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INTRODUCTION 

This d i s s e r t a t i o n  p re sen t s  a d e t a i l e d  d e r i v a t i o n  and d e s c r i p t i o n  of 

a new f e a s i b l e- p o i n t  a lgo r i thm f o r  n o n l i n e a r l y  cons t ra ined  opt imiza t ion .  

The new method i s  based on the  p r o p e r t i e s  of t h e  t r a j e c t o r y  of minima 

obtained by vary ing  the b a r r i e r  parameter of t h e  logar i thmic  b a r r i e r  func-  

t i o n .  

based on t h e  t r a j e c t o r y  of t h e  quadra t i c  pena l ty  func t ion ,  due t o  Walter 

Murray, and t h i s  method i s  a l s o  descr ibed i n  d e t a i l .  

The a lgor i thm i s  c l o s e l y  r e l a t e d  t o  a nonfeas ib le- poin t  methcd 

A d e s c r i p t i o n  is given of pena l ty  and b a r r i e r  f u n c t i o n  methods, and 

of some methods which, l i k e  t h e  t r a j e c t o r y  methods, a r e  based on the  

Lagrangian f u n c t i o n .  

t h e o r e t i c a l  and numerical  comparison of t h e  t r a j e c t o r y  methods w i t h  o the r  

a lgo r i thms .  

methods, s i n c e  near ly  a l l  t h e  a lgmi thms  discussed have been developed t o  

overcome t h e  d e f i c i e n c i e s  of pena l ty  and b a r r i e r  f u n c t i o n  methods. 

T h i s  d i scuss ion  i s  included i n  o rde r  t o  f a c i l i t a t e  

It a l s o  se rves  t o  c l a r i f y  t h e  motivat ion f o r  t h e  var ious  

A comprehensive se t  of programs has been de-$eloped, implementing t h e  

v i a b l e  methods d iscussed ,  and a s e l e c t i o n  of Typica l  numerical  r e s u l t s  i s  

inc luded .  A primary concern i n  t h i s  d i s s e r t a t i o n  :has been w i t h  p r e c t i c a l  

a lgor i thms,  and t h e  need t o  cons ider  methods t h a t  w i l l  converge even from 

a poor i n i t i a l  es-cimate of t h e  s o l u t i o n .  Many “ s o p h i s t i z s t e d ”  a l g o r i t h s  

o f t e n  c r i t i c a l l y  depend on p r o p e r t i e s  t h a t  hold fn a cLose reigh’oorhood cF 

the s o l u t i o n  and, consequently,  may perform poor ly  or even f a i l .  f o r  any 

i n i t i a l  p o i n t  no t  i n  such  a r eg ion .  The experimentat ion w i t h  the  methods 

has, t h e r e f o r e ,  been d i r e c t e d  toward ana lyz ing  t h e i r  g e n e r a l  behavior,  a s  

wel l  a s  asymptot ic  r a t e s  of convergence. 



To t h e  b e s t  of my knowledge, t h e  fol lowing r e s u l t s  a r e  o r i g i n a l :  

(1) The s p e c i a l  l i n e a r  searches  for t h e  logar i thmic  b a r r i e r  

f u n c t i o n  (Chapter  3 ) ;  

All- a s p e c t s  of t h e  b a r r i e r  t r a j e c t o r y  a lgor i thm ( h a l f  of ( 2 )  

Chapter 5 ) ;  

The uniform implementation and t e s t i n g  of a lgor i thms 

(Chapter  6 ) .  

( 3 )  

The po r t ions  of Chapter 5 t h a t  d e a l  w i t h  t h e  pena l ty  t r a j e c t o r y  algori thm 

a r e  based on t h e  work of W a l t e r  Murray, bu t  t h e  a lgor i thm has not  pre-  

v i o u s l y  been presented  i n  t h e  form given h e r e .  



D e f i n i t i o n  of Symbols 

The n o t a t i o n  of t h i s  d i s s e r t a t i o n  corresponds i n  m c s t  cases  t o  t h a t  

given i n  P. Gill and W .  Murray (eds .), Numerical Methods for Constrained 

Optimization, Academic Press, 1974. 

The fo l lowing  d e f i n i t i o n s  a r e  used throughout:  

- a r e a l  v e c t o r  of dimensLon n, g iven  by 

x =  

1 

2 

X 

X 

X n 

2 2 - The Eucl idean norm of a vec to r ,  i . e  ., I 1x1 I = \i x1 + . . .+ x * 

2 ’  

o r  the  induced mat r ix  norm. 

- The s c a l a r  func t ion  of n v a r i a b l e s  whose minimum is  t o  be 

found. 

- The g r a d i e n t  v e c t o r  of F (x ) ,  whose - it5 component i s  given by 

- The n by n Hessian mat r ix  of F ( x ) ,  whose (i, j ) t h  element i s  

a 2F( x )  given by 
l3xia.j - 

- The - i t h  c o n s t r a i n t  funct5on; t h e  s e t  of c o n s t r a i n t s  is sometimes 

represented  by the v e c t o r  c(x>, whGse - i t ’ n  c9mponent 5s given by 

c .  i 

- The g r a d i e n t  v e c t o r  of c . ( x )  . 
1 

- A matrix whose i t h  c o l m n  is a .  (x), the g r a d i e n t  of c .(x) . 
- The n by n Hessian mat r ix  of e .  ( x )  . 

1 1 -- 

1 

- 3 -  



X* - The s o l u t i o n  of t h e  c u r r e n t l y  considered cons t r a ined  o p t h i -  

z a t i o n  problem. 

A* - The v e c t o r  of Lzgrange m u l t l p l i e r s  a t  x* (def ined  i n  Sec t ion  

1.2). 

A - A v e c t o r  t h a t  normally denotes  an  e s t ima te  of A*.  

Lagrangian 
Funct ion -The f u n c t i o n  F(x) - A * T c ( ~ ) ,  

QI 

Z 

The fo l lowing  two ma t r i ce s  a r e  def ined  i n  terms of an  n by m mat r ix  

A, of rank  r :  
% 

- An n by r ma t r ix  vhose columns form an or thogonal  b a s i s  for 

t h e  space spanned by t h e  columns of A .  

- An n by ( n - r )  ma t r ix  whose columns fo-m an orthogonal  b a s i s  

f o r  the n u l l  space of t h e  columns of A .  
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CHAPTER 1 

THEORET I C A  L BACKGROUND 

1.1 Statement  of Problem 

.This d i s s e r t a t i c n  i s  concerned w i t h  tuethods for the numerical so-  

l u t i o n  of t h e  fo l lowing problems: 

P1 - E q u a l i t y  Constrained Problem 

n minimize F(x) ,  xcE 
-. X 

s u b j e c t  t o  the c o n s t r a i n t s  

C i ( X )  = 0, i = 1 , 2 , .  . . ,In; 

F2 - I n e q u a l i t y  Constrained Problem 

n minimize F(x)  xcE 
X 

s u b j e c t  t o  t h e  c o n s t r a i n t s  

c i (x )  2 0,  i = I,?, . . .,&. 

I n  P1 and E, F ( x )  and [ c . ( x ) j  1 a r e  s c a l a r  func t ions  of t h e  n inde-  

pcndent v a r i a b l e s  {x1,x2, . . . ,xn] .  The func t ion  F(x) i s  o f t e n  c a l l e d  t h e  

" ob jec t ive  function ' l ,  and [c i (x )  1 a r e  t h e  " c o n s t r a i n t  f u n c t i o n s " .  F and 

{ c . ]  will be assumed t o  have a t  l e a s t  continuous f i r s t  and second de r iv-  

a t i v e s .  

1 

A f u r t h e r  Froblem could be considered,  where some of t h e  c o n s t r a i n t  

f u n c t i o m  8 r e  e q u a l i t y  c o n s t r a i n t s  and o the r s  a r e  i n e q u a l i t i e s ,  but  t h e  

n o t a t i o n  f o r  such a problem becomes more complicated.  

discussion will.  concern e i t h e r  problem P1 or E, and it  should be c l e z r  

how the s e p a r a t e l y  developed r e s u l t s  would apply t o  8 nixed problem. 

D e f i n i t i o n  1: 

c o n s t r a i n t  c . ( x )  1 = 0 i f  ci($) = 0, a n d ' i n f e a s i b l e  i f  e . ( ? )  1 

s t r a i n t  c . (x )  1 is  s a t i s f i e d  a t  a T e a s i t i e  po in t  x. 

Ail subsequent 

A p o i n t  f; i s  f e a s i b l e  wi th  r e s p e c t  t o  t h e  e q u a l i t y  

+ 0 .  The con- 
A Given a s e t  of e q u a l i t y  

- 6 -  



c o n s t r a i n t s  {e.(.) = 0, i = 1,2,. . .,a], 2 i s  f e a s i b l e  wi th  r e s p e c t  t o  

the s e t  of c o n s t r a i n t s  i f  e . ( ? )  = 0, f o r  a l l  i = 1,2, ..., a; x is  i n -  

f e a s i b l e  w i t h  r e s p e c t  t o  t h e  se t  of c o n s t r a i n t s  i f  e . ( ? )  rt: 0 f o r  any 

i ~ { 1 , 2 ,  . . .,m]. 
D e f i n i t i o n  2 :  

1 
h 

1 

1 

A p o i n t  2 i s  f e a s i b l e  w i t h  r e s p e c t  t o  the i n e q u a l i t y  

c o n s t r a i n t  c . ( x )  2 0 i f  c . ( ^x )  2 0, s t r i c t l y  f e a s i b l e  i f  c . ( 2 )  > 0, and 
J J J 

i n f e a s i b l e  if e . ( $ >  < 0. i s  s a t i s f i e d  If e . ( $ )  2 0, t h e  c o n s t r a i n t  c 
J J J 

a t  2, and c i s  s t r i c t l y  s a t i s f i e d  i f  e . ( ? )  > 0.  The d e f i n i t i o n  of 
j J 

f e a s i b i l i t y  w i th  r e s p e c t  t o  a s e t  of i n e q u a l i t y  c o n s t r a i n t s  i s  s in i i l a r  

t o  t h e  e q u a l i t y  c a s e .  

We s h a l l  be concerned only w i t h  l o c a l  minima, def ined  a s  follows: 

D e f i n i t i o n  3: Tine po in t  x* i s  a weak -- l o c a l  minimm of problem 71 

o r  E if: 

(1) x* i s  f e a s i b l e  w i t h  r e spec t  t o  a l l  the  problem c o n s t r a i n t s ;  

(2) there e x i s t s  6 > 0 such t h a t  F(x*) 5 Fix) f o r  a l l  x s a t i s f y i n g :  

( b )  x i s  f e a s i b l e  w i th  r e s p e c t  t o  a l l  t h e  problem c c n s t r a i n t s .  

