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ABSTRACT

Deposition, concentrations in diet, and body burdens of 137 ¢cs
have been measured since 1954 at various sites throughout the
world. This report is a compilation and updating of various fall-
out *®7Cs measurements and an interpretation of transfer properties
of *27Cs from deposition to diet and from diet to man. An
empirical model is used to correlate deposition and diet data.
Direct foliar contamination, stored food supplies, and uptake from
soil contribute to the dietary levels of *27Cs. The accumulation
of *®7Cs by man is described by a single exponential model. The
inferred biological half-times, 200-400 days, are somewhat greater
than the half-time of about 100 days obtained from shorter term
studies. Differences in body burdens due to sex, age, and weight
are discussed. During the period 1954-1974, the internal dose
from fallout *27Cs, based on average body burdens, is estimated
to be 4-5% of the 21 year radiation dose from *°K,
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INTRODUCTION

Following three decades of fallout from global atmospheric
nuclear testing, *®7Cs is ubiquitous in the biosphere. The
radionuclide is produced with a yield of about 6 atoms per 100
fissions of uranium or plutonium, and disintegrates by beta and
gamma emissions with respective decay energies (MeV) of 8 1,18
and 0.51 and vy 0.66. Because of the relatively long, 30 year
half-life of '®7Cs, its similar biochemical behavior to the
intracellular cation, K', and the penetrating gamma radiation,
its concentration by biological systems is important.

Numerous measurements of '27Cs were included in fallout
study programs throughout the world, and several laboratories
continue to measure its deposition and concentration in milk.
Diet sampling and whole body measurements are performed at a
few locations,

The deposition pattern of the nuclide parallels °Sr with
an average '37Cs/?°Sr ratio of 1.6.'') The fallout rate follows
a seasonal trend with maximal values occurring during the spring
and summer.‘?)’ Peak levels were attained in 1963, following
the large scale testing by the USSR and the USA in 1961 and 1962,
These levels rapidly diminished to a low fallout level which,
since about 1967-1968;, has been maintained fairly constant by
Chinese and French atmospheric testing.

Various models have been developed to describe the movement
of *®7Cs from deposition to its eventual accumulation in man.
Because of the rapid binding of *®7Cs by most soils, the transfer
of fallout *27Cs to milk initially was hypothesized to occur by a
direct linear process. However, investigations subsequently
showed that, although the downward movement of *27Cs in soil and
its absorption by plants were minimal relative to °°Sr, root up-
take of '®7Cs does contribute to the concentration of the
radionuclide in plants. Consequently, Bartlett and Mercer‘?3)
extended a straightforward relationship, first introduced by
Tajima‘*’ for °°Sr, to *27cs. Milk '27Cs concentrations were
related to levels occurring in recent deposition and in two-year
cumulative '27Cs soil deposits. The model later was revised to
include a lag-rate factor'®’) which actounted for fallout occurring
in the preceding year and which was stored in feed consumed by
cattle. The model finally was formalized as:



C=pF + P)F) + PFy

where

C = 12 month mean concentration of *37Cs in milk (pCi/ﬂ),

F_ = annual deposition of 137cs (mCi/km® per y),

Fl = deposition of 137¢cs in the last half of the preceding

year (mCi/km®),
Fd = previous two-year cumulative soil deposit (mCi/km?®), and
pr,pl,pd‘z proportionality factors.
Aarkrog(s) showed that for Denmark and the Faroe Islands the

above equation adeguately predicted *27Cs milk levels from °°sr

fallout, and that the rate and lag terms could be expressed either
as concentrations in air, precipitation or deposits.,

Gustafson(7), in a comprehensive review. o Cs literature,
noted that the entry of *®7Cs into cow's milk is primarily from
direct deposition upon plant surfaces and ingestion of contam-
inated forage. Local changes in fallout, therefore, are readily
observed in changes in '27Cs milk concentrations. However, due
to processing and storage of other diet items, several months
may pass before fluctuations in '3®7Cs deposition affect over-all
dietary levels.

£ 137

Lloyd et al. (8) Jescribed a model which accurately predicts
individual 27Cs body burdens from corresponding milk levels.
Essentially, the model is a single exponential model which
estimates current '27Cs body burdens from the sum of the pre-
ceding month's burden and ensuing contributions from milk,
taking into account a constant intake rate and an exponential
elimination rate, While milk may reflect local variations in
1270s fallout, the more uniform concentrations in meat and grain
products may better reflect *237cCs intake and population body
burdens. {7’

l (o) d13‘7

Surgi et al relate Cs body burdens with dietary
intake using a previously measured value of body burden and

accounting for subsequent periods of constant intake of *27cCs,




assigning best known values for fractional absorption and single
exponential elimination. The data for comparisons were quite
limited,

Two models are presented herein, which first, relate *37Cs
deposition with corresponding dietary concentrations and second,
relate dietary concentrations with ultimate body burdens. Such a
method necessitates the summary of acquired data and provides a
current and comprehensive interpretation.

METHODS

In this report, a model previously used by UNSCEAR‘*®) to
interpret fallout °°Sr measurements has been employed to predict
dietary *3®7Cs concentrations from deposition data. By the method
of least squares fitting, parameters were obtained which predict
the contributions from direct '27Cs foliar deposition and its
uptake from cumulative deposits in soil. The long-term soil
component includes an exponential term which accounts for the
radioactive decay of '37Cs and its reduced availability with
time. A better fit was obtained when the soil factor included
the total cumulative deposit of *®7Cs rather than the deposit of
the preceding two years. A third component, a lag term, similar
to that used by Bartlett!®) was introduced to account for dietary
contamination due to foods produced in the preceding year and
stored by market practices. The model, therefore, is represented
by the following equation:

o]
= -+ .
Ci=PyFy + BFy ) Py ) Fiy
n=1
where
c, = dietary level of '27Cs in year i (pCi/g K),
Fi = deposition of '27Cs in the current year, i, and for

preceding years as represented by the subscripts (i-1)
and (i-n) (mCi/km®)

PysP,sPy = proportionality coefficients (pCi/g K per mCi/km®), and

i = exponential decay and removal constant.



By comparing the relative magnitude of the proportionality coeffi-
cients, one is able to describe the contribution of '27Cs to the
diet from direct deposition, pj, stored deposits, ps, and long-term
soil deposits, p3-

Cesium-137 retention in the body can be described accurately
by multiexponential models. Richmond et al.‘*’ reported '37cs
retention in man following a single exposure and presented evidence
for a double exponential retention function with one short -~ 1.39
day half-time component and one predominant, long - 133 day half-
time component, Rundo(la) made similar observations concluding
that 6-15% of *37Cs excretion occurs with a half-time of 1-2 days,
while 85-94% of its excretion occurs with a half-time of 50-150
days. Naversten and Liden‘*?3) expressed '%7Cs retention as the
sum of three exponentials with respective biological half-lives of
2-3 hours, 1 day and about 70 days. Although *2®7Cs retention can
be expressed as the linear sum of several exponentials, Richmond
and Furchner'**’ presented a model which explained the continuous
retention of *27Cs following varying intakes assuming a simplified
single exponential retention system. Tissue uptake studies have
shown the approximately equal distribution of 137¢cs among soft
tissues, (18 Although some controversy exists over the accumulation
of *®7Cs in bone, it appears that any radioactivity associated with
the tissue is present in the marrow portion with only slight uptake
by the hard tissue.(®®)

In attempting to fit United States whole body data to dietary
information, four models were tested:

. _ O -un
Exponential Qi =g Z‘ C(i—n)e
[ea] [oo]
. W -yn < ~m
D = .
ouble Exponentlal Qi c Z C(i-n)e + g Z C(l_m)e ‘
; _ e N -n
Rate + Exponential Ql = cCi +‘g Z C(i—n)e
n=0
o]
Double Rate + Exponential Q, = c.C, + c_.C + y C Thn
P i %71 T S Eeny T 9 2‘0 (i-n)
n—=




where

Q. = adult mean body burden in the year i (pCi *37Cs/g K),
C = average dietary level for the current year, i, and for
preceding years as represented by the subscripts (i-1),
(i-n) and (i-m) (pci *®*7Cs/g K),

c,g = proportionality coefficients, and
Vv, = the exponential decay and excretion constants.

