

Mr. 669
COO-2588-1

MODELING OF
SOLAR HEATING AND AIR CONDITIONING

Progress Report, October 31, 1974—December 31, 1975

J. A. Duffie
W. A. Beckman

December 31, 1975

Work Performed Under Contract No. E(11-1)-2588

University of Wisconsin
Engineering Experiment Station
Madison, Wisconsin

MASTER

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
Division of Solar Energy

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161

Price: Paper Copy \$5.00 (domestic)
\$7.50 (foreign)
Microfiche \$3.00 (domestic)
\$4.50 (foreign)

Progress Report to the

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

from the

SOLAR ENERGY LABORATORY
UNIVERSITY OF WISCONSIN-MADISON

MODELING OF SOLAR HEATING AND AIR CONDITIONING

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Contract E(11-1)-2588

31 December 1975

University of Wisconsin-Madison
Engineering Experiment Station
1500 Johnson Drive
Madison, Wisconsin 53706

MASTER

Eb
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

I.	OBJECTIVES	1
II.	SUMMARY	1
III.	PROGRESS ON OBJECTIVES	2
	A. TRNSYS	2
	B. TRNSYS Component Models	3
	C. System Studies	6
	D. Design Procedure for Solar Heating Systems	8
	E. Arlington House	9
IV.	PROBLEMS ENCOUNTERED	10
V.	PLANS FOR THE COMING PERIOD	10
VI.	RESEARCH UTILIZATION	11
	A. TRNSYS Service	11
	B. Professional and Technical Papers and Meetings	12
	C. Education	13
VII.	PERSONNEL	14
VIII.	REFERENCES	16

APPENDICES

1.	Abstracts of papers resulting from this program.	18
2.	Announcement and list of attendees at the January 1975 "Solar Energy Thermal Processes" short course.	32

I. OBJECTIVES

The objectives of this study are as follows:

The principal objective of the research is to develop the means to identify and optimize practical systems for heating and cooling of buildings with solar energy in the United States. This will be done through simulation methods.

Secondary objectives are to: extend and refine TRNSYS; develop the means of supporting TRNSYS users in other laboratories; use TRNSYS (and other simulation programs) to develop design procedures for solar heating and cooling processes; design, and evaluate an experimental solar heating system on a Wisconsin farm residence.

II. SUMMARY

In the past several years this laboratory has concentrated its research effort on digital computer modeling of solar energy thermal processes. A modular solar energy system simulation program called TRNSYS has evolved to meet the need for a general, easy to use means of performance evaluation in research and design, and in the classroom. Due to a very strong demand for the program outside this University, TRNSYS has received a great deal of our attention during this reporting period. Recent improvements and expansions, extensive documentation and support effort, and widespread utilization of the program have made TRNSYS almost the "industry standard" solar simulation program.

This report discusses some of the new features and component models available in the program. These include the capability to model air systems and heat pump systems. System studies involving Rankine engines, open cycle cooling, and solar drying are underway with TRNSYS compatible component models, though these are not yet available to the public.

An important outgrowth of the computer simulation work is the recent development of a design procedure for solar heating systems. Simulations have been used to develop a relationship between solar system and load parameters, the weather, and the fraction of the load carried by solar. This permits a straightforward estimation of system performance without the aid of a computer.

Much progress on the design of the Arlington solar house has been made, though administrative problems have forced delays in the house construction. The house will provide data on a unique air heating system using off-peak electric auxiliary and will be used to further validate our simulation technique.

III. PROGRESS ON OBJECTIVES

The development of the basic TRNSYS program for simulation of solar processes is in a generally satisfactory state. We use it routinely in the laboratory and classroom to simulate many different kinds of processes, and we are aware that other holders of the program are also using it. In the following paragraphs we note further progress on TRNSYS itself, on component programs, and on system studies. Also, we note the development of simplified design procedures for solar heating systems, and progress on design of a unique heating system for the Arlington farm building.

A. TRNSYS*

The basic objective of this research has been to develop a general and easy to use program for simulating a variety of solar energy thermal systems. The result of this study has been TRNSYS, a FORTRAN computer program for transient systems simulation. TRNSYS is described in a paper published in Solar Energy (1)†, in a forthcoming paper in ASHRAE Transactions (2), and in the TRNSYS Manual (3).

The TRNSYS program listing, manual and tape (or card deck at extra cost) have been provided to approximately 125 outside organizations, and several more requests are received each week. (Until December 31, 1975, a charge of \$100.00 had been made for these materials to cover out of pocket costs. The charge has been increased to \$200.00 as of January 1, 1976, reflecting increases in the sizes of the program and in our direct expenses in providing user services.)

Holders are kept informed by letter of changes so that all users are kept up to date with the latest version being distributed. As an alternative method of updating old versions, a current holder of TRNSYS can return his old tape and receive a new tape copy for \$50.00.

Several modifications to the basic TRNSYS program have been made since the last report to NSF/RANN.

1. TRNSYS diagnostics have been further improved to make debugging easier.

2. A MAP option has been added which prints the component hook-up in the reverse order from the normal input and print-out order, facilitating the identification of interconnection errors.

3. The TRNSYS component subroutine library has been expanded as described in the next section.

*Inquiries regarding TRNSYS should be addressed to the TRNSYS Coordinator, 1303 Engineering Research Bldg., University of Wisconsin, 1500 Johnson Dr., Madison, WI 53706.

†References are listed in section VIII.

B. TRNSYS Component Models

During the period covered by this report TRNSYS has been changed, refined and expanded. In addition to liquid based heating systems and cooling systems based on LiBr-H₂O absorption cooling, standard TRNSYS library components now allow simulation of air-based systems and heat pump systems. Table I shows the current list of component subroutines in the TRNSYS library. A short description of the major new components follows Table I.

TABLE I

TRNSYS Components as of 31 December 1975

TYPE 1	-	Flat-Plate Solar Collector
TYPE 2	-	On/Off Differential Controller With Hysteresis
TYPE 3	-	Pump
TYPE 4	-	Stratified Fluid Storage Tank
TYPE 5	-	Heat Exchanger
TYPE 6	-	On/Off Auxiliary Heater
TYPE 7	-	Space Cooling Load and Air Conditioner
TYPE 8	-	Three Stage Room Thermostat
TYPE 9	-	Card Reader
TYPE 10	-	Rock Bed Thermal Storage
TYPE 11	-	Tee Piece, Flow Diverter and Flow Mixer
TYPE 12	-	Energy/(Degree-Hour) Space Heating Load
TYPE 13	-	Pressure Relief Valve
TYPE 14	-	Time Dependent Forcing-Function
TYPE 15	-	Algebraic Operator
TYPE 16	-	Solar Radiation Processor
TYPE 17	-	Wall
TYPE 18	-	Roof
TYPE 19	-	Room and Basement
TYPE 20	-	Heat Pump
TYPE 24	-	Integrator
TYPE 25	-	Printer
TYPE 26	-	Plotter

1. The collector model has been revised to give the user the choice of several options: Fixing U_L and τ_α ; fixing τ_α and computing U_L as a function of conditions; fixing U_L and computing τ_α as a function of angle of incidence; or computing both U_L and τ_α .

2. A revised liquid storage tank model is now used which treats stratification in a slightly different way than the previous model. This is based on experiments of S.A. Klein, et al. (4) in Australia.

3. A detailed transient load model supplements the degree-day heating model that already existed in the TRNSYS library. Thermal capacitance models commonly used in heat transfer studies were developed for walls, roofs, ceilings and rooms in the early simulation work done for Colorado State University's Solar House I (5). These models have been expanded and are now available in the form of three components which can be combined to model building heating loads. The TYPE 17 wall model has several typical wall construction modes provided or the user may provide a wall of his own construction by specifying conductances and capacitances as suggested by the ASHRAE handbooks. The TYPE 18 roof and attic model represents a pitched or a flat roof with or without a collector or can be modified by the user to fit his own needs. Roof and wall models provide heat flows to a TYPE 19 room. The room model incorporates thermal capacitance, infiltration and internal heat generation.

The load calculations using TYPES 17, 18 and 19 require the solution of differential equations. An effort is currently being made to develop a response-factor load model, such as suggested in the ASHRAE Handbook of Fundamentals, that is compatible with TRNSYS. This new method would have two main advantages:

- a. It would employ algebraic equations which are less expensive to solve than the differential equations. This cost factor becomes important for long term simulations where computing costs become quite large.
- b. Currently a user must have a basic understanding of heat transfer analysis if the building does not fall into one of the limited number of categories currently available. This may restrict the number of users. It would be far easier for a simulator to identify the wall or roof of his choice from the types listed by ASHRAE

and specify response factor coefficients from the tables as input parameters. This would expand use to anyone with access to and working knowledge of the ASHRAE handbook.

In addition, an evaluation of various load models is under way to determine under what conditions which load models are appropriate (i.e., long-term simulations of adequate accuracy at least cost.)

4. The thermal behavior of practical pebble bed storage units is adequately represented by a simple model used in a new TRNSYS component. This new component allows all systems to be modeled as inexpensively as water systems. The model was derived from the conventional packed bed equations by assuming that the corrected number of Transfer units (NTU_C), the parameter describing the operation of the bed as a heat exchanger, is infinite. This assumption was justified using simulation techniques. The performance of a typical solar air system was shown to be insensitive to NTU_C larger than the practical minimum. The full development of the simple gravel bed model has been documented in the form of a technical paper to be published in 1976 (6).

5. A TRNSYS heat pump model was described in our last report. This model consisted of an analytical solution of the highly interdependent thermodynamic processes in each of the components of the vapor-compression cycle. The model was used to create 'performance maps' (families of predicted performance curves) for several real heat pumps. By appropriate choice of various design parameters these predicted characteristics could be made to agree with manufacturer's published performance data.

The performance maps generated by the model were then used to simulate two different solar assisted air-to-air and water-to-water heat pump systems. The "in-line" system consisted of a solar collector and water storage system which served as heat pump source in the heating mode but could meet the load directly by bypassing the heat pump when storage temperature exceeded a minimum setting. The "parallel" system consisted of a "conventional" solar heating system operating in parallel with an air-to-air heat pump using only ambient air as its source. These two systems were simulated in both heating and cooling modes in Albuquerque for several different collector, load and heat pump sizes. The resulting thermal performance predictions were combined with cost assumptions and it was shown that the "parallel" system was somewhat more cost effective. A more complete account of this study is given in (7,8).

More recently, research emphasis was shifted to the development of a more convenient heat pump model to be used in TRNSYS simulations. This model was developed with two important goals in mind. One was that it should be able to use manufacturer's performance data to define the operation of any desired heat pump. The second was that the model should be universal, capable of simulating air-air, water-air, or a heat pump having switchable evaporators in the heating mode, i.e., capable of using either storage tank fluid or outside air as the heat source. This model, now part of the TRNSYS library, includes the capability of bypassing the vapor compression cycle to heat the building directly with storage tank fluid. Electrical resistance auxiliary heaters are built into the model.

6. In addition to these major changes, a number of other components have been added to TRNSYS primarily to permit modeling of air systems. These include a flow diverter, a flow mixer, and a tee piece.

C. System Studies

1. We have modeled a Rankine cycle engine coupled to a vapor compression air conditioner for residential cooling. This model has been used with TRNSYS in a preliminary study of various engine designs and long term performance of solar cooling systems. A design study was undertaken to determine for a given set of design restrictions the optimal set of Rankine engine components. These components include; boiler feed pump, boiler, shut-off valve, expander, condenser, and working fluid. On the basis of engine design, a control strategy was investigated for various load conditions.

The system study considered a flat plate collector and thermal storage tank, Rankine engine, vapor compression air conditioner, cooling tower, and residential cooling load. Performance was based on meteorological data for Albuquerque. Effects of engine size and collector area were investigated to determine percent cooling load and excess energy generated by solar means. The results of the engine design and system performance study have been presented in a thesis by Beekman (9).

Continuing research is in progress to eliminate many of the restrictive assumptions made for the Rankine engine design model. Further simulation studies are being made of the Rankine engine and solar system for uses other than strictly residential cooling. (Mechanical energy that is used to operate the vapor compression air conditioner for summer cooling could also be used for electrical power generation or other uses.)

2. Open cycle cooling systems employ combinations of heat exchangers, humidifiers, dehumidifiers, and an energy supply to produce cooling for air conditioning. Since these systems have not reached a highly developed stage, we are studying the processes as combinations of their basic components. To this end, TRNSYS component subroutines have been written as described below. To date all the components apply to a system using a solid desiccant and air-to-air heat exchangers.

- a. A dehumidifier-desiccant wheel subroutine has been written, assuming that the air flow rates and cycle times for each of the heat and mass exchanger are equal, and no mass carryover is included. A set of data for the absorbent material is required which the user can supply. Presently the data set is for silica gel operating at standard atmospheric pressure.
- b. An evaporative cooler subroutine employs the simplified relation

$$\frac{t_{\text{out}} - t_{\text{in}}}{t_{\text{wet bulb}} - t_{\text{in}}} = 1 - \exp(-\text{NTU})$$

This is thought to be adequate for use in cycle studies where the small inaccuracy introduced by it is not critical. The evaporative cooler is assumed to operate at standard atmospheric pressure.

- c. A heat exchanger-regenerator subroutine has been written assuming that air flow rates and cycle times for each side of the heat exchanger are equal; however, carryover effects are considered. The mathematical model parallels the model presented in Compact Heat Exchangers by Kays and London. A set of data describing the various physical properties and operational characteristics of the heat exchanger matrix is required. Presently, the data is for an infinite parallel passage matrix constructed of polypropolene sheets.

Using these components in a TRNSYS simulation, we will examine the interrelation between system and component behavior including fan power consumption. This is the beginning of a planned major effort in examination of open-cycle solar cooling.

3. A simulation study of solar drying by indirect means (i.e., supply of solar-heated air from a collector and storage unit) has been started. The first problem addressed is drying of deep beds of grain. The approach is to add mass transfer considerations to the pebble bed storage models, to simulate the "load", i.e., the material being dried.

D. Design Procedure for Solar Heating Systems

One approach to the problem of finding the minimum cost solar space and water heating system is to use computer simulations directly as a design tool. This application was one incentive for the development of TRNSYS. The use of computer simulations to aid in the design of every solar heating application is, in general, unsatisfactory, particularly for those architects and heating engineers concerned with the design of small buildings who do not have access to computing facilities. Consequently, the widespread utilization of solar heating will require a simplified design procedure for use by the heating industry, particularly for standard types of systems where costs of simulations cannot be justified.

The ϕ -curve method described by Hottel and Whillier (10) and Liu and Jordan (11) represents the only general design procedure for solar heating systems up to this time. With the ϕ -curves, the monthly thermal performance of a solar collector can be estimated. The difficulty with the ϕ -curves is that they attempt to evaluate solar collector performance without regard to the performance of the other components in a solar heating system, such as the storage tank or the heating load. As a result, the ϕ -curves involve several restrictive assumptions which reduce their utility.

Our approach to the development of a general design procedure has been to use many simulations to develop a relationship among the characteristics of the building loads, and the fraction of loads carried by solar energy. An inexpensive, special purpose simulation program capable of estimating the long-term thermal performance of solar heating systems was developed for a "standard" liquid-based heating and hot water system. The amount of meteorological data required by the simulation in order to estimate long-term system performance was studied using eight years of hour-by-hour data for Madison; a "design year" has been specified which adequately represents the eight years studied. The thermal

performance results of many simulations have been correlated and presented in a graphical form. The result is a simple graphical method requiring monthly average meteorological data which can be used to estimate long-term thermal performance as a function of major solar system variables, and thus to design economical solar heating systems. The design procedure for liquid-based systems (i.e., systems using liquids, either water or antifreeze solution, as the energy storage and transfer mediums) is described in detail in (12) and (13). The design procedure for solar air heating systems is near completion. An abstract of (12), a paper presented at the Los Angeles ISES meeting, is enclosed in Appendix 1.

E. The Arlington House

Funding is provided in the current contract for design, instrumentation and evaluation of a solar heating system on a farm residence at Arlington, Wisconsin. Funds for construction of the house and purchase and installation of the heating system have been obtained from the Wisconsin Electric Utilities Research Foundation, and from the State of Wisconsin; in addition, equipment for the heating system is being supplied at no cost by Johnson Controls, Inc. and for the collectors at nominal cost by Owens-Illinois.

The system has been designed, using TRNSYS as the tool. The unique features are:

- a. The auxiliary energy supply will be off-peak electrical energy, stored in the form of thermal energy.
- b. An advanced, low-loss coefficient collector will be used, i.e. the evacuated tubular collectors developed by Owens-Illinois.

Several system configurations have been studied, based on the O-I collectors and on conventional 2-cover, non-selective flat plate air heaters. The system configuration uses a single pebble bed storage unit to store both auxiliary and solar energy. The performance penalty associated with a single storage unit is small with the O-I collectors (but substantial with conventional collectors). This study is described in detail in a thesis by Hughes (14).

Instrumentation and controls for the house have been designed, and major items purchased. The planned measurements will permit adequate determination of the energy balances on the solar heating system and component performance.

IV. PROBLEMS ENCOUNTERED

1. The most serious delays have been in the construction of the Arlington house. For a variety of reasons, bids came in higher than had been expected (for the house without a heating system); redesign and rebidding under Wisconsin's administration regulations will mean that data will not be obtained until the winter of 1976-77. We now hope to begin construction in March 1976.

2. We see no fundamental problems that will not yield to effort as far as modeling and simulation are concerned, and present and future efforts are aimed at improving several component models for which present capabilities are not satisfactory. Two examples are cited. 1) Our present absorption air conditioner models do not adequately take into account the kinds of transient performance characteristics noted in CSU House I, and are being reexamined. 2) The Rankine engine model is representative of an engine "between" a reciprocating and a rotary expander, and is being modified to make it more realistic.

