e~., "3

Informal Report UC-32

Issued: December 1976

CRAY-1 Evaluation
Final Report

by

T. W. Keller

los'sZValamos

scientific laboratory
of the University of California
LOS ALAMOS, NEW MEXICO 87545

/ ;

An Affirmative Action/Equal Opportunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
CONTRACT W-740S-ENG. 36

DISTRIBUTION OFTHI

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Publication of this report does not imply endorsement of the products described herein

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $5.50 Microfiche $3.00

This rrport WHS prepared as an accuunl of' work sponsored
by (he I'niled States Government. Neither the United Slates
nor the United States KnerRy Research and Development Ad-
ministration. nor any of their employees, nor any of their con-
tractors. subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represepts that its use would not infringe privately owned
rights.

TABLE OF
CONTENTS

IT.

ITT.

Iv.

VI.

VIT.

VIITI.

iii

. — NOTICE -
Tim report was prepared as an amount of work
!h n‘fr 1 ye,h” Uni''<l SU"S Government. Neither
RL.YT, ,'0" lThe Uni''d S'3''1 Energy
h and Devel dmini ion, nor any of
£Z T 0s it ot anst of h'i' ©“"tractors,
subcontractors, or their employees, makes any
wananty, express _ implied, assumes any legi
habdity o, responsibility fo, the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infonge pnvately owned rights.

EXECUTIVE SUMMARY.. 1
INTRODUCTION 6
Context of Evaluation.....oueeeeeeeeeeeeeeennneenn 6
Qualification Criteria......oeee e et eeeeeeeenn 1
SCALAR PEREORMANCE . & i ittt ittt it ettt ettt teeeeeennn 9
Introauction and Approach.........cieiiiieeennn.. 9
Preliminary Scalar Performance Test............. 12
Workload Determination......oue et teteeeeeeneeenn 14
Execution and Monitoring........ceeeeeeeeeeeennnns 20
Kernel SeleChion..u.e e et et et ettt eeeeeeeeeeeeeeas 21
Kernel Implementation...........cceieiiuiiiiiinnenn.. 24
Timing ResULlLS. ...ttt ittt iieeeeeenn 26
Impact of HardwareFeatures...........oiiiiiin... 28
CONCLUSIONS vttt ittt e ettt ettt et ettt eeeeenann 29
VECTOR PEREORMANCE & & i ittt ittt ittt ettt e eeeeeeenann 31
N N S P 34
ApProacCh i e e e e e 34
The EXERCISER PrOgTrai.eeeeeeeeneeeeeeeesanas 35
Results and ConcCluUSioNnS. ...t i tnteeeeeeeenenenn 36
INPUT/OUTPUT PERFORMANCE . ..ottt ittt ittt tteeeeennns 43
Disk PerformancCe TeSt S . i . v u ettt eeeeeeeeeeennnn 43
Computation and I/0 Interference................ 47
INEFORMAL EST IMATE S . i i it i i it it ittt ettt ettt eeneneens 52
CONCLUSTIONS s 4t it ettt ettt teeeeeeeeeeeeeeneeanenns 54
Scalar PerformanCe ... i ettt teeeeeeeeeeneeaeeas 54
Vector PerformancCe. ... ittt ie it teeeeneeneennn 54
Reliabilaty tiii ittt it ettt eee s aeeeeanaaeeaes 54
Input/Output StUAIES ..t i it ettt it teneeeeannn 55
CONCLUS IO v it ittt et ettt ettt ettt eeeeeeaeaeananas 56
APPENDIX A 57
Configuration Being Evaluated.... 57
Summary of CRAY-! Characteristics 58
Evaluation Plan.........oeueeueuenn.. 66
Statistics Addendum............. v 79,
I/O Studies....vviiiiiiiiinnn. 83
Vectorization Criteria.......... 84 y} i

Decision Rule......iuiiieenennn.. 86
Evaluation Plan Figures......... 86
APPENDIX B FIGURES .. i ittt e ittt e et e et et e 87

DISTRIBUTION OF THIS DOCI

1ENT IS UNLIMITED'

SIGNA rUHES

Ronala S. Schwartz, director
Office of ADP Management

Energy Research ana Development Administration

¥

Ronald bartell. Deputy Assistant Director for
Program Analysis and Budget

Division of Military Application

Energy Research and Development Administration

bd.

Fred w. uorr. Division Leader
Computer Science and Services Division
Los Alamos Scientific Laooratory

SECTION I

EXECUTIVE
SUMMARY

The performance evaluation of the CRAY-1
computer was structured to determine if the CRAY-1
meets the minimum performance standards set forth
by the Los Alamos Scientific Laboratory (LASL) ana
the Energy Research and Development Administration
(ERDA) to qualify the machine for further
consideration for procurement.

The performance standards are divided into
specific qualification criteria in three main
areas: scalar performance, vector performance and
reliability. The qualification criteria are
summarized in Table 1-1. The final Evaluation
Plan, including precise definitions of the
qualification criteria, is presented in Appendix A
of tnis document.

It was impossible to convert large segments of'
tne LASL computing workload to the CRAY-1 because
programs to be run on the machine would require
assembly language coding. Thus, for the scalar
test, a sampling scheme was adopted that selected
small computational kernels to be run on both the
CDC 7600 and the CRAY-1. Kernels were drawn from a
program by a method that weighted the probability
of drawing a specific kernel by its contribution to
the total execution time of the program. The
sampling process was defined to a level of detail
that eliminated tne chances of Diasing the
selection toward either machine. By statistical
methods it was possible to establish a test of the
hypothesis that the CRAY-1 (in scalar mode) is
greater than two times faster than tne CDC 7600
with 90 percent confidence for any sampled program.
To assure that the code kernels were representative
of the potential LASL workload for the ChAY-1, the
code kernels were drawn from the actual programs
expected to comprise the eventual Class VI
workload. Only programs consuming greater than one
CDC 7600 hour per run and requiring more than one
run per week were considered as potential workload
candidates.

A secona workloaa for tne CRAY-1 was
established from a sample that included
frequently run coaes not expected to be included in
the immeaiate LASL workload for the machine. This
was done as an attempt to establish a performance
index of the machine based upon a more general
workload, and one tnat might be more representative
of computing tnroughout ERDA.

In order to eliminate the impact of compiler
efficiency, kernels were coded as efficiently as
was feasible in both CRAY-1 assembly language and
CDC 7600 assembly language.

It was not possible to rigorously establish
"representative" kernels for testing the vector
performance of the CRAY-1. This was because none
of the existing codes comprising the workload had
been converted for vector operations, and such
conversion efforts were outside the evaluation's
time frame.

At the risk of oversimplifying, the vector
computational speed of the CRAY-1 relative to the
CDC 7600 1is a function of both vector length and
complexity of the vectorized arithmetic function.
Relative performance of the CRAY-1 increases with
vector length and complexity of operation.
Performance criteria using vector lengths of 20,

100 and 500 were established, and tne complexity of

vector operations remained to be chosen. The
simplest expressions, such as R=A+B, result in the
lowest relative performance. Relative performance

increases with greater numbers of different
operators and operands (increasing complexity), as
this allows increased overlap of functional units
and chaining to occur. Chaining refers to an
increase in parallelism resulting from the ability
of the machine to store the result of a computation
in a vector register while the result is re-entered
as an operand to another vector computation in tne
same clock period. Thus, two or more primitive
vector operations may be "chained" together. The
more complex tne evaluated expression, the greater
the likelihood that chaining can occur. The
Applications Support and Research Group of the
Computer Science and Services Division at LASL was
asked to furnish wvector kernels that, in their
judgement, represented common vector operations
that user codes would perform on the CRAY-1. Five
expressions of medium complexity, such as R=A*B+(C,
were chosen to evaluate the machine's vector
performance as a function of vector length. The
average of tne five performance ratios was chosen
to compare against the qualification criteria.

Each vector kernel was coded as efficiently as was
feasible in assembly language for each machine. In
particular, the CDC 7600 kernels were coded as
"in-stack" loops--a scheme tnat pushes the CDC 7600
toward its theoretical maximum performance for
these algorithms.

The reliability of the CRAY-1 was evaluated by
establishing a reliability test code to run on the

3

machine for long periods of time. This "exerciser"
was designed to utilize as many different hardware
units of the machine as possible, at as rapid a

rate as possible, for extended periods. The
exerciser underwent several evolutionary stages
toward this goal. The latest wversion of the

exerciser accesses the machine's memory at a
sustained rate several times greater than that
plausible for a production workload. The
reliability figures were determined for contiguous
20-workday periods in orcer to "smooth" short-term
fluctuations in reliability.

In addition to the tests against the
qualification criteria outlined above, the
evaluation also investigated the CRAY-1 disk system
performance and made other miscellaneous studies.
For sake of brevity these studies will not be
discussed in the Executive Summary.

Clearly, many aspects of the CRAY-1's
performance were evaluated, some in considerable
detail. An impartial study was accomplished
despite the constraints of a primitive CRAY-1
operating system, the absence of a Fortran
compiler, the relatively short evaluation period,
and the necessity of agreement by LASL, ERDA, and
the Federal Computer Performance Evaluation and
Simulation Center (FEDSIM) upon an evaluation plan.
Rigorously defensible results were obtained by
adopting metnods of known accuracy wherever
possible. Although the constraints confined the
scope of the evaluation, they did not hinder the
objectivity nor accuracy of its results.

Results

A brief summary of the evaluation results is
presented in Table 1-1.

Scalar. Timing results for the scalar kernels
are summarized in Table III-6 of Section TIII. On
the basis of these results the hypothesis that the
CRAY-1 1is at least two times faster than the
CDC 7600 for scalar kernels was satisfied in all
tests.

Vector. Results of the vector kernel timings
are summarized in Table 1-1. The machine met the
vector performance qualification criteria for the
three wvector lengths.

Reliability. The machine met the reliability
criteria for many reported 20-day periods. The
Mean-Time-To-Failure (MTTF) fluctuated from a low
of approximately 2.5 hours to a high of

approximately 7.5 hours during the six-month
period. No trend was observed.

Approximately 89 percent of all machine
failures during the evaluation were memory parity
errors. If one assumes that all memory errors were
correctable single-bit errors, then installation of
single-bit memory error correction would have
resulted in an increase in MTTF by a factor of
nine. Such an increase would result in extremely
good reliability for a machine of this complexity.

Tne conclusion of the evaluation is tnat the
CRAY-1 satisfies the threshold performance criteria
in all categories. FEDSIM, 1in a separate report to
be issued, concurs in this conclusion.

Table 1-1. Summary of Qualification Criteria
and Evaluation Results.

A, Qualification Criteria
Scalar Performance.
Scalar operations >2 X CDC 7600 in speed

Vector Performance.

Short vector operations >3 X CDC 7600 in speed

Medium vector operations >4 X CDC 7000 in speed

Long vector operations >5 X CDC 7000 in speed
Reliability

Mean-Time-To-Failure >4 hrs.

Mean-Time-To-Repair <l hr.

System availability >0.a

B Results

Scalar. The hypothesis that the CRAY-1 is >2 x the
CDC 7600 in speed tests as true for each of
the three codes comprising the LASL
"applications" workload. The hypothesis tests
as true for a more general workload consisting
of five codes.

Vector. Average CRAY-1/CDC 7b00 speed ratio of five
vector functions by vector length:

Vector length 20 (short) 3.30
Vector length 100 (medium) 4.50
Vector length 500 (long) 5.12
Reliability For the period 5-14-76 to 0-11-76:
Mean-Time-To-Failure 7.00 hrs.
Mean-Time-To-Repair 0.36 hr.

System Availability 0.950

SECTION II

INTRODUCTION

Context of
Evaluation

Tne growing complexity of the programmatic
efforts at the Los Alamos Scientific Laboratory
(LASL) 1in weapons design, laser fusion and isotope
separation, magnetic fusion energy research,
reactor safety, and other basic and exploratory
research requires calculations that are beyond the
capability of the fastest computer currently
installed in the LASL Central Computing
Facility--the CDC 7600. Thus, LASL needs a
computer that can meet the growing requirements for
computational speed. For this reason, LASL, in
conjunction with the Energy Research and
Development Administration (ERDA) and the Federal
Computer Performance Evaluation and Simulation
Center (FEDSIM), undertook to evaluate a new class
of scientific computer system. This class has been
identified by ERDA as "Class VI"—one that is
capable of executing 20 to 60 million floating
point operations per second.

Because computers of this class are
necessarily pushing the state of the art of both
computer architecture and electronic technology,
there have been worries expressed in ERDA and
Congress that the usual procurement procedures did
not afford adequate protection to the Government
against failure of these machines to fulfill their
specifications for reliability and performance.
The basic reason for this is that Class VI
computers are very complex, and considerable time
is required to convert previous application
programs so that an adequate evaluation of the
product can be assured. By the time reliability
and performance evaluations can be conducted, the
usual protections for the Government have elapsed.

To avoid a repetition of previous ERDA
experiences with similar computers, a plan was
designed that offered vendors an equal opportunity
to compete and yet proviaed a large measure of
protection for the Government.

The plan to implement these desired policies
of competition and protection consisted of the
following steps.

a. Offer all potential vendors an opportunity
to have tneir computers evaluated with respect to
stated performance criteria within approximately a

Qualification
Criteria

T

six-month time scale. A letter was sent on 2-26-76
by ERDA to a number of vendors.

b. Determine the set of computers to be
evaluated. In tne words of the letter to the
vendors, "....a demonstration and evaluation of
machine capabilities must precede a decision to
acquire a new class of computers.”" Thus, all
vendors were given an opportunity to have their
products evaluated; however, only tnose with a
product available for immediate evaluation which
met the minimum evaluation criteria would qualify
to provide the equipment for later acquisition at
LASL.

Responses were received from two
vendors—--Control Data Corporation (CDC) and Cray
Research, Incorporated (CRI). The CDC response did
not offer a computer for immediate evaluation; tne
proposed product was not scheduled for availability
until about eighteen montns after the beginning of
tne evaluation period. Thus, tne policy of
"evaluation before acquisition" could not be
implemented with respect to the CDC proposal, and
tne CDC proposal was judged non-responsive to
LASL’s requirements.

c. Evaluate the products proposed. Tne
proposal by CRI was consistent with the specified
criteria and that computer was evaluated, beginning
April 1, 1976. The evaluation was a cooperative
effort between LASL, ERDA and FEDSIM and conformed
to tne performance criteria specified to vendors.

d. On the basis of evaluation results (c),
determine whether to pursue a procurement action.

In summary, a plan was implemented that
offered vendors an equal opportunity to compete,
yet afforded the Government extra protection in an
area of high technological risk.

Tne performance standards necessary to qualify
a computer for procurement were establisned in the
ERDA letter to vendors. Qualification criteria for
the CRAY-1, incorporating these standards, are
formalized in tne Evaluation Plan (Appendix A of
tnis document) . An informal description of tne
criteria follows. The criteria are divided into
three general areas: scalar operations, vector
operations and reliability.

Tne scalar operations criterion 1is tnat by
metnods discussed in Section III and formalized in
the Evaluation Plan, the hypothesis that the CRAY-1

is at least two times faster than the CDC 7600 for
two specified workloads must be satisfied.

The vector operations criteria are defined for
three vector lengths. The criteria are that the
CRAY-1 be capable of executing vector operations at
a rate at least 3, 4 and 5 times that at which the
CDC 7b00 can perform the equivalent functions for
vectors of lengths 20. 100 and 500, respectively.

Reliability is determined by three metrics:
System Availability (SA), Mean-Time-to-Failure
(MTTF) and Mean-Time-to-Repair (MTTR). Informally,
SA is the fraction of time the system is available
for use, MTTF 1is the expected time to system
failure, and MTTR is the expected "down-bime"

interval. The reliability criteria are that MTTF
be at least 4 hours, MTTR be at most | hour, and SA
be at least 0.d. Furtnermore, the three criteria

must collectively be met during any contiguous
20-workday period.

These criteria are summarized in Table 1-1 of
the Executive Summary (Section I) of this report.

It now appears that there is an existing
computer system that meets LASL Class VI computing
requirements -- the Cray Research, CRAY-1. The
ChAY-1 was installed at LASL for six months for
evaluation against the threshold performance
criteria specified by LASL and ErtDA to qualify the
machine for procurement. The purpose of this
document 1is to describe the approach taken by LASL,
ERDA and FEDSIM in evaluating tne CRAY-! and the

results of the evaluation. This document was
preceded by a preliminary version of this report
("Interim Report of the CRAY-1 Evaluation") issued

July 1, which consisted of the CRAY-1 Evaluation
Plan and gave results of the evaluation to that date.

sgciiem in

&EATM

Introduction
and

Approach

The scalar operations performance criterion is
that the CRAY-1 must perform scalar operations at a
rate at least twice that of the CDC 7600 for each

of two workloads. The approach to testing the
machine against this criterion is specified in
detail in the Evaluation Plan (Appendix A). Some

of the constraints and requirements which shaped
this approach are described nere.

Since no compiler was available on the CRAY-1 ,
any code implemented on the machine was written in
assembly language. The decision was made to
implement "optimal" code on both machines, instead
of attempting to emulate compiler—-generated code.
The fundamental reason for this approach was that
the CRAY-1 and CDC 7b00 have different
architectures. For example, the B and T
programmer—-controlled register caches on the CRAY-1
have no equivalent on the CDC 7600. Attempts to
emulate compilers would raise such guestions as:
"How well will a (hypothetical) CRAY-1 compiler
take advantage of this cache for the storage of
temporaries?" It soon became obvious that no
satisfactory solution to the problem of functional
differences existed where the problem was
compounded by questions of compiler "intelligence”
and convention.

Another reason that code optimization was
undertaken was because "optimal" is a yardstick for
comparison. For very short modules it 1is
reasonable to expect that careful coding,
cross—-checking by other programmers, the use of
software tools that test efficiencies, etc., will
result in nearly optimal code. The metric for
optimality is simple. If two approaches are
considered, the approach resulting in the least
execution time 1is more optimal. tohen emulating
compiler—-generated code, any qgquestion of approach
becomes a debate between compiler implementation
philosophies.

The next decision to be made was whether
Input/Output operations (I/0) should be included in
the analysis or whether computational kernels
should oe compared alone. A complete analysis
would require inclusion of the properties of CPU/10

10

overlap. This would necessitate a complete
analysis of the program's CPU burst, 1/0 burst
profile. Unfortunately, tools did not exist for

such complete analysis, nor could they be
constructed within the time frame of the

evaluation. Furthermore, at the time the
evaluation was started, the complete operating
characteristics of the eventual CHAi-1 1I/0
subsystem were not well-determined. The only
manner m which to gather such statistics would be
extensive modifications in the running codes and
operating system. This approach was not considered
tractable. A modeling approach was suggested, but
since only a trivial I/O system was available, it
was not thought that models could be validated with

the necessary rigor. Thus the decision was made to
limit the comparison to the machines' mainframe
hardware. An analysis of the CRAY-1 I/O subsystem

was formulated to determine if any pathol ogies
existed in the subsystem.