If F(x*) < F ( x )  for s i m i l a r l y  def ined x, x i- xicy then x* i s  a --- s t rong  

l o c a l  minimum of P1 or F2. When t h e  term l l l o c a l  minimxn” i s  used, it 

should be i n t e r p r 2 t e d  t o  mean “ s t rong  l o c a l  minimum” un le s s  ctherwise 

s p e c i f i e d  . 
1.2 Condlt ions fq r  P I . l inirm 

Algorithms t o  sol-.re problem P1 or IT a r e  based on t r y i n g  t o  i d e n t i f y  

a p o i n t  s a t i s f y i n g  the  condi t ions  for a l o c a l  minimum. I n  t h i s  s ec t ion  

one form of t h e s e  condi t ions  w i l l  be der ived;  ye s h a l l  no t  be concerried 

wi th  s t a t i n g  the wezkest possLble condi t ions  T3r a l o c a l  niinimwn, s i n c e  

we a r e  i n t e r e s t e d  only i n  p r o p e r t i e s  t h e t  ca:i he ccxp: i ta t ional ly v e r i f i e d .  
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1.2 .1  Unconstrained Miniwan 

If t h e r e  a r e  no c a n s t r a i n t s  i n  problem P1 or F2, t h e  mini- 

miza t ion  problem reduces t o :  

P3 - Unconstrained Problem 

n minimize F(x) ,  xeE . 
X 

Before s tudying  the  more gene ra l  p-oblems P1 and E, we 

w i l l  d e r i v e  necessary  and s u f f i c i e n t  condi t ions  th3t  hold a t  a l o c a l  
w 

minimum of P3. Since F(x)eC 2 , it may be expanded a5out a pc in t  x* 

i n  a Taylor  s e r i e s :  

F(x* f Eh) = F(x*) + Eh T g(x*) + 5 1 2 T  E h G(x*)h + O ( / c ~ ' ) ,  

(1.2 .l) where / \ h / /  = 1 

Condit ion 1: A necessary  condit , ion t 'or  a p o i n t  x* to be a l o c a l  

minimum of t h e  unconstrained problem F 3  i s  t h a t  I I g(x*)I I = G .  

If I I g(x*)l I is  not  zero,  t hen  t h e r e  e x i s t s  some d i r e c t i o n  
T h for which h g(x*) < 0. 

s c a l a r  E '  > 0 such t h a t  f o r  any E: 0 < E: < E ' ,  

F(x* + E:h) < F(x*), 

Hence, from (1.2.1) t h e r e  e x i s t s  a p o s i t i v e  

and x* cannot be a local - m in inm.  

Condit ion 2: 

l o c a l  min3wm of P3 i s  t h a t  G(x") 'ce p o s i t i v e  semi- de f in i t e .  

A necessary  cond i t i on  for a p o i n t  x* t a  be a weak 

If ~ ~ g ( x * - ) ~ ~  = 0, then  from (1.2.1), 

(1 .2 .2 )  F(x* + Eh) = F(x*) + - 1 E 2 T  11 G(X*)h + O(1 C I  3 ) .  
2 

If t h e  ma t r ix  G(x*) i s  i n d e f i n i t e ,  t h e r e  e x i s t s  a u n i t  vec to r  h 

T such t h a t  h G(x*)h < 0 .  

s c a l a r  E '  such t h a t  for any E, 0 < I E I  < E ' ,  

Eence, f r G m  ( 1 . 2 . 2 )  there e x i s t s  a p o s i t i v e  

F(x* + f h )  < F(x*), 

c o n t r a d i c t i n g  t h a t  x* i s  a l o c a l  miniinm. 
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Condit ion 3: 

minimum of P3 a r e :  

S u f f i c i e n t  condi t ions  f o r  x* t o  be a s t r o n g  l o c a l  

(1) l I g (x* ) l l  = 0 ;  

(2 )  G(x*-) i s  p o s i t i v e  d e f i n i t e .  

The cond i t i on  1 1  g(x*) 1 I = 0 i s  necessary  for x* t o  be 3 

l o c a l  minimum. 

non-zero v e c t o r s  h .  

such t h a t  for any E s a t i s f y i n g  0 < / E /  < E '  

I f  G(x*) i s  p o s i t i v e  d e f i n i t e ,  h T G(x*)h > 0 for a l l  

From (1 .2 .2 )  it fol lows t h a t  t h e r e  e x i s t s  E '  > 0 

F(x*) < F(x* + Eh) , 
f o r  any v e c t o r  h, I I hl I = 1. 

of x* such t h a t  t h e  sma l l e s t  value of F f o r  any po in t  i n  t h e  neigk- 

borhood occurs a t  x*, and x*- i s  a s t r o n g  l o c a l  minimm. 

1.2.2 E q u a l i t y  Cons t r a in t s  

Therefore,  t h e r e  e x i s t s  a neighborhood 

I n  de r iv ing  necessary  and s u f f i c i e n t  condi t ions  for a 

p o i n t  x* t o  be a l o c a l  miniroum of the  e q u a l i t y  cons t ra ined  proklem 

P1, t h e  d e f i n i t i o n  of a l o c a l  minimum i n d i c a t e s  t h a t  we need tc con- 

s i d e r  t h e  behavior  of F(x) only along f e a s i b l e  pe r tu rba t ions  from 

x*. If a c h a r a c t e r i z a t l o n  of a f e a s i b l e  move from x* i s  poss ib l e ,  

t h e  Taylclr s e r i e s  expansion of F about x* along such  a p e r t u r b a t i o n  

can be examined a s  i n  t h e  unconstrained c a s e .  

The fol lowing i n i t i a l  r e s u l t s  develop t h e  ex i s t ence  of a 

r e l a t i o n s h i p  between t h e  g rad ien t s  of F ( x )  and [ c i ( x ) ]  a t  a p o i n t .  

Fa rkas '  k w i i a :  - Giveil a s e t  of n-vectors. {ai], i = 1,2, . . . ,m, and a 

v e c t o r  b, a necessary  and s u f f i c i e n t  condi-cion f o r  t h e  ex i s t ence  of 

non-negative s c a l a r  va lues  [ A i ] ,  i = 1,2,. . . ,my  such t h a t  

i s  that l o r  every  v e c t o r  ji such t h a t  a T y >  0,  i = l J 2 J  .. . , m J  i t  

fo l l cws  t h a t  b T y 2  0 .  
i 
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An a l t e r n a t i v e  staternent of Farkas '  Lemie i s  t h a t  t h e r e  
T T 

exists  a v e c t o r  z such t h a t  a i z 2 0, i = i , 2 , .  . .,m, and b z < 0, if 
m 

and only if t h e r e  i s  no vector h s a t i s f y i n g  b = C 
i= 1 

Aiai, A .  1 2 0. 

Theorem 1 (Ex i s t ence  of Lagrange M u l t i p l i e r s ;  Kuhn-Tucker con- 

d i t i o n s )  : 

I f :  

( a )  

(b)  

( c )  

F and {ci], i = 1,2,. ..,m a r e  once d i f f e r e n t i a b l e ;  

ci($) = 0, i = 1,2, ..., m; 

a t  2, for a l l  vec to r s  p such t h a t  A($) p = 0, where 

t h e  columns of A a r e  {ai],  - it holds t h a t  g(2)  p 2  0, t hen :  

T 

T 

m 

i= 1 
There e x i s t s  a v e c t o r  A ,  of l eng th  m, such  t h a t  g = C Aiai, or, 

equ iva l en t ly ,  g = Ah . 
A I f  t h e  cond i t i ons  of Theorem 1 hcld ,  t h e  p o i n t  x i s  s a i d  

t o  s a t i s f y  the  f i r s t - c r i e r  Kuhn-Tucker c m d i t i o n s  . 
Proof: I n  t h e  fo l lowing  d iscuss ion ,  all v e c t o r  arid m a t r i x  func-  

tiOnS a r e  evaluated a t  x un le s s  cxherwise s p e c i f i e d .  Note 

t h a t  i f  no vec to r  p e x i s t s  such t h a t  A p = 0, t h e  theorem 

i s  vacuously s a t i s f i e d .  

If a v e c t o r  p e x i s t s  such t h a t  A p = 0, i .e ., A p 2 0 and 

A 

T 

T T 

T T -A p 2 0, then  by assumption it a l s o  holds That g p 1 0 .  

Farkas '  Lemma t o  t h e  s e t  of 2m vec to r s  { a , ] ,  i 

g, t h e r e  must exis'i a veetcr  L, sf lengL.L 2m, such t h a t  

Applying 

{-ai], and t h e  vec to r  

g = [A i -A]u, u i -  > 0, 

- u  or, l e t t i n g  hi = il i i+m' 
g = Ah . 

B 

An a l t e r r i a t i v e  sthiemer,' of t 5 s  r e s u l t  i s  t h a t  i f  t h e r e  

T I: e x i s t s  no v e c t o r  p slrnultaneously sat ls ,"ying A p = 0 and g p < 0,  
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t hen  t h e  v e c t o r  g must l i e  e n t i r e l y  

I n  o rde r  t o  use Theorem 1 

i n  the  range of A .  

t o  desr3--i?3e cond i t i ons  a t  a 

l o c a l  minimum of 21, r e s t r i c t i o n s  on t h e  c o n s t r a i n t  func t ions  a r e  

r e q u i r e d .  

F i r s t - Orde r  Cons t r a in t  Q u a l i f i c a t i o n  (Kuhn and Tucker, 1951; 

Fiacco and McCormick, 1968 : 

The f i r s t - o r d e r  c o n s t r a i n t  q u a l i f i c a t i o n  holds  a t  a p o i n t  

2 i f :  

(1) {c,], i = i , 2 ,  . . .,m, a r e  once cont inuous ly  d i f f e r e n t i a b l e ;  

( 2 ) .  ci($) = 0, f o r  a l l  i = 1,2 ,..., m; 

( 3 )  every  non-zero v e c t o r  p s a t i s f y i n g :  

T A($) p = 0 i s  tangent  t o  a o n c e - d i f f e r e n t i a b l e  a r c  eman- 

a'cing from x, a locg  which a l l  c o n s t r a i n t s  a r e  s a t i s f i e d  on t h e  a r c  

i n  some neighborhood of x An a r c  i e  a d i r ec t ed  d i f f e r e n x i a b l e  

curve i n  E parameterized by a s i n g l e  parameter 8, 0 5 0 5 E .  

A 

h 

n 

I n  t h e  fo l lowing  d iscuss ion ,  a l l  v e c t o r  and mat r ix  Tunc- 

Any poss ib l e  t i o n s  a r e  eva lua ted  a t  2 un le s s  otherwise s p e c i f i e d .  

f e a s i b l e  move from 2 must be a long  a d i r e c t i o n  p s a t i s f y i n g  A p = 0, 

s i n c e  

1' 

T 2 c(E; + EP)  = e ($ )  + EA p + o ( J E I  >, f o r  I j p / /  = 1. 

Such a v e c t o r  p may be w r i t t e n  a s  Zp where 2: i s  a mat r ix  whose N' 
columns form an or thogcnai  b a s i s  for t h e  r iui l  space of A ,  s o  tna-r; 

A z = 0 ,  Z Z = I. Geometricali.y, t h e  f i r s t - o r d e r  c o n s t r a i n t  q u a l i -  T T 

f i c a t i o n  impl ies  t h a t  every d i r e c t i o n  t h a t  makes no f i r z t -Drde r  

change i n  any Cons t r a in t  a t  x must be t h e  beginning of a f e a s i b l e  

arc, or ,  equ iva l en t ly ,  t h a t  a s u f f i c i e r L t l y  s m a l l  s t ep  taken  aI.onf: 

such a d i r e c t i o n  l r i i s t  be a r b i t r a r i l y  c l o s e  t o  a f e a s i b l e  P o i n t .  

A 
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The c o n s t r a i n t  q u a l i f i c a t i m  enables  a l l  p o s s i k l e  f e a s i b l e  

p e r t u r b a t i o n s  from 2 t o  be cha rac t e r i zed ,  s ince ,  i f  it i s  s a t i s f i e d ,  

any d i r e c t i o n  p = Zp 

c o n s t r a h t  q u a l i f i c a t i m  does not  hold a t  a p o i n t ,  t h e n  t h e r e  can 

. e x i s t  a i r e c t i o n s  p = ZpN along which no f e a s i b l e  move i s  p o s s i b l e .  

