)
c 5 dp/dt 8 arg3(9)=lam(1) arg3(10)=lam(2)
c 6 de/dt de/dr 8 arg 3(11) = !Lam(3) arg3(12)=lam(4)
c 7 P t
c - 9 arg 3(1)=e(1) arg 3(2)=e(2) arg 3(3)=e(3)
c 9 arg 3(4)=m(1) arg3(5)=m(2) arg3(6)=m(3)
c 9 arg3(7)=mass(1) arg 3(8) = mass(2) arg 3(9)=mass(3)
c 9 arg3(10)=1/v
c 9 f unc1=p func 2 = t
c 9 arg3(11)=dp/dt1 arg3(12)=dp/dt2 arg 3(13)=dp/dt3
c 9 arg 3(14) =dp/dr1 arg3(15)=dp/dr2 arg3(16)=dp/dr3
c 9 arg3(17)=di/dt1 arg3(I8)=di/dt2 arg3(19)=di/dt3
c 9 temp(15)=di/dr1 temp(16)=di/dr2 temp(17)=di/dr3
c 9 temp(18)=p1 temp(19)=p2 temp(20)=p3
c 9 temp(21)=rho1 temp(22)=rho2 temp(23)=rho 3
c 9 temp(24)=alpha temp(25)=beta temp(26)=gamma
c 10 temp(27)=t1 temp(28)=t2 temp(29)=t3
c

ixf=if x 
r=arg 1 
t=arg2 
l=maex
if(ixf.eq.7)er=arg2 
c=r/rho(1)

1 cl=tlog(c)+9•
cc=amax 1 (amin 1 (aint(cl),16.),2.)
fc=cl-cc
ic =cc
goto(5,5,50,5,5,5,300,400,500,300,5,5,5)ixf 

5 if(t.gt..0009765625)goto20 
14=ft = 0.
13= 1 •
15=1024.*t
go to( 10,15,50,10,10,15,10,400,10,10,10,10,15)ixf 

10 11 =plg(ic-1,1,1) 
t2=plg(ic,1,1)-t1
go to 45

15 t1=elg(ic-1,1,1) 
t2=elg(ic,1,l)-t1 
go to 35

20 tl=tlog(t)+12.
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tt=amin1(aint(tl), 16.)
ft=tl-tt
it = tt
goto(40,30,50,40,40,30,MO,MOO,40,MO,40,40,30)ixf 

30 11 =elg(ic-1,it-1,1) 
t2=elg(ic,it-1 
t3=elg(ic-1,it,1)-t1 
14 = t2-elg(ic,it,l)+elg(ic-1,it,l) 
t5= 1.

35 t6=t7=0.
if(ic-9)100,36,37

36 t6=(c-1.)**2*(psp(l)+bep(l)*(c-1.)) 
t7=(c-1.)*(2.*psp(l)+3.*(c-1.)*bep(l)) 
go to 100

37 t6=texp(eolg(ic-9,l)+fc*(eolg(ic-8,1)-eolg(ic-9,1))) 
t7=t6*(eolg(ic-8,l)-eolg(ic-9,1))/c
goto 100

40 11=plg(ic-1,it-1,1) 
t2=plg(ic,it-1,l)-t1 
t3=plg(ic-1,it,1)-t1 
t4=t2-plg(ic,it,1)+plg(ic-1,it,1) 
t5= 1.

45 goto(48,48,48,48,100,100,48,400,48,48,48,100,100)ixf 
48 t6=t7=0

if(ic-9) 100,47,46
46 t6=texp(polg(ic-9,l)+fc*(polg(ic-8,l)-polg(ic-9,l)))

t7=t6*(polg(ic-8,l)-polg(ic-9,l))/c 
goto 100

47 t6 = c**2*(c-1.)*(2.*psp(l) + 3.*bep(l)*(c-1.)) 
t7=psp(l)*(6.*c**2-4.*c)+bep(1)*(6.*c-18.#c**2+12.*c**3) 
goto 100

50 cl=.60206*tlog(c)+8.
cc=amax1(amin1(aint(cl),11.),2.)
fc=cl-cc
ic = c c
tl = 3.*tlog(t) +14.
tt=amax1(amin 1 (aint(tl),28.),2.)
ft = tl-tt
it = tt
t1=pelg(ic-1,it-1,1) 
t2=pelg(ic,it-1,l)-t1 
t3=pelg(ic-1,it,1)-t1 
t4=t2-pelg(ic,it,l)+pelg(ic-1,it,l) 
t5= 1 .