For the environmental data reflecting yearly changes in *27Cs levels,
we were unable to identify a useful expression which contained more
than a single exponential term. Therefore, from tissue investiga-
tions which have shown uniform '27Cs soft tissue distribution, and
retention studies which have indicated '27Cs excretion predominantly
via one long-term compartment, a single exponential model can
effectively describe the transfer of *®7Cs from the diet to man.
Consequently, this model was utilized in fitting the available

data.

Body burden data, milk concentrations, dietary levels, and
deposition information were compiled for various northern and
southern hemisphere countries as referenced in Table 1 and inter-
preted by the methods outlined above. All data and corresponding
model fits are compiled in the adjoining Appendices. Fits had
correlation coefficients of at least .96 and most has coefficients
of greater than .98.

RESULTS AND DISCUSSION

Transfer from Deposition to Diet

The U. S. Public Health Service has reported '27Cs concentra-
tions in weekly samples of pasturized milk for 63 sites in the
United States and its territéries from 1960 to 1973.(*7) a
summary of the average annual concentrations in four regionally
distinct cities and the country average is shown in Figure 1. As
indicated, peak milk levels were attained during 1963 - 1964.

Since then, the levels have declined rapidly and, except for Tampa,
remain below 5 pCi per g K. Data collected by ANL for Chicago
compares well with the PHS values. Chicago concentrations closely
follow the national average while New York measurements are



somewhat above the country-wide mean and San Francisco's are below.

Although Florida‘'s '37Cs deposition was not different from
national levels, milk from Tampa showed extraordinarily elevated
concentrations. Porter g§_§;f<18) studied this phenomenon and
identified pangola hay, a Florida grown feed grain, as a major
contributor. When grown under similar environmental conditions,
pangola hay showed an increased affinity for '®7Cs compared to
alfalfa, By growing oats in various soils, Cummings et al, ‘%’
showed that grain grown in Florida soil fixed *27Cs better than
grain grown in soils representative of Ohio, thereby illustrating
the dependence of ?37Cs uptake upon soil conditions.. Wrenn and
co-workers‘2°) investigated the bioamplification of *37Cs in the
Jamaican food chain. Since soil '®7Cs concentrations were not
variable and no particular grass species was indigenous to the
island, they concluded that deposition and grass type alone were
not responsible for the elevated milk '27Cs concentrations
occurring there. Rather, a soil factor was implicated from the
observation that, between the years 1966 and 1968, the deposition
rate was declining faster than milk concentrations. An inverse
relationship was proposed between soil potassium content and *37Cs
grass concentrations, and, concomitantly, between soil potassium
and milk *27Cs levels. They hypothesized that areas characterized
by organic type soils low in potassium and having a relatively
high moisture content would yield grasses and, thus, milk with
elevated '®7Cs content. A comparison of the deposition transfer
functions, given in Table 2, confirms these findings. These values
illustrate the occasional large regional differences in the impor-
tance of foliar retention and soil uptake of *37Cs. Pgss, the
cumulative transfer coefficient,(lc) is 3.2 times greater for
Tampa than the national average. The relatively large values for
parameters p; and ps in Tampa, indicating large uptakes from
direct and cumulative deposits, account for the high 1370 milk
concentrations,

The transfer of *27Cs to milk from fallout was compared among
six northern hemisphere and three southern hemisphere countries.
The results are shown in Table 3 and Figure 2. The transfer
coefficient varies from 3.6 to 8.0 pCi yv (g K)~* per mCi km™ ® for
milk in most areas of the U. S. and other countries except for
Norway, the Faroe Islands, New Zealand and Australia which have
coefficients greater than 12.0. The U, S., Great Britain and
Denmark show similar *®7Cs milk concentrations and transfer
properties. The U.S.S.R. has a slightly higher transfer coeffi-
cient, which from the model fit, is attributed to greater adsorp-
tion from direct foliar deposition. It is not known whether the
grass characteristics justify this inference. Norway, the Faroe




Islands and New Zealand each have large transfer parameters and
elevated milk concentrations, All three countries, with soil
conditions presumably similar to the Florida situation, show large
uptakes of '37Cs from cumulative soil deposits, and also high
transfer from direct deposition. In addition, Norway and the Faroe
Islands have considerable transfer from stored feed supplies. While
Australia and Argentina have lower '®7Cs milk concentrations than
northern hemisphere countries, the transfer coefficients were large
for both. Australia has a large transfer of '27Cs from direct
deposition and stored feed, but little uptake from cumulative
deposits in the soil. Large transfers from direct deposition and
cumulative deposits occur in Argentina, but no contribution to
137cs concentrations is inferred from stored feed, which agrees
with Argentine agricultural practices of exclusively providing

feed during the year within which it is grown.

In general, therefore, direct deposition is the more important
factor in the transfer of '27Cs activity to milk, However, when
deposition is low, as in current years, or when certain soil con-
ditions prevail, the long term component can be significant.

Cesium-137 concentrations in 19 food items including milk and
comprising five food categories have been measured quarterly in
Chicago since 1961,¢?*) Figure 3 summarizes the data for each
food group. Seasonal variations are observed in all foods with
annhual maxima occurring during spring and summer months (see
Appendix B). Peak levels were measured in 1964, six months past
peak deposition. O0Of all 19 foods, whole wheat products showed the
highest *27Cs concentrations per kg, which is ascribed to the
accumulation of direct deposition by the bran with translocation
t6 the germ.(ag) Due to storage practices, processed foods show
lower levels extended over longer periods of time than their fresh
equivalents.

The long-term transfer of *27Cs from deposition to the total
diet and several separate food categories, was evaluated for
Chicago and Denmark., The parameters from the model fits are
listed in Tables 4 and 5. The highest transfer coefficient was
obtained for grain products, with somewhat less transfer per unit
deposition to milk and meat. The lowest values were obtained for
fruit and vegetables due to inferred low efficiency of uptake from
direct deposition. When groups are weighted for their fractional
contribution of potassium in the diet, the cumulative contribution
to total dietary *37Cs intake in Chicago from unit deposition is
34% from milk, 26% from meat, 23% from grain products, 10% from
fruit and 7% from vegetables. The transfer of '37Cs to the
Denmark diet is 1.7 times greater than for Chicago. From the



through Danish grain and meat products. The cumulative contribu-

model fit, this can be attributed to the larger transfer of *%7Cs ‘
137

tions to Cs intake in the Denmark diet are 38% from grain, 33%
from meat, 19% from milk, 7% from vegetables, and 3% from fruit.
The frequent importance of grain and meat contributions exemplifies
the pitfalls of utilizing milk concentrations as the sole indicator
of dietary *®7Cs contamination.

Transfer from Diet to Man

Figure 4 summarizes '®7Cs body burden data for the U. S. and
shows the predicted burdens from corresponding diet data. Body
burdens parallel dietary concentrations with maximal levels
~occurring during 1964. Peak body burdens between 110 and 150
pCi/gK correspond to an average diet level of about 50 pCi/gK.
The fact that the *®7Cs/K ratio in man is 2.5 to 3.0 times
greater than in diet demonstrates the relative homeostatic con-
trol mechanisms for an important intracellular electrolyte, like
K, which is regulated with a precision of +10%, and for a trace
mineral which does not: activate similar control mechanisms,

The modeled transfer of '37Cs from diet to man is presented
in Table 6. The transfer coefficient, Psz,, %) is 3.0 for the
United States. Bg simply dividing '27Cs body burdens by dietary
levels, Gustafson 73 reported an approximate transfer factor of
3.0. When compared with U. S. body burdens and diet data, the
Danish population showed elevated *27Cs body burdens during 1963
to 1969 in response to greater dietary concentrations from 1963
to 1968, - Current body burdens and dietary levels are similar for
both countries., The transfer coefficient in Denmark is 1.2 times
lower than in the U, S. From the regression f£it, one infers
somewhat less absorption but longer retention of *37Cs for the
Danish population.

