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INTRODUCTION

This dissertation presents a detailed derivation and description of
a new feasible-point algorithm for nonlinearly constrained optimization.
The new method is based on the properties of the trajectory of minima
obtained by varying the barrier parameter of the logarithmic barrier func-
tion. The algorithm is closely related to a nonfeasible-point method
based on the trajectory of the quadratic penalty function, due to Walter
Murray, and this method is also described in detail.

A description is given of penalty and barrier function methods, and
of some methods which, like the trajectory methods, are based on the
Lagrangian function. This discussion is included in order to facilitate
theoretical and numerical comparison of the trajectory methods with other
algorithms. It also serves to clarify the motivation for the various
methods, since nearly all the algorithms discussed have been developed to
overcome the deficiencies of penalty and barrier function methods.

A comprehensive set of programs has been de-$eloped, implementing the
viable methods discussed, and a selection of typical numerical results is
included. A primary concern in this dissertation has been with practical
algorithms, and the need to consider methods that will converge even from
a poor initial estimate of the solution. Many "sophisticated” algorithms
often critically depend on properties that hold in a close neighborhood of
the solution and, consequently, may perform poorly or even fail. for any
initial point not in such a region. The experimentation with the methods
has, therefore, been directed toward analyzing their general behavior, as

well as asymptotic rates of convergence.



To the best of nmy knowledge, the following results are original:
(1) The special linear searches for the logarithmic barrier
function (Chapter 3);
(2) All aspects of the barrier trajectory algorithm (half of
Chapter 5);
(3) The uniform implementation and testing of algorithms
(Chapter 6).
The portions of Chapter 5 that deal with the penalty trajectory algorithm
are based on the work of Walter Murray, but the algorithm has not pre-

viously been presented in the form given here.




Definition of Symbols

The notation of this dissertation corresponds in most cases to that

given in P. Gill and W. Murray (eds.), Numerical Methods for Constrained

Optimization, Academic Press, 197k.

The following definitions are used throughout:

X - areal vector of dimension n, given by
X1
o)
X =
X
n
, . . | 2 2 .
[| || - The Euclidean norm of a vector, i.e., [1x]] =% + ..+ X2

or the induced matrix norm.

F(x) - The scalar function of n variables whose minimum is to be
found.

g(x) - The gradient vector of F(x), whose ith component is given by

(o) - F(x)

g;(x) = 5%,

a(x) - The n by n Hessian matrix of F(x), whose (i j)th element is
given by %ai})g .

ci(x) - The ith constraint functicn; the set of constraints iz sometimes
represented by the vector c(x), whose ith component is given by
Ci-

ai(x) - The gradient vector of C’_'L(X)'

A(x) - A matrix whose ith column is ai(X), the gradient of Ci(x) .

Gi(x) - The n by n Hessian matrix of e.l(x).

-3 -



x* - The solution of the currently considered constrained optimi-

zation problem.

¥ - The vector of Lagrange multipliers at x* (defined in Section
1.2).

A - A vector that normally denotes an estimate of A*

Lagrangian

Function -The function F(x) - A*Tc(x).
The following two matrices are defined in terms of an n by m matrix

e

A, of rank r:
Q‘l - A0 n by r matrix vhose columns form an orthogonal basis for
the space spanned by the columns of A.
Z - An n by (n-r) matrix whose columns form an orthogonal basis

for the null space of the columns of A.
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CHAPTER 1

THEORETICAL BACKGROUND

1.1 Statement of Problem

.This dissertaticn is concerned with methods for the numerical so-
lution of the following problems:
P1 - Eguality Constrained Problem

minimize F(x), xcE"
X

subject to the constraints

ci(x) = O, i= 1,2:. «.,00;

P2 - Tnequality Constrained Problem

minimize F(x), xeE"
X

subject to the constraints

ci(x) >0, i=12..,1

In P1 and P2, F(x) and {ca(x)} are scalar functions of the n inde-
pendent variables {xl,xe, ...,xn}. The function F(x) is often called the
"objective function", and {ci(x)} are the "constraint functions". F and
{ci} will be assumed to have at least continuous first and second deriv-
atives.

A further problem could be considered, where some of the constraint
functions are equality constraints and others are inequalities, but the
notation for such a problem becomes more complicated. Ajl subsequent
discussion will. concern either problem P1 or P2, and it should be clear
how the separately developed results would apply to @ mixed problem.

Definition 1: A point ¥ is feasible with respect to the equality

constraint ea(x) = 0 if ci(ic\) = 0, and infeasible if ca(®) # 0. The con-

straint ca(x) is satisfied at a feasible point 2. Given a set of equality
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constraints {ci(x) =0, i=12,...,m}, X is feasible with respect to
the set of constraints if ci(ic‘) =0, foralli=1,2,...,m; X is in-
feasible with respect to the set of constraints if ci(ﬁ) £ 0 for any

ie{1,2, ...,m}.

Definition 2: A point % is feasible with respect to the inequality
constraint cj(x)z 0if cj(ﬁ) > 0, strictly feasible if cj('i) > 0, and
infeasible If cj(ﬁ) <0. |If cJ(ﬁ)E 0, the constraint c is satisfied

at ¥, and c; is strictly satisfied if cj(ﬁ) > 0. The definition of
feasibility with respect to a set of inequality constraints is similar
to the equality case.

We shall be concerned only with local minima, defined as follows:

Definition 3: The point x* is a weak locat minimm of problem P1

or P2 i1f:

Q) x* is feasible with respect to all the problem constraints;
(2) there exists 6 > 0 such that F(x*¥) < F(x) for all x satisfying:
(a) ||]x - x*¥|| <6; and

(b) X is feasible with respect to all the problem ccnstraints.

If P(x*) < F(x) for similarly defined X, x ¥ x¥, then x* is a strong
local minimum of P1 or P2. When the term "locsl minimum" is used, it
should be interpreted to mean “strong local minimum” unless ctherwise
specified.

1.2 Conditions for a Minimum

Algoritlms to solve problem PL or P2 are based on trying to identify
a point satisfying the conditions for a local minimum. In this section
one Tform of these conditions will be derived; we shall not be concerned
with stating the weakest possible conditions Tor a local minimum, since

we are interested only in properties thet can be ccmputationally verified.



1.2.1 Unconstrained Minimum

If there are no coastraints in problem P1 or P2, the mini-

J

mization problem reduces to:

P3 - Unconstrained Problem

minimize F(x), xe&" .
X

Before studying the more general problems Pl and E, we

will derive necessary and sufficient conditions that hold at a local

i

minimum of P3.  since F(x)ec2, it may be expanded about a point x*
in a Taylor series:
P(x* + eh) = F(x¥) + enTg(x*) + 3 2hT6(x*)h + O(Ie,s),

where Hh” =1 (1.2.1)

Condition 1: A necessary condition tor a point x* to be a local
minimum of the unconstrained problem 23 is that || g(x¥)|| = G

If |]g(x*)]] is not zero, then there exists some direction
h for which th(x*) < 0. Hence, from (1.2.1) there exists a positive
scalar ' > 0 such that for any €, 0 < & < E’,

F(x¥ + eh) < F{x*),

and x* cannot be a local- minimun.
Condition 2: A necessary condition for a point x* to be a weak
local minimum of P3 is that G{x*) be positive semi-definite.

IF |[g(x*)|| =0, then from (1.2.1),

F(x* + eh) = F(x¥*) + 4 €20T(x*)h + 0(] ¢ 3). (1.2.2)
5 2.

If the matrix G{x¥*) is indefinite, there exists a unit vector h
such that hTG(:c*)h < 0. EHenee, from (1.2.2) there exists a positive
scalar e such that for euy e, 0 < |g| < e,

F(x* + eh) < F(x¥*),

contradicting that x* is a local minimum.



Condition 3: Sufficient conditions for x* to be a strong local
minimum of P3 are:

(1) {le(=®)]] = 0;

(2) @(x*) is positive definite.

The condition ||g(x*)]| = 0 is necessary for x* to be 3
local minimum. If G{x*) is positive definite, hTG{(x*)h > 0 for all
non-zero vectors h. From (1.2.2) it follows that there exists g > O
such that for any e satisfying 0 < ]e] < E

F(x¥) < F(x* + en),
for any vector h, Hh” = 1. Therefore, there exists a neighborhood
of x* such that the smallest value of ¥ for any point in the neigh-
borhood occurs at x*, and x* is a strong local minimm.
1.2.2 Equality Constraints

In deriving necessary and sufficient conditions for a
point x* to be a local minimum of the equality constrained problem
Pl, the definition of a local minimum indicates that we need tc con-
sider the behavior of F(x) only along feasible perturbations from
x¥. IF a characterization of a feasible move from x¥ is possible,
the Taylor series expansion of F about x* along such a perturbation
can be examined as in the unconstrained case.

The following initial results develop the existence of a
relationship between the gradients of F(x) and {ci(x)} at a point.
Farkas' Iewma: Given a set of n-vectors. {ai}, i=21,2,...,m, and a
vector b, a necessary and sufficient condition for the existence of
non-negative scalar values {A.}, i =1,2,...,m, such that

m

b =i‘il>\iai, >\iz o, .

is that for every vector y such that a Ty= 0, i=1,2,...,m, it

i
follows that bTy = 0.



An alternative statement of Farkas' Lemme iS that there
. T . T
exists a vector z such that ai z= 0, 1 = 1,2,...,m, and b z < 0,if

m
and only ifthere is no vector A satisfying b =2 Aiai’ A1 0.
i=1

Theorem 1 (Existence of Lagrange Multipliers; Kuhn-Tucker con-
ditions) :
If:
(a) F and {ci}, i =1,2,...,m are once differentiable;
(b) c.(R) =0, i=212,...,m
T

(c) atX, forall vectors p such that A(X) p = 0, where

the columns of A are {a?}, it holds that g(%)sz 0, then:

M =3

There exists a vector A, of length m, such that g =

1

Aiai, or,
1

It

equivalently, g = A\ .
If the conditions of Theorem 1 hcld, the point ¥ is said
to satisfy the first-crier Kuhn-Tucker conditions
Proof: In the following discussion, all vector and matrix func-
tions are evaluated at & unless ctherwise specified. Note
that if no vector p exists such that ATp = 0, the theorem
is vacuously satisfied.
If a vector p exists such that ATp =0, ie., Asz 0 and
—ATp2 0, then by assumption it also holds that ngE 0. Applying

Farkas' Lemma to the set of 2n vectors {a.}, {-ai}, and the vector

g, there must exist a vector u, of lengih 2m, such that

g = [A 5 —A]u) ui > 0,

i A, = Ui - u.
or, letting 1 i o’

g = Ah .
-]
An aliternative statemen’ Of this result is that if there
; . o T T
exists no vector p simultaneously satisfying A'p =0 and g p < O,

-lO-



then the vector g must lie entirely in the range of A.

In order to use Theorem A1to0 describe conditions at a
local minimum of Pl1, restrictions on the constraint functions are
required.

First-Order Constraint Qualification (Kuhn and Tucker, 1951;

Fiacco and McCormick, 1968) :

The first-order constraint qualification holds at a point

X if:

(1) {ci], i =1,2,...,m, are once continuously differentiable;
(2), ¢, (%) =0, forall i =1,2,...,m

(3) every non-zero vector p satisfying:

A(’;E)Tp = 0 is tangent to a once-differentiable arc eman-

ating from &, along which all constraints are satisfied on the arc
in some neighborhood of ¥ An arc is a directed differenxiable

curve in E" parameterized ty a single parameter 8, 0 <6 < E.

In the following discussion, all vector and matrix Tunc-
tions are evaluated at ¥ unless otherwise specified. Any possible
1
feasible move from £ must be along a direction p satisfying At[p =0,

since

e(X tep) =c(%) + c—:ATp + O(le!z), for Hp” = 1.

Such a vector p may te written as ZpN. where Z is a matrix whose
columns form an orthogcnai basis for the null space of A, so that
ATZ = 0, ZTZ = 1. Geometrically, the first-order constraint quali-
fication implies that every direction that makes no first-order
change in any Constraint at % must be the beginning of a feasible
arc, or, equivalently, that a sufficiently small step taken along
such a direction must be arbitrarily close to a feasible point.

- 11 -



The constraint qualification enables all possible feasible
perturbations from X to be characterized, since, if it is satisfied,
any direction p = sz is the beginning of a feasible path. If the
constraint qualification does not hold at a point, then there can

.exist airections p = ZpN along which no feasible move is possible.

V¢ are now able to prove the following result:

Theorem 2 (First-Order Necessary Conditions for a Minimum of P1)
1f:
(D F and {c;}, i=1,2,...,m, are differentiable at X*; and
(2) the first-order constraint qualification holds at x*, then:
A necessary condition for x*¥ to be a local minimum of P1 is
that there exist a vector A%, of length m, such that g(x*) =
A(x*)*, or, equivalently, g(x*) is in the range of A(x*).
Proof: In the folloving discussion, all vector and matrix func-
tions ere evaluated at x* unless otherwise specified.

Assume that x* is a local minimum of P1. Consider all
vectors p such that ATp = 0. |If there are none, then assuredly g
is in the range of A, since the columns of A must span the entire
space.

If there are such vectors p, then, because the constraint
gualification holds at x*, ¢ is the tangent of =z once-differentisble
feasible arc, emanating from x*. Beczuse x¥ is a local minimom, F(x)
must not decrease along the arc from x*, since 211 points on the arc
are feasible in some neighborhood of x*, and hence gTp = 0. Therefore,

the conditions of Theorem 1 are satisfied at x', and Q lies in the

range of A. The vector A*¥is called the vector of Lagrange multipliers.
-

Note the importsnce of the constraint qualification in
this proof. A point x¥*¥ is a local minimum if gTp > 0 for every

_12-




feasible perturbation . The condition that ATp = 0, which is
necessary for p to be a feasible move from x*, is made a sufficient
condition by the constraint qualification.

The verificaticn of the constraint qualification at a
possible minimum x¥* is not computztionally convenient. A more
practical condition, which implies that the constraint qualification
holds, is that the matrix A(x*¥) be of fuil rank, i.e., the gradients
of the constraints are linearly independent.

Theorem 3. |If:

(1) {ci}, 1 =1,2,...,m, are continuously differentiable;

(2) ci(x*) =0, i=1,2,...,m and

(3) A(x*) is of full rank,

then the first-order constraint qualification holds at x*.

Proof: Let p satisfy A(x*)Tp = 0. |If there is no such p, the
constraint qualification holds vacuously.

Otherwise, p must be expressible in the form ZPN for
some vector Py Construct the arc «(8) from x* by specifying

o(0) = x¥, and (e(g)) = Z(a(B))pN, for 0 < ¢ < ¢, where zZ(a(6))

d
de
denotes a particular representation of a matrix whose columns form
an orthogonal basis for the null space of A{(a{6)). Because the
columns of A are linearly independent at x*, and the functions
{a,l} are ccntinuous, the matrix A(w(g)) is continuous and of full
rank in a neighborhood of x¥; thus an appropriate representation
of the matrix Z(w(8)) is also continucus and of fixed rank in a

neighborhood of x*, and so the given definition of «{6) specifies

a continuous, differentiable arc.

_13_




Expanding ¢y along the arc:

) _de, |
e, (a(8)) = ¢;((0)) + & 55~ (M)
0<=7n=<5%
= ¢, (a(0)) + éai‘ (M) é% (M)
-0 + éai (a(ﬂ))Z(Ol(ﬂ))PN

= 0,

by construction of Z(«(m)) to be orthogonal to ai(cy(‘ﬂ)), i =
3,2, ...,m. The arc o(8) is therefore a feasible arc in some
neighborhood of x¥*. .

The essence of the construction of the arc is the con-
tinuity of the matrix function Z in a neighborhood of x*.

It is usual to assume that the matrix A is of Ffull rank
in a neighborhood of the solution, which implies that the constraint
gualification holds, and hence the existence of finite Lagrange
multipliers at a local minimum of PI.

In the unconstrained case, 1t was possible to derive
additional conditions for a minimum based on the second derivatives
of F(x). The analogous results for problem P1 require the follow-
ing definition.

Second-Oraer Constraint Qualification:

The seccnd-order constraint qurlification holds at ¥ if :
D {ci} are twice continucnsly differentiable;

(2) c_l(§) =0, i=122,...,m; and

(3) for every non-zero vector P satisfying

A(%)Tp: o
- lh -



p is the tangent of a twice-differentiable arc «(6), emanating

from ¥, along which ci(a(O)) =0, i =1,2,...,m, 0< 8 < E.

Theorem 4 (Second-Order Recessary Conditions for a Local

Minimum of P1)

If:

@ F and {ci}’ i=1,2,...,m are twice continuously differen-
tiable;

(2) The first- and second-order constraint qualifications hold
at x¥, then: a necessary condition for x* to be a local mini-

mum of Pl is that for any vector p satisfying A(x*)Tp = 0,

m
P '\G -z p > 0, where the ?\7‘1 are such that
i=

g(x*) = A(x*)A*.
Proof: Note that conditions (d1)and (2) assure that Theorem 2
holds, and hence imply the existence of x»* satisfying
g(x*) = A(x¥)\*.
Assume that there exists a non-zero vector p such that
ATp = 0 (othe-mise, the result follows immediately). Let of8) be

the twice differentiable arc from x* whose existence is guaranteed

by the second-order constraint qualification, where «(0) = x¥,

d

35 a(0) = p.
d2

Iet v = 5 2(0). In the following, all vector and matrix func-
de

tions are evaluated at x* = o(0), unless ctherwise specified.

Using the chain rule,

_15-



IQ,

(a) L e (a0) = 8.7 = o0) - o,

i i ds

Qs
(S

since ailp =0, 1=1,2,...,m;

. 2
d T 4a d T, 4d
(0) —5 ¢, (A0)) = a;” —5 o0) + 53 (8,7} g5 «0)
: 662 i d92 a8 i 4ae
T T
= ai v + p G"_‘I_p = O}

since the {ci} are identically zero'along the arc o(6);

d T 4 T T,
—— = o —— = = A —_ O
(¢) 55 F(a(0)) = g" 75 2(0) = g'p = 2¥ 2D
) T
since g = AA* and A p = 0.

For x* 'io be a local minimum of PIl, the condition

2
iF(a(o)) = 0 implies that d—2F{oz(O)) must be = O.
ds de

Using (c), this condition may be written as follows:

2 3
d - 9_ P )
dse
2
T T
=g -——2 a(0) + P Gp
de
(a) = axaTy 4 pTGp2 0
d2
(substituting v = 5 (0) and g = M¥).
. T T . . fa1i
From (b), substitute aazv = -p G.p. i=1,2,...,m, into (d) yielding
T 2 T
p (G - X*G ) p> O for all p sstisfying A'p = O.n (1.2.3)
i=1 Ix*

The result (1.2.3) is equivalent to a requirement that the

m
matrix ZTwZ be positive semi-definite at x*, where W = G -Z AI*:tGi'
1=

Iheorem 5: If :

(1) {ci}, i=1,2,.,n are twice continuously differentiable;
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A .
(2) c;i(X) =0, " =1,2,..,m; and

(3) A(%R) nas full rank,

then the second-order constraint qualification holds at %X.
Proof: W must construct, for any non-zero vector p satisfying
ATp=O, a twice-differentiable arc enanating from %, such that p
is tangent to the arc, and all constraints are identically zero
along the arc in some neighivorhood of %.

Since ATp=O, p can be written as ZpN-

d
Define an arc o(Q) by «(0) = X, and a5 «(Q) = Z(a(e))pN, where

Z{a(6)) is a particular representation of a matrix whose columns

form an orthogonal basis for the null space of A(«(8)), so that

ale(e))” z(a(e)) = o.
Since A is continuously differentiable and of full rank at %, the
matrix A(a(8)) is also continuously differentiable and of full rank
in a suitable neighborhood of X. Hence the matrix function z(a(8))
is of fixed rank and continuously differentiable in the neighbor-

hood of $ for an appropriate representation of Z (see Golub and

2
Pereyra, 1973 ). Since o oz(e)=Z(oz(€z))pN, it follows that —o o(5) =
4
ae Z(oz(e))pN, and, by the continuity argument just given, the arc

IS twice continuously differentiable.

Expanding each constraint along this arc yields the

following:

2 2

5) = c,(a(0) + 8, Zp, | 42 %cw(n))[
> . 6 = C. T .
¢;(e(8)) i Nla(o) as= i 0<7 <3
& e
=0+ 0+2 @6 (a(eM) 2(cAT))my) {
Iosnsé




¢’

Since the fnnction a, T(af(e))z(ake)) is identically zero along the
arc by construction, its derivative with respect tc 8 must te zero

also, and therefore, we obtain:

]

c,(e(0)) =0,
in some neighborhood of X. Thus, for eny p satisfying A(AyTp = O,
we can construct the required twice-differentiable arc, and the
second-order constraint qualificatioc holds at X.

The essential point of this proof is that the linear inde-
pendence-and differentiability of the columns of A allow the repre-
sentation of the basis of the null space to be differentiated. Suf-

ficient conditions for x* to be a local minimum of P1 can be simi-

larly derived, and will be stated without proof:

Sufficient Conditions for a Local Minimum of Pl:

x* is a strong local minimum of Pl if:

(1) F and {ci} are twice continuously differentiable;
(2) cjﬂx*) =0, i=1,2,...,m;
(3) there exists a vector X* such that g(x*) = A(x*)rA%;
(1) for every non-zero vector p such that A(x¥)Tp = O,
m
p'(G - = z¥a.)| p>o.
i=1 "t xx

1.2.3 Inequality Constraints

The conditions for a minimum of P2, the inequality con-
strained problem,, involve a subset of the constraints.
Definition 4: A constraint c¢.(x) > 0 is said to be active at
% if ci(’i) = 0, and the set of indices I = {i]ie(1,2,...,m) and

ci(ﬁ) = 0} (or the correspcnding set of constraints) is termed

. . . N . . . .
the active or binding set at X. A constraint ci(x) = 0 is inactive

at ¥ if c (%) > O.
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W identify the active constraints at a point because
feasible perturbations are restricted for them. If ci(ﬁ) > 0,
there is a neighborhood of % within which ey will remain strictly
positive. Hence, only the active constraints are significant in
specifying the conditions for a minimum of P2. The results for a
minimum of P2 are analogous to those already given for P1, but in-
volve only the subset of constraints active at a particular point,

Thioughout this section, it will be assumed that m (< 4)
of the inequality constraints of P2 are active at any point, and
the indices of the active constraints are given by the index set
I. The matrix A(x) will denote the n by m matrix whose columns
are the gradients of the constraints active at x.

Theorem 6: (Existence of Lagrange Multipliers for inequalities)
If:
@ F and {ci}’ i=1,2,...,4, are once continuously differ-
entiable;
(2) ci(x*) > 0, i=1,2,...,4;

T
(3) for any non-zero vector p satisfying &(x*) p> 0,

it also holds that gT(x*)p> 0, then there exists a vector A, of
length m, sach that g(x*) = &(x*)r, and o2 0; thus, g(x*) is a
non-negative linear combination of the gradients of the active con-
straints.

Proof: The proof is immediate from application of Farkas' Lemma
to the set of vectcrs fai], ieI, and the vector g. This result
differs from the analogous result for P1 because the multipliers
corresponding to inequality constraints are required to bte non-

negative . -
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It is possible to include {ai} for the inactive constraints
in the expression for g by assigning a zerc Lagrange multiplier to
an inactive constraint; however, the convention generally followed
is that a Lagrange multiplier corresponds only to an active ccnstraint.

The conditions under which the first- and second-order
constraint qualifications hold at a point ¥ are defined in teras of
the set of active constraints at . The definitions are similar to
those for the equality problem, with the following differences: for
the first—-order constraint qualification to hold, any non-zero p
satisfying Qsz O must be tangent to a feasible arc; and for the
second-order constraint qualification, any non-zero vector p satis-
fying ﬁ‘Tp = 0 must be the tangent of an arc along whick all con-
straints active at ¥ remain identically zero. The linear inde-
pendence of the columns of &(%) implies that both the first- and
second-order constaint qualifications hold at %.

The first- and second-order necessary conditions for x*
to be a local minimum of P2 are the same as for Pl1, where the set
of active constraints is treated as a set of equality constraints,
with the significant restriction that all components of the vector
A of multipliers satisfying g(x*) = A(x*)¥ must be non-negative.

The sufficient conditions that x* is a strict iocal mini-
mum of P2 are the same as those for Pl, where the set of active
constraints at x* is treated as a set of equality constraints, with
the fcllowing additional conditions:

(a) A*ié 0, i=1,2,...,m; and

. . A AT
() for any p satisfying aiTp =0, A*1> 0, and 2i'p= O,

T
A% = 0, then p (G- ZA*¥ g .)p> O,
i RUUE T |
ieX
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where the summation isS over the active constraints only. The extra
condition on p arises because of the possibility of a zero Lagrange

multiplier for an active constraint.

1.3 Model Computational Algorithm
‘ The class of algorithms to be conslidered throughout for iteratively
locating a minimum of P1 or P2 has the following structure:
(Check whether X, the current estimate of the solution, satisfies
the termination criteria)

while X does not satisfy these criteria repeat

( 1. Compute a search direction, p, to satisfy some specified
conditions;
2. Compute a step @ along p such that x + op satisfies some
given criteria;
3. x «x + op;
)
The algorithms to be described differ in the criteria specified
for each computation, and in the methods used to determine the search
direction and step length.

1.4 uUnconstrained Minimization

The methods to be considered are desighed to determine a local un-
constrained minimum of the function F(x).
1.4.1 Descent Condition
For the unconstrained problem, a natural measure of the
progress made by an iteration is provided by the decrease in F
during the iteration. The critericn of the value of F allows a

consistent decision as to which point of a set is the "best"
13

estimate of the solution, x*. All algcrithms tcC te described re-
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quire a decrease in the value of F from iteration to iteration,
and are said to satisfy the "descent condition™.
1.4.2 Choice of Search Direction

The Taylor series expansicn of F(x) about any point pro-

vides insight into the choice of search direction:

2
T & T,
F(x+ap) = F(x)+ag(x)p +2 p G(X)p+O(lolel 15/1%).
If g(x)¥0, F{xsop) will be less than ¥(x) for all sufficiently
small @ > 0 only if g{x)Tp < 0. A direction p satisfying g(x)Tp< 0O

is said to be a descent direction at x for F{x). All algorithm

t 0 be considered require that the search direction be a descent
direction.

Method of Steepest Descent (see Ostrowskl, j966)

The classical method of steepest descent chooses the
negative gradient of ¥ as the search direction, so that p = -g.
This choice minimizes the first term in the Taylor series expansicn

of P(x+op) for fixed cr and Hp”z, i.e., p = -g solves the problem:

minimize pTg

subject to pr = 82, for g a fixed scalar.

The method of steepest descent is a poor choice for general func-
tions. Its asymptotic rate of convergence is linear, and It may

converge arbitrarily slowly even for quadratic functions.

Newton's Method (see Ortega and Rheinboldt, 1970)

The general quadratic function:

a(x) = a + bTx + %XTQ,X,

hss a unique winimum if its Hessian matrix, q, is positive definite.
The minimum occurs at x* where the gradient vector is zero, i.e.,
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x¥* satisfies:
b +ox* =0

This relationship for x* implies that from any starting
point, say X, the minimum of a suitable quadratic function can be
determined by a unit step along the search direction p that solves
the linear system:

Q = -b-QX.
The expression on the right-hand side is the negative gradient of
the quadratic function at X.

Any sufficiently smooth function should be well approxi-
mated in some neighborhood by a truncated Taylor series. If the
Hessian matrix at the current point is positive definite, the step
p to the minimum of the local quadratic approximation will be given
by the solution of:

Gp = -8, (1.%.1)
where g is the current gradient and G is tne Hessian matrix. The
choice cf search direction to satisfy (1.4.1) is usually called "Newton's
method"”. For certain classes of functions, Newton's method displays
a quadratic rate of convergence close to the solution, and is highly
successful.

Hiwever, for a number of reasons, Newton's method as de-
fined by (1.4.1) is inadequate for many functions. To ensure a de-
crease in F(x), some sort of linear search along p is required, since
the local quadratic approximation may be poor far from the minimum.
IT the current Hessian matrix, G, is singular, the search direction
is not defined uniquely. If G is indefinite, the local quadratic

approximaticn does not have a unigue minimum, and the best definition
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of search direction in this case is not clear.

Quasi-Newton Methods (See Broyden, 1972)

The algorithms known as "quasi-Newton" methods were orig-
inally derived from the properties of quadratic functions (see
Davidon, 1959; Fletcher and Powell, 1963). Quasi-Newton methods do
not calculate the Hessian matrix at each point, but rather maintain
an approximation to the Hessian, which is altered at each iteration
based on the variation in the gradient as the iterations proceed.
The search direction is then the solution of the linear system
Bp = -g, where B is the current Hessian approximation.

There are a wide variety of these methods, with different
procedures for updating the Hessian approximation. With exact
arithmetic, if the step « chosern at each iteration is the step to
the minimum of F(x) along p, most quasi-Newton methods can be shown
to converge to the minimm of a positive definite quadratic function
in a finite number of steps (a property sometimes confusingly called
"quadratic termination') .

Methods that may alter the search direction during an
iteration

A further method for unconstrained minimization, based on
an idea proposed originally by Levenberg (194k4) in the context of
nonlinear Least squares, assumes that a unit step will always be
taken along the computed search direction. The search direction

for such algorithms is given by the solution of the linear system:

(G +7 I)p = -g, (1.h.2)
where the parameter vy, ¥ > 0, may be adjusted during an iteration,

and from iteration to iteration as well. As y -0, the search di-

rection from (1.4.2) approaches the Newton step; for large y, the
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search direction approaches a small multiple of the negative grad-
ient. The adjustment of ¥ during an iteratirn is based on a de-
cision as to whether a unit step along the current direction re-
sults in a sufficient decrease in F{x); y is altered from iteration
to iteration based on the success of the previous choice of y, and
7 should ideally approach zero as the iterates approach the solution.

Another method that determines tne search direction as a
compromise between a Newton (or quasi-Newton) step and a multiple
of the negative gradient has been proposed by Powell (1970), and re-
cently modified by Dennis and Mei (1975). As in the Levenberg-type
algorithms, several search directions may be computed during an
iteration, based on whether a unit step yields a sufficient decrease
in F(x) .
1.4.3 Choice of Step Length

In some algorithm for unconstrained minimization, a unit
step is always taken along the search direction (see Section 1.%.2),
so that only the procedure for calculating the search direction is
significant. For other methods, however, such as Newton-type or
guasi-Newton, the two choices are independently carried out: a
descent search direction is obtained, and the step to be taken
along it is determined to satisfy various criteria. The general
procedure of computing o such that, for a specified direction p,
F(x+ap) satisfies certain conditions with respect to F(x), is called
a linesr search, since it is & one-dimensional problem.

Most algorithms for unconstrained optimization include some
criteria to assure that the step length chosen will guarantee "satis-

factory"™ progress toward the solution. Especially in theoretical
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presentations of algorithms, It Is often stated that F(x+ap) snould
be a minimum with respect to «; this requirement leads to a "per-
fect™ or "exact" line search. In practical implementations of the
algorithms, however, the standards for deciding on an acceptabie
value of a are generally less stringent. The criteria for texmin-
ating a linear search will not be discussed further here (see Chap-
ter 3 for additional comments); usually the step length can be con-
sidered an approximation to the step to the minimum of F(x) along p.
1.4.4 Summary

The methods described for unconstrained optimization have
all corresponded to the pattern of the model algerithm. The de-
crease in F(x) from iteration to iteration is consistently used as
a measure of a method's progress toward the solution. The most
successful algorithms are based on approximating F(x) by a positive
definite quadratic function, since this approximation should be
accurate near the minimum.

1.5 Linear Equality Constraints

The problem to be solved is:
minimize F(x)
. T

subject to A"x = b,

T . ;
where A is m by n, m < n.

The necessary conditions derived in Section 1.2 for a local minimum

of F1 specify that, at x*:

2) there exists a vector ¥ such that g{x*) = %

3) p'Gp> 0 for all p such thet ATp = 0.
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It should be noted that the constraint qualifications always hold
for linear constraints. Given a matrix Z, whose columns form an orthog-
onal basis for the null space of A, conditions 2) and 3) can be rewritten
as:

2') Z'g(x*) = 0;

3") ZTGZ Is positive semi-definite.

If the matrix A has Pull rank, it is always possible to find an
initial feasible point, y, where all constraints are satisfied (so that
ATy =b). If any move fromy is made along directions that lie in the
null space of the columns of A, then all subsequent points will also
satisfy the constraints.

Any vector in the null space of A can be written as Zv, for Z as
described above. Al vectors X that satisfy ATX = b can, therefore, be
written as X =y *+ Zv, where y satisfies ATy = b, ai! the constraired
problem can be solved by determining the vector v*¥ of length (n-m) such
that F(y * Zv*) is a minimm with respect to v. The linearly constrained
problem can thus be considered as an unconstrained problem in a reduced
number of variables.

1.5.1 Descent Condition

Because the initial constrained pro?;lem has been transformed
into an unconstrained problem of minimizing F(x) in a subspace, the
descent condition with respect to F can still be required for any
iteration after an initial feasible point is found. This require-
ment is possible because the constraints are automatically satis-

fied at every iteration, and only the decrease in F is significant

in measuring improvemsnt of the iterates.




1.5.2 Choice of Search Direction
As in the unconstrained case, methods for choosing the
. search direction are based on the properties holding at F(x*). A
fundamental complication is that the Taylor series expansion of F
cannot be used in a purely strsightforward way. The feasibility
of any perturbation must be considered, and the Hessian matrix of
F need not be positive definite in a neighborhood of the minimum,
nor even at thg minimm itself.

However, with linear equality constraints, from an .initial
feasible point It is possible to remain feasible simply by moving
only along appropriately chosen directions. Hence, the behavior of
F(x) along such directions, any of which may be written as p = Zv,

can be examined:

=

F(x+Zv) = F(x) + VTZig + 3 v 726z +

1"

At x¥, the "projected gradient, ZTg, must be zero, and
ZTGZ must be positive semi-definite. I F(x) is a quadratic with
Hessian G, and ZTGZ is strictly positive definite, the vector v
such that 2Zv is the step to the minimum of F(x *+ Zv) is given by
the solution of:
ZTGZV = -ZTg. (1L.5.1)

A general algorithm, where the search direction is given
by Zv, and v satisfies (1.5.1) for the current gradient and Hessian, is
a Newton-type method znalogcus to the unconstrained case. |If ZTGZ
is positive definite, then ng = —gTZ(ZTGZ)_JZTg, and p is a descent

direction for F.