100 func1=texp(t1+fc*t2+ft*(t3-fc*t4))*t5 
return 

300 return 
400 return 
500 return 

end
function texp(x)
texp = exp(x*.69314718055995)
return
end
function tlog(x) 
tlog=alog(x)*1.44269504 
return 
end
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Figure B-2. CDC 7600 Driver Routine.

PROGRAM DR1VER(INP,OUT)
C THIS IS THE CDC 7600 DRIVER PROGRAM FOR TIMING THE 
C PRELIMINARY SCALAR TEST ROUTINE TLU. ALL ARGUMENTS 
C TO TLU ARE PASSED IN COMMON.
C

EXTERNAL TLU
COMMON/RMAT/MATID(12),AT(12),RHO(12),RHOM(12),BEP(12),PSP(12), 
IPOLG(b, 12) ,PLG(,16,16, 12) ,EOLG(8, 12) ,ELG( 16, 16,12) ,PELG( 11,28,12) 
COMMON/MEOS/ARG f, ARG2,FUNC1,FUNC2,MAEX,IFX,ARG3(20),T6,T7 
DIMENSION T(28),C(16)
ILOOP = 30 
JLOOP = 30 
NLOOP = 1 
F JLOOP = JLOOP 
FILOOP = ILOOP

DO 10 1=1,16 
A 1 = 1-11 
T(I)=2.**A1

DO 10 J=1,16 
A 1 = J-8 
C(J)=2.**A1

DO 10 K=1 , 12
PLG(J,I,K)=ALOG(C(J)**2*T(I)**2)*1.44269504 
ELG(J,I,K)=PLG(J,I,K)

10 CONTINUE
DO 20 1=1,28 
A 1 = I
T(I)=2.**((A1-13.)/3.)

DO 20 J=1 , 1 1 
A1 = J
C(J)=10.**((A1-7.)/2.)1 

DO 20 K=1,12
PELG(J,I,K)= AL0G(C(J)**2*T(I)**2)*1.44269504 

20 CONTINUE
DO 25 1=1,8

DO 25 K= 1 , 12
POLG(I,K)=EOLG(I,K)=ALOG(1.E-20)*1.44 
BEP(K) = PSP(K) = 0 
RHO(K)=1.

25 CONTINUE
100 CONTINUE 

NTIME = 0
DO 260 NN = 1,NLOOP 
DR=(C(16)-C(1))/FJLOOP 
DT=(T(16)-T(1))/FILOOP

DO 200 J=1,JLOOP 
ARG1=C(1)+DR*(J-1)

DO 200 1=1,ILOOP 
ARG2=T(1)+DT*(1-1)
DO 200 L = 1,6
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IFX=MAEX=L 
Y 1 =ARG1**2 
Y2=ARG2**2 
Y3=Y1*Y2
IF(IFX.EQ.7)ARG2=Y3+.01371fa*Y2**2/ARG1

CALL TLU FROM TIMING FUNCTION TFN

CALL TFN (NCTFN,TLU,FUNC1)
NTIME = NTIME + NCTFN 

200 CONTINUE
260 CONTINUE

TIME = NTIME*.0275E-06 
PRINT 2002, NTIME, TIME 

2002 F0RMAT(I10,6HCYCLES,F15.10,7HSECONDS)
STOP
END
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Figure B-3. Listings of Kernel El.

CRAY-1 Assembly Language.

BASE 
I DENT

0
El

FORTRAN MODULE 
AR=1.0/AK 
UEFF=SUMU*AR 
VEFF=SUMV*AR 
XN=XP( IP)-HJEFF*DTOS 
YN='<P (I P+1) +VEF F*DTOSS 
AR=ABS(XN—INTCXN))

SELECTION ASSUMPTION - STATENENT FOLLOWING TEST NOT TAKEN

200a 072100

* IF (AR.LT.EM6.0R.AR.GT.
*
* EXECUTION ASSUMPTIONS
* NONE
X
3H

ENTRY El
ABS
CRG 200

El SI RT

.0.93999) XN=XN+EM4

b 075177 T77 SI
c 1231OG000220 SI AR.A0 S1=AR

201a 120203000222 S2 SUMU.A0 S2=SUMUc 120300000223 S3 SUMV.A0 S3=SUMV2023 120403000224 S4 DTCS.A0 S4=DT0Sc 120330000225 S5 DTOSS.A0 S5=DT0SS2033 073710 S7 /HS1 S7=31 BIT APPFb 100100000226 A1 IP,AC A1=IPd 054442 S4 S4XFS2 S4=SUMUXDT0S
204a 064553 S5 SSXFS3 SS=9JMV«)T0SS

b 1216OO000233 S6 XP-1,A1 S6=XP(IP)
d 057117 SI SIJKIS? Sl=2f-ID STEP DI

2053 064227 S2 S2SES7
b 064337 S3 S3XFS7
c 054447 S4 S4*FS7
c 054557 S5 SS^FS?