We a r e  now a b l e  t o  prove the fo l lowing  r e s u l t :  

i s  the  beginriing of a f e a s i b l e  p a t h .  If t he  
N 

Theorem 2 (F i r s t- Orde r  Necessary Conditions f o r  a Minimm of Pl) 

I f :  

(1) 

(2) 

-e- 

F and {c , ] ,  i = 1,2,. . .,m, a r e  d i f f e r e n t i a b l e  a t  x*; and 

the  f i r s t - o r d e r  c o n s t r a i n t  q u a l i f i c a t i o n  holds a t  x*, then:  

A necessary  cond i t i on  f a r  x* t o  be a l o c a l  m i n i n m  of P1 is 

t h a t  t h e r e  e x i s t  a v e c t o r  A*, of l eng th  m, such t h a t  g(x*) = 

A(x*))\*, or, equ iva l en t ly ,  g(x*) i s  i n  t h e  range of A(x*) .  

Proof :  I n  t h e  f o l l o v i n z  d iscuss ion ,  a l l  v e c t o r  and niatrix func-  

t i o n s  e r e  eva lua ted  a t  x* un le s s  otherwise s p e c i f i e d .  

Assume t h a t  x* i s  a l o c a l  minimum of P1. Consider all 

T v e c t o r s  p such t h a t  A p = 0 .  I f  t h e r e  a r e  none, t hen  a s su red ly  g 

i s  i n  t h e  range of A,  s l n c e  the columns of A must span t h e  e n t i r e  

space .  

If t h e r e  a r e  suzh vec to r s  p, then,  because t h e  c o n s t r a i n t  

q u a l i f i c a t i o n  holds a t  x*, F i s  the t sngcn t  of 3 once- d i f f e ren t i sb l e  

f e a s i b l e  a r c ,  emanating from x*. 

must not  decrease  a long  t h e  a r c  from x*, s i n c e  211 p o i n t s  on the  a r c  

~ e c c u s r -  x* i s  a l o c a l  minim'um, ~ ( x )  

a r e  f e a s i b l e  i n  some neighborhoot! of x*, and hence g T p 2  0. Therefore, 

t h e  condi t ions  of Theorem 1 a r e  s a t i s f i e d  a t  x', and Q l i e s  i n  t he  

range of A .  The v e c t o r  X*is c a l l e d  t h e  v e c t o r  of Lagrange m u l t i p l i e r s .  .- 
P 

Note t h e  impor tmce  of t h e  c o n s t r a i n t  q u a l i f i c a t i o n  i n  

t h i s  p roo f .  A p o i n t  x* i s  a l x a l  minimum i f  g T p 1 0 f o r  every 
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T f e a s i b l e  p e r t u r b a t i o n  p .  The cond i t i on  t h a t  A p = 0, which i s  

necessary  for p t o  be a f e a s i b l e  move from x.*~ i s  made a s u f f i c i e n t  

cond i t i on  by the c o n s t r a i n t  q u a l i f i c a t i o n .  

The v e r i f i c a t i c n  of t h e  c o n s t r a i n t  q u a l i f i c a t i o n  a t  a 

poss ib l e  minimum x* is not  coEputz t iona l ly  convenien?. A mcre 

p r a c t i c a l  condi t ion ,  which impl ies  t h a t  t h e  c o n s t r a i n t  q u a l i f i c a t i o n  

holds, i s  t h a t  t h e  mat r ix  A(x*) be of f u l l  rank, i . e . ,  th.e g rad ien t s  

of t h e  c o n s t r a i n t s  a r e  l i n e a r l y  independent.  

Theorem 3 .  I f :  

(1) {c,], i = 1,2,. . . J m ,  are  cont inuously d i f f e r e n t i a b l e ;  

( 2 )  ci(x*) = 0, i = 1y2>...ym; and 

(3)  A(x*) i s  of full rank ,  

t hen  t h e  f i r s t - o r d e r  c o n s t r a i n t  q u a l i f i c a t i o n  holds a t  x*. 
T Proof:  Let p s a t i s f y  A(x*) p = 0. If t h e r e  i s  no such p, t h e  

c o n s t r a i n t  q u a l i f l c a t  ion  holds vacuously . 

Otherwise, p must be exp res s ib l e  i n  t he  form ZpN for 

some v e c t o r  p 

a ( 0 )  = x*, and - (cu(8) )  = Z(a (0 ) )pN,  for 0 I 9 5 E ,  where Z(cY(e>>  

Construct  t he  a r c  Q ( Q )  from x* by spec i fy ing  N' 
d 
d e  

denotes  a p a r t i c u l a r  r e p r e s e n t a t i o n  of a ma t r ix  whose columns farm 

an orthogonal  b a s i s  for the  n u l l  space of A(a( 6 ) ) .  

columns of A a r e  l i n e a r l y  independent a t  x*, and t'ne func t ions  

f a . ]  a r e  c c n t i m o u s ,  t h e  mat r ix  A ( a ( e ) )  i s  continuous and of f u l l  

rank  i n  a neighborhood of x*; thus  an appropr i a t e  r e p r e s e n t a t i o n  

of t h e  mat r ix  Z(cu(0)) i s  a l s o  cont inucus and of f i xed  rank  i n  a 

neighborhood of x*, and s o  the  given d e f i n i t i o n  of u ( 6 )  s p e c i f i e s  

a cont inuous,  d i f f e r e n t i a b l e  a r c .  

Because t h e  

1 
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Expanding ci a long t h e  a r c :  

- T  
= 0 + eai (Q(~))z(Q( 'WP, 

= 0, 

by cons t ruc t ion  of Z(a('ll)) t o  be or thogonal  t o  a i ( a (V) ) ,  i = 

L y 2 ,  . . . y m .  The a r c  CY( 8) i s  t h e r e f o r e  a f e a s i b l e  a r c  i n  some 

neighborhood of x*. ~ 

The essence of t h e  cons t ruc t ion  of t h e  a r c  i s  the  con- 

t i n u i t y  of t h e  mat r ix  €unct ion 7, i n  a neighborhood of x*. 

It i s  u s u a l  t o  a s s m e  t h z t  t he  mat r ix  A i s  of full rank 

i n  a neighborhood of t h e  so lu t ion ,  wh5ch impl ies  t h a t  t h e  c o n s t r a i n t  

q u a l i f i c a t i o n  holds,  and hence t h e  ex i s t ence  of f i n i t e  Lagrange 

m u l t i p l i e r s  a t  a l o c a l  Einimum of P1. 

In  t he  unconstrained case,  it w a s  p o s s i b l e  t o  de r ive  

a d d i t i o n a l  cond i t i ons  f o r  a minimum Sased on t h e  second d e r i v a t i v e s  

of F ( x ) .  The analogous r e s u l t s  f o r  p r o k k m  P1 r e q u i r e  the  follow- 

i n g  d e f i n i t i o n .  

Se c ond - Ora e r  C! ons t r a  i n  t Qua l i f  i c  a t& : 

The seccnd-order c o n s t r a i n t  q u ? l i f i c a t i o n  holds a t  if : 

(1) 

( 2 )  

( 3 )  

{ci] a r e  twice cont inucns ly  d i f f e r F n t i a b l e ;  

c . ( x )  = 0, i = 1,2, .'..,m; a n i  

for. every non-yero v z c t c r  p s a t i s f y i n g  

A 

1 
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p i s  t h e  tangent  of a t w i c e - d i f f e r e n t i a b l e  a r c  a( e ) ,  emanating 

from 2, along whi.ch ci(@( 0 ) )  = 0, i = i,2,. . .Jm, 0 5 0 5 E .  

Theorem 4 (Second-Order Recessary Ccndithns for a Local 

Minimum of Plj 

If: 

(1) F and [ c .  1, i = 1,2,. . . ,m,  a r e  twice  cont inuous ly  d i f f e r e n -  

t i a b l e ;  

1 

( 2 )  The f i r s t -  and second-order c o n s t r a i n t  q u a l i f i c a t i o n s  hold 

a t  x*, then: a necessary  cond i t i on  for x* t o  be a l o c a l  mini- 

mum of P1 i s  t h a t  f o r  any v e c t o r  p s a t i s f y i n g  A(x*) p = 0) T 

- c" 
i=l 

p >  0, where t h e  A T  a r e  such t h a t  

X* 

g(x*) = A(x*))h.*. 

Proof: Note t h a t  condi t ions  (1) and ( 2 )  a s s w e  t h a t  Theorem 2 

holds,  and hence imply t h e  ex i s t ence  of A *  s a t i s f y i n g  

g(x*) = A(x*)A*. 

Assume t h a t  t h e r e  e x i s t s  a non-zero v e c t o r  p sgch t h a t  

T A p = 0 (o the -mise ,  t h e  r e s u l t  fol lows i m m e 2 i a t e b ) .  

t h e  tw ice  d i f f e r e n t i a b l e  a r c  from x* whose ex i s t ence  i s  guaranteed 

by t h e  sc-ond-order c o n s t r a i n t  q u a l i f i c a t i o n ,  where ~ ( 0 )  = x*, 

L e t  CY( e )  be 

d 
d e  - cu(0) = p .  

~ ( 0 ) .  In t h e  fol lowing,  a l l  v e c t o r  and mat r ix  func-  d2 

d e2 
L e t v = -  

t i o n s  a r e  eva lua ted  a t  x* = ~ ( 0 )  , un le s s  c t k r d i s e  s p e c i f i e d .  

Usins t h e  chain r u l e ,  
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T s i n c e  8 p = 0, 1 = 1,2,. . .,m; i 

T 
= a Tv + p ~ . p  = 0, i 1 

s i n c e  t h e  [ c , ]  a r e  i d e n t i c a l l y  ze ro ' a long  t h e  a r c  CY( €3); 

T 
s i n c e  g = AA* and A p = 0. 

For x* 'io be a l o c a l  ml i r i imwr  OT P l ,  the  condi t ion  

d d2 - F(a(0) )  = 0 impl ies  t h a t  - F(cr(0)) must be) 0. 

Using ( c ) ,  t h i s  cond i t i on  nay be w r i t t e n  a z  fo l lows:  

d e  d e' 

T d2  T 
= g 2 Q@) f P GP 

d e  

T T 
From ( b ) ,  s u b s t i t u t e  a . v  1 = -p G,p. .L :=I-,?, . . .,m, i n t o  ( d )  y i e  Ld i ng  

The r e s u l t  ( 1 . 2 . 3 )  is  equ iva l en t  t o  a requirement t h a t  t he  
m 

i=l 
matr ix  Z% be p o s i t i v e  semi- def in i te  a t  xq-, where W = G -2 A f G  1 i' 

c Theorem 3 :  If : 

(1) {ci], i = 1,2, . .,E, a r e  twice continuously d i f f e r e n t i a b l e ;  



A 

(2)  C i ( X )  = 0, 

(3)  ~ ( 2 )  has f u l l  rank, 

then  the  second-order c o n s t r a i n t  q u a l i f i c a t i o n  holds a t  f i .  

= 1,2, ..,m; and 

Proof :  

A p=O, a t w i c e- d i f f e r e n t i a b l e  a r c  enanat ing  from fi, such t h b t  p 

i s  t angen t  t o  t he  a r c ,  and a l l  c o n s t r a i n t s  a r e  i d e n t i c a l l y  ze ro  

a long  t h e  a r c  i n  some neigiiucrhood of 2.  

We must cons t ruc t ,  for any non-zero v e c t o r  p s a t i s f y i n g  

T 

T 
N '  S ince  A p=O, p can be w r i t t e n  a s  Zp 

d 
h 

Define an  a r c  cy( Q )  by cy(0) = x, and d9 cy( Q )  = Z(a (  @))pN' where 

Z ( a (  e ) )  i s  a p a r t i c u l a r  r e p r e s e n t a t i o n  of a mat r ix  whose colwnns 

form an orthogonal  b a s i s  f o r  t h e  n u l l  space of A ( c t ( e ) ) ,  s o  t h a t  

A(O(  e >  lT z(a( e > )  = 0 .  