There are many other methods for solving linearly constrained

problems (see Gill and Murray, 127%b), and details will not be given
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here. The important point is that, because the constrained pro-
blem can be transformed into an equivalent unconstrained problem,
methods based on unconstrained techniques can be directly applied,
by considering the behavior of the o'rjective function along a
limited set of directions. For this problem, it is always possible
to determine a search direction such that a suitable step simul-
taneously maintains feasibility and decreases the objection fnnction.
1.5.3 Choige of Step Length
Because a search direction can be computed along which un-
limited movement will not violate the constraints, the criteria for
choosing the step length can be based only on F(x), and remain the
same as in whatever unconstrained method is used to choose the
search direction.
1.6 Linear Inequality Constraints
The problem to be considered is:
minimize F(x)
subject to ATXE b,
where AT has 4 rows.
The conditions that must be satisfied at x*, a local minimum, in-
volve the columns of A correspondicg to the constraints active at x*.
Let & denote the matrix whcse columns correspond to the active constraints,
and let 2 be a matrix whose columns form an orthogonal basis for ths null
space of &. At x*, the following must hold:
1) ATx*E b (all constraints satisfied);
2) e(x*) = &%, with all A’EE 0;
3) ZTG(x*)Z must be positive semi-definite.

The linear inequality constrained problem is more complicated than
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.the linear equality constrained problem because: (1) it is not possible,
in general, to determine immediately & point satisfying all the con-
straints; and (2) the set of constraints active at x*¥ is unknown. The
problem (d)of finding an initial feasible point will not be discussed
here in any detail; in the case of linear programming (solving the pro-
blem above for a linear objective function), this sub-problem is known
as "Phase 1". It can be solved by minimizing a function that represents
the departure of a_point from feasibility, e.g., the sum of the magni-
tudes of the constraint violations (see Gill and Murray, 1974%c) . Since
methods are available for finding a feasible point if one exists, it
will be assumed henceforth that an initial feasible point is given.
The question posed by (2) of finding the set of active constraints will
be answered as the solution is determined.
1.6.1 Choice of Search Direction
Most algorithms for computing the search direction for
this problem are based on an "active set" strategy. With such a
strategy, a subset of the constraints - the "active set" - is
treated as a temporary set of equality constraints. Under appro-
priate conditions, the search direction can then be chosen to de-
crease the objective function and to remain feasible with respect
to the currently active constraints. Let & dencte the full-rank
matrix whose columns correspond to those constraints currently con-
sidered active, with the usual significance for 2. Any direction

which is orthognnal to all currently active constraints can be written

as p = Zv for some v. Expanding F(x) along such a direction gives:

1
T = ‘
F(x+2v) =F(x) + g v + 2 VTQTGQV +

If g is not in the range of &, there exists a direction p = 2v such
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AT- - . . . ~T
that A p = 0 and P is a descent direction for F, i.e., p'g <O,

m

Otherwise, g is in the rangz of &, so that f'l‘g =0, and g = AR for
some f IT any component of \ is negative, say i\i < 0, a direction
p exists such that ar]ij p >0, gTB <0, and ar'JE P =0 fcr all other
active constraints. A move along D essentially removes the ith
constraint from the active set, and '13 is a feasible descent di-
rection with a reduced active set. Except at x*, it I's always
possible to fipd a feasible descent direction, although this deter-
mination may involve altering the current active set of constraints.

Except when the active set is modified, the calculation of
search direction for a linear inequality constrained problem is
essentially the same procedure as for an equality constrained pro-
blem, where the current active set specifies the equalities. Thus,
the search direction is chosen by application of some suitable al-
gorithm for finding the unconstrained minimum cf F in a subspace.
1.6.2 Choice of Step Length

The step to be taken along a search direction depends ON
two consideraticns: (1)the criteria used to choose the step based
on the decrease in F; and (2) whether the next point remains feasible
with respect to constraints not previocusly active. The new question
posed by (2) can be answered fairly easily; with linear ccnstraints,
it is possible to compute exactly where each constraint will become
zero along a given direction. At each iteration, the search di-
rection produced is a descent direction for ¥, and only positive
steps will be taken along it. If aisz 0, where the ith constraint

is aiTX—bfLE 0, the constraint is nondecreasing along p, and, if

currently inactive, Will not resch zero for any positive step. It
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aiTp < 0, the step 75 to the constraint's zero along p, such that

T -
al (X+7ip) = bi}
is given by:

7

T
- (bi—aj X)
i -

T

ai P

The values 7; can be computed for all currently inactive
constraints decreasing along p, and 7* = min {7i} is then the maxi-
mum positive step'that will not violate any constraint.

The step length algorithm for a linear inequality con-
strained problem must determine whether an acceptable step with re-
spect to the objective function (satisfying the criteria in the un-
constrained context) is achieved at o < y*. If so, no new con-

straints become active at the next point; if not, the step y* will

be taken, and a previously inactive constraint is added to the
active set.
1.6.3 Summary

The minimization problem with linear inequality constraints
can be solved by using the methods given for the equality case.

If the constraints are not inconsistent, an initial feasible point

can be found. Given 2 set of currently active constraints to be

treated as equalities, it is poszible to determine feasible descent
directions, perhaps simultanesouslv altering the specification of
the active set, with a decrease in F(x) at every iteration. The
step along any search direction at which an inactive constraint be-
comes zero can be obtained directly, so that there is no difficulty
with maintaining feasibility. Because the sesrch direction at each

iteration generates only feasible poinis with respeet to the current
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active set, the linear inequality constrained problem can be trans-
formed into a sequence of unconstrained problems, each of which has

a transparent relationship to the original problem.

1.7 ‘ Nonlinear Constraints - Naw Considerations

For consistency, it will be assumed henceforth that all the con-
straints of a problem are nonlinear. |If even one constraint function
is nonlinear, the problem is considered to be nonlinearly constrained;
but since advantage <can be taken of linearity in the constraint functions,
linear constraints are assumed to be treated separately.

If an objective function is not quadratic, the unconstrained mini-
mization problem cannot, in general, be solved without iteration. A
corresponding increase in complexity occurs with nonlinear constraint
functions. Any nonlinearity in a constraint function means that, at a
point where the constraint is zero, it is nc longer possible, in generai,
to find a strmight line along which the cmstraint will remain zero for
even an arbitrarily small move. Hence, a move along a search directicn
that tends to decrease F(x) may inevitably violate some cof the currently
active constraints.

Algorithms for the nonlinearly constrained problem must consider
not only how to decrease F(x), but also how to attain or maintain
feasibility. The following new questicns must be answered in designing
algorithms for the nonlinearly constrained problem:

(1) What criteria should be used to determine when an iteration

has been "successful"? The previous classes of algorithms were

able to use the consistent criterion of the value of ¥(x) to

decide which of two points is a "better" estimate of the solu-

tion., In the nonlinearly constrained case, the criteria of

success must include both F(x) and the deviaticn from feasi-
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bility, and it is not obvious how to balance these two measures.

(2) On what basis should the search directiza and step length

be chosen? Should p be a descent direction for F(x)? Minimize

a local quadratic approximation to F(x), either in the full

space or along a limited set of directions? Maintain feasi-

bility as closely as possible? Decrease infeasibility? Should

the step length o be chosen to approximate the minimum of some

function along p? If so, which function?

A possible approach to answering these questions is suggested by an
idea that emerged from the linearly constrained cases - transform the
constrained problem into a sequence of less complex sub-problems (or
possibly a single sub-problem) whose ultimate solution is the solution
of the constrained problem. If & su5-problem can be devised so that, at
Its solution, satisfactory progress has been made toward the constrsined
solution according to some criteria, then the well-defined framework of
the sub-problem can be adopted until it is solved.

The remaining chapters will discuss some of the numerous methods that
have been proposed for solving the nonlinearly constrained problem, with
particular attention to the ways in which the sub-problems are constructed,
and the corresponding procedures for measuring progress, constructing
search directions, and determining the step length.

It will be seen that the general minimization problem with nonlinear
constraints contains complications thet do cot exist with linear constraints,

Consequently, it is our view that a fundamental departure is advisable from

the strategy of algorithms devised for the linearly constrained problems.
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CHAPTER 2
PENALTY AND BARRIER FUNCTION METHODS

2.1 Penalty Functions - Introduction

The problem to be considered first is the nonlinear equality con-
Straiy_.qed problem :
Pi: minimize F(X)
subject to c.l(x) =0, i=l,2,. e,
An approach to solving P1, originally proposed by Courant (1943),

is to construct a sequence of related unconstrained problems whose solu-

tion in the limit is the solution of P1. With such a transformation of

P1, the equality constrained problem could be solved simply by repeated
application of an unconstrained algorithm to a set of modified objective
functions.

In general, a local unconstrained minimum of ¥(x) will occur at a

point not satisfying the constraints, a«, alternatively, F(x) may decrease
without bound. The solutions of the proposed sequence of unconstrained
sub-problems will converge to x* only if the modified objective functions
include a term that enforces feasibility in the limit. One possible
choice for such a term is a function that assigns a positive measure to
the constraint violation (a "penalty” for infeasibility), If the term
measuring infeasibility is assigned an incressingly large weight in each
successive unconstrained sub-problem, it seems plausible that the limit
of the solutions will satisfy all constraints.

2.2 Penalty Functions - Theory

2.2.1 Definition

The term "penalty function' can be defined with wide gener-

ality (see Fiacco and McCormick, 1908 ; Ryan, 1974 ), but throughout
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the present discussion only the following penalty functionwill be
considered :
P(x,p) = F(x) * 8 e(x)™ e(x).

The term cTc is clearly a measure of infeasibility, and is

sometimes called the "quadratic loss function” (the multiple 1/2 is
included to avoid the appearance of a factor of 2 in the derivatives).

The positive parameter pwill be termed the "penalty parameter”, and

is increased to infinity in the limit to enforce feasibility. This
1

parameter is often written as r, where r— 0, and r is defined as

the "penalty parameter"”; but it seems more consistent for the par-
ameter that enforces the increasing penalty to be increasing. Con-
putationally, the treatment is identical. Since neither +co nor
1/0 exists in any computer's number system, the limit is never
taken, and p is made large enough (or r small enough) tc satisfy the
specified convergence criteria. Itic possibie to assign a different
penalty parameter to each constraint, thereby varying the influence
of each violation; however, only a single parameter will be con-
sidered here.
2.2.2 Description of Algorithm
The penalty function method for finding x*, a local con-

strained minimum of PLl, is the following:

(Choose a starting point, called x*{ p(o)) and an

initial value of p, p(1) ;

ie1; )

while (the conditions for a constrained minimum are

not satisfied by x*( p(i‘l)))

/

repeat ¢
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Find x*(p(l)), tbe unconstrained minimum of P{x, e

(i—l));
(1,

P 3

W),
starting at x*(p
Choose p(i+l) >
Pti+ 1;

)

The use of such a penalty function algorithm provides

straightforward answers to some of the questions posed in Section

1.7 of algorithm design for nonlinearly constrained problems. If
the constrained minimum has not been determined with sufficient
accuracy, a penalty function method involves the unconstrained mini-
mization of a particular function, and at each iteration the computa-
tion (choice of search direction and step length) is directed to-
ward solution of this sub-protlem. However, a new decision - how to
choose and vary the penalty parameter - has been introduced.

Figure 2.1 illustrates the convergence of the sequence x*(p)
to a constrained solution.
2.2.3 Properties of Penalty Functicn Methods

Convergence

Fiacco and McCormick (1968) present a procf that under reason-
ably general circumstances, the sequence x*(p), the minima of suc-
cessive penalty functions, converges to x* as p —ooc. Penalty func-
tion methods will converge even when the first-order constraint
qualification does not hold at the limit point, and hence can de-
termine minima that do not satisfy the Kuhn-Tucker conditions.

The convergence proof is quite general, and requires few
conditions on the objective and constraint functionz. However, the

proof shows only the existence of a crupsct set including x* within

8 -
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which the sequence x*(p) will converge to x* as p — co; in other
words, x*( p) is the minimum of P(x,p) restricted to a finite domain.
The practical implication of this. restriction is that it
cannot be assumed that a suitable unconstrained minimum of P(x, p)
.will be found for any starting point. The effect of applying a
penalty function transformation to a constrained problem is to

create a set of local minima. For p sufficiently large, and with-

in a bounded region including x*, the sequence of particular local
minima of P(x,p) will converge to x*¥. However, the unconstrained
algorithm used to minimize P(x,p) may fail to converge to the de-
gired local minimum if the starting point is not within the bounded
region.

This limitation is illustrated in an example given by
Powell (1972):

L 2
minimize X
subject to x-1 = 0.
: . 3 p 2 .

The penalty function, P(x,p) = X +2(x—l) , is displayed
in Figure 2.2. The solution to the problem is clearly x* = 1, and
the penalty function has a local minimum at
, with 1im %(p) = x*=1.

p — 0
However, if the starting point is not close enough to x¥, an un-
constrained algoritthm will fail to converge to x¥*, since for unre-

stricted x,P(x,p) is unbounded below for any p.

Properties of successive x*{p)

The minima of successive P(x,p

(k>)
(k)

perties, where x denctes x*‘(p(’zi)j,l;(l’i)

have the following pro-

denntes
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P(x,p)

-1.0

FIGURE 2.2
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F(x(k)), and c(k) denotes c(x(K>).

1. P(x(k), ékj), k =1,2,..., is nondecreasing.

Proof: By definition

P(X(k-l): p(k—l)) = P<X(k): D(k—l)>3
hence |
S5 L e
1) 5 (D)7 (1) _ () = (0T (k)
-~ p(k)
< T«"(k) . o n(‘k)T r\(k)
(k)T C(k) £ 0) since plk) > p(K-l)
(if c
2. F(x(k)), k=1,2, ..., is nondecreasing.
Proof: It follows from the definition of X(K~l) and x(k) that:
(k-1) {(k-1)
' :
Fe1) S (DT (5-1) s F(k) S ()7 (k)
and
, o (¥ plk)
plk) =5 ()T () < ple1) 5 (kDT (k-1)

p(k)
Multiplying the first inequality by P (k-1), and adding it

to the second, gives, after re-arranging:

(k) ‘ k-1) (k) ) (1)
VAR R v i R
(k)
which implies that F(k'l) < F(k), since 'p(k-l > 1.

-)_;_2-



3. c(k)T c(k), k =1,2, ..., is nonincreasing .

(k) (k)
Proof: _F(k) + E_E' (BT c(k) SZF(k—}) + QE_— (k-1)T c(k'l),
so that Q(k) (k)
plk) _ p(k-1) | A ()T (k) 5'2—5" J(k-1)T C(k—l),

and since, from property 2, F(k) - Il(k—l)?. 0,

c(k)T c(k) < (k-1)7T C(k-l)'

= cC
Theseup‘roperties show that the successive x*(p) display a
decreasing measure of infeasibility and an increase in F(x) as the
iterates approach the feasible solution x*.
The minima of successive penalty functions provide a set
of points from which no move exists tnat simultaneously decreases
F and cle. At x¥(p), the minimum of P(x,p):

vP(x,p) = g + pAc = O.

Any direction p along which cTc is decreasing from x*(p) satisfies

Tg > 0, and any such

pTAc < 0; but since Ac ='%‘ g, 1t follows that p
p will locally increase F(x).
Lagrange Multiplier Estimates
The condition:
g = -pAc,

which holds at x*(p), is of the same form as the necessary condition

for a minimum at x* when A(x*) has full rank, i.e.,

N g(x¥) = A(x¥N*,

The quantities Ai(P) = - pci(x*(p)) are thus analogous to

the Lagrange multipliers at x*, since they are the coefficients in the

expansion of g as a linear combination of the cclumns of A. It can be
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shown that under suitable conditiocs - for example, when the
sufficiency conditions given in Section 1.2 Lold at x*, and A{x¥*)

has full renk - then lim x_.(p) = A.*.
p = 0O 1 +

Trajectory of x*¥{p)

Under suitable assumptions, the penalty parameter can be
regarded as an independent variable defining a trajectory of values
x¥(p), with corresponding multiplier functions A (P), converging re-
spectively to x*-and A*¥. The following result is proved in Fiacco
and McCormick (1968) . If:

(D) F and {ci} are twice differentiable;

(2) A{x*) has full rank;

(3) The sufficient conditions given in Section 1.2

for a constrained minimum are satisfied at x*;
Then for p sufficiently large there exist continuocusly differ-

entiable functions x*(p), A(p), such that lim x*(p) = x*,
p—7@©

lim A(p) =A%, and for any finite p,x*(p) is a local minimm of
p — Co

P(x,p).

When the trajectory x*(p) exists, it is possible to use
extrapolation techniques to predict x* based on previous values of
x¥(p). This technique will not be discussed further here; for ge-
tails, see Fiacco and McCormick (1968).

The trajectory defined by x*(p) has several interesting pro-
perties\. In order to discuss the conditions 2t the limit, we in-

troduce the variable r = use the notation x*(p) = x*(r), and

'E P
take the limit as r - 0. It is possible to express x*(r) in terms

of its expansion about x* as:
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x*¥(r) = x¥ +ry +O(r2),
x*(r)-x* ax*(r

wnere y = lim r = lim dr
r -0 r =0

At x*(r), rvP(x,r) =rg + Ac = 0.

Differentiating this identity with respect to r at x*(r)

gives:
d
dr (rg + Ac) =
d dx*(r)
g + dx* (rg + Ae) ~dr -
m T ax*(r)
gt (G +2 c;G; TAAT) dr = 0.

As r — 0, by definition ci — 0, and the above becomes:
T
g(x*) + A(x*)A(x*) 'y = 0,
where y = lim dr . If A(x*) has full rank, g{x*) = A(x¥*)A¥,

so that by substituting for g(x*) and cancelling A(x¥), the result
is: A(x*)Ty = - A%, (2.2.1)

This relationship can also be obtained by the following al-

ternative derivation. At x*(r), A(r) = T e(x*(r)). Expanding

the ith constraint and multiplier estimate about x*, and letting
IAi

the vector u; denotedx , we obtain:

=

A GXE)) = T ey (a(x))

\
T -1
A~i(x*) + r ui(X*) Yy r

calx¥) = a;(¥)y +0(:9)

1
- ai(X*)iy rol(r?),
since c,(x¥) = 0 forall i. Taking the limit as r — O gives, as
4

_L|’5_



before:
ax$)Ty = - ax.

If Ai* ¥ 0, It follows that ai Ty £+ 0. The penalty functicn
trajectory's approach to x*, therefore, does not lie in a tangent
plane for any constraint with a non-zero Lagrange multiplier. For
sufficiently small r, a similar result will hold for the step from
x*(r) to x*(?), ¥ <r, by the continuous differentiability of x*(r).
This characterization of the path of iterates to x* contrasts to
that of other algorithms, for example, “projected gradient” methods,
which generate a tangential approach to the solution. Figure 2.3

displays the typical approach of e penalty function trajectory to

x* .

The non-zero scalar product between P and y implies that
the linear term will dominate the local Taylor series expansion of
C; alon% the trajectory. If ci(x+olp) is approximated by c,+a Tp,

J,ai Pl

and ”ai” ” p” is very small, the linear approximation is poor:

and higher-order information is required to model accurately the
behavior of ci along p. In Chapter 5, there is further discuszion
of the significance of the non-tangential approach to x* of the
penalty function trajectory, including consideration of how this
property can be exploited in slgorithm design.
To derive an expression for y, we use the identity for
VP(x*(p),p):
0 = VP(x*(p ),p)
g(x*(p)) - A(x¥(p)) A (x*(p)), )
1 2>.

and expand each function about x*, using x*(p) = x* * oy +O(p

In the following, all matrix and vector functions are evaluated at

x¥* unless otherwise specified. The sbove identity becomes:
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1 L Lo, A
O=g+ pGy - 8% ~ p Z )f G.y—pAUy-i-QQp/,
=1 * 7t
2%

where the columns of U are {ui}, u, =07);— . Since g = A\*, after

cancelling, multiplying by p, and letting p -» co, we obtain:

Wy - AUy = 0,
m
where W =G = X Ai*Gi, the Hessian of the Lagrangian function.
i=1

ITW is non-singular, the above becomes:
vy = w-1a uty. (2.2.2)
From the previous derivation, ATy = -x*; applying A~ to

the above equation gives:

Aly = a5 s uly = oax
IF AT A s non-singular, then

UTy = - (ATW'lA)‘LA*.
By applying W-lA, which is of full rank, to btoth sides, and using

(2.2.2), we obtain an expression for y in terms of W, A, and A*:

y = Wta (ATW-28) " *. (2.2.3)

2.2.4 Difficulties

Although penalty function methods have some significant ad-
ventages, they suffer from several deficiencies as well.
I11-Conditionin Hesgien
\ The numerical solution of the unconstrained sub-problems
is increasingly more difficult as the penalty parameter becomes
large. The causes of this phenomenon have been analyzed by Murray
(1969a) and Lootsrna (1969) in terms of the conditioning of the Hessian

matrix at the minimum of each sucecszszive penalty function.

The Hessian of the penalty function is given by:
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m
VZP(x, p) =G T = pc .G, + pAA
i=1

T

At x*(p), for large p, the first two terms form an approximation

to the Hessian matrix of the Lagrangian function at x*, since |im
p — 0

oc(x*(p)) = -A*. However, the matrix V2P is dominated for large p
by the term pAAT, and hence approaches a rank-deficient matrix,
with rank equal to m, the number of active constraints at x*.

Expressions can be given for the eigenvalues and eigenvectors
of VZP(X*(p),p) as p— w (see Murray, 1971), which reveal that (n-m)
eigenvalues are bounded, and have eigenvectors that in the limit
lie in the null space of A(x*); however, there are m eigenvalues of
order p, i.e., unbounded in the limit, whose corresponding eigen-
vectors lie in the range of Alx*).

The progressively worse conditioning of the Hessian matrix
of P(x*(p),p) will cause numerical difficulties for the methods used
to solve each unconstrained sub-problem, and affect the theoretical
rate of convergence of the unconstrained algorithm.

Deviation from Original Problem

A further unsatisfactory feature of penalty function meth-
ods is illustrated by assuming that the original starting point is
very clos= to the desired snlution, x*. FOr a typical initial
value of p (often chosen to be unity), the subsequent estimates of
x¥(p) would tend to move away from even a neighborhood of x*. The

efficiency of a penalty function method is thus highly dependent

on the choice of p. Although a penalty function method provides
criteria for measuring success at each iteration, the concentration

on the sub-problem creates a diversion from the solution of the

- 49 .




original constrained problem, because the sub-problem solutions
approach x*¥ only in the limit.
2.2.5 Extension to Inequality Constraints

A penalty function method can be used to solve the in-
equality constrained problem:
P2: minimize F(X)

subject to ea(x) = 0, i=1,2,...,L.

By anaglogy to the equality case, the functions to be mini-
mized should“ include a penalty for infeasibility. The quadratic
penalty function is used as before, but only the violated con-
straints are included in the penalty term. The penalty function

for inequalities may be written as:

L
Pl aY = T L »n © (mtanl A \\2
A more compact notation, which will be used throughout this section,
is:
AN

P(x.0) = F + 2 &°¢.
where it is assumed that m constraints are currently violated,
arid ¢ is a vector of length m correspcnding only to the violated
constraints. For simplicity, the elements of € will be numbered ss
Ci’ i=1,2. ...,m, where ’éi should be taken to mean the ith currently
violated constraint. A similar notation will be used for the
matrix A, whose columns are givea by {Qi}, i=1,2,...,m, the grad-
ients of the constraints in €.

The convergence cf a penalty function method applied to
problem P2 can be proved under the same conditions as for problem
P1, with the same restriction thet the desired local minima of
P(x,p) exist in a compact domain iucluding x*. The existence of a
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2.3

trajectory x*(p), with a multiplier functicn ?,(¢), can also be
demonstrated under conditions similar to those for the equality
problem, with the further restriction that Ai* > 0.

For p sufficiently large, the set of constraints violated
at x*(p) is equivalent to the set of constraints active at x¥,
since the constraints inactive at x* are strictly feasible in a
neighborhood of x* by continuity. Hence, the minima of successive
penalty functions occur, for sufficiently large P, at points
strictly -ir-1feasible with respect to the active constraints at x*.
Since the condition:

g = - phe
holds at x*(p), and g(x*) = A(x*)A*, where A(x*) denotes the matrix

of {ai} corresponding to active ccnstraints, it follows that for

A(x*) of full rank, lim p Gi = - 1;%¥ <0, and therefore 'r?i < 0.
p — oo

The results given for the penalty function methods applied

to equalities - concerning the non-tangential approach of the tra-
ax*(r)
jectory x*(p), and the expression for 1lim dr - are identical
r -0

for the inequality problem, including only the constraints active
at x*, so that & and ¢ appear in all the corresponding relations
for inequalities. The difficulties of penalty function methods re-

main the same for the inequality problem.

Barrier Functions_- Introduction

Barrier function methods are used to solve the inequality con-

strained problem:

Po: minimize PF(x)

subject to ci(x) > 0, i=1,2,....,4.
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To apply the barrier function approach to P2, the region for which
all constraints are strictly satisfied must have an interior. This re-
striction means that barrier function methods cannot be used for equality
constrained problems. Although an equality constraint, ci(X) = 0, can
be expressed by specifying two inequalities {(ca(x) = 0, —ci(x) > 0), there
exists no point that can simultaneously strictly satisfy both.

In many physical and engineering applications, the constraint func-
tions not only characteHEe the desired properties of the solution, but
also define the region in which the protlem statement is meaningful (for
example, ¥(x) or some of the constraint functions may be undefined cut-
side the feasible region). An artificial convention for extending the
problem statement outside the feasible region would not lend itself to
the design of a computationally reasonable algorithm, and might introduce
complications not present in the original protlem.

The methods to be considered require strict satisfaction of all con-
straints at the starting point and subsequent iterates, and are sometimes
called “feasible” methods. The continued enforcement of feasibility con-
trasts with penalty function methods for inequslities, where the con-
strainsd minimm is approached through a sequence of strictly infeasible
points with respect to the active constraints, and feasibility is en-
forced only in -2e limit.

As in the penalty function case, 2 barrier function method creates
a sequence of modified functions whose successive unconstrained minima
should converge in the limit to the constrained solution. Since F(x)
will, in general, be minimized at an infeasible point, and the successive
estimtes are required to be feasible, the modified objective function

for a feasible algorithm includes & te:u to prevent successive iterates




from becoming infeasible. If a "barrier” is in effect created at the
boundary of the feasible region, by constructing a continuous function
with a positive singularity (the "barrier"), any uncomstrained minimum

of the modified function must lie strictly inside the feasible region.

if the weight assigned to the barrier term is decreased toward zero in
successive modified functions, the sequence of unconstrained minima should
generate a strictly feasible approach to the constrained minimum.

2.4 Barrier Functions - Theory

-~

2.4.1  Dpefinition
A "barrier function™ can be defined with wide generality,

but only a particular barrier function will be considered here:

Blx.r) = F(x) - r £ An (c.(x)).

called the "logarithmic" 'carrier function (Frisch, 1955). The other
most commonly used barrier function is the "inverse" barrier func-

tion (Carroll, 1961), given by:

4L 1
B(x,r) = F(x) + r 2 TT3)
[

The weighting factor, r, which will approach zero to allow
the minima of B{x,r) to converge to x*, will be called the "barrier
parameter” .

2.4.2 Descripticn of Algorithm

A barrier function method for solving an inequality con-

strained problem has the following form:

(Choose a starting point, called x*(r(o)), suck that

c_:l(x*(r(‘o))) >0 foralli,”i =1,2,...,%, and en
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initial value of r, say r(l);
ie 1)

(1-1),

while (the conditions for a constrained minimum at x*(r are

not satisfied)

repeat ¢

Find x*(r(i)), the Unconstrained minimum Cf B(x,r(i)),

starting at x*(r(i-1});

Choose.r(i+1) _ (1),

i«<1i+ 1;

The use of such a barrier function algorithm involves the
unconstrained minimization of a particular function, and thus at

each iteration the computation IS guided by the effort to solve the

sub-problem. As in the penalty function case, an additional decision
must be made concerning the choice and alteration of the barrier
parameter.

Figure 2.4 illustrates the convergence of the feasible se-

quence x*(r) to a constrained minimum.

2.4.3 Properties

Convergence

Fiacco and McCormick (1968) present a convergence proof that,
under quite general conditions on F and {ci}, there exists a compsct
set containing x* within which the seguence x*(r), the minims of suc-

cessive B(x,r),converges to x* as r = 0. As in the analogous proof

for penalty function methods, the conditions for convergence do not
require ’chat the constraint qualification holds at the limit point,

so that barrier function methods will converge to minima not satis-
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fying the Kuhn-Tucker conditions

However, the conditions under which a barrier function
method will converge require that x* must lie in the closure of
the interior of the feasible region, and consequently x* is not
permitted to be isolated from strictly feasible points.

Because the convergence proof guarantees convergence of
x*(r) to x* only within a compact set including x*, it is possible
for the logarithmic barrier function to be unbounded below. This
possibility -i‘s‘illustrated in an example given by Powell (1972):

minimize w241

subject to x> 1.

The solution is x* = 1, but the logarithmic barrier func-

tion is given by:

1
B(x,r) = - ;i:l— - r In(x-1),

and can decrease without bound. However, this problem is much less
likely to happen than with peralty functions, because the feasible
region is often closed.

Properties of successive x*(r)

The minima Of successive barrier functions exhibit the
] %
following 'properties, where X(K) denotes x*(r(k)) . F(“) denotes

F(X*(r(k))); and cfl(k) denotes ci(x*(r(k))\:

(@D B(x(k)',r(k)), k =1,2,..., is strictly decreasing for
sufficiently small (%) and bounded ci(k)
Proof: By definition

B8 () o peels-2) )y,




Since {ci(k)} are bounded sktove, for sufficiently small

r(k'l), the term B(x(k'l), r(k)) can be bounced as follows:
(1) 0 L, en) | en) (o1 Y,
F - 2 4o e, < F -r 5 n An e k-1)_
i=1 . - : i=1
B(x(k-l)"r(k-l))’
, because O < r(k> < r(k-l).
(2) F(x(k)), k=1,2,..., is nonincreasing.
Proof: B&r d-efinition of x*(r(k)),
(a) F(k) - r(k)iil An ci(k) = F(k-l)—r(k)iilln ci(k—l‘), and
(k-1) (k-1 * ) o
(b) P L MR ) r 4n c.<k—l> SF(k)- r(k_l) s 4n c.(k).
i=1 * i=l

(k-1)
Multiplying (a) by the factor F(kj > 1, and adding to (b),

yields after re-arranging:

=) e S

P(8) (k1)

M o

tn ci(k), k = 1,2,... is nondecreasing.

(3) -
i=I
Proof: Combining (b) and the result F'(k\ =< F(k-l\’ we obtain:
L
z 4n c.(k-l) <

5

;a SNON

It should be noted that property (3) does not imply that

the constraint values decrease at successive x*(r). A reduction in
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the barrier parameter only allows the constraints to approach the
boundary of the feasible region, but does not enforce any decrease.
Lagrange Multiplier Estimates

At the minimum of B(x,r):

e
‘1
£ 1 :
VB(x,r) =g -rZ ¢, a, =g.- A =0,
i=1 ¢t :
T
co

so that the gradient of F(x) is a non-negative linear combinartion

of the constraint gradients, where the coefficient of 2, is T,
r e

As x*(r) approaches x*, the expression T_ will go tc zero as r =0
1

if 5 is not active at x*, since ci will be bounded strictly away

from zero in a neighborhood Of x*. Hence, for sufficiently small
r, the relation holding at x*(r) can be written:

—

9

-
.
C
b m -
It is assumed throughout that m constraints are active at x*. The
vector ¢, of length m, contains the active comstraints, with ele-
ments numbered for simplicity as ¢,,...,¢_, where ¢_ should be in-
1 : m i

terpreted as the ith active constraint. Similarly, the matrix 2
contains only the m gradients of constraintsractive at x*.

The quantities Ai(x*(r)) =24,(r) = 5: , defined only for
the active constraints, therefore satisfy a relationship with g arid

& analogous to the muitiplier relation that must hold at x* if
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R(x*) has full rank:

g(x*) = A(x* .
By continuity, for sufficiently small r, the vector A(r) is an in-
.creasingly accurate approximation to A*, the vector of Lagrange
‘multipliers at x*.

Trajectory of x*(r)

Under suitable assumptions, the barrier parameter can be
considered as .an- independent variable defining a trajectory of
values x*(r). The following result is proved in Fiacco and
McCormick (1968). If:

(D F and {ci} are twice differentiable;
(2) &(x*) has full rank;
(3) A >0, i=12,...,n (all Lagrange multipliers strictly
positive);
(4) the sufficient conditions given in Section 1.2 for a con-
strained minimum of P2 are satisfied at x*;
Then for sufficiently small r, there exists a continuously

differentiable trajectory x*(r) such that lim x*(r) = x¥, and for
r —»0

any r > 0, x*(r) is a local minimum of B(x,r). As with penalty
functions, it is possible to extrapolate along the trajectory, but
this topic will not be discussed here.

The trajectory defined by x*(r) has several interesting

properties. Expanding about x* gives the following expression for

x*¥(r) :
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N 4 .

X( r)-x* ax*(r)
. Wwhere y = 1lim T = lim dr
r—0 r =0
At X*(I‘))
—g; -
€1
vB(x,r) =g -A =0 .

T

o

P

Differentiating this identity with respect to r yields:

r_
2
©1

0..
r
o2
2

ax*(r)

AT) dr

EI .
1z
-A +(G-% c. G, +A
. i 1
i=1
L
c
B
Multiplying through by r, and re-arranging, we obtain:
2
r
2
L
L r_ C2
(rG -2 c, G.,+A 2
=1t

Srof o

A

T

|

i

L

gx*(r)

T) ar =C.
]
Cl ‘
i

(2.51.1)
§
f
=
C/& J

For r sufficiently small, the inactive constraints are bounded away

T
from zero, and the value c, is O(r).

If the Lagrange multipliers

at x* are bounded, for r sufficiently small the quantity A (r) =

I
7E
C.

1

r
E} is also bounded, since lim

r =0
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As r approaches zero,



—

the only significant term on the left-hand sids of (2.4.1) is the

2

matrix r
CZ
1

A AT, since all other matrices

2
‘T

2
e L ]
are bounded in norm by a multiple of r.

The columns of A corres-

ponding to inactive constraints make an O(rz) contribution to the

elements of the matrix on the left-hand side, and an &&) contri-

bution to the vector on the right-hand side. Hence we obtain:

» 1
[
- 2
©1 Zr—z " ax*(r)
A 02 A dr
-
A2
C
m

r— —_

odR

=R : +O(r).