Biological half-lives were estimated by the formulation:

T, = légé X 365 daYs/yr

Inferred values are 230 days and 380 days for the U, S. and
Denmark, respectively. These half-times are 2-4 times greater
than previously reported values of approximately 100 days.
Although these half-times give the best fit in the least squares
sense, there is not always a significant difference from the
fits with a 100 day half-time as shown ‘in Figures 5 and 6. For
the U. S. body burden data, the differences between the fits are .




within the errors of diet and-body measurements. The transfer
coefficient from the 100 day half-time fit, 2.9, remains in
agreement with Gustafson. (7’ However, for the Danish data, the
100 day half-time fit considerably underestimates body burdens
between 1965 and 1970. This inconsistency is somewhat reduced by
choosing a half-time of about 150 days. ~For the U. S., the adult
mean biological half-life probably lies between 100 and 250 days:
whereas for Denmark, values greater than 150 days seem appropriate.

Various factors have been suggested as affecting *3®7Cs
biological half-lives in man. Body burdens have been observed to
vary according to age, sex, race, diet and body weight, and
scientific debate continues as to the relative importance and
interdependencies of each. Onstead et al.‘?®’ measured '37Cs
body burdens in 6,000 individuals who resided in Germany. Cesium-
137/gm K was much lower in children than in adults and increased
from childhood to about 20 years when the ratio apparently became
constant. Body burdens showed little sexual dependency until
following puberty when women consistently had lower '27Cs burdens
than men. MacDonald et 1.¢%%) reported similar sex differences

for *27Cs body burdens of 1000 adult subjects in California.

Statistically significant differences at the .01 level for
sex, race, age and weight were reported by L. M, scott{?®) who
based his findings upon 20,000 measurements from 1958 to 1968 in
Oak Ridge, Tennessee. Women averaged 36% lower burdens than men,
and blacks 24% less than whites. Cesium-137 burdens decreased
exponentially from age 20 to 59 years. The fact that the ratio
of '37Cs/K is much lower in children than in adults indicates that
children discriminate against cesium in favor of potassium, whereas
discdrimination in adults is somewhat less and may reflect an
eventual loss of fine-tuned potassium control. In addition to
lower absorption of *27Cs, half-times of 10-25 days have been
observed for children, ?%4'2®) thus supporting the low body burdens
which have been measured.

Differences due to weight were investigated by Scott. ¢ 28
Individuals weighing less than 63.5 kg had lower '27Cs body burdens
while no relationship was observed for persons weighing greater
than 63.5 kg. Eberhardt‘?’) summarized this phenomenon with the
fractional power function of weight for biological half-lives,

2
Half-~-time = 6 W-5

- 9 -



where

W = body weight in kilograms

Clemente‘2®:29) and Lloyd‘2°’ maintain that the lower 37Cs biolog-
ical half-life observed in women is not attributable to their lower
body mass, but to a hormonal factor. They purport that the corre-
lation of '®7Cs biological half-times with sex and mass are
independent,

Maternal and infantile '®7Cs metabolism are special cases and
show different kinetics.(?8°31) Immediately post partum, three
mothers showed 3.3 times shorter biological half-lives than non-
pregnant women. ®*)  Infants had similarly short biological half-
lives, 10 days, and low *27Cs/K body burdens. The similarity
between the *27Cs body burdens of mothers and infants indicates
a lack of placental control for these cations, while short
biological half-lives, in addition to low body burdens, suggests
that both groups discriminate against '®7Cs in favor of K. A
possible explanation for these and other observed differences may
be found in the indirect action of sex and growth hormones and
the direct action of ACTH and ADH which regulate potassium
excretion and retention.

Dose from Fallout 27Cs

For *®7Cs, which decays by emitting both B particles and 2%
guanta, internal dose calculations must include separate estimates
for the contributions from uniformly distributed B and vy radiation.
Because of the short range of B radiation, calculations for the B
contribution remain simple and yield a B dose estimate of .93 mrad/
yr per 100 pCi/gm K.(22%)  Estimates for v contributions, however,
depend upon geometrical considerations and, for adults, have
ranged between .90 and 1.30 mrad/yr per 100 pCi/gm K depending
upon the method of calculation. It follows, then, that internal
dose rates from '37Cs to children are lower due to a higher
fraction of v radiation escaping. For a 70 kg man 170 cm in
height, a v dose rate of .90.-mrad/yr per 100 pCi/gm K was adopted
by UNSCEAR ?O) yielding a total internal dose rate of 0.018
mrad/pCi/gm K per year. Radiation doses from internal *27cCs
exposure for adults were ‘calculated based upon this estimate.
Compiled body burden data and corresponding doses are presented
in Table 7. Peak annual dose rates, in response to maximum body
burdens, occurred during 1964-65, The 21 year integral doses from
1954 to 1974 for the U. 8. and Denmark, are 16.0 mrads and 18.4
mrads, respectively. Gustafson'”’ reports ‘a U, S. average dose of

- 10 -




15.2 mrads from 1953 to 1967. When compared to the dose to soft
tissue from *°K, 19 mrad per year,‘ *°’ these *®7Cs doses are
equivalent to 4-5% of the dose received from naturally occurring
4o0g during the same interval. Relatively high fallout levels in
1959 and 1963 were accompanied by high body burdens in 1959-60 and
1964-65. Since then, exposure to *27Cs has been minimal.

CONCLUSIONS AND SUMMARY

Two mathematical models have been presented which describe
the movement of '27Cs from deposition to diet to man. Peak
deposition occurred during 1963. Shortly thereafter, maximum
dietary concentrations and body burdens were measured. Dietary
concentrations of '37Cs are shown to be dependent upon direct
contamination, stored supplies, and uptake from cummulative soil
deposits. The long-term soil component becomes increasingly
important when atmospheric nuclear testing and, thus, direct
contamination become minimal.

Northern hemisphere countries have shown similar concentra-
tions of '37Cs in milk and diets with some notable exceptions;
Norway, the Faroe Islands, and within the U. S.; Tampa, Florida.
Due to lower fallout, southern hemisphere countries have had
lower *27Cs milk concentrations than northern hemisphere countries.
However, the transfer of *27Cs from deposition to milk in southern
hemisphere countries was relatively high.

The transfer of '®7Cs from diet to man is effectively
expressed as a single exponential function dependent upon uptake
and removal parameters. The model seemingly exaggerates human
biological half-lives for *®7Cs. It is probable, however, that
the differences in the half-times are within the uncertainties of
the estimates for '27Cs dietary intakes and body burdens. Alter-
natively, the model may be sensing a longer term component of
137cs retention, perhaps by bone, which only now is becoming
apparent as dietary *®7Cs intake continues to decline.



TABLE -1

SOURCES FOR '27Cs DEPOSITION, DIET AND BODY BURDEN DATA .
Country References*

Argentina 33

Australia 34,35

Denmark 36

Farce Island 37

Great Britain 38,39,40

New Zealand 41

Norway 42

USA 2,4,10,14,15,43,44,45,46,47

USSR 48

*When deposition data were not available, estimates
were calculated from HASL °°Sr inventory data for the
appropriate latitude band based upon the *27Cs/°°sr
ratio of 1.6.