The next decisions facing the evalua tion
design committee were 1) what codes would be
analyzed and 2) how would kernels be selected from
these codes to run on the machine? A workload
determination was considered essential for
select ing "representative" codes. Since the
workload of the Class VI computer would consist of
long-running codes, the manner of the sel ection of
criteria defining the potential workloao for the
machine was relatively straight forward. These
criteria are put forth in the Evaluation Rian. A
more ticklish question was how to draw
"representative" kernels from the codes. Since
kernels would have to be written in assembly
language for both machines and "optimized", the
amount of code that could be implemented was
obviously small. The general gquestion of
"representativeness" is still a very active area of
research in computer performance prediction. Many
opinions were put fortn by the evaluation design
committee. The constraint that Dblocked most
approaches was tne desire to attain rigorously
defensible estimates. There 1is no metric of
"representativeness" that can be applied. Error
bounds for performance estimates for workloads
attainable from kernels are usually impossible to
attain. Thus a new approach was considered
necessary

It was decided to adopt a sampling scheme to
which proven statistical methods could be applied
in order to attain error bounds for tne performance
estimates. Tne sequential sampling scheme that was
formulated is described in the Statistics Addendum,
Informally. the approach assumes that any code can

11

be partitioned into small, nonoverlapping code

segments. If we ignore I/0, then the total
execution time for any code will be the sum of the
total execution times for the segments. What we

desire to estimate is the ratio of the CDC 7600
execution time to CRAY-1 execution time for the
code. If this speed ratio is at least two then the
CRAY-1 meets the scalar qualification criterion for
that code. The sampling scheme draws a number of
these segments from the code. These computational
kernels are then implemented in assembly language
on each machine and timed. The speed ratios of
these kernels are thus related to the actual speed
ratio for the code. The larger the sample size
from a particular code, the more confident we are
that the sampled speed ratio is close to the code's
actual speed ratio.

Unfortunately, it became apparent that the
sample size necessary to estimate a code's speed
ratio with adequate confidence was too large to be
tractable. However, the hypothesis that the CRAY-1
is greater than twice as fast as the CDC 7600 (the
qualification criterion) can be tested with a
tractable sample size. A procedure can be
constructed so that the number of kernels drawn is
not fixed, but is a function of tne fraction of
kernels that have speed ratios in excess of two.
The hypothesis is tested each time the sample size
is increased by one. The number of samples drawn
must be at least six if we wish the probabilities
of accepting the hypothesis when it is false or
rejecting it when it 1is true to each be less than
0.1. The practical significance of this scheme is
that no more kernels than necessary need be
programmed, thus avoiding the wasted effort of
unnecessarily large sample sizes. Again, the
reader 1is referred to Appendix A for a more
thorough explanation of the scheme.

An estimate can be made of the actual speed
ratio for a code, although the small sample size
precludes determining the error bounds on the
estimate. Such estimates are included in the
Informal Estimates Section of this report.

A final complication for the workload
determination was tne concern that the LASL
workloaa would not oe "representative" of the
broader ERDA-wide workload for the machine. LASL,
of course, was primarily interested in the
performance of a small set of codes that, for
programmatic reasons, would be candidates for
conversion to the Class VI computer. Thus a second
set of codes, including the LASL set, was also
tested. The first set was designated the Class VI

Preliminary

12

applications workload, while the extended set was
labeled the Class VI workload. It was decided to
test the hypothesis for each of the applications
codes and to test the hypothesis for the Class VI
workload as a whole. At that time the problem of
determining a rule attaching a weighting to the
importance of each code in the applications
workload became apparent. It was decided to use a
decision rule that 1is applied against the results
of the hypothesis test for each applications code
and which determines whether or not CRAY-1
performance over the entire workload is
satisfactory. The decision rule was formulated by
LASL and approved by the ERDA Division of Military
Application before the testing was initiated. The
rule adopted was that the hypothesis must test as
true for one or more of the three applications
codes 1in order for the CRAY-1 to meet the
applications workload threshold criterion. An
indeterminate test result was to be considered a
negative result when applying the decision rule.

Scalar Performance

Test

A preliminary test of the CRAY-1 scalar
performance was desired in order to estimate if the
CRAY-1 might meet the scalar performance criteria
prior to beginning the extensive sampling procedure
outlined above. Since the kernels selected by the
sampling method would by necessity be very small,
on the order of three to ten Fortran statements, a
preliminary test program an order of magnitude
larger was desired in order to provide a rough
check on tne sensitivity to kernel size of the
CRAY-1/CDC 7b00 speed ratio when determined by the
sampling method.

The test routine chosen is a kernel of the
Equation of State (EOS) algorithm. EOS 1is common
to many LASL production codes. The algorithm
consumes approximately 3 - and 1.2$, respectively,
of the CPU time for representative runs of two of
tne production codes comprising the Class VI
workload.

The kernel TLU extracted from EOS 1is given in
Figure B-1 and consists of over 70 lines of Fortran
code. Tne kernel was hand translated into CDC 7b00
assembly language and CRAY-1 assembly language as
efficiently as was feasible for each machine. The
assembly language code 1is available in a separate
document. In order to factor out the impact of
possible differences in efficiency between the
CRAY-1 and CDC 7b00 library wversions of the
functions ALOG and EXP, the functions were
re—-defined as ALOG(x) = x and EXP(x) = X.

13

Naturally, the CRAY-1 version of TLU consisted of
purely scalar calculations. It can be noted from
Figure B-1 that the test routine is characterized
by much address computation, numerous tests and

branches, and a moderate amount of floating-point
arithmetic

For each machine, the test routine was timed
for 5400 calls with a different parameter set for
each call in order to fully exploit all paths in

the routine. This was accomplished by using a
driver. A Fortran listing of the CDC 7600 driver
is given in Figure B-2. The equivalent CRAY-1

driver was written in PASCAL and CRAY-1 assembly
language.

Results of these timings are given in Table
ITI-1. The timing ratio of 2.55, greater than the

criterion of 2.0, indicated that the more extensive

sampling procedure was worthwhile.

Table III-1. Scalar Test Routine Timings.
A. CDC 7600 Execution Time .0d77 sec.
B. CRAY-1 Execution Time .0344 sec.

C. Ratio A/B 2.55

Workload

14

Determination For a code to be included in the Class VI

workload, the following criteria were established:

1. The code consumes enough CDC 7b00 CPU time to
merit conversion to a Class VI computer.

2. The code will continue to be used at current
or 1increased levels.

3. Support for the code's conversion to a Class
VI computer exists within the user group.

A measure of at least one run per week greater than
one hour on the CDC 7600 was chosen as the level of
significance to merit conversion (Criterion 1). To
accomplish this, a detailed analysis of LASL's
production workload was undertaken utilizing historical
accounting data provided by LASL's computer operations
group.

Statistics are collected and maintained on the two
CDC 7600 operating systems utilized for production work:
CROS and LTSS. CROS 1is a batch operating system suited
to a production environment, while LTSS is a timesharing
operating system suited to an interactive environment.
Both systems run on the CDC 7b00. Accounting
methodologies between these two systems differ.
Statistics on the CROS system are detailed and flexible
enough to summarize and tabulate requested data to the
level of a single run. LTSS statistics, however, are
logged by account number, the accounting philosophy
being that an account number is associated with a
"family" of codes programmatically related. Thus, many
codes may charge to a single account and the charged
time cannot be easily apportioned among individual
codes, as 1in the CROS system.

A summary of compiled results 1is presented in
Tables III-2 and III-3. The CROS data 1is
straightforward. The criterion of "greater than one
hour" could not be as easily applied to the LTSS
workload because of the previously discussed accounting
methodology. The approach taken on LTSS was to

determine usage by account number. The codes associated
with an account number were then determined by
interviewing the holder of the account. Since it was

not possible to break down the run times by code, short
runs within a "family" are lumped together with
production runs. Thus, the method of ascertaining the
production workload on LTSS was to conduct a user survey
to discover the account numbers and associated codes
active during the production shifts. Fortunately, LTSS
production codes are few in number and highly visible,
since they were only recently transferred from CROS to
LTSS.

15

The total LTSS charged time, by family of codes, 1is
presented in Table III-3 for three months of usage. The
reader will note that the wvalues of charged time are low
when compared to the CROS figures, especially when one
considers that the CPU time includes all runs charged to
an account, not merely runs of one-hour duration or
more. This is explained by 1) at that time, there was
only one CDC 7b00 running LTSS in a production
environment while three CDC 7600s were running CROS, and

2) LTSS currently has a smaller population of production
codes.

The complete set of codes enumerated in Tables
III-2 and III-3 comprise the potential Class VI
workload. The significance criterion (Criterion 1)
determines that a code must have more than 12 one-hour
or greater runs in three months to be considered in the
Class VI workload. On the basis of Criterion 1 all
codes consuming 1less than 12 hours of CDC 7600 time in
greater than one-hour runs were eliminated from
consideration.

Additionally, programmatic requirements dictated
that certain codes would receive little or no support
for conversion to the CRAY-1 . A user review process
eliminated many codes from consideration on the basis of
Criterion 2; namely, ZORK, TD4TWOD, TIGER, and the MAGEE
and MCN families. MCRAD, EQOTOTO, GUANO, TORUS-M and
SIMMER were left to comprise the Class VI workload.

Of these five codes, MCRAD, GUANO, and EOQOTOTO were
selected to comprise the Class VI applications workload.
Table IITI-4 tabulates the final results of the workload
study.

16

Table III-2.
Potential Class VI Workload from CHOS.

System: CROS
Period Evaluated: 1/1/76 to 3/31/76

Source of Data: CROS HISTORICAL DAYFILE DATABASE

Total CPU % of Total
Time wused (hrs.) CPU time for
Code User Supplied Description for Jobs >1 hr. Jobs >1 hr.
GUANO 2-D Lagrangian explosion code 271.2b 31.06
ZORK 1-D explosion code 92.75 10.62
EOTOTO 2D Monte Carlo particle-in- 79.27 9.00
cell code
TD4TWOD Controller for Magee family 72.90 0.36
of codes
TIGER 2-D particle-in-cell S/N code 64.57 7.40
TORUS-M 3-D toroidal geometry fluid code; 40.50 5.56
magnetic fusion research
SIMMER Hydrodynamic—-neutronics—-equation of 39.00 4.47
state code; reactor safety
MAGEE 2-D hydrodynamic code 36.51 4. 10
MCNGACE 3-D Monte Carlo neutron and gamma 17.05 1.95
transport code
MCNG 3-D Monte Carlo neutron and gamma 10.03 1. 15
transport code
MCRAD Monte Carlo radiation output code 11.02 1. 15
DITTO 1-D Lagrangian explosion code 0.67 0.99
MCMD Monte Carlo molecular dynamics 7.59 0.07
for hard spheres and hard aisks
MOOP Weapons diagnostics 6.01 0.70
DYNSTAR Weapons diagnostics 5.09 0.60
LONGWALK Weapons diagnostics 4.47 0.51

SPECTOR

YAQM

UNDETER-
MINED

TOTAL

17

2-D radiation transfer code;
astrophysics research

2-D radiation transfer code
No identification—--unable to

infer from other dayfile
data the code 1ID.

3.31

91.22

873.04

10.

100.

.35

45

00

18

Table III-3. Potential Class VI Workload from LTSS.

System: LTSS
Period Evaluated: 1/1/75 to 3/31/76

Source Data: Account Number Data Base and User Survey

Total Time (hrs.)

Charged
Code User Supplied Description for all Runs Percent
MCRAD Monte Carlo radiation output code 453 65.42
MAGCON Controller for MAGEE family of codes 49 9.04
LASNIX 2-D hydrodynamic code for laser 14 2.56
fusion pellet design
WAVE 2-D electrodynamic relativistic 11 2.03
particle simulation code;
laser fusion
SIMMER Hydrodynamic—-neutronics—-equation 5 0.92

of state code; reactor safety

TOTAL 542 99.99

19

Table III-4. LASL Class VI Workload and
Class VI Applications Workload.

Class VI Workload

Code 1b User Supplied Description

MCRAD Monte Carlo radiation output code
GUANO 2-D Lagrangian explosion code

EOTOTO 2-D Monte Carlo particle-in-cell code
TORUS-M 3-D toroidal geometry fluid code;

magnetic fusion energy research

SIMMER Hydrodynamic—-neutronics—-equation of state code

reactor safety

Class VI Applications Workload

Code 1ID User Supplied Description
MCRAD Monte Carlo radiation output code
GUANO 2-D Lagrangian explosion code

EOTOTO 2-D Monte Carlo particle-in-cell code.

20

Execution

and Monitoring After the LASL Class VI workload and its
subset, the Class VI applications workload, had
been determined, each user of a selected code was
asked to provide files of the code's Fortran source
and all data and control card files necessary for a
typical execution of the program. The source code
and associated data files were copied in order to
insulate the "evaluation" code from the normal
evolutionary changes of a production environment.
Isolation was desired in order that monitoring
results be reproducible during the entire
evaluation period.

Monitoring proceeded utilizing the
LASL-written software monitor STAT. For a given
code, the entire field length of a particular
overlay and its suboverlays was divided into
non-overlapping address ranges labeled "buckets."
STAT samples the program address counter and
determines which bucket encompasses the address.
STAT then increments a count for that bucket and
subsequently summarizes these results into a
cumulative distribution that gives the fraction of
time spent by the sampled overlay in execution in
or below the address range for each bucket.
Implementation does not allow the generation of a
cumulative distribution over more than one overlay.
Additionally, the bucket size was chosen to be 16
words—-—-a size large enough to encompass a
meaningful Fortran segment yet small enough to
result in assembly language segments of tractable
size.

The subject codes were run and monitored over
a sufficiently long period to exercise the normally
used features of each code--typically five to

fifteen minutes of CDC 7600 time. Monitoring was
done on those overlays that encompassed the main
iterative loop. The five to fifteen minutes

includes pre- and post-processing which were
ignored because this processing consumes
insignificant portions of a code's production
execution time.

Kernel
Selection

21

In order to achieve a single cumulative
distribution for an entire code execution, a
separate program was written to integrate
STAT-generated overlay cumulative distributions.
This integration is accomplished by weighting the
individual overlay distributions by the percent of
time spent in each overlay. From this data a
single cumulative distribution can be inferred.

The same program then generates a random
number, evenly distributed from 0 to 1, utilizing
the Fortran library function HANF. The generated
random number is applied to the cutoff points of
the cumulative distribution associated with each
overlay. For example, assume three overlays (A, B
and C) were sampled by STAT and consumed 10 sec.,
20 sec., and 35 sec., respectively, of run time.
The fraction of the total time spent by each
overlay would be 10/b5, 20/65 and 35/65,
respectively. This would imply cutoff points of
10/65 and 30/65 for overlays A and B, respectively.
Thus, 1f the random number .31417 was obtained, it
would be associated with overlay B. Furthermore,
the bucket associated with .31417 would be
associated with the B overlay cumulative
distribution value .31417 - 10/65.

An initial sample size of six from each of the
three Class VI applications workload codes was
drawn for the Class VI applications workload
sample. This 1is because the minimum sample size
for testing the speed ratio hypotnesis is six (see
the Statistics Addendum). Ten kernels were drawn
for the test of the Class VI workload, two from
each of the five codes comprising the workload.

The initial sample size of ten allows each code to
be equally weighted in the test. The random number
which determined the location of each kernel (the
"bucket") in the coae and the overlay block in
which the kernel resides is presented in Table
III-5. Each kernel is identified by a unique
label. Kernel 1labels Dbegin with the first letter
of the code from which they were drawn, and are
numbered in the order in which they were drawn.
Kernels drawn for the Class VI workload test are
specified by an "H" in their label.

In this initial drawing of 26 kernels, four
were duplicates, namely G2/G3, E3/E6, M2/MH1 and
SH1/SH2. Duplication occurs when two random
numbers are so close in value that they "fall" into
the same bucket.

22

Table III-5.
Random Numbers Associated with Kernels.

Code Kernel Random Overlay
Name ID Number Block
EOTOTO El .0b7H473 (1,3)
E2 .39d6746 (2,2)
E3 .905d777 (2,2)
E4 .17ao00di (2,2)
E5 .ti1074H9 (2,2)
E6 .6754135 (2,2)
EHI .6468114 (2,2)
EH2 .6430924 (2,2)
GUANO Gl .0063286 (2,0)
G2 .8719697 (7,0)
G3 .9059678 (7,0)
G4 .9562930 (8,0)
G5 .3848960 (2,0)
G6 .2780379 (2,0)
GH1 .2046974 (2,0)
GH2 .4215584 (2,0)
MCRAD M1 .3130292 (2,0)
M2 .0574023 (0,0)
M3 .0409673 (0,0)
M4 .6274798 (2,1
M5 .6945399 (2,1
M6 .7010670 (2,1
MH | .0700280 (0,0)
MH2 .6218473 (2,1
TORUS-M TH .290689¢6 (0,0)
TH2 .5704439 (0,0)
SIMMER SHI . 1115372 (3,5)

SH2 .2733280 (3,5)

23

A portion of the segment of Fortran statements
associated with the bucket was selected as the
Fortran kernel. This was accomplished according to
the following procedure.

a. If the adaress boundaries of the Dbucket
resulted in incomplete Fortran
statements, the segment was expanded to
include entire statements.

b. Starting at the selected address one went
"backward in execution" to either the
segment boundary or a labeled statement
actively accessed Irom outside the
segment. "Active" execution paths are
those taKen during execution of tne code.
Whether an execution path was active or
inactive was inferred from the STAT
histogram of execution within the

segment. The selected statement formed
the first statement of the Fortran
kernel

c. From the first statement of the Fortran

kernel one went "forward in execution” to
either the segment boundary or an active
jump outside the segment. The subsegment
encountered in tnis action comprises the
Fortran kernel.

If at any time in this selection process
additional knowledge of program flow was required,
STAT was rerun over the kernel in question with a
one-woro bucket size. It snould be noted that
seldom were two possible program flow paths active
in tne same segment. Thus steps b and c¢ usually
consisted of merely identifying the active portion

of the segment. The active portion then comprised
tne kernel.

In summary, kernel selection was accomplished
in a straightforward ano unbiased manner. The
methodology vyielded representative samples weighted
by frequency of execution in a code.