If &(x*) has full rank, then for sufficiently small r,

R(x*(r)) will also be of full rank. Cancelling &, ignoring the

2
OC(r) term, and dividing the ith row ty < gives
— - N
e, €1
o 8x*(r)
ﬁI dr -
”~
C
_n
r

r

Since 70: = A% asr ~0, the final result is
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1 7
%
Ay
T dx*(r) . m : -
" lim ar =A"y=| 2.4.2)
r -0 .
1
3

An alternative derivation af this result can be obtained

from the relationship that holds for the active constraints:

) = A (x(x)), or

r =& (x*(r)) Ai(x*(r)), i=1,2,...,m.
Expanding about x* gives the following, where all functions are

*
evaluated at x*, and o

~ ~_T 2 T 2
r=(Ci+raiy+o(r)) (Ai* + rTu Yy +0(r)).

Noting that ’c‘i = 0, and dividing through by x yields:

1=X.%8iy +O(r).

i

ktting r =0, for)\i* *# 0, the result is as before:

T ) )
a,y i ,1i=12,...,n.

The relationship (2.%.2) implies that the minima of suc-
cessive barrier functions do not approach x* along any tangent to
a constraiot, forAi* * 0, fli*l c @, and thus the use of a linear
approximation to the behavior of an active constraint glong this
trajectory is justified. Figure 2.5 displays the typical approach
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of a barrier function trajectory to x*¥. This property will be dis-
cussed in more detail in Chapter 5, along with considersticn of

how it may be exploited in the design of a feasible algorithm.

dx*(x)
An expression for y = lim dr can be obtained from
r -0
the identity:
0 = vB(x*(r),r) (2.4.3)
) — r 7]
cl(x*(r55
= g(x*(r)) - A(x*(r))
r
c, x*(r
IE=e))
co(x*(r)) !
|2 ]

Let the vector function p(x*(r)) be defined 'cy:

ui(x*(r)) = ci(x*(r)5 ,i=1,2,...,4.

in the following, the set I denctes the set of indices of
the active constraints; if ieI, ca(x¥) = 0, and if ikI, ca(x¥) is
bounded awsy from zero.

Case 1: The ith constraint is active at x* (ieI).

For an active constraint, }.Li(::*(r)) iz equivalent 'io the
appropriate Lagrange multiplier approximation, %ﬁ defined eszrlier,
which is known to be differentiable along the trajectory x*(r), and
it is possible to expand }.Li(x*(r)) around x*. Let i be the index
in the vector ¢ of active constraints (or, equivalently, in 1)

corresponding to ci; then:



-
. T 5 il |
pi(x*(r)) = Ai* +r uzy +0(r7), where ui =ax

.
3

Case-2: The ith constraint is inactive at x¥ (:‘LIEI).

For an inactive constraint, ui(x*(r)) is differentiable
because of the assumed properties of cys in addition, My and all
its derivatives are of order r. It is not possible to obtain an
accurate expansion of pi(x*(r)) around x*, since w; and ell its de-
rivatives are zero when r = 0.

The identity (2.4.3) can be written:

e(x*(r)) - A(x*(r))u(x*(r)) = 0.

Expanding g and the elements of p and A corresponding to

active constraints, we obtain the following:

m 7 ,
gtrgy -B¥ -r Y A¥8y - xBUy -2 r y | L,
=1 g7 o3 (x(r a,(x*(r))+o(r ) =0,

where all functions are evaluated at x* unless otherwise specified,
@.ldenotes the Hessian corresponding to i’ and the columns. of U are
given by {u,}.
At x¥, g = BA%; cancelling and dividing by r gives:
iy T 1
(g -iilli* @i)y = Ru'y +i§;;I m 8i<X*(I’)) 'fO(I’>-

Taking the Iimit as r = C gives:

B et o T R R X s L A ST R AN

Wv = mTTv 4t

m
where-W = G - I h’__.’z@i, and the vector t is defined by:*
i=1

t =C ciEE*5 ai(x*).

idT
I W is non-singular, the result is:
y = wiauTy +w e . (2.4.4)



Since ﬁTy =

to both sides of (2.4k.k),

-

ATy = BTy AT e =

2

L. "m

, if AT s applied

the relationship becomes:

AW IR is nonsingular if 4 is of full rank, giving:

Uy = (’ATW']ﬁ

1
Al*
1 . . R -1
) : - (~TW-12) ATW-1t
2
| M

The desired result is ottained by applying w'lﬁ to the above, and

then using the previously

given relationship (2.4.%):

| 1]
N
Ay
~lay-~1 P S DURE ! .
) - W H(EEW E) AW -1t
1 (2.4.5)
A ¥
b m —
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2.4.4 Difficulties

Ill-conditioning of Hessian

The unconstrained minimization problems to be solved by
a barrier function method become more difficult as the iterates
converge to x*, if there are any constraints active at x*, due to
the increasingly poor conditioning of the Hessian matrix
VZB(x*(r),r). The ill-conditioning of the Hessian matrices of
barrier functions does not result from the influence of the barrier

parameter, but rather from the singularities caused by the active con-

straints. The Hessian of B(x,r) is given by:
X ﬁ
n |
c i A
1 2
. 2z 5 T
VB(x,r) = G-I c, G, + A A.
. I 1
i=1
-
2
L

For inactive constraints, ci is bounded away from zero,
_L L
and thus the quantities cr1 and ;? go to zero as x*(r) approaches
r
x*¥. For the active constraints, c;ix*irﬂ approaches the corres-

ponding Lagrange multiplier, and hence for non-zero Lagrange multi-
—_—
pliers the ratio cg(x*(r)) is unbounded as ci ~ 0. The first two

terms of VZB(x*(r),r) constitute an increasingly accurate approxi-
mation to W(x*), the Hessian of the Lagrangian function; but
VZB(X*(‘r),r) approaches a rank-deficient matrix of rank m, the
number of active constraints at x*. It has been shown (see Murray,

1971) that VZB(X*(I'),I') has m unbounded eigenvalues as r — O,
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with corresponding eigenvectors in the range of &; the remaining
(n-m) eigenvalues are bounded and their eigcuvectors lie in the
null space of A.

Linear Search

A further difficulty in applying the usual unconstrained
techniques to minimize barrier functions is that the one-dimensional
search procedures, based on polynomial approximation of the function
to be minimized, are often inefficient. This topic is discussed in
detail in Chapt;r 3.
Deviation from Original Problem
As with penalty function methods, the sub-problem solutions
for berrier functions converge to x* only in the limit, because z*
is not the minimum of B(x,r) for any non-zero r. Hence the struc-
ture of the sequence of unconstrained minimizations may obscure
the properties of the original constrained problem. The require-
ment of maintaining feasibility in a reasonable way adds further
complications to a barrier function algorithm.
2.5 Summary

Both penalty and barrier function methods are effective in solving
nonlinearly constrained problems, but their design contains notable in-
herent defects. Tne original hope for these methods was that an uncen-
strained minimization technique could be applied to the modified func-
tions with the same success as for any other function. However: the
difficulties discussed have made this hope unrealizable. The problems
of ill-cciditioning impair the convergence of unconstrained methods for
both penalty and barrier functions methods. For barrier functions, any

unconstrained algorithm must undergo non-trivisl modifications in order

to maintain feasibility.
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Many recent algorithms have been devised in an effort to overcome
the deficiencies of penalty and barrier function methods - for example,
to deal more directly with properties of the constrained solution, and
to avoid constructing a sequence of sub-problems that converges only in
the limit. The motivation and structure of a large class of alternative

methods, based on the Lagrangian function, are presented in Chapter 4.




CHAPTER 3. Linear Searches to be used with the Logarithmic Barrier
Function

3.1 General Discussion of Linear Searches; Inadequacy of Usual
Strategy for Minimizing Barrier Functions

3.2 'Fitting of Special Functions
J - -
Discussion
3.2.2 Linear Function plus Logarithmic Singularity
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3.3 Implementation

3.3.1 Initial Step
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CHAPTER 3

LINEAR SEARCHES TO BE USED WITH THE
LOGARITHMIC BARRIER FUNCTION

3.1 General Discussion of Linear Searches; Inadequacy of Usual
. Strateqy for Minimizing Barrier Functions

The model minimization algorithm requires at each iteration the
determination of a positive step, «, along the given search direction,
p. In early algorithms, the step length o was chosen so that X + ap
was a highly accurate approximation to the minimum of F(x) along p. In
general, this one-dimensional minimization sub-problem cannot be solved
explicitly, nor the step to the minimum located exactly. Hence, an
iterative procedure is required, with termination criteria that will be
satisfied by a sufficiently accurate estimate of the minimum.

It is no longer Considered necessary or efficient to locate a
highly accurate estimate of the minimum of F(x) along the search di-
rection at every iteration of most minimization algorithms. However,
the same iterative procedure that would be used to find an accurate
minimum can be followed to determine an "acceptable” step along p, which
satisfies less stringent termination criteria. The various termination
criteria that might be specified are not directly relevant to the present
discussion, which will be concerned with the procedure by which suc-
cessive estimates of the solution are obtained. The teras "cne-dimen-
sional minimization™ and "linear search” will be used to denote this
iterative procedure, which remains the same for whatever termination
criteria are given.

It will be assumed that the function whose (approximate) minimum
is sought is decreasing along the specified search direction at the

initial point, or, equivalently, that any search direction is guaranteed
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to be a descent direction for the given function. This assumption means
that the step ¢« to the (approximate) minimum is positive. The iterative
methods for locating an acceptable « determine an initial step, a(o),

(1) ()

and successively compute o etc., until X + a/(k)p satisfies the

given termination criteria; since o« is known to be positive, all estimates
a(K) are required to be positive as well.

The task of developing an efficient and reliable algorithm for one-
dimensional minimization is extremely difficult. There is a large liter-
ature on this subject, and existing methods continue to be improved (see
Gill and Murray, 1974a; Brent, 1973). The characteristics that a iinear
search algorithm should possess include: rapid convergence en well-behaved
functions; guaranteed convergence for any function satisfying certain weak
assumptions; numerical stability; and finite termination for any function.
These qualities may be incompatible, in that techniques to achieve guaran-
teed convergence and numerical stability may impede possible fast conver-
gence. In software designed for general use, the goals of guaranteed con-
vergence and stability will normally take precedence over that of rapid
convergence if these aims conflict.

The approach taken in the best available iinear search algorithms is
t o combine safeguards to guarantee convergence and stability with a pro-
cedure for polynomial interpolation or extrapolation. A well-behaved
function that satisfies the assumption of sufficient smoothness can be
approximated in a neighborhood by the low-order terms of its Taylor series,
and hence in one dimension by a quadratic or cubic polynomial. Most
linear search algorithms fit either a parabola or cubic to known values
of the function and its derivatives along the search direction. The co-

efficients of the fitted polyncmial solve a system of linear equations;
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the minimum of the fitted polynomial can thus be computed explicitly, to

be taken as the next estimate of the minimum of t»- general function if
appropriate safeguarding checks are satisfied. This procedure is reason-
able, and highly successful, for most funectiong to be minimized ty
unccnstrained methods .

However, the usual technigue of approximation by quadratic cr cubic
polynomials suffers from certain defects when used to minimize barrier
functions, which, although continucus and smooth in the strictly feasible
region, are not "well-behaved" in the normal sense. Their defining
characteristic is singularity at the boundary of the feasible region.
Unlike penalty functions, whose large derivatives are due to a parameter
under external control, a barrier function must contain a singularity;
and a continuous function with e singularity will have by definition
large and rapldly varying derivatives. |In the case of the logarithmic
barrier function, the First derivatives go to infinity as I/c as ¢
approaches zero, and the seccnd derivatives tehave like 1/c2_ Hence,
the hope of a good aspproximstion to a 'carrier function by neglecting the
higher derivatives will not te fulfilled in the vicinity of the boundary
of the feasible region. Figure 3.1 displays thz cne-dimensional variation
of a logarithmic barrier function as the boundary is approached.

Although an adequately safeguarded linear search based on polynomiai
fitting will. be able, with proper care, to locate the approximate minimum
of a barrier function accurately, the number of constraint and funetion
evalusticns required to converge may be excessive. The predicted minima
of the fitted polynomials often lie in the infeasible region; and even
within the feasible region, the fitted polynomials tend to be a poor
approximation to the barrier function. The inadequacy of the usual

linear search procedures for barrier functicrnc has been discussed by
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several authors (see Fletcher and McCann, 1969 ; Murray, 1969s ; Lasdon et
al., 1973 ; Ryan, 1974 ). Various alternative strategies have been pro-
posed, which involve using an approximating function that will better
emulate the behavior of the barrier function. o©ne possibility is to use
an approximating function with the same kind cf singularity as the par-
ticular barrier function; the behavior of the fitted function, including
the location of its minimum, should then be similar to that of a barrier
function. Consequently, the minimum of such a special function could be
taken as the next estimate of the minimum of the barrier function, to be
used within the linear search procedure in exactly the same way as the
estimated minima of polynomial approximations. However, because the
parameters of such a special approximating function will no longer be
determined in general by a system of linear equations, it may not be
possible to determine explicitly the defining parsmeters and the minimum
cf the fitted function.
3.2 Fitting of Special Functions
3.2.1 Discussion
The special functions to be considered are designed to
contain a single logarithmic singularity. This restriction to a
particular barrier function contrasts with the general approach
taken by Lasdon et al. (1973 ), where a special function is developed
by the application of the form cf the barrier function to linearized
approximations to the objective function and the constraints. The
approach taken here allows a much simpler solution to the problem,
where the known form of the singularity is directly exploited. p
single function is used to approximate the behavior of the barrier
function along the seerch direction, and it isS not necessary to make
separate approximations to F and {ci}-
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The logarithmic barrier function can be evaluated only at
feasible points, and is undefined beyond the syirst singularity along
a particular direction. Therefore, only feasible points are con-
sidered in fitting the approximating functions, since the data to be
used will be values of the barrier function and its gradient.

It will be assumed that we seek an approximation to the

minimum along the search direction of B(x,r) = F - r £ ln(ci),
i=1

where the barrier parameter, r, is known and fixed throughout the
linear search. The special functions to be considered are the
following, where the parameter 6 represents the' one-dimensional

variation along the search direction:

(a) a linear function plus a logarithmic singularity, of

the form:

fL(9)=§+BQ-rln(8-e);

(b) a quadratic function plus a logarithmic singularity, of
the form:
fQ(e) A+ be+86° -rin(d-0).

These formulations attribute all the singular behavior to
one location (& = @); in fact, the singularity displayed by a barrier
function depends in general upon the first canstraint zero encountered
along a given direction, and zeros that nay occur beyond the first
are irrelevant. This behavior heccmes especially marked for small
values of the barrier parameter when the constraint functions
bounded away from zero have almost no influence on the barrier func-
tion,and the nearest constraint has influence only very close to its
zero along the given direction. A smooth function with a suitable

damped singularity should, therefore: be an excellent model of a

barrier function close tc the boundary of the feasible region.
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3.2.2 Linear Function Plus Logarithmic Singularity
The special function to be fitted is of the form:
fL=8+5606-r 1n(@ - 8).

Differentiating o with respect to 8 gives:

fl=b+ oy , and
d -9

_ r
T TR
Since the barrier function is decreasing at 8 = 0, this same con-
dition will be required of fL’ s@that
fI,. (0) =€+7§ < 0.
The singularity, @, is assumed to be a positive step along
the current direction, and therefore, $ <o.
A stationary point of f; occurs at &* such that f£‘ (6*) = 0,

or
B+§—l_-ﬂ——e; = 0, so that
* = r
] a+g

The expression for 6% is equal to the value of ff, (0) times

d

(ﬁ)’ and since (g) and ff; (0) are negative, €* must be positive.

>

fI:' is everywhere positive., so that the stationary point must be a
minimum of fL'

In order to specify the function fL, three indepecdent
pieces of information are required about the behavior of the function
to be fitted along the search direction; fLwiII therefore be used

In eircumstances where a parabolic fit would normally be carried out

to minimize a general function. Pigure 3.1 illustrates a barrier

function and 1ts approximations by the function f1, and a paraltola,
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both. using the same data. It is clear that the special function
gives a more accurate prediction than the pz~abola of the minimum

of the barrier fanction.

The special function fL will be fitted with the same sets
of data used by a typical parabolic line search, namely: (1) one
function value, the corresponding gradient, and a second function
value; (2) three function values. In the following discussion, fi
will denote the function value at Gi, and 85 is the corresponding
gradient value.

Case 1. Two function values, one gradient

The three unknown parameters of f - 8, B, and @ - must
be solved for in terms of the known values. Assuming that 82 > 91,
the equations specifying fL are:

§+B€l-r’&n(8

]

(a) £,

(B) & =6+ 5T
1

A

() £,=2a+ B 8, - r (3 - eg).

There is no loss of generality in assuming that 5 _ 4
1=

b

so that from (A) and (B) we obtain:

2=r *trdnd, and

1
-4 -%.

Substituting these values into (C) yields:

f2=fl+r’&nﬁ+(gl-%) eg-r'ﬁn(ﬁ—eg), or,

after re-arranging:

4n §;é~§2 + E% = % (8,8, - (£5-17)) (3.2.1)
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found which satisfies (3-2.1), the values &, B, and 8” can then be
computed from the previously derived relatiomships.
Consider (3-2.1)as a nonlinear equation in terms of the

function

where k. = —1} (£,-1, - ezgl)‘ The problem to be solved then be-
comes that of finding a solution @ to satisfy
@l(d) = 0.
Because 92 is feasible, the value of the singularity, d,
must lie in the interval (92, @) . The function &.(d) has the
following properties:

§l->—ooasd-+92+;

él—eklas d »® ;

1

§l >0 for all finite 4;

1

§l—->oo asd——>92+,'

@1-»0 as d — oo; and

1
§1< 0 for all finite d.

These relations imply that there is a unique zero of @l in (92, oo),
i.e., 2Ty > & - This requirement means

5

provided that kl > 0,

that the function value at 6, must be larger than the linear approxi-

2
mation at el would have prediected, i.e., f2 must lie in the shaded
region of Figure 3.2.

Although the numerical. solution of the equation Ql(d) =0

would yield the desired value 4, & is an ill-behaved function, un-

suitable for the usual zero-finding technigues such as Newton’s
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method. Figure 3.3 illustrates the behavior of @l.

An attempt to apply Newton's method in Region I would
cause very slow convergence to the zero, although all estimates
would undershoot and hence could not diverge. in Region 11, Newton's
method might easily yield an estimate to the left of 92, and safe-
guards would need to be incorporated to preveat divergence.

To avoid these difficulties, the problem of solving
@l(d) = 0 can be transformed into an equivalent problem that is easy
to solve. If we define a new variable y :§‘2, so that ¢ <y <1 for
the admissible range of 4, the equation @l(d) can be written in teras
of-y as

fa(1-y) = vk, -
Taking exponentials of both sides gives the equation

1-y = e~y ;7K1
and the value ¥ which satisfies this equation is a zero of a new
function,

¥ (y) = Ly-e ¥R,
Differentiating with respect to y gives:

¥ro=-1te-y k1

4
1
o _e-ye-kl, N
1 -
"

1
and thus ¥, and ¥, are negative for ally in the interval (0,1), if

k, > 0.
Furthermore,
-k
¥.(0) = 1-e7 1 > 0,
- _e~lpa-k
¥, (1) = -e"e7¥1 <o,

.so that Y has a unique zero ¥ in (0,1) if k, > 0. Figures 3.4 and
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3.5 illustrate the behavior of ‘ifl for twe values of kl- Even for
k1 small, when the nonlinear portion of ‘Pl is more significant, ‘i"l ‘:.i

is very close to linear in (0,1).

Because Yl is well-behaved, XNewtoa's method will converge C

~to Vvsry rapidly. However, even further advantage can be taken of

t+he form of Yl by noting that satisfies the relation

k, = -§ - 2a(1) . (3.2.2) 3
Since the 'right-hand side of (3.2.2) depends only on the pa-

rameter $, and is independent of the problem dsta, the values of the
function on the right-hand side can be tabulated for a set of ¥y in
(0,1). For a particular value of kl, table lookup could then be used
t o determine a highly accurate estimate of ¥. With a sufficiently
large table, no iteration would be necessary to locate the solution
to any desired accuracy; but since Newton's method converges rapidly,
a smell table plus a single iteration is sufficient to locate y (snd
d) to the required accuracy.

~ase» 2. Three Function Values

Assuming that 83 > 92> Gl, the three equations specifying

the parameters 8, B, and @ of £ are:

(A) £, = a+ ‘891 -r '&n('d\-el)

n
>

(B) £ + 392 -r %n(a-92> fﬁﬁ

2

1
>

(c) 2 + 893 -r £n<a-e3).

There is no loss of generality in assuming that 8, = 0.
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and similarly, using (A) and (C) gives:

\
37t - b -y %/8"93}
- \ "

63 -
These two equetions can then be manipulated to eiiinate B yierdimy:
-5, 8-, (.-t £t
Z- —~gi\ Ll op e 32 2 "1 .
93 /&n ( 1/ 92 /&n \\ ;i ‘[ + - \\"‘\ 63 - 92 ;’ = O; (3,2,3)

a relationship which must be satisfied by 4, the location of the

singularity .

-

Consider (3.2.3) as s nonlinear equation in terms of the

function
d-8,) /a-8,\
Q2(6‘) - 9, = i\ a /e, ta La s
. / 2 . ,
f -f f.~f
where k =‘l 3 L. g 1L } The problem to be solved then be-
2 r 93 92 /

comes that of finding a solution d to satisfy ég(d) = 0.

Because 92 and 93 are feasible, the value of d must lie
in +he interval (8., oo). The function &, hes the following proper-
tiessi

§ =—>- 0 as d =0, + ;
-

ég—%kz ag d =0 ;

§ > O for all finite d ;
8 —»cw as d —983 +
§ -0 as d—» oo ; and

@2 < O for all finite 4.

These relations imply that there is a unique zero of @2
in (63, o) if ky > 0. This requirement has a similar interpretation

to Case 1, i.e., the configuration of iyl fg, and f, must be as showi
- J
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in Figure 3.6, so that the line joining f3 and f1must lie above

the line joining f2 and f,.
Because of its highly nonlinear behavior, I2 is unsuited

for application of the usual zero-finding techniques. The behavior
of &, is illustrated in Figure 3.7.
To transform the problem of finding @ to solve Iz(d) =0

into a computationally manageable form, we introduce the variables

< 3 5
d = 6.’ so that 4 » 4, and 63 =3

L, With 83 > 1; in essence, we con-

o~

sider 65 to be unity and scale 63,and d accordingly. If we multiply

the equation §2(d) = 0 by 93 and substitute the variables & and &

[SR Ay CLiLLG LVl YE\U/ i 4 U.y U3 QAlid DSLUVD LLLUWLT i

3I

we obtain:

3, T (3.2.4)
Inf1-2 = . 4nl1-2% -k ]
d /l 3 ‘.‘ a![ 2 _j N - r
a
d
missible d. Taking exponentials of both sides cf 63.2.43 gives:
missible d. Taking exponentials of both sides of (3.2.4) gives:

é3
(1) = f1-L )7 o Hef3

and the value § which satisfies this relation is a zerc of the func-

MLiv AL VLT Y WAL L S0 LD LTO LMD LT AA L LU 4D d 4L UL LLE L

tion:
IS i
/ VY
Yo(y) = 1-y-p/1 - L/,
where - RN
y=63>1, and B = e 293 (sothatO<B<1fork2>o),

Differentiating ¥, with respect toy, we obtain

2
1 A;’ h'2 \7—1
?2 = ~1 + B{l - = H
_ \ I
" _ ‘,r" “.{ -2
‘{f = _B Z._-.l- ;’ l - 3‘[.
2 V2N 4
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shaded region

FIGURE 3.6
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Y2 has the following properties:

Y2(O) =1- > 0 (y=O corresponds to d — o );

%
!’2(1) = -B<1 - -;—) < 0 (y=1 corresponds to d - 83+);

—<
N -
)
o
N—r
i

~1L+8 <0
?'(1) = -1 / - }-\7-1 d
5 = + B \ 7) < 0, an

/

Y2 <0 for y in the interval (0,1).

These-conditions imply that ‘1”2 has a unique zero in (0,1),

which could be located by Newton’s method. Y2 is a well-behaved

function, in contrast to @2. The nonlinearity in ‘1’2 results from
oy : 9%
the expression f\l- oy where y > 1, and is the quotient . from
/

2
the original problem. The value of y has been monitored during

several runs with particular barrier functions; it never exceeded

2.0, and was usually in the range (3.01, 1.5) FEven if y were large,

7

7 -

the expression '1 - X) approaches e Y as y approaches co, and hence
7

the function \_V2 takes on the form of ‘i’l in Case 1. Furthermore, the

value of g( = e—k263) is usually small, so that the nonlinear com-

ponent of ¥,_ is even less significant.

o

Figures 3.8 and 3.9 illustrate the behavior of ¥, for two
sets of parameters (8,7). Note that even for large B and y, the non-

linearities do not have a significant effect.
It is not computationally ccnvenient to obtain a tabulation

of ‘1’2 in order to find an initial estimate of ¢, since the influences

of ¥ and y are not separable. However, Newton’s method will. converge

rapidly from a reasonable starting point ( for example, the estimate

from Case 1).
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3.2.3 Quadratic Tuncition plus Logarithmic Singﬁlarity
The special function to be fitted Ls of the form:
p -8B 36% - r An(8-9).

Differentiating fQ with respect to © gives:

~ r
fy = B+ 200 + =
1 ~ T
£ = 2+~ 5 > and
< (-0)°
,,"’ 2‘_[‘
IQ - =‘—f——'3' .
(d-9)

Siﬁce the barrier function 1s decreasing at 5=0, this
1
same condition will be reguired of fQ’ so that fQ(O) < 0. Hence,
there must exist 2 minimum of T in the interval (0,8), because
¢ > as 6 -0
Q 1
A stetionary point of fQ will occur at €% where fQ(e%):O,

so that 6% satisfies

§ 4+ 2% + T = 0.

3-8

This relation leads to a quadratic equation satigfied by &,
2692 + (3-2@8)6 - v - P8 = 0, with o solutions which

can be written in the alternative forms:

e* - 288"‘8 + 3!3—268} + 8'8 I'+Sa , or (3.2.5>

L] J A
g% = 2¢8-8 ‘E‘(ﬁ+283) + 8rc . (3.2.6)

We now examine the properties of these twoe solutions in
order to determine which will gqualify ee @ guitable minimum, i.e.,

1
lie in the interval (0,8). Since fQ(O) < 0, and d > 0, the expression
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B8 + r is negative. Therefore, the sign of the term 8¢(r+08) zs
opposite to the sign of €.
Consider two cases:

coefficient)
Case A: € > 0 (the quadratic term 4n fQ has a positive

The quantity (8 i23@)é + 8rC involved in formula (3.2.6) for

8% must be positive, so that two real roots exist. In formula (3.2.5)
for &%, the quantity under the square root has magnitude less than
|268-6| since &3(r+88) is negative. The expression 2¢d-B is posi-
tive since ¢ >0, d >0, B <0, and therefore, both roots are posi-
tive. From formula (3.2.6) for @*we ncte that the quantity under
the square root exceeds |£ + 288| in magnitude.
Case A-i: B + 263 > 0.

The value of 6% corresponding to the positive square root

satisfies:

(282-5:8125%)

N
ei > = d, and hence is unscceptable.

The value of 6% for the negative square root satisfies:

g% < 203-B-(6+28d) =_§A

Since § + 223 is positive, and € is positive, it follows

that @ > - o’ and 6% 1s an acceptable choice for a minimum.

Case A-ii: B + 208 <0 (i.e., |6 + 288} = -0 - 203).

T

the root corresponding to the positive square roct

satisfies:

(2¢8 - B-B-223) B

Since § + 288 < 0, & must be less than - © . s
¢ k] .LU.D,

g% > &, and is unacceptable.




e* < r‘ea - Ec+ g+2€8) - 8’

and is acceptable.

H
7

Pa)
case B: o <0 (the coefricient of the quadratic term
erm jin

negative).

o uanti
The quantity under the square root must be positive since

"N
t<0,r+%3<
0, and thus there are two real roots. In formul
: a

(325 Iol % |||e |t n r rh uar r t exc as 2 3_@
) 9 b quan | y U de e Sq a e OO e ee C i
- U g In

root . use i
Because of the sign reversal caused by division by ¢

positive square
root correspon '
ponds to a value €% < 0, and can be

eliminated from ¢ i i
onsideration. The iti
. onl
y positive &% can be written

e o e i i S

The quantity under the square root has magnitude less than

lB + 283[, so that g% satisfies:

o < ﬁ,:—gﬁgT%Tﬁ:ggﬁ - - %%%T = 3.

For Cases A and B, then, assuming that fé{O) < 0, the
solution 6% corresponding to the negative gquare root in formula
(3.2.5) or (3.2.6) will be taken as'the minimum of -

In order to specify the function fQ’ four independent
pieces of information are required about the behgvior of the func-
tion to be fitted along the search direction; fQ will therefore be

used in circumstances where a cubic fit would nermally e cerried

out to minimize & general function. Figure 3.10 jilugtrates &
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barrier function and its approximations by the function f 544 4
cubic, both using the same data. The more accurate moaeling of the
barrier function by the special function is quite noticeable.

The special function fQwill be fitted with the same set
-of data used by a typical cubic line search, namely, two function
values and the corresponding two gradients. As in the previous
discussion, fi will denote the function value at ei, and 84 is the

corresponding gradient value .

The four unknown parameters of £fQ - 2, §, €, and @ --

must be solved for in terms of the known values. Assuming thst

82‘ > 895 the equations specifying fQ are:
~ A2
(A) £, = @ +0Bo +cel -rin(a-e)
= a r
(B) g = B+ 288) + ATy -y
_ o a2
(c) t, = 8+ 892 + 260 - r %(8-@2)
© g, =5+28¢ + 7=
2 2 (‘é’=ég5

There is no loss of generality in assuming that 8, = 0,
so that from (A) and (B) we obtain expressions for the coefficients

2 and B in terms of d:

fl+r’ﬁn8

h
a
5 = & -=x

Substituting for § in equation (D), we obtain an expressicn

for the parameter ¢ in terms of a:

~ _ __J:__ r
¢ = 26, (g, - &y + 7 - 75— )



These three expressions for 'a\, B, and ¢ can then be substituted

int oo eemuettibm (00, t0o Cdvieeim thke fodlawi ngs :
: 6. / /o \
. a(8-s)) ~ @+ (gram—i =Tz (e 7 0

—
g

If 2 value d, the location of the singularity, can be
found which satisfies (3.2.7), the values 3, §, €, and 8% cen then,
be computed from the previously derived relationships.

Consider (3.2.7) as a nonlinear equation in terms of the.

function

& (AY »ﬁn( 2|

fo \
where k3 =% -/ ° (gl+g2) - (f -f ): The problem to be solved then,
\
becomes that of finding a solution @ to satisfy
83(a) = 0. (3.28))
6, (-8,)

If we introduce the variable z = ]_-—é— » Where

d

0 <z < 1, w can then write the equation @B(d) O in terms of thee

variable z as:

mz+l (2o, (3.2.9))

- /
The nonlinear equation (3.2.9) could be solved for & suite.
able 2, but the function represented is extremely ill-behaved. As
z —» 0, the logarithm term is approaching (-o0o0), while the reciproceal;
term iS simultaneously approaching (+oco); it is evident that (3-2-9)‘)
is quite unsuitable for purposes of computation.
However, the relationship (3.2.9) can be transformed intao,

an equivalent form that is computatienaily reasonable. A further

change of variable is made:

v =4n z,




v 1 -v

an that 72 = o and = & s nnta that v w11 ha nrmacti+dva cinge

O0<sz <1,
When Written in terms of v, the relation (3.2.9) becomes:

1L, -v vy _
v+—2—(e ~e _k3

Givmn mimnlo) = 2 0V VY e pien emita

v - sinh {v) = k3~
The value ¥ that satisfies this relation is a zero of the function
‘y3, where

Y3(~v) = k3 * sinh (v) - v.

Differentiating Y3 with respect to v, we obtain:
Y, = cosh (v) -1

11'3 = sinh (v),

so that the ?3 has the following properties:

v3(0) = k3 (v=0 corresponds to d — );

lim ¥ (v) = - ®»;
Vv = -

H
‘i’3>0forv<0;

i
Aim YB (v) = o3

TP N L A

YB <0 forv<o.

These conditions imply that ¥, has a unique zero in

3

(- 00, 0) ifk, > 0. This requirement means thst the average of

3

the gradients at 8, and 6, must exceed the slope of the straight

2

line joining fl and fg. If the function tc be approximated were

quadratic, the average of the slopes at gl and 92 would exactly




equal the slope of the line joining fland f The condition k3 >0

o
thus implies that the function to be approximated is rising more
rapidly than a quadratic.

Figure 3.11 illustrates the behavior of ?3.

Although the function Y3 is unbounded below as v - - cc
(ie., when z -0, ord — 8 5 +), this property does not cause any
computational difficulties in the current context. The unbounded

behavior of Y3 occurs when the estimated value of the singularity

-

IS very close tO 92; ifa tolerance, say E, ia specified such that

any estimate of @ is required to satisfy ¢ > f > then the variable

€

Z is bounded bvelow by e, and the variable v is bounded below by

-M, M> 0, where M = - dn(€). If values of v are restricted tc the
range (-M,0), the region where Y3 is unbounded is eliminated. If
k3 is very large, it is possible that the value Y4{-M) will not be

negative for the particular value of M chosen, and hence no zerc of

Y, will exist in (-M,0) Under these circurgstances, we simply

3

accept § = -M as the solution, so that @ = =

We can easily solve the equation Y3(v) = 0 with Newton's
method, considering the following properties of Y3~ Since ¥3" < 0
throughout the interval of interest, if the starting point is
chosen so that ¥3 < O, the Newton iterates will undershoot the
solution, and cannot diverge. Furthermore, *the condition v3(v) = 0
can be written as:

k3 =v = sinh (v),
and the expression On the right-land side is independent of the pro-
blem data. Hence, the function v - sinh(v) can te tabulated for v

in the range (-M,0), and by table lookup using the value k3’ a highly
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accurate initial estimate of v, with Y3 < 0, can be obtained.
The Newton procedure éonverges extremely rapidly except
when the value of v is close to zero, because ‘ifé(O) = 0., This
situation is quite unlikely because the estimated singularity would

_then be much larger than © For completeness, however, we ncte

2'.
that the problem can be solved succegsfully even for very smell v.