Since A i s  cont inuously d i f f e r e n t i a b l e  and of f u l l  rank a t  2, t h e  

mat r ix  A ( Q (  e > )  i s  a l s o  cont inuously d i f f e r e n t i a b l e  and of f G l l  rank 

i n  a s u i t a b l e  neighborhood of 9 .  Hence t h e  mat r ix  func t ion  Z(cu(8)) 

i s  of f i xed  rank  and cont inuously d i f f e r e n t i a b l e  i n  t h e  neighbor-  

hood of $, f o r  an  appropr i a t e  r e p r e s e n t a t i o n  of Z ( s e e  Go>& and 

-2 
Pereyra,  1973 ) . Since - d a( g)=z(a( 6) )pN, it fo l l ows  t h a t  7 a a( 9) = 

d 6  d 6  

d 
d Q  Z(a(0))pNY and, by t h e  c o n t i n u i t y  argument j u s t  given, t h e  a r c  

i s  t x i c e  zont inuously d i f f e r e n t i a k l e  . 

- 

Expanding each c o n s t r a i n t  a long  t h i s  a r c  y i e l d s  t h e  

fo l lowing  : 



Since the fnnc t ion  a T(a(0))Z(~(~)) i s  i d e n t i c a l l y  ze ro  a long  t h e  i 

a r c  by cons t ruc t ion ,  i t s  d e r i v a t i v e  w i t h  r e s p s c t  t c  8 must be z e r o  

a l s o ,  and t h e r e f o r e ,  we oStain:  

c . ( a ( e ) )  E 0, 
1 

i n  some neighborhood of 2. Thus, for eny p s a t i s f y i n g  A(x) A T  p = 0, 

we can c o n s t r u c t  t h e  requi red  t w i c e - d i f f e r e n t i a b l e  a r c ,  and the 

second-order c o n s t r a i n t  q u a l i f i c a t i o c  holds a t  2 .  
cd 

The e s s e n t i a l  po in t  of th is  proof i s  t h a t  t h e  l i n e a r  inde-  

pendence-and d i f f e r e n t i a b i l i t y  of t h e  columns of A allow t h e  r ep re-  

s e n t a t i o n  of t h e  b a s i s  of t h e  n u l l  sI;'ace t o  be d i f f e r e n t i a t e d .  Suf-  

f i c i e n t  condi t ions  f o r  x* t o  be a l o c a l  minimum of P1 can be s i m i -  

l a r l y  der ived ,  and w i l l  be s t a t e d  wi thout  p roo f :  

S u f f i c i e n t  Conditions f o r  a Local  Minimm of P1: 

x* i s  a s t r o n g  local minimum of P1 i f :  

F and {e,] a r e  twice cont inuously d i f f e r e n t i a b l e ;  

c . (x*)  = 0, i=1 ,2 , .  . .,a; 
t h e r e  e x i s t s  a vec to r  h*such t h a t  g(x*) = A(x*))h+; 

(1) 

( 2 )  1 

(3)  
f o r  every  non-zero vec to r  p such t h a t  A(x%) T I, = 0, (4) 

m T P ( G  - L" h;Gi)l p > 0 .  
i=l X* 

1.2 .3  Ineqda l i t y  Constra i n t s  

The condi t ions  f o r  a minlmwr of E, t h e  i n e q u a l i t y  con- 

s t r a i n e d  problem,, involve a subse t  of the c o n s t r a i n t s .  

D e f i n i t i o n  4: A c o n s t r a i n t  c i ( x >  2 0 i s  s a i d  t o  be a c t i v e  a t  

9 i f  c.(;) = 0, and t h e  s e t  of i nd ices  I = { i / i c ( 1 , 2 ,  ..., a) and 

ci(?) = 01 ( o r  t h e  correspcnding s e t  of c o n s t r a i n t s )  i s  termed 

A 

1 
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We i d e n t i f y  t h e  a c t i v e  c o n s t r a i n t s  a t  2 po in t  because 

If ci(?) > 0, f e a s i b l e  p e r t u r b a t i o n s  a r e  r e s t r i c t e d  f o r  them. 

t h e r e  is  a neighborhood of 2 w i t h i n  which ci w i l l  remain s t r i c t l y  

p o s i t i v e .  Hence, on1.y t h e  a c t i v e  c o n s t r a i n t s  a r e  s i g n i f i c a n t  i n  

s p e c i f y i n g  t h e  condi t ions  for a m i n i m u m  of €2. The r e s u l t s  f o r  a 

minimum of F2 a r e  analogous t o  those  a l r e a d y  given for P1, but  i n -  

volve only t h e  subse t  of c o n s t r a i n t s  a c t i v e  a t  a p a r t i c u l a r  p o i n t ,  

Throughout t h i s  s e c t i o n ,  it w i l l  be assumed t h a t  m (5  t) 
of t h e  i n e q u a l i t y  c o n s t r a i n t s  of E2 a r e  a c t i v e  a t  any po in t ,  and 

the  i n d i c e s  of t h e  a c t i v e  c o n s t r a i n t s  a r e  given by t h e  index s e t  

I .  The ma t r ix  a(,) w i l l  denote t h e  n by m mat r ix  whose columns 

a r e  t h e  g r a d i e n t s  of t h e  c o n s t r a i n t s  a c t i v e  a t  x .  

Theorem 6: (Exis tence  of Lagrange M u l t i p l i e r s  for i n e q u a l i t i e s )  

If: 

(1) F and {c . ] ,  i=1 ,2 , .  . .,&, a r e  once cont inuously d i f f e r -  

e n t i a b l e  ; 

1 

( 2 )  

( 3 )  

ci(x*) 2 0,  i=1,2, . . . ,4; 

f o r  any non-zero vec to r  p s a t i s f y i n g  2(x*) p >  0, 
T 

it a l s o  holds  t h a t  g T (x*)p, l  0, then  t h e r e  e x i s t s  a vec to r  A ,  Of 

l e n g t h  m y  sach  t h a t  g(x*) = 8(x*)A, and ?, . 2 0; thus, g(x*) is  a 
I 

non-negative l i n e a r  combination of t h e  g rad ien t s  of t h e  a c t i v e  con- 

s t r a i n t s .  

Proof:  

t o  t h e  se t  of v e c t c r s  f a . ] ,  i e I ,  and t h e  v e c t o r  g .  

d i f f e r s  from t h e  analogous r e s u l t  f o r  P1 because t h e  m u l t i p l i e r s  

c o r r e s p m d i c g  t o  i n e q u a l i t y  c o n s t r a i n t s  a r e  requi red  t o  be non- 

The proof i s  i m e d i a t e  from a p p l i c a t i o n  of Farkas '  Lema 

This  r e s u l t  
1 

negat ive  . a 



It i s  p o s s i b l e  t o  inc lude  {a , ]  f o r  t h e  i n a c t i v e  c o n s t r a i n t s  

i n  the expres s ion  f o r  g by a s s ign ing  a zei-r Lagrange m u l t i p l i e r  to 

an i n a c t i v e  c o n s t r a i n t ;  however, t h e  convention g e n e r a l l y  followed 

i s  t h a t  a Lagrange m u l t i p l i e r  corresponds only t o  an  a c t i v e  c c n s t r a i n t .  

The cond i t i ons  under which t h e  f i r s t -  and second-order 

c o n s t r a i n t  q u a l i f i c a t i o n s  hold a t  a p o i n t  2 a r e  def ined  i n  t e r a s  of 

t h e  se t  of a c t i v e  c o n s t r a i n t s  a t  2.  The d e f i n i t i o n s  a r e  s i m i l a r  t o  

t hose  f o r  t h e  e q u a l i t y  pro-blern, w i t h  t h e  fo l lowing  d i f f e rences :  f o r  

t h e  f i r s t - o r d e r  c o n s t r a i n t  q u a l i f i c a t i o n  t o  hold, any non-zero p 
. - -  

AT s a t i s f y i n g  A p 2  0 must be tangent  t o  a f e a s i b l e  a r c ;  and for t he  

second-order c o n s t r a i n t  q u a l i f i c a t i o n ,  any non-zero vec to r  p s a t i s -  

f y i n g  A p = 0 must be t h e  tangent  of an a r c  a long  which a l l  con- AT 

s t r a i n t s  a c t i v e  a t  2 remain i d e n t i c a l l y  ze ro .  The I t n e a r  inde-  

pendence of t h e  columns of a(?) impl ies  t h a t  bo th  the  f i r s t -  3nd 

second-order c o n s t a i n t  q u a l l f i c a t i o n s  hold a t  2. 

The f i r s t -  and second-order necessary  condi t ions  for x* 

t o  be a l o c a l  minimum of P2 a r e  t h e  same a s  for P1, where the  set 

of a c t i v e  c o n s t r a i n t s  i s  t r e a t e d  a s  a se t  of e q u a l i t y  c o n s t r a i n t s ,  

w i t h  t h e  s i g n i f i c a n t  r e s t r i c t i o n  t h a t  a l l  components of t he  v e c t o r  

A* of m u l t i 2 l i e r s  sat i ’sfying g(x”)  = A(x*)h* must be non-negative. 

The s u f f i c i e n t  condi t ions  t h a t  x* l is  a s t r i c t  i o c a l  m i n t -  

r,um of p2 a r e  t he  same a s  those  f o r  F1, where t h e  s e t  of a c t i v e  

c o n s t r a i n t s  a t  x* is  t r e a t e d  a s  a s e t  of e q u a l i t y  c o n s t r a i q t s ,  w i t h  

t h e  fo’lowing a d d i t i o n a l  condi t ions  : 

( a )  1; 2 0, i=1,2, .  . . ,m; and 

(b) f o r  any p s a t i s f y i n g  a, p = O, A+. > 0, and ’a’ i T p >  0,  
A T  
l . .  1 

1; = 0,  t hen  pT(G- Z h r  Gi)p 0,  
i c 1  
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where t h e  s w a t i o n  i s  over t h e  a c t i v e  c o n s t r a i n t s  only.  The e x t r a  I 

cond i t i on  on p a r i s e s  because of t h e  p o s s i b i l i t y  of a ze ro  Lagrange I , 

m u l t i p l i e r  f o r  an a c t i v e  c o n s t r a i n t .  
1 

1.3 Model Computational Algorithm 

l o c a t i n g  a minimum of P1 o r  P2 has the  fol lowing s t r u c t u r e :  

(Check whether x, t h e  cu r r en t  e s t ima te  of t he  s o l u t i o n ,  s a t i s f i e s  

t h e  te rmina t ion  c r i t e r i a )  __  - 
while x does n o t  s a t i s f y  t h e s e  c r i t e r i a  r e p e a t  

( 1. Compute a s e a r c h  d i r e c t i o n ,  p, t o  s a t i s f y  some s p e c i f i e d  

c ond it i ons ; 

2. Compute a s t e p  cy along p such t h a t  x + cup s a t i s f i e s  some 

given c r i t e r i a ;  

3 .  x t x + c u p ;  

) 

The a lgor i thms t o  be descr ibed  d i f f e r  i n  the c r i t e r i a  s p e c i f i e d  

f o r  each computation, and i n  t h e  methods used t o  determine the  s e a r c h  

d i r e c t i o n  and s t e p  l e n g t h .  

1.4 Unconstrained Minimiza t i o r ,  

The methods t o  be considered a r e  designed t o  determine a l o c a l  uli- 

cons t ra ined  minimum of t h e  func t ion  F(x). 