- 12 -



TABLE 2

PARAMETERS OBTAINED BY FITTING LOCAL *®7Cs DEPOSITION
TO MILK *®7Cs CONCENTRATION

USA Chicago Chicago
(avg. ) (ANL) (PHS) NYC Tampa San Francisco
P 2.28 2.23 2,19 1.92 4,38 1.86
P2 1.34 1.22 1.29 1.13 .66 2.56
Ps <0.01 .13 .07 .01 2.03 <0.01
(L .05 .31 .67 .07 .27 023
Psga 3.63 3.82 3.55 3.19 11.59 4,42

- 13 =



TABLE 3

PARAMETERS OBTAINED BY FITTING “°7Cs DEPOSITION DATA
TO *27Cs/gK IN MILK

Great Faroe New
USA Britain USSR Norway Denmark Islands Zealand Argentina Australia

P:  2.28 1.75 4,43 3.52 2.37 6.80 6.79 2,21 7.24
p= 1.34 l.61 .22 2,26 .69 5.44 .68 0 4.78
ps <.0l1 .03 .31 2.63 . 06 2.83 3.62 1.80 .30
V8 .05 .023 .18 .24 .30 .17 .51 .27 .18

Pzs 3.63 4,75 6.22 15.48 3.23 27.51 12,91 8.02 13.59




TABLE 4

PARAMETERS OBTAINED BY FITTING '37Cs DEPOSITION DATA
TO CHICAGO DIETARY *37Cs CONCENTRATIONS

Milk Grain Meat Vegetables Fruit Total
P1 2.23 1.14 0.60 0.40 0.93 0.87
P2 1.22 4.48 0 0 0 0
Ps .13 .12 6.92 0.05 0.64 3.60
(L .31 .12 1.33 0.24 0.52 1.20
Pz 3.82 6.58 3,10 0.59 1.87 2.42
Wj* .227 . 092 .220 .299 .134 1.00
Wnga 0.87 0.60 0.68 0.18 0.25 2.42
Total
Pza. 2.58 2.42

*Fractional contribution to K in the total diet.

- 15 =



TABLE 5

PARAMETERS OBTAINED BY FITTING '3®7Cs DEPOSITION DATA TO
DANISH DIETARY '27Cs CONCENTRATIONS

Milk Grailn Meat Vegetables Fruit Total

P 2.17 2.36 4.45 0.63 0.81 1.56
P2 1.48 17.02 0 0 0.55 2,21
Ps .05 - 17.24 0.006 0.08 . 04
w .07 - 1.60 .02 0.30 .12
Psa 4,32 19. 38 8.80 .92 1.59 4,08
WE* .20 .09 .17 .37 .09 1.00
“%Pgs .86 1.74 1.50 .34 .14 4.08
Total

Pzga 4,58 4.08

*Fractional contribution to K in the total diet,

- 16




TABLE 6

PARAMETERS OBTAINED BY FITTING TOTAL DIETARY *®7Cs
CONCENTRATIONS TO '37Cs BODY BURDENS

Parameter USA Denmark
g 2.05 1.26

v 1,12 .67
Psg 3.04 2,58
T% (days) 226 378

- 17 -



TABLE 7

1370g IN MAN AND CORRESPONDING INTERNAL DOSES

USA Denmark
Avg. Body Annual Avg. Body Annual
Burden* Dose Burden¥* Dose
Year (pCi/g K) (mrads) (pCi/g K) (mrads)
1954 7.0 0.13 3.2 0.06
55 14.5 0. 26 12.4 0.22
56 36.6 0.66 21.8 0.39
57 39.1 0.70 27.0 0.49
58 48.8 0.88 37.4 0.67
59 58.5 1.05 54,2 0.98
60 51.6 0.93 53.2 0. 96
6l 35.7 0.64 37.9 0.68
62 41.0 0.74 44,6 0.80
63 74.2 1.34 100.0 1.80
64 132.7 2.39 162.0 2.92
65 103.7 1.87 170.0 3.06
66 69.7 1.25 106.0 1.91
67 40.3 0.73 65.0 1.17
68 25.0 0.45 46.5 0.84
69 21.3 0.38 40.3 0.73
70 19.8 0. 36 23.0 0.41
71 20.0 Q.36 13.0 0.23
72 20.0 0.36 16.0 0.29
73 18,5 0.33 11.0 0.20
74 11.4 0.21 9.6 0.17
Total
through 1974 16.02 18.98

*USA average body burdens were computed as means of values
reported by ANL, BNL and LASL., Denmark burdens for the
years 1954-1962 were estimated from diet data.
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APPENDIX A

Summary of model fits: measured '2®7Cs
concentrations in milk, diets, and humans,
with predicted concentrations from corre-
sponding deposition and diet data.
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6¢

YEAR

1854
185%
1656
1557
1958
1659
1560
1661

1662

1563

1564
1565
1566
1567
1568
1569
1970
1971
1572
1573
1974

1975

DEPUSITION
PCI75C KM

CS~-137 MILK

ARGENTINA

MEASURED
PCI/GM K

PREDICTED
PCI/GM K



1037

YEAR

CZPCSITION
FCI/SGQ KM

1&44

CS=137 MILK

AUSTRAL T2

MEASURED
PCI/GM K

22.CC
32470
31.3C

18.70C

PREDICTED
PCI/GM K

13.26
15.81
15.41
12.62
i3.10
14,18
1710
34.16
31.65

13.58




v

YEAR

1554
1955
15956
1957

1658

1969
1970
1971
1872
1973
1974

1875

DEPCSITION

MCI/SC KM
3.20
3.84
4,00

4616

€5-137 MILK

BRITAIN

MEASURED
PCI/GM K

12.60
37.4C
81.30
92,20
59.C00
27.70
12.C0

9.60

PREDICTED
PCL/GM K

36.26
81.87
92,91
57.931
26+ 30
14.21
1C.59

e T4



A

YEAR

1554
1855

1556

1857

1858
1659
166¢
1661
1562
1663
1664
1665
1566
1667
1568
1569
1870
197
1672
1673

1974

1515

DEPCSITION
PCI/SE KM

3.36
T.04

T.52

CS-137 MILK

DENMARK

MEASURED
PCI/GM K

PREDICTEC
PCI/GM K




13374

YEAR

1954
1555
1556
1957
1958
1559
1560
1561
1562
1563
1564
1565
1966
1567
1968
1569
1570
1971
1572
1573
1974

1675

DEPCSITION
MCI/SC KM

CS~137 MILK

FARQE ISL.

MEASURED
PCI/GM K

382.CC
€27.C0
8§29.00
651.CC
417.00
344.C0
282.C0
260.C0
228,00
224 .00
170.00
154.00

158.00

PRECICTED
PCI/GM K
48,00
115.00
157.00
188.00
232.00
315.00
271.60
187,00
328.00
658,00
825.00
632.00
431,00
361.00
292.C0
236.00
225.00
226.00
196.00
152.00

135.00



V428

YEAR

1954
16585
1856
1557
1958
1659
1s6¢C
1861

1662

1563

1664
1665
1566
1667
1968
1669
167¢
1971
1872
1973

1674

1575

DEPCSTITION
FCI/SC KM

CS=137 MILK

NEW ZEALAND

MEASURED
PCL/GM K

53,00
60.60
39.G0
31.00
23.00
28.00
25.00
23.00
19.00
13.00

10.C0

PRECICTED
PCI/GM K

20.65
23.00
28.36
32.67
54,10
57.90
40.50
29.50
23.80
25.20
23.10
26430
21.10
13.49