The function YB(V) can be written:

y3(v) = k3 + sinh (v) - v
=.k3+—3é“-(ev-e'v) - v
=k3+—21-(l+v+§+y—§-f ce - (1—v+v—22——%3—+ o)) -y
=k3+%-(2v+g%§+%§+ R
=k3+z6—3-+0(v5).

For small v, the equation ?B(v) = 0 thus essentially becomes the

condition 3
.V./
k3 + oz = 0, 1
with explicit solution v¥ = (—6kq)3 Because We are ignoring nega-
~
tive higher-order terms, this value v* will be to the left of the

correct (;, and Newton's method carnot diverge. However, the estimate
v*¥ is so accurate that no iteration at 211 is necessary to obtain
an acceptable solution.
3.3 Implementation
The Safeguarded linear searches based on quadratic Or cubic inter-
polation (cf. Gill and Murray, 1974%a) 'rave been modified for use with
the logarithmic barrier function by allowing interpolation with the
special functions described. Several rather complicated modifications

are required in Order to create an efficient algorithm. If no constraint

TP




is decreasing along the current search direction, Or if nc constraint
approaches zero until sufficiently far beyond ths starting point, then
the singularity introduced to preserve feasibility will have no signifi-
cant effect on the location of the minimum, and the usual linear search
procedure should be followed. There is no computationally reaeonable
way to determine a priori whether these conditions exist because the
constraints and objective function may be. highly nonlinear, and *the
effort expended to compare the location of the nearest constraint zero
with the prediction-of the barrier function's minimum might be better
used directly to minimize the barrier function. The procedure tc be
described seems to be a satisfactory compromise between excessive safe-
guards and unwarranted assumptions of linearity or smoothness .
3.3.1 Initial Step
The choice of the first step along the search direction
at which the function is to be evaluated is affected by rhe possi-
bility that a constraint may become nonpositive if the usual chcice
of step for the algorithm is taken. For example, with a Newton-type
method, the initial step taken along the search dirsection is unity;
for a quasi-Newton method, there is normaily a procedure asscciated
with the method for choosing the initial step. Let qgu denote the
initial step that would be taken for a particular unconstrsined al-
gcrithm if used to minimize the barrier function along the given
direction. 1f a constraint might become zero at @ < ou’ clearly a
shorter step than @, should be taken. One possible method for de-
termining the initial step is to find a highly accurate estimate of
the step to the nearest zero of a constraint, say &, and test

whether & < o, A subroutine is available thet will, with high re-




liability, locate the zero of the nearest constraint by use of 2
combination of safeguarded zero-finding technigues . However,
locating @ generally requires several constraint evaluations,
and it may turn out that & exceeds o, or is very close to qu, S0
that these evaluations were essentially redundant. One might think
of using the zero-finding technique until the zero has been shown
conclusively to lie beyond @, but this approach invclves quite com-
plicated housekeeping, and, more significantly, may still require
constraint calculations that do not advance the computaticn.
With the "compromise™ algorithm, the initial step Q(O) is
computed as follows:
(1) Compute o, the step normally taken by the unconstreired
method;
(2) Compute the gradient of each constrain”, along p, i.e.,

a‘Tp_ For all i such that this gradient is negative,

1

i.e., the ith constraint is locally decreasing along
P, compute oy = -ci/aiTp, the predicted Newton step
to the zero of c.. Find @ = min (@), and l=t i be
the index for which o = @; . In other words, @ is

the smallest positive first-order step to a constraint
sero. If no constraint is decreasing along p, set the

(0)

initial step o to o, and skip the remaining logic.

(3) Estimate the step to the minimum of the tarrier func-
tion, as follows. The projected gradient of the barrier
functionwill be zero at the minimum along the line,

and we assume that only the influence of the constraint

i will be significant in the location of %heminimum.
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This assumption is based on the idea that for small r,
only the constraint whose zero is closest to the
starting point will affect the barrier function by
altering the behavior of the objective function.

A erude estimsle for the minimum of the barriex
function, o, , may be obtained by assuming that the

gradients of the objective function and ith constraint
will remain fixed locally. Thus, we obtain the following

relation involving o,
4
T \ -

T
D (8(X+C¥bp) - _.Zw R

Ignoring all but the ith constraint and second-order

terms gives:

raiTp
T T =o;
PE - ; -
ct + Q’-bai P

ra<
T iP
T S | .
O." = T 3
b Pg aj p
) - cz
. - 1 - T
and since ¢ = —5—— , @ = @ + — .

It pTg >0, i.e., p is not a descent direction for the
objective function, then the assumption that only one
constraint will have an effect, confined to the neigh-
boriood of the singularity, is not justified, and we

se‘tczb=75/where0<7<l.
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/,Qb_

In this way, the initial step can be chosen based on the

(%) If o exceeds % let Q(O) be @3 otherwise, ot

estimated decrease of tlie constraints if it seems that their effect

will be significant in the location of the minimum of the barriesr
function.
3.3.3 Feasibility Check

For each step to be taken, the set of ccnstraints is

evaluated in order to assure that feasibility is never violated.

If any constraint, say the jth, is non-positive et
X * oz(k)p, the secant step to the predicted zero cf that constraint
is computed, and the next estimate of the locaticn c¢f the minimum

is computed as described above in Step (3}, where the secant step

dj » given by:
- a(k)c; (X)

J
a- =y
J cj(x+oz(k>

p) - cj(X) ’

is used as @. This procedure is subject to the safeguarding re-
quirement that the constraints not be evaluated at points that are
too close together (see Gill and Murray, 1974s; Brent, 1973, for a
discussion of this aspect of safeguarded linear searches)
3.3.3 :Normal Jteration of .Modified .Linear .Search

The special functions are fitted during the iteration if
a fiag has been set to 'true’'. The flag is set: (1)when the initial
a(o) was o implying that the inflnence nf arme conetraint iz nve.
‘dicted to be significant in locating the minimum; and (2) when any
‘negative constraint value is encountered during execution of the

linear search, since it has then been denonstrated thst the current

iterate is in a region of influence of the singulerity.
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The special functions are fitted iteratively, using the
same criteria for replacing points as the usual linear searches,
until the particular convergence criteria are satisfied. There are
a few subtle difficulties in that for small r, it may be difficult
to locate the minimum because the distance from the singularity to
the minimum may be less than the spacing requirsd for constrain;
evaluations. However, a careful regulaticn of the tolerances in-
volved, so that impossible accuracy is nct sought, will assure that
the process will work as desired.

3.3.4 Comparison with Usual Linear Searches

In order to determine whether the special linear searches
are worthwhile, numerical experiments were carried out for several
barrier functions, with varying values of r, the barrier parameter,
and T, the linear search convergence parameter. For the cubic case
where gradients are evaluated at every point, the linear search
usually terminates when

[g(x + ap)| <7 [a(x)] ;
in the quadratic case, the linear search is usually terminated
when the minimum is known to be bracketed in the interval [a,t]

and
| Flokep) = BuseD) | g ),

i.e., when the linearized approximstion to the gradient at X + ap
satisfies the same test as g(x + ap) in the cubic case. There =re
other occasions when the normal linear search procedure will ter-
minate, involving sufficient smallness of the interva1 of uncer-
tainty, closeness to the maximum permitted step, etc.

Numerous runs (about 40) were made. For both the special

functions and the usual polynomials, the same initial step was
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taken, and the same procedure was foliowed for detérmining the nex
point if a constraint became negative during the line search
iteraticn. Hence, the only difference was in the use of the minima
of special functions, rather than of cubic or quadratic polyncmials,
. to yield the next pcint at which the function and constraints are
to be evaluated as the linear search proceeds. Ln every case, use
of $he special function reduced the number of constraint evaluations;
the reduction became progressively more significant as the value of
r was reduced.‘ The reduction in the number of function and con-
straint evaluations ranged from % to 24%, so that there was clear
improvement with the special functions.

The extra work required in the linear search to fit these
special functions is small. Some of the housekeeping (checking lor
feasibility, etc.) must be carried out with barrier functions re-
gardless of whether special functions are used or not. The formu-
lations presented here allow calculation of the minimum of the fitted
functions with the same information required to fit the usual poly-
nomials. The singularity must be located through an iteration, but
because of the special form of the iteration functions, we are able
to obtain a highly accurate starting guess; in fact, in two of the
three cases, the solution cculd be obtained by table lookup for a
sufficiently large table. The iteration functions are we! 1-tekaved,
and Newton's method will usually converge to the desired accuracy
within two iterations. Each iteration to locate the singularity
requires evaluation of a transcendental function, but the subse-

guent reduction in the number of function and constrsint evaluations

required to locate a satisfactory approximation to the minimum of

-:Im-




the barrier function seems ample justification for use of the
functious
special linear searches designed to minimize barrier

- 109 -




CHAPTER 4.

4.1

Methods Based on the Lagrangian Function

Introduction

4.2 Augmented Lagrangian Function

4.3
4.4
4.5
4.6
4.7
4.8

Sequential Augmented Lagrangian Methods

Progressive Augmented Lagrsngisn Methods

Continuous Augmented Lagrangian Methods

Extension to Inequalities

Discussion of Unconstrained Lagrangian Methods

Linearly Constrained Lagrangian Methods

4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7

Introduction

Design of Linearly Constrained Sub-Problem

Sequential Linearly Constrained Lagrangian Methods
Progressive Linearly Constrained Lagrangian Methods
Convergence of Linearly Constrained Lagrangian Algorithms
Inequality Constraint$s

Discussion of Linearly Constrained Lagrangian Methods

- 110 -



CHAPTER 4

METHODS BASED ON THE IAGRANGIAN FUNCTION

4.1 Introduction

The motivation for the algorithms to be discussed in this chapter
is to improve over the performance of penalty arid barrier function
methods by constructing a set of sub-problems that neither contain in-
evitably increasing ill-conditioning, nor assure convergence only in the
l[imit. The problefﬁ ;o be considered first is the equality constrained
problem:

Pl: minimize F(x)

subject to ci(x) =0, i=1,2,...,m.

The sufficiency conditions given in Section 1.2 for a constrained
minimum will be assumed to hold at x*, since the methods to be described
are all critically dependent onthose properties; in addition, A(x*) will

be assumed to have full rank. Under these conditions, there exists at

x* a vector A¥* of Lagrange multipliers such that:

g(x*) - A(x*)A%* = 0.
The point x* is therefore a staticnary point of the Lagrangian function
L(x) = F - A*Tc, but is not in general a local minimum. However, the suffi-
ciency conditicrs guarantee that the Hessian mstrix of L{x) at X*, given by

S
V2L(x) =W=¢g-2 Ay Gy is positive definite restricted to the null

i=1
space of A(x*); equivalently, ZTWZ is positive definite, where the matrix
Z is as defined in Chapter 1, a matrix whose columns form an orthogonal

basis for the null spece of A. Consequently, the Lagrangien function can

display negative curvature at x* only along directions in the rang of
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A(x*), and x* is a local minimum of L(x) restricted to the null space.

The algorithms to be described in this chapter are based on ettempts
to use these properties of the Lagrangian functicn to construct a sub-
problem of which x* is the solution. Two approaches to devising the sub-
problem will be considered:

1) Unconstrained Minimization

A function is constructed of which x* is an unconstrained loccal
minimum, sc that an algorithm for unconstrained minimization can be
applied direc;l):. A suitable function can be generated by augmenting
the Lagrangian function through addition of a term that retains the
stationary properties of x*, but alters the Hessian in the requisite
subspace to make it positive definite at x*.

2) Linearly Constrained Minimization

A linearly constrained sub-prcblem is developed of which x*

is the solution. The function to be minimized is selected so that

x*¥ will retain its stationary properties; the linear constraints are

constructed so that the subspace in which the minimization takes
place is restricted to that in which the Hessian at x*¥ is in general
positive definite.

Any algorithm based on the Lagrangian function includes the inherent
difficulty that,the Lagrange multipliers at x* are in general1 unknown.
All the algorithms to be described, whether they generate an unconstrained
or linearly constrained sub-problem, necessarily involve some method for

. ) multipliers . .. .
estimating the Lagrange - However, the primary distinctions

to be noted will be based on other aspects of the methods, since the

estimation of the multipliers can usually be considered a separable



4.2 Augmented Lagrangian Function
There are various possibilities for constructing a function of which
x* is an unconstrained local minimum, but only one such function will be
considered here. The augmented Lagrangisn function is defined as:
T .p

T
LA(x,A ) =F -2 c+35cDe, (h.2.1)

where p is a positive penalty parameter, A is an estimate of the vector
of Lagrange multipliers, and D is a pcsitive definite symmetric matrix.
The quantities p, A, and D do not depend on X.

There are numerous forms for this type of augmented Lagrangian func-
tion. For example, the matrix D may be assumed to be diagonal, and the
parameter p can be absorbed into the elements of D, so that cTDc becomes
a weighted quadratic penalty term; or the matrix D may be the identity
matrix, corresponding to an unweighted quadratic penalty. The details of
any particular algorithm will depend on the choice of D, but the purpose
of this term is the same in all cases - to add positive curvature in the
range of A(x¥).

The augmented Lagrangian function (4.2.1) has the property that =¥
could be found by a single unconstrained minimization if the optimal mul-
tiplier vector A* and a suitable p were known.

Theorem (: Lf the sufficiency conditions given in Section 1.2 hold
at x* and a(x*) has full rank, then there exists >0
such that x* is an unconstrained local minimum of

L, (x,A%,p) for P> 5.

Proof': Differentiating L, with respect to X gives:
VLA(x,A*,p) =g - M¥ + pADc. (4.2.2)

Since the sufficiency conditions hold at x*, g = M* =0, and

c =0, sothat VLA(X*,K*,Q) = 0, and x* is a stationary point of LA(x,A*,p),

a necessary condition for x*¥ to be a local minimun.
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The Hessian of LA(X,?\*,Q) is given by:

2 z m m
VL (xA%,0) =G -ZA¥ G, + oI V.G, + pADA,

where. vi = d:LTC for @i’ the ith column cof D. At x*, ¢ = 0, and thus the

Hessian at x* reduces to:

VZLA(ng*,p) =W+t pADAT.

If there exists p > 0 such tnat VZLA(x*,A*,p) is positive definite, the

sufficient conditions will be satisfied for x* to be an unconstrained

loca L minimum.

Let Y be a unit vector, which can be written as a linear combination

of the columns of Ql and Z, where the columns of Q1 form an orthogonal
T

basis for the space spanned by the columns of A (so that A Ql is non-

singular), and the columns of Z form an orthogonzl basis for the null space

cf A. Ify =Q1u + Zv, the product yT(W + pADAT)y can be written as

follows

VT7.TW7v 4 ’PVT'ZTWQ 11 - nTQTWG 11 m1TOTAﬂATO 1

To verify that the matrix is positive definite for suitably chosen p,

this quantity must be bounded below.

For a general matrix C, xley > - [1] Tel] |idl .
Because the columns of Q, and Z are orthogonal, HQluH =||d!, and
|lzd| =||%| . Since 7%z is positive definite at x* by the sufficiency

conditions, it faollows that:
w7y > ol ol @
for some o > 0.
The matrix D is positive definite, and QIA is nonsingular; thus

Q:‘IADATQl is also positive definite, satisfying:
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T T 2
wQADA Qu 8[|,
for some 8 > 0. Let y denote ||wl]| .

Therefore, using all these bounds, we obtain:

T T 2 ' 2
-y (renda )y 2 of [ 5] |5 =g | ] - AL ]2 el ]2
If [|u| =0, the expression on the right-hand side is simply o||v]|?2,
which is known to be positive (this case corresponds to a vector y in

the null space of A). Otherwise, if HuH ¥ 0, the right-hand side will

be positive if: -

o> é- (- ok” I 2yk +7), (4.2.3)
where k = ;:VH The expression on the right~hand side of (M.E.B) is maxi-
u
y 1 o8
mized when k = = and has the value 5 (—E + 7). Therefore, if p is chosen

2
so that p > B£ (—7&— +Yy), the matrix w |- pADA']‘1 will be positive definite,

and x* will be a local unconstrained minimum of LA(x,A*,p). ‘;‘
i
Figure 4.1 illustrates that x* is a local unconstrained minimum of
LA(x,A-*,p), but only a stationary point of LA(x,A*,O), the ordinary
Lagrangian function.
In practice, of course, A* is generally unknown. Furthermore, the
inequality that must be satisfied by p is based on quantities evaluated
at x*, and hence a suitable choice for p is also unknown. The methods

for solving P1, based on this augmented Lagrangian function, must there-

fore include procedures for estimating A* and for choosing-an appropriate

p.
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FIGURE k.1
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4.3 Sequentiasl Augmented Lagrangian Mathods

5 C Method

Hestenes (1969) suggested a method for solving P1 involving a se-

qguence of unconstrained subproblems. At each step, the unconstrained
minimum of the following function is determined, given a particular choice

of the parameter p and the vector A:

F-Ate + g cle. (4.3.1)

The values of A and p are then modified, the unconstrained minimization
procedure is repeated for the function (%4.3.1) with the new values, and
so on, until suitable convergence criteria are satisfied. Clearly (4.3.1)
is a special case of the more general augmented Lagrangian function given
in Section 4.2, and the procedure suggested by Hestenes can be followed
with a penalty term in (%.3.1) of the fcrm 2 ¢TDc, where D is a positive
definite symmetric matrix.

This method will be termed a sequential augmented Lagrangisn a2lgo-
rithm; each step cf a sequential algorithm involves finding the uncon-
strained minimum of an augmented Lagrangisn function in which the multi-
plier vector A and parameter p are kept fixed throughout the minimization,
and altered only at the unconstrained minimuw. An algorithmic descrip-
tion of such a method is the following:

( Choose an initial vector %, say 1(1), ar initial value of p,

say p(l) and an initial X, X(o)5

b
J 1)

while (the conditions for X(J"l) to be a local minimum of -

are not satisfied)

repeat ¢
rorn e . (3) 4L, O & b Y S TN




constrained minimum of L, (x,x ! , p(‘j)), starting at x(j-1),
(2) 1f |]e( <J))H is not sufficiently less than ||e(x(J- l)>”
determine D(J +1) > P( 3,

(3) Estimate A(J+1), possibly by updating A<j);

@) j <3+ 1;

)

Powell's Method

Powell (1969) proposed an essentially identical method, but derived
it from a different viewpoint, using a quadratic penalty term with a
"shift'" and weight for each constraint. In Powell's algorithm, the

function to be minimized at each stage is given by:

F+1 & o.(c;-8,)2, (k.3.2)

2i=l 1 1

where o4 is the positive weight and 6, the shift for the ith constraint.
The sets of parameters {oi}, {ei}, or both, are altered following each
unconstrained minimization.

The function (4.3.2) differs by a constant from the general aug-
mented Lagrangian function LA(X,A,p) given by (4.2.1) in Section 4.2,

since (4.3.2) may e written as:

m . m m
F-% c60, *5 5 ocl+x & 0,8

., a2 i 2, . 17

1=1 i—I 1=1
=F—}\Tc+-g-cTDc+k,

O.

_ . . . . . .
where Al = eigi, D is a diagonal matrix, diag (di), with di = and
k = l eTDe . Hence, Powell®s algorithm can be considered as a sequential

augmented Lagrangian method.
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For simplicity, the remainder of the discussion will deal only with
the particular augmented Lagrangisn function { 4.3.1) proposed by Hestenes,
so that the penalty term is identical to the single-parameter quadratic
penalty discussed in Chapter 2. However, all results can be applied in

a straightforward way to the more general form given initially.

A feature of the Hestenes and Powell methods is that the parameter
representing the penalty for constraint violation -- p in (4%.3.1), or the
values {o ] in (%.3.2) == need not be increased to infinity to assure
convergence of successive unconstrained minima to x*¥. Powell showed that
each solution x*¥(A,p) is a loeal minimum of the constrained problem:

minimize F(x)

subject to ci(x) = c.l(x*(k,p)), i=1,2,...,m.
Therefore, if the parameters A and p can be chosen so that ci(x*(l,p)) = 05
i =1,2,...,m, the solution of the unconstrained sub-problem will also
solve the original problem Pl.

The modification of p in Step(2)of tke sequential augmented algo-
rithm is carried out to assure that the Hessian matrix of LA(x,A,p) is
positive definite at the solution, and to enforce an increasing penalty
for infeasibility if the multiplier estimates are poor. The hope with
an augmented Lagrangian method is that the parameter p will eventually
(or even initially) exceed the proper threshold, and will not subsequently
be altered. IFf the value of p is sufficiently large so that it remains
fixed, the explicit dependence of x*(A,p) on p may be suppressed, and the
solution of a particular unconstrained sub-problemwill be written as
x*¥(X) to emphasize the critical role of the multiplier estimate. Some

further aspects of choosing p are discussed in Section 4.7.
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Restenes/Pow.ell Multiplier Update

The modification of A in Step (3) of the sequential augmented
Lagrangian algerithm |s directed toward generating an improved estimate
of A%, since x* is known to be an unconstrained local ninimum of LA(x,A*,p)
for suitable p.- The alteration to A can be carried out in numerous ways,
and derived from several perspectives (see Fletcher, 1974).

The update suggested originally by both Hestenes and Powell is:
(3) o(x(3)y

A(a‘+;)\ﬂ(j) -5

where x\3) is the unconstrained minimum of LA(X,A(J), p(j)>_ ar xl3)s
the following holds:
| or, (L) 200 )y C g L)y ) Lo
where all functions are evaluated at X(j), and therefore:
g = a3 o Gy,
At x¥, g = AA*, and consequently the updated vector A satisfies at :c(j)
a relationship of the form that holds at x*; it js, in addition, a least-
squares solution of rain Hg - A}\Hg, where g and A are evaluated at X(J)_
Powell showed that this update will yield a linear rate of convergence
to x*¥, with a factor of reduction in error that depends on p.
Other Multiplier Updates
Many other methods for altering the multiplier estimates have been
proposed (see Buys, 1972; Fletcher, 1973%), and only one possitle form of
an update will be given here. The multiplier updates are gererally based
on the effort to use available information to choose A to satisfy the
conditions that must hold at x*:
g(x*) = A(x*)A¥ ; and (4.3.3)
e{x*) = 0. (1.3 .4)
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In the following, all vector and matrix functions are evaluated at

the current point unless otherwise indicated. |If the conctraints are

not zero at the current point, the step AX that must be taken to satisfy

(4.3.4) can be estimated by:
el{x +4x) =0

v AT A 1120 -

An approximation &% to AX can be obtained by ignoring all but first-

order terms, and specifying.
T L.
In order to achieve the relationship (4.3.3), we consider independent!;
the variation in both X and A, and attempt to characterize Ax and 4% thst .
satisfy:
g(x +4x) = A(x +AX) (A +4xr)
m

gA+ GAxX = AA +‘Z ?\iGiAx + My + 0O (maX(HAXHZ; HA)‘H2:

4

ITf g =AA at the current point, which occurs at the minimum of the "
augmented function, we obtain an expression relating approximations 4x

and A% by ignoring all but first-order terms in AX and Ah:

i
(¢ -zr,q,)8x =248
i=1 7t
m
If the watrix G - 5 KiGi is nonsingular, this relatiocnship can be
i=]

written as:

m -1
Bx = (6 = ZAq0y) " AR
i=1

The condition on &x derived earlier is enforced by multiplying both

sides by A!, yielding:




2.6t A = e

i1

MB

Algy = AT(G -

i=1

m
I f AT(G -3 Ai(}i)-l A 1s nonsingular, the update to the multiplier

vector is given by

m
o= - (ALG - AiGi)'lA)_lc. (4.3.5)
i=I

This correction yields a locally second-order rate of convergence to
A% if the exact Hessian matrices are available, and the specified assump-
tions are satisfied. It should be noted that this formulation for the
correction &» is derived under assumptions much stronger than the suffi-
cient conditions for a minimum given in Section 1.2 (for example, if the

m . . .
matrix G - X A.lG.l is singular at x* or in a neighborhood of x*, the given
i=1

form cannot be used).

Difficulties

The sequential augmented Lagrangian methods can overcome the problem
of penalty function methods that the penalty associated with infeasibility
must be increased to infinity to assure convergence; however, determinaticn
of a suitable value of p remains 2 difficult problem (see Section 4.7).

These methods require repeated unconstrained minimization of a se-
qguence of functions. |If the early estimates of A are inaccurate, or an
unfortunate value of p is chosen, the sequential-type algorithms may be
quite inefficient due to execution of unconstrained minimizations that
generate little progress toward the solution.

4.4 Progressive Augmented Lagrangian Methods

An obvious extension of the methods given in Section 4.3 is to up-

date the estimate of the Lagrange multipliers more irequently, rather

than keeping x fixed throughout a complete unconstrained minimization.
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Haarhoff and Buys (1970) noted that an accurate minimization of the aug-
mented Lagrangian function witn a ccnstant A may be unnecessarily lengthy;
this idea has since been repeated in varying forms (see Miele et. al.,
1971; Tapia, 1975).

A progressive augmented Lagrangian algorithm is defined as a method
where an unconstrained minimizaticn technique is applied at each step
to minimize an augmented Lagrangian function of the usual form, for
given A and p:

T T T
LA(X,A,p) =F -ATc +-g—c c
Eowever, the vector A and the parameter p are altered at intervals during

the unconstrained minimization, so that the method does not in general
attempt to locate the minimum of a fixed function of x from beginning i0
end. The hope is that this procedure will allow the vector A to approach
A*¥ as X approaches x*.

Such an algorithm is of the following form:

{ Choose an initial h, k(l), an initial p, p(l), and an
initial x, x(2;
Jel;)

(3)

while (the convergence criteria for x to be a local

minimum of Pl are not satisfied)

repeat (

(1) compute a direction of search p<<j) (3)
an unconstrained technique to minimize LA(x(J),A'(j )’p(j)

Rt I I A N T T YTV T, J.JA\‘A N P

and a step o' ¢, using
);
]3>
(2) £t G) L ) p('j)

(,j+l),.

5
(3) compute A
(4) if appropriate, determine p(j+3ﬁ) > p(3)3 otherwise p<3“”1)4_ p(J )_

(5) 3¢ 35+1;

_123 -



Step (3) need not involve an alteration of A at every step, so that
for some iterations it is possible that x(j+l) =2 (3).

The method used in Step (3) to estimate A(‘j+l) rust not require the
optimality of x(j) for LA(x,A(j>,p(j)), and should be selected so that
A —A% as X —sx¥. A possible choice for the estimate of A is the vector
X, the least-squares solution of min ||g-a|[2, for g and A evaluated at
the current point; the motivation for this choice is that A* satisfies an
analogous relationship at x*. For A of full rank, X may be written as
x o= (ATA)’IATg,, and will approach A* as x approaches x*¥. This modification
of A is similar to the original Hestenes/Powell update for sequential al-
gorithms, where the next estimate of A is an exact least-squares so-
lution. Other estimates of h may also be used; for example, a second-order
correcticn corresponding to (4.3.5) may te derived without assuming thst

the current point is the unconstrained minimum of the augmented function.

The approach of frequent re-estimation of A during tha unconstrained
minimization procedure is often quite successful in practice (see Chapter
6), and may avoid the inefficiency displayed by the sequential algorithms
when the initial estimates of A are poor. However, a new difficulty is
that the criteria for measuring progress toward x* beccne l|ess apparent,
since each unconstrained sub-problem is not solved completely.

An example of this difficulty is the strategy used to choose an
appropriate value for p. The sequential algorithms normally increase p
if there is an insufficient decrease in infeasibility from the uncon-
strained minimum for a particular h to the next minimum. In an algorithm
where a new estimate of A is obtained before the unconstrsined minimum

is located for the previous A, it would be unreasonable to expect a de-
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crease in infeasibility at every step. However, the ability to alter
p must be included in a robust algorithm; hence the decision to increase
p may involve monitoring the constraint violation over a "reasonable”
number of steps, and is not at all straightforward.
4.5 Continuous Augmented Lagrangian Methods

A further possibility for developing a function of which x* is an

unconstrained local minimum is to construct a multiplier function A (X),

and create a continuous augmented Lagrangian function which depends only

on X and p:

L (x,0) = P(x) A (x)Te(x) + 2 c(x) pe(x),
where D is a positive definite symmetric matrix. Such a continuous aug-
mented Lagrangian function was proposed by Fletcher (1970). The depend-
ence of A on X is the reverse of the analogous relationship in the algo-
rithms described in Sections 4.3 and 4.4: in the sequential methods, esch
estimate of x* depends explicitly on the present estimate of A* and in

the progressive methods, every step in x depends on the current i, which is

fixed during an iteration of the unconstrained sub-problem.

The hope for a continuous augmented Lagrangian method is that x*
will be an unconstrained minimum of Lc(x,p) with appropriate choice of
p, as for the augmented Lagrangian function given in Section 4.2. Dif-

ferentlating LC(x,p) with respect to x gives:

VLc(x,p) = g-M-Ac + pADc ,
1
where the ith column of the matrix A is_ax—1 . At x¥, ¢=0. In addition,

a suitable functional relationship must satisfy lim A(x) =A¥, so that
X - x¥

g-M (x*) = g-M\* = O because of the sufficient conditions for a minimum
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at x*. Therefore, VLc{x*,p) = 0, and x* is a stationary point of L (x,p).

The Hessian matrix of Lc(x,p) is given by:

m
2
VL (x,p) = G -Z (A,G, + ¢, —
[¢] i=111 lrj’-x

5%,

1 T paTeonma
5 - PV Gi) AN =M +p

2

where v, = d:LTé for di’ the ith column of D. At x*, ¢ = 0 and the Hessian
reduces to:

2 T T T
VL (x*,0) =W - AA -AA +pADA

-

V2LC(X*,p) is positive definite in the null space of A(x*), since the
application of ZT and Z annihilates the terms involving A and AT, leaving
only ZT'WZ, which is positive definite by the sufficient conditions for a
minimum at x*¥. Any negative curvature of V2LC at x* must thus occur
only along directions in the range of A. By a bounding procedure similar
to that given in Section 4.2, it can be shown that there exists a posi-
tive value, say §, such that for p > 3, VZLC(X*,p) iIs positive definite
(see Fletcher, 1970), and x* is therefore an unconstrained local minimum
of the continuous augmented Lagrangian function Lc(X,p) . This formu-
lation has been called an "exact'penalty function, since a single uncon-
strained minimization of LC(x,p) will determine x* for a suitable choice
of p.

The multiplier function proposed originally by Fletcher is:

A(x) = Alx)Tg(x),
where A is the usual pseudo-inverse of A, given by At = (ATA)':'7.\T when
A is of full rank (see Peters and Wilkinson, 1970). This definition
makes A(x) the least-squares solution of min ||g(x) - A(x))\”?' at each

point. Other consistent definitions of A (x) are possible (see Fletcher,

1973b) -



A notable disadvantage of the continuous approach is that the defi-
nition of the Lagrange multipliers in texms of X depends on the gradients
of the objective and constraint functions. Second derivatives of the
problem functions are consequently required in order to use gradient
techniques for unconstrained minimization to minimize Lc(X,p) . Fletcher
(1970) suggests several methods for approximating the derivatives of A (x)
without requiring higher derivatives of F and {ca}; however, these methods
are fairly complicated and have not always been successful in comparison
with the methods of S&ctions 4.3 and 4.4.

A continuous augmented Lagrangian method must also deal with the pro-
blem of determining a suitable value of p as the calculation proceeds,
with the same difficulties described for the methods of Section 4.4 (see
Section 4.7 for further discussion).

4.6 Extension to Inequalities

The augmented Lagrangian methods given in Sections 4.3 - 4.5 deal
only with equality constraints; we shall now briefly consider their
application to the inequality constrained problem:

P2: minimize F(x)

subject to ci(x) > 0, i=1,2,...,4L.

The sufficient conditions given in Section 1.2 for & minimum of P2
will be assume? to hold at x*, and &(x*) will ke assured to have full
rank, where & denotes the n by m matrix whose columns are the gradients
of the m active constraints at x*. In particular, these assumptions
mean that at x¥, g = fA¥, A*iez 0. It can be seen immediately that
methods based on using properties of the Lsgrangian function at x* to
construct a suitable function of which x* is an unconstrained minimum

must somehow meke a determination of the active set of constrasints.
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Rockafellar (1970, 1973a,b) and Buys (1972) suggested a generalization
of the augmented Lagrangian function for the inequality constrained pro-

blem, with the following definition:

- AL
- L 2 . . 1 . "o, n
) _ 2 &ici +5 ey if cf :I.g— (ci is "active")
L, (x,X,p) = F + X 5
i=1 _P Tz R £ L L S L

L
As for the augmented function LA(x,A ,p) given earlier, this definition

can be made mare général by ineluding Weights for 83ch constraint, byt

for simplicity, only the definition above will be considered here.

T+ chatiTA ha nakad et Fla crmmd oo 3 e 212 3 as e - T
is an "extended" multiplier vector, since there is & component corres-
ponding to every problem constraint. The general convention used through-
out this dissertation (see Section 1.2.2) is that Lagrange multipliers
are defined only for the active constraints, and the vector A* is always
considered t0 have m components, where there are m active constraints at
x*¥. However, in this section 1t may be considered that the "multiplier"
corresponding to an inactive constraint is zero at x*, in order to allow
a consistent notation for the augmented Lagrangian methods to be described

The definition of the augmented Lagrangian function i’A for inequali-
ties is based on the known non-negativity of the Lagrange multipliers
corresponding to constraints active at x*¥. At tne unconstrained minimum

of T:A(X,i 3P), g=2Z2 a.(Xi - pci), where the summation includes only in-

dices for which ci = ;"- . For such an index, the quantity ii - pey thus

serves as an approximation to the Lagrange multi-Flier at x*, and should
constraint
be non-negative if ¢y is an active . The resulting require~

ment that A1 - pcia O is precisely the test to determine whether

-m_




or not the ith constraint is significant in the definition of I‘A' The

constant ~ g—i? , Which is added to i’A for a constraint currently con-
sidered "inactive', simply makes the function definition continuous at
any point where }‘i = pe, -

If ¢3 is not an active constraint, near x¥ it will ultimately make

no contribution to the function iA(x,)-\ ,p), since c. will be strietly
positive and bounded away from zero, and the corresponding multiplier
estimate should approach zero. |If c; is an active constraint, its role
in the augmented Lagrangisn function is exactly that given for an equality
constraint in Section 4.3, with the additional restriction that its
multiplier estimate must be non-negative.