3. We have had a problem in obtaining adequate meteorological data. Most of our work during this report period has been based on data for Madison, Wisconsin; Boston, Massachusetts; Charleston, South Carolina; Albuquerque, New Mexico; and Boulder, Colorado.

4. Providing a service to an increasing number of TRNSYS holders is requiring a significant level of effort, and we are working on methods to improve this service.

V. PLANS FOR THE COMING PERIOD

Plans for the coming period are to continue work on the following: TRNSYS components; control concepts and strategies; design methods; simulation studies of particular systems; design and construction of the Arlington experiment; and TRNSYS service. Plans are substantially as outlined in the proposal on which the current contract is based.

VI. RESEARCH UTILIZATION

A. TRNSYS Service

At present, over 125 copies of TRNSYS have been purchased by persons and organizations interested in solar system simulations. These users are from a broad cross section of major industries, small consulting companies, architectural firms, government laboratories and agencies, and the academic community. Feedback from the large user base has resulted in several innovations that have given the program greater error checking and diagnostic capability, great flexibility to simulate more unconventional systems, and little or no computer dependency. Users are provided with a version of the program on magnetic tape or punched cards, a copy of the manual and a listing of the program. A limited amount of free consultation by phone and mail is also provided to users having special problems or questions regarding the program's use.

On November 13, 1975, a TRNSYS user's meeting was held at the Solar Energy Laboratory. In response to our invitation to TRNSYS users, approximately 30 people from approximately 25 organizations outside the University of Wisconsin attended the meeting. We discussed current developments in component and system modeling at the laboratory, problems with numerical stability and control strategy, the purposes of simulations, use of meteorological data, and methods of reducing costs of simulations. In the afternoon, several TRNSYS users gave short presentations on their work with TRNSYS, and an open discussion of user problems and experience ensued.

The response from the people at the meeting and from TRNSYS users in general is very positive. There have been many requests to repeat the TRNSYS users meeting in the near future and for the University to provide additional information exchange services to TRNSYS holders. There have been many inquiries about the availability of additional models (like evacuated tube and focusing collectors, open cycle cooling components, and Rankine engines). Some users have suggested working with us on the development of TRNSYS compatible component models (such as photovoltaics) that could be made available to all users. In summary, interest in TRNSYS is substantial. It is constantly being used, tested, refined and expanded. A great deal of effort is being made to maintain the Users Manual as an updated document of maximum utility.

B. Professional and Technical Papers and Meetings

A major mechanism by which the results of this research are disseminated to users is through technical meetings. Since the beginning of this grant and contract, the following papers have been presented or published. Abstracts of the papers are included in Appendix 1.

1. Beckman, W.A. and J.A. Duffie, "Solar Heating and Cooling of Buildings," published in Proc. 20th Annual Meeting of Inst. Environmental Sciences, April 1974.
2. Butz, L.W., W.A. Beckman and J.A. Duffie, "Simulation of a Solar Heating and Cooling System," Solar Energy, 16, 129, 1974.
3. Gutierrez, G., F. Hincapie, J.A. Duffie and W.A. Beckman, "Simulation of Forced Circulation Water Heaters; Effects of Auxiliary Energy Supply, Load Type and Storage Capacity," Solar Energy, 15, 287, 1974.
4. Klein, S.A., W.A. Beckman and J.A. Duffie, "Transient Considerations of Flat-Plate Solar Collectors," Trans. ASME, J. Engr. Power, 96, Series A, 1974.
5. Abdel-Khalik, S.A., "Heat Removal Factor for a Flat-Plate Solar Collector With a Serpentine Tube," presented at 1975 ISES meeting, Los Angeles.
6. Freeman, T.L., W.A. Beckman, J.W. Mitchell and J.A. Duffie, "Computer-Modeling of Heat Pumps and the Simulation of Solar-Heat Pump Systems," presented at ASME meeting, Houston, 1975.
7. Klein, S.A., W.A. Beckman, J.A. Duffie, "A Design Procedure for Solar Heating Systems," accepted for publication in the Solar Energy Journal, 1975.
8. Klein, S.A., T.L. Freeman, P.I. Cooper, D.M. Beekman, W.A. Beckman and J.A. Duffie, "A Method of Simulation of Solar Processes and Its Application," Solar Energy, 17, 29, 1975.
9. Klein, S.A., "Calculation of Flat-Plate Collector Loss Coefficients," Solar Energy, 17, 79, 1975.
10. Oonk, R.L., W.A. Beckman and J.A. Duffie, "Modeling of the CSU Heating/Cooling System," Solar Energy, 17, 21, 1975.
11. Report #38, TRNSYS - A Transient Simulation Program, prepared by the Solar Energy Laboratory, 1975.

12. Cooper, P.I., S.A. Klein and C.W.S. Dixon, "Experimental and Simulated Performance of a Closed Loop Solar Water Heating System," presented at the 1975 ISES meeting, Los Angeles.

13. Oonk, R.L., W.A. Beckman and J.A. Duffie, "Comparison of Simulated and Measured Performance of the CSU Solar House I Heating System," presented at the 1975 ISES meeting, Los Angeles.

14. Beckman, W.A., J.A. Duffie and S.A. Klein, "Simulation of Solar Heating Systems," to be published as Chapter 9 in the ASHRAE book, Applications of Solar Energy for Heating and Cooling of a Building, 1976.

15. Klein, S.A., W.A. Beckman and J.A. Duffie, "TRNSYS-A Transient Simulation Program," to be published in ASHRAE Transactions, 1976.

16. Klein, S.A., P.J. Hughes and D.J. Close, "Packed Bed Thermal Storage Models for Solar Air Heating and Cooling Systems," submitted to ASME Journal of Heat Transfer, 1976.

17. Duffie, J.A. and W.A. Beckman, "Solar Heating and Cooling," Science, 191, 4223, January 16, 1976.

Also, members of the laboratory staff have been active in organizing and conducting technical meetings; J.A. Duffie was general technical program chairman for the 1975 ISES meeting in Los Angeles. W.A. Beckman was a session chairman for the session on Flat Plate Collector Fundamentals, and is a member of the Division Committee of the Solar Energy Division of ASME.

C. Education

We continue to hold to the idea that University research and education are inseparable, and our research provides the major educational tool for our graduate students. In addition to working with graduate students, we teach a course in Solar Energy Technology to seniors and graduate students in engineering.

In January 1975, we repeated for the third time our short course entitled, "Solar Energy Thermal Processes." Again the enrollment limit of 50 was reached. Appendix 2 includes a list of attendees and a copy of the announcement. This short course is to be repeated again January 19-23, 1976.

J.A. Duffie, with G.O.G. Löf of Colorado State University, has provided three, two-day seminars for American Institute of Chemical Engineers, and J.A. Duffie and W.A. Beckman provided a two day seminar for federal agency personnel, under the sponsorship of the National Bureau of Standards.

The principals in this program (including J.W. Mitchell) have given many lectures to public, technical and industrial groups. W.A. Beckman and J.A. Duffie have written a general paper on Solar Heating and Cooling which will be published in Science in January 1976, and will serve to outline the principles, problems and opportunities in this field for a broad spectrum scientific audience. In November 1974 the book Solar Energy Thermal Processes by Duffie and Beckman was published by Wiley.

The educational activities (except for those described in the first paragraph) are not supported directly by ERDA. However, they would not be possible without the research program supported by ERDA.

VII. PERSONNEL

A. The professorial staff responsible for this project is:

W.A. Beckman, Professor of Mechanical Engineering
J.A. Duffie, Professor of Chemical Engineering
J.W. Mitchell, Professor of Mechanical Engineering

B. Visiting staff during the reporting period:

Dr. S. Abdel-Khalik, Post-doctoral Fellow (9/74-2/75)
Dr. D.J. Close, Visiting Associate Professor, from James Cook University of Northern Queensland (8/75-1/76)

C. Profession staff:

T.L. Freeman, TRNSYS Engineer (7/75-to date)
N.A. Duffie, TRNSYS Engineer (9/74-4/75)

D. Research Assistants (graduate students) and research topics:

D.L. Beekman, (M.S., Mech. Engr., 1975) Solar-Rankine engine air conditioning system: now with Trane Company.

L.W. Butz, (M.S., Mech. Engr., 1973) Simulation of a heated and cooled house: now with Trane Company.

M. Eberlein, (M.S., Mech. Engr., 1976) High performance air heaters: now with Ametek.

D. Research Assistants (continued)

T.L. Freeman, (M.S., Mech. Engr., 1975) Solar heat pump systems: now TRNSYS Engineer, Solar Energy Laboratory.

H. Grunes, (M.S., Mech. Engr., 1976) Manifold design for evacuated tube collectors.

Hanson, M. (M.S., Ch.E., 1976) Grain drying with solar energy.

P.J. Hughes, (M.S., Mech. Engr., 1975) Off-peak electric auxiliary solar system: now with Solar Energy Laboratory.

V. Karman, (M.S., Mech. Engr., 1976) Solar augmented heat pump studies.

S.A. Klein, (M.S., Ch.E., 1973; Ph.D., Ch.E., 1976) A wide range of studies on simulations, primary author of TRNSYS.

D. Morrison, (M.S., Mech. Engr., 1976) Heat of fusion storage study.

J. Nelson, (M.S., Mech. Engr., 1976) Open cycle cooling.

J. Olson, (M.S. Mech. Engr., 1976) Solar-Rankine cycle study.

R. Oonk, (M.S., Mech. Engr., 1975) Simulation of CSU House I: now with Solaron Company.

M. Pawelski, (M.S., Mech. Engr., 1976) Load calculation studies.

J. Roberts, (M.S., Mech. Engr., 1976) Cold side storage.

E. Special Project Students

J. Dekker (B.S., Chem. Engr., 1975) Use of design charts in regional feasibility study.

VIII. REFERENCES

1. Klein, S.A., T.L. Freeman, P.I. Cooper, D.M. Beekman, W.A. Beckman and J.A. Duffie, "A Method of Simulation of Solar Processes and Its Application," *Solar Energy*, 17, 29, 1975.
2. Klein, S.A., W.A. Beckman and J.A. Duffie, "TRNSYS - A Transient Simulation Program," to be published in *ASHRAE Trans.*, 1976.
3. Report #38, TRNSYS - A Transient Simulation Program, prepared by the Solar Energy Laboratory, 1975.
4. Cooper, P.I., S.A. Klein and C.W.S. Dixon, "Experimental and Simulated Performance of a Closed Loop Solar Water Heating System," presented at the 1975 ISES meeting, Los Angeles.
5. Oonk, R.L., W.A. Beckman and J.A. Duffie, "Modeling of the CSU Heating/Cooling System," *Solar Energy*, 17, 21, 1975.
6. Klein, S.A., P.J. Hughes and D.J. Close, "Packed Bed Thermal Storage Models for Solar Air Heating and Cooling Systems," submitted to *ASME Journal of Heat Transfer*, 1976.
7. Freeman, T.L., W.A. Beckman, J.W. Mitchell and J.A. Duffie, "Computer Modeling of Heat Pumps and the Simulation of Solar-Heat Pump Systems," presented at *ASME meeting*, Houston, 1975.
8. Freeman, T.L., M.S. Thesis, 1975, University of Wisconsin-Madison, "Computer Modeling of Heat Pumps and the Simulation of Solar Energy-Heat Pump Systems."
9. Beekman, D.M., M.S. Thesis, 1975, University of Wisconsin-Madison, "The Modeling of a Rankine Cycle Engine for Use in a Residential Solar Energy Cooling System."
10. Hottel, H.C., and Whillier, A., Transactions of the Conference on the Use of Solar Energy, 2, Part I, 74, University of Arizona Press, 1958. "Evaluation of Flat-Plate Collector Performance."
11. Liu, B.Y.H. and R.C. Jordan, *Solar Energy*, 7, 53 (1963). "The Long-Term Average Performance of Flat-Plate Solar Energy Collectors."

12. Klein, S.A., W.A. Beckman, J.A. Duffie, "A Design Procedure for Solar Heating Systems," accepted for publication in the Solar Energy Journal, 1975.
13. Beckman, W.A., J.A. Duffie and S.A. Klein, "Simulation of Solar Heating Systems," to be published as Chapter 9 in the ASHRAE book, Applications of Solar Energy for Heating and Cooling of a Building, 1976.
14. Hughes, P.J., M.S. Thesis, 1975, University of Wisconsin-Madison, "The Design and Predicted Performance of Arlington House."

(1)

SOLAR HEATING AND COOLING OF BUILDINGS
W.A. Beckman and J.A. Duffie

ABSTRACT

This review paper notes many of the various building heating and cooling systems that have been proposed, analyzed and/or tested since 1937. It is noted that solar heating systems have been widely studied and used for some time, but combined systems for heating and cooling have not yet received the same attention.

A major portion of the paper discusses a simulation method for solar cooling and/or heating. The simulations can be used to evaluate systems, predict their thermal performance, and evaluate the effects of design changes; the results of a particular simulation are used to illustrate a method of economic analysis.

(2)

SIMULATION OF A SOLAR HEATING AND COOLING SYSTEM
L.W. Butz, W.A. Beckman and J.A. Duffie

Abstract—This paper presents thermal and economic analyses of a solar heated and air conditioned house in the Albuquerque climate. The system includes the following components: water heating collector, a water storage unit, a service hot water facility, a lithium bromide-water air conditioner (with cooling tower), an auxiliary energy source, and associated controls. The analysis of the thermal performance indicates the dependence of output on collector area (considered as the primary design variable) and shows, for example, the manner in which annual system efficiency decreases as collector area increases. Based on the computed thermal performance, cost estimates are made which show variations in annual cost as functions of collector area and costs of collector and fuel.

(3)

SIMULATION OF FORCED CIRCULATION WATER HEATERS; EFFECTS OF AUXILIARY ENERGY SUPPLY, LOAD TYPE AND STORAGE CAPACITY*

G. GUTIERREZ† F. HINCAPIE‡ J. A. DUFFIE§ and W. A. BECKMAN§

(Received 29 March 1973, in revised form 19 July 1973)

Abstract—A hybrid computer was used to simulate forced circulation solar water heater systems using stratified storage. A single month of hourly meteorological data was used to examine the effects of three types of auxiliary heating systems and three different sized tanks. Various time distributions and magnitudes of the load were studied. Results are shown in terms of the ratio of auxiliary energy requirements to total load and indicate best methods for adding auxiliary energy to maximize solar energy gain.

(4)

Transient Considerations of Flat-Plate Solar Collectors¹

S. A. KLEIN

Graduate Student.

J. A. DUFFIE

Professor and Director.

W. A. BECKMAN

Professor. Mem. ASME

Solar Energy Laboratory,
The University of Wisconsin,
Madison, Wis.

The effects of thermal capacitance in the modeling of the performance of a flat plate solar collector have often been neglected because of the computation involved. But because the solar collector is inherently exposed to continuously variable weather conditions, capacitance effects may be significant. To investigate these effects, three different models of flat-plate collectors have been investigated. The first, a quasi-steady-state model, simulates the performance of a collector of zero capacitance. The second model accounts for capacitance effects by assuming that a single value of thermal capacitance can be determined for the collector as a unit. The third model divides the collector into many isothermal segments, or nodes. For all three models the heat transfer coefficients are calculated as a function of operating conditions. The results show that, when hourly meteorological data are used, the zero-capacitance model is adequate.

(5)

HEAT REMOVAL FACTOR FOR A FLAT-PLATE SOLAR COLLECTOR WITH A SERPENTINE TUBE

S.I. Abdel-Khalik

Abstract

The performance of a flat-plate solar collector is investigated. The collector is of the sheet-and-tube design and the tube is bonded to the absorbing plate in a serpentine fashion. Equations describing the variation of the fluid temperature in the different segments of the serpentine are derived. These equations are then used to determine the heat removal factor, F_R , for the collector.

It is shown that for the general case of an N-bend serpentine, the heat removal factor depends on three non-dimensional groups containing the different operational and design variables of the collector. A generalized chart for estimating F_R for collectors with serpentines of arbitrary geometry and number of bends is presented.

(6)

Computer Modelling of Heat Pumps and the Simulation of Solar-Heat Pump Systems

T. L. FREEMAN W. A. BECKMAN J. W. MITCHELL J. A. DUFFIE

ABSTRACT

A generalized digital computer model of a residential size heat pump is described. The modeling strategy is to "design" or "size" the four major components in the vapor compression cycle to yield any desired design condition performance. Once the system has been defined, the program is able to compute a "performance map" of heat added and heat rejected at all possible combinations of inlet flow-stream conditions.

The model is applied to the thermal performance simulation of several different solar-heat pump heating and cooling systems using the modular simulation program, TRNSYS. Performance of "in-line" heat pump boosted solar systems which use solar energy storage as the heat source are compared to "parallel" systems where the heat pump acts only as an auxiliary and ambient air provides the source. Finally, a simplified economic analysis is undertaken in which it is determined that the parallel system is the more cost effective configuration.

(7)

A DESIGN PROCEDURE FOR SOLAR HEATING SYSTEMS

S.A. Klein, W.A. Beckman, and J.A. Duffie

University of Wisconsin
Madison, Wisconsin

ABSTRACT

This paper is concerned with the design of solar space and water heating systems for residences. A simulation model capable of estimating the long-term thermal performance of solar heating systems is described. The amount of meteorological data required by the simulation in order to estimate long-term performance is investigated. The information gained from many simulations is used to develop a general design procedure for solar heating systems. The result is a simple graphical method requiring monthly average meteorological data which architects and heating engineers can use to design economical solar heating systems. A method of estimating the monthly average radiation on tilted surfaces is given in the Appendix.

(8)

**A METHOD OF SIMULATION OF SOLAR PROCESSES
AND ITS APPLICATION***

S. A. KLEIN, P. I. COOPER,† T. L. FREEMAN, D. M. BEEKMAN,
W. A. BECKMAN and J. A. DUFFIE
Solar Energy Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A.