2063 064221 S2 setFsi S2=UEFFb 054331 S3 S3XKS1 S3=VEFFc 0S4441 S4 S4*FS1 S4=UEFFXDT0Sd 064551 S5 SSXFS1 SS=VEFF*DTOSS20/3 121100000234 SI XP.A1 S1=XPCIP+1)c 130200000227 UEFF.A0 S2 STORE UEFF

l./AR

1
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2103 130200000230 VEfT.AO
• c 0S2SS4 SS
d 04020004S0S0 S2

211b 042220 S2
c 0G2115 SI
d ©■322S2 S2

212a 130200000231 XN.A0
c 1205000002=4 S5213a 1204 >3000221 S4
c 003232 S2
d 12C-100000232 YN, A0

214b 045220 S2
c CS3523 S3
d 023442 S4

2153 130200000220 AR, A0
c 031034 SO
d 017 030002173 JSM

21Sb 072203 S6
c 074777 S7
d 051557 SS

2175 006 000002173 LABI J
c .043000 SO
d 004000 EX

220 04CC024000000000000000 AR CON
221 0400074000000000000000 E39 CON
222 0400014000300000000000 SOMJ CON
223 0400014000000000000000 SJMV CON224 0400014000000020000000 DTOS CON
225 040001400O000000000000 DTOSS CON
22S 0000000003000000000001 IP CON
227 0000000000000000000000 UEFF CON
230 0000000000000000000000 VEFF CON
231 0000000000000000000000 XN CON
232 0030000000000000000000 YN CON
223 0000000000000000000000 APR CON
224 XP BSSZ
254 1400007777700000000000 EWS CON

END

53 STORE VEFF
S6+FS4 S6=XN
840OS3
<sa S2=0d.00G0....0
Sl+FSS Sl-VN
SS+FS2 S2=ftI NT(XN)
SS STORE XN
EM6.A0 S5=EM6
E99.A0 £<=.99999
SS-FS2 S2=Xt'i- HTT (XN) =FRACTIONAL PART OF XN
51 STORE YN
4tSOSS2 S2=ABS < XN-1 NT (XN) ) =AR
S2-FS5 S5=AR-EM6
54 -FS2 S4=.S3939-AR
52 STORE AR 
S5! 34,
LABI
RT
T77
SS-S7
X
0
O40002400G000000000000 
040007400000000GG00O00 
0400014e0000000©000000 
0400014000000000000000 
040001400000000O000000 
0400014000000000000000 
1 
0 
0 
0 
0 
0
20
1400007777700000000000
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CDC 7600 Assembly Language.

lOtfJT K1o
»
« p-ORlHAN MOUULt 
? A«=i.0/AR» UtFF = Suw|U*AR
» Vt»-FsbUMV^AR
* XN^XpUP) *UEFF»()rOS
* YN-Xp ( 1P*1) *Vc.FF*l)TOSS
<* Ahi = AFlS IXN’INT (XN) )
tt StLECUON ASSUMPTION - STATEMENT FOULOHINQ TEST NOT TAKEN 
° IK (AM»LT«tM6.0H.AR.GT,0.V9994) AN3AN*£M*
»
» e:aeci)ti(Jn assumptions
* NO LCM VaMIaOLES
*» Value KOR VARIAHLE AR STOREo into dummy Variable ARR to 
» EXRLdITe LOOPING AND MULliKLt CALLS (AVOIDING DIVIDE At.RO IN
A FIRST FORTRAN STATEMENT)
* storage into arr has no impact upon timing.