Kernel
Implementation

24

The code selection yielded an initial 2d
kernels to be coded botn in COMPASS (CDC 7600
assembly language) and in CAL (CRAY-1 assembly
language) . A careful examination of the segments,
from which each kernel was selected, established
coding assumptions for each kernel. Some examples
of coding assumptions follow. By examining the
section of code from which the kernel was extracted
one could determine variables local to the kernel.
These variables were left in registers after
calculation but not stored to memory. If a
variable was a DO loop index, 1t was assumed to be
in a register and not fetched from memory every
time it was used. On the CRAY-1, B and T registers
were used for temporary storage whenever feasible.
Both the Fortran statements and the coding
assumptions were incorporated as comments at the
beginning of each kernel.

The evaluation team was assigned two full-time
programmers and the services of two data analysts.
One programmer was the primary author of the
majority of the COMPASS kernels, while the other
was the primary author of the CAL kernels. The
data analysts took the handwritten code, punched
the decks, and assembled and executed the kernels.
They corrected some assembly errors and kept a file

of all the decks and listings. This technique let
the programmers concentrate their efforts on
writing correct and efficient kernels. The success

of this technique is indicated by the fact that it
took only five weeks to completely write, assemble,
and make the first debug pass over 52 assembly
language kernels--2b COMPASS and 2b CAL. Two of
the 26 kernels were nothing more than a block
transfer of data from Large Core Memory (LCM) to
Small Core Memory (SCM) on the CDC 7600. Since no
such transfer is necessary on the CRAY-1, the
kernels "exceeded" the speed ratio criterion and no
coding was necessary.

Following the programming of the kernels the
programmers spent four weeks debugging the kernels,
"tuning" the code for efficiency, and verifying
that the kernels satisfied the execution
assumptions. Both programmers verified all kernels
for accuracy and efficiency. The CAL and COMPASS
versions of each kernel were checked against each
other, instruction by instruction, by both
programmers to verify their functional equivalence.
The data analysts continued making all changes,
executing the kernels, and updating the files.

A further pass over all the kernels was made
by other experienced assembly language programmers.

25

These people looked for errors in the documentation
and the coding and checked to see if any
improvement could be made in the efficiency of the

kernels. This pass revealed few substantial
errors. Most corrections were aimed toward
improvement in documentation. Once this process

was complete the suggested changes were
incorporated, and the kernels sent to FEDSIM for
final review. Changes suggested by FEDSIM were
then incorporated to produce the finished kernels.

The following steps were taken to guarantee
that the implemented kernels are efficient and
accurate

1. The authors of the kernels were chosen for
their experience in efficient coding. They
were extremely knowledgeable about the
architecture of the two machines that were
programmed.

2. REGREF, a LASL-developed software tool that
statically analyzes COMPASS code for
efficiency, was used as an aid in optimizing
the COMPASS kernels.

3. Both the two-man checkout and the
cross—-checking by other programmers were done
to correct inefficiencies and to minimize any
differences in efficiency attributable to
individual programmers.

The assembly language listings of the kernels,

timing information and driver programs comprise about

350 pages of output. In addition, from one to ten pages
of Fortran text were extracted for each kernel in order

to define the kernel and establish the coding

assumptions relevant to the kernel. The STAT-generated

output used to locate and define the kernels is
approximately 500 pages long for the five monitored

codes. Source listings of the monitored codes were so

lengthy that they were tractable only in microfiche
format.

Because of the length of this material, no listings
can be reproduced in this report. However, 1listings of

kernel El are presented as an example in Figure B-3.

26

Timing
Results Results of the kernel timings are displayed in
Table Ill-b. A sorted histogram of the kernel
speed ratios is displayed in Figure III-1.
Table III-6. Timing Results.
Absolute
Code Kernel Subprogram Address [CRAY-1 CDC 7600 CDC 7600 Time/
Name ID Name Octal Cycles Cycles CRAY-1 Time
EOTOTO El HYDRO 130020-130040 60 81 2.23
£2 FLYPART 1 12760-1 13000 92 117 2.80
E3 ALNLOG 1 34120-1 34,140 93 100 2.37
E4 FLYPART 110140-1 10160 75 89 2.61
E5 ACECASE 131660-131700 100 108 2.38
E6 ALNLOG 134120-134140 93 100 2.37
EH1 ACETOTN 127070-127100 64 83 2.85
EH2 ACETOTN 127020-127040 51 94 4.05
GUANO Gl EOSE 61200-61220 121 163 2.96
G2 NSOLV 123220-123240 130 157 2.66
G3 NSOLV 123220-123240 130 157 2.66
G4 UDDER 101020-101040 117 138 2.59
G5 CSOLV 115440-115460 117 106 2.03
Go CSOLV 115320-115340 44 46 2.30
GH1 \/EPQT 107760-1 10000 121 195 3.55
GH2 CSOLV 1 15460-1 15500 70 63 2.61
MCRAD M1 RADSWP 71640-71660 47 88 4. 12
M2 TEXP 44463-44512 49 58 2.60
M3 TLOG 44463-44512 46 54 2.56
M4 H2200 103620-103640 51 52 2.24
M5 H2200 105120-105160 72 76 2.38
M6 H2200 105200-105220 72 75 2.29
MH 1 TEXP 44463-44512 49 56 2.60
MH2 H2100 103600-103620 67 65 2.13
TORUS-M THI BAAL 31460-31500 64 77 2.65
THZ BAAL3 44660-44700 111 106 2.10
STIMMER SHI~* ECSRW 15520-15540 —_
SH2* ECSRW 15520-15540 — —

*These two kernels perform large core memory/small core memory
transfers on the CDC 7600. No such transfers are necessary
on the CRAY-1. hence, these kernels "exceed" the speed ratio
criterion and did not require implementation.

CDC 7600 TIME / CRAY-1 TIME

3-0

2-5

2-0

FIGURE III-1.
SORTED HISTOGRAM OF KERNEL

t ~ ~ WWWWWXW 1

- =4

KERNEL NAME

SPEED RATIOS

Impact of
Hardware
Features

28

All kernels drawn displayed a speed ratio that
was 1in excess of 2.0. Thus it was not necessary to
draw more than six kernels per test (with the
exception of the Class VI workload test in which
two kernels from each of the five codes were

chosen) . This result was unexpected because of the
following simple analysis. The ratio of CPU cycle
times for the two machines is 2.2. The ratio of
memory access times 1is 1.8. If one assumes the

cycle counts for instructions to be roughly
equivalent, then one would expect the speed ratio
to bracket this range. A careful analysis of the
coded kernels revealed that certain hardware
features of the CRAY-1 resulted in the kernels
being coded in fewer CRAY-1 instructions than

CDC 7b00 instructions, resulting in speed ratios
greater than 2.2 in many cases. A summary of these
features follows.

Out of the 2b kernels that were coded, 23 took
fewer cycles to execute on the CRAY-1 than on the
CDC 7600. In the opinion of the programmers, the
CRAY-1 was also easier to program. Both of these
facts can be attributed to hardware features that
exist on the CRAY-1 and not on the CDC 7600. Some
of these features are given here.

1. The B and T registers are available for
temporary storage. These registers
eliminate the use of memory for partial
results that are calculated in a fairly
elaborate Fortran expression.

2. Data can be fetched and stored out of all
eight S registers. Given the Fortran
expression I = J, it 1s necessary to

fetch J and store it to location I.

Since the fetch times are 10 and 6 cycles
for the CRAY-1 and the CDC 7600,
respectively, it would appear at first
glance that the CDC 7600 should take
fewer cycles than the CRAY-1. This 1is
not true because the CDC 7600 fetches
data into X registers 1-b and stores out

of X registers 6 and 7. So after J is
fetched into XI, for example, it must be
moved to Xb before being stored. Thus in

tnis case the operation takes the same
number of cycles on both machines.

3. Data can be fetched and stored directly
to all A registers. This allows index
calculations to be completely independent
of the S registers and other floating

Conclusions

29

point calculations.

4, Results from the floating add unit are
normalized before being returned to the S
register. The floating add unit takes 6
cycles on the CRAY-1 and only 4 cycles on
the CDC 7600. But if one adds the cost
of normalizing, which is 3 cycles, the
add and subtract times are better on the
CRAY-1 than on the CDC 7600.

Furthermore, Dbecause it takes two
instructions to complete the add on the
CDC 7600 there 1is always the chance of
adding extra cycles due to access path
delays.

5. All functional units are fully segmented.
On the CDC 7600 the multiply and divide
functional units are only partially
segmented. The cycle times for the
multiply units are 7 and 5 for the CRAY-1
and the CDC 7600, respectively. The full
segmentation for the CRAY-1 overcomes
this cycle count disadvantage at three
successive multiplies. That 1is, 1f three
successive multiplies are issued on both
machines, the last result will be
available on both machines at the same
cycle

6. The instruction buffer on the CRAY-1 is
much larger than that of the CDC 7600.
Forward branching on the CRAY-1 does not
necessarily clear the instruction buffer,
and in fact most of the forward branches
in the kernels were to instructions
contained in the instruction buffer.

The hypothesis that the CRAY-1 in scalar mode
is greater than two times faster than the CDC 7600
was tested individually for three codes (the
Class VI applications workload) and for a group of
five codes (the Class VI workload). The hypothesis
tested as true in all cases. Thus the CRAY-1 meets
the scalar performance criterion for each of the
three Class VI applications workload codes and for
the Class VI workload.

The reader is cautioned that a careful
interpretation of these results is necessary.
First, the manner in which the kernels were
implemented upon each machine was designed to be a
test of the hardware, not software, of the system.
The performance effects of compilers were not
considered. If one assumes that the ability of a
compiler to produce efficient code increases with

30

the man-years invested in the compiler, then one
must assume that any CRAY-1 compiler when
implemented because of its relative immaturity will
produce less efficient code than the very mature
optimizing compiler available on the CDC 7600.
Second, the tests were made with the CRAY-1 in
scalar mode. Since CRAY-1 vector operations are
faster than the equivalent scalar operations,
vectorization will normally result in higher speed
ratios. Third, input/output was not considered in
this test. Performance of input/output-bound coaes
will be determined by the relative performances of
the two machines' 1I/0 subsystems. However, it
should be noted that on the basis of statistics
generated by the STAT sampling routine, the

Class VI applications workload codes are heavily
CPU-bound on the CDC 7600. Finally, the sample
size drawn, while statistically wvalid for the
hypothesis test, 1s too small to provide us with
statistically valid estimates of the total code's
speed ratio. The CRAY-1 was tested against a
performance threshold for efficient machine
language computational kernels, and exceeded this
threshold

SECTION IV

VECTOR
PERFORMANCE

31

CRAY-1 vector algorithms are typically two to
five times faster than equivalent scalar
algorithms, depending upon vector length and the
algorithm's complexity. It is then obvious that
the performance of the CRAY-1 relative to the
CDC 7600 for a particular code will depend upon the
vector operations that can be exploited by that
code. Although it would be very desirable to
characterize precisely the type and proportion of
vector operations each code would employ on the
CRAY-1, this 1is presently an unmanageable task.
Converting codes to employ a significant amount of
vector operations inevitably requires restructuring
of the algorithms. This restructuring may be so
trivial that it can be done during compilation or,
more typically, may require the efforts of an
experienced programmer. Such restructuring was
beyond the resources, both time and human, of this
evaluation.

The approach of categorizing the
"vectorizability" and type of vector operations by
automatic examination of source code 1is
meaningless. Any such examination results in a
"vectorized" proportion that inevitably increases,
possibly by an order of magnitude, when the code is
restructured for a vector machine. See Ref. 1 for
a more detailed discussion of automatic
"vectorization" of programs.

Thus, at this time it 1is not possible to
obtain rigorously "representative" vector functions
in order to test the CRAY-1 against the vector
criteria. "Vectorized" codes exist at other
installations, but none duplicate the LASL
workload, and few have been written for the CRAY-1.
The approach adopted was to test the CRAY-1 against
vector algorithms submitted by the Applications
Support and Research Group of the Computer Science
and Services Division of LASL that, in their
judgement, represented typical vector operations
that user codes would perform on the machine. Five
operations were chosen to evaluate the machine's
vector performance versus vector length. The
average of the five speed ratios was chosen to
compare against the qualification criteria. Each
vector kernel was coded as efficiently as was
feasible in assembly language for each machine. In
particular, the CDC 7600 kernels were coded so that

32

all instructions were maintained in the instruction
stack of the machine during the operation loop,
with functional units overlapped to the fullest
extent--a scheme representing very efficient
utilization of the CDC 7b00.

The five functions were timed on both machines

and speed ratios calculated. Timings are presented
in Table IV-1. Fortran versions of the five
functions are presented in Figure B-4. The average

speed ratios of the CDC 7b00 execution times to the
CkAY-1 execution times for the five functions are
3.39, 4.50 and 5.12 for wvector lengths of 20, 100
and 500, respectively. Thus the CRAY-1 meets the
vector operations performance criteria as specified
in Section III.A.2 of the Evaluation Plan (Appendix
A) .1

1. Optimal Utilization of Supercomputers, Volume I - The
Control Data 7b00, April 1976, R&D Associates, P. 0. Box 9695,
Marina Del Rey, California.

33

Table IV-1. Vector Performance Summary.

A, Execution times of tne algorithms (milliseconds):
Vector Length: 20 100 500
Machine: CRAY-1 7DbOU CRAY-1 7Db0OO CRAY-1 7Db0O0O

VVSPVS .00190 .00732 .00537 .02712 .02266 .12012
VVVPVV .00235 . 0O0Odbl .007dd .03509 .03003 .10701
VVVPV .00213 .0072b .0oob0 .02d1b .02945 13200
DOTPRO .00312 . 00049 .00551 .02109 .01050 .09ddS
ADDVEC .001d0 .00715 .00523 .024d9 .02270 .11275

B. Ratios of CDC 7b00 execution times to CRAY-1 execution time
VVSPVS 3.d5 5.05 5.51
Naaa=tal 3. bo 4.45 by
vV VVPV 3.41 4.27 4.50
DOTPRO 2 .0d 3.97 5.99
ADDVEC 3.97 4.7b 4.9

C. Average Ratio: 3.3% 4.50 5.12

SECTION 1
RELIABILITY

Approach

34

It was considered crucial tnat any Class VI
computer considered for purchase be very reliable.
Extended periods of downtime would be intolerable
since the programmatic functions servea by the
computer could not be absorbed by other machines at
the Laboratory. Thus rigorous reliability
standards were formulated. In addition to "system
availability," the single measure that is commonly
used to define reliability, two additional
reliability criteria were specified. Threshold
reliability criteria of at least dO percent system
availability, at least four hours
Mean-Time-to-Failure (MTTF) and at most one hour
Mean-Time-to-Repair (MTTR) were established by LASL
and ERDA as defining an acceptable level of
reliability. The reader 1is referred to the
Evaluation Plan (Appendix A) for a precise
definition of these measures.

The reliability criteria would have to be met
for a contiguous twenty-workday period for the
machine to be considered for further procurement.
The twenty-day period was established in order to
smooth daily fluctuations expected for the
measures; the period was considered long enough to
prevent a machine meeting the criteria during a
"fluke" period of good behavior. In order not to
unfairly penalize newly constructed machines, tne
measures from the best twenty-workday period would
be applied against the criteria.

Commonly adopted logging procedures for
aetermining machine reliability were deemed
inappropriate due to the special evaluation
environment of the CRAY-1. This conclusion 1is the
result of the two observations that:

L, The burden of logging machine reliability
falls upon a large number of operators
and programmers, and 1s vulnerable to
human error; and

2. Tne complex environment and primitive
operating system of the CRAY-1 make it
difficult to isolate CRaY-l hardware
failures from a) operator errors, D)
ECLIPSE hardware/software failures, and
c) CRAY-1 benchmark operating system
software errors (unless a hardware error

The EXERCISER
Program

35

interrupt occurs and 1is handled correctly
by the system).

The evaluation environment of the CRAY-1
resulted in the CPU being idle the greatest
fraction of time. The mode of operation for
running on the machine typically consists of a
programmer performing nearly all tasks on the
ECLIPSE and running a program on the CRAY-1 for
only brief intervals. The CRAY-1 benchmark
operating system presently does not have
implemented the capability of running a
"background" Jjob to keep the machine busy.

The EXERCISER program was written in an
attempt to overcome these limitations. The
objective of the program is to approximate a
production environment on the CRAY-1 by utilizing
as many hardware features of the machine as
possible for substantial periods of time. The
EXERCISER program is self-verifying so that all
machine failures, detected at the hardware level or
not, will be noted. The program keeps a printed
log of tne time of each failure. Reliability
statistics may be gathered from the printed log,
thus minimizing the possibility of human error.

Hardware components specifically being tested
are the vector and scalar functional units of the
CPU, the memory, and input/output (1/0) components.
Unfortunately, I/O was not available on the machine
during the first two months of the evaluation.

EXERCISER was adapted from one of the first
programs written for the CRAY-1 at LASL. Coaed in
CAL with PASCAL drivers, it solves for the vector x
the matrix equation Ax=y by LU decomposition.

For each NXN matrix, N+1 systems of equations
are solved. The A and y are parameterized such
that every element of x in the N+1tl system is near
unity. Before N 1is incremented, every element of x
is tested against unity. If a "near" unity test
fails for any component of x, a message 1is
dispatched to the operator and the event is logged

by the program to a print file. The program then
restarts the cycle until it is terminated by the
operator. Most failures, such as parity errors,

cause termination of the program and a message 1is
dispatched to the operator by the operating system.

After June 15 substantial changes were made in
the program in order for it to more fully meet its
objective. First, N was fixed at 705, so as to
"exercise" almost all of available memory. The

Results and
Conclusions

36

EXERCISER code and data require approximately
501 000 words.

The second substantial change was the addition
of I/0 to a DD-19 disk. The control flow of the
EXERCISER program remains unchanged with the
following exception. At the completion of solving

the system, the LU matrix is written to disk
and then read from disk. The N+1lth system is then

solved and the test against unity is made. Any
disk errors will result in this test failing. As
before, upon detection of a failure, the program
logs the failure and transmits a message to the
operator.

EXERCISER was run from five to eight hours per
day, five days a week throughout the entire six-
month period. A sample of the daily log is shown
in Figure V-1.

Results, by twenty-workday interval,

calculated weekly, are displayed in Table V-1. The
MTTF measures are also displayed graphically in
Figure V-2. Failures are categorized in Table V-2.

One sees that the CRAY-1 meets the threshold
criteria for numerous periods.

An analysis of failures occuring during
EXERCISER runs revealed that "intermittent" memory
parity errors dominate. Hardware detection of a
memory parity error prompts an interrupt which
idles the machine and saves the program counter.
EXERCISER 1is so constructed that from the program
counter value and a memory dump, the exact memory
bit causing the failure can be determined.
According to Cray Research, Inc. (CRI), roughly 50
percent of the intermittent failures were diagnosed
to this 1level of detail, of which all were caused
by failure of a single Dbit. In all but 12 of the
memory parity error failures the memory module
incorporating that bit could not be made to fail
again, neither during EXERCISER nor during various

CRI memory diagnostic routines. In the 12 cases of
reproducible failure, the memory module was judged
defective and replaced. In the remaining cases,

tests of the modules by CRI could determine no
differences in operating characteristics between
"once failing" and "never failing" modules. Once
reinstalled in the machine, no module failed again.