(Received 20 August 1974)

Abstract—TRNSYS, a program for simulating the dynamic thermal behavior of transient systems, is a general program for solving sets of differential and algebraic equations which describe solar energy systems. It is based on a modular approach which enables the user to readily simulate a wide variety of systems. The program consists of component models (for collectors, controls, storage tanks, heat exchangers, furnaces, building loads, integrators, recorders, etc.) and an executive routine.

The designer selects both his components and the design parameters describing the components and specifies, in a simple fashion, the way in which the components are interconnected. The whole process is analogous to specifying an experimental system. The designer also selects the information he wants from the simulation, again in a manner analogous to a physical experiment, and includes the appropriate instrument components in his simulation.

The use of the program is illustrated by a comparison of methods of operating a solar heating system.

(9)

CALCULATION OF FLAT-PLATE COLLECTOR LOSS COEFFICIENT
S. A. Klein

(No Abstract)

(10)

MODELING OF THE CSU HEATING/COOLING SYSTEM*

R. L. OONK, W. A. BECKMAN and J. A. DUFFIE
University of Wisconsin, Madison, Wisconsin, U.S.A.

(Received 20 August 1974)

Abstract—This paper presents a thermal simulation of the Colorado State University solar house. A computer model of the solar energy system was developed and computer runs were made using one year of meteorological data to determine the important design features. The system consists of a flat plate solar collector, main storage tank, service hot water storage tank, auxiliary heater, absorption air conditioner with cooling tower and heat exchangers between the collector and storage, storage and service hot water tank and storage and residence. This system very closely models the CSU house in operating mode one.

The results are in the form of monthly integrated values for the pertinent energy quantities. In addition, results are presented which show the effect on the system performance of the collector tilt, collector area and number of covers.

(11)
REPORT #38
TRNSYS - A TRANSIENT SIMULATION PROGRAM

(No Abstract)

(12)

EXPERIMENTAL AND SIMULATED PERFORMANCE OF A CLOSED LOOP
SOLAR WATER HEATING SYSTEM

By P.I. Cooper, S.A. Klein & C.W.S. Dixon
CSIRO Division of Mechanical Engineering, P.O. Box 26, Highett, Victoria
3190, Australia

A prerequisite to the overall economic design of solar processes is a satisfactory mathematical model of the system thermal behaviour. Mathematical analyses of most of the usual components in a solar energy system have been available for some time, but in general only simple system configurations have been considered.

A closed loop solar water heating system was designed, constructed and carefully instrumented to provide meaningful experimental data on the system performance. It consisted of a bank of series-connected, single-glazed, flat-plate collectors coupled to a fluid thermal storage tank. Pumped circulation was controlled by a simple but effective controller which approximates the performance characteristics of a differential controller. The load on the tank was an ambient air cooled heat exchanger, chosen to approximate a solar space heating system in which the energy dissipated is dependent on ambient conditions.

A flow diagram of the experimental system is shown in Fig.1. In conjunction with the experimental system, a mathematical model was constructed using TRNSYS [1], a program for simulating the dynamic thermal behaviour of transient systems. It was necessary to experimentally determine various component characteristics of the system for use in the simulation model, such as the gain and loss coefficients of the collectors and the effectiveness of the heat exchanger. It was envisaged that series connecting the collectors would greatly aid in determining their operational characteristics.

Initial experimentation indicated that the stratified storage tank model of Close [2] was possibly not sufficient for comparison of experimental and simulated performance on an instantaneous basis. Examination of the measured storage tank temperatures suggested that a more representative 'black-box' model of the tank could be devised and used in TRNSYS. This model was found to more closely approximate the short-term performance of the storage tank, though it is suspected that a simple, unstratified model will be sufficient for long-term performance predictions.

The most critical parameters required to simulate the system performance are the thermal characteristics of the flat-plate collectors. These are the local efficiency η_0 at the inlet when the inlet fluid temperature is equal to the effective temperature of the surrounds and the overall thermal loss coefficient. Spectral measurements were available from laboratory tests which

quantified the optical parameters of the collector type and internal measurements under controlled conditions had indicated the magnitude of the overall loss coefficient. These values provided a guide as to the accuracy of experimentally determining the characteristics from external measurements taken while the system was in operation.

Basically, two methods were used to determine the collector characteristics. The first involved plotting the efficiency of each collector for different values of $\Delta T/G$ (where ΔT is the potential for losses and G is the average radiation rate over a period of time). Analysis indicated that for an assumed linear system, the ordinate intercept of efficiency would be n_0 while the slope would be U . Though this method gave satisfactory values of the parameters for the simulation, they were not directly comparable with the values expected from internal measurements. This is due mainly to non-linearity in the behaviour of the collectors. The second method consisted of plotting the instantaneous inlet and outlet water temperatures of each collector against the progressive collector area of the bank. Two such curves for different radiation levels but approximately the same wind velocity and ambient temperature allow n_0 to be inferred. The heat loss coefficient U_0 is then found as a function of conditions from heat balances at different times, on the assumption that n_0 is unaffected by conditions. Values found initially in this manner agreed well with those expected, but subsequent attempts at reproducing them indicated that this method can be subject to a large degree of error.

Comparison of simulated and measured values on an instantaneous basis when the solar radiation is not varying rapidly indicated that the mathematical model was able to closely follow the experimental performance of the system. The agreement was not as close on days of rapidly varying insolation, because of inadequacies in the collector model and the difficulty of accurately measuring and deriving the system performance under these conditions.

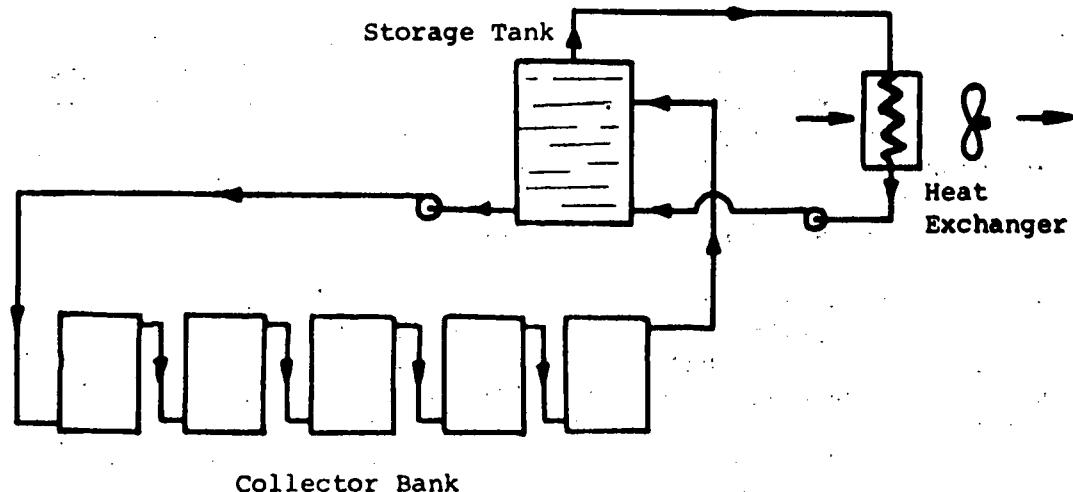


FIG. 1

REFERENCES

[1] KLEIN, S.A., COOPER, P.I., BECKMAN, W.A. & DUFFIE, J.A. - "TRNSYS, A Transient Simulation Program", Engineering Experiment Station, University of Wisconsin, Report No.38 (1974).

[2] CLOSE, D.J. - "A Design Approach for Solar Processes", Solar Energy, Vol.11, No.2 (1967).

FOOTNOTE : The authors are, respectively, Senior Research Scientist, CSIRO D.M.E.; Research Assistant, Solar Energy Laboratory, University of Wisconsin; and Student, Dept. of Mech. Engng, University of Melbourne, Victoria, Australia.

(13)

COMPARISON OF SIMULATED AND MEASURED PERFORMANCE
OF THE CSU SOLAR HOUSE I HEATING SYSTEM

R.L. Oonk, W.A. Beckman and J.A. Duffie
University of Wisconsin
Madison, Wisconsin

The solar energy system installed in the Colorado State University house consists of a flat plate solar collector, main storage tank, domestic hot water storage tank, auxiliary heater, absorption air conditioner with cooling tower, and heat exchangers between the collector and the storage, storage and domestic hot water tank, and storage and residence. The results of a simulation study which were part of the process of design of this system are reported in a recently published paper (Oonk, et al., "Modeling of the CSU Heating/Cooling System", Solar Energy, 17, 21 (1975)).

It is now of interest to compare the measured performance of the system with predicted performance (based on observed weather) over extended time periods. Hourly weather data measured at the house were used to drive TRNSYS, a general solar process simulation program (Klein, et al., "A Method of Simulation of Solar Processes and Its Applications," Solar Energy, 17, 29 (1975)). The resulting predicted thermal performance of the simulated system has been compared to the corresponding measured thermal performance.

Comparisons were made over a 235 hour period from November 22 to December 2, 1974. The behavior of the system over this time period was somewhat unique, since there was no auxiliary energy or domestic hot water consumed. Due to this unique behavior it was possible to determine several space heating load parameters necessary to drive the model. Load parameters such as internal generation and infiltration rate were selected so that the predicted heating load equaled the measured load. The resulting predicted integrated thermal performance (based in part on the experimentally determined load characteristics) was compared to the measured integrated thermal performance for the ten day period, as summarized in Table 1.

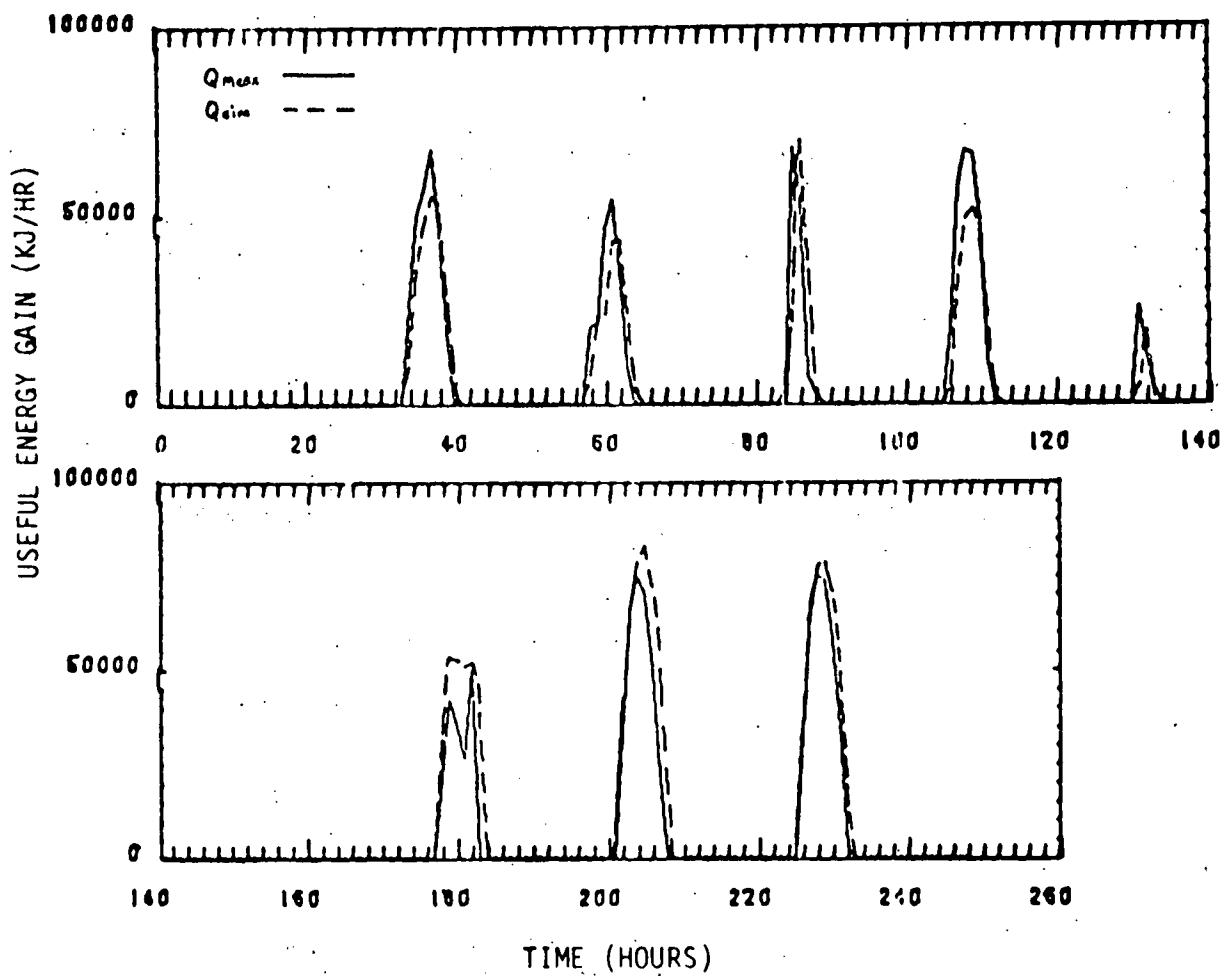
Table 1
Energy Quantities, November 22 to December 2, 1974

	Predicted	Measured
Collector useful energy gain (10^6 kJ)	1.792	1.749
Auxiliary energy (10^6 kJ)	0.063	0
Space heating load (10^6 kJ)	2.036*	2.013*
Tank internal energy change (10^6 kJ)	-0.320	-0.202

*Forced to agree by adjusting the infiltration and internal generation rates.

In addition to integrated performance over ten days, the dynamics of the system performance can be compared with predicted dynamics. Figure 1 shows calculated and measured useful gain from the collector for the ten day period. The measured performance was higher early in the period, but the reverse situation existed for the last three days. Measured storage tank temperatures matched predicted temperatures quite well during most of the period, but were higher during the last three days.

A second comparison was made over a 69 hour period from January 27, 1975 to January 30, 1975. In these comparisons the infiltration and generation rates determined from the earlier comparison were used to calculate the space heating load. Thus it is possible to check the validity of the heating load model, since the model should predict the same heating load that was measured. The results of this comparison is summarized in Table 2.


Table 2
Energy Quantities for January 27 to January 30

	Predicted	Measured
Collector useful energy gain (10^6 kJ)	0.779	0.620
Auxiliary energy	0.207	0.522
Space heating load	0.996	0.971
Domestic hot water load	0.067	0.079
Tank internal energy change	-0.099	0.054

Refinements in experimental measurements and longer time periods of operation are being studied and will be discussed in the final paper. In general, the simulations are considered to satisfactorily represent both the dynamics and long term integrated performance.

FIGURE 1

(14)

SIMULATION OF SOLAR HEATING SYSTEMS
 CHAPTER 9
 W.A. Beckman, J.A. Duffie and S.A. Klein

(No Abstract)

(15)

TRNSYS - A TRANSIENT SIMULATION PROGRAM

ABSTRACT

A solar energy system can be regarded as a collection of interconnected components, which normally operate in transient modes. To facilitate the simulation of such systems, a computer program called TRNSYS has been developed to interconnect components in any desired manner and solve the simultaneous algebraic and differential equation describing the system. With this program, the essential problem of transient system simulation reduces to one of formulating mathematical models for each of the components in the system. General mathematical models of many components common in solar energy systems have been developed. Because these component models can be interconnected in any specified manner, simulations of many different systems are possible with little or no programming effort.

The formulations of models for typical components are described. The interconnection of component models in TRNSYS to obtain system performance is illustrated by example.

KEY WORDS: Load-Calculation, Modeling, Solar,
Systems-Building, Thermal-Response

PACKED BED THERMAL STORAGE MODELS
FOR SOLAR AIR HEATING AND COOLING SYSTEMS

P.J. Hughes, Research Assistant
S.A. Klein, Research Assistant
D.J. Closet, Visiting Associate Professor

Solar Energy Laboratory
University of Wisconsin-Madison

ABSTRACT

Using simulation techniques, this paper investigates the sensitivity of the thermal performance of solar air heating systems to NTU_C , a parameter which describes the heat transfer characteristics of a packed bed store. It is found that the long term performance of most practical system designs is insensitive to NTU_C . A simple gravel bed model which assumes NTU_C is infinitely large is described. The model is shown to provide an adequate representation of the performance of gravel beds of reasonable design, with much less computational effort than that required for the solution of conventional packed bed relations. Furthermore, it is concluded that considerable freedom may be allowed in the choice of gravel bed geometry without incurring a performance penalty.

[†]Presently Senior Lecturer, Department of Engineering, James Cook University, Townsville, Queensland, Australia.

(17)

Solar Heating and Cooling

Solar energy for buildings
is developing rapidly in the United States.

John A. Duffie and William A. Beckman

Thermal energy for buildings, supplied at temperatures near or below 100°C, constitutes an important segment of the U.S. energy economy and accounts for about one-quarter of the nation's energy use. Energy at these temperatures can readily be delivered from flat-plate solar energy collectors, and the solar energy incident on most buildings is more than adequate to meet these energy needs. Flat-plate collectors are manufactured and sold on a small but growing scale in the United States; they have been in use for more than a decade in heating water for buildings in Australia, Israel, and Japan. We expect that solar heating and cooling for buildings, with energy collected by flat-plate collectors, will be the first large-scale application of solar energy.

The basic problem with solar heating and cooling has been that the energy could not, except in special cases, be delivered at costs competitive with costs of energy from other sources. This situation is rapidly changing, and interest in solar energy is increasing almost daily as fuel costs rise. In areas where new natural gas connections are no longer available, where oil is not distributed, and where electrical resistance heating is the only alternative among conventional sources, solar heating is economically attractive.