pN 1 RY El
USE //

0 IT1 ME pbfa 1
uSc A

0 QOOOOVOVOUOOOOOOOOOO tl f)A 1 A 0
1 01 fasu cluck T85

3HUU0002A ♦ S A 1 AR X1 = AR
2 712001720* SX2 1720*8 X2*17204

51300000'S* ♦ S A3 IP X3= IP
3 bl*U0U002b ♦ S ** SUMO >.* = SUMU

20255 LX2 45 X2=i.
A 5lb0O00031 ♦ SA5 SUMV X5SSUMV

**721 FX 7 X2/X1 > 7=1.0/AR
5 bliouuoobs * SAl DTOS Xl=()TOS

5120000067 ♦ S A2 dtoss X2=DT0SS
fa 5233000032 . 5*3 XP-1+X3 X3=XP(IP)

4 0 fa* 7 FXb X * X 7 Xb=5UMU*AR=0tFF
*0757 FX7 XS<'X7 X /sfaUMVOAKsVEfF’

7 5140000070 ♦ SA* EMb X*=tMb
5053000001 SAP A3* 1 Xb = XPUP*l)

10 *0 1 fa 1 FX1 X6»X1 X i=uefk*otos
*02 72 FX2 X7*X2 X2=VEFK*uf0SS

51P0000027 ♦ SAb UEKF S)ORE 10 UEFK
11 pl/OOOOUfaO * S A 7 VEFF si ore io vef>

30to31 FXo X 3* X 1 Xb = XN
30752 F X 7 X5*X2 X 7 = YN

12 5110000023 ♦ SAl C99 X1*.99999
*3201 MX2 1

2Afa0fe nXo Xfa X6=XN
13 202/3 L** 59 X2=200U...08

24707 NX 7 X7 X7 = YN
32226 DX2 X2*X6 X2=FRACTIONAL PART XN

1A 5160000032 * SAo XN SIORE TO XN
21b73 AXb 59 XbsSIGN EXTENSION OF XN

2*202 NX2 X2 X2»FR*0TZONAL PART XN
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Figure B-4. Vector Test Routine Algorithms.

SUBROUTINE VVSPVS(R,A,S1,B,S2,N)
DIMENSION A(1),B(1),R(1 )

CALCULATE R=A*S1+B*S2 WHERE A,B ARE 
VECTORS AND S1,S2 ARE SCALARS.
INPUT
N=VECTOR LENGTH
A, B AND R ARE VECTORS OF LENGTH N

DO 10 1=1,N 
R(I)=A(I)*S1+B(I)*S2 

10 CONTINUE 
RETURN 
END
SUBROUTINE VVVPVV(R,A,B,C,D,N)
DIMENSION A(1),B(1),C(1),D(1),R(1)

CALCULATE R=A*B+C*D WHERE A,B,C AND D ARE VECTORS 
INPUT
N=VECTOR LENGTH
A,B,C,D AND R ARE VECTORS OF LENGTH N 

DO 10 1=1,N
R(I)=A(I)*B(I)+C(I)*D(I)

10 CONTINUE 
RETURN 
END
SUBROUTINE VVVPV(R,A,B,C,N)
DIMENSION A(1),B(1) ,C( 1) ,R( 1)

CALCULATE R=A*B+C WHERE A,B AND C ARE VECTORS 
INPUT
N=VECTOR LENGTH
A,B,C AND R ARE VECTORS OF LENGTH N

DO 10 1=1,N 
R(I)=A(I)*B(I)+C(I)

10 CONTINUE 
RETURN 
END
SUBROUTINE DOTPRO(N ,X,IX,Y,IY,R)
DIMENSION X(1),Y(1)

CALCULATE THE SUMMATION OF THE PRODUCT OF X*Y 
WHERE X AND Y ARE VECTORS.
N IS THE NUMBER OF VALUES TO BE SUMMED; IX AND IY 
ARE THE SPACING IN THE X AND Y VECTORS, RESPECTIVELY; 
AND R IS THE RESULT.

IXX=1 
IYY= 1 
R = 0
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DO 10 1=1, N 
R = R+X(IXX)* Y(IYY)
IXX=IXX+IX 

10 IYY=IYY+IY 
RETURN 
END
SUBROUTINE ADDVEC(A,B,C,S,N)
DIMENSION A(1),B(1),C(1)

CALCULATE THE EXPRESSION A=S*B+C 
WHERE S IS A SCALAR VALUE AND B,C,A ARE 
VECTORS. N IS THE NUMBER OF VALUES TO 
BE CALCULATED.

DO 10 1=1,N 
10 A(I)=S*B(I)+C(I)

RETURN
END