CRI made various hardware changes in an
attempt to eliminate tne failure mode or cause it
to replicate at a more rapid rate. None of the
hardware changes appeared to affect the failure
rate. An obstacle to diagnosing this problem was

37

the relatively long average interval between
failures (4 hours), which implied very long running
times during a change to determine if the failure
rate had been changed.

Since the "once failing" module was seldom
replaced, the MTTR measure should be more
accurately labeled "mean-time-to-return," since
hardware repairs were infrequent. In order to
obtain a more accurate estimate of repair times,
the mean-time-to-repair for all EXERCISER failures
during which a repair was effected was calculated.
For these 20 failures the total down-time was b.37
hours, resulting in a MTTR of 0.41 hours. From
this measure we conclude that only a minor portion
of repair time was consumed, by the actual hardware
change, the major portion being consumed by
alerting the engineer and running diagnostic
routines

Since memory parity errors so clearly dominate
the statistics, an analysis of EXERCISER was made
in an effort to relate its memory access rate to

that of a production environment. Memory
utilization by EXERCISER is divided into two
phases. In the I/0O phase, 497 025 memory locations

are accessed twice during a 3.10-second period.
This results in a memory access rate of
approximately 0.0062 times the theoretical maximum
of 60 million accesses per second (60 MAPS). In
the computation phase of the program, a 705 by 705
matrix 1is initialized and decomposed and a system
of 705 linear equations 1is solved. This phase
lasts 14.11 seconds. The use of wvector
instructions in the inner computational loop
results 1in 64 memory accesses every 76 clock
cycles. The inner loop consumes roughly 90% of the
time for this phase. Thus memory 1is driven at
approximately 0.9 x 64/7d = .74 of its maximum of
60 MAPS. Ignoring the memory accesses during the
I/0 phase, EXERCISER drives the CRAY-1 memory at
.74 of its capacity for 14.11/(14.11 + 3.10) = .62
of the program's execution, for an overall memory
access rate that is 0.61 of its maximum.

Predicting a typical memory access rate for a
production environment with the above accuracy is
not possible. However, it 1is plausible that the
EXERCISER bandwidth is at least several times
higher than that expected for a production
workload. Thus we would expect the MTTF for a
production workload on the CRAY-1 to be
significantly higher than that observed under
EXERCISER.

38

Figure V-1. Daily EXERCISER Log.

EXERCISER LOG

EXERCISER VERSION: DATE:
SYSTEM VERSION: EXERCISER BEGIN TIME:
COMMENTS: EXERCISER END TIME:

OPERATOR'S INITIALS:
CE'S INITIALS:

SUMMARY

Time between EXERCISER start and failure/between failures (minutes).

1. 2. 3. 4. 5.

6. 7. 8. 9. 10.

Time CE has machine for repair (minutes) Time from last failure to
n 0 " : shut off

s. 6. 7. 8.) (R

No time intervals

39

Figure V-2. MTTF urapn.

1 JUNE 1 JULY 1 AUG 1 SEPT

DAYS INTO EVALUATION

Twe nty-
Workday
Period

4/5 -5/7

4/14-5/14
4/23-5/21
4/30-5/2b

5/b -6/4

5/14-6/11
5/21-6/18
5/28-6/25

0/6 -7/2
6/15-7/9
6/22-7/16
6/29-7/23

7/6 =7/30
7/13-8/6
7/19-8/13
7/27-6/20

6/4 -6/27
6/10-9/3
8/12-9/10
8/17-9/17
8/23-9/24

Operational
Use time
(Mrs.)

115.
113.
112.
115.

110.
106.
104.
109.

100.
97.
67.
88.

99.
97.
108.
102.

104.
104.
105.
106.
114.

15
50
05
37

13
25
98
02

78

12
42
57

45
55
45
77

60
73
85
45
25

40

Table V-1,

Remedial

Maintenance
Time

(Hrs.)

17.72
16.35
11.83

9.25

7.08
5.65
6.33
7.07

10.40
9.55

16.67
l6. 12

15.67
17.66

13.25
12.47

10.85

10.02
10.43

No. of
failures

40
38
29
23

19
15
17
19

24
25
31
35

33
34

35
33

24
28
27
26

31

Reliability Statistics Summarized by Week.

MTTF

(Hrs.)

NN W (G2 NENINE)] g Wb N

w W N w

w W W W

.88
.99
.86
.02

.80
.08
.18
.74

.20
.68
.62
.53

.01
.87
. 10
.11

.36
.74
.92
.87
.69

MTTR
(Hrs.)

.44
.43
.41
.40

.37
.38
.37
.37

.43
.36
.54
.52

.47
.52
.36
.36

.37
.39
.36
.36
.34

SA

.87
.67
.90

.93

.94
.95
.94
.94

.91
.91
. 64
.83

. 66
.65
.69
.69

.92

.91
.92
.92
.92

41

Table V-2.

Failures Classified by Type.

Memory parity errors* 152
Disk 1
Vector modules 12

Instruction buffer module 1

Floating add module 4

Total 170
Of the 152 memory parity errors, 12 were found to
be reproducible.

NOTE: Of the 18 non-memory related failures, ti repairs were
effected at the time of failure.

42

If the cause of the intermittent memory
failures cannot be diagnosed and eliminated, the
advantages of a machine with memory error
correction are obvious. If one assumes all
intermittent memory failures (139) could have been
avoided by a single bit correction technique, then
the MTTF for such a machine over the entire
evaluation period would have increased by a factor
of 170/(170-139) = 5.5.

This estimate assumes that a reproducible
memory parity error, of which 12 were observed,

would result in the machine failing. CRI reported
that all 12 memory modules replaced were single bit
failures. If one assumes that error correction

would allow deferring module replacement into the
scheduled maintenance period, then it is possible
that single bit correction would have resulted in a
MTTF increase by a factor of 170/(170-152) = 9.4
over the entire evaluation period.

SECTION VI

INPUT/OUTPUT

PERFORMANCE

Disk
Performance
Tests

43

Four tests were designed to test the
capability of the CRAY-1 DD-19 disk system.

Routine DISKI measures the instantaneous data
rate for the DD-19 disk system. One track (8192
64-bit words) 1s written to disk and then read back
1000 times, with the writes and reads timed. No
arm movement or head switching is required, since
the same track 1is repeatedly read and written.

Routine DISK2 determines the maximum data rate
the DD-19 will sustain. A large file is written
sequentially on the disk and read back several
times, with the read and write operations timed.
This test 1is designed to determine the maximum data
transfer rate that can be expected for large files.

Disk arm positioning times are measured by
routine DISKS. A file is written to the disk
across many cylinder boundaries, then read back in

one sector (512-word) Dblocks. Read requests are
arranged to force arm movement across a fixed
number of cylinders. The time to position across a
minimum of 21 cylinders, 1i=0,...,0, 1is recorded.

DISK4 measures the data error rate for the
disk. A large file of approximately two million
sequential integers (256 tracks) 1s written to the
disk, then read back and verified.

Table VI-1 summarizes the test results and
Table VI-2 summarizes expected disk
characteristics. All test routines were written in
CRAY-1 assembly language and run under the existing
benchmark operating system.

The benchmark operating system imposed
constraints that are discussed later. All timings
were made using the CRAY-1 real-time CPU clock.
Tests were run on both DD-19 disk units available
and no significant differences between units were
detected

DISKI:

16 sectors/track

(1 track buffer) 8

16 sectors/track
(1 cylinder
buffer)

15 sectors/track

DISK2:
b sectors/track

15 sectors/track

DISKR:

DISK.4

Table VI-1.

Total
No. Words

192 000

8 192

000

7 6d0 000

8 192 000

7 680 000

44

Disk Test Results.

Time
Write

(sec)
Read

33.04 33.03

33.04 14.37

16.52 16.52

33.06 18.20

18.20 18.20

Positioning Time

Cylinders Moved

No. Words

4.23 x 109

369
256
128
64
32
16
8

4
2
1

Errors

0

Time

Error Rate

Rate (1000 words/sec)
Write Read
248 248
248 446
465 465
248 450
422 422
(Sec)
.0dd
.067
.050
.050
.033
.033
.033
.017
.017
.017

45

Table VI-2.
Summary of Expected Disk Characteristics.
(from Interim Disk Storage Subsystem publication 2240005 and

Mass Storage Subsystem Reference Manual, publication 2240630,
Cray Research, Inc.)

Available cylinders: 411 (404 plus 7 spare)
Number of head addresses: 10 (10 groups of

4 physical heads each)
Sectors/head address/cylinder: 16
CPU (64-bit) words/sector: 512
CPU (64-bit) words/disk: 33 669 120
Rotation: 3 600 RPM {2£2%)

Seek timing.

410 cylinder move: 60 ms maximum
1 cylinder move: 15 ms maximum
average: 50 ms
Latency.

maximum: 16.7 ms

46

DISKI wuses a 8192-word (one-track) buffer. A
one track block is transferred to the disk and then
back 1000 times. Results are given in Table VI-1.

This test revealed tnat a disk revolution was
being missed on every read or write attempt, since
the overall transfer rate was half that expected.
The buffer size was increased by a factor of 10 and
the test run again. Results revealed that reads
were proceeding at the expected rate but writes
proceeded at the old rate. Analysis revealed that
this anomaly was caused by a combination of
hardware and software factors. Tne interim disk
controller allows 1lb sectors per track. In the
case of disk reads, after the sixteenth sector is
read the controller's one-sector buffer must be
transmitted into central memory (CM) and another
read request for the track of data initiated. The
time required to empty the buffer and for the CPU
to manage the new read request prevents issuing a
controller read before the intersector gap has

passed, thus missing a disk revolution. The larger
buffer eliminates 9 of the 10 occurrences of the
missed revolution as only | request is made by
DISKTI.

An analysis of the anomaly affecting writes in
the 1b sectors/track case revealed the following.
After the sixteenth sector is written, the CPU must
initiate a head switch (not to be confused with a
seek) . In addition, the data for tne first sector
of the next track must be transferred from the CPU
to the disk controller. The transfer of data to
the disk controller cannot occur until the CPU has
completed the head switching operation. By the
time both have been completed, the disk has
revolved too far for the transfer of data from the
controller to the first sector of the new track to

take place on the current revolution. Thus data
can be written only every other revolution of the
disk. This situation is caused by both command

information and data being transferred on the same
channel for writes.

In the case of reads, data transfer and
commands are on different channels and can proceed
simultaneously. When only 15 sectors are written
there is sufficient time during the intersector gap
for the head switch and data transfer to take
place

The maximum expected transfer rate of the disk
with Ip sector tracks is 491 520 words/sec (+2ik).
For the large buffer case the results are within
this two percent range,

47

DISK2 is implemented by reading or writing a
1000-traek file to disk sequentially across track

and cylinder boundaries. A ten-track (one
cylinder) central memory buffer is used. The
software/hardware anomaly that plagued DISKI was
observed. For this reason the test was also run
transferring 15 sectors per track. Results are
summarized in Table VI-1. Note that the 15
sector/track results are identical and close to
optimum.

The missed revolution problem discovered by
DISKI and DISK2 should not exist for systems
utilizing the product-line controller. Electronic
head switching for a contiguous Dblock of data is
handled automatically by the controller.

Due to system limitations, DISKS could only
measure positioning timings to the resolution of
one disk revolution (17 ms). This 1is not Jjudged a
serious problem because it corresponds to actual
usage 1in most cases. However, the timings recorded
are conservative because disk flaws, while present,
are not included in the distances recorded. Since
the system records as flawed a full cylinder at a
time, this represents an extra cylinder to traverse
per flaw. Thus, the timing for 3b9 cylinders
actually represents about 390. Also, the full 411-
cylinder seek could not be tested due to a software
limitation in the operating system. Timing results
are presented in Table VI-1. The timings are close
to the expected capabilities of the disk unit.

DISK4 was implemented so that it could be run
in a piecemeal fashion whenever time was available
on the machine. The file was written and read
2,017 times during the course of a month. No
errors occurred.

On the basis of these results we conclude that
the performance of the disk system should be as
expected under the new controller. Several
deficiencies in the interim controller were
discovered which should be corrected by the
product-line controller. The practice of recording
the disk space as flawed by cylinder is wasteful of
space; production software should allow "flawing"
by track or sector. Reliability of the disk system
appears to be excellent.

Computation and
I/0 Interference
The bandwidths of the computation and I/0
sections of the CRAY-1 may be degraded from nominal
values through conflict for memory access. A
detailed analysis of the cases of memory conflict

48

is possible but laborious, and results would be
difficult to wvalidate. Tests on tne current
configuration (which has only a single disk
controller) suffer because tne single controller
cannot support the different levels of traffic
intensity necessary to measure bandwidth
degradation versus traffic rate.

Cray Research, 1Inc., (CRI) estimates that the
memory access bandwidth is capable of sustaining up
to four disk and three interface channel transfers
without degrading tne compute rate of a mix of
scalar and vector instructions. A cursory analysis
sustains this claim.

The disk controller can deliver four words per
microsecond (us). However, four disks, the maximum
number a single controller will support, can
deliver a maximum of only 2.4 words/us. Thus, four
simultaneous controller transfers can deliver a
maximum of 9.6 words/ys. This is approximately 1/6
of the maximum memory bandwidth. Actual operating
conditions will seldom generate such high degrees
of I/O overlap for extensive time periods. Note
tnat bank conflicts are ignored in the above
analysis. This 1is because the nature of I/O
transfers themselves will minimize Dbank conflicts.
Thus, it 1is plausible that "normal" I/0 activity
will cause insignificant degradation of CPU
performance.

Worst case degradation will occur for a
program requiring continuous memory accesses during
long vector transfers 1f I/0 transfers are being
attempted at the maximum rate. This degradation
will result from the delays imposed upon the issue
of vector instructions accessing central memory due
to memory cycle stealing by the I/0 transfers. CKI
estimates that such degradation would be less than
10 percent over the same program running without
I/0 interference.

Tne analysis of degradation of I/0 system
performance through lost data, missed disk
revolution and repeated transfers is not quite so
straightforward. Tne disk system operates tnrough
a double buffering of 512 word sectors. It is only
necessary for the I/0 system to obtain enough
memory accesses (512) to fill a sector buffer in
the approximately 847 us taken for the disk
controller to fill or empty the alternate sector
buffer. The I/0 system must, therefore, obtain
memory accesses at a minimum average rate of .604
words per ys per controller or approximately 0.76
percent of the maximum memory bandwidth. This
suggests a very low performance loss due to word

49

transfers in ordinary circumstances. A worst case
would be continuing execution of memory-to-vector
register transfers. Each such transfer could in

principle block I/O memory access for approximately
.85 Ps. |

A test was devised to measure the degradation
to computation and to I/0 performance for an I/O
process and a computational process competing for

memory. The computational kernel is characterized
by sustained 64 element vector transfers to and
from memory. The I/0 kernel is characterized by

block transfers between memory and disk proceeding
at the maximum rate the existing operating system

will support. The routine embodying both kernels

is labeled IOTEST.

In IOTEST, an inner loop 1loads two vectors,
performs an integer add, tnen stores the result.
The operation is simply C=A+b. where A, B, and C
are vectors of logical length 7.680. Since the
vector registers of the machine are 64 elements
long, the loop performs the operation in multiples
of 64 words. An outer loop performs the vector add
262 144 times. These values were chosen to be
large in order to result in sustained memory
accesses via vector instructions.

The I/0 kernel of IOTEST continuously
overwrites 15 sector blocks to a single disk track.
This results in the maximum transfer rate the
current configuration will sustain by avoiding
missed disk revolutions. Because of interim disk
controller limitations, two I/O interrupts occur
per sector transferred, requiring processing by the

CPU monitor. An I/0 interrupt is not honored while
a vector instruction is being executed. There 1is
no limit to the number of blocks written. The

number of written blocks 1is determined upon
completion of the vector additions.

IOTEST was also implemented with a wvector
kernel that performs no memory references in either
loop. This was done in an attempt to factor out
the effect of the overhead of two I/O interrupts
per sector transferred from the missed chaining due
to memory cycle stealing by I/O transfers. This
version, labeled IOTEST', is identical to IOTEST
with the exception that no vectors are fetched from
or stored to memory. Only register-to-register
operations are performed. The I/0 kernels in both
IOTEST and IOTEST' are identical.

1. CRAY-1 Computer System Reference Manual, publication
number 2240004, Cray Research, 1Inc., p. 5-1.

IOTEST

IOTEST'

IOTEST

IOTEST'

NOTE :

50

Table VI-3.

Results of IOTEST and IOTEST'.

Vector kernel

Time (sec.) Time (sec.) run time

without I/O with I/O deeradation
64 .30 90.36 7.2%
27.50 ¢8 3.7%

Blocks written I/0 Transfer rate

with I/O Interrupts (words/sec
5,456 153, 660 463,621
1,727 51,610 462,621

IOTEST, without I/0, makes roughly 6 x 10" memory

accesses 1in CM.3 seconds, which is 69 percent of the
memory bandwidth.

Table VI-3 shows the results of IOTEST and
IOTEST'

The I/O transfer rate for both tests 1is nearly
identical to the maximum rate determined earlier.
Differences are well within the two percent range
in disk spindle speed. We conclude that an I/0
transfer rate of .453 megaworas/sec is not impacted
by a memory-bound computation. Since ,4b3
megaworas/sec 1is only 0.55 percent of the memory
bandwidth, no degradation to the I/0 process woula
be expected. An analysis of degradation to the
computational process 1is not so straightforward.

Complicating matters are the two degradation
effects contributing to the decrease in the wvector
kernel performance: first, overhead of system I/0
routines and second, the I/O access to memory that
inhibits wvector chaining. There can be no
degradation to vector chaining caused by the
execution of the I/0O routines. IOTEST', which
performs essentially no memory references,
experiences a degradation of 3.7 percent. This 1is
assigned to the overhead of the I/0 routines, since
no memory conflicts are likely. IOTEST experiences

51

a degradation of 7.2 percent, which includes the
effect of memory conflict. A casual analysis
allows assigning an upper bound of 3.5 percent
degradation to the vector kernel due to memory
conflicts. Four simultaneous disk transfers would
drive this upper bound to 14 percent, which is near
Cray Research, 1Inc.'s claim of a 10 percent
degradation

The product-line performance of the CRAY-1 1I/0
system should be significantly better than that
reported in these tests because of improved
performance and features in the product-line
controller.” Improvements impacting these tests

are summarized.