In addition to technical and economic

considerations, several social factors will influence the course and pace of developments. Two examples are worth examining. First, architectural constraints are imposed by the need for collectors to be oriented within rather narrow limits. This will make it difficult to fit solar heating systems to many existing buildings; thus new residential construction will be the easiest starting place for conversion to solar heating. Solar cooling may first be installed in existing low-rise, flat-roof buildings such as schools and shopping centers, where cooling is usually more important than heating. Second, tax policy is important. Today the installation of solar heating or cooling systems brings an increase in property valuation in most states, and a corresponding modest increase in real estate taxes. Government encouragement to invest in solar energy systems in the form of tax write-offs or other inducements (as are provided for investments by other energy producers) could very rapidly change the competitive position of solar energy in relation to conventional energy sources.

In all buildings, intelligent practices for energy conservation are worth following. The basic advantages of reducing energy needs by good thermal design apply whether buildings are supplied with solar or conventional energy. If solar energy costs the same as an alternative energy source, the value of energy conservation techniques, such as extra glazing on windows and doors or added insulation, is the same whether solar energy or the alternative is being used.

APPENDIX 2

**Announcement and list of attendees at the January 1975
"Solar Energy Thermal Processes" short course.**

SOLAR ENERGY THERMAL PROCESSES

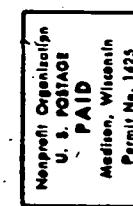
January 6-10, 1975

**(REPEAT of Engineering Short Course
held in January and May 1974)**

OBJECTIVES OF THE COURSE

The major objective of this course is to provide engineers with a working knowledge of thermal processes for solar energy utilization. The course is structured to cover: solar radiation, its measurement, and data and their uses; the design and performance of solar energy collectors, energy storage units and other system components; solar process system analysis methods; applications of solar energy to thermal energy needs of buildings; power generation processes; and costs of solar processes. Each topic builds on those previously covered, to provide continuity in the development of the subject from basic principles to applications.

The course is designed for engineers who are or may be responsible for design and evaluation of solar energy systems and assures some background in heat transfer and thermodynamics. The course will consist of a series of lectures, combined with tutorial sessions in which problems will be worked with the aid of the staff.


The book, *Solar Energy Thermal Processes* (Wiley-Interscience, New York, 1974) will be used as a text, and a copy will be provided to each participant.

At the end of the course, the participants will have had experience in prediction of the thermal performance of solar energy systems and a method of making economic assessments of solar energy. The course will reflect current research on solar energy processes.

This course MAY be applicable for credit toward the University of Wisconsin's Professional Development Degree in Engineering. Details of this degree program are available upon request.

UW-Extension provides equal opportunities in employment and programming

....a program at **MADISON**

SOLAR ENERGY THERMAL PROCESSES

January 6-10, 1975

**THIRD OFFERING
of Short Course**

DEPARTMENT OF ENGINEERING

University of Wisconsin-EXTENSION

SOLAR ENERGY THERMAL PROCESSES
January 6-10, 1975

ADDRESSEE:
Shall we CONTINUE TO SEND YOU BULLETINS?
If unwanted, we'll take your name off our list.
Just tear off this ADDRESS pane,
MAIL it to us. We'll understand.

EE

MAIL
TO

Engineering Registration
The WISCONSIN CENTER, 702 Langdon Street
Madison, WI 53706

Solar Energy Thermal Processes, January 6-10, 1975

Name _____
(please print)
Title/Position _____
Company _____
Address _____
City & State _____ (ZIP) _____
Office Tel. No. _____
Social Security No. _____ / _____ / _____

Enclose
FEE:
\$350.00

ENROLLMENT LIMITED

(Checks payable to....University of Wisconsin-Extension)

Robert C. Lutton Program Director

Department of Engineering, UW-EXTENSION
432 North Lake Street, Madison, WI 53706

For Program Information / CALL: (608) 262-2061
For Enrollment / CALL: 262-1289

CLIP & MAIL

GENERAL INFORMATION
ENROLLMENT: Register in advance by mail or phone. Early registrations are confirmed by mail. Be sure you have a confirmed enrollment. FEE covers session cost, notebook and handout materials, break refreshments, one scheduled dinner and lunches. Lodging and other meals NOT included.

LOCATION: Madison programs (unless noted otherwise in this bulletin) are held in The WISCONSIN CENTER....northeast corner of campus at Langdon and Lake streets. Check program details.

PARKING: There is metered public parking in Lake St. Ramp (between State St. & University Ave.) and at street level in Helen White Hall (Park St. opposite Wisconsin Union)....both a block from The WISCONSIN CENTER. Posted AREAS are restricted to permit holders. Some permits may be available (nominal fee) for nearby parking. Registrants will receive information.

LODGING OVERNIGHT: A campus map and Madison area hotel/motel information will be sent to all registrants. Make advance reservations directly with the place you select.

REFUND: If program is cancelled for any reason, your Fee will be refunded. If YOU cancel, notify us at least a day before an INSTITUTE or REFRESHER program and at least a week before a SHORT COURSE start date to receive your refund.

• PROCEEDINGS ARE NOT PUBLISHED •

A Certificate of Participation is presented to each registrant

SOLAR ENERGY THERMAL PROCESSES

January 6-10, 1975

In Cooperation with the College of Engineering, UW-Madison

MONDAY, JANUARY 6

AM

8:00 Registration
The Wisconsin Center
Corner of Langdon and Lake streets
Madison, Wisconsin
Introduction to the Course
Review of Heat Transfer Topics Important in Solar Energy

PM

Solar Radiation I
Solar Flat-Plate Collectors I
6:00 Get-Acquainted Social Hour and Dinner (Cash Bar)–
The Wisconsin Center

TUESDAY, JANUARY 7

AM

Solar Radiation II
Tutorial Session on Solar Radiation Calculations
PM
Solar Flat-Plate Collectors II
Tutorial Session on Flat-Plate Collector Design and Performance

WEDNESDAY, JANUARY 8

AM

Solar Focusing Collectors
Energy Storage I

PM

Energy Storage II
Tutorial Session on Collector Storage System Performance

THURSDAY, JANUARY 9

AM

Review of Solar Space Heating Experience
Modeling of Solar Heating and Cooling Systems

PM

Economics of Heating and Cooling Systems
Tutorial Session on Heating and Cooling Systems Performance

FRIDAY, JANUARY 10

AM

Review of Solar Energy Activities
Solar Power Systems
Lunch—Presentation of Certificates

PM

Open Tutorial on Topics of Interest to Registrants

SHORT COURSE FORMAT

Each day the short course will consist of three sessions. The morning session will be from 8:00 to 11:00 a.m., and will be in two parts separated by a coffee break. Each of the parts will be a lecture on a major topic, or a tutorial, problem-working session at which the staff will assist registrants in working out design and performance problems.

The early afternoon session, from 1:00 to 2:00 p.m., will be reserved for individual consultations and work at the Engineering Computing Laboratory. The afternoon sessions will be from 2:00 to 5:00 p.m. and will be in the same format as the morning session. Topics for the morning and afternoon sessions are indicated in the outline. Luncheon will be daily at noon in The Wisconsin Center Cafeteria.

INSTRUCTORS FOR THE COURSE

John A. Duffie, Professor of Chemical Engineering, Associate Dean of the Graduate School of University of Wisconsin-Madison, and Director of the Solar Energy Laboratory. Dr. Duffie is immediate Past President of the International Solar Energy Society and has been active in solar energy research for 20 years.

William A. Beckman, Professor of Mechanical Engineering at University of Wisconsin-Madison. Dr. Beckman is chairman of the Solar Energy Division of the American Society of Mechanical Engineers, a specialist in numerical modeling of thermal systems, and has worked and published extensively in solar energy and related fields.

TEXT

Professors Duffie and Beckman are authors of the book, *Solar Energy Thermal Processes* (Wiley-Interscience, October, 1974) which will be furnished to each enrollee. Text will be sent in advance to all enrollees whose paid registration is received at least 4 weeks before course starts.

UNIVERSITY OF WISCONSIN-EXTENSION

JOHN P. KLUS, Chairman
Department of Engineering

WILLIAM W. WUERGER, Director
Engineering Institute & Short Courses

SOLAR ENERGY THERMAL PROCESSES

JANUARY 6-10, 1975

Speakers & Staff

WILLIAM A. BECKMAN
Professor of Mechanical Engineering
University of Wisconsin
Madison, Wisconsin

JOHN A. DUFFIE
Professor of Chemical Engineering
University of Wisconsin
Madison, Wisconsin

ROBERT C. LUTTON
Program Director
UW-Extension
Engineering Department
432 North Lake Street
Madison, Wisconsin 53706

* * * * *

Registered Conferees

Tom Abeles
College of Environmental Sciences
University of Wisconsin
480 Socio-Ecology Building
Green Bay, WI 54301

Ross J. Boyle
Graduate Student
York University
Faculty of Environmental Studies
4700 Keele Street
Downsview, Ontario M3J 1P3

Carl A. Adler
President
C.A. Adler, President
192 North Clark
Chicago, IL 60601

Homer Breault
Engineer
Arco Chemical
Box 115
Karthaus, PA 16845

Jim Ashkar
Assistant Professor
University of Nebraska
60th & Dodge Streets
Engineering & Technology Department
Omaha, NE 68101

John E. Brown
Mechanical Engineer
Durrant-Deininger & Associates
1122 Rockdale Road
Dubuque, IA 52001

Max J. Blanchet
Senior Resource Engineer
Pacific Gas & Electric Company
245 Market Street, Room 1331
San Francisco, CA 94106

Harry W. Caplan
President
Sunne Resources
3397 East Monmouth Road
Cleveland Heights, OH 44118

G.M. Bobba
Engineering Analyst
Sargent & Lundy
55 East Monroe
Room 30W-28
Chicago, IL 60603

Dr. Al Casella
Physical Sciences Program
Sangamon State University
Springfield, IL 62708

Randy Crooks
Laboratory Supervisor
Andersen Corporation
Bayport, MN 55003

Chander Datta
Senior Engineer
Bohn Heat Transfer Division
1625 East Voorhees Street
Danville, IL 61832

Fred Deans
Technical Service Engineer
PPG Industries, Inc.
One Gateway Center
Pittsburgh, PA 15222

E.C. Fiss
Senior Staff Consultant
Duke Power Company
P.O. Box 2178
Charlotte, NC 28242

Raymond Gallagher
Assistant Manager, Solar Systems
PPG Industries, Inc.
One Gateway Center
Pittsburgh, PA 15222

Donald L. Garofalo
Project Design Engineer
Andersen Corporation
Bayport, MN 55003

Stanley Gilman
Professor
Penn State University
Architectural Engineering
101 Engineering "A" Building
University Park, PA 16802

Kenneth E. Gunther
President
Fairbrother, Gunther & Bowman
325 Fuller Avenue, N.E.
Grand Rapids, MI 49503

Gunard E. Hans
Research Architect
Forest Products Laboratory
Madison, WI 53705

James Healey
Research Assistant
Atmospheric Sciences Research Center
1400 Washington Avenue
Earth Sciences Building, 228 SUNYA
Albany, NY 12222

S.E. Hubbard
Director-Research & Development
Kawneer Company, Inc.
1105 Front Street
Niles, MI 49120

Muhammad Iqbal
Associate Professor
University of British Columbia
Department of Mechanical Engineering
Vancouver, B.C. CANADA

William C. Louie
Vice President
Smith, Hinchman and Grylls
455 West Fort Street
Detroit, MI 48226

James Grant MacVeigh
Associate
Smith, Hinchman and Grylls
455 West Fort Street
Detroit, MI 48226

Richard E. Marek
Marketing Research Department
Commonwealth Edison Company
P.O. Box 767
Chicago, IL 60690

Anthony Martinelli
Temp-O-Matic Cooling Company
87 Luquer Street
Brooklyn, NY 11231

Michael McClintock
Professor of Physics
Clark University
Worcester, MA 01610

James W. Meyer
Program Director
M.I.T. Energy Laboratory
E40-115
Cambridge, MA 02139

Eugene L. Mleczko
730 La Mesa Drive
Menlo Park, CA 94025

Thomas W. Norton
Research Associate
Atmospheric Sciences Research Center
130 Saratoga Road
Scotia, NY 12302

Harold Olsen
 President
 Olsen and Associates
 6818 Seybold Road
 Madison, WI 53719

T.J. Palmer
 Architect
 T.J. Palmer, AIA Architects
 Box 201
 Cobalt, CT 06414

Richard E. Parsons
 Design Associate
 Lawrence Livermore Laboratory
 7000 East Avenue, P.O. Box 808
 Livermore, CA 94550

Thomas Peltak
 Commercial Industrial Service Engineer
 Public Service Company of New Hampshire
 1000 Elm Street
 Manchester, NH 03105

Graydon Peoples
 Chief Engineer-Heating Division
 Lennox Industries, Inc.
 1600 East Linn
 Marshalltown, IA 50158

Gordon Preiss
 Mechanical Engineer
 Naval Underwater Systems Center
 New London Laboratory Code-EM
 New London, CT 06320

Charles Rhoads
 Assistant Professor
 University of Wisconsin - Stout
 Menomonie, WI 54751

Matthew W. Rupp
 Marketing Engineer
 Olin Brass-Brass Sales
 East Alton, IL 62024

Dr. Harry Salt
 Solar Process Scientist
 CSIRO
 Melbourne, Australia

Trilochan Singh
 Associate Professor
 Wayne State University
 664 Putman
 Detroit, MI 48202

G.K. Yuill
 Engineer
 UNIES Ltd.
 1666 Dublin Avenue
 Winnipeg, Canada R3H 0H1

J. Robert Snyder
 Chief Mechanical Engineer
 The Rauenhorst Corporation
 7900 Xerxes Avenue, S.
 Minneapolis, MN 55431

John Sorenson
 Wisconsin Public Service Corporation
 P.O. Box 700
 Green Bay, WI 54305

David E. Soule
 Professor of Physics
 Western Illinois University
 Department of Physics
 Macomb, IL 61455

Lynn F. Standorf
 HVAC Department Head
 J.J. Flad & Associates
 310 North Midvale Boulevard
 Madison, WI 53705

James E. Thebert
 Aero-Space Defense Command
 ADC/DEE
 Colorado Springs, CO 80912

Hugh Tomb
 Consultant
 Elbart Company
 34 Waterstone Road
 Newton, MS 02158

Frank Visich
 Owner
 ABLE Contracting
 99 East 4th Street
 New York, NY 10003

Bruce S. Wasaver
 Project Director, Alternate Fuels
 Phillips Petroleum Company
 5-A2-PB G.&G.L. Division
 Bartlesville, OK 74004

Eric M. Wormser
 Consultant
 Wormser Scientific Company
 88 Foxwood Road
 Stamford, CT 06903

James H. Yohn
 Aero-Space Defense Command
 ADC/DEE
 Colorado Springs, CO 80912

SOLAR DATA TAPES

Prepared by the University of Wisconsin Solar Energy Laboratory

DESCRIPTION

The solar data tapes contain hourly solar radiation and meteorological data, assembled from Weather Bureau tapes and other sources, for several cities in the United States. Solar radiation, wind speed, and dry bulb temperature data are available for all cities. Additional data on visibility, humidity, wind direction and cloud cover is available for many of the cities.

TAPE FORMAT

The tapes are written either in 7-track BCD mode with even parity and 800 bpi density or 9-track EBCDIC mode with odd parity and 800 bpi or 1600 bpi density. A tape is divided into files, each containing a year of hourly data for one city. Table II sequentially lists the contents of each file on the tape.

A complete file contains 8760 hourly records followed by an end of file mark. Each hourly record is an 80 character card image and these are blocked 240 records per block. Data must therefore be read from the tape in 240 hour blocks, and there are 37 blocks in every file. (The last block is only half filled with data since every year has 365 daily records. February 29 has been deleted from leap years.) Table I describes the general card image format. Note that not all of the data listed is available for every city. Where data is not available, the field is filled with 9's so that free format reading can always be used. The data available for each city is indicated in Table II.

TABLE I. HOURLY RECORD FORMAT

<u>Column</u>	<u>Abbrev.</u>	<u>Description</u>	<u>Units</u>
2-6	STN	Weather Bureau station number	-
8-9	YR	Year (19--)	-
11-12	MO	Month (1-12)	-
14-15	DY	Day (1-31)	-
17-18	HR	Hour (0-23)	-
20-23	SOL	Total solar radiation on a horizontal surface ^Δ	W/m ²
25-26	WD	Wind direction	degrees/10*
28-29	WS	Wind speed	m/s
31-35†	DBT	Dry bulb temperature	°C
37-41†	WBT	Wet bulb temperature	°C
43-47†	DPT	Dew point temperature	°C
49-51	RH	Relative humidity	percent
53-54	CC	Cloud cover	tenths
56-60	VIS	Visibility	kilometers

Δ total radiation over the past hour

* 0 is wind from the north, 9 is from east, 18 is from south, etc...