10.20




Sy

YEAR

1662
1663
1964
1665
1666
1567
1568
1569
1878
1671
1572
1673
1574

1975

DEPCSITION
VCI/SEC KM

14.72
2.64
3,49

13.92

32.35

C5-137 MILK

NCRWAY

MEASURED
PCI/GM K

11.40
25.40
90,40

104.€0
89.C0

136.C0
221.C0
295.C0

232.00

163.0G

121.00
97.0¢C
85.C0
78.0C
56.00
53,00
48.00

39.CC

o

PREDICTED
PCI/GM K
13.52
34.04
49.29
bl.81
75.57 
112.47
106,56
T4e1l
1C8.10
214.49
278.27
227.68
161.60
125,77
102.58
86.86
75443
65.93
55,01
43,57

37.96

o



9%

YEAR

1654
1953
1656
1957
1958
13959
1560
15661
1962

1963

1564

1665
1566
1867
1968
1569
187¢C
1971
1972
1673
1574
1875

DEPCSITION
MCI/SC KM
3.0"

3.84

2.24
3.77
14400
24.00
15.81

7.34

O.86
01} 42

1.23

CS=13T MILK

usa

MEASURED
PCI/GM K

PREDICTED
PCIZGM K

6,79
T.43
4.71
2415

3.36




Ly -

YEAR

1554
1555
1956
1657
1958
1959
1960
1561
1562
1563
1964
1565

1966

- 1667

1968
1669
1970
1s71
1872
1873
1974

1975

DEPOSITION
MCL/SC KM
3.12
4,06
4.81
4484
7.18
11.15
2.33
3.42
14.15
28.90
18.98
8.09

3.03

€S-137 MILK

USSR

MEASURED
PCL/GM K

140.C0
107.00
52.00
37.C0
25.€0
20.00
13.CC
15.00
18.€0

20.00

PREDICTED
PCI/GM K
13.82
19.69%9
24610
25.19
36,90
56064
17.74
22026
T1.99
139.94
105.20
57.17
31.58
22,07
21.99
18.22

19.89



8% -~

YEAR

1554
1555
1956
1657
1958
1559
1560

1961

1562

1563
1564
1565
1666
1967
1568
1569
1570
1971
1572
1573
1574

1975

DEPUSITION

MCISQ KM
2421
2.25

11.02
23.71
17.63

6.78

CS~137 MILK

CHICAGC=PHS

MEASURED
PCI/GM K

26.C0
67.33
72.50

39.17

PREDICTED
PCI/GHM K
4,84
T.86
10.79
12.61
21.77
25.82
13.35
10.16
28.§7
66.60
70.24
38.74

14.54




6% -

YEAR

1654
1655
1556
1957
1958
1659
1660
1961
1862
1963
1664
1965
1566
1667
1568
1569
1s7¢C
1671
1872
1973
1674

1975

DEPOSITIONM
MCI/SC KM

€5-137 MILK

NEW YORK

MEASURED
PCL/GM K

PREDICTED
PCI/GM K
4042
15.95
20.06
21.64
26.95
37.81
21.10
10.84
42.78
96407
92.88
47,07
18.89

1079

594
3.67

3.62



0g

YEAR

1654
1655

1656

1662
15¢3
1564
1565
1666

1667

1969
1970
1971
1572
1973

1874

1575

DEPCSITICN
MCTI/SG KM

0.6l
0.38
0.54
U.26
0.19

0.30

CS~137 MILK

SAN FRANCTISCO

MEASURED
PCT/GHM K

46.67
325G

17.50

PRECICTEC
PCI/GM K
Ce 69
2410

3. 70

17:63
41.00
38.42

18.86




19

YEAR

1954
1655
1956
1657
1958
1859
1560
1661
1562
1663
1564
1665
1966
1567
1568
1569
1970
1871
1972
1973
1874

1675

DEPOSITION
MCI/SQ KM

2023

CS~-137 MILK

TAMPA

MEASURE
PCI/GM

6.67
43,33
72.00

143.33
154.17
107.5C
76.67
50.00
44,00
36.67
34.C0
28.67
23.33

18.C0

D
K

PRECICTED
PCI/GM K

28.74
58.18
75.63
48,63
34,97
65.08
151.92
140.64%
38. 26
73.26
56.22
45,16
37.85
34,64
29.26
23.09
16.84

16.07

P



Zs

YEAR

1954
1555
1956
1557
1958
1559
1560
1561
1962
1563
1564
1965
1566
1567
1968
1669
1670
1971
1972
1973

1974

1578

DEPCSITION
MCI/SC KM

CS-137 DI1ET

CHICAGO

MEASURED
PCI/GM K

PRECILCTED
PCI/GM K

o8]
@

o
>

bebb
3,086
10.33
13.15
19.21
16.48
10.10
18.33
38,01
44496
32.93

18.54




€4

YEAR

1554
1955
1556
1957
1958
1559
166G
1561
1562
1663
1564
1565
1566
1567
1568
1669
197¢
1571
1872
1973
1974

1975

DEPCSITION

BCI/SC KM
2.21
2425
3.55
3.58
T.73

706

CS~137 MILK
CHICAGD

MEASURED
PCI/GM K

<

4.80
3.30
3.30

6.10

PREDICTED
PCI/GHM K
%.93
9.27
11.83
12.%6
22243
26.51
l4ci4
11.31
30.19
68.38
72.14
41.22
17.34
10.09
8.27
8.00
9.87
9.61
598
3.21
5o 4%

4. 11



va

YEAR

1954
1555
1556
1957
1958
1659
1560
1561

1962

1563

1664
1665
1966
1967
1668
1669
1870
1871
1972

1573

1574.

1875

DEPCSITION
MCI/S G KM

CS~137 MEAT

CHICAGO

MEASURED
PCI/GM K

PREDICTED
PCI/GM K




Gg

€S-137 GRAIN

CHICAGO
1

YEAR DEPCS ITION MEASURED PREGICTED

MCI/SE KM PCI/GM K PCI/GM K
1554 3.04 - 3.47
1655 3.84 - 18.32
1556 4,48 - 23.01
1957 4.51 - 26430
1558 7.28 -- 29.95
1559 10.64 - 46480
1560 2.24 - 53,18
1561 3.77 31.60 17.26
1562 14.00 41.50 35.83
1563 24.060 85.00 94424
1564 15.81 139.90 131.88
1665 7.34 83.50 86454
1566 2.98 33.80 43.59
1567 1.54 21.50 21.91
1568 1.81 16.30 15.16
1569 1.50 16.70 15.52
1670 2.08 17.70 14.30
1571 2.02 17.40 16,47
1572 0.86 13,40 14.56
1973 0.42 8.00 8. 44
1974 1.23 9.60 6497

1675 0.50 5.60 F. 48



99

YEAR

1569
1570
1971
1672
1973
1574

1975

DEPCSITION
MCI/SC KM
-3s04
3.84
s 48
4.51
T.28

10.64

CS=137 VEG

CHICAGO

MEASURED
PCI/GM K

>

PREDICTED
PCI/GM K




LS

YEAR

1954
1855
1956

1857

1658

1559
1560
1561
1562
1563
1964
1565
1566
1567
1568
1569
1570
1971
1672
1573
1574

1975

DEPOSITION
MCI/SC KM

CS=-137 FRUIT

CHICAGO

MEASURED
PCI/GM K

PREDICTED
PC1/GM K
2.83
4,73
6.73
7.17
10.26
14.74
9,01
8.50
17.43
30,30
28,62
21.14
14.08
9. 30

6495



89

YEAR

1654
1655
1656
1657
1558
1556
156¢C
1561
1662
1563
1664
1865
1366
1567
1668

1669

187¢C

1971
1872

1973

DEPOSITION
MCI/SGC KM

CS=137 DILET

CENMARK

MEASURED
PLIZGM K

20,00
72.C0
85.C0
51.60
21.C0
12.C0

10.50

PREDICTED
PCI/GM K

2.50




6S

1854
1655
1956
1657
1958
1659
156C
1961
1562
1563
1964
1565
1966
1667
1968
1669
197¢C
1571
1872
1673
1974

1975

DEPCSITION
#CI/SC KM

1.60

€5-137 MILK. PRoD

DENMARK

MEASURED
PCLI/GM K

PREDICTEQ
PCI/GM K

11.90
12.25

2L 74

16.16
8092
3C. 67
77.22
78,33
4le63
20.12
11.87
10.45
5.97
10.69
11.70
7.83
%.26

5‘ 34

any



09

YEAR

195¢
1660
1361
1562

1563

1664

1565
1666
1567
1568
1569
1970
1571
1572
1973
1574

1975

DEPCSITION
MCI/SC KM

1.60

CS-137 MEAT

CENMARK

MEASURED
PCI/GM K

48,80
172.20
166.30
118.60

44.90

24.30

28.00

24:90

17.80'