The new controller will support Id-sector
tracks on the disks as opposed to the current
l6-sector tracks, thus leading to a higher I/0

transfer rate. The new controller will also
eliminate the timing/control problem responsible
for the "half-speed” writes. Finally, the

product-line controller will relieve the CPU
monitor from the responsibility of handling I/O
transfers sector by sector. Monitor calls will be
reduced to two per block (a block may be an
arbitrary number of sectors) from the present
system's two per sector. Thus the software
overhead recorded in these tests should be
significantly reduced.

These test results support our cursory
analysis of degradation due to computation and I/O
interference for memory access. We conclude that
degradation should not be a serious concern,
excepting the unlikely case of long periods of bank
conflicts.

2. CRAY-! Computer System Mass Storage Subsystem
Reference Manual. Publication 2240630, Cray Research,
Inc., 197b.

52

SECTION VII

INFORMAL

ESTIMATES In accordance with Section V of the Evaluation
Plan (Appendix A), an informal estimate of the
CRAY-1 scalar speed relative to the CDC 7600 is
provided for the Class VI workload. Referring to
Table Ill-b, the sum of the CRAY-1 CPU cycles for
eight modules comprising the sample is 597, while
for the CDC 7600 the sum of the CPU cycles 1is 761.
This provides a preliminary speed ratio of 2.60.
The two kernels that performed LCM (large core
memory) to SCM (small core memory) transfers were
ignored.

Adding a zero cycle count to the CRAY-1 total
for these two kernels and the appropriate cycle
count to the CDC 7600 total would result in a much
larger ratio. However, considering the very small
sample size, the wvalue of this estimate did not
justify implementing the kernels on the CDC 7600.

In accordance with Section V of the Evaluation
Plan an informal estimate of the CRAY-1 scalar
speed ratio relative to the CDC 7600 is shown for

each of the Class VI applications workload codes in
Table VII-1.

Table VII-1.
Informal estimates of Speed Ratios for the Three
Applications Workload Codes.

Sum of Sum of CDC 7600 Time/
CODE CRAY-1 Cycles CDC 7600 Cycles CRAY-1 Time
EOTOTO 533 595 2.46
GUANO 659 769 2.57
MCRAD 337 405 2.64

Because of the very small sample size for each
code, the reader is advised to make assumptions
based on these values with caution.

An informal estimate of the percentage of coae
"vectorizable" from inspection of the sample was to
be provided in this section as per Section V of the
Evaluation Plan. However, the small sample size
(six) for each code limits the resolution of such
an estimate to 1lb percent. The reader may inspect

53

Table VII-2 and draw his own conclusions. The
vectorization criteria referenced 1in the table are
those established in the Evaluation Plan. The true

vectorization potential of each code can be

achieved only by the restructuring of its
algorithms.

Table VII-2. Module "Vectorizability."

KERNEL VECTORIZABLE?
ID (IF YES IDENTIFY CRITERION)
El NO
E2 NO
E3 NO
E4 NO
E5 NO
Eb NO
EHI NO
EH2 NO
Gl NO
G2 YES 1, 2 AND
03 YES 1, 2 AND
G4 YES 1, 2 AND
G5 NO
G6 YES 1, 2 AND
GH YES 1
GH2 YES 1, 2 AND
M1 NO
M2 NO
M3 NO
M4 NO
M5 NO
Mb NO
MH | NO
MH2 NO
TH! NO
TH2 NO
SHI - -

SH2 - -

SECTION VIIT

CONCLUSIONS

Scalar
Performance

Vector
Performance

Reliability

54

The purpose of this evaluation was to
determine 1if the CRAY-1 computer meets the minimum
performance standards set forth by LASL and ERDA to
qualify the machine for further consideration for
procurement. These standards are divided into
specific qualification criteria in three main
areas: scalar performance, vector performance and
reliability.

The hypothesis that the CRAY-1 in scalar mode
is at least two times faster tnan the CDC 7600 was
tested on samples drawn from each of the three
codes comprising the Class VI applications
workload, and from a sample drawn equally from the
five codes comprising the Class VI workload. The
hypothesis test was structured so that the
probability of a wrong result is less than 0.1.
The hypothesis tested as true in all cases, with
the minimum number of kernels necessary to test the
hypothesis. Thus the CRAY-1 meets both the
Class VI workload scalar performance criterion and
the Class VI applications workload scalar
performance criterion.

Kernel timings also provided estimates of the
CDC 7600/CRAY-1 execution time ratios (speed
ratios) for scalar computation. The speed ratios
for all four workload samples ranged from about 2.5
to greater than 2.6. In addition, the speed ratio
for the preliminary scalar test code was 2.5. From
these results we conclude that the CRAY-1 in scalar
mode has the potential for executing CPU-bound
codes 2.5 times faster than the CDC 7600.

Five operations were chosen to evaluate the
CRAY-1's vector performance versus vector length.
FEach operation was coded as efficiently as was
feasible for both the CDC 7600 and the CRAY-1 .
Each operation yielded a CDC 7600/CRAY-I speed
ratio for three vector lengths. The average of the
five speed ratios was compared against the
qualification criterion for each vector length.
The average speed ratios were 3.39, 4.50 and 5.12
for wvector lengths of 20, 100 and 500,
respectively. Thus, speed ratio criteria of 3, 4
and 5 for vector lengths of 20, 100 and 500,
respectively, were met.

Reliability of the CRAY-1 was evaluated by

Input/
Output
Studies

55

running a reliability test code on the machine for
long periods of time. The EXERCISER program was
designed to access as many different hardware units
of the machine as possible, at a rapid rate, for
extended periods. The test program is
characterized by access rates significantly higher
than those of an initial production workload, and
above those o0of longer term workloads.
Mean-time-to-failure ranged from 2.53 hrs. to 7.0b
hrs. for the reported periods. The criterion of at
least four hours was exceeded for 7 of the 21
overlapping periods. Mean-time-to-repair ranged
from 0.3" hrs. to 0.52 hrs., exceeding the
criterion of no more than | hour for all reported
periods. Likewise, system availability ranged from
0.85 to 0.95, exceeding the criterion of at least
0.80 for all reported periods. Reliability was
good for a serial number one machine of this size
and speed.

An analysis of machine failures revealed that
memory parity errors dominated the statistics. If
one assumes that single-bit memory error correction
would have eliminated all memory failures, then a
CRAY-1 with this feature would have resulted in a
mean-time-to-failure measure approximately nine
times greater than that observed over the entire
six-month evaluation period, with a less dramatic
increase in system availability. The indications
are that the CRAY-1 with error correcting memory
would be an exceptionally reliable machine.

Although no qualification criteria were
established in the area of input/output (I/0)
operations, a study of the CRAY-1 I/O subsystem was
undertaken to determine if any pathologies existed.
Performance tests uncovered the fact that disk
revolutions were Dbeing missed during disk writes,
due primarily to limitations in the interim disk
controller. These limitations should not exist for
the product-line controller. With this exception,
expected transfer rates for the disk were observed.
Head positioning times were close to expected
values. An error detection test wrote and read
over four billion words to disk with no errors.

The degradation to wvector computation due to
I/0 interference by memory cycle stealing and I/O
interrupts was measured to determine if this might
pose a serious problem to CRAY-1 vector
performance. Execution time degradations to vector
computation in a worst case test with the single
disk yielded degradations of 3.5 percent and 3.7
percent, which were assigned to memory cycle

Conclusion

56

stealing and I/0 interrupts, respectively. These
low values, and a memory bandwidth analysis of the
system, indicate that I/O interference to vector
computation should not be a matter of serious
concern,

In summary, disk performance for a production
system should be close to that expected. Early
detection of the write problem has prompted Cray
Research, 1Inc.,to attempt a hardware modification
to the interim disk controller in order to bring
write transfer rates up to expected values.

The conclusion of this evaluation is that the
CRAY-1 meets every performance criterion established
by LASL and ERDA to qualify the machine for furtner
consideration for procurement.

57

APPENDIX A
The computer configuration being evaluated includes the
following units.

* The CRAY-1 central processing unit, with 524 288 words (64
bits plus one parity bit) of memory arranged in 16 banks;

* One disk control unit (DCU);
* Two 819 disk units;
. Twelve independent channels (asynchronous, full duplex);

*+ One Data General Eclipse station, with the following
input-output units:

* One TEC 455 display,

. One TEC 1440 display,

* One Gould 5000 printer,

. One Documation M1000 card reader,
* One Century Data disk, and

. One Data General nine-track tape.

58

Summary of CRAY-1 Characteristics

THE CRAY-1 COMPUTER

The Cray Research, Inc. CRAY-1 Computer System is a
large-scale, general-purpose digital computer featuring vector
as well as scalar processing, a 12.5 nanosecond clock period,
and a 50 nanosecond memory cycle time. The CRAY-1 is
capable of executing over 80 million floating point operations
per second. Even higher rates are possible with programs that
take advantage of the vector features of the computer.

The CRAY-1 is particularly adapted to the needs of the
scientific community and is especially useful in solving
problems requiring the analysis and prediction of the behavior
of physical phenomena through computer simulation. The
fields of weather forecasting, aircraft design, nuclear research,
geophysical research, and seismic analysis involve this process.
For example, the movements of global air masses for weather
forecasting, air flows over wing and airframe surfaces for
aircraft design, and the movements of particles for nuclear
research, all lend themselves to such simulations. In each
scientific field, the equations are known but the solutions
require extensive computations involving large quantities of
data. The quality ofa solution depends heavily on the number
of data points that can be considered and the number of
computations that can be performed. The CRAY-1 provides
substantial increases with respect to both the number of data
points and computations so that researchers can apply the
CRAY-1 to problems not feasibly solvable in the past.

CONFIGURATION

The basic configuration of the CRAY-1 consists of the central
processor unit (CPU), power and cooling equipment, one or
more minicomputer consoles, and a mass storage (disk)
subsystem. The CPU holds the computation, memory, and I/O
sections of the computer. A minicomputer serves either as a
maintenance control unit or a job entry station.

INPUT/OUTPUT

Input/output is via twenty-four I/O channels, twelve of which
are input and twelve output. Any number of channels maybe
active at a given time. The channel transfer rate is based on the
channel width (currently 8 or 16 bits). For a 16 bit channel,
maximum rates of 160 million bits per second are attainable.
Higher rates are possible with wider channels. In practice, this
theoretical transfer rate is limited by the speed of peripheral
devices and by memory reference activity of the CPU.

COMPUTATION SECTION

* Registers
* Functional units

¢ Instruction buffers

MEMORY SECTION

0.25Mor0.5Mor 1 M

64-bit words

I/0 SECTION

12 full duplex I/O channels

FRONT-END COMPUTERS .
MASS STORAGE

I/0 STATIONS AND
SUBSYSTEM

PERIPHERAL EQUIPMENT

BASIC COMPUTER SYSTEM

MEMORY

The CRAY-1 memory is constructed of 1024-bit LSI chips. Up
to 1,048,576 (generally referred to as one million) 64-bit
words are arranged in 16 banks. The bank cycle time, that is,
the time required to remove or insert an element of data in
memory, is 50 nanoseconds. This short cycle time provides an
extremely efficient rdndom-access memory. One parity bit per
word is maintained in 16 modules of the central processor.
There is no inherent memory degradation for machines with
less than one million words of memory.

FACTS AND FIGURES

CPU
Instruction size
Clock period

I nstruction stack/buffers

Functional units

Programmable registers

Max. vector result rate

16 or 32 bits
12.5 nsec

64 words (4096 bits)

twelve:

3 integer add
integer multiply
shift

logical

floating add
floating multiply
reciprocal approx.
population count

(SN S S

8x64 64-bit

73 64-bit

72 24-bit
1 7-bit

12.5 nsec / unit

FLOATING POINT COMPUTATION RATES (results per second)

Addition
Multiplication
Division

MEMORY
Technology
Word length
Address space
Data path width (bits)
Cycle time

Size

Organization / interleave

Maximum band width

Error checking

PHYSICAL CHARACTERISTICS / ELECTRONIC TECHNOLOGY

Size of CPU cabinet

Weight of mainframe

Cooling

Plug-in modules

Module types

PC boards

Circuitry (equivalent no.
of transistors)

Logic

High-density logic

80 x 106 / sec
80 x 106 / sec
25 x 106 / sec

bipolar semiconductor
64 bits

4M words

64 (1 word)

50 nsec.

262,144 words
or 524,288 words
or 1,048,576 words

16 banks
80 x 106 words / sec

(5.1 x 109 bits / sec)

1 parity bit / word

9 ft diameter base
4.5 ft diameter center
6 ft height

5 tons

Freon

1506

109

5 layer

2.5M

ECL, 1 nsec.

SSI

59

COMPUTATION SECTION

The computation section as illustrated on page 4 is composed
of instruction buffers, registers, and functional units which
operate together to execute sequences of instructions.

Data structure

Internal character representation in the CRAY-1 is in ASCII
with each 64-bit word able to accommodate eight characters.

Numeric representation is either in two’s complement form
(24-bit or 64-bit) or in 64-bit floating point form using a
signed magnitude binary coefficient and a biased exponent.
Exponent overflow and underflow is caused if the exponent is
greater than 57777g or less than 20000g. For scalar opera-
tions, either of these conditions causes an interrupt except
where the interrupt has been inhibited. For vector operations,
these conditions do not cause an interrupt.

0 23
rr :
SIGN
2's COMPLEMENT INTEGER (24 BITS)

SIGN
2's COMPLEMENT INTEGER (64 BITS)
BINART POINT
01 15 16 63
LL 1 O

SIGN EXPONENT COEFFICIENT

SIGNED MAGNITUDE FLOATING POINT (64 BITS)'

DATA FORMATS

Instruction set

The CRAY-1 executes 128 operation codes as either. 16-bit
(one parcel) or 32-bit (two-parcel) instructions. Operation
codes provide for both scalar and vector processing.

In general, an instruction that references registers occupies one
parcel; an instruction that references memory occupies two
parcels. All of the arithmetic arid logical instructions reference
registers.

Floating point instructions provide for addition, subtraction,
multiplication, and reciprocal approximation. The reciprocal
approximation instruction allows for the computation of a
floating point divide operation using a multiple instruction
sequence.

60

Memory

COMPUTATION SECTION

g h i jk
4 3 3 6 16 BITS
SHIFT, MASK
\-——
OPERATION
CODE
OPERA ND AND
RESULT REG.
SHIFT, MASK
COUNT
16 BITS
ARITHMETIC, LOGICAL
OPERATION
CODE
RESULT
REG.
OPERAND
REG.
OPERAND
REG.
g h i 1 k m
1 1
4 3 3 22
32 BITS
OPERA- A-«——— B-MEMORY
TION S-«——— PMEMORY
CODE
ADDRESS
INDEX REG.
RESULT WORD ADDRESS
REG.
9 h i i k m
1 1
4 3 3 22
v it /
I 32 BITS
OPERATION CONSTANT----- A
CODE CONSTANT----- >&
RESULT CONSTANT
REG.
16 BITS
CONSTANT
9 h k
————— e e
4 3 25
32 BITS
OPERATION BRANCH
CODE

PARCEL ADDRESS

INSTRUCTION FORMATS

61

Integer or fixed point operations arc provided for as follows:
integer addition, integer subtraction, and integer multiplica-
tion. An integer multiply operation produces a 24-bit result;
additions and subtractions produce cither 24-bit or 64-bit
results. No integer divide instruction is provided. The opera-
tion can be accomplished through a software algorithm using
floating point hardware.

The instruction set includes Boolean operations for OR, AND,
and exclusive OR and for a mask-controlled merge operation.
Shift operations allow the manipulation of 64- or 128-bit
operands to produce a 64-bit result. Similar 64-bit arithmetic
capability is provided for both scalar and vector processing.
Full indexing capability allows the programmer to index
throughout memory in either scalar or vector modes of
processing. This allows matrix operations in vector mode to be
performed on rows, on columns, or on the diagonal.

Addressing

Instructions that reference data do so on a word basis.
Instructions that alter the sequence of instructions being
executed, that is, the branch instructions, reference parcels of
words. In this case, the lower two bits of an address identify
the location of an instruction parcel in a word.

Instruction buffers

All instructions are executed from four instruction buffers,
each consisting of 64 16-bit registers. Associated with each
instruction buffer is a base address register that is used to
determine if the current instruction resides in a buffer. Since
the four instruction buffers are large, substantial program
segments can reside in them. Forward and backward branching
within the buffers is possible and the program segments may
be noncontiguous. When the current instruction does not
reside in a buffer, one of the instruction buffers is filled from
memory. Four memory words are transferred per clock period.
The buffer that is filled is the one least recently filled, that is,
the buffers are filled in rotation. To allow the current
instruction to issue as soon as possible, the memory word
containing the current instruction is among the first four
transferred. A parcel counter register (P) points to the next
parcel to exit from the buffers. Prior to issue, instruction
parcels may be held in the next instruction parcel (NIP), lower
instruction parcel (LIP) and current instruction parcel (CIP)
registers.

Operating registers

The CRAY-1 has five sets of registers, three primary and two
intermediate. Primary registers can be accessed directly by
functional units. Intermediate registers are not accessible by
functional units but act as buffers between primary registers
and memory.

The figure on page 4 represents the CRAY-1 registers and
functional units. The 64 address and 64 scalar intermediate
registers can be filled by block transfers from memory. Their
purpose is to reduce memory references made by the scalar
and address registers.

The eight address registers are each 24 bits and can be used to
count loops, provide shift counts, and act as index registers in
addition to their main use for memory references.

The eight 64-bit scalar registers in addition to contributing
operands and receiving results for scalar operations can provide
one operand for vector operations.

Each of the eight vector (V) registers is actually a set of 64
64-bil registers, called elements. The number of vector
operations to be performed (that is. the vector length)
determines how many of the elements of a register are used to
supply operands in a vector set or receive results of the vector
operation. The hardware accommodates vectors with lengths
up to 64: longer vectors are handled by the software dividing
the vector into 64-element segments and a remainder.

Associated with the vector registers are a 7-bit vector length
register and a 64-bit vector mask register. The vector length
register, as its name implies, determines the number of
operations performed by a vector instruction. Each bit of the
vector mask register corresponds to an element of'a V register.
The mask is used with vector merge and test instructions to
allow operations to be performed on individual vector ele-
ments.

Supporting registers

In addition to the operating registers, the CPU contains a
variety of auxiliary and control registers. For example, there is
a channel address (CA) register and a channel limit register
(CL) for each I/O channel.

Functional units

Instructions other than simple transmits or control operations
are performed by hardware organizations known as functional
units. Each of the twelve units in the CRAY-1 executes an
algorithm or a portion of the instruction set. Units dre
independent. A number of functional units can be in operation

A functional unit receives operands from registers and delivers
the result to a register when the function has been performed.
The units operate essentially in three-address mode with
source and destination addressing limited to register designa-
tors.