An equivalent generalization of the augmented Lagrangian function

was proposed by Fletcher (1973a) in the context of Powell's original

algorithm, with the function to be minimized given by:

L 2
F o+ éliil o3(min(e,~8,,0))7,

where, as before, 9y is a positive weight and ei a shift assigned to the
ith constraint. The intention with inequalities is to determine & shift
+hat remsins non-zero only for the active constraints; if s is active
at x* the product ciei should approach the corresponding optimal multi-
plier, as in Powell's formulation of the equality case. If{ci}’
i=1,2,...,m, gre gll equal to p, and the relationship o =?{.1 holds,
the augmented Lagrangian function proposed by Fletcher differs by a con-
stant from the earlier definition of T:‘A(X;;,p)-

For either formulation of the augmented Lagrangian function for in-

equalities, It can be shown (see Buys, 1972) that if A"i >0 (all multi-




pliers strictly positive), then there exists ? > © such that for p > %,

the solution x* of P2 is an unconstrained local winimum of L {x,A%,p),

where the components of the extended vector A% are defined in terms of

whether the corresponding constraint is active at x*:

*

A% = A if the ith constraint is active, corresponding
to index T in the set I of active constraints;
it = o0 if the ith constraint is inactive at x*.

The augmented function iA(x,X yp) contains discontinuities in the
second derivative at any point where Ai = pc, but the hope is that such
points will occur far from x* and hence have little effect on the suc-
cess of whatever unconstrained algorithm is used to minimize LA'

A sequential-type algorithm -- in which successive unconstrained
minima of IA(x,X,p) are found for fixed T -- can be applied to an in-
equality constrained problem, and the test as to which constraints are
ineluded in the summation at any point is an implicit decision about the
active set. However, the problem of updatingx at the end of each un-
constrained minimization is more complicated than for the equality pro-
blem .

The analogue of the originel Hestenes/Powell correction is:

Axi = - min (pci,xi) .
If the original {Xi} are all non-negative, the correction for any "active"
constraint {for which Ti}_ pci) will be -prci, and the updated _Xi will re-
main non-negative. The correction for any "inactive" constraint (for
whichﬁfi < pci) will be in, 80 that the updated multiplier estimste will
be zero. Such an "inactive" constraint will be considered "active' st a

subsequent point only if ¢y has been violsted, to satisfy e, < 0; if e,

oL
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remains violated at the next minimum of iA(X;X,D>, the updated ‘}:i will
again be positive. Hence, the Hestenes/Powell-tyre updating procedure
assures non-negative multiplier estinatcs if the original estimates are
nor,-negative.

The guarantee of non-negativity for multiplier estimates corres-
ponding to active constraints does not necessarily apply to other up-
dates of A, and may need to be imposed on the updating method. Fletcher
(1973a) suggests some possible approaches to obtaining higher-order
estimetes of A whichassure that all estimates are non-negative .

The progressive methods described in Section 4.4 may slso be extendea
to the inequality case (see Buys, 1972), but the two related problems
of determining the current "active set” and estimating the multipliers
at each iteration can become quite complicated. For example, the es-
timate of A analogous to the least-squares solution described in Section

4.4 is entirely dependent on the chosen specification of the active con-
straints, and the multipliers are not guaranteed to be positive. A set
of non-negative multipliers can be found by solving:
min [ [e B

subject toa = O,
where the matrix Z might include only the conjectured "active set" or
possibly all the problem constraints; tut this calculation may be length;.,
and the validity of the resulting multipliers may be questionable. I
non-negativity is not imposed on the estimates of A, a suitable strategy
must be devised to deal with any constraint with a negative multiplier
estimate.

The continuous augmented Lagrangian methods can be applied to the

inequality problem by using an "active set'' strategy for every evaluation
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of the function Lc(x,p') (see Lill, 1972); however, this approach contains
the undesirable feature that any change in the active set introduces dis-
continuities in the function being minimized. To overcome this disad-
vantage, Fletcher (1973a) has defined the multiplier function for the in-
equality problem as the solution of an inequality constrained quadratic
programming problem. Eowever, the complications mentioned earlier for
the continuous methods apply in either case.
4.7 Discussion of Unconstrained Lagrangian Methods

The methods described in Sections 4.3 - 4.6 convert an original con-
strained minimization problem into a finite sequence (possibly of length
one) of unconstrained sub-problems. These methods can in theory overcome
the ill-conditioning associated with penalty functions by generating a
progressively more accurate estimate of the Lagrange multipliers at x¥*,
so that it is possible to avoid the necessity of increasiog to infinity
the penalty for infeasibility. For many problems, the unconstrained aug-
mented Lagrangian algorithms have been highly successful, particularly the

sequential and progressive methods (see Chapter 6).
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Unboundedness

The danger that the unconstrained function to be minimized is un-
bounded below, which can occur with a penalty function formulation,
clearly exists for these methods as well, and any unconstrained algo-
rithm to he applied to an augmented Lagrangian function should be able
to recover from this'situation. Since the penalty parameter is not nec-
essarily increased after every unconstrained minimization, the risk of un-
boundedness may be greater for the Lagrangian-type methods.

Choice of Paramet;r p

The necessity to choose a parameter p occurs in all the Lagrangian
algorithms discussed thus far. Part of the motivation for development
of these algorithms was to allow convergence to x* for a finite value of
p, in contrast to penalty function methods. However, in general p must
still be bounded below, since x* will be an unconstrained local minimum
of LA(x,A*,p) only if p is chosen to exceed a threshold, say P, such that
the Hessian matrix of LA(x*,A*,B) is positive definite.

The n eigenvalues of the matrix VzLA(x*,h*,p) =W+ DAAT, where W is
the Hessian of the Lagrangian function, can be considered as a function
of p, since W and A remain fixed; let pl(p) < pz(p)S ..=< un(p) denote
the ordered set of eigenvalues of W *+ pAAT. For VQLA(X*,A*,p) to be
positive definite, pl(p) must be strictly positive. Let T{p) e the

spectral condition number of V2L(x*,A*,P), defined as:

Figure 4.2 displays a typical plot of the variation in M'9). The

number of poles in T(p) is equal to the number of negative eigenvalues of
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W(x*), and each pole corresponds to a value of p that shifts an original
negative eigenvalue of W to zero.
Asymptotically, the behavior of T(p) for large p has keen studied

in detail by Murray (1971), and his analysis reveals that

[im —— = 1, so that the curve in Figure 4.2 approaches a constant
p —

450 as p » . It is clear that s "large" value of p will cause ill-
conditioning of the matrix W + pAAT; hcwever, the definition of "large"
may vary dramatically> from problem to problem because a "large™" value of
p may, in some cases, be required to make W + pAA PpOSitive definite. A
further, perhaps more interesting, feature of Figure 4.2 is thot there
is danger of singularity or ill-conditioning of the matrix W + pAAT when
the value of p is "too small”, since there may be little variation bte-
tween a value of p for which ¥ + pAAT is singular or close to singular,
and tlie value Popt for which w + pAAT is positive definite and the
spectral condition number is smallest.

The method used to determine a suitable p for an augmented Lagrangian
algorithm may, therefore, have difficulty if an effort is made to choose
the smallest possible value of p. Since the quantities required to
specify a lower bound for p are based on functions evaluated at (x*,A%)},
the estimate of the bound will be based on similar quantities obtained
at some other point (x,A), and-mey be quite inaccurate. For algorithms
where p is kept fixed for several iterations, or for an entire unconstrained
minimization, an unfortunate choice of p may lead to considerable in-

efficiency.




Rate of Convergence

The rate at which the sequence of iterates generated by an augmented
Lagrangian method converges to x¥* is eritically dependent on the accuracy
of the current multiplier estimate. Even if a second-order method is used
to obtain the step at each iteration, convergence to x* will cnly be
linear if the convergence of the multipliers toA* is linear.

This result will be demonstrated for the case when exact second de-
rivatives of ¥ and {ci} are available. The point  is the current estim-

ate of x*¥, with a similar meaning for X The step p to be computed is

the Newton step to the minimum of the augmented funetion

T
LA(X)';[,Q) =F-% ¢+ 2 cTc (p is assumed to be fixed and bounded), and

is defined by:

VEL.(x.5.0) B = - VL.(x.K.0) 4.7.1

The next esthmaie of the selution is X=X 4 B:

R

- x*¥, and £ =X - A¥. can that mn = e - & Fvnandine

on
M

e = x - x¥,

about x, We obtain the following estimates:

(a) & -G = g(x*) +0O(]]e]|%)s
() - £% = o(x¥) +O([[2]]%) <O/ [3]]%);

(c) 3, - G, = o () +O(|Z]]D),

where the notation "o means the function "o evaluated at %-
In (&.7.1), substituting the expression § = & - e, writing out the
elements of szA multiplying €, and re-grouping, we obtain:

o = - - -, e =T ~— m . - - m o o .
VoLe = (-g+Ge) = pA(c-ATe) + (M -2 X.G,e) +5 pe.G,e

3 - e

Substituting from (a), (b), end (c¢) in the first, second, and third exz

pressions in parentheses, respectively, gives:
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VoLe = ~g(ax*)+A ()T +§ pc.G.e +O(H;—HE):

where the boundesness of p is required in order te greup some of the
quantities in the O(]]|z| 12) term.

For sufficiently small [[ef], HEH will be of order ||c||, so that the
term involving Ei and e can also be included as O(Hé[ {2), again beczuse

p I1s bounded.

The resultiing relatiomship is:

VoL, 5 = -a(xt)sa &) +O(][2][2).

Substituting A = A% + 4 gives:

2 = .-

voLe = ~g(F)+A(FMF + A(x*)A +O(HeH2), or

. _ 2

v L = a(x*)E +o(]]&]]7), (k.7.2)
since g(x¥*) - A(x¥)A* = 0. Because VELA is assumed to be nonsingulsr,
the relationship (4.7.2) means 1 - [Z]],

-112 . e e .

”e” ) and is therefore limite- the error in%. This result will be

illustrated by numerical examples in Chapter 6.

4.8 Linearly Constrained Lagrangian Methods

4.8.1 Introduction

ed
The problem to be considered first is the equality constrained

problem, P1. The augmented Lagrangian algorithms discussed . Se(C::
tions 4.3 - 4.6 were based on constructing a function of which thg
constrained solution x* is an unconstrained minimum. Because the
Hessian of the Lagrangian function may be indefinite in the subspace
spanned by the columns of A(x¥), a penaity term must be included in
the augmented Lagrangian function in order to add sufficient positive

curvature in this subspace to make the Hessian of the augmented func-

tion positive definite at x¥. The resulting necessity to choose and
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adjust a penalty parameter p creates difficult problems for the
augmented methods.

An alternative possibility for the sub-problem satisfied by
x¥*¥ 1s a linearly constrained minimization protlem based on the
Lagrangian function. With a suitable choice of linear constraints,
it may be possible to restrict the subspace in which the minimization
occurs to that in which the Hessian of the Lagrangian function is
positive definite at x¥. Such a formulation would eliminate the
critical role of the penalty term in assuring that x* is a solution
of the sub-problem.

The sufficient conditions given in Section 1.2 for x* to te =
constrained minimum of Pl include:

@) e(x*) = 0;

(2) g(x*)

(3 pT(x*) p > 0 for any p such that A(x*)Tp = o,

A(x*0%, or, equivalently, 2(x*)lg(x*) = 0O;

or, equivalently, Z(x*)TW(x*)Z(x*) is positive definite, where
m

W(x*) = a(x*) - 2 A%G. (x*

The linearly constrained sub-problem to be considered is of
the form:

ICP: minimize fL(x)

. T, _
subject to ALX = dL
The sufficient conditions that x* be a minimum of the linearly con-
strained prcblem ICP are:
- L - LJ

(2") va(X*) = ALp. for some vector p, or, equivalently,

-i138 -

-0 -



T t
v %) = 0, where the columns of form an
z vf (x*) Zq,

orthogonal basis for the null. space of the columns
of AL;
(3") Z% VZfL(x*)ZL is positive definite.

A beneficial feature of the formulation LCP might be that the
multipliers p of the linearly constrained problem (satisfying con-
dition (2') at the solution) are related to the Lagrange multipliers
A* of the original problem PL. However, this property is not re-
quired for x* to solve the sub-problem.

L.8.2 Design of Linearly Constrained Sub-Problem

Clearly a sub-problem LCP solved by x* could be formulated
if values at x*, such as A¥ and A(x*), were used to construct the
function and set of linear constraints (in exactly the same way as
an augmented Lagrangian function cf which x* is an unconstrained
minimum can be defined if A* and a value of p, depending on x*, are
known a priori). However, because x* is unknown, the definition of
the sub-problem LCP will depend on the current estimate of the
solution; the function and constraints of LCP should be specified
so that x* will satisfy conditions (1'), (2%), and (3') if the sub-
problem happens to be defined at x*.

There are many possible specifications of the sub-problew
IcpP, and only one will be given here.

Let x be the current estimate of x¥, with % the current
multiplier estimate; A and c¢ denote A(x) and c(x), respectively.
The particular formulation of LCP to be considered depends on both

x and A, and will be written as ICP (x,X).
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- T e
LeP(33):  minimize F(x) - X e(x) + A A

=T - -T-
subject to A X = -¢ + A X . - -

In terms of the earlier definition of LCP, A. = A 4. -
L v O

-¢c t ETi, and fl(x) = F(x) -'ZTTc(x) + XT.ETX; note that
ve (x) = a(x)-A(x)k + 55, and vir (x) = 6(x) - ETaca(x) .
i=1
The constrained solution x* satisfies the conditions for

a minima of LCP(x¥*,A%):

T T
(1) Arx* = A(x*)7x* = dp = -c(x*) + A(x*)Tx*, since c(x*) = O;

(2) vr (x*) = g(x*) ~ AGNX + AGHNF = g(x¥) = A(x¥)r¥;
(3) z{vsz(x*)zL is positive definite, since
21, = Z(x*) and VZfL(x*) = W(x¥*).

Furthermore, the Lagrange multiplier vector ef LCP(x*,A%)

is A¥, the multiplier vector of the original problem.

The linear constraints of LCP(x,%) specify a step, p, to
be taken from x that satisfies ATP = -c. These constraints are a
linearization of the constraint functions about x, and give a first-
order prediction, exact for linear constraints, that the constraint:
will be zero at the next point. Even for nonlinear constraints, p
is a descent direction for the function cTc, since pTV(cTc)f}-{ =
EPTIK‘; = -EETE c 0. However, the full step p will not necessarily
reduce infeasibility with respect to the original nonlinear con-
straints (see Section 4.8.7).
4.8.3 Sequential Linearly Constrained Lagrangian Methods

Robinson (1972) and Rosen and Kreuser (1972) have proposed

algorithms based on solution of a sequence of linearly constrained
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sub-problems closely related to the given formulation of

Lcjp(;c,;f), A sequential algorithm based on formulation is:

0 .. '
( ), end an initial A, say A(0),

(Given an initial x, say x

i« 1)

while (the conditions for x(j—l\)

“to be & soluticn of P1

are not satisfied)

repeat (
(1) starting at x(j~‘L)J find the solution x(j) and

~ the multiplier vector A(:’> of the linearly ccn-
strained problem LCP(x(j-1) A(j-l)),
, .

2

(2) j «<j + 15
)
Robinson (1972) presented a proof that under certain con-
ditions on x¥*, if (x<o),A(O>) is sufficiently close to (x*,A%), the
) 5=1,2, ...} converges quadratically to (x*,,*).

sequence {x(j)})\(j

3
Some aspects of the convergence of this algorithm will be discussed
in Section 4.8.5. It should be noted that the step from
(X(j’_l),x(j'l)) to (X(j),x(j)) ir;volves the solution of a general
linearly constrained sub-problem, and tne quadratic rate of con-

"

vergence, therefore, applies to a rather broad definiticn cf "step”.
A sequential linearly constrained method suffers from the

same possible defect mentioned for sequential augmented legrangilan

1

methods, that the algorithm may be inefficient becsuse ¢of the effort
required to solve completely a sub-problem which has relevance tc

the originel problem only close to x*. Other difficulties will e

considered in Section 4.8.7.




4.8.4 Progressive Linearly Constrained Lagrangian Methods

A progressive approach, similar to that described in
Section 4.4 for the augmented methods, may be taken for the linearly
constrained Lagrangian methods, in order to overcome possible in-
efficiency of the sequential algorithms. In a progressive method,
the sub-problem to be solved (approximately) at the next iteration
is modified, based on information acquired during steps toward the

oblem

solution of the previous sub-pr . Only one progressive algorithm
will be discussed here, to highlight the primary strategy involved.

IT the function f_ in the linearly constrained sub-problem

L
IcP(x,r ) were a quadratic with a known Hessian, the sub-problem
would reduce to a quadratic programming problem with equality con-
straints, whose sclution can under certain conditions be explicitly
written down (see Gill and Murray, 1974t). A progressive method

could thus be based on making a quadratic approximation to the

function £ at every point, and solving the resulting quadratic

L
programming problem. The quadratic programming problem asscciated
with LCP(x,x ), can be conveniently written in terms of the step p

from x to the next point, X, as follows:

S - 1 Ty T-
QP(x,A ) : minimize 2 p Sp+ p'g
Y
. D -
subject to A'p =-¢C ,

where § is a local approximation to the Hessian of the Lagrangian
function, based on x and X, and where g, A, and ¢ denote g(x),
A(x) and c(x), respectively.

This type of progressive algorithm was suggested by Wilson

(1963), and may be described 3s follows:
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(1)

(Given an initial x, say x*

2 (),

,and an initial A, say

J =13
while (the conditions for x(‘]'l) to be a minimum of Pl

P

are not satisfied)

repeat ¢
(.) - .
G Sampute the sodution 597 of gpxt) 9.
(2) X<j+l)é—x(j)+ (J)J
which satisfy:
A9, G 500, )
where ”a(j)” denotes "o evaluated at x(j\

(B) j gt
)
It can be shown (see Robinson, 1973) that if tne exact

Hessian matrices of F and {c1} are used to calculate S(J), so that

S(‘j) = G(j) -igj?:(j)(}i(‘j), and if (X(l),?\(l>) is sufficiently close
to(x¥,A*), then the progressive algorithm will display quadratic con-
vergence to x*. Additional comments on the rate of convergence are
given in Section 4.8.5.
h.d.5 Convergence Of Linearly Constrained Lagrangian or

For an initial (x,A) sufficiently close to (x*,A%), a
quadratic rate of convergence can be proved for either the seguential
methods, or progressive methods where exact second derivetives are
available (see Robinson, 1973). These cases have essentially iden-
tical prnofs; thus, the arialysis will be given for a progressive

method based on the quadratic programming sub-problem QP(x,1), where

the exact second derivatives are available.
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The proof is of interest for the following resson. With
an augmented Lagrangian algorithm, even one “.aich uses a second-
order method ta Solve the unconstrained sub-problem, the rate of
convergence tc x* IS defined by the rate of convergence of the
multiplier estimates (see Section 4.7). However, this limitation
does not apply to the given formulation of linearly constrained
methods; hence, a first-order estimate of the multipliers need not
prevent second-order convergence to x*.

Tet % and A be the current estimates of x* and A*. The
step i to the next estimste, §, i1s the solution of the quadratic
programming problem:

m

- - Te
minimize % pT(G -z WiG)p + 18

51

subject to ATp = -c,

oo nou

where o denotes o evaluated at Xx. The new multiplier estimate
fwill be given by the multipliers of the quadratic programming
problem.

Define & = X-x*, e = x-x*¥, & = A-A%, & = RA-\*,
We then mske the following estimates by expanding about Xt

(8) @Ee = o) O[] = o] [8]13);

- == -2
(v) g-Ge = a(x*) +o(]el]®);
- = = . ~112
(e) 8;-8,8 = 2, (=) +O(][&]]%).
Since 5 satisfies ATﬁ = —E, by writing i as 2—5, we obtain:
Be = -2+ K

SubSulrsititngi fgofrom) (a)nithisisefatbonship becomes:
—T= -2
55 = o] ]5]]%). | (4.81)

The estimate A is defined by
- m

T - 7z —_ TN

R




Again, substituting e-e for D, the Lesult js:

A = é + (@ -5 X,@ )e -Ge + 2 X, G e .
. i
i=1 i=1

Defining W to be (G -

‘I MB

%.G.), and substituting from (b) gives:
i=1

m_ . -2
B =Ve + g(x*) + £ X.G.e +O(”eH
: i=1 * T

= = - * .
Writing A as A¥ + A, and A as X + A, gives:

T e ele) - B+ D255+ 2 86,8 +0(]]3]]%).
i=1 i=

h=q]1
[2S81]
n

Substituting from (c), we obtain:

t
[ORH

— . (
i - g(x*) - A(x*N* + % Kiéié +C7(’Iélf2

i=1
and, since g(x¥) = A(x¥)A*, the result is:

- - PR RS [I SR I N S —

(.8.2)
mhe derived relationships (4.8.1) and (4.8.2) for € and

E may then be written:

Vo Jog el HiE)
O<HéH) i

Tf A(x*) has full rank, then for X sufficiently close to

W -k

iPoo

[OR]

(4.8.3)

2}

x*, the matrix on the left-hand side of (4.8.3) is non-singular.

The form of the right-hand side shows the second-order convergence,

since if(?(l[éf’) =C>(ll§!l), both x snd A converge quadratically

to (x*,A%). This property indicates that close to x* the conver-
gence of the linearly constrained methods is not limited by first-

order. errors in the Lagrange multiplier estimates.
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4.8.6 Inequality Constraints
The formulation of a linearly constrained sub-problem for

the inequality constrained problem, P2, is analogous to the eguality

.case, except that the linear constraints of the corresponding sub-

problem are inequaiities. Consequently, the approaches discussed
previously for equalities may be applied to the inequality problem

by changing the constraints of ILCP to the form:
i AE{E dr,

An inactive constraint of the linearly constrained sub-
problem should ideally correspond to an inactive constraint of the
nonlinear problem, so that properties of the solution of LCP or QP
can be used to provide information about the solution of P2. |If &
linear constraint of the sub-problem is active, its multiplier will
of necessity be non-negative, and is associated with a non-negative
estimate for a multiplier of the original problem; similarly, when
a linear constraint is inactive, the predicted multiplier for the
corresponding nonlinear constraint may be taken as zero. Hence, the
relationship of the linearized constraints to those of the original
problem becomes critical.

4.8.7 Discussion of Linearly Constrained Lagrangian Methods

The methods based on formulating a linearly constrained
sub-problem involving the Lagrangian function are highly successful
close to the solution, and avoid the necessity of dealing with a
penalty term whose only purpcse is to shift negative eigenvalues of

W(x*). ~However, the sub-prcblem to be solved has become more compli-

cated, particularly in the case of inequality Constraints.




A more fundamental difficulty is that the relationship
between the solution of tke linearly constrained sub-problem snd
that of the original problem is questionable when the initial
estimates of x* and A* are far from optimal. For example, at any
stage the sub-problem may Be unbounded below. Even if the numerical
technique used to solve the sub-problem can detect this situation,
the subsequent definition of the algorithm is unclear; with an aug-
mented algorithm, the ability to increase the penalty parameter
could overcome this problem. Furthermore, there is no guarantee
of an ultimate decrease in infeasibility with the linearly con-
strained methods as presented here; nor is the meaning obvious of
an approximation to the Lagrangian function at a point where HCH
is large, or A differs widely fromai*.

Safeguards must be included in linearly constrained
Lagrangian algorithms in order to assure that some measure of pro-
gress toward x* is satisfied. These methods thus require further

study and refinement to make them robust and of general usefulness.
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CHAPTER 5
METHODS BASED ON TiE TRAJECTORY OF PENALTY
AND BARRIER FUNCTIONS

5.1 lIntroduction

.The Lagrangian methods described in Chapter % overcome only some of
the deficiencies ass'ociated with penalty and barrier function methods.
Moreover, their design includes additional levels of complication and un-
certainty. Their theoretical superiority is demonstrated only close to
the solution, and criti\cally depends on a suitable choice of various
parameters; away from the solution, where the local conditions for a
minimum are not satisfied, such methods can fail to make any progress
toward the solution without reverting to use of a penalty-type method.
For a problem where strict feasibility must be maintained throughout,
the Lagrangian-type methods cannot be applied directly, since they do
not theoretically restrict the sequence of estimates of the solution to
be feasible.

The algorithms to be discussed in this chapter are based on an effort
to overcome the difficulties associated with penalty and barrier functions
without incurring additional problems . Thjs approach was first developed
by Murray (1969a,b), who presented a detailed algorithm for the penalty
function case. These "trajectory" algorithms are designed to exploit the
following properties of penalty and 'carrier function methods: (i)the
characteristic non-tangential approach to the solution that justifies the
use of linear approximations to the constraint functions even close to
the solution; (2) a straightforward set of criteria to measure progress
at each iteration; (3) variation of a single parametnr to control conver-

gence; (4) a special relationship between the values of the constraint
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functions and the estimates of the Lagrange multipliers; (5) in the

barrier function case, maintenance of feasibility in the seqgaence of
estimates of the solution.

5.2 Further Properties of the Quadratic Penalty Function
Equality Constraints

The initial discussion in this section will be concerned with the
solution of the equality constrained problem, P1, by use of the quadratic

penalty function first described in Chapter 2:

-~

P(x,0) = F(x) +§ c(x) e(x).
V¢ shall assume the following: the sufficiency conditions giver? in
Section 1.2 for a minimum of Pl hold at x*, A(x*) is of full rank, A*i*#o
for any i, ||a(x*)|| and HGi(x*)H, i=1,2,...,m, are bounded, and r

AWLoauy Ly | U\AT )] aud ’]Ui\.A. Iy LF4L,a,...,0, are pounded, and

lim x*{(p) = x*.
p =

At the minimum of P{x,p):
VP(x*(p),p) = g + phc = O. (5.2.1)

. _ g} \
Consider the perturbation Ax = x*(p) - x*(¢), where p > p and[—l~ - L) is
p P/

g(x*(p)) = - pa(x*(p)) c(x*(p)), or
g(x*(p) TAx) = -pA(x*(p) + Ax) c(x*(p) T Ax)

Expanding g, A, and c in their Taylor series about x*(p) yields:

m

~ 0 PA Ta. Taal. - S /0 TANA A ~ . 1120

W now estimate the size of each term. pacguse of the

properties of the trajectory defined by minimas of P(x,p) (see Section

2.2.3), ||ax]]| = O(% - %) . |la]] and ”G1” are Sounded at x*, sc that

[1a(x*(p))|] and HGi(x*(p))I' , i=1,2, ...,m, are guaranteed by continuity
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to be bounded for p sufficiently large; however, this condition may hold

for modest values of p, even p = 0. By the sufficiency

{]A*i‘[}, i=1,2,...,m are bounded, and since lim Pci(x*(p)
p = oo

conditions,

):-i\*{, it

follows that |ea(x*())| is of order & for all i. Hence [leax|] and

HIEn;:EIci(x*(E))GiAxH are of the order of ||ax]], i.e., (

Because of the non-tangential approach of x*(p) to
55 2 MInaTaol! ws19 s me aine /é\) FUTPR N I B

relationship thus holds at x*(p):

- - /i ) l)
pAATAX = -g -pAc +OLP 5
p)

Because A(x*) has full rank, A(x*(

;_;)
PP

x* (see Section

{ mi. . ~n_Ta .

) is assured to be of full rank

for p large enough, where, again, "large enough” need not imply a very

large value of p. If we substitute for g from (5.2.1) t

he expression

(-pAc), and caneel the full-rank matrix A, the result is:

\ ) \
T ~/ _g) 1(1 1
Aax =-[1 -2 ]c+ O[5 (2 -3

Exactly the same result can be derived from an alte

Sinee lim pe(x*(p)) = -A%*, and A¥ # O for any i, the est

p—®

2

Lagrange multipliers at x*(p), given by:

A(x*(p)) = -pc(x*(P)),
is bounded away from zero for o large enough, and is acc
order(%) by the properties of the trajectory of minima

the requirement is imposed that the Lagrange multiplier

1

A%
x¥(p) and x*(p), > p, agree to order | [, i.e., (E

pc(x*(p)) = pe(x*(p) + Ax) +o(% - —;—) .

The expansion of ¢ about x*(p) is given by:

- 151 -

(5.2.2)

rnative viewpoint.

imate of the

urate to within
of P(x,0). If
estimates at

1 .
- -b-), the result is:

(5.2.3)



y 3 T 2
c(x*(p) + ax) = c(x*{p)) + A'ax +O([|ax]|[7) . (5.2.4)
Because of the non-tangential approach to x*, f{ATkxff will be of

order (% - l). Substituting the expansion{5.2.4) in (5.2.3) gives:
pc:bc+5ATx+O(%'%>;
which is identical'to the previous result (5.2.2).

This restriction of the portion of Ax in the range of A(x*(p))
exists because a change in the penalty parameter induces a specified
first-order variation in the constraint values as x* is approached along
the trajectory of the quadratic penalty function. An interesting pro-
perty of Ax, indicated by the derived relationship, is that the step 4x
is less than the estimated first-order step to a zero of the constraint
vector, because the factor multiplying (-c) on the right-hand side of
(5.2.2) is less. than unity. This characteristic is a refinement of the

well-known property that the signs of {ci(x*(p))} remain constant for p

sufficiently large.

Throughout this section, it has been assumed that p is "sufficiently
large' for the various assumptions to hold. However, i1t should be em-
phasized that these restrictions do not mean that x*{p) is in & close
neighborhood of x*. The result (5.2.2) may hold even for modest values of
p, provided ths+ p IS near enough to p.

Inequality Constraints

The relationships derived for the equality case will also hold
under suitable assumptions for the quadratic penalty function applied to

the inequality constrained problem, P2:

1
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As seen in Chapter 2, for sufficientiy large p the set of violated
constraints at x¥(p) is identical to the set of active constraints at x*.
It will be assumed that m ccnstraints are violated at x*{(p), and the
vector ¢ is used to denote the vector of violated constraints, with a
similar conventicn for A,

If the set of violated constraints at x*(;-)) is the same as the
violated set at x*(p), the derivation previously given will apply to

the inequality problem, and the result (5.2.2) can be written:

o) ol

p
5.3 Further Properties of the Logarithmic Barrier Function

In this section, we shall be concerned with solution of the in-
equality constrained problem, P2, by using the logarithmic barrier func-
tion first described in Chapter 2:

£
B(x,r) = F(x) ~r = ’@n(ci(x)).
i—=I

The notation used will be identical to that defined in Chapter 2,
so that the set of active constraints is represented as follows. The m
constraints active at x* are grouped in the vector ¢, whose elements are
numbered 81,6‘2, ...,ém, where "Ci" denotes the ith active constraint; a
similar convention applies to the n by m matrix £ whose columns are the
gradients of the active constraints, and to @i’ which denotes the Hessisn
of the ith active constraint. The m Lagrange multipliers {A?} are num~
bered to correspond with the components of €. )

It will be assumed that: the sufficient conditions given in Section

1.2 for a minimum of P2 hold at x*, &(x*) has full rank, A¥ £ 0 for any

i, HGH and HGiH, i=1,2,...,4, are bounded at x¥, and lim x¥(r) = x*.
r =20
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At the minimum of B(x,r),

—}; -
‘1
VB(x*(r),r) = g-rA 5 = g-rAd = O, (5.3.1)
1
L
- T
where the function d is defined as the vector ./-1— s ...,—1: )
\°1 €L
. 2 wi /l 1 }T . .
The notation d will refer to the vector = = |, which includes
m

only the active constraints.
Consider the perturbation Ax = x*(r) - x*(r), where 7 < r and
(r-r) is small relative to r and r. By definition of x*(r):
g(x*(r)) = ra(x*(r)) alx*(z)).

Expanding g and A in their Taylor series about x*(r) yields:

g + Wx = FAA(x*(F)) + T Fa, (x¥(E))eex +O(] |ax] 7).

We row estimate the size of each term. Because of the properties
of the trajectory of B(x,r) (see Section 2.4.3), [|ax|] = O(r-%). The
quantities |[a|| and HGlH are bounded at x*, so that ||a(x*(r))]| and
HG__.L(X*(I’))” , i=1,2, ..., 4, are guaranteed by continuity to be bounded
for r sufficiently small; however, these quantities may be boundea for
any value of r, so that "sufficiently small*®r may not imply that r is
close to zero. For r small enough, the components of d corresponding
to inactive constraints are strictly bounded, and thus the term
r di(x*(f')) is of order r if e, is inactive at x*. By the sufficiency

conditions for a minimum, ]h*[! is bounded; since lim 75——,1* -
r =0 ci(x ()

lim r 8i(x*(r)) = A’{, it follows that for r small enough the component
r =0
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r di(x*(x-‘)) corresponding to an active ccnstraint is bounded. Therefore,

4
all elements of the sum & * ga(x¥(¥)) Gaax are of order at most Ax, i.e.,
i=1

O(r-r). Grouping together all terms of order {(r-r) or less, the re-
sult is:
g = rAd(x*(r)) +O(r-r).

At x*¥(r), g = rAd(x*(r)); substituting this value for g gives:

rAd(x*(r)) = rad(x*(r))+ O(r-r), or

I - 1

l* e, (x*(2)) (5.3
clix (I‘) )

’ 1

1 - c {(x*¥(¥7

RO = w06,

L S gwer g
C{ﬁx*2r5§ *

where A is evalwmted at X (F)

The relationship (5.3.2) may hold anywhere along the trajectory if r
ig sufficiently close to r, and the assumptions inherent in the hounding
procedure are satisfied. However, because A(x*(r)) is not necessarily
of fulll rank, it is not possible in general to draw any meaningful con-
clusion about the variation in the constraint values. To refine (5.3.2)
to correspond to the result in the penalty case, it is necessary to
assume that the value of r is snfficiently small so that an O(r) term
is negligible; then the active and inactive constraints may be considered

separately. Sinee the inactive constraints are bounded away from zero,

1
the components f T \{ - 1 corresponding to inactive con-

ici(x*f T) % ’ ci(x*(f') )J

straints may be included in an order r term, leaving a relationship that

holds for the active constraints:
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1 1

K*Tj'j' ey
cm(x (r ; c (x*(¥)

All elements in the denominators are bounded away from zero for

r,v+0, and hence the ith row of each vector can be multiplied by the

A * Al a _
factor ci(x <r2) ci(X () which is of order r, yielding:

2

3
e
*
o
=
11
IR

- Re(x*(r)) +C(r-1)

Expanding € in a Taylor series about x*(r) gives:

Because of the non-tangential approach of x*¥(r) to x*, the term
26TAx is of order Ax, i.e., (r-r). Since 8(x*) has full rank, B(x*(r))
is guaranteed by continuity to be of Tulll rank for sufficiently small
r. Cancelling the full-rank matrix B and re-arranging, we obtain tke

desired characterization of AX:

Max = - (1 - 5%+ o - 5, (5.3.3)

tthdnrth Ta <3t T e bm S limd e fenan Tl e o e . Y

the previcus section.