† 5 character field with decimal point second from the right

TABLE II. SOLAR DATA TAPE FILE STRUCTURE

<u>File</u>	<u>City</u>	<u>Period</u>	<u>Additional Data</u>
1	Madison, WI	DESIGN YEAR	WD, HUM, VIS, WBT, DPT
2	Madison, WI	1/1/48-12/31/48	WD, HUM, VIS, WBT, DPT
3	Madison, WI	1/1/49-12/31/49	WD, HUM, VIS, WBT, DPT
4	Madison, WI	1/1/50-12/31/50	WD, HUM, VIS, WBT, DPT
5	Madison, WI	1/1/51-12/31/51	WD, HUM, VIS, WBT, DPT
6	Madison, WI	1/1/52-12/31/52	WD, HUM, VIS, WBT, DPT
7	Madison, WI	1/1/53-12/31/53	WD, HUM, VIS, WBT, DPT
8	Madison, WI	1/1/54-12/31/54	WD, HUM, VIS, WBT, DPT
9	Madison, WI	1/1/55-12/31/55	WD, HUM, VIS, WBT, DPT
10	Madison, WI	7/1/61-6/30/62	WD, HUM, VIS, WBT, DPT
11	Boulder, CO	1/1/56-12/31/56	WBT
12	Miami, FL	1/1/55-12/31/55	WD, HUM, CC, VIS
13	Charleston, NC	1/1/55-12/31/55	WD, HUM, CC, VIS
14	Blue Hill, MA	1/1/58-12/31/58	WD, HUM, CC, VIS
15	Albuquerque, NM	1/1/59-12/31/59	WD, HUM, CC, VIS
16	Albuquerque, NM	7/1/62-6/30/63	WD, HUM, VIS, WBT, DPT
17	Phoenix, AZ	1/1/56-12/31/56	WD, HUM, CC, VIS
18	Santa Maria, CA	1/1/55-12/31/55	WD, HUM, CC, VIS
19	Seattle, WA	1/1/60-12/31/60	WD, HUM, CC, VIS
20	Fresno, CA	7/1/57-6/30/58	WD, HUM, VIS, WBT, DPT
21	Medford, OR	7/1/61-6/30/62	WD, HUM, VIS, WBT, DPT
22	El Paso, TX	7/1/54-6/30/55	WD, HUM, VIS, WBT, DPT
23	Dodge City, KA	7/1/55-6/30/56	WD, HUM, VIS, WBT, DPT
24	Bismark, ND	7/1/54-6/30/55	WD, HUM, VIS, WBT, DPT
25	New York, NY	7/1/57-6/30/58	WD, HUM, VIS, WBT, DPT

†

All files contain the station no., year, month, day, hour, solar radiation, wind speed, and dry bulb temperature.

Acknowledgements & Disclaimers

The data in files 1 through 9 were assembled by the University of Wisconsin Solar Laboratory. The radiation measurements came from Solar Lab records of data taken both by the University of Wisconsin and the U.S. Weather Bureau in Madison. These data were integrated with "surface observations" for Madison over the same period obtained from the National Oceanographic and Atmospheric Administration (NOAA). This data had numerous small gaps which were filled in with actual readings from the Madison weather bureau archives wherever possible and interpolated values when no data was available. The design year was constructed by selecting the months from the eight consecutive years whose total radiation and degree days most closely matched the monthly averages of the eight year period.

The data in files 11-15 and 17 were obtained from Professor Richard Tybout of Ohio State University and the data in files 10, 16, and 18-25 were obtained from James Hedstrom of Los Alamos Scientific Laboratory. The UW Solar Lab altered only the format and units of these data to make them compatible with our own. We do not intend to characterize these data as "design years" or even as being representative of the location in question. Furthermore, it has been found that US weather bureau data, especially radiation measurements, are often 5 to 10% in error and occasionally as high as 20% in error.

THE UNIVERSITY OF WISCONSIN
INTERACTIVE SOLAR HEATING DESIGN PROGRAM, FCHART

The Solar Energy Laboratory of the University of Wisconsin has developed a quick design method for solar heating systems*, based on standard system configurations, using either liquid or air as the heat transfer medium. This method treats collector area as the main design variable, but includes means for taking into account secondary design variables such as storage unit capacity. We refer to this method as the f-chart method. The f-charts are the result of correlating hundreds of detailed simulations of solar heating systems. For standard system configurations, the f-charts eliminate the need for detailed simulations using hourly meteorological data.

The meteorological data required to use the f-chart method are: the long term monthly average of daily total solar radiation on a horizontal surface, the long term monthly average ambient temperature, and the long term monthly average heating degree days (65°F base).

The solar energy system data needed for the f-chart method includes: the F_{RUL} and $F_R(\tau)$ products for the collector (which are the slope and intercept of collector efficiency versus $(T_{in} - T_{ambient})/(incident radiation)$ curves); the effectiveness of heat exchangers between collector and tank (for liquid-based systems); the storage capacity per unit area of collector; and the orientation of the collector.

The building heating load is incorporated either by specifying the monthly load (calculated by any standard technique), or by specifying the building overall loss coefficient (energy-per-degree-day concept), which is the design heating load divided by the design temperature difference. In addition, a service hot water load can be added to the heating load.

Given these numbers, the fraction of monthly total loads, and the fraction of the annual loads to be carried by solar energy can readily be determined for any collector area.

The f-chart method has proven useful for design and for economic studies. Its utility has led us to develop an interactive program which will give the thermal and economic performance. The appropriate meteorological data are stored in the program for approximately 100 stations in North America; it is necessary to select from the list of stations the one that is most representative of the location of interest.

*Klein, S.A., Beckman, W.A., and Duffie, J.A., "A Design Procedure for Solar Heating Systems," *Solar Energy*, 18, 113 (1976).

Klein, S.A., Beckman, W.A., and Duffie, J.A., "A Design Procedure for Solar Air Heating Systems", Paper for ISES Meeting, Winnipeg, Aug. 1976.

There are two options in the use of the program. First, the collector area can be specified (along with the other design data noted above), and the annual (and monthly if desired) performance is returned. In addition, if cost data are supplied an economic assessment can also be returned. The attached program output illustrates the required input data and computed thermal and economic performance for Madison, Wisconsin, for an average residential structure.

The second option is to ask the program to find the economic optimum collector area. The program uses a numerical technique to optimize the collector area and returns the same information as the first option but for the optimum area.

The economic optimum collector area is found by calculating the present value of future costs of the solar system and of the conventional system (including, if desired, the effects of escalating fuel prices, property and income taxes, tax rebates, interest, depreciation, insurance, and maintenance). The optimum collector area is that which minimizes the sum of the present value of future costs plus the initial cost of the solar system above the cost of a conventional heating system.

The equations for the f-charts are simple, and the economic analysis is straightforward. Under these circumstances, it had been our intention to provide (through publication in the technical literature) the basis of the program but not the program itself. However, there has been sufficient interest in it that we have now decided to make the program itself available. We will do so at a charge of \$100.00 for a card deck (2000 cards) or a punched paper tape, a program listing, data for over 100 stations, and the paper describing the basis of the program.

The program is written in standard FORTRAN II for use in interactive mode. It can be used in a batch mode but this is not very convenient. There is no documentation other than the listing (and the technical paper). However, the program is self explanatory in the interactive mode. On the University of Wisconsin UNIVAC 1110 system, a point design costs substantially less than one dollar.

UNIVERSITY OF WISCONSIN
SOLAR ENERGY LABORATORY
FCHART VERSION 1.2

THIS PROGRAM UTILIZES THE DESIGN CHARTS DEVELOPED AT THIS LABORATORY TO SIZE COLLECTORS FOR SOLAR SPACE AND DOMESTIC WATER HEATING SYSTEMS OF CONVENTIONAL DESIGN. TO USE, ANSWER THE QUESTIONS.

YOU MAY USE EITHER SI OR ENGLISH UNITS.

DO YOU WISH TO USE SI UNITS?

YES

WOULD YOU LIKE A LISTING OF LOCATIONS FOR WHICH CALCULATIONS CAN BE MADE?

NO

YOU MAY MODEL THE SPACE HEATING LOAD USING THE DEGREE-DAY CONCEPT OR YOU MAY TYPE IN A SPACE HEATING LOAD FOR EACH MONTH.

DO YOU WISH TO USE THE DEGREE-DAY CONCEPT?

YES

YOU MAY EITHER HAVE THE GROUND REFLECTANCE SET TO 0.2 FOR ALL MONTHS OR YOU MAY TYPE IN A VALUE FOR EACH MONTH

DO YOU WISH TO HAVE THE GROUND REFLECTANCE SET TO 0.2 FOR ALL MONTHS?

YES

WOULD YOU LIKE THE PROGRAM TO PERFORM AN ECONOMIC ANALYSIS?

YES

IS THIS AN INCOME PRODUCING BUILDING (NOT A RESIDENCE)?

YES

DO YOU NEED INSTRUCTIONS TO CHANGE OTHER PARAMETERS?

YES

THE FOLLOWING LIST CONTAINS THE SYSTEM PARAMETERS AND THEIR PRESENT VALUES. TO CHANGE ANY PARAMETER VALUE, TYPE IN THE CODE NUMBER AND NEW VALUE OF THE PARAMETER. WHEN CHANGING DIMENSIONAL QUANTITIES BE SURE TO USE THE PROPER UNITS.

IF YOU WISH TO LIST THE VALUES OF THE PARAMETERS, TYPE IN "LIST". WHEN YOU HAVE FINISHED MAKING CHANGES, TYPE IN "RUN".

IF YOU WISH TO CHANGE MONTHLY VALUES OF LOAD OR GROUND REFLECTANCE, TYPE IN "CHANGE".

IF YOU WISH TO STOP, TYPE IN "STOP".

TO LIST THE VALUE OF ONE PARAMETER TYPE IN "LIST" AND THE CODE NUMBER.

CODE	VARIABLE DESCRIPTION	VALUE UNITS
1	AIR SYSTEM=1, LIQUID SYSTEM=2.....	2.00
2	COLLECTOR AREA.....	50.00 M2
3	FRPRIME-TAU-ALPHA PRODUCT(NORMAL INCIDENCE) ..	.70
4	FRPRIME-UL PRODUCT.....	17.00 KJ/HR-C-M2
5	NUMBER OF TRANSPARENT COVERS.....	2.00
6	COLLECTOR SLOPE.....	43.00 DEGREES
7	AZIMUTH ANGLE (E.G. SOUTH=0, WEST=90)00 DEGREES
8	STORAGE CAPACITY.....	315.00 KJ/C-M2
9	EFFECTIVE BUILDING UA.....	1000.00 KJ/HR-C
10	CONSTANT DAILY BLDG HEAT GENERATION.....	.00 KJ/DAY
11	HOT WATER USAGE.....	300.00 L/DAY
12	WATER SET TEMPERATURE.....	60.00 C
13	WATER MAIN TEMPERATURE.....	11.00 C
14	CITY CALL NUMBER.....	62.00
15	THERMAL PRINT OUT BY MONTH=1, BY YEAR=2.....	1.00
16	ECONOMIC ANALYSIS ? YES=1, NO=2.....	1.00
17	USE OPTMZD. COLLECTOR AREA=1, SPECFD. AREA=2.	1.00
18	PERIOD OF THE ECONOMIC ANALYSIS.....	20.00 YEARS
19	COLLECTOR AREA DEPENDENT SYSTEM COSTS.....	100.00 \$/M2 COLL.
20	CONSTANT SOLAR COSTS.....	1000.00 \$
21	DOWN PAYMENT(% OF ORIGINAL INVESTMENT).....	10.00 %
22	ANNUAL INTEREST RATE ON MORTGAGE.....	8.00 %
23	TERM OF MORTGAGE.....	20.00 YEARS
24	ANNUAL NOMINAL(MARKET) DISCOUNT RATE.....	8.00 %
25	EXPENSES(INSUR.,MAINT.) OF SYSTEM IN 1ST YEAR	25.00 \$
26	ANNUAL % INCREASE IN ABOVE EXPENSES.....	6.00 %
27	PRESENT COST OF AUXILIARY FUEL (CF).....	6.00 \$/GJ
28	CF RISE: LINEAR=1,Z/YR=2,SEQ. OF VALUES=3....	2.00
29	IF 1, WHAT IS THE SLOPE OF CF INCREASE?.....	.00 -\$/.GJ-YR
30	IF 2, WHAT IS THE ANNUAL RATE OF CF RISE?....	10.00 %
31	ECONOMIC PRINT OUT BY YEAR=1, CUMULATIVE=2...	1.00
32	EFFECTIVE FEDERAL-STATE INCOME TAX RATE.....	25.00 %
33	TRUE PROP. TAX RATE PER \$ OF ORGINAL INVEST..	2.00 %
34	INCOME PRODUCING BUILDING? YES=1,NO=2.....	2.00
	TYPE IN CODE NUMBER AND NEW VALUE	

MADISON WT 43.08

****ECONOMIC ANALYSIS****

OPTIMIZED COLLECTOR AREA = 47. M2

INITIAL COST OF SOLAR SYSTEM(\$) = 5652.

YR	MORT PAYMT	INTRST PAID	DEPRC DEDUCT	PRP.TX PAID	INC.TX SAVED	FUEL EXPNSE	MISC EXPNSE	TOTAL COST	SOLAR SAVNGS
1	518.	407.	0.	113.	130.	352.	25.	878.	-114.
2	518.	398.	0.	113.	128.	387.	26.	917.	-77.
3	518.	388.	0.	113.	125.	426.	28.	960.	-35.
4	518.	378.	0.	113.	123.	468.	30.	1006.	10.
5	518.	367.	0.	113.	120.	515.	32.	1058.	61.
6	518.	355.	0.	113.	117.	567.	33.	1114.	116.
7	518.	342.	0.	113.	114.	623.	35.	1176.	177.
8	518.	328.	0.	113.	110.	686.	38.	1244.	245.
9	518.	312.	0.	113.	106.	754.	40.	1319.	319.
10	518.	296.	0.	113.	102.	829.	42.	1401.	401.
11	518.	278.	0.	113.	98.	912.	45.	1491.	491.
12	518.	259.	0.	113.	93.	1004.	47.	1589.	590.
13	518.	238.	0.	113.	88.	1104.	50.	1698.	700.
14	518.	216.	0.	113.	82.	1214.	53.	1817.	821.
15	518.	192.	0.	113.	76.	1336.	57.	1947.	954.
16	518.	165.	0.	113.	70.	1470.	60.	2091.	1100.
17	518.	137.	0.	113.	63.	1616.	64.	2249.	1262.
18	518.	107.	0.	113.	55.	1778.	67.	2422.	1440.
19	518.	74.	0.	113.	47.	1956.	71.	2612.	1636.
20	518.	38.	0.	113.	38.	2152.	76.	2820.	1852.

PRESENT WORTH OF YEARLY TOTAL COSTS WITH SOLAR(\$) = 13916.

PRESENT WORTH OF YEARLY TOTAL COSTS W/O SOLAR(\$) = 16935.

****THERMAL ANALYSIS****

	TIME PERCENT	INCIDENT	HEATING	WATER	DEGREE	AMBIENT	
	SOLAR	SOLAR	LOAD	LOAD	DAYS	TEMP	
			(GJ)	(GJ)	(GJ)	(C-DAY)	(C)
JAN	30.8	17.81	19.64	1.91	818.	-8.	
FEB	39.6	18.88	16.99	1.72	708.	-6.	
MAR	60.3	25.93	14.84	1.91	618.	-0.	
APR	77.7	23.83	8.24	1.85	343.	7.	
MAY	99.2	25.83	4.13	1.91	172.	13.	
JUN	100.0	27.38	1.36	1.85	57.	19.	
JUL	100.0	29.27	.33	1.91	14.	21.	
AUG	100.0	27.92	.53	1.91	22.	20.	
SEP	100.0	27.18	2.32	1.85	97.	15.	
OCT	88.0	24.29	6.32	1.91	263.	10.	
NOV	37.7	15.42	12.40	1.85	517.	1.	
DEC	30.7	16.65	17.73	1.91	739.	-5.	
YR	53.9	280.38	104.84	22.48	4368.		

TYPE IN CODE NUMBER AND NEW VALUE

STOP

GOOD-BYE

JOHN A. DUFFIE
 Professor
 Chemical Engineering Department
 College of Engineering
 The University of Wisconsin
 Madison, Wisconsin 53706

Birth Date: March 31, 1925 U.S. Citizen

Married, 3 children

Education:

Rensselaer Polytechnic Institute	B. Ch.E.	1945
Rensselaer Polytechnic Institute	M. Ch.E.	1948
University of Wisconsin	Ph.D. (ChE)	1951

Professional Experience:

1946-49	Instructor in Chemical Engineering, Rensselaer Polytechnic Institute
1949-51	Research Assistant and Research Fellow (Proctor & Gamble), Chemical Engr., University of Wisconsin
1951	Research Engineer, Electrochemicals Department of Du Pont Company, Niagara Falls, New York
1952-53	Scientific Liaison Office, U.S. Navy Office of Naval Research, Chicago, Ill.
1954-to date	College of Engineering, University of Wisconsin Project Associate, 1954-57 Assistant Professor of Engineering, 1957-58 Associate Professor of Engineering, 1958-62 Professor, 1962-to date Director, Solar Energy Laboratory, 1956-to date Assistant Director, Engr. Exp. Station, 1957-65 Director, University-Industry Research Program, 1965-72 Associate Dean, Graduate School, 1965-present
1964	Fulbright Research Scholar and Guggenheim Fellow at the Mechanical Engineering Dept., University of Queensland, Australia, and at the Mech. Engr. Div. of Commonwealth Scientific & Industrial Research Organization, Australia

Member of: American Institute of Chemical Engineers
International Solar Energy Society, Past President
American Society for Engineering Education
American Association for the Advancement of Science
NSF/NASA Solar Energy Panel (1972)

Books:

Daniels, F. and Duffie, J.A. (Eds. and contributing authors), Solar Energy Research, University of Wisconsin Press, Madison (1955).

Duffie, J.A. and Beckman, W.A., Solar Energy Thermal Processes, published by John Wiley and Sons, New York (1974).

Publications:

1. Duffie, J.A. and Marshall, W.R., Chem. Eng. Prog., 49, 417 and 480 (1953). "Factors Influencing the Properties of Spray Dried Materials.
2. Duffie, J.A. "Solar Energy", Encyclopedia of Chemical Technology, First Supplemental Volume, p. 789 (1957).
3. Duffie, J.A., Lappala, R.P., and Löf, G.O.G., "Plastics for Focusing Collectors," J. Solar Energy, 1, No. 4, 9 (1957).
4. Duffie, J.A., "Reflective Solar Cooker Designs," Trans. of the Conference on the Use of Solar Energy, Univ. of Arizona Press, Tucson, Vol. III, Part II, p. 79 (1958).
5. Williams, D.A., Chung, R., Löf, G.O.G., Fester, D.A. and Duffie, J.A., "Cooling Systems Based on Solar Regeneration," Refr. Engr. 66, 33 (Nov. 1958).
6. Salam, E.M.A., Chung, R. and Duffie, J.A. "Absorption of Methyl Alcohol, Acetone and Diethylamine on Silica Gel," Bulletin de 'l Institut du Desert d'Egypte, 8, No. 2, 161 (1958).
7. Chung, R., Löf, G.O.G., and Duffie, J.A., "Space Cooling," Chem. Engr. Prog. 55, No. 4, 74 (1959).
8. Duffie, J.A. and Löf, G.O.G., "Solar Energy: Economics and Engineering Research at the University of Wisconsin," Canadian J. Chem. Engr., 37, 77 (1959).
9. Löf, G.O.G. and Duffie, J.A., "Utilizacion de la Energia Solar en Latino-america," Ingenieria Quimica, (Mexico), 5, No. 51 (October 1960).
10. Duffie, J.A., Löf, G.O.G. and Salam, E.M.A., "Solar Heat Exchangers," Chem. Engr. Prog., 56, No. 7, 63 (1960).