All functional units perform their algorithms in a fixed
amount of time. No delays arc possible once the operands have
been delivered to the unit. The amount of time required from
delivery of the operands to the unit to the completion of the
calculation is termed the <“‘functional unit time" and is
measured in 12.5 nsec clock periods.

The functional units are all fully segmented. This means that a
new set of o[>erands for unrelated computation may enter a
functional unit each clock period even though the functional
unit time may be more than one clock period. This segmenta-

tion is made possible by capturing and holding the information
arriving at the unit or moving within the unit at the end of
every clock period.

The twelve functional units can be arbitrarily assigned to four
groups: address, scalar, vector, and floating point. The first
three groups each acts in conjunction with one of the three
primary register types, to support address, scalar, and vector
modes of processing. The fourth group, floating point, can
support either scalar or vector operations and will accept
operands from or deliver results to scalar or vector registers
accordingly.

FUNCTIONAL UNITS

Unit Tima

Functional Unit (Clock Periods) Instructions

Address integer add 2 030, 031
Address multiply 6 032
Scalar integer add 3 060, 061
Scalar logical 1 042 - 051
Scalar shift 2 052 - 955
3 056, 057
Scalar leading zero/pop count 4 026
3 027
Vector integer add 3 154- 157
Vector logical 2 140- 147,175
Vector shift 4 150-153
Floating point add 6 062, 063,170~ 173
Floating point multiply 1 060-067, 160- 167
Floating point reciprocal 14 070, 174

Memory field protection

Each object program has a designated field of memory. Field
limits are defined by a base address register and a limit address
register. Any attempt to reference instructions or data beyond
these limits results in a range error.

Exchange mechanism

The technique employed in the CRAY-1 to switch execution
from one program to another is termed the exchange
mechanism. A 16-word block of program parameters is
maintained for .each program. When another program is to
begin execution, an operation known as an exchange sequence
is initiated. This sequence causes the program parameters for
the next program to be executed to be exchanged with the
information in the operating registers to be saved. The
operating register contents are thus saved for the terminating
program and entered with data for the new program.

Exchange sequences may be initiated automatically upon
occurrence of an interrupt condition or may be voluntarily
initiated by the user or by the operating system through
normal and error exit instructions.

16 24 24
P 22 AO
n
£l BA 18 Al
n
1 LA 18 Tk A2
n+?2
XA <|VL 7|FLAGS9 a3
n+ 3
A4
n+t4
A5
n+5
A6
n+6
A7
n+7
n+8 50
n+9 st
n+ 10 s2
s3
n+ 11
s4
n+ 12
S5
n+ 13
S6
n+ 14
s7
n+ 15
63
Flags* Modes*
31 Console Interrupt 37 Interrupt on Floating Point
32 RTC |nterrupt 38 Interrupt on Storage Parity
33 Floating Point Error 39 Monitor Mode

(Scalar Reference Only)

34 Operand Range
35 Program R ange P = Program Address

36 Storage Parity BA = Base Address

37 1I/0 Interrupt LA = Limit Address

38 Error Exit XA = Exchange Address

39 Normal E xit VL = Vector Length

* Bit position from left of word

EXCHANGE PACKAGE

ARCHITECTURE

Construction

The CRAY-1 is modularly constructed of 1506 modules held
by 24 chassis. Each module contains two 6 in. by 8 in. printed
circuit boards on which are mounted a maximum of 144
integrated circuit packages per board. Emitter coupled logic
(ECL) is used throughout. Four basic chip types are used: a
high-speed 5/4 NAND gate, a slow-speed 5/4 NAND gate, a
16x1 register chip, and a 1024x1 memory chip.

Appearance

The esthetics of the machine have not been neglected. The
CPU is attractively housed in a cylindrical cabinet. The chassis
are arranged two per each of the twelve wedge-shaped
columns. At the base are the twelve power supplies. The
power supply cabinets, which extend outward from the base
are vinyl padded to provide seating for computer personnel.

The compact mainframe occupies a mere 70 sq. ft. of floor
space.

63

Cooling

The speed of the CPU is derived largely by keeping wire
lengths extremely short in the mainframe. This, in turn,
necessitates a dense concentration of components with an
accompanying problem of heat dissipation. The Freon cooling
system used in the CRAY-1 employs the latest in refrigeration
technology to maintain a column temperature of about 68° in
the unit.

MAINTENANCE CONTROL UNIT (MCU)

A 16-bit minicomputer system serves as a maintenance control
unit. The MCU performs system initialization and basic
recovery for the operating system. Included in the MCU
system is a software package that enables the minicomputer to
monitor CRAY-1 performance during production hours.

STATIONS

The CRAY-1 computer system may be equipped witii one or
more 16-bit minicomputer systems that provide input data to
the CRAY-1 and receive output from the CRAY-1 for
distribution to a variety of slow-speed peripheral equipment. A
station consists of a Data General S-200 minicomputer or
equivalent. Peripherals attached to the station vary depending
on whether the station is a local or remote job entry station or
a data concentrator used for multiplexing several remote
stations.

EXTERNAL INTERFACE

The CRAY-1 may be interfaced to front-end host systems
through special controllers that compensate for differences in
channel widths, machine word size, electrical logic levels, and
control protocols. The interface is a Cray Research, Inc.
product implemented in logic compatible with the host
system.

SYSTEM MASS STORAGE

System mass storage consists of two or more Cray Research,
Inc. DCU-2 Disk Controllers and multiple DD-19 Disk Storage
Units. The disk controller is a Cray Research. Inc. product and
is implemented in ECL logic similar to that used in the
mainframe. Each controller may have four DD-19 disk storage
units attached to it. Operational characteristics of the DD-19
units are summarized in the accompanying table.

CHARACTERISTICS
OF DD-19 DISK STORAGE UNIT

Bit capacity per drive 2.424 x 109

Tracks per surface 411

Sectors per track 18

Bits per sector 32,768

Number of head groups 10

Recording surfaces per drive 40

Latency 16.6 msec

Access time 15-80 msec

Data transfer rate (average bits per sec.) 35.4x 106
5.9x 106

Total bits that can be streamed to a unit
(disk cylinder capacity)

DISK UNITS

CRAY-1 COMPUTER
SYSTEM

Mass Storage

Subsystem

DISK ’
CONTROLLER

MCU DISK

CARD
READER

Maintenance
Control Unit

MAINTENANCE SERVICES

Cray Research, Inc. provides resident maintenance engineers

on a contractual basis.

PRINTER/
PLOTTER

MCU CONSOLE

64

USER SUPPLIED

SUPPORTING
EQUIPMENT
TAPE
UNIT
MINI
COMPUTER
OPERATOR
CONSOLE
INTER-
FACE

Front-End
Processor

DATA FLOW THROUGH SYSTEM

STATION
DISK

CARD
READER

PRINTER/PLOTTER

A Typical
Data Station

PERIPHERAL
OR
REMOTE
DEVICES

65

Evaluation Plan

TI. INTRODUCTION

The growing complexity of the programmatic efforts at the Los
Alamos Scientific Laboratory (LASL) in weapons design, laser
fusion and isotope separation, controlled thermo-nuclear research,
reactor safety, and other basic and exploratory research requires
calculations that are beyond the capability of the fastest comput-
er currently installed in the LASL Central Computing Facility-the

CDC 7600. For this reason, LASL, in conjunction with the Energy
Research and Development Administration (ERDA) 1is evaluating a new
class of scientific computer system. This class has been

identified by ERDA as "Class VI."

A Class VI computer system is one that is capable of
executing 20 to 60 million floating point operations per second
(MFLOPS) . Table | lists the wvarious classes of computer systems
currently identified by ERDA.

CLASS MEFLOPS REPRESENTATIVE
COMPUTERS

IIT .5—-2 CDC 6600, IBM 370/158
v 2—6 CDC 7600, IBM 370/195
\Y 6—20 CDC STAR 100, TI-ASC4X
VI 20 - 60 (NEW)

TABLE 1. ERDA COMPUTER SYSTEM CLASS DEFINITIONS.

It now appears that there is at least one existing computer
system that may meet LASL Class VI computing requirements-the Cray
Research CRAY-1. The purpose of this document is to specify the
approach to be taken by LASL and ERDA in evaluating the CRAY-1
computer system.

The CRAY-1 computer is installed at LASL for approximately
six months, during which time the evaluation described in this
document 1is taking place. The CRAY-1 configuration being
evaluated is described in Appendix A. A summary of CRAY-1
characteristics 1is shown in Appendix A.

66

ITI. ObJECTIVES OF THE CRAY-1 EVALUATION

This evaluation has two main objectives. The first is to
assess the hardware performance of the CRAY-1 system. The second
is to determine the performance characteristics of the CRAY-1
system as it applies to a specifically chosen LASL workload. To
meet these two major objectives, the CRAY-1 evaluation has been
divided into two closely related phases: hardware performance and
applications performance.

67

ITII. MANDATORY REQUIREMENT AND QUALIFICATION CRITERIA

The mandatory requirement is that the CRAY-1 must
substantially meet the qualification criteria described in this
section. Details of the evaluation methodology are given in
section IV.

A, Hardware Performance Qualification Criteria
1. Scalar Operations

The CRAY-1 must be capable of executing scalar
operations at a rate at least twice that of the CDC 7600,
while operating upon floating point data at least 48 bits in
length.

2. Vector Operations

The CRAY-1 1is capable of performing vector operations;
the CDC 7600 does not have this capability. Therefore, the
following vector hardware qualification criteria for the
CRAY-1 are specified with respect to the rate at which a

CDC 7600 can perform the equivalent function. Both machines
must operate upon floating point data at least 48 bits in
length

a. Short Vectors. Short wvectors are defined to

have a vector length of 20. The CRAY-1 must be capable of
executing vector operations of this length at a rate at least
three times that at which the CDC 7600 can perform the
equivalent function.

b. Medium Vectors. Medium vectors are defined to
have a vector length of 100. The CRAY-1 must be capable of
executing vector operations of this length at a rate at least
four times that at which the CDC 7600 can perform the
equivalent function.

c. Long Vectors. Long vectors are defined to have
a vector length of 500. The CRAY-1 must be capable of
executing vector operations of this length at a rate at least
five times that at which the CDC 7600 can perform the
equivalent function.

3. Reliability:.

There are three evaluation areas with respect to CRAY-1
reliability characteristics. These areas are System
Availability (SA), Mean Time to Failure (MTTF) and Mean Time
to Repair (MTTR). The criteria specified for all three areas
must be met for any single contiguous period of 20 workdays
during the six-month evaluation period. The following
measures will be used in determining the CRAY-1 reliability
characteristics:

*Wall Clock Time (WC) - the elapsed time of the

08

measured period.

*Remedial Maintenance (RM) - that portion of WC during
which the CRAY-1 is in use by Cray Research, Inc.,to
rectify a problem.

*No Time (NT) - that portion of WC that is
nonproductive Dbecause of such things as no work
available, building facilities failure, preventive
maintenance, Cray Research software development or
Cray Research engineering modifications.

*Operational Use Time (OUT) - that portion of WC
during which the CRAY-1 is performing productive
work. It is specifically defined as:

OUT = WC-RM-NT.

The qualification criteria in each reliability area are
identified below.

a. System Availability. System Availability (SA) 1is
defined as follows:

SA = OUT/(OUT + RM).

System availability on the CRAY-1 must equal or exceed 0.8
for a contiguous 20-workday period during the evaluation.

b. Mean Time To Failure (MTTEFE). Mean Time to
Failure 1is defined as the ratio of OUT to the number of OUT
periods (OUT periods not terminated by a machine failure are
concatenated with succeeding OUT periods). MTTE for the CRAY-1
system must equal or exceed four hours for a contiguous 20-
workday period during the evaluation.

c. Mean Time To Repair (MTTR). Mean Time to Repair
is the ratio of RM to the number of RM periods. MTTR must be
less than or equal to one hour for a contiguous 20-workday
period during the evaluation.

Table 2 summarizes the hardware qualification criteria for
the CRAY-1 evaluation.

69

FUNCTIONS QUALIFICATION CRITERIA

Scalar Operations > 2 X (CDC 7600)
Short Vector Operations > 3 X (CDC 7600)
Medium Vector Operations > 4 X (CDC 7600)
Long Vector Operations > 5 X (CDC 7600)
MTTF > 4 hours*

MTTR < 1 hour*

System Availability 0.8+

*These three criteria must collectively be met during any
contiguous 20 workday period.

TABLE 2. Hardware Performance Qualification Criteria.

B. Applications Performance Qualification Criterion

Using the procedures defined in section IV.B, the
hypothesis that the CRAY-1 is two times faster than the
CDC 7600 upon the specified LASL Class VI applications workload
must be satisfied.

70

IV. EVALUATION METHODOLOGY

As stated earlier, the CRAY-1 evaluation will be accomplished
in two closely related phases: the hardware performance evaluation
and the application performance evaluation. Each is discussed
separately

Much of the evaluation methodology uses statistical sampling
methods. Some specific techniques of sampling and evaluation to
be used are currently being determined and will be attached as an
addendum to this plan. If during the course of the evaluation it
is evident that a change in methods would result in more accurate
results, this plan will be modified accordingly. Any changes in
the methodology will be thoroughly documented.

A. Hardware Performance
1. Preliminary Scalar Performance Estimate

Since the scalar performance of the CRAY-1 on the LASL
Class VI workload cannot be reliably estimated until the
evaluation is complete, a preliminary test of the CRAY-1
scalar performance is being conducted for the interim report.
A test routine extracted from LASL production codes will be
executed on both the CDC 7600 and the CRAY-1. This routine
is documented in Appendix B. The routine 1is coded 1in
assembly language as efficiently as is feasible for each
machine. A preliminary estimate of CRAY-1 scalar performance
is the ratio of execution times for the two machines. This
estimate will be included in the final report for informative
purposes only.

In addition, a summary of the results obtained from the
module timings (Steps 3 and 5 below) completed by June 15
will be included in the interim report.

2. Scalar Operations

Step |. Workload Analysis. To determine which LASL
codes are potential candidates for execution on the Class
VI computer system, it is necessary to investigate the codes
currently active at LASL. This will be accomplished for
codes executing under the CROS operating system by examining
the historical data base maintained by LASL. All codes
requiring more than one CDC 7600 CPU hour per execution will
be identified for further individual analysis. Similarly,
the LTSS historical data base will be examined for those
accounts that consume more than one CDC 7600 CPU hour in one
24-hour day. These codes are labeled the "potential Class VI
workload ."

A review process with the users will then be conducted
in order to finalize and establish the set of LASL codes that
will comprise the LASL Class VI workload. These codes will
be documented on forms shown in Figures | and 2.

71

Step 2. Code Execution. Each code selected will be
executed in a typical manner on the CDC 7600. This execution
will be monitored by the LASL-written software monitor STAT.
The entire program field length (of size FL) will be divided
into b "buckets", each of size 1 words, such that b*l= FL.
STAT samples the P-counter value (the execution address)
every 3-6 ms, determines which bucket encompasses the
address, and increments a count for that bucket. At the
completion of the program execution, one obtains the
frequency f- that the program was found executing within the
i words of bucket 1i. A cumulative distribution is then
obtained for the code by bucket i, giving the fraction of
time spent by the code in execution in or below the addresses
of bucket 1i.

The measurements will be conducted during a sufficiently
long period to exercise the normally used features of each
code during a representative run. The object of this step is
the acquisition of representative cumulative distributions,
as described above, for each code.

Step 3. Module Selection. A module 1is a segment of

Fortran statements residing in a Class VI workload code. A
number of modules (the sample size) will be drawn from each
code. The sample size required to provide a statistically

valid result 1is currently being determined and will be
documented before Step 3 is completed and will be part of the
statistics addendum to this plan.

The procedure for drawing a module will be to obtain a
random number, evenly distributed from 0 to 1, from the
Fortran library function RANF. The generated random number,
x, will be applied to the inverse of the cumulative
distribution of Step 2 above to identify the bucket
associated with x. An additional STAT run with one-word
resolution will be made to identify the address associated
with x and to further characterize program behavior within
the selected bucket.

A portion of the segment of Fortran statements
associated with the bucket will be selected as the Fortran
module. This will be accomplished according to the following
procedure .

a. If the address boundaries of the bucket result
in incomplete Fortran statements, expand the segments to
include entire statements.

b. Starting at the selected address go "backward
in execution" to either the segment boundary or a labeled
statement actively accessed from outside the segment.

"Active" execution paths are those taken during execution of
the code in the previous step. Whether an execution path is
active or inactive may be inferred from the STAT histogram of

72

execution within the segment. The selected statement forms
the first statement of the Fortran module.

C. From the first statement of the Fortran module
go "forward in execution" to either the segment boundary or
an active Jjump outside the segment. The subsegment

encountered in this action comprises the Fortran module.
Those modules selected will be listed on the form shown in
Figure 3.

The bucket size 1is presently being defined and will be
included in the statistics addendum to this plan.

Step 4. Module Optimization. Each module chosen from
Step 3 will be coded as efficiently as 1is feasible in
assembly language for each machine. Only scalar operations
will be used for the CRAY-1. The source language statements
will be consulted as an aid in determining the algorithm a
selected code segment represents.

Step 5. Module Timings. The assembly language versions
of the modules will be executed and timed on the two ma-
chines. Timings will be listed on the form shown in Figure

3.

Step 6. Evaluation Code Scalar Speed Ratio Hypoth-
esis Test. The hypothesis that the CRAY-1l, in scalar mode,
is two times faster than the CDC 7600 will be tested using
the module timings obtained in Step 5. The specific
procedure to perform this test 1is currently being determined.
It will be part of the statistics addendum to this plan.

3e Vector Operations

a. A parameter-driven test routine will be written
as efficiently as 1is feasible for each machine in assembly
language to determine the vector performance of the CRAY-1.
The test routine will consist of vector algorithms extracted
from LASL production codes. The algorithms comprising the
test routine are presented in Appendix B.

b. The vector length for the test routine will be
an input parameter modified according to the wvector length
being tested (short, medium, or 1long).

c. The test routine will be executed on both the
CDC 7600 and the CRAY-1 systems, and a ratio of execution
times will be obtained.

d. The qualification criterion, as stated in
section III for each vector length, must be met by the test
routine timings. The timing results will be documented on

the form shown in Figure 4.

73

4. Reliability

The reliability evaluation will be accomplished using
the EXERCISER program currently in existence at LASL.
Figure 5 shows the form to be used to document the operation
of the CRAY-1 when running the EXERCISER program.