1.4.1 Descent Condition 

For the unconstrained problem, a n a t u r a l  measure of the  

p rog res s  made by an  i t e r a t i o n  i s  provided by t h e  decrease  i n  F 

dur ing  t h e  i t e r a t i o n .  The c r i t e r i c n  of t h e  va lue  of F al lows a 

c o n s i s t e n t  d e c i s i o n  a s  t o  which po in t  of a s e t  i s  t h e  lllsesi;l' 

e s t ima te  of the s o l u t i o n ,  x*. 4.11 a1g:critlrrcs t c  be describzd re-  
I 
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q u i r e  a decrease i n  t h e  va lue  of F from i t e r a t i o n  t o  i t e r a t i o n ,  

and a r e  s a i d  t o  s a t i s f y  t h e  "descent condi t ion" .  

1.4.2 Choice of Search Di rec t ion  

The Taylor  s e r i e s  expansicn of F ( x )  about  any p o i n t  pro-  

" v ides  i n s i g h t  i n t o  t h e  choice of s ea rch  d i r e c t i o n :  

2 
T CY 

F(x+W) = F(x)+rrg(x)Tp + P G(x)P+3( 1 ~ ~ 1 ~ 1  / P I  1 3 )  - 
If g(x)*O, F i w p )  w i l l  be l e s s  t han  F(x) for a l l  s u f f i c i e n t l y  

sma l l  CY > 0 only if g ( x )  T p < 0 .  A d i r e c t i o n  p s a t i s f y i n g  g(x) T p <  0 

i s  s a i d  t o  be a descent  d i r e c t i o n  a t  x f o r  F ( x ) .  

t o  be considered r e q u i r e  t h a t  t he  s e a r c h  d i r e c t i o n  be a descent  

d i r e c t i o n .  

All a l g o r i t h m  - 

Method of S t eepes t  Descent ( s e e  Ostrowski, 

The c l a s s i c a l  

1966) 

method of s t e e p e s t  descent  chooses t h e  

negat ive  g r a d i e n t  of F a s  t h e  sea rch  d i r e c t i o n ,  s o  t h a t  p = - g .  

This  choice minimizes t h e  f i r s t  term i n  t h e  Taylor  s e r i e s  expansicn 

of F(x+crp) f o r  f i x e d  CY and l / p / l , ,  i . e . ,  p = -g  so lves  t h e  problen;: 

I 
1 
I 
1 
! 

I 
1 

minimize p T g j 

i 
T 2 

~ 

s u b j e c t  t o  p p = B , f o r  f3 a f ixed  s c a l a r .  

The method of s t e e p e s t  descent  i s  a poor choice f o r  g e n e r a l  func-  

t i o n s .  

converge a r b i t r a r i l y  s lowly  even f o r  quadra t i c  f u n c t i o n s .  

I t s  asymptot ic  r a t e  of convergence i s  l i n e a r ,  and it may 

Newton's Method ( see  Ortega and Rheinboldt,  1970) 

The g e n e r a l  quadra t i c  func t ion :  

T 1 T  q ( x )  = a + b x + sx QX, 

hss  a w-ique rniniinum il i t s  Hessian mat r ix ,  &, i s  p o s i t i v e  d e f i n i t e .  

The mi.ni.mum occurs a t  x* where t h e  g r a d i e n t  v e c t o r  i s  zero,  i . e . ,  
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x* s a t i s f i e s :  

b + Qjx = 0 

T h i s  r e l a t i o n s h i p  f o r  x* irnplies t h a t  from any s t a r t i n g  

po in t ,  s ay  2, t h e  minimum of a s u i t a b l e  q u a d r a t i c  func t ion  can be 

determined by a u n i t  s t e p  along the sea rch  d i r e c t i o n  p t h a t  so lves  

the l i n e a r  system: 

Qp = -b-&. 

The expres s ioz  on t h e  r ight- hand s i d e  i s  t h e  nega t ive  g r a d i e n t  of 

t h e  quadra t i c  func t ion  a t  2. 

Any s u f f i c i e n t l y  smooth func t ion  should be w e l l  approxi-  

mated i n  some neighborhood by a t runca ted  Taylor  s e r i e s .  If t h e  

Hessian m a t r i x  a t  t h e  c u r r e n t  po in t  i s  p o s i t i v e  d e f i n i t e ,  t h e  s t e p  

p t o  t h e  minimum of t h e  l o c a l  quadra t i c  approxlmation w i l l  be given 

by t h e  s o l u t i o n  o f :  

GP = -g ,  ( 1 . 4 . 1 )  

where g i s  t h e  cu r r en t  g rad ien t  and G i s  tne  Hessian mat r ix .  

choice cf s e a r c h  d i r e c t i o n  t o  s a t i s f y  ( 1 . 4 . 1 )  i s  u s u a l l y  c a l l e d  "Newton's 

method". For c e r t a i n  c l a s s e s  of func t ions ,  Newton's method d i sp l ays  

a quadra t i c  r a t e  of convergence c lose  t o  t h e  s o l u t i o n ,  and i s  h ighly  

s u c c e s s f u l .  

The 

I-" - z d e v e r ,  f o r  a number of reasons ,  NewtGn'S method a s  de- 

f i n e d  by (1 .4 .1 )  i s  inadequate for many f u n c t i o n s .  

c r ease  i n  F(x), some s o r t  of l i n e a r  s e a r c h  a long  p i s  requi red ,  s ince  

t h e  l o c a l  quadra t i c  approximation may be poor f a r  from t h e  minimum. 

If t h e  c u r r e n t  Hessian matr ix,  G, i s  s i n g u l a r ,  t h e  s e a r c h  d i r e c t i o n  

To ensure a de- 

5s no t  def ined uniquely .  I f  G i s  i n d e f i n i t e ,  t h e  l o c a l  q u a d r a t i c  

approximaticn does not  have a u3ique mini r ra ,  and t h e  b e s t  d e f i n i t i c n  
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of s ea rch  d i r e c t i o n  i n  t h i s  case i s  not  c l e a r .  

Quasi-Newton Methods (See Broyden, 1972) 

The algori thms knawn a s  "quasi-Newton" methods were o r ig-  

i n a l l y  der ived from the  p r o p e r t i e s  of quadra t i c  functioris ( s e e  

Davidon, 1939; F l e t c h e r  and Powell, 1963). Quasi-Newton methods do 

not  c a l c u l a t e  t h e  Hessian mat r ix  a t  each po in t ,  b u t  r a t h e r  maintain 

an approximation t o  t he  Hessian, which i s  a l t e r e d  a t  each  i t e r a t i o n  

based on t h e  v a r i a t i o n  i n  t h e  g rad ien t  a s  t he  i t e r a t i o n s  proceed.  

The sea rch  d i r e c t i o n  i s  then the  s o l u t i o n  of t h e  1i.near system 

Bp = -g, where B i s  t h e  c u r r e n t  Hessian approximation. 

.a 

There a r e  a wide v a r i e t y  of t he se  methods, w i t h  d i f f e r e n t  

procedures  f o r  updat ing t h e  Hessian approxiniation. 

a r i t h m e t i c ,  i f  t he  s t e p  CY C ~ O S P G  a t  each  i t e r a t i o n  i s  t h e  s t e p  t o  

t h e  minimum of F(z) along p, most quasi-Newton raithods ca3  be sliawn 

t o  converge t o  t h e  minimm of a p o s i t i v e  d e f i n i t e  quadra t i c  func t ion  

i n  a f i n i t e  number of s t e p s  ( a  p rope r ty  sometimes confus ingly  c a l l e d  

"qua dra t i c  terminat ion ' '  ) . 

With exac t  

Methods t h a t  may a l t e r  t h e  sea rch  d i r e c t i o n  dur ing  ar? 
i t e r a t i o n  

A f u r t h e r  method f o r  unconstrained minimization, based on 

an idea  prnposed o r i & i n a l l y  by Levenberg (19&4) i n  t h e  context  of 

non l inea r  Least squares ,  assumes t h a t  a unLt s t e p  w i l l  always be 

t aken  a long  t h e  computed sea rch  d i r e c t i o n .  The s e a r c h  d i r e c t i o n  

f o r  such  algori thms i s  given by t h e  s o l u t i o n  of t he  l i n e a r  system: 

(1.4.2)  ( G  + Y  I ) P  = -g ,  

where t h e  parameter 7 . .  y > 0, may be ad jus ted  durTng an  i t e r a t i o n ,  

and fmrn i t e r a t i o n  t o  i t e r a t i o n  a s  w e l l .  As y +@, t h e  s ea rch  d i -  

r e c t i o n  frm (1.4.2) approaches the  Newton sxep; for l a r g e  y ,  t he  



s e a r c h  d i r e c t i o n  approaches a sma l l  mu l t ip l e  of t h e  negat ive  grad-  

i e n t .  The sdjustment  of y during an i t e r a t i r r  i s  based on a de- 

c i s i o n  a s  t o  whether a u n i t  s t e p  along t h e  c u r r e n t  d i r e c t i o n  r e -  

sul ts  i n  a s u f f i c i e n t  decrease i n  F(x); y is  a l t e r e d  from i t e r e t i o n  

t o  i t e r a t i o n  based on t h e  su\:cess of the  previous  choice of y ,  and 

y should i d e a l l y  approach zero a s  t h e  i t e r a t e s  approach the  s o l u t i m .  

Another method t h a t  determines tne  sea rch  d i r e c t i o n  a s  a 

compromise between - a Newton (or quasi-Newton) s t e p  and a mu l t ip l e  

of t h e  nega t ive  g rad ien t  has been proposed by PcJwell (1970), and r e -  

c e n t l y  modified by Dennis and Mei (1975). 

a lgor i thms,  s e v e r a l  s e a r c h  d i r e c t i o n s  may be computed during an 

i t e r a t i o n ,  based on whether a u n i t  s t e p  y i e l d s  a s u f f i c i e n t  decrease 

i n  F(x) . 

1.4.3 Choice of S t ep  Length 

A s  i n  t h e  Levenberg-type 

I n  some a l g o r i t h m  for unconstrained minimization, a u n i t  

s t e p  i s  always taken along the sea rch  d i r e c t i o n  ( s e e  Sec t ion  1.4.2), 

s o  t h a t  only t h e  procedure f o r  c a l c u l a t i n g  t h e  search  d i r e c t i o n  is  

s i g n i f i c a n t  . For  o the r  methods, however, such a s  Newton-type or  

quasi-Newton, t h e  two choices  a r e  independent ly c a r r i e d  out :  

descent  s e a r c h  d i r e c t i o n  i s  obtained,  and t h e  s t e p  t o  be taken 

a 

a long  it i s  determined t o  s a t i s f y  va r ious  c r i t e r i a .  The gene ra l  

procedure of computing cy such ?chat, for a s p e c i f i e d  d i r e c t i o n  p, 

F(x+c~p) s a t i s f i e s  c e r t a i n  condi t ions  w i t h  r e spec t  t o  F(x), i s  ca l l ed  

E l i n e c r  search ,  s i n c e  it i s  a one-dimensional problem. 

Most a lgori thms f o r  unconstrained opt imiza t ion  inc lude  some 

c r i t e r i a  t o  a s su re  t h a t  t h e  s t e p  l e n g t h  chosen w i l l  guarantee " s a t i s -  

f a c t o r y "  p o g r e s s  toward t h e  s o l u t i o n .  E s p e c i a l l y  i n  t h e o r e t i c a l  
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p r e s e n t a t i o n s  of algori thms,  It I s  of t en  s t a t e d  t h a t  F(x+crp) snould 

be a min inm w i t h  r e spec t  t o  (2; t h i s  requirement l eads  t o  a "per-  

f e c t "  o r  " exac t"  l i n e  search .  

algori thms,  however, t h e  s tandards  f o r  dec id ing  on a n  acceptab ie  

va lue  of cy a r e  gene ra l ly  l e s s  s t r i n g e n t .  The c r i t e r i a  f o r  t e m i n -  

a t i n g  a l i n e a r  s ea rch  w i l l  no t  be discussed f u r t h e r  here  ( s ee  Chap- 

t e r  3 for a d d i t i o n a l  comments); u s u a l l y  t he  s t e p  l e n g t h  can be con- 

I n  p r a c t i c a l  implementations of t h e  

s ide red  an  a-pproximation t o  t h e  s t e p  t o  t h e  m i n i m u m  of F (x )  along p.  