An alternative derivation can be given by requiring the Lagrange
multiplier estimates For active constraints at x*(r) and x*{r) to agree
to within order r. 2t x*¥(r), the ith multiplier estimate is £y

c;(x*(r))’

so that the requirement is

r
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8, () 8, (xX(3)) o
Multiplying each side by T and expanding cj about

x¥(r), we again obtain (5.3.3).

As with the penalty function, it is possible to characterize a step
along the trajectory of approach because the first-order variation of
the active constraints is controlled by the barrier parameter. A key re-
striction in the barrier function case is that the inactive constraints
cannot be ignored except for small values of the barrier parameter, since
their influence is always present in a barrier function algorithm.

5.4 A Penalty Trajectory Algorithm

5.4.1 General Description

The penalty trajectory algorithms to be discussed will be
concerned initially with tke equality constrained problem, Pl, and
extended to deal with inequality constraints in Section 5.k.4.

In & penalty trajectory algorithm, the sequence of iter-
ates is constructed so that its path approaches the trajectory of
the quadratic penalty function method converging to x*. A penalty
trajectory algorithm retains in every step at least one penalty
paraneter with the usual significance, to serve as a measure of pro-
gress toward the solution and ultimately to be increased to infinity
to enforce convergence. However, the penalty parameter is monitored
and possibly altered at every iteration, and does not remain fixed
until an unconstrained minimization of a penalty function is com-
pleted. Its influence in a trajectory algorithm tends to generate
points close to the penalty trajectory, but does not cause increas-
ingly poor conditioning of the linear systems to be solved.

At each iteration of a penalty trajectory algorithm, we

. {
wish to compute a step toward the trajectory of x*(p) . Because the
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constraint values at x*(p) for sufficiently large p are related in
a known way to the Lagrange multipliers at ., and the approach of
x*(p) to x* is not tangential to any constraint, the portion of a
move toward x¥(p) that causes a first-order change in the constraints
tends to satisfy certain conditions. The key characteristic of a
penalty trajectory algorithm is that the portion of the search di-
rection in the range of A at the current point, which generates a
first-order change in the constraints, is specified by a system of
linear equality Eonstraints derived from the properties of the quad-
ratic penalty function trajectory. This derivaticn contrasts with
the linear equality constraints of the Lagracgian-type inethods dis-
cussed in Chapter 4, which are based on conditions holding only at
x*. As the penalty parameter in a trajectory algorithm approaches
infinity, however, the portion of the search directior, in the range
of A becomes arbitrarily close to the analogous portion of the step
taken by a linearly constrained Lagrangian method.

Much of the discussion in this chapter will be concerned
with quadratic programming problems; the following Is a brief review
of the necessary background (see Gill and Murray, 1974b, for further
details).

Consider the guadratic programming problem:

T4

minimize 2 pTSp + p
P

subject to ATp = u,
where A is n by m, of rank m = ri. The solution p*¥ can be written
as the am of two orthogonal components,i.e., P*¥ = Q,p, + 2Dy -
’ 1R N Ql
is an n by m matrix whose columns form an orthogonal basis for the

column space of A, and Z is an & by {(n~-m) matrix whose columns form
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an orthogonal basis for the null space of A.

A particular representation of Q and Z car, be obtained

by partitioning the orthogonal matrix Q in the factorization of

T . .
AL (see Gil], b, Murray, an3 Ssunders, 1974), defined by:
A* (See Gilli, 8811_1%; Murra%{, ang Saundglr".s,’ Lgﬁt}); defined b3¥:

A=[1 % 0] g = Lio] {-Qi

When AT is of full rank, L is a non-singular m by m Lower triangular
matrix satisfyingx
ATQl =L
This factorization may be computed in various ways, in particular
by application of Householder transformations or plane rotations
(see Chapter 6 for additional discussion) .
The vector leR will be termed the component of p* in the

range of A, and ZpN will be referred to as the null-space component

of Ip* Because the columns of Q.l and Z are orthogona , it follows

that:
that
2

2 2 2 2
[ 17 = [fayppl o« Hzegl ™ = Hegll™ + [yl
The vector pR is uniquely determined by the equality con-
straints, since:
T T ) = T _ L
L is by Gefinition non-singular .
The vector Py is defined by the minimization of the quad-
ratic function in the null space of A, and is the solution of:
T T T
Z SZpN = =-72"d -~ Z SleR
For p* to be a strict minimum, the matrix ZTSZ must bte

positive definite .
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It should be noted that any portion of the victor d in
the range of A is annihilated by the applicetion of ZT’ so that the
solution p* is not affected if terms of the form Av fer some v are
included in d.

5.4.2. Specification Of the Search Direction arid Step Length

Murray's Original Trajectory Algorithm

From the results of Section 5.2, we see that an approxi-
mation, p, to the step Ax from x*(p) to x*(p), » > p, will under
certain conditions satisfy with high accuracy the linear equality
constraints :

ICl ATp =-(1- -g)c,

e)
where A and c are evaluated at x*¥( . Eased on the assumption that
the current value of x is close to x*¥(p), the original penalty tra-
jectory algorithm of Murray (1969a,b) solves the following quadrati;

programming problem to obtain the search direction at each step:
QP1: minimize % pTSp + pTg

subject to ATp = - (da- %)c

In QPi, the vector g is as usual the gradient of F(x), and
p is the current estimate of the penalty parameter; # is the penalty
parameter such that x+p is an estimate of x*(p).

Murray discussed three possible choices for the function
to be approximsted by the quadratic cbjective function in GFl : F(x),
the penalty function P(x,p), or an approximat= Lagrangien function
L(x,A) = F—ATC for some vector A of estimated Lagrange multipliers.
Regardless of which choice is made, only the gradient of F(x) needs

to be included in the linear term of the quadratic function; be-

cause the gradients of both P(x,p) ana L(x,A) consist of g plus a
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vector of the form Av for some v, this latter term is annihilated
by ZT when computing PN (see the discussion of quadratic programs

in Section 5.4.1). The matrix S is the exact or approsimate Hessian
of one of the three choices.

Madified Trajeetory Algorithm

The 'linear constraints IC1 are based on the assumption
that the current point is the minimum of the quadratic penalty
function with penalty parameter p, and thus a direction satisfying
ICY is always a I\ocal direction of descent for c% for every con-
straint. This property is unnecessarily restrictive for a general
algorithm, since at times it may be desirable to increase infeasi-
bility for some, or even all, of the constraints. A set of linear
equality constraints that characterize a step toward the penalty
function trajectory in a more general way can be derived if the
current point is "close" tc the trajectory, and an estimate of the
Lagrange multiplier vector is available.

The method for computing the estimate of the Lagrange
multipliers will not be specified here, since there are various
possibilities, depending on the information available. The only
assumptions are that the method is always defined, and is consistent
in a neighkorhood of x*, i.e., A —2% as x —»x¥*.

The condition sought on the search direction, p, is that
x+p be a good approximation to x*(p) for some p. At x*(p), the vec-
tor -pe(x*(p)) is an estimate of the Lagrange multipliers at x¥,
with accuracy related to p. Hence, using the current multiplier

approximation, A, we require that:

—Bci(x.}.P) =. )\l’ i:l}g, v e M.
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Becsuse of the non-tangential approach 10 x¥, it is
reasonable to approximate ci(x+p) by only the first-crder term of
the Taylor series expansion atout X. Ignoring all but first-order

terms, the result,is:

- T
- pey =B§l' B '—‘_-?Q-lL} §9 tha!
. AL
a_.Tp = -c, ~- == , i=1,2, 1. or
Lc2: AIp = -c = 3‘ As

where A and c are evaluated at the current point. This specifi-
cation of the portion of p in the range of the current A is a first-
order prediction that each constraint value at the updated point
will satisfy the eppropriate relationship with the corresponding
multiplier estimate and the penalty parameter. Algorithms with
similar motivation, based on Murray’s method, nave been described
by Biggs (1972, 1974).

It should be noted that if the current point is suffi-
ciently eclose to x*(~) ,the difference in the formulations LCl and
LC2 is negligible. The iirst-order estimate of h at x*¥(p) is -pc;
substituting this expression for A in L2, the right-~hand Side be-
comes (-c + £ ¢), as in ICl. Furthermore, as j goes to infinity,
the relation LC2 approaches the specification cf a first-order step

to a zero of the constraints, AT

p=-c.
The linear equality constraints to be satisfied by the
search direction in all the penalty trajectory algorithms to be cor.-

sidered are given by IC2. This characterization uniquely determines

the veelor 9 Pps singe BR satisfies:

T

AT - Toam —_ - >L




-

where the lower triangular matrix L 1S as described in Section
5.k.1, and is by definition non-singular.

The method for computing the null-space component of the
search direction follows the idea originally given by Murray; Py is
chosen to minimize a quadratic approximation to some function, which
is one of: F(x), P(x,p), or L(x;x) for an estimated multiplier vec-
torA.

The linear term of the quadratic function is always ng,
since the other terms in the gradients of the given choices are of
the form Av for some v, and do not affect the calculation of pN-
The Hessian matrix of the quadratic function is the exact Hessian
or an approximation 'io the Hessian of one of the three choices.

The usual strategy for calculating Py is that Py mini-
mizes the particular quadratic approximation in the null space of
A, given that the move leB has been made from the original point
in order to,satisfy the linear constraints. Tnis logic makes the
search direction the sclution of the quadratic progremming problem:

QP2 : minimize 2 pTSp + pTg
. T A
subject to A p=-¢c - #

+ Zp

The search direction is then. given by Q N

1Pr s, where leR is

determined by the linear equalities and pN solves the equations:

T T m
E2: - - - gt
Z SZpy, Z g - 2°8QD,

The vector Py, can alternatively be chosen to minimize the
quadratic function independently of Q‘lpR’ by assuming that the only

move from the current point will be in the null space of A. \yith

this formulation, solves the follcwing set of linear eguations:

Py

El: ZTSZpN A
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This definition of pN might be used in the context of the general
approach of computing the search direction a: a linear combination

of two orthogonal components. The direction that solves QP2 is not

necessarily a direction of descent for the quadratic functicn to be
minimized, since the move required to satisfy the linear constraints
may increase the function from its value at the current point. The
linear constraints to be satisfied by the search direction are based

on the combined assumptions of closeness to the penalty trajectory

and reasonable multiplier estimates. When these conditions are un-

certain, It seems logical that the null-space portion of the search
direction should be independent of the linear constraints, so that
an appropriate linear combination of leR and ZpN can be a descent
direction for the guadratic function.

After the search direction has been determined, a linear
search is carried out to obtain a step length @ > 0 such that
x t op is an approximate minimum of some function. The two choices
for this function are: P(x,?) for some B, or an augmented Lagrangian
function, L({x,A,p) = F - A Te + geTc, for some 9. The first choice
is the more usual and straightforward; it will guarantee a reduction
at every iteration in a penalty function, thereby providing a stand-
ard of progress toward the solution. The second function is chosen
by reasoning similar to that given for the Lagrangian-type methods
described in Chapter 4.

Summary

The essential elements of a penalty trajectory algorith
are :

(1) maintenance of 2 continuously monitored penalty par-
ameter to regulate convergence as in a standard penalty

funetion method;
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(2) calculation of the search direction, p, as
p = QlPR + ZpN, such that:

(a) leR Is computed so that p satisfies a system

of linear equality constraints of the form ATp = d,
where the vector @ depends on the controclling
penalty parameter and the current estimate of the
Lagrange multipliers; and

(b) ZpN minimizes a quadratic approximation to some

Ffunction:

(3) a linear search at every iteration to assure progress
toward x* by a guaranteed decrease in some suitable
function.

The above description of a penalty trajectory algorithm
is quite general, and there is room for variation in details of
strategy and implementation (see discussion in Chapter 6). However,
all methods of this class possess the same distinctive motivation,
based on the quadratic penalty function.

5.4.3 Properties of the Penalty Trajectory Algorithm

Properties of Pp

An important property of points on a penalty function tra-
jectory i that for a sufficiently large value of the penalty par-
ameter, each ccnstraint value is of sign opposite to the corres-
ponding Lagrange multiplier at x*¥; when this condition holds at a
point, the point is said to be on the "penalty side" of the con-
straint. If the current point is on the penalty side of all the
ccnstraints, p is sufficiently large, and all multiplier estimates

have the correct sign, the step induced by the linear constraints
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Ic2 will tend to decrease the constraint penalty for each constraint
while remaining on the penalty side of all constraints, since It is
'a descent direction for cg, i=1,2,...,m, and an underestimate of
the first-order step to a zero of all the constraints.

IT a constraint value is close to zero at a point, the
point is said to be "near" the constraint; if a constraint is zero,
the point is said to be "on" the constraint; if a step causes an
increase in infeasibility for a particular constraint, the mowve is
said to be "a‘way from"™ the constraint. It is desirable for an al-
gorithm to be able to generate search directions that move away
from certain constraints under appropriate circumstances - for ex-
ample, if a point happens to be near a subset of the Constraints,
yet far from x*. |If a msthod is committed to produce directions
that yield a first-order decrease in violation for every constraint
at each step, the method may become "trapped" into a sequence of in-
efficient small moves close to the constraints. An advantage of the
formulation LC2 is that the search direction is not necessarily a
descent direction for every constraint. If a constraint value is
"too small™ for the given penalty parameter, i.e., for some i
Efcif is much smaller than I)l_i], and A1 has the correct sign, the
step given by IC2 will tend to move away from the ith constraint
in order to satisfy the conditions on the penalty trajectcry.

In rare cases, normally only in the neighborhood or' the
starting point, it can happen that a constraint is zero far from
x¥*, or that a constraint and the corresponding multiplier estimate
agree in sign. In this event, either the current point is not on
the penalty side of the given constfaint, or the multiplier estimate

has the wrong sign. The move given by IC2 in such a case iS a pre-
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diction that the next point will Lie on tile other side of the con-
straint, since the underlying assumptior is chat the sign of the
multiplier estimate is correct. The best way to specify ai*p
for this situation is not known (see Chapter € for details of
current strategy); the approach selected depends on which of the
two alternatives (X is not on the penalty side of cgs OF ;‘i has the
wrong sign) is considered more likely at the current point. In
either case, it is always possible to choose the search direction
so that the des-ired descent properties with respect to the original

problem are retained.

Calculation of Py

Any term included in the matrix S used to compute Py
which is a multiple of ADAT, for symmetric non-singular D, is

annihilated by application of ZT} and does not affect the resulting

Py (see the discussion of quadratic programming in Section 5.4.1).
Thus, if S is taken to be the Hessian matrix of the penalty function
P(x,p), the portion of S that causes ill-conditioning for the usual
penalty function method, i.e., pAAT, has no effect on the search
direction in the trajectory algorithm.

To obtain the local convergence rates of linearly con-

strained Lagrangian methods close to x*, the matrix S should te

chosen so that ZTSZ is a good approximation to z'Wz, where W =

bt}
G -z AJG,. T the cyrrent point is very close to x*(p) for suf-
i=1

ficiently large p, the choice of S as either the Hessian of P(x,p)
or I(x;A) will serve to make ZTSZ an approximation to ZTwz,mbecause

the portion of VZP(X,p) that remains after application of Z* is
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m
iven by G + I pc .G, and (~pci) is en approximation to Ai at x*(p).
i=1

The formulation of S involving A 1s generally preferred close to
x¥*, since its independence of the penalty parameter should achieve
- _T,_‘,.. . R TR U SUDRU- SR S 3

S Lllivtiava vy, --

The formulaticn given for computing P does not reguire

that S be positive definite, or even_non~singular. However, the

specification .. o —— - _ ~
: N —=—--- m

matrix is 8 in the null space of A, implies that ZTSZ should be
positive definite.K‘At x¥, ZTWZ is positive definite, and if ZTSZ
is s good approximation to ZTWZ, then ZTSZ should be positive
definite in a neighborhood of x*. Nonetheless, to svoid compli-
cations at the inevitable times when this matrix is not positive
definite, the linear system for Py is sclved with a modified
Cholesky algorithm (see Gill and Murray, 1972a, for details). If
the matrix ZTSZ is sufficiently positive definite, it will be un-
altered in solving the linear system for Py if it is not suffi-
ciently positive definite, it is replaced by a neighboring matrix
guaranteed to be positive definite. IT ZTSZ is not positive defi-

Giie, av == _Tmosmtioe wbed sbe o~ | culation of the null-space com-

ponent be altered along these Mnes; otherwise; Py s a step towerd

saddle point, ) ' K C T st Atem ok T fame s oA
ratic function which it is desighed to minimize.

To avoid additional notation, Py will usuelly be written
in terms of the matrix ZTSZ; but this representation should be in-
terpreﬁed to mean a matrixz thet is always positive definite, re-

gardless of the properties of the unaltered matrix.
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Descent Property

The search direction, p, generated by a penalty trajectory
algorithm IS guaranteed to be a descent direction for a peralty
function or an augtiisnted Lagrangian function, given a suitable
choice of the various penalty parameters. This property is signi-
ficant because at each step of @ penalty trajectory algorith a
linear search is executed to find s positive step along the search
direction to the approximate minimum of one of these two choices.

The result will be demonstrated by using the linear

equalities LC2 satisfied by p. FoOr convenience, the penalty par-
ameters of the penalty function and the augmented Lagrangian func-
tion will both be denoted ty %, since the required size of either
parameter can be deduced from the proof. The gradient of either

the penalty Or augmented Lagrangisn function can then be written

jusl
n

g - M + PAc, where £ = 0 far the penalty function, and £ is the
current multiplier estimate for the augmented function.

The descent property will be verified if the scalar pro-
duct of p with the appropriste gradient can be guaranteed to be neg-
ative. The scalar product is:

(g - AX\ -+ /ﬁAC)Tp =

(2 - )% + 2TATp
T A .
Because A p = -c - 3 the above expression becomes:
T A T A ,
(g - 88)" p + Bec(-c -%) . (5.4.1]

For p sufficiently large, the first term in (5.4.1) is bounded

in magnitude by quantities independent of g, by construction of p. [f

]ci] $0, i=1,2, ...,m, then for p sufficiently large the sign of cach

component of the vector (-~-c -—%) will be the sign of the appropriate
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component of -c, so that the second term in {5.%.2) will be negztave.
Therefore, if p is large enough, the sign of the second term will
dominate the scalar product, and p is indeed a desecent direction.

A similar argument can be made provided at ieast one component of

C is non-zero.

If ||c|| =0, the strategy used by a penalty trajectory
algorithm will compute a search direction that decreases the objective
function, and hence the appropriate descent property will be satis-
fied for a penalty function, since VP(x,p) = g if HcH = 0. For the
augmented function with Hc” = 0, tne scalar product of p and the

gradient becomes:
T
(

p (g - AA)

It

T T
Peg~-pM
A

E

7
peg - (-

1

3

o

T A
pg + =

S

i

ot

rprg <0, and | || is bounded, then for sufficientiy lerge, the

T
term %—A—will become negligible, and p is therefore a descent direction

for the augmented Lagrangian function.

The proof' given for the czse when HCH + 0 rests op two
conditions: p can be made a descent direction for cTe by choosing
p sufficiently largo in the vector on the right-hand side of the linear
constraints ILC2; aud the gradient of either a penalty function or an
augmented Lagrangian function.can be dcminated at such a pcint by the
gradient of the penalty term gCTc for sufficiently large 3. In fact,
the descent property would hold for any direction that decrease; cTc,

and hence the result is not of great usefulness. It merely assures

that the linear search in a trajectory algorithm can always be success-

fully executed .




Local Convergence Properties

The local convergence properties of a penalty trajectory
algorithm can be made essentially the same as those of a linearly
constrained Lagrangian algorithm with a quadratic programming sub-
problem, if in the linear constraints LC2 is sufficiently large.

Let 123 denote the solution of the quadratic programming
problem posed in a linearly constrained Lagrangian method :

min & pTsp + &'p

subje\ct to ATp = ~c,
where S is an approximation to W, the Hessiszn of the Lagrangian
function. A method that takes a unit step along the search directicn
Py, has been shown to converge locally to x* at a secsnd-order rate
if the exact Hessians of ¥ and {ci} are used in S, so that S =
G—iglkl.e.l (See Section 4.8.5); other convergence results for such

methods have been given (see Robinson, 1973), depending on the

approximations used in obtaining S.

If the matrix S used in the quadratic programing problem

m
QP2 is given by G - % )‘iGi for the current estimate A, Or an approxi-
i=lI

mation thereto, the search direction of the trajectory zlgorithm can

de. arhitrarily close to for the same S by choosin suffi-
oé)emé@% axablt%rarlLy' yclose to pIIfIfor the same S ’byychoosiﬂgg{:ps*:.lffi—l

ciently large. The perturbation from (-c) on the right-hand side

, away from singularity, the vector by that satisfies the equalities

- IC2 thus differs from the corresponding portion of Py, by a pertur-

bpp,aip;,pqﬁfofmgﬁrad”er,g%). +df the jdentical matrix S is used in both

¢ formulations, the nuil-space portion of the trajectory search

e
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direction willl similariy be perturbed from the nuli-space portion
of pL by order C%), since ths matrix ZTSZ used to compuze N is
guaranteed to be strictly positive definite. Therefore, a penalty
trajectory algorithm with the quadratic prograsm search direction
can achieve the local convergence rate of an analogous linearly con-
strained Lagrangian method if Jis large enough so that the order
(%) perturbstion is insignificant with respect to the terms that
determine the rate of convergence. Furither comments on the local
convergence of the trajectory elgerithm are given in Section 5.6.

When the vector Py is computed to satisfy the alternative
formulation :

ZTSZpN.= ZTg,

and S is given by the Hessien of a penalty function or an spproxi-

mate Dsgrangian function, the null-space component of the trajectory

W

segrch direction, Zp,, becomwes an arbitrarily close spproximstion

N,'
to the npull-space component of ihe Newton step to the winimum of

the penalty function P(x,?) for ¢ sufficiently large. Murrsy {1971}

8

derived explicit expressions for the eigenvalues and elgenvectors

of the Hessian matrix of a penalty function, and showed that the
oy inverse of the Hessian matrix ToP(x*(X) F) fom & Tomma anmoah -

closely spproximated by:

2 ¢ s o~ "l . l "‘2 o o o~ A
(v7P(x¥(3),5)) " = = a(a"a) 8T 4 225 (e + ¢ fe.6,)2) T, or
‘5 —:—:l 11 ’
2 L (aTa) 2T T o -1
* 3 + 2(z7(C -_tHATiGi)Z) 7", (5.4.2)

where A is an estimate of the Lagrange multipliers. These relations

hold because the Hessisn of P(x,¢) evaluated 31 x*(p) has Leen shown

(see Chapter 2) to split into two parts == G +.? ¥c.G,, which




approaches the Hessian of the Lagrangian function as p - oo, and
so becomes independent of the penalty paramc.er; and the matrix

pAAT .

The expressicns for (V2P(x*(7),3))" 1 allow & close
approximetion of the Newton step, P, to the minimum of P(x,?),
which is given by:

= - (v2p(x*(5),7))" (g + PAc)

The vector g may be decomposed into components in the
range and null s"pace of A, so that g = As + Zv for some s and v, and
hence  ZTz = v. Using the expression 6.4.2) for (v2P(x*(%),%))-1
because its independence of 7 is explicit, the definition of P
separates into two orthogonal. components:
T = -(% A(ATA)_EAT(AS + Phc)) —Z(ZT(G - ; k.G.)Z)-lV
P j=1 Tt
The nuII—space component of P can, therefore, be written

= —Z(u (G - %, e )Z) v, which is exactly equal to the ex-
i=1 T

as Zpy

pression for the null-space component of the trajectory search
direction,

Zpy = -Z(ZTSZ)_JV,
if S is chosen as indicated.

These results show that local convergence can be proved
for a menalty trajectory algorithm. However, as seen in Chapter &,
local convergence can be proved under sufficiently strong assumptions
for any of the Lagrangian algorithms, some of which are based on
conditions holding only in a small nzighborhood of x*. Although of

some importance, local convergence does not gusrantee a robust or

effective algorithm. The strength of the penalty trajectory alga-
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rithm deoes not lie in its loecael convergence o x*:'since locaily any
number of methods will be sucecesgsful, but ol her its derivation in
terms of properties of the gquadratic penslty function *that do not
critically depend on being in & neighborhood of x*.
5.4.4 Extension t0 Inequality Constraints

A penalty trajectory algorithm for inequality constraints
is based on the same motivation as the trajectory algorithm for
equalities, where only violated constraints are included in the
penalty term. In 'Ehis discussion, the matrix A denctes the matrix
of currently violated constraint gradients, with a similar convention
for ¢. The violate6 constraints are numbered from 1 tc m in the
vector @, where the value of m may vary from iteration tc iterstion,
ond denotes the number of currently violated cccstraicts (asswed
always < n) . The estimated Lagrange multipliers correspccd only to
violated constrasints, and Ql and £ have the usual properties with

respect to &.

Specification cf the Search Direction

With inequality constraints, there iS uncertainty as to
which constraints are active at the solution, arid all algorithms for
the inequality problem must make some determination, explicit or im-
plicit, about the active set. It is cheracteristic of ttis trajectory
of the quadratic penalty function that at a point sufficiently close
to x*¥(p) for p large enough, the set of violated constraints is
identical to the set of constraints active at x*. mhererore, an
algorithm based on the quadratic penalty function Is justified in

using the set of currently violated constraints as & prediction of

16

the active set, although it must te rocsible To modify thic sscump-

tion at any stage of the zlgorithm, particularly near the starting point.
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The relationship beiween the sets of violsted and active
constraints is reflected ir the linear equalities at the end of
Section 5.2 for the step along the penalty function trejectory,
which are based only on the behavior of the currently viclated
constraints. Ag the estimates of the solution approach x* along
the penalty function trajectory, these linear equalities will in-
clude precisely the set of active constraints at x*, znd, as ex-
pected, specify the first-order variation in the active ccnstraints
only. it should be noted that the derivation of the linear con-

straints of the lineariy constrained Lsgrangian methods for in-

6]

equalities is also based on including only the active constraints.
Ey reasoning similar to the equality case, the trajeetcry
search direction for inequality constraints should sstisfyv a set of
equalities analogous to LC2:
ca':
where A is the current estimate of the Lagrange multipliers. The
constraints 1C2' provide a prediction of the violated set at the
next step, based on the signs of the multiplier estimstes, if p is
sufficiently large. If sign (A2) = - sign (’c\i), so that A, > 0, a
step p that satisfies the ith constraint of IC2' gives a first-order
predictior, that the ith constraint will continue zc be viclated at
the next point; if Ai is negative, the satisfacticn of the ith con-
straint of IC2' amounts to a first-order predicticn that the 1th con-
straint will not be violated at the next point, since the value on
the right-Land side is positive and exceeds Ci in magnitude. The
initial step of the penalty trsjectory algorithm for inequalities

is thus computed to saticsfy the linear constrsints LC2', and the
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null-space component of the search direction is celculated as des-
cribed for the equality case.

However, a MOFe accurate prediction Of the active set and
a better search direction may be obtained through the following
quadratic programuing problem, where the linear constraints IC2'
are generalized to a set of inequalities:
QP2' : minimize 2 pTSp + pTg

AT

subject to A p?."g '% .

The initial trajectory search direction solves @P2' with
all constraints taken as equalities. The Lagrange multipliers of
QP2' for this solution provide a nigher-order estimate of the
Lagrange multipliers of the original nonlinear prcbtlem, and so may
be used to alter the predicticn of the active set, as follows: a
negative multiplier of g@P2' indicates that the quadratic otjective
function can be further decreased by deleting one of the active
linear constraints. A modified search direction can thus be computed
which solves QP2' with a reduced active set; with the new search di-
rection, the first-order variation in the constraint predicted to
be inactive IS not restricted to satisfy the corresponding constraint

as an equality-

At each iteration of the trajectory algorithm, the search

direction could be computed by solving completely the quadratic pro-
gramming problem €$€7?',possibly deleting several constraints and re-

multipliers
evaluating the . However, a simpler procedure, which

has been successful In practice, 4z to delete only one

active linear constraint per iteration, and accept the solution of




the altered quadratic program as the search direction. The con-
straint to be deleted can be selected, if there ares several possi-
bilities, based on some consistent criterion (for example, if the
constraints are well-scaled, choose the constreint with the most
negative multiplier).

Calculation of Step Length

After computing the search direction, a linear search is
executed, as in the equality case, to locate o > O such that X + op
is the (approximate) minimum of a penalty function or an augmented
Lagrangian function.

Descent Property

The search direction resulting fron any method where the
solution satisfies the Linear inequalities of QF2' is a descent
direction for a penalty function P(x,5) or en sugmented Lagrangisn
function L{x,x,p), given a suitable choice of the penalty parameter: .
The descent property is verified by examining the scalar product of
the search direction, p, and the gradient of the penalty or aug-
meiited Legrangian function, which may be written:

g -8 + P oAt =

m
vi(g - &) + 5z

AT

a,” (5.43)

i i 4

- 2
o]

where £ = 0 for the penalty function and £ = 4 for the augmented
Lagrangian function, and where the “active” sex included in the
augmented Lagrangian function is assumed to be the set of violated

constraints.

=
2

N . . . . A
The linear inequslities of QP2' reguire that @, p = -c, -

it follows that for p sufficiently large, ezch component of é\i e
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5.5

must be positive. For such a value of p, each element of the sum-
mation in the second term of (5.4.3) is negstive. The first term oOn
the right-hand side of (5.&.3) is bounded in magnitude, and if % is
sufficiently large: the negative sign of the second term must dom-
inate the entire expression. Henee, the scalar product Is negative
for suitable p, D and p is a descent direction. Ag in the equality
case, this result is implied by the lcecal dominance of the penalty
D AT

term -g ¢ ¢ in either the penalty or augmented Lagrangian function.

-

A Barrier Trajectory Algorithm
5.5.1 General Description

A barrier trajectory algorithm generates a sequence of
iterates whose path approaches the trajectory of a lcgarithmic
barrier function wmethod converging to x*, while maintaining strict
feasibility at every successive estimate of the solution. At lesst
one barrier parameter is involved in every step of a 'carrier tra-
jectory algorithm, with the usual role: jts decrease controls the
rete at which the strictly feasible iterates are ailowed to approach
x*¥, which lies on the boundsry of the feasible region. However,
the barrier parameter in a trajectory algorithm is regulated and
possibly altered at every iterastion, rsther than remeining fixed
until the unconstrained minimizstion of a particular barrier func-
tion is completed.

At every iterstion, a barrier trajectory clgorithm com-
putes a step toward the trajectory of x*{r). The active constraint
values at x*(r) for sufficiently small r must satisfy a known re-
lationship with the Lagrange multipliers at XU, and the approach of

x*(r) to x*¥ is not tangential to any active constraint. Accordingly,
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the portion of the step that generates a firct-ordsr change In the
active constraint values is subject to certain conditions, so that
tne active constraints at the subsequent point tend to satisfy the
appropriate relationship. The distinctive cheracteristic of a
barrier trajectory algorithm is that the portion of the search di-
rection ir the range of the matrix & of active constraint gradients
at the current point is specified by a set of linear equality con-
straints derived froum the properties of the logarithmic barrier
function trajecto}y.
5.5.2 Specification of the Search Direction and Step Length

In all discussion cf the barrier trsjesctory algorithm: the
matrix A will be taken to include the gradients of all the constraints
of the problem; & will denocte a full-rank matrix whose columns are a
subset Of constraint gredients corresponding tc the constraints cur-
rently considered active, with @ similar convention for ¢ an2 €.
The active constraints are considered to e numbered from 1to z
in the vector ¢, where the value of m may vary from iteration to
iteration, and denotes the number cf constraints currently considered
active (always = n)_ The estimated Lagrange multipliers are assumed
to correspond only to active constraints. Gy and 7 have the usgual
properties with respect to 2.

in Section 3.3, it was shewn that an spproximation, p, to
the step ax from x*(r) tc x*(z), r < mwill, under certain conditions,

satisfy with high accuracy the following linear equality constraints:

il

1.C3: ﬁTp (

<=

1 - =),
where £ and ¢ are evaluated at x*(r).

The linear constraints LC3 are basesd on the assumption
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that the current point is the minimum of the lcgerithmic barrier
function with barrier parameter r, and a direection satisfying IC3

is always a local direction of descent for Gig for every “active”
constraint. This property is unnecessarily restrictive for a general
feasible algorithm, since It may be desirable at times to increase
some constraints, or the current prediction of the active set may

be incorrect. A set of linear constraints that characterize a step
toward the barrier function trajectory in a more general way can be
derived if the current point is “close” to the trajectory, and an
estimate Of the Lagrange multiplier vector is available. The con-

dition desired for the search direction, p, is that x + p be a good

- - - \m
approximation to x*(r). At x*(r), the vector (% , % R |
1 ?

|+

for the m active constraints, is an estimate of the Lagrange mulzi-
pliers at x*, with accuracy related to r. We thus require that for

each active constraint:

x { = A s Cr

(84 X4+n 1

- N .

r = AdcCi{x+p), i=1,2,...,m.

Because of the non-tangential approach to x*, a linezr
approximati-n tO Si(x+p) will be accurate for ||p|| sufficientiy
small. Including only the first-order terms in the Taylor series

expansion about X, the resulting condition is:

r=A.C, + A.g.Tp, so that
11 1 1

, 1=1,2,...,m, or
i

>’i!—g'
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f
| S—

The equalities ILC4 satisfied bty p are based on the re-

lationship that should hold along the barrier trajectory between the

j{e]

ctive constraint values and the multiplier estimates. If the cur-
rent point is close to x*(r) for sufficiently smell r, the formu-

To+den TOL $e mccantinllv the same as LC3. since at x¥(r) s firs

order multiplier esti L i
P mate Aa_ls given by éj

All the barrier trajectory slgorithms to be considersd sre

based on the equality constraints LCk, which uniquely determine the
. s . PR

portion of the “rajectory search ¢irection in the renge of &, If

Fas
P = leR + ZpN, and p satisfies LCQ, then:

>

m

e —

The method for computing the null-space compenent of the
search divection is based on e similsr idea to the penalty trajectory
algorithm: Py is chosen to minimize & quadratic zpprcximation to some
function, which is one of: F(x), B(x,r), or ar spproximate Lsgrangian

function L(x,A) = F—ch.