11. Duffie, J.A., Chung, R., and Löf, G.O.G., "Refrigeration par Absorption Solaire," Applications Thermiques de l'Energie Solaire dans le Domaine de la Recherche et de l'Industrie, CNRS, Paris (1961).
12. Duffie, J.A., "Solar Energy Developments." (A review of the UN Conference on New Sources of Energy), International Associations, No. 1, 74 (1962).
13. Duffie, J.A., "New Materials in Solar Energy Utilization," General Report, Proc. UN Conf. on New Sources of Energy, 4, 493 (1964). Also in J. Solar Energy, 6, 114 (1962).
14. Pfeiffer, C., Schoffer, P., Spars, B.G. and Duffie, J.A. "Performance of Silicon Solar Cells at High Levels of Solar Radiation," Trans. ASME, 84A, 33 (1962).
15. Duffie, J.A. and Löf, G.O.G., "Focusing Solar Collectors for Power Generation," Paper 207 II. 7/5, presented at the 6th World Power Conference, Melbourne, Australia (1962).
16. Löf, G.O.G., Fester, D.A. and Duffie, J.A., "Energy Balances on a Parabolic Cylinder Solar Collector," Trans. ASME, 84A, 24 (1962).
17. Duffie, J.A., Löf, G.O.G., and Beck, B. "Laboratory and Field Studies of Plastic Reflector Solar Cookers," Proc. UN Conf. on New Sources of Energy, 5, 339 (1964). Also in J. Solar Energy, 6, 94 (1962).
18. Chung, R. and Duffie, J.A. "On an Ice Machine," Letter to Editor, J. Solar Energy, 7, 187 (1963).
19. Chung, R., Duffie, J.A. and Löf, G.O.G. "A Study of a Solar Air Conditioner," Mech. Engr., 85, 31 (1963).
20. Löf, G.O.G. and Duffie, J.A. "Optimization of Focusing Solar Collector Design," Trans. ASME, 35A, 221 (1963).
21. Chung, R. and Duffie, J.A. "Cooling with Solar Energy," Proc. UN Conf. on New Sources of Energy, 6, 20 (1964).
22. Duffie, J.A., "The Design of Air-Conditioned Buildings; A Look to the Future--Solar Air Conditioning," Australian Building Sci. and Tech., 4, No. 11, 31 (1964).
23. Sheridan, N.R. and Duffie, J.A. "Solar Absorption Refrigeration," Australian Refrig., Air Cond. and Heating, 18, No. 8, 14 (1964).
24. Talwalkar, A.T., Löf, G.O.G. and Duffie, J.A., "Solar Drying of Oil Shale," Proc. UN Conf. on New Sources of Energy, 5, 284 (1964).

25. Daniels, F., Duffie, J.A., Löf, G.O.G., and Breihan, R. "Preliminary Tests of a Solar Heated Thermoelectric Generator," Proc. UN Conf. on New Sources of Energy, 4, 145 (1964).
26. Chiou, J.P., El-Wakil, M.M. and Duffie, J.A., "A Slit-and- Expanded Aluminum Foil Matrix Solar Collector," J. Solar Energy, 9, No. 2, 73 (1965).
27. Duffie, J.A. and Sheridan, N.R., "Lithium Bromide-Water Refrigerators for Solar Operation," Mech. and Chem. Engr. Trans., Inst. Engrs. Australia, MC-1, 79 (1965).
28. Löf, G.O.G., Duffie, J.A. and Smith, C.O., "World Distribution of Solar Radiation," J. Solar Energy, 10, 27 (1966).
29. Löf, G.O.G., Duffie, J.A. and Smith, C.O., "World Distribution of Solar Radiation," University of Wisconsin, Engineering Experiment Station Report No. 21 (1966).
30. Löf, G.O.G., Close, D.J. and Duffie, J.A. "A Philosophy for Solar Energy Development," J. Solar Energy, 12, 243-250 (1968).
31. Sheridan, N.R., Bullock, J.J. and Duffie, J.A. "Study of Solar Processes with an Analog Computer," J. Solar Energy, 11, 69-77 (1967).
32. Duffie, J.A., "Energy Resources for the Future," Technology in Western Civilization, Vol. II, edited by M. Kranzberg and C.W. Purcell, Jr., pp. 275-289 (1967).
33. Duffie, J.A. and Sheridan, N.R., "The Part-Load Performance of an Absorption Refrigerating Machine, Supplement au Bulletin de l'Institut International du Froid, 381-387 (1965).
34. Miller, R.J. and Duffie, J.A., "Thoughts on Economic-Social Implications of Solar Energy Use," paper presented at the Solar Energy Society International Conference, Melbourne, Australia, 1970.
35. Duffie, J.A., technical editor and contributing author, Solar Distillation, a report published by the Dept. of Economic & Social Affairs, United Nations, New York., (1970).
36. Duffie, J.A., "Energy Resources for the Future," paper in Technology in Western Civilization, II, 275, Kranzberg and Purcell (eds.) University of Wisconsin Press, Madison (1967).
37. Gutierrez, G., Hincapie, F., Duffie, J.A., and Beckman, W.A., "Simulation of Forced Circulation Water Heaters; Effects of Auxiliary Energy Supply, Load Type and Storage Capacity," Solar Energy, 15, 287 (1974).

38. Klein, S.A., Duffie, J.A., and Beckman, W.A., "Transient Considerations of Flat Plate Solar Collectors," Trans. ASME, J. Engr. Power 96, Series A, 109 (1974).
39. Butz, L.W., Beckman, W.A., and Duffie, J.A., "Simulation of a Solar Heating and Cooling System," Solar Energy, 16, 129 (1974).
40. Beckman, W.A., and Duffie, J.A., "Solar Heating and Cooling of Buildings," published in Proc. 20th Annual Meeting of Inst. Environmental Sciences (April 1974).
41. Klein, S.A., Cooper, P.I., Freeman, T.L., Beekman, D.M., Beckman, W.A., and Duffie, J.A., "A Method of Simulation of Solar Processes and Its Application," Solar Energy, 17, 29 (1975).
42. Oonk, R.L., Beckman, W.A., and Duffie, J.A., "Modeling of the CSU Heating/Cooling System," Solar Energy, 17, 21 (1975).
43. Oonk, R.L., W.A. Beckman and J.A. Duffie, "Comparison of Simulated and Measured Performance of the CSU Solar House I Heating System," presented at the 1975 ISES meeting, Los Angeles.
44. Beckman, W.A., Duffie, J.A., and Klein, S.A., "Simulation of Solar Heating Systems," to be published as Chapter 9 in ASHRAE Temperature Engineering Applications to Solar Energy (1976).
45. Duffie, J.A. and W.A. Beckman, "Solar Heating and Cooling," Science, 191, (January 16, 1976).
46. Freeman, T.L., W.A. Beckman, J.W. Mitchell and J.A. Duffie, "Computer Modeling of Heat Pumps and the Simulation of Solar-Heat Pump Systems," ASME, 75-WA/Sol 3, (1976).
47. Klein, S.A., W.A. Beckman and J.A. Duffie, "TRNSYS - A Transient Simulation Program," to be published in ASHRAE Transactions, (1976).
48. Klein, S.A., W.A. Beckman and J.A. Duffie, "A Design Procedure for Solar Heating Systems," Solar Energy, 18, 113, (1976).
49. Duffie, J.A. Beckman and J.G. Dekker, "Solar Heating in the United States," to be presented at the 1976 ASME Winter Annual Meeting.
50. Duffie, J.A., W.A. Beckman and M.J. Brandemuehl, "A Parametric Study of Critical Fuel Costs for Solar Heating in North America," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976).
51. Hughes, P.J., W.A. Beckman and J.A. Duffie, "Simulation Study of Several Solar Heating Systems With Off Peak Auxiliary," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976).
52. Klein, S.A., W.A. Beckman and J.A. Duffie, "A Design Procedure for Solar Air Heating Systems," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976).

53. Beckman, W.A. and J.A. Duffie, "A Review of Solar Cooling," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976).
54. Beckman, W.A. and J.A. Duffie, "Calculation of Flat Plate Collector Performance, paper presented at ERDA Workshop on Solar Energy in Cold Climates, University of Detroit, (1976).

WILLIAM A. BECKMAN
Professor
Mechanical Engineering Department
University of Wisconsin
Madison, Wisconsin 53706

Birth Date: November 11, 1935

U. S. Citizen

Education:

B.S.M.E.	University of Michigan	1958
M.S.M.E.	University of Michigan	1960
Ph.D.	University of Michigan	1964

Professional Experience:

1958-59	Test and Development Engineer, Chrysler Corporation, Missile Division, Warren, Michigan
1959-60	M.S., University of Michigan
1960-63	Instructor, University of Michigan
1961 (summer)	Jet Propulsion Laboratory, Pasadena, California
1963-64	Ph.D., University of Michigan
1964-67	Assistant Professor, Department of Mechanical Engineering (1/2 time), Solar Energy Laboratory, Engineering Experiment Station (1/2 time), The University of Wisconsin
1967 (summer)	Jet Propulsion Laboratory, Pasadena, California
1968-69	Senior Research Scientist, Commonwealth Scientific and Industrial Organization, Mechanical Engineering Division, Melbourne, Australia
1970, 71 (summer)	Jet Propulsion Laboratory, Pasadena, California
1972-date	Professor, University of Wisconsin

Memberships:

American Society of Mechanical Engineers
(Chairman, 1973) Solar Energy Division
Solar Energy Society
Sigma Xi

Books:

1. Duffie, J.A., and Beckman, W.A., Solar Energy Thermal Processes, published by John Wiley and Sons, October 1974.

Publications:

1. "A Photographic Study of Boiling in an Accelerating System," Journal of Heat Transfer, American Society of Mechanical Engineers, Series C, vol. 87, pp. 374-380, 1965 (with Herman Merte, Jr.).
2. "Design Considerations for a High Solar Flux Photovoltaic Power System," Solar Energy Journal, vol. 10, no. 3, pp. 132-136, July-September 1966 (with Schoffer, Hartman and Löf).
3. "An Experimental High Solar Flux Photovoltaic Power System," Proceedings of the 20th Annual Power Sources Conference, October 1966 (with Schoffer).
4. "Optimization of Contact Grid Spacing for High Solar Flux Photovoltaic Cells," ASME Journal of Engineering for Power, Series A, vol. 89, pp. 415-518, July 1967.
5. "Evaluation of a Distributed Model of a Photovoltaic Cell," Proceedings of the 6th Annual Photovoltaic Specialists Conference, April 1967 (with Schoffer).
6. "Radiation and Convection Heat Transfer in a Porous Bed," ASME Journal of Engineering for Power, Series A, vol. 90, pp. 51-54, January 1968.
7. "Temperature Uncertainties in Systems with Combined Radiation and Conduction Heat Transfer," Proceedings of the 1968 ASME Aerospace Conference, March 1968.
8. "Theoretical Performance of an Ammonia-Sodium Thiocyanate Intermittent Absorption Refrigeration Cycle," Solar Energy Journal, vol. 12, pp. 137-146, 1968 (with S.L. Sargent).
9. "A Technique for the Evaluation of the Thermal Conductivity of Coating Materials," Thermal Conductivity, pp. 887-894, 1969 (with J.W. Mitchell).
10. "Transpiration Cooling of Radiatively Heated Porous Beds," ASME Paper 69-WA/Sol-6, 1969 (with Y.H. Hamid).
11. "Determination of the Thermal Conductivity of Protective Coatings on Long Cylinders of Finite Diameters, Part II," Journal of Paint Technology, 42, pp. 189-192, 1970 (with J.W. Mitchell).
12. "Transient Response of Fin-Tube Space Radiations," ASME Journal of Heat Transfer, Series C, vol. 92, pp. 196-198, 1970 (with Palmquist and Moriarty).
13. "Solution of Heat Transfer Problems on a Digital Computer," Solar Energy Journal, vol. 13, pp. 293-300, 1971.

14. "Performance of Air-Cooled, Radiatively-Heated Screen Matrices," ASME Journal of Engineering for Power, Series A, vol. 93, no. 2, pp. 221-224, 1971 (with Y.H. Hamid).
15. "An Exponential Model for Real Gas Spectral Transmissivity," Environmental and Geophysical Heat Transfer, ASME HTD-vol. 4, 1971 (with S.L. Sargent).
16. "Optimum Thermal Design of Radiative-Conductive Systems," ASME Journal of Engineering for Industry, Series B, vol. 94, no. 2, pp. 373-380, 1972 (with R.W. Palmquist).
17. "HEAT - a Heat Transfer Computer Program Written in FORTRAN V Language," The University of Wisconsin Engineering Experiment Station Report #37, 1972.
18. "A Numerical Model of Thermal Radiation in a Dusty Atmosphere," Journal of the Atmospheric Sciences, vol. 30, pp. 88-94, January 1973 (with S.L. Sargent).
19. "Thermal Model for Prediction of a Desert Iguana's Daily and Seasonal Behavior," ASME Journal of Heat Transfer, Series C, vol. 95, no. 2, pp. 257-262, 1973 (with J.W. Mitchell and W.P. Porter).
20. "Behavioral Implications of Mechanistic Ecology," Oecologia 13, 1-54 (1973), (with W.P. Porter, J.W. Mitchell and C.B. DeWitt).
21. "Simulation of Forced Circulation Water Heaters; Effect of Auxiliary Energy Supply, Load Type and Storage Capacity," Solar Energy, 15, pp. 287-298, (1974).
22. "Conduction and Radiation in Artificial Fur," published in Perspectives of Biophysical Ecology, D.M. Gates and R.B. Schmerl, eds., Springer-Verlag, New York, 549 (1975), (with D. Skuldt, J.W. Mitchell and W.P. Porter).
23. "Convective Heat Transfer from a Desert Surface," Trans. ASME, Series C, 97, 1, 104 (1975), (with S.A. Klein and J.W. Mitchell).
24. "Transient Considerations of Flat-Plate Solar Collectors," Trans. ASME, J. Engr Power, 96, Series A (1974), (with S.A. Klein and J.A. Duffie).
25. "Simulation of a Solar Heating and Cooling System," Solar Energy, 16, 129 (1974), (with L.W. Butz and J.A. Duffie).
26. "Solar Heating and Cooling of Buildings," published in Proc. 20th Annual Meeting of the Inst. of Environmental Sciences, (1974), (with J.A. Duffie).

27. "Microclimate Modeling of the Desert," presented at 1974 Int'l. Seminar on Heat and Mass Transfer in the Environment of Vegetation, published in Heat and Mass Transfer in Biospheric, Part 1, Trans. Proc. in Plant Environment, D.A. Devries and N.H. Afgan, eds., Scripta Book Co., Washington, D.C., 275 (with J.W. Mitchell, R.T. Bailey and W.P. Porter).
28. "A Method of Simulation of Solar Processes and Its Application," Solar Energy, 17, 29 (1975) (with S.A. Klein, P.I. Cooper, T.L. Freeman, D.M. Beekman, and J.A. Duffie).
29. "Modeling of the CSU Heating/Cooling System," Solar Energy, 17, 21 (1975), (with R.L. Oonk and J.A. Duffie).
30. "Environmental Constraints on Some Predator-Prey Interaction," published in Perspectives of Biophysical Ecology, D.M. Gates and R.B. Schmerl, eds., Springer-Verlag, New York (1975) (with W.P. Porter, J.W. Mitchell, and C.R. Tracy).
31. "Comparison of Simulated and Measured Performance of the CSU Solar House I Heating System," presented at the 1975 ISES meeting, Los Angeles (with R.L. Oonk and J.A. Duffie).
32. "Simulation of Solar Heating Systems," to be published as Chapter 9 in ASHRAE Temperature Engineering Applications to Solar Energy (1975), (with J.A. Duffie and S.A. Klein).
33. "Solar Heating and Cooling," Science, 191, (January 16, 1976), (with J.A. Duffie).
34. "Computer Modeling of Heat Pumps and the Simulation of Solar-Heat Pump Systems," ASME, 75-WA/Sol 3, (1976), (with T.F. Freeman, J.W. Mitchell and J.A. Duffie).
35. "TRNSYS - A Transient Simulation Program," to be published in ASHRAE Transactions, (1976) (with S.A. Klein and J.A. Duffie).
36. "A Design Procedure for Solar Heating Systems," Solar Energy, 18, 113, (1976) (with S.A. Klein and J.A. Duffie).
37. "Solar Heating in the United States," to be presented at the 1976 ASME Winter Annual Meeting (with J.A. Duffie and J.G. Dekker).
38. "A Parametric Study of Critical Fuel Costs for Solar Heating in North America," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976) (with J.A. Duffie and M.J. Brandemuehl).
39. "Simulation Study of Several Solar Heating Systems With Off Peak Auxiliary," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976) (with P.J. Hughes and J.A. Duffie).
40. "A Design Procedure for Solar Air Heating Systems," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976) (with S.A. Klein and J.A. Duffie).