1.4.4 Summary 

The methods descr ibed for unconstrained opt imiza t ion  have 

a l l  corresponded t o  t he  p a t t e r n  of t h e  model a l g o r i t h .  

c r ease  i n  F(x) from i t e r a t i o n  t o  i t e r a t i o n  i s  c o n s i s t e n t l y  used a s  

a measure of a method's p -og res s  toward the  s o l u t i o n .  The most 

The de- 

s u c c e s s f u l  a lgori tkms a r e  based on approximating I?(>:) by a p o s i t i v e  

d e f i n i t e  q u a d r a t i c  func t ion ,  s i n c e  t h i s  apprmimat ion  should be 

accu ra t e  near  t he  miniman. 

s u b j e c t  t o  A"x = b: 

The necessary  condi t ions  derived i n  Sec t ion  1 .2  for a l o c a l  mininium 



It should be noted t h a t  t h e  c o n s t r a i n t  q u a l i f i c a t i o n s  always hold 

f o r  l i n e a r  c o n s t r a i n t s .  

o n a l  b a s i s  for t h e  n u l l  space of A ,  condi t ions  2 )  and 3) can be r e w r i t t e n  

a s :  , 

Given a mat r ix  2, whose columns form an orthog- 

T 

T 
2 ' )  z g(x*) = 0; 

3 ' )  

If t h e  mat r ix  A has  P u l l  rank, it i s  slways p o s s i b l e  t o  f i n d  an 

Z GZ i s  p o s i t i v e  semi- de f in i t e .  

i n i t i a l  f e a s i b l e  p o i n t ,  y, where all c o n s t r a i n t s  a r e  s a t i s f i e d  ( s o  t h a t  

A y = b ) .  

null space of' t he  columns of A ,  then  a l l  subsequent p o i n t s  w i l l  a l s o  

s a t i s f y  t h e  c o n s t r a i n t s .  

- 
T If any move from y i s  made a long  d i r e c t i o n s  t h a t  l i e  i n  t h e  

Any v e c t o r  i n  t h e  n u l l  space of A can be u r i t t e n  a s  Zv, f o r  Z a s  

T A l l  vec tors  x t h a t  s a t i s f y  A x = b can, t h e r e f o r e ,  be descr ibed above. 

w r i t t e n  a s  x = y + Zv, where y s a t i s f i e s  A y = b, an:! t h e  c c n s t r a i t e d  

problzm can be solved by determining t h e  v e c t o r  v* of l e n g t h  (n-m) such 

t h a t  F(y + Zv*) i s  a minimm w i t h  r e s p e c t  t o  v .  

T 

The l i n e a r l y  cons t ra ined  

problem can thus  be considered a s  an unconstrained 

number of v a r i a b l e s .  

1.5.1 Descent Condition 

Because t h e  i n i t i a l  cons t ra ined  pro?; 

problem i n  a reduced 

ern has been transformed 

i n t o  an unconstrained problem of minimizing F(x) i n  a subspace, t h e  

descent  conc!ition w i t h  r e spec t  t o  F can s t i l l  be requi red  f o r  any 

i t e r a t i o n  a f t e r  an i n i t i a l  f e a s i b l e  p o i n t  i s  foimd. 

ment i s  p o s s i b l e  because the  c o n s t r a i n t s  a r e  au toma t i ca l ly  s a t i s -  

f i e d  a t  every i t e r a t i o n ,  and only t h e  decrease  i n  F i s  s i g n i f i c a n t  

This r equ i r e-  

i n  measuring improvewnt of t he  i t e r a t e s .  



1.5.2 Choice of Search Direc t ion  

As i n  t h e  unconstrained case,  methods f o r  c h o o s h g  the 

. s e a r c h  d i r e c t i o n  a r e  based 011 t h e  p r o p e r t i e s  ho ld ing  a t  F(x*).  A 

fundamental complicat ion i s  t h a t  t he  Taylor  s e r i e s  expansion of F 

cannot be used i n  a pure ly  s t r s igh t fo rward  way. The f e a s i b i l i t y  

of any p e r t u r b a t i o n  must be considered,  and t h e  Hessian mat r ix  of 

F need not  be p o s i t i v e  d e f i n i t e  i n  a neighborhood of t h e  minimum, 

nor  even a t  the  minimm i t s e l f .  
. -  

However, w i t h  l i n e a r  e q u a l i t y  c o n s t r a i n t s ,  from an . i n i t i a l  

f e a s i b l e  po in t  i t  i s  poss ib l e  t o  remain f e a s i b l e  simply by moving 

o~ly a long appropr i a t e ly  chosen d i r e c t i o n s .  Hence, t h e  kehavior  of 

F (x )  a long  such d i r e c t i o n s ,  any of which may be w r i t t e n  a s  p = Zv, 

can be examined: 

T T  F(x+Zv) = F(x) + vTZTg + 5 v Z GZv + . . . 
11 T A t  x*, t h e  "projected g rad ien t ,  Z g, must be zero,  and 

T Z GZ must be p o s i t i v e  semi- de f in i t e .  

Hessian G, and Z GZ i s  s t r i c t l y  p o s i t i v e  d e f i n i t e ,  t h e  v e c t c r  v 

If F ( x )  i s  a quadra t i c  w i th  
T 

such t h a t  Zv is  t h e  s t e p  t o  t h e  minimum of F(x + Zv) i s  given by 

the  s o l u t i o n  o f :  
T T Z GZv = -Z g .  

A gene ra l  a lgori thm, where t h e  s e a r c h  d i r e c t i o n  i s  given 

by Zv, and v s a t i s f i e s  (l.5.i) f o r  t he  c u r r e n t  g r a d i e n t  and Hessian, i s  

a Newton-type method enalogcu,c t o  t he  unconstrained c a s e .  

i s  p o s i t i v e  d e f i n i t e ,  t hen  g p = -gTZ(Z GZ) 

d i r e c t i o n  f o r  F .  

I f  ZTGZ 
T T -1 T Z 5,  and p i s  a descent  

There a r e  many o the r  methods for solvLng l i n e a r l y  cons t ra ined  

problems ( s e e  G i l l  and X u r a y ,  1?7Sb), and d e t a i l s  w i l l  not be given 



h e r e .  The important po in t  i s  t h a t ,  because t h e  cons t ra ined  pro-  

blem can be transformed i n t o  an  equ iva l en t  unconstrained problem, 

methods based on unconstrained techniques can be d i r e c t l y  appl ied ,  

by cons ider ing  the  behavior  of t h e  o ' r ject ive f u n c t i o n  a long  a 

l imi t ed  set  of d i r e c t i o n s .  For t h i s  problem, it is  always poss ib l e  

t o  determine a s ea rch  d i r e c t i o n  such t h a t  a s u i t a b l e  s t e p  simul-  

t aneous ly  main ta ins  f e a s i b i l i t y  and decreases  t h e  ob jec t ion  f n n c t i o n .  

1.5.3 Chotce of S t e p  Length 

Because a s e a r c h  d i r e c t i o n  can be computed a long  which un- 

l i m i t e d  movement w i l l  not v i o l a t e  the  c o n s t r a i n t s ,  t h e  c r i t e r i a  f o r  

choosing t h e  s t e p  l eng th  can be based only OQ F ( x ) ,  and remain t h e  

same a s  i n  wha%ever unconstrained method i s  used t o  choose t h e  

s e a r c h  d i r e c t i o n .  

1 .6 Linear  I n e q u a l t t y  Cons t ra in ts  

The problem t o  be considered is : 

minimize F( x) 
T s u b j e c t  t o  A x 2  b, 

where AT has rows. 

The condi t ions  t h a t  m u s t  be s a t i s f i e d  a t  x*, a l o c a l  minimum, i n -  

volve  t h e  columns of A correspondicg t o  t h e  c o n s t r a i n t s  a c t i v e  a t  x*. 

Le t  A denote t he  mat r ix  whcse columns correspond t o  t he  a c t i v e  c o n s t r a i n t s ,  

ar,d l e t  f! be a mat r ix  whose columns form an or thogonal  b a s i s  for t h z  n u l l  

space of 8 .  

1) 

A t  x*, t he  fol lowing must hold:  

A x*,2  b ( a l l  c o n s t r a i n t s  s a t i s f i e d ) ;  T 

2)  

3 )  

The l i n e a r  i n e q u a l i t y  cons c r s i n n d  prrblex i s  more complicated than  

g(x*) = e, w i t h  a l l  A T >  0; 

2 G(x*)& must be p x i t l v e  semi- de f in i t e .  T 
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t h e  l i n e a r  e q u a l i t y  cons t ra ined  problem because: (lj it i s  not  poss ib l e ,  

i n  gene re l ,  t o  determine immediately 6 po in t  s z t i s f y i n g  a l l  t h e  con- 

s t r a i n t s ;  and (2 )  t h e  s e t  of c o n s t r a i n t s  a c t i v e  iit x* i s  unknown. The 

problem (1) of f i n d i n g  an i n i t i a l  f e a s i b l e  p o i n t  w i l l  no t  be discussed 

here i n  any d e t a i l ;  i n  t h e  case of l i n e a r  programming ( s o l v i n g  t h e  pro-  

blem above f o r  a l i n e a r  ob jec t ive  f u n c t i o n ) ,  t h i s  sub-problem i s  known 

a s  "Phase I". It can be solved by minimizing a func t ion  t h a t  r ep re sen t s  

t h e  depar ture  of a p o i n t  from f e a s i b i l i t y ,  e . g . ,  t h e  sum of t h e  magni- - - -  

tudes  of t h e  c o n s t r a i n t  v i o l a t i o n s  ( s e e  G i l l  and Murray, 1974k). 

methods a r e  a v a i l a b l e  f o r  f i n d i n g  a f e a s i b l e  po in t  i f  one e x i s t s ,  it 

w i l l  be assumed hencefor th  t h a t  an i n i t i a l  f e a s i b l e  p o i n t  i s  given.  

Since 

The ques t ion  posed by ( 2 )  of f i n d i n g  t h e  s e t  of a c t i v e  c o n s t r a i n t s  w i l l  

be answered a s  t he  s o l u t i o n  i s  determined. 

1 .6 .1  Choice of Search  Direc t ion  

Most a lgor i thms f o r  computing t h e  s e a r c h  d i r e c t l o n  f o r  

t h i s  problem a r e  based on an  " ac t ive  s e t "  s t r a t e g y .  

s t r a t e g y ,  a subse t  of t h e  c o n s t r a i n t s  - t h e  " a c t i v e  s e t "  - is  

With such a 

t r e a t e d  a s  a temporary s e t  of e q u a l i t y  c o n s t r a i n t s .  Under appro- 

p r i a t e  condi t ions ,  t h e  s e a r c h  d i r e c t i o n  can t h e n  be chosen t o  de- 

c r e a s e  t h e  ob jec t ive  func t ion  2nd t o  remain feasi-ble w i t h  r e spec t  

t o  t h e  cul"l.ently a c t i v e  c o n s t r a i n t s .  L e t  8 dencte  the  f u l l - r a n k  

ma t r ix  whose colurans correspond t o  Those c o n s t r a i n t s  c u r r e n t l y  con- 

s ide red  a c t i v e ,  &h t h e  u s u a l  s i g n i f i c a n c e  f o r  2 .  Any d i r e c t i o n  

which i s  or thognnal  t o  a l l  c u r r e n t l y  a c t i v e  c o n s t r a i n t s  can be w r i t t e n '  

a s  p = 2v f o r  scme v .  Expanding F(x) a long such a d i r e c t i o n  g ives :  

T T V  
F ( x t - 2 ~ )  = F(x) + g 2v + 2 v Z-G&v 4- . . . 