- 181 -.



second and third choices are not relevant in computing Dy (see Sec-
tion 5.4,1). The Hessian of the guadratic function is the exact

Hessian or an approximation to the Hessian of one of the three

choices.
The two possible strategies for computing pr are similar

to the two options in the penalty trajectory algorithm. However,

in the barrier trajectory algorithm, the usual procsdure is to choose

pN to minimize the quadratic function by moving in the null space

of B from the current point, independently of the move in the range

i.e

of 1 Py solves the system of equations:

T
E3: A SZpN = —ZTg.

The alternative specification oOf Py used near x*, takes the search

directiocn as the scluticn of the gquadratic programming vroblem:

QP4 - minimize -il pPSp -+ pTg
1 ]
7 - A !
subject to ﬁlp = €+ r L s
|
1
so that Py gatisfies:
E4: Tspp = 8¢ - 6758
2 Spy 27 - 2 U, py

The reason for customarily choosing pN to satisfy E3, to
be explored more fully in Section 5.5.3, is the difference between
the roles of the forcing parameter and the constraint values for
penalty arnd barrier. functions. |In the penalty case, increasing the
penalty parameter at a non-boundary polnt makes the local behavior

- 12 -
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T .
of the penalty term c ¢ dominate the penalty function. The lincc
coostraints satisfied by the search directic: in a penalty trajectory

algorithm are controlled by the penalty parameter so that the re-
m

N

sulting direction can always be made a descent direction for ¢ c,

and hence for the penalty function. The descent properties of the

solution of the quadratic programming sub-problem for the penslty
trajectory algorithm thus depend only on the special form of the

linear constraints, LC2.

-

For a barrier function, on the other hand, decreasing the

barrier parameter makes the influence of the constraints lese cizni-
ficant, and the behavior of the objective function tends to dominate
locally. The linear constraints ICk, satisfied by the search direc-

tion in a barrier trajectory algorith, affect only the first-crder

change in the active constraints, and do not in general tend tc mske

the search direction a descent direction for the objective functicn.

In fact, the move generated by the solution of the quadratic prc-
gramming problem QP4 may tend to increase the barrier function for

any reasonable value of the barrier parameter; therefore, the formu-

lation QP4 cannot be used at a general point, because the trzjectory
algoritom demands a monotonic decrease in a barrier function et
every iteration. It will. be seen, however, that for points close
to x*(r) for sufficiently small r, the quadratic program sesrct di-
rection can be guaranteed to be a descent direction for en sppro-
priate barrier function.

After the search direction has been determined, a linear
search is carried out to obtain a step length ¢v > O such that x + ap

. . , X —~
is an approximste minimum of the barrier function B(x,r) for some r.
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The selection of a barrier function to be decreased at every step
is designed tc maintain an appropriately cor‘rolled distance be-
tween the iterates and the constraint boundary. Although & method
could be devised wherein the linear search attempted to finé the
approximate minimum of some cthes function, restricted to fessible
points, this strategy could result in a point arbitrarily close to
the boundary, but far enough from the solution to cause difficulties
on subsequent iteratiops. Because a barrier function allows z con-
tinuously regulated distance to be maintained between the estimetss
and the boundary, and bzcsuse an efficient linear search iz aveilalble
for use with the logarithmic barrier function (see Chapter 2), no
other choice seems appropriate.
The essential elements of a barrier trejectory zlgcrithn

are:
(1) maintenance of at least one continuously monitored barrier

parameter whose decrease controls the approach of iterates

to the boundary of the feasible region;

(2) calculation of the search direction, p, as p = leR + Uz
such that:

(&) leR is computed so that p satisfies a system cif
linear equality constraints of the form ﬂTp = g,
derived from the behavior of the logsrithmic barrier
function trajectory, where the vector d depends on
the controlling barrier parameter and the current
estimste Of the Lagrange multipliers; and

(b) ZPH minimizes a quadratic approximation to some

function;




(3) a linear ssarch with respect to e rarrier functlon at each
iteration to guarantee a measure of progress toward x¥.
The above description of a barrier trajectory algorithm
IS quite general, and details cf strategy cr implementation may vary
(see Chapter 6). However, all the methods of this clase are dis-
tinctively characterized by their derivation in terms of rhe be-

havior of the logarithmic barrier function.

5.5.3 Properties of the Barrier Trajectory Algorithm

Properties of leR

Because a barrier algorithm is restricted To feasible
points only, all constraint values are strictly positive, and there-
fore have the same sign as the Lagrange multipliers at x*. If the
correct active set has been chosen, ¥ is sufficiently smsll, and all
the estimated multipliers are positive, 2 sesarcn direction satisfying
Ich will tend to decrease 211 the active constraints, but stop short
of the first-order step to the boundary. For r sufficiently small,
the step satisfying ILCk is arbitrarily close tc the first-crder step
to a zero of each active constraint, given by R‘Tp = -6,

However, it should be noted that the step generated by
Ich is not necessarily 2 ilccal descent @irectiorn for each active con-

ir even a stan-

bk
1]

straint. . serious weakness that can criticzlly imp

h

dard barrier function algorithm is that a subsei of the consiraints

i
¢

may become small far from the solution: because of local influences.

From such a point, directions along which the barrier function is

decreasing tend to cause negligible changes in the already small con-
straint values, and, sinee feasibility must be maintained, a large

number Of subseguent iterations may maks essentislly NO progress
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toward x¥. An efficient feasible algorithm should be able tc move
away from a constraint boundary; this property is more important
than in the penalty function case because in a feasible algorithm
there is no freedom to move to the other side of the constraint.

if)\i is positive, and an sctive constraint is "too small" for the

value of r, i.e., the estimate % is larger than A1’ the step given
by Ick will tend to increase thel_i_‘ch constraint and move away from

the boundary, as it should to achieve a non-tangential approach to

x*. Numericasl exp;riments (see Chapter 6) have clearly demonstrated
the value of this property of a barrier trajectory algcrithm.

If the current estimate of a multiplier is negative, the
assumptions upon which the linear equalities LCk were btzsed are nct
satisfied, and an alternative method should be used to compute the
search direction. 1In such a case, either: (d)the given constraint
has been incorrectly ciassified as active, or (2) although the con-
straint is active, the multiplier estimate has the wrong sign.
Various Strategies are possible to deal with this situation, but the
procedure followed depends on which of the two alternatives is con-
sidered more likely.

If the negative multiplier estimate is taken as a signai
that the constraint has been incorrectly classified as active: the
particular constraint is deleted from the "active set'!, and new
estimates of the multipliers and search direction are then computed
for the diminished set of active constraints. This strategy is dis-
tinct from the strategy of the penalty trajectory algorithm for in-

equalities because here the constraint 1s deleted from the "active"

set before solving for the search Jirection. In. the penalty case
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for inequalities, if 'Xi < 0, the step given by the usual relaticn

for ﬁiTp is a prediction that the ith constraint will not be vioco-

lated at the next point, so that even the predicted move with the

negative multiplier in essence deletes the ith constraint from the

active set. In the barrier case, however, ifi_. < 0, the expression
T

given for 8. » by LC4 predicts that the next point will be infeasible

i
with respect to the Lth constraint, which is not permitted. There-
fore, the usual constraint for QiTp should not hold if the ith
multiplier has thae wrong sign, and a modified set of equality con-
straints to be satisfied by the search direction should be derived
for a reduced active set. If the constraint is believed to te
active despite the negative multiplier estimate, giTp can be formu-
lated to decrease the ith constraint, for example, sccording tc LC

The current strategy is to delete only- cne constraint with
a negative multiplier estimate from the linear equalities at any

. . s . AT .
iteration; the specification of a, P for any constrsints that haw

negative rultiplier estimates even for the modified active set czn

for the barrier function. Since the current point is not close to

x* in this situation, it seems more satisfying to take the step

ot

O

a new point, where better multiplier estimates can be cbtained, than
to continue adjusting the search direction to correspond to infor-
mation at the current point.

: ifi . f

In a barrier algorithm, where the local influence of the
objective function becomes more significant as the barrier parameter
is decreased, the vector A of estimated Lagrange multipliers used in

Ich will alwsys be taken as the least-squares solution cf
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min ”g - Z\‘AHEZ at the current point. This choice of A is widely
used, in various Lagrangian-type algorithms, because at x* the
vector A* satisfies a least-squarss relationship with g(x*) and 8(x%*).
It is especially appropriate for a barrier function algorithm because
the exact relationship of g and £ at any given pcint is =zignificant
in the behavior of the algorithm, as will be seen in later discus-

sion of the method's properties.

Calculation of pN

a

In calculating the null-space component of the search di-

rection, any tern? included in the Hessian matrix S which is a mul-
tiple of ﬂDﬂT, for D symmetric and non-singular, is annihilated by
application of ’ZT. Therefore, if 5 is taken as the Hessizn of

B(x,r), the portion cf S that causes its ill-conditioning for the

usual. barrier functicn method, i.e-.,
' 1.
' 2

-
{
[
;ﬁT, has no effect on the search direction in

o

the barrier trajectory algorithm. The singularity csused by the
approach to zero of the active constraint values does not affect
the calculation of the searchk directicn, but only the step length
computed during the linear search.

If the current point is close to x*(r) for sufficientiy
small r, the choice of either the Hessian of B(x,r) or L(x,i) for 8
will give a similar result for pN’ since the portiorn of Vzﬁ(x,r)

that remains in computing PN is given by G - % %— @i, and %-I—

i=1 71 IS a
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first-order approximation to Ai near x*(r).

The formulations given for computing Py do not require
that S be positive definite, or even non-singular. However, the
specification that PN minimizes a quadratic function whose Hessian
is S in the null space of & implies that 9759 should be positive
definite. At x*, 2TWZ is positive definite, where W = G - ‘E] AZGL .

i=lI
If 2T82 is a good approximation to %TWQ, then 2TSZ should slsc be

j o

positive definite in a neighborhood of x*. Nonetheless, as ir the
penalty trajectory algori-chm, to deal with the inevitable times
when 2752 is not positive definite, the linear system ior py is

solved with a modified Cholesky algorithm, so that the matrix uszd

P!
[

t o compute PN ie always guaranteed to be strictly positive definit

(see Gill and Murray, 1972z, for details). If 2159 is not pozitive

]

definite, the calculation of the null-space component must bte
tered in this way; otherwise, the search direction may not be e
descent direction for the quadratic function which it Is chosen to
minimize.
When PN Is written in terms of the matrix 2T82, this
latter representation should be interpreted as a matrix that is
positive definite and strictly bounded away from singulsriiy, even
IT the unc”tered ZTSZ at the current point is singular or indefinite.
«Choice .of Active Set
A complication inherent in a barrier trajectory slgorithm
is the decision as tc which constraints are active at x¥*, since only
their behavior is ultimately significant as the solution is approached.
There are numerous possible strategies for choosing the active set

of constraints at each iterstion, and details of the particular
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implementation reported here are given in Chapter €. The basic
principles are that the information generated during the previous
iteration and available at the beginning of the current iteration is
used to predict the active set. Indications that a particular con-
straint is not active are: {1) its multiplier estimate i.,negative;
or (2) its value is bounded away from zero as the barrier parameter
is decreased. The indications that a constraint previously con-
sidered inactive is in fact active are: (?-) it is violate6 during
the linear search', so that its influence is significant in deter-
mining the minimum of the barrier function; or (2) its vzlus is
approaching zero as the barrier paremster approaches zero. Usin
these criteria, an active set of linesrly independent constraint
gradients is determined at each iteration of the tarrier trajectory
algorithm. Further details will not be given hers, since the method
for deciding on the active set is a separable feature of the barrier
trajectory algorithm. An incorrect choice of the active set st 3
particular iteration may slow down local progress, but should nox
impede ultimate convergence.

Descent Property

Because a linear ssarch to minimize a barrier functicn is
carried out along the trajectory search direction at every iteration,
It must be veriiied that the searen direction IS a descent direction
with respect to some barrier function.

If all the current multipiier estimates {)\j.} are positive,
the descent property can be demonstrated for the trajectory search
direction, p, where p = leR + sz’ such that:

(A) is determined by the line=r equalities LCL4, i.e.,

Pr

- 180 -



[ 1
T o ” }\l
N =I\..«./\ — —A+I'
AP = 479, Pp ¢
1
}‘m
L

fﬁfi@l is by definition non-singular, and Ai >0, i=1,2,...,m;
(B) by satisfies the linear equations ﬁTsﬁpN = 9T, where the

, Where

matrix ZTSZ is strictly positive definite.

The vector A is the least-squares solution of min ||g-%i|

the vector g may thus be written as g = % +2v for some v, and

ZTg =v.

As usual, the descent property of pwill be verified by

showing that the scalar product of p and VYB(x,T) is negative for

suitably chosen 7.

For simplicity, we assume without loss of generality that

the matrix A is partitioned so that the first m columns contain the

!2

gradients of the active constraints, with a similar ordering for the

constraint vector. The matrix A can then be written as:

A=[2 7],

where & hcs m columns, and & has (4-m) columns.

The gradient of the barrier function B(x,7) is given by:

vB(x,T) =g - XA

—

Lo

R
c

1.

or

2




T 7
1 ]
Cl Cm+l
=g - 8 - 9%
1 1
L Cm | Li co

i A T - -
AL - 1
t ©1 c
. o m+1
vB(x,7) = & ' + 9% - TA
7
Am T 1
m | —
L )
The scalar product pTvB(x,T) is then given by
Al '% c * I
1 % m+1 ‘i
Ta Th ' TAT, A e
pRQlA . +pN22v+rpA i
| |
A
)\m - .E'.,_ ’3 1
“n | | %4

For ¢ sufficiently small and a criterion for choosing
the active constraints that guarantees that all inactive constraints
are bounded awey from zerc, the term of the scalar prcduct involving

A is of order ¥. By construction of %, the matrix 272 = In—m’ the

identity matrix of order n-m. Beceuse p satisfies ICk, so that

aiTleR =-c_ =+ };— , the scalar product can, therefore, te written
Py
as follows:
m - A -
- 1 R SN Ty TieTepn-L . . ~12 (551)/

For.r and 7 sufficiently small., the first term ic negative because

. . T . ‘s
Ci > 3, Ai> 0; the second term is negative because 2752 is positivee
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definite. Consequently, p is a descent direction for B(x,T).

Throughout the above proof, it wa. assumed that

)"1> 0, i=1,2, ...,m. The descent property of the trajectory search

direction can also be verified when some of the {Ai} are negative,

\

if each linear constraint of LCLY corresponding to a negative multi-

plier is suitsbly altered. The specification of QiTp for such a

constreint can take various forms -- for example, it might te maae
"negligible™ in order to have no effect on the sign of the scalar
product. The key point is that the definition of é\iTp must he
altered if}‘i < 0 because a decrease in T only increases the in-
fluence of Ay in the scalar product (5.5.1), given the definition
of the multipliers in terms of the vector g. This situation con-
trasts with the penalty function case, where the influence of a
negative multiplier can be made negligible for a sufficiently large
value of the penalty parameter.

A5 mentioned earlier, the search direction that solves
the quadratic program QP4 may not be a descent direction for a
suitable barrier function at a general point. However, under more
restrietive conditions, an appropriate descent property c3n ke
demonstrated for this choice of trajectory search direction. The
required assumptions are: the current point x is close to x¥(r),
where r is small enough so that x*(r) is In a near neighborhood of
x¥; arid Aﬁi‘ £ 0, i=1,2,...,m.

To verify the descent property, we must first estimate
the magnitudes of the vectors PR and Py The vector g is the

solution of:
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A, pp=-¢tE | (5-5-.2)

L

o

L n
where "‘Tal is ty definition non-singular, and r<r. In a neighbor-
hood of x*(r), the values {éi} are of order r, since A*;: Ti +o(r).

The right-hand side of (5.5.2) is thus O(r) for r small enough; be-

ATA L - : : O(r) _.
cause 3Q1 is non-singular, it follows that ||pr[| = . Since
the columns of Ql are orthogonal, H’leRH is also of order r. The
vector pN is given by:

Py = - (2Ts2)-1 (6% + 2is’leR). (5.5.3)

The matrix 2T82 is guaranteed to be strictly positive definite, and
hence [[(QTSQ) is bounded. The norm of the vector QTSleR
satisfies:
T A T A
”2 SQIPRH 3”2 D” ”QIPRH :
The norm of 2°S is bounded in a neighborhood of x*(r) for any of

the given choices for S. Since HQlﬁRH has 'seen shown to ke Of{r),

it follows that H?TSleRu =0(r).

To estimate HﬁTgH , consider the function e(x) repre-
senting the least-squares error,
, . 2 _ 11sT (2 PP .
e{x) = min [|g-B|| = ||2%¢| |, for g, 2,2 in a neighborhood of
x*(r). Because the matrix 2 has full, constant rank in a neighbor-
hood of x*(r), for r small enough, arid the second derivatives of F
and {ca} are continuous by assumption, the function e(x) can be

written :

e(x) = ||g-8



some neighborhood of x*(r) (see Golub and Fi.eyra, 1973).

since at x*(r), 12%]| 2 = e(x*(x)) =C(=°), the re-
lationship |27 (x*(r)8) gl (x)adf |2 = e(xt(x)48) =O(x%) will
hold for sufficiently small ||8]]|, by continuity of e(x). There-
fore HZTgH isC(r) in an appropriate neighborhood of x*(r). From
(5. 5. 3), OllnglD) =O[(7s2) ™ [y o mex (| [2%sh e ||, |12l D),
and thus e see that |[oy |1 55 0x). sime [ 15112 _ Jfogl(? + []2] |,
o] | must alsc peO(x).

Given these estimates of HpRH and HpNH, we consider

the scalar product of the search direction with vB(x,7), given by:

e B 7
. ¢y “m+l
o~
P (g-B -“A )
7 r
x_Cml | | C)L)/ )

Replacing g by its representation 2» + 2v, and p by 'leR + QPN’ we

obtain as the scalar product:

— .— pomt —_

V- L h
Lo “mr1
T . T T~
pg {ﬁ . + Dy V- DA
C P
Ao T
P m ] C{J/

Substituting the value of each component of A‘Tﬁwa, the expression

becomes : B 3
T
C
oo - 2 : m+l
T r T Tr |
:Z (—Ci +r) ()\i"c—:'-.-)*{-pNV —‘pA |
i=1 i
]
cp
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Each term (-c_+:) (A, - £) is O(r) and negative, for 7, ?
i 2

sufficiently small, since each Ai is positive close to x*(r). The

term pNTv is o(re), since HpNH is O(r), and v = ﬁTg = O(r); the

term involving A is ©(%), and ¥ < r. Therefore, the magnitude and

negative Sign of the first term dominate the scalar product, and the
trajectory search direction that solves QP4 is a descent direction ‘
for B(x,?) under the stated assumptions. It should be emphasized,

however, that this descent property does not hold at a general point;

even if all the estimated multipliers are positive.

Local convergerce Properties
A unit step can be taken along the trajectory search di-
rection if it will maintain feasibility. For any non-zero r, the

trajectory search direction satisfies:

L
A
1
ﬁIp=—?:+f )

L .
A

m
The expansion of ¢i about the current point can be written :

8 et olsl]) (5.5.4)

0>
+

c,(x +p) =

Substitutinz the value -8, +i_r_ for ’éiTp in (5.5.%), we obtain:
i
~ r 1.7 3
S(x+p) =5 +50C00+ o(]sl]7) .
For X sufficiently close to x*¥(r), the step taken by the

trajectory algorithm is O(r) in magnitude, and thus the term

-~

(= pTG.p) will be O(re). The term Ar_ is ofr) , and , consequently,

1 a
- 2 . B cos .
ir of(r) > C(), %J.(X + p) will be positive, and a unit step

along p will maintain feasiktility.
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The trajectory search direction that solves the quadratic

programing formulation QP4 for sufficiently small r can be made
arbitrarily close to the step taken 'cy an analogous linearly con-
strained Lagrangian algorithm if the same matrix S is used in both
methods. This result is demonstrated by the same reasoning given

in Section 5.4%.3 for the penalty trajectory algorithm; the right-
hand side of the linear constraints of QP4 is an O ($) perturbation
of the constraints in a Lagrangian method, and thus the search di-
rection generated‘by the barrier trajectory algorithm differs from
the Lagrangian step by O (r). Therefore, close to x*, with a judi-
cious choice of r that maintains feasibility, the barrier trajectory
algorithm based on @P* may achieve the local convergence rate of a
linearly constrained Lagrangian algorithm if r is small enough so
that the O(r) perturbation is insignificant with respect to the terms
that determine the rate of convergence. Further comments on the
local convergence of the barrier trajectory algorithm are giver, in
Section 5.5.

When the vector Py in the trajectory search direction is
computed to satisfy the alternative formulation E3, i.e.,

Pstpy = - 2's, (5.5.5)
and S is given by the Hessian of an approximate Lagrangisn functicn,
the null-space component of the trajectory search direction, 2pN,
becomes an arbitral-ily close approximation to the null-space com-
ponent of the Newton step to the minimum of B(x,r) for % suffi-
ciently small. As in the penslty case, the results of Murrey (1971)
give an explicit and highly accurate approximation of the inverse

of the Hessian matriz Vo B(x*(¥),T):
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1
D
3 oL
2 n=1 o wa ATy -1 AT =1y E ~1,T
(VEB(x*(F), %) = YR(2™R) B8 - 22T (e- £ e ) e
i=1
x
A2
-~ m —t
multipliers

where {x 2} are the estimated Lagrange

An approximation to the Newton step, ¥, to the minimum of

B(x,¥) can be written as:

| L]
o 1 e
T2 - (vB(xX(F),F)) (gA - ),
1
Cm |

where the contribution of the inactive constraints has teen ignored.
Writing g in term of Its expansion as + %v, D separates into twc

i

orthogonal components, and the null-space component of p is approxi-

mately given by:
m
25, 2 - 2276 - £ 2,602,
. 11
i=1
which is exactly equal to the null-space component of the trajectcry
direction given by (5.5.5) if S =6 - £1.8..
. i1
i=1
These results show that it is possitle to demonstrate local
convergence' for the 'carrier trajectcry algorithm. However, as noted
for the penslty trajectory algorithm, local convergence does not
necessarily imply a robust or generally effective algorithm. The
strength cf the 'carrier trajectory algorithm is based on its deri-

vation through the logarithmic barrier function, in terms of proper-

ties that do not critically depend on being in a neighborhood of x*.



5.6 Summary

The penalty and barrier trajectory algorithms that have been pre-
sented are 'cased on the idea of using the properties of the quadratic
penalty funeticn and the logerithmic barrier function to characterize
the search directior et each iteration. The measure of progress through-
out is provided by a suitable decrease in either a penalty or barrier
function, with a forcing parameter that may be altered at every step.

IT the trajectory search direction solves the appropriate quadratic

programming problem, the locel rate of convergence cfthe trajectory al-

gorithms is not limited to the rate of convergence of the multiplier
estimates, Jiven a suitable choice of the penalty or barrier parameter.
The analysis of local convergence for the trajectory algorithms follows
that given in Seetion 4.8 for the linearly constrained Lagrangian algo-
rithms, and the discussion here will ccnsequently be atbreviated. The
method to be considered is the penalty trajectory algorithm for equalities,
where the exact Hessians of F and {ci}, i=1,2,...,m, are available at
the current point.

Let x and X be the current estimates of x* and A*. The step p to
the next estimaze, X, is the solution of the quadratic programming pro-

blem :

minimize % pT(G -z

=T ~
subject to A p = ~¢ - i\P

Tt

where "g" denotes the function "o" evaluated at <. The new multiplier

estimate % will be given by the multipliers of the quadratic programming

problem .



http://functi.cn

Define e =x = x*, e =X - x*, A =% - A%, and 4 =a - A%¥. Since

<= c _L

p satisfies A"p = - 5 » by writing D as e - ¢, we obtain:

A = -+ he % . (5.6.1)

The Taylor series expansion of c about x* gives:
- -T- -2
¢ -Ae+0(]]e]]”) = clx*) = 0. (5.6.2)

Substituting (5.6.2) in (5.6.1), the result is:

i% = omex (5, [[3]17). (5.6.3)

H

The estimate 2 is defined by:

=g+ (G -

=

EREN

IEE

I_A_.é.)‘b- (5.6.4)

Using the same procedure as In Section 4.8, we expand g and {a1},
i=1,2, ...,m, about x¥*, substitute the expansions in (5.6.4), and re-
group, yielding:

B o=wz oAl TIED) +o(l1a]12y, , (5.6.5)

where W = G - % .G, .
1 1

M=

i=1
The derived relationships (5.6.3) and (5.6.5) for @ and 4 may then

be written as:

7 fﬂ . IFO(HEHH«EHMMH;HEQ ,
L.AT O_; LE_]( ) ’LOMEX (-];, HGHE) ‘ (5.6.6)

For A of full rank, the result (5.6.6) indicates thst if the pensltiy

: 2 .
Parameter p is adjusted near x* so thatO(%‘) =O(HeH‘), the trajectory

algorithm will maintain the local rate of convergence of the analogous
linearly constrained Lagrangian algorithm. A similar result applies io

the penalty algorithm for inequalities
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For the barrier trajectory algorithm, a result analogous to (5.6.6)
holds if the barrier parameter, r, which defines .ne right-hand side of the
linear constraints Ich satisfied by the search direction, is chosen so that
O(r) = O(Hélfg), However, as noted in Section 5.5, the maintenance
of feasibility must also be considered in adjusting the 'carrier parameter
in the barrier trajectory method. If r is too Small, the step given by
the linear constraints may yield a non-feasitle point, and thus a limit
to the rate of local convergence may be imposed by the requirement of
feasibiliiy. -

For the inequality constrained protlem, the trajectory algorithms
generate information that is useful in identifying the correct active
set. With the penalty algorithm, the Lagrange multipliers of the gquad-
ratic programming sub-prctlem may allow a tetter prediction of the active
set. Moreover, because cf the underlying reliance on the properties of
= Henalty function, the convention of choosing the currently violated
set of constraints as a prediction of the active set remains reasonable.

For the barrier algorithm, the active set is predicted throughout
by monitoring the signs of the multiplier estimates and the decrease in
constraint values, and by noting which constraints are violated during
eacn iinear search. Near the solution, when the quadratic programing
fermulation is used to compute the search direction, the multipliers of
ihe sub-problem provide a higher-order estimate of A*, and hence of the
active set.

The beharsicr of the penalty and carrier trajectory algorithms pre-
dicted by the theoretical analysis of this chapter has teen verified
experimentally ky the numerical results presented in Chapter 6, which
demonstrate that the trajectory algorithms zre quite successful in

solving a variety of problems.
- 201 -



CHATTER ©. ‘Implementation of Algorithms and Numerical Results

€.1 Discussiocn of Comparison of Optimization Algorithms

6.2 Choice and Implementation of Algorithms

6.3 Discussion cf Test Problems

6.3.1 Non-feasible Mzthods
6.3.2 Feasible Methods

nc S
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CHAPTER 6

IMPLEMENTATION OF ALGORITHMS AND NﬁMERICAL RESULTS

6.1 Discusztonm of Comparison of Optimization Algorithms
The complications inherent in making an adequate comparison amocg
different algorithms for certain classes of problems are well known (see

Iyness and Kaganove, 1976; Gill an3 Murray, 1974b) The difficulties

in comparicg optimization methods include the following:

e

(1) the guantities used tc measure performance may vary widely;

(2) the details of implementation may have an encrmous effect
on the results, but are usually not published;

(2) most published tests are limited to a small number of

starting points (often only one), and the values chosen

for critical parameters cf some aspects of the methods
may not bte specified . Furthermore. the examples given
J do not usually proviae sufficient variety to test all
relevant aspects of the methods considered.
The factcrs (2) and (3) may be overcome to a large extent ‘cy publi-
cation cf all significant details of the particular implementations used

in the comparison, bty increasing the number of test problems and starting

points, and by .vstematic experimentation to determine the effects of
variation in the significant parameters of each method.

The difficulty posed by (1)ic more complicated, because there is
simply no universal measure of performance for an optimization algoritim.
Assuming that the methods do not fail, the relative merit of different

algoritims iS entirely dependent on the characteristics of the problem

tc be solved. Therefore, the gquestion f which algorithm is “best” car,-
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not be answered without some quite specific assumptions atout the probtlem
in question.

For example, it is sometimes stated that. the measure of comparison
should be the number of "equivalent function evaluations” required for

convergence, where a gradient is considered to be worth n function eval-

) . . n{n+1) . . .
uations, and a Hessian is counted as <2— function evaluations . This

weighting is obviously derived from the notion of using finite differences
to approximate the gradient and Hessian, and It might be a reascnatle
measure if these proceaures were always followed. However, it is non-
sensical to impose this standard to compare algorithm on a problem where
the gradient or Hessian can be evaluated much more rapidly than one would
expect from the finite difference analogy. FOr such a problem, the num-
ber of "eguivalent function evaluations' is highly misleading

A similar criticism can 're made when the compariscn is based on the
elapsed computer time. There are obvious defects in using this measure-
ment to compare different implementations of algorithms, because cf the
very large variation in execution time that depends on festures of the
particular computer, the compiler, and program structure, rather than on
the methcd itself. A more fundamental inadequacy is that this measure
does not distinguish between the time spent carrying out the fixed pro-
cedures of each method, which normally depend only on the dimensionality
of the problem, and the time required to evaluate the problem functicns.
If the problem functions can te evaluated rapidly, a naive method with a
small amount of housekeeping per iteration may appesr "better" than a
more powerful and robust method, since the former might use less computer

time, despite requiring many more iterations and function evaluations to

schieve the degired accurscy. However, the compariscn would be reversed
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if the time spent calculating the problem functions completely dominates
the program overhead, since in this case a saving of computer time will
result from using the more sophisticated method that converges with fewer
function evaluations.

A further factor worth emphasizing is that the ineclusion of safe-
guards to ensure reliability and numerical' stability always makes pro-
grams more lengthy and complicated, so that the "simplicity” of a prcgram
may merely imply that it is non-robust. The problems in a compariscn
should include examples\that pose as many difficulties as possible, in
order to determine the weaknesses of the methods tested. Otherwise, a
program where care has been taken to protect against failure and insta-
bility may seem t0 te less desirable than a naive unsafeguarded procgram
that might fail completely on some examples.

Given these considersticng, the comparison tc be given here is not
ciaimed t0 be comprehensive. Rrther, the emphasis hzs been to examine in
detail the behavior of each method, and to highlight the significant corn-
putational differences in the theoretical algorithm.

For each algorithm, the work per iteration will be discussed, in
terms of a description of the numerical procedures followed, including
relevant functions of dimensionality. The following information will be
given for each test example:

(1) number ¢f iterations;

(2) number of evaluations of F and {c1};

(3) number of evaluations of g and {aa};

(4) numker Oof evaluations of G and {Ga}.

In any given comparison, all algorithm use the same termination criteria,

and the free parameters associated with the analogous steps of eacn method




are th: same (for example: the criteria for terminating tne linear
search).
5.2 Choiee and Implementation of Algorithms

Choice of Methods

The algorithms implemented were selected to form a reasonably gen-
eral set of approaches to solving nonlinearly constrained optimization
problems; however, certain classes of algorithms were excluded a pricri.
For example, Linearly constrained Lagrangian algorithms can eazsily be
made to fail iFf implemented in precisely the forms given in Section 4.8;
these algorithms can be varied to improve robustness -- e.g., by adding
a feature to enforce decreasing infeasibility, ty re-formulating an un-
bounded sub-problem -- but such modifications are not the primary concern
in this dissertation. A continuous augmented Lagrangiasn algorithm IS not
included because of the drawback that second derivatives of the protlem
functions are required to use a first-order technique to solve the un-
constrained sub-problem (see Section L.5).

A class of algorithms not considered here is that of "generalized
reduced gradient™ acd "projected gradient™ methods (see Rcsen, 1961;
Abadie and Carpentier, 1969; Sargent and Murtagh, 1973; Lssdon et al.,
1974). Especially in their latest forms, these methods have strong
similarities t0 algorithms that solve a quadratic program to obtain the
search direction. The main distinguishing feature of such algorithms is
the incorporation of special steps to retain feasibility; these steps
have the effect of generating a sequence of iterates that 1ie close to
the boundary cf the feasible region.

The following methods were implemented:
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(1) For the genersi nonlinearly constrained problem
(a) quadratic penalty function method (Section 2.2);
(b) sequential augmented Lagrangian method (Section 4.3);
(c) progressive augmented Lagrsngian method (Section 4.4);
(a) penalty trajectory method (Section 5.4);
(2} For problems where strict feasibility is to be maintained
(a) logarithmic barrier function method (Section 2.4);
(v) barrier trajectory method (Section 5.5).
Algorithme with Un::onstrained Sub-problem
A single basic program structure can te used to implement all the
algorithms involving an uncoastrained sub-problem at each iteration,
since the search direction may be computed using one of the methods for
unconstrained cptimization described in Section L.4. Two unconstrained
algorithms have beer, used in the programs -- a Newton-type method, and a
guasi-Newton methcd. With either of these methods, the search direction

is generally given ty the solution of a system of linear equations of the

form:
Bp = - b, (6.2.1)

where t is the gradient of the function to te minimized. pa Newton-type
algorithm implemented (see Gill and Murray, 1972a) overcomes the deficien-
cies Of Newton's method (see Section 1.4) by always using a positive
definite matrix B in (6.2.1). The matrix B is obtained by attempting to
form the Cholesky factorization of the exact or approximated Hessian of
the given function. As the factorization is computed, it is possible to
determine whether the original Hessian is strictly positive definite.

If so, the unaltered matrix serves as the matrix B in (6.2.1). However,

if the Hessian is indefinite or not sufficiently positive definite, the
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matrix actually factorized is the am of the original Hessian plus a
pcsitive diagonal matrix, whose elements are chosen so that the modified

matrix is guaranteed tO0 be positive definite.

The implemented quasi-Newton algorithm is a "revised quasi-Newton
method” (see Sill and Murray, 1972b), in which the Cholesky factors of
an approximation to the Hessian are updated at each iteration, and the
resulting positive definite matrix serves as B in (6.2.1).

In a barrier function algorithm, the search direction at each iter-
ation is chosen by sclving the usual set of linear equations. However,
the need to maintain strict feasibility leads to additional logic in the
program structure -- for esample, the initial step taken during the lin-

ear search is estimated by a special method (see Section 3.3.1).
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Form of Unconstrained Function

For simplicity, the notation to be used during this discussion will
be that of the equality constrained problem, P1L. The observations to be
given will apply to the sane methods for the inequality constrained pro-
blem, P2, 'cut with an explicit determination cf the "active set" of con-
straints at each point. Therefore, multipliers correspond only to "active"
constraints, and only "active" constraints ere included in any penalty
term.