41. "A Review of Solar Cooling," to be presented at the ISES American Section Meeting, Winnipeg, Canada, (1976) (with J.A. Duffie).
42. "Estimation of Optimum Solar System Performance in Northern Climates," paper presented at ERDA Workshop on Solar Energy in Cold Climates, University of Detroit, (1976).
43. "Calculation of Flat Plate Collector Performance," paper presented at ERDA Workshop on Solar Energy in Cold Climates, University of Detroit, (1976) (with J.A. Duffie).

1. NAME: John Wright Mitchell

2. VITA:

(a) Birth Date: March 17, 1935 Place: Palo Alto, California
Wife: Carol

Children and Birth Dates:	John	December 20, 1955
	Christopher	November 4, 1957
	Laura	November 22, 1959
	Scott	April 1, 1966
	Sarah	February 12, 1969

(b) Degrees Earned: BS Stanford University 1956
MS Stanford University 1957
Engr Stanford University 1959
PhD Stanford University 1963

PhD Dissertation: "A Study of the Fluid Dynamics and Heat Transfer Behavior for Radially Inward Flow Over a Shrouded Rotating Disk"

Positions Held:

1956-62 Research Assistant, Stanford University
1962-65 Assistant Professor, Mechanical Engineering,
University of Wisconsin
1965-71 Associate Professor, Mechanical Engineering,
University of Wisconsin
1970-71 Visiting Associate Professor of Epidemiology, Yale
University
1971 Professor, Mechanical Engineering Department,
University of Wisconsin

Summer Employment:

1955-56 Ames Research Center, Moffett Field, California
1963 Vidya Division of Itek, Palo Alto, California
1964 Ames Research Center, Moffett Field, California
1967 Ames Research Center, Moffett Field, California

Has served as consultant to:

Lockheed Corporation, Palo Alto, California
Vidya Division, Itek Corporation, Palo Alto, California
Marathon Electric Company, Wausau, Wisconsin
Cutler Hammer Company, Milwaukee, Wisconsin
Sealtite Insulation Manufacturing Company, Waukesha, Wisconsin
Modine Manufacturing Company, Racine, Wisconsin
Expert Witness, Ohio Medical Company, Madison
Formrite Tube Company

(c) Special Honors or Awards:

Industrial Press Achievement Award, 1956
NASA-ASEE Faculty Fellowship, Summer 1964, 1967
Honorary Member of Theta Tau, 1964
Pi Tau Sigma Distinguished Teaching Award of the Department of Mechanical Engineering, 1967, 1970, 1973, 1974
The Ralph R. Teetor Award of the Society of Automotive Engineers, 1968
Outstanding Instructor Award, Polygon Board, 1969-70
NIH Special Research Fellowship to study at J. B. Pierce Foundation Laboratory, New Haven, Connecticut, 1970-71
Amoco Award for Distinguished Teaching (\$1000), University of Wisconsin, 1976

(d) Other Information:

Society Memberships: American Society of Mechanical Engineers
American Society for Engineering Education
Theta Tau (Professional Engineering Fraternity), Advisor
American Association for the Advancement of Science
Sigma Xi

Professional Engineer: Wisconsin #9505

Publications

1. "The Transient Response of Gas-Turbine Plant Heat Exchangers-Regenerators, Intercoolers, Precoolers, and Ducting," Trans. ASME, Series A, 81: 433-448, (A. L. London, F. R. Biancardi, J. W. Mitchell), 1959.
2. "Heat-Transfer and Flow-Friction Characteristics of Crossed Rod Matrices," Trans. ASME, Series C, 82: 192-213, (A. L. London, J. W. Mitchell, W. A. Sutherland), 1960.
3. "A Method of Estimating Cross-Flow Heat Exchanger Transients," ASHRAE Transactions, 71: 225-231, (G. E. Myers, J. W. Mitchell, R. Nagaoka), 1965.
4. "Heat Transfer from a Shrouded Rotating Disk to a Single Fluid Stream," Trans. ASME, Series C, 87: 485-492, (J. W. Mitchell and D. E. Metzger), 1965.

5. "Heat Transfer from a Shrouded Disk with Film Cooling," Journal of Heat Transfer, Trans. ASME, Series C, 88: 140-146, (D.E. Metzger and J.W. Mitchell), 1966.
6. "Thermocouple Corrections from Irreversibility Theory," American Journal of Physics, 34: 549-555, (R.A. Gaggioli and J.W. Mitchell), 1966.
7. "Perivascular Cooling of Blood Flow in Arteries and Veins," Proceedings of 19th Annual Conference on Engineering in Medicine and Biology, (R.S. Muka, J.W. Mitchell and G.E. Myers), November 1966.
8. "The Transient Response of Cross-Flow Heat Exchangers, Evaporators, and Condensers," Trans. ASME, Series C, 89: 75-80, (G.E. Myers, J.W. Mitchell, R.F. Norman), 1967.
9. "Measurement of Drilling Temperature by the Garter Spring Thermocouple Method," Microtechnic, 6, (M.F. DeVries, S.M. Wu, J.W. Mitchell), 1967.
10. "An Analytical Model of Counter-Current Heat Exchange Phenomena," Biophysical Journal, 8: 897-911, (J.W. Mitchell, G.E. Myers), 1968.
11. "A Technique for the Evaluation of the Thermal Conductivity of Coating Materials," Proceedings of the 8th Conference on Thermal Conductivity, 887-894, (with W.A. Beckman), 1969.
12. "An Expression for Internal Flow Heat Transfer for Polynomial Wall Temperature Distributions," Technical Brief, Trans. ASME, Series C, 91: 175-177, 1969.
13. "Homework Experiments in a Heat Transfer Course," Journal of Engineering Education, 60: 925-926, (J.W. Mitchell), 1970.
14. "Determination of the Thermal Properties of a Siltstone Rock," Twelfth Symposium on Rock Mechanics, University of Missouri, Rolla, Mo., (C. C. Hanninen, L. D. Clark, and J.W. Mitchell), 1970.
15. "Determination of the Thermal Conductivity of Protective Coatings on Long Cylinders of Finite Diameter, Part II," J. of Paint Technology, 42: 189-192, (J.W. Mitchell and W.A. Beckman), 1970.
16. "The Transient Response of Heat Exchangers Having an Infinite Capacitance Rate Fluid," Trans. ASME, Series C, 92: 269-275, (G.E. Myers, J.W. Mitchell, and C.F. Lindehein), 1970.
17. "An Experimental and Analytical Investigation of an Internal Cooling Technique," J. of Appl. Physiol., 28: 695-699, (J.W. Mitchell, G.E. Myers, W. Hutchinson, M. Javid), 1970.
18. "Thermal Response of Human Legs During Cooling," J. of Applied Physiol., 29: 859-865, (J.W. Mitchell, T.L. Galvez, J. Hengle, G.E. Myers, K.L. Siebecker), 1970.

19. "Systems Studies of DDT Transports," Science, 170: 503-508, (H.L. Harrison, O.L. Loucks, J.W. Mitchell, D.F. Parkhurst, C.R. Tracy, D.G. Watts, V.J. Yannecone, Jr.), 1970.
20. "Base Heat Transfer in Two-Dimensional Subsonic Fully Separated Flows," Trans. ASME, Series C, 93: 342-347, 1971.
21. "Cooling Boot for Refrigeration Anesthesia," Anesthesia and Analgesia, 50: 569-570, (T.L. Galvez, J.W. Mitchell, G.E. Myers, K.L. Sicbecker), 1971.
22. "The Rabbit Ear as a Temperature Sensor," Life Sciences, 10: 895-899, (M.J. Kluger, R.R. Gonzalez, J.W. Mitchell, J.D. Hardy), 1971.
23. "Peripheral Modifications to the Central Drive for Sweating," J. of Appl. Physiol., 31: 828-833, (E.R. Nadel, J.W. Mitchell, B. Saltin, J.A.J. Stolwijk), 1971.
24. "Theoretical and Experimental Studies of Energy Exchange from Jack Rabbit Ears and Cylindrically Shaped Appendages," Biophysical Journal, 11: 1030-1047, (P. Wathen, J.W. Mitchell, W.P. Porter), 1971.
25. "Thermal Sensitivity Coefficients of Different Skin Areas," Proceedings of Int'l. Union of Physiol. Sci., IX, XXV International Conference, Munich, (J.W. Mitchell, E.R. Nadel, J.A.J. Stolwijk), 1971.
26. "Control of Local and Total Sweating During Exercise Transients," Int. J. Biometeor, 15: 201-206, (E.R. Nadel, J.W. Mitchell, J.A.J. Stolwijk), 1971.
27. "Modification of the Central Sweating Drive at the Periphery," Int. J. Biometeor, 15: 268-272, (J.A.J. Stolwijk, E.R. Nadel, J.W. Mitchell, B. Saltin), 1971.
28. "Local and Total Sweating During Exercise Transients," Proceedings of Int'l. Union of Physiol. Sci., IX, XXV International Conference, Munich, (E.R. Nadel, J.W. Mitchell, J.A.J. Stolwijk), 1971.
29. "Respiratory Weight Losses During Exercise," Journal of Applied-Physiology, 32: 474-476, (J.W. Mitchell, E.R. Nadel, J.A.J. Stolwijk), 1972.
30. "Model Simulation of Blood Flow and Oxygen Uptake During Exercise," Biophysical Journal, 12: 1452-1466, (J.W. Mitchell, J.A.J. Stolwijk, E.R. Nadel), 1972.
31. "Thermal Model for Prediction of a Desert Iguana's Daily and Seasonal Behavior," Trans. ASME, Series C, 95: 257-262, (W.A. Beckman, J.W. Mitchell, W.P. Porter), 1973.
32. "Differential Thermal Sensitivity in the Human Skin," Pflugers Arch, 340: 71-76, (E.R. Nadel, J.W. Mitchell, J.A.J. Stolwijk), 1973.

33. "Behavioral Implications of Mechanistic Ecology," Oecologia, 13: 1-54, (W.P. Porter, J.W. Mitchell, W.A. Beckman, C.B. DeWitt), 1973.
34. "Blood Flow and Oxygen Uptake During Exercise," Trans. ASME, Series G, 95 (3): 274-278; (also in Regulation and Control in Physiological Systems, A.S. Iberall & H.C. Guyton, pp. 383-387), (J.W. Mitchell, J.A.J. Stolwijk, E.R. Nadel), 1973.
35. "Heat Transfer from Animal Appendage Shapes - Cylinders, Arcs, and Cones," Trans. ASME, Series C, 96: 536-540, (P.M. Wathen, J.W. Mitchell, W.P. Porter), 1974.
36. "An Experimental Method for Determining Convective Heat Transfer from a Desert Surface," Trans. ASME, Series C, 97: 104-109, (R.T. Bailey, J.W. Mitchell, W.A. Beckman), 1975.
37. "Central and Peripheral Components of the Metabolic Response to Cold in the Hairless Gerbil," J. of Appl. Physiol., 37: 712-711 (M.F. Roberts, W.P. Porter, J.W. Mitchell), 1974.
38. "Microclimatic Modeling of the Desert" in "Heat and Mass Transfer in the Biosphere, Part I, Transfer Processes in the Plant Environment," D.A. deVries and N.H. Afgan, ed., Scripta Book Co., Washington, D.C., (J.W. Mitchell, W.A. Beckman, R.T. Bailey, and W.P. Porter), 275-286, 1975.
39. "Environmental Constraints on Some Predator-Prey Interactions," in Perspectives of Biophysical Ecology, 347-364, D.M. Gates and R.B. Schmerl, ed., Springer-Verlag, New York, (W.P. Porter, J.W. Mitchell, W.A. Beckman, C.R. Tracy), 1975.
40. "Conduction and Radiation in Artificial Fur," in Perspectives of Biophysical Ecology, D.M. Gates and R.B. Schmerl, eds., Springer-Verlag, New York, (D.J. Skuldt, W.A. Beckman, J.W. Mitchell, W.P. Porter), 1975.
41. "The Wisconsin Regional Energy Model," Proceeding of the SIMS Research Application Conference on Energy. Alta, Colorado, (W.K. Foell, J.W. Mitchell, J. L. Pappas), 1975.
42. Lecture Notes in Economics and Mathematical Systems, M. Beckman and H.P. Kungl, eds., Springer-Verlag, Berlin, 1975.
43. "Computer Modeling of Heat Pumps and the Simulation of Solar Heat-Pump Systems," ASME paper 75-WA/Sol-3, (T.L. Freeman, W.A. Beckman, J.W. Mitchell, J.A. Duffie) November 1975.
44. "Heat Transfer from Spheres in the Natural Turbulent Outdoor Environment," ASME Paper 75-WA/HT-57, (G. Kowalski J.W. Mitchell), November 1975. To be published in J. of Heat Transfer.
45. "Heat Transfer from Spheres and Other Animal Forms," Bio-physical J. 16: 561-569, (J.W. Mitchell), 1976

RESUME

(1976)

Name: Said I. Abdel-Khalik
Birth Date: August 9, 1948
Place: Alexandria, Egypt

Address: 6820 Schroeder Rd., #5
 Madison, WI 53711
Tele: H (608) 271-8320
 O (608) 263-2968

Personal: Single, 5' 10", 160 Pounds

Education:

1967 BS Mech Engr, Alexandria University, Egypt
 1971 MS Mech Engr, University of Wisconsin-Madison
 1973 PhD Mech Engr, University of Wisconsin-Madison (Chem Engr Minor)
 1973-4 Postdoctoral Fellow, Chemical Engineering Department and the Rheology Research Center, University of Wisconsin-Madison
 9/74- Postdoctoral Fellow, Solar Energy Laboratory, University of Wisconsin-Madison
 2/75

PhD Dissertation: "An Investigation of the Diffusion Flame Surrounding a Simulated Liquid Fuel Droplet"

Postdoctoral Study I: "Molecular Theories of Rheology and their Relation to Continuum Mechanics"

Postdoctoral Study II: "Computer Modeling of Solar Heating and Cooling Systems"

Experience:

1964 5 6 Cooperative Student Engineer, International Association for the Exchange of Students for Technical Experience (IAESTE), worked for several companies in both Egypt and Sweden

1967-9 Instructor, Mechanical Engineering, Alexandria University

1969-73 Research Assistant, Mechanical Engineering, University of Wisconsin-Madison

Fall 72 Teaching Assistant, Mechanical Engineering, University of Wisconsin-Madison

Fall 74 Visiting Assistant Professor, Chemical Engineering, University of Wisconsin-Madison

2/75- 1/76 Senior Research Engineer, The Babcock and Wilcox Co., Nuclear Power Generation Division, Lynchburg, VA

1/76- present Assistant Professor, Nuclear Engineering Department, University of Wisconsin-Madison

Special Honors and Awards:

1. BS, Distinction, First Degree of Honors, Alexandria University
2. The Makkine Prize, (Top Student of the ME Dept), 1967
3. The George Diab Prize, (Excellence in Thermosciences), 1967
4. Alexandria University Scholarship (Five consecutive times) 1962-67
5. The Wisconsin Alumni Research Foundation Fellowship, 1971-72
6. The College of Engineering Scholarship, Univ. of Wisconsin, Spring 72
7. NSF Postdoctoral Fellowship, The Chemical Engr. Dept. and the Rheology Research Center, University of Wisconsin, 1973-4
8. NSF Postdoctoral Fellowship, Solar Energy Laboratory, University of Wisconsin, 1974-75

Societies: The Combustion Institute, Society of Rheology, American Institute of Physics, International Solar Energy Society, Sigma Xi.

Interests: Camping, Hiking, Sailing, Photography and Painting.

Publications:

1. S.I. Abdel-Khalik, T. Tamari and M.M. El-Wakil, "An Experimental and Analytical Determination of Heat and Mass Transfer in a Diffusion Flame," Heat Transfer in Flames, Part I, Ch. 23, 365-374, (N.H. Afgan and J.M. Beer, Editors), Scripta (1974).
2. S.I. Abdel-Khalik, T. Tamari and M.M. El-Wakil, "A Chromatographic and Interferometric Study of the Diffusion Flame Around Simulated Liquid Fuel Droplet," Fifteenth (Int.) Symposium on Combustion, 389-399, The Combustion Institute (1974).
3. T. Tamari, S.I. Abdel-Khalik and M.M. El-Wakil, "An Investigation of the Diffusion Flame Surrounding a Simulated Liquid Fuel Droplet by Gas Analysis and Optical Interferometry," TR-374, 1-18, Nat. Aerospace Laboratory, Tokyo, Japan (1974) (In Japanese).
4. S.I. Abdel-Khalik, O. Hassager and R.R. Bird, "The Goddard Expansion and the Kinetic Theory of Rodlike Macromolecules," J. Chem. Phys., 61, 10, 4312-4316 (1974).
5. R.B. Bird, O. Hassager and S.I. Abdel-Khalik, "Corotational Rheological Models and the Goddard Expansion," A Journal Review, AICHE Journal, 20, 6, 1041-1066 (1974).

6. S.I. Abdel-Khalik, O. Hassager and R.R. Bird, "Prediction of Melt Elasticity from Viscosity Data," Polymer Eng. Sci., 14, 12, 859-867 (1974).
7. S.I. Abdel-Khalik and R.B. Bird, "Rheology of Lopsided-Dumbbell Suspensions," App. Sci. Research, 30, 268-27 (1975).
8. S.I. Abdel-Khalik and R.R. Bird, "Estimation of the Zero-Shear-Rate Viscosity for Dilute Solutions of Rigid Macromolecules with Complex Configurations," Bio-polymers, 14, 1915-1932 (1975).
9. F. Aguilar, S.I. Abdel-Khalik, P.V. Koprucki and R.L. Trent, "FOAM2---Computer Program to Calculate Core Swell Level and Mass Flow Rate During Small-Break LOCA," NPGD-TM-314, Babcock and Wilcox (1975).
10. S.I. Abdel-Khalik, "Heat Removal Factor for a Flat-Plate Solar Collector with a Serpentine Tube," Solar Energy, 18, 59-64 (1976).
11. S.I. Abdel-Khalik and R.T. Bailey, "An Investigation of the Level Swell Core-Cooling Mechanism for a PWR," presented at the 16th National Heat Transfer Conference, St. Louis (August 1976).
12. D.J. Morrison and S.I. Abdel-Khalik, "Performance of Solar Heating System Utilizing Phase-Change Energy Storage," presented at the ISES Conference, Winnipeg (August 1976).
13. S.I. Abdel-Khalik and D.J. Morrison, "Optimum Storage Capacities for Solar Air-Heating Systems Utilizing Phase-Change Energy Storage," to be published.