If g i s  no t  i n  t h e  range of 8, t h e r e  e x i s t s  a d i r e c t i o n  h = 2; such 
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AT- -T 
t h a t  A p = 0 and 

Otherwise, g i s  i n  t he  rang? of 2, s o  t h a t  

some A .  
h T A  TA 
p exists  such t h a t  a i  p > 0, g p < 0, and aT J 
a c t i v e  c o n s t r a i n t s .  A move along $ e s s e n t i a l l y  removes the  i t h  

c o n s t r a i n t  from t he  a c t i v e  se t ,  and $ i s  a f e a s i b l e  descent  d i -  

is  a descent  d i r e c t i o n  for F, i . e . ,  p g < 0.  
BT AA 

g = 0, and g = Ah for 
h h A 

If any component of h is negat ive ,  say  h i  < 0, a d i r e c t i o n  

= 0 f c r  a l l  o ther  

r e c t i o n  w i t h  a reduced a c t i v e  s e t .  

poss ib l e  t o  f i n d  a f e a s i b l e  descent  d i r e c t i o n ,  a l though t h i s  d e t e r -  

minat ion may involve  a l t e r i n g  t h e  c u r r e n t  a c t i v e  s e t  of c o n s t r a i n t s .  

Except a t  x*, it I s  always 

_. - 

Except when t h e  a c t i v e  se t  i s  modified, t h e  c a l c u l a t i o n  of 

s e a r c h  d i r e c t i o n  for a l i n e a r  i n e q u a l i t y  cons t ra ined  problem i s  

e s s e n t i a l l y  t h e  same procedure a s  f o r  an e q u a l i t y  cons t ra ined  pro-  

blem, where t h e  c u r r e n t  a c t i v e  s e t  s p e c i f i e s  t h e  e q u a l i t i e s .  

t h e  s ea rch  d i r e c t i o n  i s  choser! by a p p l i c a t i o n  of some s u i t a b l e  a l -  

gorithm f o r  f i n d i n g  the  unconstrained minimum cf F i n  a s u b q a c e .  

Thus, 

1.6.2 Choice of S t e p  Length 

The s t e p  t o  be taken  along a s ea rch  d i r e c t i o n  depends on 

two cons ide ra t ions :  (1) t h e  c r i t e r i a  used t o  choose the  s t e p  based 

on t h e  decrease i n  F; and ( 2 )  whether t h e  next  p o i n t  remains f e a s i b l e  

w i t h  r e s p e c t  t o  c o n s t r a i n t s  not  previou.sly a c t i v e .  The new ques t i cn  

posed by ( 2 )  can be answered f a i r l y  eas i l j i ;  w i t h  l i n e a r  c c n s t r a i n t s ,  

it i s  p o s s i b l e  t o  compute e x a c t l y  where each  c o n s t r a i n t  w i l l  become 

z e r o  along a given d i r e c t i o n .  A t  each  i t e r a t i o n ,  t h e  s ea rch  d i -  

r e c t i o n  produced i s  

s t e p s  w i l l  be taken  

is  a x-’c. 2 0, t h e  T 
i 1 

c u r r e n t  ly i n a c t i v e  , 

a descent  c i i rec t ion  f o r  F, and only p o s i t i v e  

a long  i t .  If a .  p 2 0, where the  Ccii c o n s t r a i n t  

c o n s t r a i n t  i s  nondecreasing along p, and, i f  

T 
1 

w i l l  not: r e r c h  zero for any p 3 s i t i v e  s tep.  If 



a Tp < 0, t h e  s t e p  yi t o  %he c o n s t r a i n t ' s  zero  a long  p, such t h a t  i 

T a i (x+yip) = bi, 

i s  given by: 
T (b i - a  x)  i - 7i - 

m 

The values y can be computed f o r  a l l  cu r r enx ly  i n a c t i v e  i 

c o n s t r a i n t s  decreas ing  along p,  and y* = min {Ti] i s  then  the  maxi- 

mum p o s i t i v e  step'that w i l l  not  v i o l a t e  any c o n s t r a i n t .  

The s t e p  l eng th  a lgor i thm for a l i n e a r  i n e q u a l i t y  con- 

s t r a i n e d  problem must determine whether an acceptab le  s t e p  w i t h  re- 

spec t  t o  t h e  ob jec t ive  func t ion  ( s a t i s f y i n g  the  c r -  i t e r ; a  i n  t h e  un- 

cons t ra ined  con tex t )  i s  achieved a t  cy < y * .  If  s o ,  no new con- 

s t r a i n t s  become a c t i v e  a t  t he  next  po in t ;  i f  not ,  t h e  s t e p  y* w i l l  

be  taken,  and a previousl-y i n a c t i v e  c m s t r a i n t  i s  added t o  t h e  

a c t i v e  s e t .  

1.6.3 Summary 

The min+s iza t ion  problem w i t h  l i n e a r  i n e q u a l i t y  c o n s t r a i n t s  

can be solved by us ing  t h e  methods given f o r  t h e  equal iTy c a s e .  

If t he  c o n s t r a i n t s  a r e  not  i ncons i s t en t ,  s n  i n i t i a l  f e a s i b l e  po in t  

can be fouRd. Given e s e t  gf c u r r e c t l y  a c t i v e  c o n s t r a i n t s  t o  be 

t r e a t e d  a s  e q u a l i t i e s ,  it i s  2osc55le t o  determine f e a s i b l e  descent  

d i r e c t i o n s ,  perhaps s imultaneouslv a l t e r i n g  the  s p e c i f i c a t i o n  of 

the a c t i v e  se t ,  w i t h  a decrease i n  F(x) a t  every i t e r a t i o n .  The 

s t e p  a long  any sea rch  d i r e c t i o n  a t  which a n  i n a c t i v e  c o n s t r a i n t  be- 

comes ze ro  can be obtained d i r e c t l y ,  s o  t h a t  t h e r e  i s  EO d i f f i c u l t y  

w i t h  main ta in ing  f e a s i b i l i t y .  Because t h e  sez rch  d i r e c t i o n  b t  each 

i t e r a t i o n  genera tes  only f e a s i b l e  poin-cs w i t h  x s p e c t  t o  the  cu r r en t  



a c t i v e  set ,  t h e  l i n e a r  i n e q u a l i t y  cons t ra ined  problem can be t r a n s -  

formed i n t o  a sequence of unconstrained proDlems, each of which has 

a t r a n s p a r e n t  r e l a t i o n s h i p  t o  t h e  o r i g i n a l  problem. 

1.7 Nonlinear  Cons t r a in t s  - New Considerat ions 

For cons is tency ,  it w i l l  be assumed hence fo r th  t h a t  a l l  t h e  con- 

s t r a i n t s  of a problem a r e  non l inea r .  I f  even one c o n s t r a i n t  func t ion  

i s  nonl inear ,  t h e  problem i s  considered t o  be non l inea r ly  cons t ra ined;  

but s i n c e  advantage =an be taken of l i n e a r i t y  i n  t h e  c o n s t r a i n t  func t ions ,  

l i n e a r  c o n s t r a i n t s  a r e  assumed t o  be t r e a t e d  s e p a r a t e l y .  

If an ob jec t ive  func t ion  i s  not  quadra t i c ,  t h e  unconstrained a i n i -  

miza t ion  problem cannot,  i n  gene ra l ,  be solved without  i t e r a t i o n .  A 

c o r r e s p o n d h g  inc rease  i n  complexity occurs w i t h  non l inea r  c o n s t r a i n t  

f u n c t i o n s .  Any n o n l i n e a r i t y  i n  a c o n s t r a i n t  func t ion  means t h a t ,  a t  a 

p o i n t  where t h e  c o n s t r a i n t  i s  zero,  it i s  nc longer  poss ib l e ,  i n  genei-ai, 

t o  f i n d  a stmi&t l i n e  along which t h e  c m s t r a i n t  w i l l  remain ze ro  for 

even an a r b i t r a r i l y  sma l l  move. Hence, a move a long  a s ea rch  direct ic in 

t h a t  tends  t o  decrease F(x) may i n e v i t a b l y  v i o l a t e  some Gf t h e  c u r r e n t l y  

a c t i v e  c o n s t r a i n t s .  

Algorithms f o r  t he  non l inea r ly  cons t ra ined  problem must cons ider  

no t  only how t o  decrease F(x) ,  bu t  a l s o  how t o  a t t a i n  o r  maintain 

f e a s i b i l i t y .  The fo l lowing  new ques t i cns  must  be answered i n  designing 

a lgor i thms f o r  t he  non l inea r ly  cons t ra ined  problem: 

(1) 

has been "successful ' '?  

a b l e  t o  use the  c o n s i s t e n t  c r i t e r i o n  of t h e  va lue  of F(:c) t o  

What c r i t e r i a  should be used t o  determine when an i t e r a t i o n  

The previous c l a s s e s  of a lgor i thms were 

d e c i d e  which of two po in t s  i s  a " b e t t e r "  e s t i m t e  of t ke  so lu -  

t i o n . ,  I n  t he  non l inea r ly  eons t ra iqed  case ,  t h e  c r i t e r i a  of  

success  nus t  inc lude  bo th  P(x) and t h e  d e v i a t i c n  f r o a  f e a s i -  
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b i l i t y ,  and it i s  no t  obvious how t o  balance t h e s e  two measures.  

( 2 )  

be chosen? 

On what b a s i s  should the  sea rch  d i r e c t i d  and s tep l e n g t h  

Should p be a descent  d i r e c t i o n  f o r  F ( x ) ?  Minimize 

a l o c a l  quadra t i c  approximation t o  F ( x ) >  e i t h e r  i n  t h e  f u l l  

space o r  a long a l i m i t e d  s e t  of d i r e c t i o n s ?  

b i l i t y  a s  c l o s e l y  a s  poss ib l e?  Decrease i n f e a s i b i l i t y ?  Should 

the s t e p  l e n g t h  CY be chosen t o  approximate the  minimum of some 

f u n c t i o n  along p? 

A poss ib l e  approach t o  answering these  ques t ions  i s  suggested by an 

Maintair,  f e a s i -  

If so, which func t ion?  
% 

idea  t h a t  euerged from t h e  l i n e a r l y  cons t ra ined  cases  - t ransform t h e  

cons t ra ined  problem i n t o  a sequence of l e s s  complex sub-problems (or 

p o s s i b l y  a s i n g l e  sl_ib-problem) whose u l t i m a t e  s o l u t i o n  i s  t h e  s o l u t i o n  

of the  cons t ra ined  problem. If 8 su5-problem can be devised s o  -chat, a t  

Its s o l u t i o n ,  s a t i s f a c t o r y  progress  has been made toward The conzimined  

s o l u t i o n  according t o  some c r i t e r i a ,  t h m  t h e  well- defined framework of 

t h e  sub-problem can be adopted u n t i l  it i s  so lved .  