Data collected on the form shown in Figure 5 will then
be used as the basis for calculating reliability statistics
for a 20-workday sliding window as follows:

a. System Availability. System availability (SA)
will be calculated weekly from Figure 5 data as follows:

SA = OUT/ (OUT+RM

OuT OUTi and RM RMj

i=1

where OUT” is an "OUT" period, RM- 1is an "RM" period, N is
the number of machine failures (the number of "OUT" periods)
and M is the number of remedial maintenance (RM) periods.

b. Mean Time To Failure (MTTF), The MTTF will be
calculated weekly from data recorded on the form shown in
Figure 5 as:

MTTF = OUT/N.
c. Mean Time To Repair (MTTR). The MTTR will be
calculated weekly from data recorded on the form shown 1in
Figure 5 as:

MTTR = RM/M.

The statistics described above in sections 3a-c will

each be calculated weekly during the evaluation period. The
qualification criteria for all three must be satisfied during
the same 20—contiguous-workday period. The form shown in

Figure 6 will be used to document the reliability phase of
the CRAY-1 evaluation.

B. Applications Performance

Step 1. Workload Analysis. To determine which LASL
codes are potential candidates for the Class VI computer
system it 1s necessary to investigate the codes currently
active at LASL. This will be accomplished for those codes
executing under the CROS operating system by examining the
historical data base on CROS code execution maintained by
LASL. All codes requiring more than one CDC 7600 CPU hour
per execution will be identified for further individual

74

analysis. Similarly, the LTSS historical data base will be
examined for those executions consuming more than one

CDC 7600 CPU hour in a 24-hour day under the LTSS operating
system. These codes are labeled the "potential Class VI
workload."

A review process with the users will then be conducted
in order to finalize and establish the set of LASL codes that
will comprise the LASL Class VI workload. These codes will
be documented on forms shown in Figures | and 2.

Step 2. Applications Workload Performance
Specifications. LASL will specify a subset of the Class VI
workload to be used for the applications performance phase of

the evaluation. This 1list of codes 1is termed the Class VI
applications workload. LASL will also provide a decision
rule to determine if the CRAY-1 meets the applications
performance criterion. This specification must be provided
by LASL before Step 3 is begun, and it must then be approved
by the Division of Military Application (DMA). This 1list and

the associated decision rule will be documented as an
addendum to this plan.

Step 3. Code Execution. Each code selected will be
executed in a typical manner on the CDC 7600. This execution
will be monitored by the LASL-written software monitor STAT.
The entire field length of the program will be divided into

buckets. STAT samples the P-counter, determines which bucket
encompasses the address, and increments a count for that
bucket. A cumulative distribution is then obtained which

gives the fraction of time spent by the code in execution in
or below the address range for each bucket.

The measurements will be conducted during a sufficiently
long period to exercise the normally used features of each
code during a representative run. The object of this step is
the acquisition of representative cumulative distributions,
as described above, for each code.

Step 4. Module Selection. A module 1is a segment of
Fortran statements residing in a Class VI workload code. A
number of modules (the sample size) will be drawn from each
code. The sample size required to provide a statistically
valid result is currently being determined and will be
documented before Step 4 is completed and will be part of the
statistics addendum to this plan.

The procedure for drawing a module will be to obtain a
random number, evenly distributed from 0 to 1, from the
Fortran library function RANF. The generated random number,
x, will be applied to the inverse of the cumulative distri-
bution of Step 3 above to identify the bucket associated with
X. An additional STAT run with one-word resolution will be
made to identify the address associated with x and to further

75

characterize program behavior within the selected bucket.

A portion of the segment of Fortran statements
associated with the bucket will be selected as the Fortran

module. This will be accomplished according to the following
procedure.

a. If the address boundaries of the bucket result
in incomplete Fortran statements, the segment will be
expanded to include entire statements.

b. Starting at the selected address go "backward
in execution”" to either the segment boundary or a labeled
statement actively accessed from outside the segment.
"Active" execution paths are those taken during execution of

the code in the previous step. Whether an execution path is
active or inactive may be inferred from the STAT histogram of
execution within the segment. The selected statement forms

the first statement of the Fortran module.

c. From the first statement of the Fortran module
go "forward in execution" to either the segment boundary or
an active Jjump outside the segment. The subsegment

encountered in this action comprises the Fortran module.
Those modules selected will be listed on the form shown in
Figure 3.

Step 5. Module Optimization. FEach module chosen from
Step 4 will be coded as efficiently as 1is feasible in
assembly language for each machine. Only scalar operations
will be used for the CRAY-1. The source language statements
will be consulted as an aid in determining the algorithm a
selected code segment represents.

Step 6. Module Timings. The assembly language versions
of the modules will be executed and timed on the two machin-
es. Timings will be listed on the form shown in Figure 3-

Step 7. Evaluation Code Scalar Speed Ratio Hypoth-
esis Test. The hypothesis that the CRAY-1, 1in scalar mode,
is two times faster than the CDC 7600 will be tested for each
Class VI applications workload code using the module timings

obtained in Step 6. (The specific procedure to perform this
test 1s currently being determined and will be part of the
statistics addendum to this plan.) The decision rule

specified in Step 2 will then be applied.
C. Input/Output Studies

Although the configuration delivered with the CRAY-1
precludes a complete evaluation of the I/0 capabilities of

the system, a series of disk studies will be performed. At
this time, the specific disk requirements and evaluations are
undetermined. It is, however, anticipated that tests in the

following areas will be accomplished:

76

edata rate - sustained and instantaneous

*positioning times

edata integrity

*error recovery

eimpact of I/O on the CPU and memory.

Specific tests will be developed by the project team and

documented as an addendum to this plan. This documentation
will be accomplished by approximately June 30.

77

INFORMAL ESTIMATES
A. Scalar Performance Estimate

The CRAY-1/CDC 7600 scalar speed ratio will also be
estimated based on the module timings obtained during the
scalar performance evaluation.

Since the accuracy of this estimate cannot be verified
statistically within the time constraints of this evaluation,
it will be included in the final report for informative
purposes only.

B. Applications Performance Estimate

The CRAY-1/CDC 7600 scalar applications speed ratio will
be estimated based on the module timings obtained during the
applications performance evaluation. Since the accuracy of
this estimate cannot be verified statistically within the
time constraints of this evaluation, it will be included in
the final report for informative purposes only.

C. Class VI Applications Workload Vectorization Estimate

An estimate of the percentage of vectorization
immediately obtainable for the Class VI applications workload
will be provided in the final report for informative purposes
only.

This estimate will be obtained by examining the source
code surrounding each selected module of the Class VI
applications workload and determining if it is wvectorizable
Vectorization criteria will be established and documented
before the modules are examined for wvectorizability. Module
vectorizability will be summarized on the form shown in
Figure 7.

An attempt will also be made to provide an estimate of a
representative vector length for vectorizable sections of
code .

VI

78

REPORTS
A Interim Report

An interim evaluation report will be issued on
approximately July 1. It will describe the preliminary
results of the hardware performance phase of the evaluation.
The results presented in this report will, of necessity, be
subject to modification in the final report. This report is
intended to provide an early summary of the CRAY-1
evaluation

B. Final Report

A final evaluation report will be available on
approximately October 1. This report will describe the
objectives, methodology, findings, results and conclusions
made as a result of this evaluation.

79

STATISTICS ADDENDUM

I. HYPOTHESIS

Let a code be partitioned into m modules. Let s. be the
CRAY-1 running time for module i, let t, be the CDC 7600 running
time for module i and let n” be the number of times module i 1is
executed in the complete code. It is the intent to test that the
CDC 7600 run time for the entire code is greater than two times
the CRAY-1 run time for the entire code, or

J(niti-2nisi|] > 0

and hence that the CRAY-1 1is at least two times faster than the
CDC 7600 for the code.

IT. SAMPLING

Sampling to test the hypothesis for the Class VI workload
(section IV.A) will consist of the following procedure.

Assume that 1 codes comprise the Class VI workload. /
modules will initially be drawn, one from each code. If more than
£ modules are required initially, then z£ modules, two from each

code, will be drawn. The hypothesis will be tested at k=i-i, for
the ith batch of modules.

The procedure for drawing a module from a Class VI workload
code is specified in section IV.A., Step 3 of the Evaluation Plan.

Sampling to test the hypothesis for each Class VI
applications workload code (section IV.B) will consist of the
procedure outlined in section IV.B., Step 4 of the Evaluation
Plan .

Samples drawn for applications performance testing will not
be used for hardware performance testing, and samples drawn for
hardware performance testing will not be used for applications
performance testing.

The Dbucket size 1is initially 16 words. From preliminary
studies this size has resulted in tractable module sizes. The
bucket size will be changed if the resulting code segments are
trivial or of intractable length.

IIT. TESTING

It is clear that we would like to test the hypothesis that
the mean of the population of the m™>—Pn~™ for i=1,2,...,m is
greater than zero. However, every statistical test of hypothesis
on the mean of a population requires that an assumption be made
about the distribution of the population. In the case of the

n.t.-2n.s., we have no idea of the general shape of the
distribution, 1let alone the type. Therefore the statistical

80

testing will be done on the median of the distribution.

In testing the hypothesis that the median of the population
°f n*ti-2n.si is zero, we are in effect asking if 50% of the
values of the nit”-2n"s-L are greater than zero and 50% are kess
than zero. If we denote the true median by um, then we can
formulate the above in the two statements

HO: hm>0 vs. Ha: Pm<0 or
HO * hjjj*0 wvs ' Ha. Ujjj*0-

It is obvious that we could make either of two types of errors.

We could accept HO when Ha is true, or we could accept Ha when HO
is true. One usually can control only the probability of
accepting Ha when is true. The probability of making the other
type of error can be as large as l1-Pr{accepting H when H is
true}. Usual statistical tests of hypotheses require almost
conclusive "proof" to accept H and require very little "proof" to
accept H In the case of testing the performance of the CRAY-1,
the usual procedure of hypothesis tests will be unfair to one of
the parties involved.

Therefore, the following set of hypotheses will be tested using
sequential sampling [1].

At least 60% of the population of niti-2nisi
is greater than =zero. (The CRAY-1 1is greater than two
times faster than the CDC 7600.)
H2: wNo more than 40% of the population of
nit*-2nisi is greater than =zero. (The CRAY-1

is two or less times faster than the CDC 7600.)

The probability of accepting when Hp is true will be fixed at
.10, and the probability of accepting when H! is true will be
fixed at .10. For tractability the maximum number of samples to

be taken on any one code will be set at 50 from the Class VI
applications workload and 50 total from the Class VI workload.
The procedure is:l

(1) Take the kth sample and determine s” and t., the CRAY-1
run time and the CDC 7600 run time, and let

Zk=1 1if niti-2nisi>0, or ti-2si>0
=0 otherwise;
(2) Let =Zj£+T" i, where To=0,

(3) If accept H7,

81

If accept HZ,

If Lk<Tk<U” and k<50, increment k by
and go to Step 1.

The wvalues of and are calculated from [1] and given by:
kK uk Lk k 8k Lk k Uk Lk
1 - - 21 14 7 41 24 17
2 - - 22 14 8 42 24 18
3 - - 23 15 8 43 25 18
4 - - 24 15 9 44 25 19
5 - - 25 16 9 45 26 19
6 6 26 16 10 46 26 20
7 7 0 27 17 10 47 27 20
8 7 1 28 17 11 48 27 21
9 8 1 29 18 11 49 28 21

10 8 2 30 18 12 50 28 22
11 9 2 31 19 12
12 9 3 32 19 13
13 10 3 33 20 13
14 10 4 34 20 14
15 11 4 35 21 14
16 11 5 36 21 15
17 12 5 37 22 15
18 12 0 38 22 16
19 13 6 39 23 16
20 13 7 40 23 17

Therefore, after 50 samples, Hl will be accepted, or H2 will
be accepted or no decision will be made. When no decision 1is
made, 1t means that there is not enough information available to
choose either Hj or H2, and probably indicates that the proportion
of the nit"-2n"s” which is greater than =zero is between .4 and .6.
In order for the CRAY-1 to meet the performance criteria specified
in the Evaluation Plan, H#| must be accepted.

The following simulation study of | 000 tests of maximum
sample size of 50 demonstrates this point. P is the true
proportion of the population greater than zero, A.samp 1is the
average sample size needed to make a decision, Pass 1is the number
of samples in which H! (CRAY-1 passes) 1s accepted, Fail is the
number of samples in which H2 (CRAY-1 fails) 1is accepted, and Ques
is the number of samples in which no decision is made after 50
samples.

.10
C 12
.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.38
.40
.42
.44
.46
.48
.50
.52
.54
.56
.58
.60
.62
.64
.66
.68
.70
.12
.74
.76
.18
.80
.82
.84
.86
.88
.90

[1] WwWald,

A

L4

A.Samp

OO 0 I

10.
11.
12.
13.
15.

l6.
17.
19.
21.
23.
25.
28.
28.
29.
29.
27.
26.

24

23.

19.
17.
15.
14.
13.
12.
11.
10.
10.

~J ~J oo o

.62
.75
.32
.85
.32
.96
53
44
27
50

18
11
94
15
85
71
39

72
64
94
37
21
81
.88
57
.64
59
87
97
62
26
46
59
81
02
.48
12
.20
.81
.46

Pass

—~N W e O O OO DO OO

O o ur N DN
~ O W w N

171
220
305
358
481
602
692
762
830
888
937
950
981
992
996
999
998
999
999
1000

1000
1000
1000
1000

82

Fail

1000
1 000
1000
1000
1000
1000
1000
1000
999
996
988
976
949
945
879
814
776
659
571
482
409
293
234
153
113

25

Reference

Sequential Analysis,.

Ques

—_ O O O OO OO OO O

O o WN
~J 00 N W o L,

127
170
209
213

233
226

164
155
125

O O O O O O O

John Wiley and Sons,

1947,

83

I/0 STUDIES

Five tests have been devised to test the capability of the
CRAY-1 I/0O System.

DISKI. This test is designed to measure the instantaneous
data rate for the DD-19 disk system. One track (8192 words)
will be written to the disk and read back | 000 times and
timed. No arm movement or head switching will be required.

DISKS. This test 1is designed to determine the maximum data
rate the DD-19 disk will sustain. A file of approximately
two million words will be written sequentially on the disk

then read back. The operation will be timed.

DISKS. This test is designed to measure arm positioning
times. A large file will be written to the disk across many
cylinder boundaries, then read back in one sector (512 word)
blocks. Read requests will be arranged to force arm movement
across a fixed number of cylinders in order to satisfy the
request. The time required to position across 21 cylinders,
i=0,...,8, will be recorded.

DISK4. This test 1is designed to gauge data integrity. A

large file of approximately two million words of sequential
integers will be written to the disk. The file will then be
read back and verified.

DISKS5. This test is designed to measure the impact of I/0
upon the CPU and memory. Three timings will be made: 1) The
time required to execute a program characterized by memory
references. The program will consist of one million passes
through a loop which adds two vectors of length | 000 (A and
B) and stores the result in C, of length 1 000. 2) The time
to execute the above program when one disk is kept busy at
its maximum sustained rate writing a 10 000 word block. Upon
disk completion, the CPU will immediately issue another write
request for the Dblock. Disk positioning times will be
minimized by issuing the write request at the next address
from where the disk left off. Hence many copies of the
blocks will be written into consecutive disk addresses. 3)

If possible, the above test will be conducted with both disks
active .

84

VECTORIZATION CRITERIA

(This appendix fulfills the requirements of section V.C. of
the Evaluation Plan by establishing vectorization criteria to be
used in the informal estimates of vectorizability.)

Mathematically, a vector is defined as an n-tuple of numbers
that can be thought of as a function on the first n positive

integers. Conceptually, components of a vector may have some
natural ordering, for example, 3-dimensional Cartesian
coordinates. On the other hand, the components of a vector often

do not have any natural ordering, for example, each component may
denote the velocity of a particle whose position is random in

space. The important point is that when a scientist conceives of
a vector, he 1is at liberty to specify its components and their
ordering in whatever fashion he desires. Of course, convenience

in algebraic manipulation may force him to order them in such a
fashion that he can formulate the associated function on the first
n positive integers.

Computer designers have incorporated an increasing amount of
parallelism into general purpose computers in order to meet the
constant demand for greater speed. The introduction of this
parallelism has naturally led to the concept of vectors and vector
operations in a computer with the following constraints.

1. Vectors must be stored such that the memory spacing
between successive elements 1is constant.

2. Components of wvector operations must be mutually
independent, 1i.e., the component of the result must
be independent of all other components of the result.

Thus the concept of a vector in a computer is somewhat less
general than that normally encountered in mathematics. In
addition, the CRAY-1 computer only performs vector operations on
the contents of vector registers, and these registers can contain

at most 64 elements. These registers offer high arithmetic
efficiency in situations where much arithmetic is performed on a
few operand vectors. However, Dbecause of the fixed register size,

a "pure vector" operation on the CRAY-1 will usually incorporate
some small amount of scalar overhead associated with partitioning
a vector into segments that are compatible with the length of
vector registers.

These considerations lead to the following criteria for
vectorization on the CRAY-1 computer.

1. The computation must be expressible as a repeated
calculation. For example, a computation expressible as
a Fortran DO loop may be vectorizable.

2. With few exceptions, elements of source operands
must be independent of the elements of result operands.
For example:

85

R(I) = R(I) + B(I) 1is vectorizable,

2 R(I) R(I-1) is not vectorizable.

|
—
+

3. Elements of operand vectors and result vectors must
be stored with constant memory spacing, respectively.
For example:

I) + T(I) is vectorizable,

2 R(M) = R(M) + A(I) is not wvectorizable.

These three criteria will be applied to samples drawn from
the Class VI applications workload codes in order to determine the
proportion of the code that is immediately vectorizable as per
section V.C of the Evaluation Plan. If the function performed by
a sample can be re-written so as to satisfy the above criteria,
that sample will be considered vectorizable.

86

DECISION RULE

In accordance with section IV.B of the Evaluation Plan the
following decision rule was provided by LASL and approved by the

Division of Military Application as the applications workload
performance specifications.

The applications performance specification is that by the
techniques specified in the statistics addendum, the
hypothesis H-j that the CRAY-1 1is greater than two times
faster than the CDC 7600 must be accepted for one or more of
the three Class VI applications workload codes.

Evaluation Plan Figures

Since Figures | thru 7 are presented in the
body of the report, they are not repeated.