For a penalty function method, a sequential augmented Lagrangian
method, and a progressive Lagrangian method, the unconstrained function
to be minimized at every iteration has the form of an augmented Lagrangian
function:

F(x) - AT elx) + 2£ C(X)T e(x).

With a penalty function method, the vector A is always taken as
zero. The value of p is fixed throughout each unconstrained minimization,
and successively increased until suitatle convergence criteria are satis-
fied. In a segquential augmented Lagrangian method, the vector A is the
current estimate cf the Lagrange multipliers, and is fixed daring each
complete unconstrained minimization. The parameter p is fixed during
each minimization, and may be increased if there is insufficient decrease
in infeasibility,

With a progressive method, the vector & is updated or re-computed at
the beginning of each iteration (or with scme other fregueney). The par-
ameter p in a progressive algorithm is increased if neither Hc” nor

Hg—AAH decreased sufficiently during the preceding iteration; however,

some other criterion for modifying g can also be used. It should be em- L

phasized that in a progressive algoritia, each step is directed toward




S

winimizing a different function, since in general A will vary from
iteration to iteration. Therefore: the use of a guasi-Newton method to
approximate the Hessian may be questionable if the multiplier estiaates
and/cr- penalty parameter are changing rapidly.

Calctulstion cf Multiplier Estimates

The first-order estimate of the Lagrange mult pliers at a point is
given ty the least-squares solution of mix{ Hg~Ak, This problem is -
solved through the implicit calculation of the orthogcnal factorization
of A (see Peters and Wilkinson, 1970, for complete details). A sequence
of Householder transformations is constructed, to be, applied on the left
to reduce A to upper-triangular icrm. Each transformation may be stored

as a vector.

If the matrix A is not of full. rank, many of the frequently propcsed

formulas TOr computing the multipliers will fail iéljgtr example, the ex-
-1 T . . . T

pression (ATA) “A"g is undefined if A is rank-def . When solved by

use of orthogonal transformations, a least-squares solution can still be

defined, although it is not unique. However, Its interpretation as a set
of multipliers is not completely straightforward.
Higher-order multiplier estimates are computed as the least-squares
solution of
AX = 8% + g, (6.2.2)
where S IS an approximation to the Hessian of the Lagrangian function,
and "15 is the solution of the quadratic progrsmming problem:

1T T
min 5 P Sp + D g {6.2.3)

subject to ATp = -2,
The solution ¢ is computed 3s the sum of two orthogonal components, as
described in the next section for the trajectory search direction. The
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motivation for this definit
4.3.

Program Structure for

ers 1s given in Section

ion of the multipli

Trajectory Algorithms

The search direction,
as the sum of twc crthogonas

simplify the notation, the

p, Tor the trajectory algorithms is computed
1 components, as described in Chapter 5. To

discussion will concern primarily the penalty

trajectory algorithm for equality constrained problems.

We shall consider in detail only the case where the matrix A is cf

full rank. The estimate of

right-hand side of the line

the multipliers, A, required to define the

ar equality constraints, is given by the usual

least-squares solution of min Hg—AAHZ at the current point.

To compute the matrices Ql and Z, the explicit product is formed of

the sequence of orthogonal

transformations applied to A to solve the

least-squares probtlem. The resulting n by n orthogonal watrix Q is such
thet .
- 1‘.
SRl om
N
QA = O ,
0 & n-m
. - -J
or, equivalently,
T [N T
A" = AN Q (the "1Q" factorization of 4 ).
L } L\\, O‘J

The matrices Ql and Z

be rartiticned sdch that

Q= Qf
ZT

then
s

can be cbteined from partiticning Let @

~
.

o

U

B an
]
PN ‘ !
=L~ ©
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and Ql and 7 saticfy the required properties.
The component of the search direction in the range of A, leR, is

unique ., determined by the linesr egualities of the trajectory algorithm:

ATP = ~C =

o >

J
gince, by construction of Ql,

T B _ A £ o)
A"Qpg = Ipg = -¢ -~ 3 (6.2.4)

and L is non-singular. The vector Pp is thus the unique solution of the
m by m linesr system (6.2.4).

The vector pN ie the sclution of & linear system of the form:

ZTSZpN = -Zw , (6.2.5)
for some matrix S and vector w. The matrix S is normally en eapproxi-
mation to the Hessisn of the penslty or Legrangisn function. If zecond
derivatives are availsble, the metrix ZTSZ can be formed explicitly. If
only first derivatives sre avallatle, the matrix ZTSZ can te epproximated
directly by differencing the appropriate gradients slong the (n~m) col-
umns of 7; this procedure requires only (n—m) gradient eveluations,
rather thsn the n gradient evelustions generally needed to form 2 finite-
difference approximation to the full Heseian. The linear system (6.2.5) is
solved bty a modified Cholesky elgorithm (see Gill and Murray, 1972a); if
the criginal matrix is not sufficiently positive derinite, the algorithm
forms the Cholesky factors of a perturbed matrix that is guarantees to
be strictly positive definite.

For the trajectory algorithms for inequalities, the above procedure
is also followed to compute the search directicn, except that only the

"aetive" constraints are included in the definition of the linear equaiity

constraints.




When the matrix A is not of Ffull rank, the matrices Q1 and Z may
be obtained from the trsnsformations applied to A, btut their dimensions
will be altered.

Linear Search

The linear searches in all the non-feasitle methods are the imple-
mentations by Gill and Murray (1974a) of safeguarded step length algo-
rithms, based on either cutic or parabolic interpolstion with safeguards
to assure termination and stability. The feasible methods use special
line searches for the 1ogarithmie barrier function, which are the step
length algorithms mentioned above, including the option of fitting appro-
priate special functions rather than polynomials (see Chapter 3).

Active Set in Barrier Trzjectory Algorithm

The current procedurs for choosing the initial "active™ set in the
barrier trajectory zlgcrithm is the following, where m represents the
number of '‘active' conctrazints, and | denotes the set of indices of the
"active" constraints.

M «0; I «¢ (null set); v, < usuai initial step to

be taken along trajectory search direction;)

while m < n

repeat ¢
(1) compure the trajectory search direction, p, with the set
I of active ccnsrraints;

(2) for all i € 1, compute T, the index for which § = @y =

1
-c,
min / =
iel ;\a?p
T
aip <0

a; is linearly independent of {aj}, Jel .

If alp 3 i
i¥ > C for all iel, exit,
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NOTE: This procedure yields @ as the first-order estimate
of the smallest positive step z2long p t0 & zero of
a currently "inactive' constraint.
(3) If o < o, A«1U{%); wen+ 1;)

\
/

The "active set” msy be updated at every iteratiocn, based on the

!

following general criteria. If any "inasctive"” constraints are violated

during the linear search, the one violated nearest to the starting point
is added to the "active -set”. A check is also made to determine whether
any ''inactive™ constraint is becoming "small", or whether any allegadly
"active" constraint is bounded away from zero. Tnese tests are obviously
highly dependent on the current value of the barrier parameter, and cn
an implicit scaling (i.e., the definition of "small™).

At the beginning of each iteration, the multiplier estimates are

" If any of the estimated multipliers sre

computed for the "active set’
negative, the constraint corresponding to the most negative multiplier
is deleted from the sctive set- As mentioned in Section 5.5, the usual
definition of the trajectory search direction should not apply if the
predicted multiplier ic negative. Only one such constraint is deleted
per iteration, following wWhicn the multiplier estimates are updated for
the reduced active Set. The specification of aiTp for any constraint
with a negative multiplier in the modified set is set to (-e) for neg-
ligible E.

The ultim=te decision about the active set must be determined by
the constraint values, rather than the signs of the multiplier estimates.
Along the trajectory of a barrier function method, the gradient of F is

always a non-negative linear combinatic, of all the constraint gradients,
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SO0 that the distinction between "active" and "inactive" cannot be based
on the signs of the estimated multipliers.

General Notes on Programs

The programs are written using MORTRAN, a FORTRAN language pre-
processor developed@ at the Stanford Linear Accelerator Center (see Cook
and Shustek, 1975); the code actually executed is written in ANSI FORTRAN.
A1l runs were made on the IRM 360/91 or 370/168 (the Triplex System a't
SLAC), with double precision arithmetic throughout, i.e., machine pre-

13, or 2.220 x 10_16, with a range for floating point nua-

cision is 16

bers of (5.4 x 10-79, 7.2 - 107).

6.3 Discussion cf Test Problems

The set of meaningful test problems in the literature is very small;
although some previously published examples are included, it was felt
necessary to generate some new examples as well. The results presented
are typical of those obtained on a wider group of problems, with varied
starting points and parameters.

Examples with a large number of linear Constraints were deliberately
not chosen, because many algorithms are available to take explicit advan-
tage of known linearity in the constraint functions (see Gill and Murray,
1972a; Gill and Murray, 1974%b). Furthermore, linear constraints do
not test the difficulties that arise from varying conetraint curvature
and gradients, and many aspects of the computation simplify greatly in
the linear case (for example, the predicted first-order step to a ccn-
straint zero is exact).

All the results tc be reported are based on implementation; that use
the exact second derivatives of the problem functions. Other programs

have been developed that require only first derivatives (or can approxi-

_2_5-




mate second derivatives by finite differences), but many questions remain
unanswered for some of these methods. FOr example, there is some uncer-
tainty as to the meaning of a quasi-Newton approximation to the Hessian
of a function that changes at every iteration when the multipliers are
re-eomputed. In any case, the results obtained thus far for the gradient

cases are consistent with the trends indicated here.

Each example will be discussed briefly, and any notable features
will be mentioned. In all cases, the number of iterations is equal to
the number of Hessian evaluations, so that the latter will not be listed

separately. The parameter 7) is the criterion for terminating the linear

search, and is defined in Section 3.3.

6.3.1 Non-feasible Methods

The sequential augmented methods use the zero vector as
the initial approximation to the Lagrange multipliers, so that the
first minimization of the sequential method Is identical to that of
the penalty function method.

The first-order multiplier update for the sequential
methods is given by the Hestenes/Powell correction described in

Section 4.3; the first-order multiplier estimate for a progressive

method is the least-squares solution of min ||g-M ]2, Tre second-
order multiplier update and estimate are described in Section 6.2. v
The linear search parameter 1 is 0.5 for all the non-
feasible methods. Each unconstrained sub-problem terminates when
the gradient of the unconstrained function satisfies ||grad|| < 1077,
final convergence is attained when ||c|| < 10~ for the active con-

straints.
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min X1X22
subject to
cl=x§—x§+220.
x* = (-.816497
-1.15470)
A¥ = (.816497)

This two-dimensional example is included so that the convergence
paths for different metﬁods can be plotted (Figure 6.1). of particular
interest is the fact that the point located by the sequential algorithm
after the initial minimization is not on the "penalty side" of the con-
straint.

-

Example 1

stert (.5,.5)

Functions ani

Iterations Gradients__
Penalty Method:
g = 1. 6 8
10 4 4
16° 3 3
10 2 2
lOJ 2 2
1 a A




Functions and

Tterations Gradients
Sequential Method,
First-order multiplier update:
: p= 1.0 6 8
= 5 5
4 L
o =10 3 3
2 2
1 1
TOTAL - e e 2 .. 2k
Proaressive Method
First-order muLtipiier estimate -
p=1 g

Tra jectory Method: 6 7

i g S A
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First minimum
of Sequential
Method starting

/' & &

/’ at x*(1)
/ /
// \\\\ .
et g N
ake
) Second =
/ Trajectory Method  y\picimim UL Boundary
/ of g \'\\\ of feasiblz
/ Sequentia Method _ % \ region
Z’//ﬂ/"ﬂ/ B /’\\ \ //
e .
X( 10) -
7/
~
/
/
/
/

/

Trajectory of quadratic
penalty function

FIGURE 6.1
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:

EXAMPLE 2:

2 2 2 . )
min 1000 - X, " 2X2 - x3 X %, xlx3

subject to

= X. 4+ X, + X
c, Xy + %, 3

c. = Bx, + lhx2 + 7x3

1

xi> 0, i=1,2,3

(3.15121
- 2160988

3.55217)
(-1.22346
- .274937)

"
*
i

A¥

[l

F(x*) = 961.715
This example has been published in several comparisons (see
Himmelblau, 1972).

Example 2(2)
Start (10,10,10)
Functions and

Iterations Gradients
Penalty Method :

o = 102 1h 15

103 3 E

134 2 2

10 1 1

:lD(3 1 1

10 —L L

TOTAL _ ) 23
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Functions end
lerstions Gradients
Sequential Method,
First~order multiplier update
o = 10° 1k 15
3 3
._..._};_. _.._.]-l_
TOTAL 18 19
Progressive Method,
First-order multioglier estimates
077 14 15
p =
Trajectory Method 11 11
Exemple 2(B)
Start (-5,-10,5)
NOTE: TFor all except the first minimizetion, the results for
the penalty and sequential algorithms are the same as in Case
2(a).

Penalty Methcd
2

P = 10 29 36
10° 3 3
16 2 2
107 1 1
100 1
0 _1 1
TOTAL 37




Functions end

Tterations Gradients
Sequential Method,
First-order multiplier update
3 3
1 1
TOTAL 33 40
Progressive Method,
First-order multiplier estimates
po ]
(p = 207) 29 34
Trajectory Method 12 13
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FXAMPIE 3:

This example was given by Powell (1969), and has since been quoted
by & number Of authors (see Fletcher, 1970; Glad, 1973) .

The problem, as originally formulated, involves minimizing
. ='X1X2x3xhx5; however, the resulting penalty function is unbounded
below (see Section 2.3}, so that the objective function is transformed,

as follows:

e XX %% X
subject to
e, = x2x3 - 5xhx5 = 0
c3 = xi + x23 +1 = 0
The solution ususlly given is:
x¥ = (-1.7171k
1.59571
1.82725
- 763643
- 763643)
A¥ = (- .0kor627
.0379578
- .00522264)
F(x*) = .0539499

This example is of some interest because it is normally used to
demonstrate the success cf an augmented Lagrangian algorithm for a
modest value of p. As discussed throughout Chapter 4, the penalty terra
of an augment=d Lagrangian method is designed to ad3 positive curvature

in the range of A(x*), so that the Hessian of

ot

he augmented functilon,
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W(x*) + pAAT, is positive definite.
For this exsmple, the eigenvalues of G(x¥, wre (.0hoL, .0576,
.2701, and 1.575); the eigenvalues of W(x*) are (.0887, .1607, .1633,

.2263, and 1.811). Therefore, the Hessian cf the Lagrangian function

is positive definite at x*, and the penalty term is not even needed -

.- e .
add positive curvature.

Example—3{A)

Start (-2,2,2,-1,-1)
Note that this starting point is very clcse to the solution.

Functions and

Iterations Gradients
Penz 1ty Method
p = | 7 7
10 3 3
1¢ 1 1
1C 1 1
10" 1 1
TOTAL 13 13
Sequential Method,
First-order multiplier update
(p=1) 7 7
2 2
1 1
_L 1
TOTAL 11 11
Progressive. Method,
First-order multiplier estimates
(p = 1) 8 8

o e ot o - = Mo e S an R o e em AR e e e o A e R e M e e e e e e




Functions and
Jterations gradients

Trajectory Method 6 6

Example 3(B)
Start (-1,-1,-1,-1,-1)

2
Here, the initial penalty parameter was set to 10 , making the
first minimization more difficult.

Penalty Method

p = 10° 16 17
103 N 1 1
L
10 I 1
TOTAL 13 19

o= o s e = m e e e e e Ae Ak wm e e G e e e A e e e e o ome

Sequentiail Method,
First-order multiplier update

p = 10° 16 17
1 ’ 1
TOTAL 17 18
Progressive Method,
First-order multiplier estimate
(p = 100) 18 19
Trajectory Method 6 7

Example 3(C)
Start (-2,-2,-2,-2,-2)

With this starting point, a second locsl minimum was found.

x*¥ = (- .699050
- .869952
-2.78992
- 696721
- .696721)
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A¥ = (-.00437092
.131433
.310998)
F(x*) = 438851
This example illustrates the possible danger of relying on second-

order multiplier estimates throughout, even if exact second derivatives
are available. As mentionea in Section 4.8, the quadratic programming
sub-problem on which the second-order multiplier estimates are based may
have little meaning far from the solution. Sgme criteria must be de-
veloped to decide when‘the current iterate is "close enough" to rely on
the second-order multiplier estimates. Note that the sequential method
with a second-order multiplier update converges in one step after the

initial minimization, so that the second-order estimate is of great

value close to x*.

Functions and
8I'a

Iterations ients
Penalty Method
_ 2
po= 10 59 82
1 L 4
16' 3
105 1 1
106 1 1
107 1 1
Sequential Method,
First-order multiplier updates
(p = 10° 59 82
3 3
>
TOTAL 63 86
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Progressive Method,
First-order multiplier estimate

- - A - W R e P D e A e G e R e

Sequentia 1 Method,
Second-order multiplier update

Progressive Method,

Second-order multiplier estimate

e e~ - - e R

Functions and

Iterations Gradisnts
59 82
59 82
L r
60 83
62 102

(not converged; finel point wass
not even close to solution)



EXAMPLE 4:

- ]
min (xl-l)2 + <X1-X2)2 + (x2-x3)3 + (XB—XM) + (xu—x5)u

subject to

C. = X.4X xﬂ3-2-3 J2 =0

2
c, = Xpxgo + x)+2-2 /2 =0

2 2

03 = XlX5'2 = 0

This problem is a modified version of an example given by Miele et

al.(1971). Four differefit local minims have been determine6 .

(1) =1 - (111663

1.53779
1.97277
1.79110)

px(1) ( .0641296

[

.353202
-.0214797)
F(x*(l)) = .0293183.

The eigenvalues of W(x*(l)) are (-2.49, .208, .605, 4.10, 5.09), sco
that W{x*) is not positive definite. The eigenvalues of W + 10 AL are
(.538, 2.10, 40.3, 50.8, 646.0), so that p = 10 is sufficient tc assure

(1)

positive curvature at x*

T
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(2) X*(e} . (-2.79087
3,00414

205371
3 .87hTh

- .T16623)

A*<2) = ( 92.2563
584 . 778
138.722).
F(x*(g)) = 607.036.
(2>) are (-202.1, -88.25, 139.3, 585.6,

The eigenvalues of W(x*

1233.0), so that W(x*) has two negative eigenvalues. The eigenvalues

of W + 10 AAT are (-54.05, 132.7, 208.9, 619.1, 1237.1), so that p = 10

is not sufficient to make the augmented Hessian positive definite &t x*

The eigenvalues of W + 100 AAT are (43.81, 372.1, 1103.0, 1287.0, 3621.0),

so that p = 100 is sufficiently large.

e

i

( -1.27305
2.41035
1.19486
- .15Lk239
-1.57103)

(3

a#(3) o (212527
1.55380
8.93568)

pex 3= 27.8719
(3)) ore (-6.75, 2.68, 7.23, 24.2, 68.7).

The eigenvalues of W(x*

The eigenvalues of W + 10 12T are (8.09, 28.6, 5.1, 110.0, k0.0).



[}

) M o (- 703393

2.63570
- .0963618
-1.79799
-2.84336)

)\*(h) = ( 8.38670
-15.1290
6.49642)

p(xx()= 44,0221,
The eigenvalues of‘W(x*(“)) are (-14.1, .818, 8.26,21.0,75.2) .

The eigenvalues of W * 2T are (1.47,17.7,75 .6, 8.6, 303.0)




Exampie 1t(A)

Start (1,i,1,1,1)

With this starting point, all methods converged to the local mini-

mum x*(l).
Functions and
Iterations Gradients
Penalty Method
p = 10 1k 17
1C 3 3
10& - 2 2
1C 1 1
106 1 1
107 1 1
TOTAL 22 25
Sequential Method,
First-order multiplier update
(p = 10°) 1 17
2 2
1 1
_1 _1
TOTAL 18 21
Progressive Method,
First-order multiplier estimate
(p = 10°) 14 17
Trajectory Method 11 19

o o s e - am S S e T e A A R M e e e e o e e A e 0 e o O
— - - - o e A e e T e W e
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Example 4(B)
Start (2,2,2,2,2)
(1)

A1l methods converged to x*

Functions and

lteratigns __Gragients
Penalty Method.
p = ZI.C)2 15 18
103 3 3
104 2 2
10° ) 1 1
106 1 1
10° 1 1
TOTAL 23 26
Sequential Method,
First-order multiplier update
(p = 102) 15 18
2 2
1 1
1 1
TOTAL 19 22
Progressive Method, | TTTTTTTTTTTTTTTTTTTTTTTTTTIT
First-order multiplier estimate
(p = 102) 15 17
Trajectory Method 11 12
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Example 4(C)
Start (-1,3,- é,-E,-B)
Here, the progressive and trajectory algorithms converged to X*(M,
while the penalty and sequential algorithms converged to x*(B). The
local advantage of the second-order multiplier update is displayed for

the sequential method.
Functions and

Iterations __Gradients
Penalty Method
p=10° . - 14 2
10 4 4
10, 3 3
10° 3 3
106 1 1
107 1 1
10° 1 1
TOTAL 27 33
Sequential Method,
First-order multiplier update
(p = 102) 14 20
3 3
2 2
_1 _1
TOTAL 20 20
gggounedn—tg?clie“rﬂer%hl? Ft’iplier update 1k 20
—2 —&
TOTAL 16 22



Functions and

Iteration Gradients
Progressive Method,
First-order multiplier estimate 11 12
(converged to x*' /)
Trajectory Method 11 11

(converged to x*(h) )
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Example 4(D)

Start (-1,2,1,-2,-2)
. With this starting point, the progressive method converged to x*(h)

(3) ’

while the others converged to x* Again, the improved local con-

vergence of the sequential method with a second-order multiplier update

is seen.
Functions and
Iteration ——Gradients
Penalty Method
p = :I.O2 . 12 17
100 4 4
4
10 3 3
107 3 3
ZI.O6 1 1
107 1 1
:I.O8 1 1
TOTAL 25 30
Sequential Method ,
First-order multiplier update
(p = 10%) 12 17
3 3
2
1 1
TOTAL 18 23
Sequential Method,
Second-order multiplier update
12
(p = 10%) 17
o 2
TOTAL 1 18

S o A G N et -, . - A et Am A S A A A e e Ay e A M e e s A e S En e e v MK me e = A



Functions and

Iteration " Gradients
Trajectory Method 11 17
Progressive Method,
First-order mult%g}ier estimate
(converged to x*\7/) 13 20

Example 4(E)
Start (-2,-2,-2,-2,-2)
With this starting point, all methods converged to x*(e) , except

(4)

for the trajectory algorithm which converged to x* The sequential
algorithm with first-order multiplier updates increased the penalty par-
ameter to 104, whereas p remained at lO‘2 for the sequential method with
second-order multiplier updates.

This example illustrates the impediment to convergence of a progressive
algorithm posed by the accuracy of the multiplier estimate. The progressive
method with first-order multiplier estimates had reduced Hc” to 5 X 10—3
by iteration 33; but the next 24 iterations display slow linear convergence

to x*. n the other hand, the progressive algorithm with second-order

multiplier estimates converges rapidly.
Functions and

Iterations Gradients
Penalty Method
p = 10° 11 15
10° 6 6
14 4 4
10° 3 3

B

10 1 1

108 1 1

107 L _
TOTAL 29 33




Tersttions Gradients _

Sequenti a1 Method,
First-order multiplier update
(p = 10%) 1 15
4 4
3 3
(p = 104) 3 3
2 2
1 1
1 -
TOTAL 29 33
Sequential Method,
Second-order multiplier update 11 15
3 3
2 2
TOTAL 16 20
Pipgtesshes MatiePlier estimates 57 61
B -3 . .
(|e]| =5 5107 at iteratiop 33)
ggé’%rl;g?air\é%r'\ﬂrﬁmq(?blier estimates 11 - 13

Trajectory Method
(converges to x*(u)) 22 ~ 36

- . A o . - - A o o m R o S M Gt M= W A Wn  Rw mn e S S e e
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6.3.2 Feasible Methods

The unconstrained sub-problem for the barrier functicn

method terminated when ngadHS 10-5; the overall convergence criteria

was that HGHS 107 for the "active” constraints. The evaluations of
the objective function and constraints are listed separately, because the

objective function is evaluated only at feasible points. The linear

search tolerance, T, was 0.2.
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EXAMPLE 2:
. 2
min X, X5
subject to

c4 =-xl -x2 +2.0> 0

x*¥ = ( -.816497
-1.15470)
A¥ = (1 .B16L9T)

This example is the same as example 1, and was selected so that the
convergence paths could be plotted. The results illustrate how the usual
barrier function algorithm can be “caught” near the boundary of the Teas-
ible region, far from x*, and be forced to take wany small steps close
to the boundary.

Example 5(A)

Start (-1.0,-.7)

Figure 6.2 displays the steps taken by the barrier function method .
and the trajectory method. ; j
Obj. Functions Constraints :
Iterations and Gradients and Gradients |
Barrier Function Method
r=10° 2 42 55 ]
1072 3 3 3 e
10'4 3 8 8 ]
107 2 2 2 | J
107 1 -1 1
TOTAL 28 56 69
Trajectory Method 4 6 7

B e e v s o S T PV Am v R e . dt fem e . o e e M T P b o o W = - " o~ - A A P G em e e - - o -




Path of Start
a O
Usual Barrier /

Function Method _

e

Path of
Barrier
Tra jectory
Algorithm

X*

FIGURE 6.2
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Example 5(B)

Start (-.8,- .6)

Figure 6.3 displays the paths taken to x* for this startiné point.

Obj -Functions con4dtraints

Iterations and Gradients and Gradients
Barrier Function Method
r = 1072 19 39 %52
1073 2 3 | 3
2 8 8

107 _2 _2 L2
TOTAL 25 52 65
Trejectory Method vy s 7
_______________________________________________________________ dmm e




Path of usual -
Barrier Method s

\/ ~
s
s

i

/
i
i

|

FIGURE 6.3
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inx 2 tx 4o, tx S5x, = 21X + 7
- - X -
subject to
2 2 2 2
== - - - - + 0
¢y =Xy X5 Xy x4 X T X, =
2 2
€2 = -x1 = 2x, - X3m - 2x + X2 0
2 2 2 _
o, = -2x, =% %" "o tx, 20
3 1
This example is due to Rosen and Suzuki (1965) .
x* = (0.0
1.0
2.0
- 1.0)

Constraints cland c3 are active, so that I = {1,3}; a* = (1.0,2.0).

Start (‘0,0,0,0) Obj .Function Constraints
Iteration and Gradients and Gradients

Barrier Function Metho




TWVAMDTT =

EXAMPLE 7.
min exlx2x3thx5
subject to
cl = —xlz - x22 _ X32 - x-qz - x52 +10=0
c2 = Xo¥kg " 5xux5 =0
e :_xls_x23-120

3

The problem here #s the same as Example 3, the Powell exponential,
with the constraints converted to inequalities to correspond to the signs
of the multipliers. The starting point is chosen very clcse to the so-
lution in order to assure that ali three constraints are active. |t
should te noted that the exponential transformation is not necessary for
the feasible methods, and was retained in order to facilitate comparison

among the algorithms.

Start (-1.74,1.61,1.81,-.7,~.7)

Obj.Function Constraints
Iterations  afit- Gradient dafd GrEdisiis

Barrier Function Method

r = 1072 7 9 9

10 - g g J

107" 5 8~ 8

107 L 6

1076 " 6 6
07! . & 6

TOTAL 30 Ly LY
Trajectory Method 9 : 10 11

- okl -
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EXAMPIE 8 g
This example is called the "hexagon" problem (see Murray, 1969a).

It involves maximizing the area of a hexagon, rnc two of whose vertices

are more than one unit apart. The constraints are derived from this re-

quirement, and from the problem geometry, which is represented in Figure

6.4.

Hexagon Problem:

min - 22'(x2x6 - X1X7 + X3X7 + X59(8 - XLLX9 - XSKB)

subject to
T2
¢y = 1 - X7 - X, =0
. 2 2
c, =1 - (Xe-xl) - (x7-x6) >0
2 2
0351—(x3-xl -xg 20
2
c, =1- (xl—xu)2 - (x6—x8) >0
c5 = 1 - (xl—x5 2 (x6-x9)22 0
: 2 2
cg = 1 - Xy - X7 =0
c7 = 1- (XB-XE ){72~ 0
cg=1- (xh—xg)Z (x8-x )2= 0
09 = 1- (X2-X5)2 - (x7-x9)22 0
10" 1- X32 =0
e 1 (ryx)” - xg 2 0
2 2
¢ = 1 - (X5—X3) - %g >0
2
013=1-XA-X820
¢, 1 - (Xh—x’j)g - (x9-x8)2 = C
. _.2_ 2
c15 1 X5 x9 =20
Ci6” xlé 0 sy x3 - xgé 0
Cl7= X62 0 C22= X)+ - X5 = 0
ci8= x5 =0 Coy™ -Xg >0
cl9= Xy = X 2 O Coy -X92 0
c2o_x720 025= x3 -x4.>_0
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x¥ = ( .257355
.580129
100000
194057
156229
. 235929
.396006
- 607843
- .536703) ~
The active set I = {4, 8,9, 10, 12, 13},
and A*¥ = ( .171886
.0415920

.160131

160131
.099649
.0415920)
F(x¥) = - .674981
(max. area = .674981)
Figure 6.5displays the optimum configuration found (there are

other equivalent arrangements that produce the same maximum ares).
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11 1 1 1 1 1
Start (1’6) 'g: '6; 7: '9_7 '5_) e

1

Ly

5 "1

Obj .Function
and Gradient

Constraints
and Gradients

Iterations
Barrier Function Method
r =102 15
1073 10
107t 7
107 8
1070 8
077 5
TOTAL 53

27
16

36
17
10
1k
16
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EXAMPLE 9:

min ]'OX]_XM - 6x3X22 +x Xl3 +9 sin(x5-x3) + XS%(42X23

2
subject to
cq= -x12 - x22 } x32 _ Xh2~ x52 +20= 0
¢y = x12x3 + XsXg + 2 >0
) = ngxl; + lOXlx5 -5 >0

This example provides ample illustration of the need to try diff-
erent starting points. -The behavior of the algorithms alters dramati-
cally in this case, depending on the initial point.

The results for this example were obtained with an earlier version
of the linear search, where a less efficient procedure wae used to
obtain the next step if a constraint is violated during the linear
search; the number of constraint evaluations could no doubt be reduced

with the improved procedure described in Section 3.3.

Example 9(A)

Start (1,1,1,1,1)
Both methods converge to the following local minimum:
#(1) o (osuisze
3.69238
2.487h1
377134
.173983)

Constraints Cq and Cy are active, so that 1 = {1,3}, and

x*(l) = (15.2198, .784830).
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Obj .Function Constraints
Iterations and Gradients and Gradients

Barrier Function Method

r=1 40 47 [

10” 12 1h 16

10° 8 12 13
107 _5 _9 10

TOTAL 65 82 11k
Trajectory Method ) 20 34 ko

- . - - . - " o S e v e e S A e e e e e e e T S e e e AR M e B Y WS SR MO e MR R em M e M e Am e R e mm WA e G e P e B

Example 9@3)

Start (1.091,-3.174,1.214,-1.614,2.134)

This starting point is close to the constraint boundary, and the
usual barrier algorithm exhibited the phenomenon of being "caught" nea
the boundarv for hundreds of lterations. Both methods converge to the
following local minimum:

x*(g) = ( 1.k7963
-2.63661
1.05467
-1.61151
2.67338)
Constraints 1and 2 are active, sothat I = {1,2}, and

2 *(2) _ (531,963, 23.3609).
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Obj .Function Constraints
lterations and Gradient and Gradienis

Barrier Function Method

r =1 306 619 819
107t 7 7
4 6
1072
S —2_ 9
TOTAL 317 627/ 837
Trajectory Method ) 104 343 439

When the trajectory algorithm was started at x*(1), it converged

to x* in 6 steps, with 6 function and constraint evaluations,

compared to 11 steps, 18 function and constraint evaluations,

for the usual barrier function methods.
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CHAPTER 7
CONCLUSIONS

The test results presented in Section 6.3 illustrate numerically
most' of the expected theoretical propsrties of the various algorithms.

Augmernted Lagrangian Methods

Some notable aspects of computation with augmented Lagrangian algo-
rithms are:

(1) The local rate of convergence of augmented Lagrangian

methods is restricted to the rate of convergence of the
multiplier estimates (see Example 4(E));

(2) Even "second-order” multiplier estimates may be unreliable

if the starting point is away from the solution (see Example
3(¢));

(3) In general, the progressive augmented Lagrangian methods

display improved efficiency compared with the sequential
methods .

The sequential augmented Lagrangian algorithms have the advantage
that the unconstrained sub-problem can be solved by straightforward
application of an unconstrained method; however, in many cases the se-
guential methods converged no more rapidly than the penalty function
method, because the value of the penalty parameter required for conver-
gence was not large enough to induce serious ill-conditioning of the
Hessian of the penalty function. With the progressive methods, the fre-
quent updating of multiplier estimates and/or penalty parameter makes
direct use of an existing unconstrained method difficult.

For any of the augmented Lagrangian methods, the rate of convergence

of the multiplier estimates is crucial (for details, see Section 4.7).
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Since second derivatives of the problem functions will not in general te
available, an augmented Lagrangian method cannot rely on being =ztle to
compute second-order multiplier estimates. Some recent work has focused
on developing multiplier updates to accompany quasi-Newton methods applied
to progressive augmented Lagrangian algorithms; however, the validity of
the quasi-Newton Hessian approximation required for such updates is
guestionable, especially since the function to be approximated varies
from iteration to iteration.

Trajectory Algorithms

The trajectory methods were consistently successful, and compare
favorably - in some cases very favorably - with the best of the other
methods. The theoretical derivation and numerical results indicate the
following strengths of the trajectory methods as general algorithm:

(1) Their success does not depend on being in a close neighbor-

hood of the solution, since they are based on the properties
of penalty and barrier functions;

(2) Their local rate of convergence is not restricted to the

rate of convergence of the Lagrange multiplier estimates;

(3) A serious difficulty of a general barrier function algorithm

is that many iterations can be essentially wasted in small
steps,close to the boundary of the feasible region. The
derivation of the barrier trajectory algorithm indicates
that it should not be subject to this tendency, and this
expectation has been verified in the examples tested.

(4) Because the minimization sub-problem at each iteration of

a trajectory method is solved in a reduced subspace, the

use of finite differences to zpproximate the projected
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Hessian becomes reasonable for most problems, where the
number of active constraints is a significant proportion
of the number of variables. Hence, a practical second-
order rate of convergence can be attained even when only

gradients of the problem functions are available.
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