25.10

17.20

8:70

11.90

PREDICTED

PCI/GM K
7.12
19.81
36450
28.56
45,77
60.88
39.81
23.29
63.80
162.57
175.98
106.67
53,08
26480
19.68
17.20
18.71
20.90
13.58
5.88

7.04




19

YEAR

1654
1655
1656
1657
1658
1659
1660
1561
1862
1663
1964
1665
1566
1967
1968
1669
1s7¢C
1971
1572
1973
1674

1975

DEPCSITION
MCI/SC KM

€5-137 GRAIN

CENMARK

MEASURED
PCI/GM K

34.30C
284.C0
488.C0
294,10
105.40
48,00
26.80
35.C0
27.70
40;30
41.50
12.40

9.30

PREDICTED

PCI/GM K
3.78
34,78
62.02
62.39
73.80
137.57
132.29
36,57
68.45
265,65
494,06
298.43
115.63
62.05
33.08
42038
34.07
4760
42,89
12.75

8.12



Z9

YEAR

1954
1955
1956

1657

1358

1559
1560
1561
1962
1563

1964

1665

1566
1567
1968
1569
1570
1571
1972
1673
1574

1975

DEPCSITION
MCI/SC KM

CS~137 VEG

CENMARK

MEASURED
PCI/GM K

PRECICTED
PCI/GM K




€9

YEAR

1554
1658
1556
1957
1958
195§
1s56C
1661
1562
1663
1564
1965
1566
1567
1968
1669
167C
1671
1672
1973
1574

1975

DEPOSITION
MCI/SC KM

€S-137 FRUIY

CENMARK

MEASURED
PCI/GM K

PREDICTED
PCI/GM K
1.30
3.56
4061
4.86
8.03
16.73
6.63
3.87
11.73
29.51
30.76
17.14

8.72



79

YEAR

1654
1555
1556
1557
1958
1559
1566
1561
1562
1563
1564
1565
1566
1567

1568

TCTAL CTET
PCI/GY K

21.00

12.00

€S-137 BODY

CENMARK

MEASURED
PCL/GM K

3

1C0.CC
162.CC
170.CG
106.CC
65.CC
46 .50
40438
23.CC
13.CC
16.C0C

11.¢6

PREDICTED

PCI/GM K
3.15
12.44
21,76
26.97
37,44
54,25
53024
37.90
44,59
113.70
165,43
149.76
103.13
67.91
48,00
37.56
29.94
28,32
2484
17.63

13.82

i oo




S9

YEAR

16856
1657
1658
1959
156C
1961
1662
16¢3
1969
1665
1566
1567
1568
1669
1670
1871
1572
1873
1574

1975

TLYAL CIET
PCI/GF K
264
6.64
9.06
0.33
3.15
19.21

16.48

€S-137 BOOY

Usa

MEASUR ED
PCI/GM K
7.C0
14.50
36.60
39.10
48.8C
58,50
51.60
35.70
41.CC
74.20
132,76
103.70
69.7C
40.30
25.€0
21.3¢
15.80
20.C0
20.C0
18.50

11.4¢C

PRECICTED

PCI/GM K
5.40
15.36
23.56
2884
36.33
51.18
50,44
37.13
45,74
94.05
122.73
107.46
73.02
43,03
25,65
17.58
14.76
14.564
12.66
8.70

T.12



APPENDIX B

Chicago diet data: gquarterly *®7Cs concentra-
tions in the total diet, 5 food groups and 19
food items.

- 66 -
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€L

YEAR

1961
1962
1963
1964
1965
19686
1967
1968
1969
197¢
1971
1972
1973
1974

1975

1SY QTR

13.6

21.7

2ND QTR

12.2
15.0
30.0
53.5
34.2
10.0

7.0

604

3.5
2.2

CHICAGO:

CS-137 TOTAL DIET
(PCI/5M K)

3RD QTR

4TH QTR

22.4
24.4
47,1
36.2
26 .6

9.5

YEARLY AVG

15.9
20.9
34.0
4745
32.8
13.1
8ot
8.0
6.8
6.5
6.1
4.3
2.8
3.5

3.4



vL

YEAR

1961

1962

1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

1975

‘18T QTR

9.5
27.5
64.0
60.2
23.9
11.0
11.3
546
7.5
6.5

4.3

2ND QTR

CHICAGO:

CS=-137 TOTAL MEAT
{PCI/GM- K}

3R0 QTR

12.5
20.4
38.9
7642
51.3
18.8
19.0
19.5

8.1

9.2

8.3

8.2

PR

o

4TH QTR

11.5
22.8
6746
5047
48 .5
162
11.8
11.3
4.2

5.0

YEARLY

14.3
17.2
42,7
59.4
52.2
18.2
13.2
13.6
6.7
6.9
7.0
6.0
3.2
3.3
3.5

AVG



SL

YEAR

1961
1362
1963
1964
1965
1966
1967
13968
1369
1970
1871
1972
1973
1974

1975

1ST QTR

33.3
76.8
185.1
90.5
49.8
22.2
18.7
16.5
174
22.1

11.8

CHICAGO:

ZNB QTR

24.3
27.1
T4a9
152.2
85,5
2403
15.9
12.8
15.0
10.9
14.9
14.1

Fe6

€S~137 YOTAL GRAIN
{PCI/GM K}

3RD QTR

33.4
38,7
64,1
121.3
35.0
25.6

33.5

4TH QTR

37.5
67 .6
125.5
163.2
6404
2643
14,9
19.9
13.7
23.0

18.8

YEARLY AVG

31l.6
41.5
8540
139.9
83.5
33.8
21.5
16.3
16.7
17.7
17.4

13.4



9L

YEAR

1961
1962
1963
1564
1965
196¢
1967
1968
1969
197C
1971
1972
1973
1974

1975

1ST QTR

Z2NC QTR

11.9
13.3
S5e4
14.3
3.0

0.7

CHICAGO:

CS-137 TOTAL VEG
(PCI/GM K)

3R0 QTR

“4e3

4TH QTR

10.8

YEARLY AVG

g.o




LL

YEAR

1961
1962
1963
1964
1965
1966
1967
1968
1969
187¢
1871
1972
1973
1974

13875

1ST QTR

14.7
28.9
36,7
33.8

18.3

2ND QTR

23.0

20.5

15.9

28.2

20.3

CHICAGO:

CS~-137 TOTAL FRUIT
{PCT/GM K}

3RD QTR

18.9
2446
17.1
23.4

20.2

4TH QTR

34.2
39.8
32.2
28.5

11.9

5.9

YEARLY AVG

2543
2449
23.5
29.2
21.6
10.7
5.1
4.5
6.6
4.9
3.8
3.0
1.5
3.8

3.3



CHICAGO: €S-137 MILK

(PCI/GM K)
YEAR 1ST GTR 2ND QTR 3RD QTR 4TH QTR YEARLY AVG
1961 s 3.3 15.1 39.4 19.2
1962 24.9 1644 72.8 36.1 ‘ 37.5
1963 , 24.3 610 91.8 73.4 62.6
1964 91.2 98.4 606.3 49.8 ‘ 764.9
1965 60.3 51.2 26.9 21.6 40.0
1966 22.0 12.7 1547 7.3 44
1967 7.2 8.6 12.0 5.3 8.3
1968 8.7 8.1 7.5 12.9 9.2
1 1969 8.7 9.4 10.6 10.0 9.7
® 197¢ 8.0 7.3 16.0 7.3 9.6
! 1971 12.5 11.3 7.3 6.0 9.3
1972 8.0 6.0 1.3 4.0 4.8
1973 - 5.0 o 1.4 3.3
1974 - 3.3 - i , 3.3