87

APPENDIX B

FIGURES

=.Q

OO0 o000

10

15

20

88
Figure B-1. Preliminary Scalar Test Routine Algorithms.

subroutine tlu
common/rmat/matid(12),at(12),rho(12), rhom(12),bep(12),psp(12),

Ipolg(8,12),plg(l6,16,12),e0lg(8,12),elg(l6,16,12),pelg(11,28,12)

common/meos/argl,arg2, funcl, func2,maex,ifx,arg3(20),t6,t7
dimension temp (40)

t(i)is t**4 coming in

(
ifx funcl func? ifx
1 P 8 arg3(l) =t (l) arg3(2) =t (2)
2 e 8 arg3(3)=rho (1) arg3(4)=rho(2)
3 op 8 arg 3(5) =rho(3) arg3(6)=m(1l)
4 p dp/dr 8 arg3(7)=m(2) arg3 (8)=m(3)
5 dp/dt 8 arg3(9)=lam(1) arg3(10)= m(2)
6 de/dt de/dr 8 arg3(ll) =Lam(3) arg3(l2)=lam (4)
1 P t
-9 arg 3 (1) =e (1) arg 3 (2)=e(2) arg 3(3)=e(3)
9 arg 3(4)=m (1) arg3(5)=m(2) arg3(6)=m(3)
9 arg3(7)=mass (1) arg 3 (8)=mass(2) arg 3(9)=mass (3)
9 arg3(10)=1/v
9 funcl=p func 2=t
9 arg3 (1ll)=dp/dtl arg3(1l2)=dp/dt2 arg3(13)=dp/dt3
9 arg 3(14) =dp/dr!l arg3(15)=dp/dr2 arg3(16)=dp/dr3
9 arg3(17)=di/dtl arg3(I8)=di/dt2 arg3(19)=di/dt3
9 temp(15)=di/dr1 temp (16) dl/dr2 temp (17) di/dr3
9 temp (18) =pl temp(l9) temp (20) =
9 temp(21)—rhol temp (22) rho2 temp (23) rho3
9 temp (24) alpha temp (25) beta temp (26) gamma
10 temp (27) = temp (28) = temp (29) =
ixf=1fx
r=arg !
t=arg2
l=maex

if(ixf.eqg.7)er=arg2

c=r/rho (1)

cl=tlog(c) +9

cc=amax ! (amin 1 (aint (cl),16.),2.)

fc=cl-cc

ic =cc

goto (5,5,50,5,5,5,300,400,500,300,5,5,5) ixf
f(t.gt..0009765625)goto20

14=ft =0.

13-1.

15=1024.%*

goto(10,15,50,10,10,15,10,400,10,10,10,10,15) ixf

1l =plg(ic-1,1,1)

t2=plg(ic,1,1)-

go to 45

tl=elg(ic-1,1,1)

t2=elg(ic,1,1)-tl

go to 35

tl=tlog(t) +12.

89

tt=aminl (aint (tl), 16.)
ft=tl-tt
it=tt
goto (40,30,50,40,40,30,M0O,MO0O,40,MO,40,40,30) ixf
30 1l=elg(ic-1,it-1,1)
t2=elg(ic,it-1
t3=elg(ic-1,it,1)—-tl
l4=t2-elg(ic,it,1l)+elg(ic-1,1it,1)
t5=1.
35 toe=t7=0
if(ic-9)100,36,37
36 te=(c-1.)**2* (psp(l) +tbep (1) * (c-1.))
t7=(c—-1.)*(2.%psp(l)+3.*(c-1.) *bep(l))
go to 100
37 t6=texp(eolg(ic-9,1)+fc* (eolg(ic-8,1)-eolg(ic-9,1)))
t7=t6* (eoclg(ic-8,1)-eolg(ic-9,1))/c
goto 100
40 1l=plg(ic-1,it-1,1)
t2=plg(ic,it-1,1)-tl
t3=plg(ic-1,it,1) —-tl!
t4=t2-plg(ic,it,1)+plg(ic-1,it,1)
t5=1.
45 goto(48,48,48,48,100,100,48,400,48,48,48,100,100) ixf
48 toe=t7=0
if(ic-9) 100,47,46
46 toe=texp(polg(ic-9,1)+fc* (polg(ic-8,1)-polg(ic-9,1)))
t7=t6* (polg(ic-8,1) -polg(ic-9,1))/c
goto 100
47 te=c**2* (c—=1.)*(2.*psp(l) +3.*bep (1) *(c-1.))
t7=psp(l) *(6.*c**2-4_.*c)+bep(l) * (6.*C-18.#C**2+12. *C**3)
goto 100
50 cl=.60206*tlog(c)+8.
cc=amaxl (aminl (aint (cl),11.),2.)
fc=cl-cc
ic=cc
tl=3.*tlog(t) +14.
tt=amaxl (amin | (aint(tl),28.),2.)
ft=tl-tt
it=tt
tl=pelg(ic-1,it-1,1)
t2=pelg(ic,it-1,1)-tl
t3=pelg(ic-1,it,1)-tl
t4=t2-pelg(ic,it, 1) +pelg(ic-1,1it,1)
th=1,
100 funcl=texp (tl+fc*t2+ft* (t3-fc*td)) *t5
return
300 return
400 return
500 return
end
function texp (x)
texp = exp (x*.69314718055995)
return
end
function tlog(x)
tlog=alog(x)*1.44269504
return
end

QO Q00

90

Figure B-2. CDC 7600 Driver Routine.

PROGRAM DRI1VER (INP,OUT)
THIS IS THE CDC 7600 DRIVER PROGRAM FOR TIMING THE

PRELIMINARY SCALAR TEST ROUTINE TLU. ALL ARGUMENTS
TO TLU ARE PASSED IN COMMON.

EXTERNAL TLU
COMMON/RMAT/MATID (12),AT (12),RHO(12),RHOM(12),BEP (12), PSP (12),
IPOLG (b, 12) ,PLG(,16,16, 12) ,EOLG(8, 12) ,ELG(16, 16,12) ,PELG(11,28,12)
COMMON/MEOS /ARG f, ARG2,FUNC1, FUNC2, MAEX, IFX,ARG3 (20),T6, T7
DIMENSION T (28),C (16)

ILOOP = 30

JLOOP = 30
NLOOP = 1
FJLOOP = JLOOP
FILOOP = ILOOP
DO 10 1=1,16
Al=1-11

T(I)=2.**Al
DO 10 J=1,16
Al=J-8
C(J)=2.**Al
DO 10 K=1, 12
PLG(J,I,K)=ALOG(C(J)**2*T (I)**2)*1.44269504
ELG(J,I,K)=PLG(J,I,K)
10 CONTINUE
DO 20 1=1,28
Al=1
T(I)=2.**((A1-13.)/3.
DO 20 J=1,11
Al=J
C(J)=10.**((A1l=-7.)/2.)!
DO 20 K=1,12
PELG(J,I,K)= ALOG(C(J)**2*T (I)**2)*1.44269504
20 CONTINUE
DO 25 1=1,8
DO 25 K=1, 12
POLG (I,K)=EOLG(I,K)=ALOG(1.E-20)*1.44
BEP (K| =PSP(K) =0
RHO (K)=1.
25 CONTINUE
100 CONTINUE
NTIME = 0
DO 260 NN = 1,NLOOP
DR=(C(16)-C (1)) /FJLOOP
DT=(T(16)-T(1l))/FILOOP
DO 200 J=1,JLOOP
ARG1=C (1) +DR* (J-1)
DO 200 1=1,ILOOP
ARG2=T (1) +DT* (1-1)
DO 200 L = 1,6

91

IFX=MAEX=L

Y1 =ARG1**2

Y2=ARG2**2

Y3=Y1*Y2
IF(IFX.EQ.7)ARG2=Y3+.01371fa*Y2**2/ARG1

0

CALL TLU FROM TIMING FUNCTION TFN

CALL TFN (NCTFN,TLU, FUNCI)
NTIME = NTIME + NCTFN
200 CONTINUE
260 CONTINUE
TIME = NTIME*.0275E-06
PRINT 2002, NTIME, TIME
2002 FORMAT (I10, 6HCYCLES,F15.10, 7THSECONDS)
STOP
END

92

Figure B-3. Listings of Kernel EI.

CRAY-1 Assembly Language.

072100
075177
12310G000220
120203000222
120300000223
120403000224
120330000225
073710
100100000226
054442
064553
121600000233
057117
064227
064337
054447
054557
064221
054331
0s4441
064551
121100000234
130200000227

BASE 0
IDENT El

FORTRAN MODULE

SELECTION ASSUMPTION - STATENENT FOLLOWING TEST NOT TAKEN

22X ok * * ¥

El

AR=1.0/AK
UEFF=SUMU*AR
VEFF=SUMV*AR

XN=XP (IP)-HJEFF*DTOS
YN='<P (IP+1) +VEF F*DTOSS
AR=ABS (XN—INTCXN))

IF (AR.LT.EM6.0R.AR.GT..0.93999) XN=XN+EM4

EXECUTION ASSUMPTIONS

NONE
ENTRY ELl
ABS
CRG 200
SI RT
T77 SI
SI AR.AO S1=AR
S2 SUMU.AO S2=SUMU
S3 SUMV.AO S3=SUMV
sS4 DTCS.A0 S4=DTO0S
S5 DTOSS.A0 S5=DT0SS
s7 /HS1 S7=31 BIT APPF 1./AR
Al IP,AC Al=IP
sS4 S4XFS2 S4=SUMUXDTOS
S5 SSXFS3 SS=9JMV«) TOSS
S6 XP-1,Al1 S6=XP (IP)
SI SIJKIS? S1=2f-ID STEP DI
S2 S2SES7
S3 S3XFS7
sS4 S4*FS7
S5 SSAFS?
s2 setFsi S2=UEFF
S3 S3XKS1 S3=VEFF
sS4 S4*FS1 S4=UEFFXDTO0S
S5 SSXFS1 SS=VEFF*DTOSS
SI XP.Al S1=XPCIP+1)
UEFF.AQ s2 STORE UEFF

93

2103 130200000230 VEE£T.AO 53 STORE VEFF
¢ 0S2ss4 SS S6+FS4 S6=XN
d 04020004s0S0 s2 8400S3
211b 042220 s2 <sa $2=0d4.00G0....0
c 0G2115 SI S1+FSS S1-VN
d ©Om322S2 S2 SS+FS2 $2=ftI NT (XN)
212a 130200000231 XN.AO ss STORE XN
c 1205000002=4 s5 EM6.A0 S5=EM6
213a 1204>3000221 s4 E99.A0 £<=.99999
c 003232 s2 SS-FS2 S$2=Xt'i- HTT (XN) =FRACTIONAL PART OF XN
d 12€-100000232 YN, AO 51 STORE YN
214b 045220 s2 480882 S2=ABS<(XN-1NT (XN)) =AR
c CS3523 s3 S2-FS5 S5=AR-EM6
d 023442 sS4 54 -FS2 S4=,8S3939-AR
2153 130200000220 AR, AO 52 STORE AR
c 031034 so S5/34,
d 017 030002173 JSM LABI
21sb 072203 S6 RT
c 074777 S7 T77
d 051557 ss Ss-87
2175 006 000002173 LABI J X
c .043000 so 0
4 004000 EX
220 04cCc024000000000000000 AR CON 040002400G000000000000
221 0400074000000000000000 E39 CON 040007400000000GG00000
222 0400014000300000000000 soMJ CON 0400014e0000000©000000
223 0400014000000000000000 saMv CON 0400014000000000000000
224 0400014000000020000000 DTOS CON 0400014000000000000000
225 0400014000000000000000 DTOSS CON 0400014000000000000000
22s 0000000003000000000001 1P CON 1
227 0000000000000000000000 UEFF CON 0
230 0000000000000000000000 VEFF CON 0
231 0000000000000000000000 XN CON 0
232 0030000000000000000000 YN CON 0
223 0000000000000000000000 APR CON 0
224 XP BSSZ 20
254 1400007777700000000000 EWS CON 1400007777700000000000

END

10

11

12

13

1A

CDC 7600 Assembly Language.

QOOO0OVOVOUOOOO000000
01 fasu
3HUUOOO2A ¢+
712001720%*
51300000's*
bl*U0UO002b ¢+
20255
51b0000031 ¢
**721
bliouuoocbs *
5120000067
5233000032
40 fax7
*0757
5140000070 ¢
5053000001
*01fal
*02 72
51P0000027
pl/0O0O0O0OUfalO *
30to3!
30752
5110000023 +
*3201
2Afalfe
202/3
24707
32226
5160000032 *
21b73
2*202

p-OR1HAN MOUULt

10t£JT

A«=1i.0/AR
ULFF=Suw|U*AR
Vt»-FsbUMV"AR

XN*XpUP) *UEFFEF» () rOS
YN-Xp (1P*1) *Vc.FF*1) TOSS

94

K1

Ahi=AF1lS IXN’ INT (XN)
StLECUON ASSUMPTION -

IK

E.AECI)TI(IN ASSUMPTIONS
NO LCM VaMIAOLES
VALUE KOR VARIAHLE AR STOREO INTO DUMMY VARIABLE ARR TO

FIRST FORTRAN STATEMENT)

ITIME

tl
CLUCK

EXRLDITE LOOPING AND MULliKLt CALLS

STATEMENT FOULOHINQ TEST NOT TAKEN
(AM»LT«tM6 .OH.AR.GT,0.V9994)

AN3AN*£M*

(AVOIDING DIVIDE At.RO

STORAGE INTO ARR HAS NO IMPACT UPON TIMING.

PN | RY
USE
pbfa
uSc
f)AlA
T85
sal
sSx2
SA3
S *%
LX2
SAS5
FX 1
SAl
SAa2
5*3
FXb
FX7
SA*
SAP
FX1
FX2
SAb
SAT
FXo
FX1
SAl
MX2
NXo
L**
NX 1
DX2
SAo

NX2

AR
1720*8
IP
SUMO
45
SUMV
X2/X1
DTOS
DTOSS
XP-1+X3
X* X7
XS<'X7
EMb
A3*]
X6»X1
X7*X2
UEKF
VEFF
X3*X1
X5*X2
c99

1

Xfa

59

X7
X2*X6
XN

59

X2

X1 =AR

X2*17204

X3=IP

>.*=SUMU

X2=i.

X5SsSuUMV

> 7=1.0/AR

X1=() TOS
X2=DTOSS

X3=XP (IP)
Xb=5UMU*AR=0tFF
X /sfaUMVOAKSVEfF'
X*=tMb
Xb=XPUP*1)

X ISUEFK*OTOS
X2=VEFK*uf0SsS

S)ORE 10 UEFK
SI ORE 10 VEF>
Xb=XN

X 7T=¥YN
X1%*.99999
X6=XN
X2=200U.. .08
X7=Y¥YN

X2=FRACTIONAL PART XN
SIORE TO XN

XbsSIGN EXTENSION OF XN
X2»FR*0TZONAL PART XN

IN

L6

1/

ed

z3
zé
Z3
[N

26
e
ZT

7\
Iz
~0
oA
66
66
6T
/0

{03+ /0uddoe0 ¢
10662
AIZ6A
ITI3D
bTtooddoozs ¢

IZZZH
anazddoazi ¢

01660

YI66S

u!/jaedugodr ¢
S I00000d00

oaouddudgo +

100d430dZA |
\'T: /T TTr 213, TOIOASI 60
itLi31ougudoddupneo)

I¥ed 3uodudoouup0on00
IV, oadoddduoudouoooo
I'N&AdO&O&ODd&OHQ&DO
uoaoddouooosddaonmso
Iveay,dTITu, ,u00dddonnno
'0d0uuQ<3I0d00u00D0T+00

uououdoduuoddooooooT
i /&Lou0dddooddoonNo00

00002UuO0d00000d 000000
:* /éé - yuouodooudouoooo

OO0O0O0UUOUUUOOUOOONO0O

» €NQ

TXXX

AP

? AHP
AN
STIT-313
ug.p
YPYP
S\ >MY
XN
Xp
TP
oTOS
N
uTuss

sa 1
PXO
oxé
PXI
sao
PxZ
N(3

9§

¥N STUHE (O 1IN

X6-X¢é X6=AH'3()=AP

X6-XI> Xe=A»-U-T0O

XL-X6 XIS 0F,3FTI-AR

APH SIOHE TO Mp,

RZ XD Xé=AH-U-T, xOWe 9S)’F I-AW

X7\ TXXX XTOTITU TO OWOH T[L[NeousH

"LXMINO SHYUTTON

THO
Sx0
N(F

sao
23

VAO
BATA
BA A

H6-®!»

X6.d»0dxX

HIME

€L

AH SIOHE 10 AH
9999«

Ze

OOMMY VAPLAHI. AS S 'LATEO0 IN A:3ISUMPNAONS-e

BATA
BATA
'eATA
BATA
AT A
BATA
nsoz
BATA
BATA
BATA
BAT A
BATA

€v0

Ze
w
I
Oe
Ze
Oe
zZs
I
De
Oe
L>e

Qe

000000 000000 0000000

0000000

96

Figure B-4. Vector Test Routine Algorithms.

SUBROUTINE VVSPVS(R.A.S1.,B.S2_N)
DIMENSION A(1).,B(1).,R(l)

CALCULATE R=A*S1+B*S2 WHERE A,B ARE
VECTORS AND S1,S2 ARE SCALARS.
INPUT

N=VECTOR LENGTH

A, B AND R ARE VECTORS OF LENGTH N

DO 10 1=1.N
R(D=AMD*S1+B)*S2
10 CONTINUE
RETURN
END
SUBROUTINE VVVPVV(R.A.B.C.D.N)
DIMENSION A(1).B(1),C(1),D(1).R(1)

CALCULATE R=A*B+C*D WHERE A.B.,C AND D ARE VECTORS
INPUT

N=VECTOR LENGTH

A_B_C_D AND R ARE VECTORS OF LENGTH N

DO 10 1=1.\N
R(D=AD*B(D)+C)*D()

10 CONTINUE
RETURN
END
SUBROUTINE VVVPV(R,A,B.C.N)
DIMENSION A(1).B(1) ,C(1) ,R(1)

CALCULATE R=A*B+C WHERE A_.B AND C ARE VECTORS
INPUT

N=VECTOR LENGTH

A.B.C AND R ARE VECTORS OF LENGTH N

DO 10 1=1.N
RD=AD*B)+C)
10 CONTINUE
RETURN
END
SUBROUTINE DOTPRO(N ,X.IX.Y.IY.R)
DIMENSION X(1).Y (1)

CALCULATE THE SUMMATION OF THE PRODUCT OF X*Y

WHERE X AND Y ARE VECTORS.

N IS THE NUMBER OF VALUES TO BE SUMMED; IX AND IY
ARE THE SPACING IN THE X AND Y VECTORS, RESPECTIVELY;
AND R IS THE RESULT.

IXxX=1
Iyy=1
R=0

000000

10

10

97

DO 10 1=1,N

R=R+X(IXX)* YAYY)

IXX=IXX+IX

IYY=IYY+Y

RETURN

END

SUBROUTINE ADDVEC(A.B.C.S.N)
DIMENSION A(1).,B(1),C(1)

CALCULATE THE EXPRESSION A=S*B+C

WHERE S IS A SCALAR VALUE AND B,C,A ARE
VECTORS. N IS THE NUMBER OF VALUES TO
BE CALCULATED.

DO 10 1=1.,N
AMD=S*B(D+C)
RETURN

END