RESUME

SANFORD A. KLEIN

Birth Date: January 25, 1950 U.S. CitizenEducation:

B.S. Chem. Engr.	University of Illinois	1972
M.S. Chem. Engr.	University of Wisconsin	1973
Ph.D. Chem. Engr.	University of Wisconsin	1976

Memberships:

International Solar Energy Society

Publications:

1. "Simple Deaminations. Preparation and Some Properties of N-Alkyl-N, N-disulfonimides," *Organic Chemistry*, 39, p. 3525-3532, (1974)(with P.J. DeChristopher, J.P. Adamek, G.D. Lyon, and R.J. Baumgarten).
2. "Transient Considerations of Flat-Plate Solar Collectors," *Trans. ASME, J. Engr. Power*, 96, Series A (1974)(with W.A. Beckman and J.A. Duffie).
3. "A Method of Simulation of Solar Processes and Its Application," *Solar Energy*, 17, 29 (1975)(with T.L. Freeman, P.I. Cooper, D.M. Beekman, W.A. Beckman and J.A. Duffie).
4. "Calculation of Flat-Plate Collector Loss Coefficients," *Solar Energy*, 17, 79, (1975).
5. "TRNSYS - A Transient Simulation Program," to be published in *ASHRAE Transactions* (with W.A. Beckman and J.A. Duffie).
6. "Simulation of Solar Heating Systems," to be published as Chap. 9 in the *ASHRAE book, Applications of Solar Energy for Heating and Cooling a Building* (1976)(with W.A. Beckman and J.A. Duffie).
7. "A Design Procedure for Solar Heating Systems," accepted for publication in *Solar Energy Journal* (1975) (with W.A. Beckman and J.A. Duffie).
8. "Experimental and Simulated Performance of a Closed Loop Solar Water Heating System," presented at the I.S.E.S. Meeting (1975) and to be submitted to *Solar Energy Journal* (1975)(with P.I. Cooper and C.W.S. Dixon).
9. "Packed Bed Thermal Storage Models for Solar Air Heating and Cooling Systems," to be submitted to *ASME Journal of Heat Transfer* (1975) (with P.J. Hughes and D.J. Close).

Work Experience:

Research Scientist at C.S.I.R.O., Australia, 5/74-8/74.

RESUME

PATRICK J. HUGHES

Birth Date: October 27, 1952 U. S. Citizen

Education: B.S. Mech. Engr. University of Wisconsin 1974
 M.S. Mech. Engr. University of Wisconsin 1975

Memberships:

American Society of Mechanical Engineers

American Society of Heating, Refrigerating and Air-Conditioning Engineers

Tau Beta Pi

Pi Tau Sigma

Publications:

1. "The Design and Predicted Performance of Arlington House," M.S. Thesis in Mechanical Engineering, University of Wisconsin (1975).
2. "Packed Bed Thermal Storage Models for Solar Air Heating and Cooling Systems," accepted for publication in ASME Journal of Heat Transfer (1976) (with S.A. Klein and D.J. Close).
3. "Simulation Study of Several Solar Heating Systems With Offpeak Auxiliary," submitted for publication in Solar Energy (1976) (with J.A. Duffie and W.A. Beckman).

Work Experience:

Specialist at Solar Energy Laboratory, UW-Madison, Wisconsin 1/76-present.
Solar Energy Consultant with Beckman, Duffie and Associates, Madison,
1/76-present.

ResumeTHOMAS L. FREEMAN

Birth Date: December 6, 1948 U.S. Citizen
Education: B.S. Elect. Engr. University of Wisconsin-Madison 1971
 M.S. Engineering University of Wisconsin-Madison 1975

Memberships: International Solar Energy Society

Publications:

1. "A Method of Simulation of Solar Processes and Its Application," Solar Energy, 17, 29, 1975 (with S.A. Klein, P.I. Cooper, D.M. Beekman, W.A. Beckman and J.A. Duffie).
2. "Computer Modeling of Heat Pumps and the Simulation of Solar Energy-Heat Pump Systems," M.S. Thesis in Mechanical Engineering, University of Wisconsin-Madison, 1975.
3. "Computer Modeling of Heat Pumps and the Simulation of Solar-Heat Pump Systems," ASME paper 75-WA/Sol-3, Houston, 1975.
4. "Simulation Study of Solar-Heat Pump Systems," to be presented at the ISES Meeting, Winnipeg, Canada, August 15-20, 1976 (with V.D Karman and J.W. Mitchell).

Work Experience:

1. Electronic Design Engineer, Martin Marietta, Denver, Colorado, 1/72-1/74.
2. Specialist at Solar Energy Laboratory, University of Wisconsin-Madison, 7/75-present.

DISTRIBUTION LIST

M.T. Akalin
 General American Trans. Corp.
 Research Division
 7449 N. Natchez Ave.
 Niles, IL 60648

American Science-Engr. Inc.
 Attn: Research Library
 955 Massachusetts Ave.
 Cambridge, MA 02139

G.M. Andrew
 Director of Planning
 University of Colorado
 303 Regent St.
 Boulder, CO 80302

E.H. Appelman
 Lab Program Planning Office
 Argonne National Labs.
 9700 S. Cass Ave.
 Argonne, IL 60439

Steven Baer
 Zomeworks Corp.
 PO Box 712
 Albuquerque, NM 87103

Ms. M.E. Beecher
 University Library
 Arizona State University
 Tempe, AZ 85281

H.A. Blum
 Mechanical Engineering
 Institute of Technology
 Southern Methodist University
 Dallas, TX 75222

Karl Boer
 Institute of Energy Conversion
 University of Delaware
 Newark, DE 19711

Piet B. Bos
 Electric Power Research Institute
 3412 Hillview Ave.
 Palo Alto, CA 94305

John Brand
 Sunshine Consultants
 Box 6150, R.2
 Escondido, CA 92025

Harry Brown
 Mechanical Engineering
 Drexell University
 36th & Chestnut
 Philadelphia, PA 19104

Al Casella
 Physical Sciences Department
 Sangamon University
 Springfield, IL 62708

W.W.S. Charters
 Mechanical Engineering
 University of Melbourne
 Parkville, Vic. 3052, Australia

A.F. Clark
 Lawrence Livermore Labs
 PO Box 808
 Livermore, CA 94550

D.J. Close
 Mechanical Engineering
 James Cook Univ. of N. Queensland
 Townsville 4810, Australia

Arnold Cohen
 General Electric Co.
 Valley Force, PO Box 8661
 Philadelphia, PA 19101

P.I. Cooper
 Division of Mechanical Engr.
 CSIRO, PO Box 26
 Highett, Vic. 3190 Australia

Tony Costanzo
 Altantic Richfield Co.
 500 S. Ridgeway Ave.
 Glenolden, PA 19036

J.F. Cuba
 Div. of Research, ASHRAE
 345 E. 47th St.
 New York, NY 10017

J.B. Cumley
 General Electric Co.
 Research & Development
 1 River Rd., Bld. 37, Rm 615
 Schenectady, NY 12305

D.S. Curry
 Engineering Library
 University of Iowa
 Iowa City, IA 52240

R.R. Davison
 Chemical Engineering
 Texas A&M University
 College Station, TX 77843

Jesse Denton
 National Center for Energy
 Management & Power
 University of Pennsylvania
 Philadelphia, PA 19104

Francis deWinter
 Altas Corp.
 2060 Walsh Ave.
 Santa Clara, CA 95050

S.H. Dole
 Rand Corp.
 1700 Main St.
 Santa Monica, CA 90406

R.C. Dorf
 Dean, Div. of Extended Learning
 Univ. of California-Davis
 Davis, CA 95616

Forrest L. Dowling
 Office of Naval Research
 536 S. Clark St.
 Chicago, IL 60605

W.B. Edmondson
 Editor & Publisher
 Solar Energy Digest
 7401 Salerno St.
 San Diego, CA 92111

D.K. Edwards
 Energy & Kinetics Dept.
 UCLA
 Los Angeles, CA 90024

J.A. Eibling
 Thermal Systems Div.
 Battelle Memorial Inst.
 505 King Ave.
 Columbus, OH 43201

Joel Ellermeier
 11820 Milbern Dr.
 Potomac, MD 20854

W.J.D. Escher
 Escher Technology Assoc.
 PO Box 189
 St. Johns, MI 48879

L.T. Fan
 Chemical Engineering
 Chem. Engr. Bldg.
 Kansas State University
 Manhattan, KS 66502

Erich A. Farber
 Solar Energy & Energy Conv. Lab.
 College of Engineering
 University of Florida
 Gainesville, FL 32601

Joseph Farber
 1406 Santiago Dr.
 Newport Beach, CA 92660

Roger Gillette
 Mail Stop 88-06
 Boeing Aerospace Co.
 PO Box 3999
 Seattle, WA 98124

Peter Glaser
 Arthur D. Little, Inc.
 20 Acorn Park
 Cambridge, MD 02140

Robert Graven
 Lawrence Berkeley Lab.
 Bldg. 50, Room 208
 Berkeley, CA 94720

G.W. Grimm
 Manager, Corporate Research
 Owens-Corning Fiberglass Corp.
 PO Box 415
 Granville, OH 43023

John Grimsley
 United Technology Center
 1050 E. Arques Ave.
 Sunnyvale, CA 94088

A.G. Gass
 A-B-R Partnership Architects
 1200 Walnut Street
 Denver, CO 80204

V.W. Goldschmidt
 Ray W. Herrick Labs.
 Mechanical Engineering
 Purdue University
 West Lafayette, IN 47907

Harold Hay
2424 Wilshire Blvd.
Los Angeles, CA 90017

Gary R. Heidenreich
Jet Propulsion Lab.
California Inst. of Tech.
4800 Oak Grove Dr.
Pasadena, CA 91103

Lloyd O. Herwig
ERDA, Div. of Solar Research
1800 G St., N.W.
Washington, D.C. 20545

Paul Hoekstra
Philips Broadcast Equipment Corp.
Mail Stop GSD
1 Philips Pkwy.
Montvale, NJ 07645

J.R. Howell
Assoc. Director of Research
University of Houston
Houston, TX 77004

Mark W. Jones
Pres., Design Systems, Inc.
S. Florida Ave.
Alamogordo, NM 88310

R.C. Jordan
Mechanical Engineering
University of Minnesota
Minneapolis, MN 55455

Powell Joyner
Trane Company
3600 Pammel Creek Rd.
LaCrosse, WI 54601

K. Koenig
Carrier Corp.
Research Division
Carrier Pkwy.
Syracuse, NY 13201

E.M. Kinderman
Staff Engineer
Stanford Research Institute
Menlo Park, CA 94025

W.A. Koppi
International Nickel Co, Inc.
1211 W. 22nd St.
Oak Brook, IL 60521

Francis Koster
87 Enway
Greenfield, MS 01301

Tamami Kusuda
Sr. Mechanical Engineer
National Bureau of Standards
Room 108B, Bldg. 226
Washington, D.C. 20234

Z. Lavan
Illinois Inst. of Technology
M.M. Aerospace Engr.
MMAE
3110 S. State St.
Chicago, IL 60616

Tom Lawand
Director of Field Operations
Brace Research Inst., MacDonald
Campus of McGill University
Ste. Anne de Belevue 800
Quebec, Canada

Lewis Library, Attn: 1950
NASA-Lewis Research Center
Cleveland, OH 44135

Noam Lior
Mech. Engr. & Applied Engr.
Nat'l. Center for Energy Management and Power
University of Pennsylvania
111 Town Bldg. D3
Philadelphia, PA 19174

Joseph Loferski
Mechanical Engineering
Brown University
Providence RI 02904

W.W. Long
Co-Director
Tech. Application Center
University of New Mexico
Albuquerque, NM 87131

R.F. Lucas
Inst. of Food & Agricultural Sciences
University of Florida
5007 60th St., East
Bradenton, FL 33505

R.H. Merrick
Arkla Air Conditioning Co.
PO Box 534
Evansville, IN 47701

Ken Meter
 Common Grand Magazine
 2314 Elliot Ave., S.
 Minneapolis, MN 55404

R.L. Middleton
 Chief, Advanced Environmental
 Controls
 Marshall Space Flight Center
 Huntsville, AL 35812

K.L. Moan
 Owens-Illinois
 1700 N. Westwood
 Toledo, OH 46307

P.H. Morse
 ERDA
 1800 G St., N.W.
 Washington, D.C. 20545

R.N. Morse
 CSIRO
 314 Albert St.
 PO Box 89
 E. Melbourne, Vic. 3002 Australia

Mrs. Paulus
 Bjorksten Research Labs
 PO Box 265
 Madison, WI 53701

Barry Rawlings
 Chief of Mech. Engr. Div.
 CSIRO, PO Box 26
 Highett, Vic. 3190 Australia

John A. Reagan
 Electrical Engineering
 University of Arizona
 Tucson, AZ 85721

John K. Rosenthal
 Graduate School of Geography
 Clark University
 Worcester, MA 01610

Claude Royere
 Solar Energy Lab
 66 Odeillo, France

W.F. Rush
 Manager, Gas Appliance Develop
 Inst. of Gas Technology
 IIT Center
 3424 S. State St.
 Chicago, IL 60616

Y.B. Safdari
 Professor of Engineering
 Bradley University
 Peoria, IL 61606

R.L. SanMartin
 Mechanical Engineering
 Box 3450
 Las Cruces, NM 88003

S.L. Sargent
 ERDA
 1800 G St., N.W.
 Washington, D.C. 20545

Roger Schmidt
 Honeywell, Inc.
 2700 Ridgeway Rd.
 Minneapolis, MN 55413

R.J. Schoenhals
 Program Manager
 Div. of Engineering
 National Science Foundation
 Washington, D.C. 20550

Peter Seidel
 President, ECOTÉC Foundation
 2923 Wold Ave.
 Cincinnati, OH 45206

Ali Shams
 Energy-Resource Task Force
 CBNS, Box 1126
 Washington University
 St. Louis, MO 63130

N.R. Sheridan
 Mechanical Engineering
 University of Queensland
 St. Lucia, Brisbane
 Queensland 4067, Australia

F.F. Simon
 NASA, Lewis Research Center
 MS 500-201
 21000 Brookpark Road
 Cleveland, OH 44135

.G. Spielvogel
 Spielvogel, Inc.
 Wyncote House
 Wyncote, PA 19095

Phillip Stephens
 Lecturer in Building
 Marlestone Tech. College
 254 W. Beach Rd.
 Marlestone, South Africa 5033

L.E. Stout, Jr.
 Monsanto Co.
 800 N. Lindberg Blvd.
 St. Louis, MO 63166

Robert Stromberg
 Sandia Labs., PO Box 969
 Albuquerque, NM 87115

Lawnie Taylor
 ERDA
 1800 G St., N.W.
 Washington, D.C. 20545

R.A. Tybout
 Dept. of Economics
 Ohio State University
 1775 S. College Rd.
 Columbus, OH 43210

G.E. Turnbull
 School of Architecture
 232 Ellsworth Ave., DF
 New Haven, CT 06511

T.N. Veziroglu
 Mechanical Engineering
 Engineering & Environ. Design
 University of Miami
 Coral Cables, FL 33124

J. Weingart
 Enviromental Quality Lab.
 California Inst. of Tech.
 Pasadena, CA 91109

Martin Wolf
 Nat'l. Center for Energy
 Management & Power
 University of Pennsylvania
 3 Towne Bldg.
 Philadelphia, PA 19104

Raymond Yee
 Thayer School of Engineer
 Dartmouth College
 Hanover, NH 07355

Clifford Yokomizo
 Sandia Labs., PO Box 969
 Livermore, CA 94550

Public & Environmental Affairs Library
 Indiana University
 400 E. 7th St.
 Bloomington, IN 47401

BIBLIOGRAPHIC DATA SHEET		1. Report No.	2.	3. Recipient's Accession No.
4. Title and Subtitle		Modeling of Solar Heating and Air Conditioning		
7. Author(s)		5. Report Date 31 December 1975		
Professors J.A. Duffie and W.A. Beckman		6.		
9. Performing Organization Name and Address		8. Performing Organization Rept. No.		
Solar Energy Laboratory Engineering Experiment Station, University of Wisconsin, 1500 Johnson Drive Madison, Wisconsin 53706		10. Project/Task/Work Unit No.		
12. Sponsoring Organization Name and Address		11. Contract/Grant No.		
Energy Research and Development Administration 1800 G Street, N.W. Washington, D.C. 20545 (and NSF/RANN)		13. Type of Report & Period Covered Progress Report 10/31/74- 12/31/75		
15. Supplementary Notes		14.		
16. Abstracts				
<p>The overall objective of this work is to develop simulation techniques useful in the thermal evaluation of particular solar heating and cooling systems and apply these results to economic evaluations. During this reporting period major emphasis have been on: extension of the general solar process simulation program TRNSYS, by addition of new components to the TRNSYS library; application of TRNSYS to several heating/cooling systems; and development of simplified design procedures for standard types of solar heating systems.</p> <p>TRNSYS has been shipped to approximately 125 outside agencies for their use in simulating solar processes.</p>				
17. Key Words and Document Analysis. 17a. Descriptors				
17b. Identifiers/Open-Ended Terms				
17c. COSATI Field/Group				
18. Availability Statement		19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages	
Release unlimited		20. Security Class (This Page) UNCLASSIFIED	22. Price	