1975 — 3.3 - 8.7 6.1




6L

YEAR

1361
1962
1963
1964
1965
1966
1967
1968
1969
1S87¢
1871
1972
1973
1974

197%

1ST QTR

25.7
104.2
237.1
107.2

55.3

18.5

12.8

23.1

18.0

24.9

13.5

CHICAGO:

2ND QTR

22.6
25.7
107.2
155.6
8406

27.0

CS-137 WHITE BREAD
(PCI/GM K)

3RD QTR

21.9
19.6
80.0
92.1
97.4
28.8
39.0
18.2
2244
21.7
14.0

22.6

4TH GTR

46 .1
101.2
145.7
105.0

69.5

20.6

18.5

17.7

206

23.1

15 .6

9.2

4.0

YEARLY AVG

30.2
43.0
109.3
147.4
89.7
35.6
227
15.1
17.6
18.7
17.9
13.3
7.5
8.3

4.0



08

CHICAGD: .05
{

JGM k)
YEAX : 1ST QTR 2NC QTR RD QTR oTH CTR YEARLY AVG
1961 - 31,3 - 31.0 30.7 ' 31.0
1962 13.7 36.7 6043 73.0 , 45.9
1963 S 73.0 ' 73.0 85.7 118.0 874
1664 199.7 204.0 127.3 72'.7 150.9
1965 8447 69.3 31.3 73.3 79.7
1966 31.0 15.3 17.5 51.7 29.2
1967 23.1 12.5 3C.8 11.6 19.5
1968 8.9 11.0 10.2 : 8.7 , 9,6
1969 6.5 17.8 12.9 : 10.4 : 12.3
197¢ ' 14.8 11.8 10.6 15.4 13.2
1971 13.3 10.6 7.3 14.0 11.2
1972 11.0 9.0 12.9 9.2 ’ 10.4
1973 -— 10.0 - 6.4 8.3
1974 ' e 5.5 < <= 5.5

1975 - 3.6 - 55 4a7




18

YEAR

1961
1662
1963
1564
1965
1966
1967
196¢E
1969
1s70
1971
1972
1973
1974

1975

1S7T QTR

5661
50.5
129.9
T2.0
59.3
23.6
31.5
18.3
19.2
25.6

11.0

CHICAGO:

2NC QTR

19.6
23.4
42.1
115.0
101.9
28.1
16.5
15.7

22'9

17.4
22.9
9.3

13.2

CS=137 FLOWR
{PCL/GM K)

3REI QTR

47.7
44,9
30.9

145.8
92.2
35.3
31.1
14.9
2548
24.C
17.4

15.0

4TH QTR

33.6
32.7
114.0
118.7
47 .7
14.9
11.9
33.0
8.0
27 4
25«6

11.0

YEARLY AVG

33.6
39.3
59 .4
1274
78:.3
3546
21,1
234
19.5
20.1
21.5

16.1

13.2

T4



Z8

1961
1962
1963
1964
1965
1566
1967
1968
1969
197¢
1971
1972
1973
1974

1975

18T QTR

33.5
93.5
153.0
117.0
52.0
33.0
18.0
12.0

12.0

CHICAGO:

2ND QTR

26.5
20.5
90.0
147.0
17.0
19.7

28.7

CS-137 MACARONI
{PCI/GM K}

3RD-QTIR

32.0
29.5

82.5

4TH QIR

35.0
4645
‘120.5
132.5
75 .5
25.3
21.8
11+%
15.0
17.5

15.0

YEARLY AVG

31.2
32.5
96.7

145.7.
95.5
32.0
28.0
8.7
12,90
13.7

12.0

9.3




€8

CHICAGO: (CS$~137 RICE
(PCI/GM K)
YEAR 1ST QTR 2ND QTR 3R0 QTR 4TH CTR YEARLY AVG
1961 -~ 43,2 30.3 34,8 36,0
1962 24.0 13.2 33.6 31.2 25.6
1963 31.2 36.0 3640 52.8 39.2
1964 67.2 98.4 33.6 115.2 93.6
1965 116.4 34,8 1140 129.6 98.8
1966 43.5 18.0 18.0 12.0 21.2
1967 26.0 12.¢ 21.0 -- 14.7
1968 - - -- -- -
1969 - - | -- -— —-—
157¢ -- -— -- -- -
1971 -- - - -- --
1972 -- -- - - -
1973 - -- - - -
1974 - - -- -- --

1975 - - - ‘ -- -



78

YEAR

1961
1962
1963
1964
1965
1966
1967
1968

1969

1976
1971

1972
1973

1974

1975

1ST QTR

8.5
30.8
7642
676
27.1

841

7.6

542

2ND QTR

179
157
£6.9
55.4
54,1
13;4
7.Q
8.5
8.5
4.0

T.6

2-8
2.8

3.9

CHICAGO:

CS—-137 MEAT
{(PCT/GM K

3RD QTR

12.9
23.9
50+0
5.8
45.3
18.7

14.2

8.5
9.0
9.2
Tet

i

PR

4TH QTR

11.6
25.8
83.7
60.7
50.7
19.1

8.6
’759

%<5

YE&RLY AYG

14.2
18.5%
52.9
670
54,4
19.8
9ot
T9
647
bl
T9
5.9
264

2.8

3.6




G8

YEAR

1961
1962
1963
1964
1965
1866
1967

1568

18T QTR

10.3
16.6
39.1
15.4

10.7

2ND QTR

47.8
12.6
4.4

3.7

CHICAGO:

€5-137 POULTRY
(PCI/GM K}

3RD QTR

11.5%
19.8

8.7
3C.4
21.0

6.4

4TH CTR

79
5.5
36.0
33.6
12.3
6.0
6.2

5.5

YEARLY AVG

15.6
10.5
17.8
37.8
15.3

7.2

440

406



CHICAGO: C€S$-137 EGGS

(PCI/GM K)
YEAR 1ST QTR 2ND QTR RO QTR 4TH QTR YEARLY AVG
1961 , - 21.1 ' 13.1 18.9 17.7
1962 14.6 8.7 | 9.4 9.4 10.6
1963 5.1 TRACE 25.4 32.0 15.6
1964 32.7 21.8 18,2 25 % 2446
1965 28.4 | 13.8 ' 21.8 TRACE ; 1640,
1966 7.3 6.1 9.4 %40 6.7
1967 3.6 5.8 11.0 5.5 64
i 1968 4.4 ' 2.7 ' 4a7 4.7 - 4,0
g 1969 3.3 : 5.1 5.8 2.3 4.2
. 197¢ TRACE TRACE 6.6 TRACE 1.6
‘1971 : b,4 6.1 ' TRACE TRACE 2.6
1972 TRACE " TRACE . 36.6 1e4 4.0
1973 - ' 1.3 - 1.2 1.2
1974 , - 3.8 -- -= 3.8

1975 - . . l:4 - ' 1.2 13




L8

YEAR

1961
1862
1963
1964
1965
1568
1467
1968
1969
1570
1971
1972
1973
1874

1975

187 QTR

i1.8
35.0
26406
95.4
30.8
54,7
57.7

16.3

ZND QTR

13.3
45.9
34.1
11.0
108.2
29.3
62.2
8.4
2601
28.9
6.9
19.8
16.0

9.0

CHICAGO:

€CS$=137 FRESH FISH
{PCI/GH K)

3RD QTR

10.4
TRACE
3.8
201.2
175.4
4C.0C
92.5
157.3
iC.8
14.2
18.5

T4

4TH QTR

9.2
35.6
11.3
13.3

128.0
16.5
50.7
57.5

44
23.7
10.7

7.4

14.8

YEARLY AVG

11.0
23.3
21.0
62.5
126.7
29.1
64.1
90.2
14.2
19.2
11l.1
11.7
15.4
9.0
6.9



88

1961
1562
1963
1964
1965
15¢6
1867
1968
196S
1670
1971
1572
1973
1874

1975

1ST QTR

31.0
2040
50.0

9.0
35,0

12.0

2ND QTR

74.0
4040
24.0
4840
2740
10.0

8.0

CHICAGO:

CS~137 SHELLFISH
(PCLI/GM K)

3RD QTR

19.06
17.¢C

6.0
34.C
45.0
1C«0

9.0

—an

&¢TH (TR

29.0
20.0

90
38.0
25.0
11.0

1G.0

ety v

YEARLY

41.0
27.0
15.9
42,0
26,0
16.0

10.0

s

AVG




68

YEAR

1961
1662
1963
1964
1965
1966
1967
1968
1969
187¢C
1971
1972
1973

1974

1875

1ST QTR

11.7

TRACE
33.3
TRACE

TRACE

CHICAGO:

2NG QTR

CS-137 CANNED VEG
{PCI/GM K}

3RD QTR

4TH QTR

5.0
30.8
28.3
18.3

TRACE
4.0
TRACE
6.9
TRACE

TRACE

YEARLY AV@

8,3
11.9
13.8

19.6

403

3.0



06

YEAR

1861
1962
1963
1964
1965
196?
1967
1968

1969

1970

1971
1972
1973
1974

1975

187 QTR

2NC QTR

12.4

9.1

CHICAGOD:

CS-137 PQTATO
(PCI/GM K}~

3RD QTR

2.8

4TH QTR

3.8
2.1
3.3

TRACE

YEARLY AVG

.5

]

2.9




16

CHICAGO: CS-137 DRIED BEANS

(PCI/GM K)
YEAR 1ST GTR 2ND QTR 3RD QTR 4TH CTR YEARLY AVG
1961 - 3.0 1.8 6.8 3.8
1962 2.1 0.8 5.0 5.0 3.2
1963 1.6 11.3 2.3 2.9 4.6
1964 7.9 24.7 9.9 4.8 11.8
1965 2.1 TRACE 8.3 10.3 5.2
1966 3.6 0.8 1.1 2.4 1.7
1967 0.6 2.0 1.4 1.2 1.3
1968 1.3 0.2 TRACE 0.4 0.5
1966 TRACE TRACE 1.3 0.2 0.3
1970 0.7 0.4 1.8 1.3 1.0
1971 2.0 — TRACE 1.7 1.2
1672 0.8 0.6 Cot 1.4 .8
1973 - 0.5 - 0.3 4
1974 - 0.4 -- _— b

1675 - 0.6 - 0.2 o4



Z6

YEAR

13961
1962
1963
1964
1965
1966
1967
1968
1969
197¢C
1971
1972
1973
1974

1875

1ST €TR

10.2
3.3

11.1

TRACE
2.2
2.1

TRACE

TRACE

TRACE

TRACE

CHICAGO:

2N QTR

14.7
10.8
3.3

TRACE
TRACE
TRACE
TRACE
1.6
TRACE
TRACE
1.5
0.7
3.0

3.0

CS-137 ROOT VEG
{PCL/GM K}

3RD QTR

6.9
25.1
1.6
2.6
2.6
TRACE
TRACE
TRACE
TRACE
TRACE

TRACE

4TH CTR

10.5

2.9

YEARLY AVG

10.7

13.2

-7
TRACE
9

b
3.0

1.8




€6

CHICAGDO: CS=~137 FRESH VEG

{PCL/GM X
YEAR 1ST QTR 2NC QTR 3RE GTR TR QTR YZARLY AVG
19¢i - 11.8 t.8 17.2 ile9
1562 7.5 269 15.7 Se7 16.0
1963 3.9 T2 165 16.5 11.3
1964 15.4 28.7 7.5 3.0 15.1
1965 i6.1 10.4 1.5 6ot 10.1
15¢e 9.0 2.6 2.6 2.2 403
1967 9.6 1.7 1.8 TRACE 2.9
1568 246 2.4 2e5 0.9 2.3
1969 Z2ed 2.9 TRACE TRACE o les
187¢ TRACE 3.9 TRACE 2.0 1.7
1971 2.5 TRACE Tt TRACE 5
‘1672 TRACE 2.8 Ce? 0.8 1.3
1973 - 2.8 - 2.0 2e4
1874 - 0.6 - - +b

1875 - 1.7 - 3.1 24



CHICAGO: CS-137 FRESH FRUIT

(PCI/GM KI
YEAR 15T QTR 2ND QTR 3RD QTR 4TH CTR YEARLY AVG
1961 -- 13.9 23.9 43.1 27.0
1962 17.2 26.3 31.6 50.8 31.5
1963 32.1 12.9 14.8 33.0 23.2
1964 32.6 19.2 14.8 18.2 21.2
1965 30.6 15.3 10.5 4.8 15.3
1966 11.5 9.0 4.2 5.0 7.2
1967 2.8 3.0 2.9 4ot 3.3
! 1968 3.9 2.0 3.6 2.1 2.9
- 1969 11.6 TRACE 7.4 846 6.2
T 197¢ TRACE 7.5 3.8 3.2 3.5
1971 6.9 TRACE 2.5 3.2 2.9
1972 TRACE 2.2 5.4 1.1 2.4
1973 - 1.0 - 0.3 7
1974 - 3.3 _— - 3.3

1975 _—— 110 —— 5.2 3-0




g6

1361
1562

1963

1966
167C
1571
1572
1873
1674

1975

15T QTR

10.4
22.9
45.8
39.5

48.6

14.0
TRACE

TRACE

CHICAGO:

2ND QTR

58.2

5.2
27.0
45,8
28.1
10.2
11.3

1.0

11.9
TRACE

5.0

CS-137 CANNED FRUIT
{PCI/GM K}

3RD QTR

20.0

TRACE

10.9
TRACE
TRACE

4.8

4TH. QTR

18.7
19.8
33.3
40.6
35.4
15.8

8.0

YEARLY AVG

27.4
10.4
26.0
42.6
35.9
23.3
8.7
6.5
7.1
6.8
2.3
2.9
3.2
6.2

2.4



B

CHICAGO: CS5-137 FRUIT JUICE

(PCI/GM K
YEAR 1ST QTR 2ND QTR 3RD QTR 4TH CTR YEARLY AVG
1961 —-— 35.6 7.1 6.5 | 16.4
1962 6.5 6.5 7.7 7.1 1.0
1963 19.6 20.2 24,3 27.9 : 23,0
1964 48.1 54,6 49.3 64,7 54,2
1965 43,3 36,2 | 47.5 24.9 38.0
1966 25.5 1446 13.7 ' ' 13.2 16.4
1967 11.1 8.0 11.1 ~ 10.4 10.0
| 1968 9.5 10.1 8.9 13.7 ©10.8
o 1969 14.6 8.5 9.5 " TRACE 8.1
T‘ 1970 10.7 14.4 8.3 9.1 10.7
1971 14.4 9.5 5.2 , 7.6 9,0
1572 442 7.9 5.9 5.8 5.9
1973 - 5.3 - 1.3 3.4
1974 e 4.8 C - -- 4.8

1975 - 3.5 - 6.5 5.0