The remaining chap te r s  w i l l  d i s cuss  some of' t h e  numerous cethods t h a t  

have been proposed f o r  s o l v i n g  t h e  non l inea r ly  cons t ra ined  problem, with 

p a r t i c u l a r  a t t e n t i o n  t o  t h e  ways i n  which the  sub-problems a r e  consxructed, 

and t h e  corresponding procedures  f o r  measuring progress ,  

s e a r c h  d i r e c t i o n s ,  and determining t h e  s t e p  l e n g t h .  

cons t ruc t ing  

It w i l l  be seen  t h a t  t h e  gene ra l  minimization problem w i t h  nonl inear  

c o n s t r a i n t s  con ta ins  complicat ions t h e t  do c o t  e x i s t  w i t h  I l r e a r  c o n s t r a i n t s .  

Consequently, it i s  our  view t h a t  a fundamencal depa r tu re  i s  advisable  from 

t h e  s t r a t e g y  of a lgor i thms devised f o r  t he  l i n e a r l y  cons t ra ined  problems. 
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CHAPTER 2 

PENALTY AND BARRIER FUNCTION PETHODS 

2 .1  Penal ty  Funct ions - Iri troduct ion 

The problem t o  be considered f i r s t  i s  t h e  non l inea r  e q u a l i t y  con- 

s t r a  iped problem : 

P1: minimize F( x) 

s u b j e c t  t o  c . ( x )  = 0, i=1 ,2 , .  . .,m. 
1 

An approach t o  so lv ing  P1, o r i g i n a l l y  proposed by Courant (1943), 

i s  t o  cons t ruc t  a sequence of r e l a t e d  unconstrained proklems whose so lu-  

t i o n  i n  t h e  l i m i t  is t h e  s o l u t i o n  of P1. With such a t ransformat ion  of 

Ply t h e  e q u a l i t y  cons t ra ined  problem could be solved s i c p l y  by repeated 

a p p l i c a t i o n  of an unconstrained a lgor i thm t o  a se t  of modified ob jec t ive  

f u n c t i o n s .  

I n  genera l ,  a l o c a l  unconstrained miriimun of F(x) w i l l  occur a t  a 

p o i n t  no t  s a t i s f y i n g  t h e  c o n s t r a i n t s ,  QT, a l t e r n a t i v e l y ,  F(x) may decrease 

wi thout  bound. The s o l u t i o n s  of the  proposed sequence of unconstrained 

sub-problems w i l l  converge t o  x* only i f  t h e  modified ob jec t ive  func t ions  

inc lude  a term t h a t  enforces  f e a s i b i l i t y  i n  t he  l i m i t .  One p o s s i b l e  

choice f o r  such a term i s  a func t ion  t h a t  a s s igns  a p o s i t i v e  measure t o  

t h e  c o n s t r a i n t  v i o l a t i o n  ( a  "penal ty"  f o r  i n f e a s i b i l i t y ) ,  

measuring i n f e a s i b i l i t y  i s  assigned ari i n c r e z s i n g l y  l a r g e  weight i n  each 

success ive  unconstrained sub-problem, it seems p l a u s i b l e  t h a t  t he  l i m i t  

of t h e  s o l u t i o n s  w i l l  s a t i s f y  a l l  c o n s t r a i n t s .  

2.2 Pena l ty  Funct ions - Theory 

I f  t h e  term 

2.2.1 D e f i n i t i o n  

The term "penal ty  funct ion ' '  can be def ined  w i t h  wide gener-  

a l i t y  (see Fiacco and McCcr~ick ,  1$8 ; Xyan, 1974 but thxoughout 
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t h e  p r e s e n t  d i scuss ion  only  t h e  fol lowing pena l ty  f u n c t i o n  w i l l  be 

considered : 
m P(x,P) = F(x) + 2 P C ( X ) l  C ( X > .  

The term c T c i s  c l e a r l y  a measure of i n f e a s i b i l i t y ,  and i s  

sometimes c a l l e d  t h e  "quadra t ic  loss func t ion"  ( t h e  mul t ip l e  1/2 i s  

included t o  avoid t h e  appearance of a f a c t o r  of 2 i n  t h e  d e r i v a t i v e s ) .  

The p o s i t i v e  parameter p w i l l  be termed the  "penal ty  parameter",  and 

i s  increased  t o  i n f i n i t y  i n  t h e  l i m i t  t o  enforce f e a s i b i l i t y .  
1 

parameter  i s  o f t e n  w r i t t e n  a s  r, where r + O ,  and r i s  defined a s  

t h e  "penal ty  parameter"; b u t  it seems more c o n s i s t e n t  f o r  t he  pa r-  

ameter t h a t  enforces  t h e  inc reas ing  pena l ty  t o  be i n c r e a s i n g .  

This  

Corn- 

p u t a t i o n a l l y ,  t h e  t rea tment  is  i d e n t i c a l .  Since n e i t h e r  +a n o r  

1/0 e x i s t s  i n  any computer 's  number systern, t h e  l i m i t  i s  never 

taken,  and p is  made l a r g e  enough ( o r  r small  enough) t c  s a t i s f y  t h e  

s p e c i f i e d  convergence c r i t e r i a .  It k poss ib i e  t o  a s s ign  i! d i f f e r e n t  

p e n a l t y  parameter t o  each c o n s t r a i n t ,  thereby vary ing  t h e  i n f l u e m e  

of each  v i o l a t i o n ;  however, only a s i n g l e  parameter w i l l  be  con- 

s i d e r e d  h e r e .  

2.2.2 Descr ip t ion  

The penal ty  

s t r a i n e d  &?-iimurn of 

(Choose a 

. of Algorithm 

func t ion  method f o r  f i n d i n g  x*, a l o c a l  con- 

P ly  i s  t h e  fol lowing:  

s t a r t i n g  po in t ,  c a l l e d  x*( p i o ) )  and an  

i n i t i a l  va lue  of p, p (1) ; 

i t l ; )  

whi le  ( t h e  cond i t i ons  for a cons t ra ined  minimum a r e  

s t a r t i n g  po in t ,  c a l l e d  x*( p i o ) )  and an  

i n i t i a l  va lue  of p, p (1) ; 

i t l ; )  

whi le  ( t h e  cond i t i ons  for a cons t ra ined  minimum a r e  

not  s a t i s f i e d  by x*( F(~-'))) 

r e p e a t  ( 
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Find x*( p ( i ) ) ,  t b e  unconstrained ninimum of P(x, p 

s t a r t i n g  a t  x*( p 

I 

i t i  + 1; 

The use of such a pena l ty  func t ion  a lgor i thm provides 

s t r a igh t fo rward  answers t o  some of t h e  ques t ions  posed i n  Sec t ion  

1.7 of a lgo r i thm design f o r  non l inea r ly  cons t ra ined  problems. If 

t h e  cons t r a ined  minimum has not  been determined w i t h  s u f f i c i e n t  

accuracy, a pena l ty  funct ior ,  method involves  t h e  unconstrained mini-  

mizat ion of a p a r t i c u l a r  func t ion ,  and  a t  each i t e r a t i o n  t h e  ccmputa- 

t i o n  ( cho ice  of s e a r c h  d i r e c t i o n  and s tep l e n g t h )  i s  d i r e c t e d  t o -  

ward s o l u t i o n  of t h i s  sub-prokkm. However, a new dec i s ion  - how t o  

choose and vary  the  pena l ty  parameter - has been int:’TciL;ced. 

I 

I 

- 

Figure  2 .1  i l l u s t r a t e s  t h e  convergence of t he  sequence x*(p) 

t o  a cons t r a ined  s o l u t i o n .  

2.2.3 P r o p e r t i e s  of Penal ty F u n c t i m  Methods 

Convergence 

F iacco  and McCorrnicl; (1968) present  a p r o c i  t h a t  under reason- 

a31y g e n e r a l  c i rcumstances,  t h e  sequence x*(p),  the minima of suc-  

ces s ive  pena l ty  func t ions ,  converges t o  x* e s  p + G O .  Penal ty  func-  

t i o n  methods w i l l  converge even when t h e  f i r s t - o r d e r  c o n s t r a i n t  

q u a l i f i c a t i o n  does no t  hold a t  the  l i m i t  po in t ,  and hence 

termine minima t h a t  d o  not  s a t i s f y  the  Kuhn-Tucker cond i t i ons .  

can de- 

The convergence proof i s  q u i t e  genera l ,  an2 r e q u i r e s  few 

cond i t i ons  on t h e  ob jec t ive  and c n n s t r a j n t  functior?; a Eowever, the 

?roof shows only t h e  ex i s t ence  of a ~ ~ ~ i l p z i c t  s e t  i n c i u i i n g  x* w i t h i n  
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2 n in  x , x >  1 
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which t h e  sequence x*( P )  w i l l  converge t o  x* a s  P + cn; i n  o the r  

words, x*( p) i s  the ffiinimum of P(x, p )  r e s t r i c t e d  t o  a f i n i t e  domain. 

The p r a c t i c a l  implica-tion of this. r e s t r i c t i o n  i s  t h a t  it 

cannot be assumed t h a t  a s u l t a b l e  unconstrained minimum of P (x ,p )  

. w i l l  be found f o r  any s t a r t i n g  p o i n t .  The e f f e c t  of apply ing  a 

p e n a l t y  func t ion  t ransformat ion  t o  a cons t ra ined  problem i s  t o  

c r e a t e  a s e t  of l o c a l  minima. For P s u f f i c i e n t l y  l a r g e ,  and with-  

i n  a bounded r eg ion  inc luding  x*, t he  sequence of p a r t i c u l a r  l o c a l  

minima of P(x ,p)  w i l l  converge to x*. S w e v e r ,  t h e  unconstr3ined 

a lgor i thm used t o  minimize P(x ,p)  may f a i l  t o  converge t o  t h e  d e -  

s - i red  l o c a l  minimum i f  t h e  s t a r t i n g  po in t  is not w i t h i n  t h e  bounded 

r eg ion .  

b 

This  l i m i t a t i o n  i s  i l l u s t r a t e d  i n  an  example 5;iven by 

Powell (1972) : 
2 

minimize x' 

s u b j e c t  t o  x-1 = 0 .  

3 2 
The pena l ty  func t ion ,  P(x,p) = x + i ( x - l )  , i s  displayed 

i n  Figure 2.2.  The s o l u t i o n  t o  t h e  problem i s  c l e a r l y  x* = 1, and 

t h e  p e n a l t y  func t ion  has a l o c a l  minimum a t  

, wi th  l i m  ?c( F )  = x*=l. 
p -?a2 6 2(P> = 

However, if t h e  s t a r t i n g  po in t  i s  not  c lo se  enough t o  x*, an 

cons t ra ined  algorit'hm w i i l  f a i l  t o  converge t o  x*, s5nce i c r  unre-  

s t r i c t e d  x ,P(x ,p)  i s  unbounded below for any p .  

P r o p e r t i e s  of success ive  x*(P) 

The ffitniaa of success ive  P ( x , ~ ( ~ ) )  have the fol!.owi?g pro- 

un- 

p e r t i e s ,  where x ( ~ )  deiiozes xX-(p ('7)) , p(kJ denoTes 
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2 
P ( X , P >  = x3 -k 1 (x-1) 2 

p = l  

F F 

d t 
i 
t 

-1.0 

FIGiJr& 2.2 
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F ( x ( ~ ) ) ,  and c ( ~ )  denotes  c(x (k))  . 

, 1. P ( x ( ~ ) ,  J k ) ) ,  k = 1,2, ..., i s  nondecreasing.  

Proof: By d e f i n i t i o n  

(k)T c ( k )  + 0 )  s i n c e  p 04 > p-0 
( i f  c 

2 .  

Proof: 

F ( x ( ~ ) ) ,  k=1,2, . . .; i s  nondecreasing.  

It fo l lows  from t h e  d e f i n i t i o n  of x ( k - l )  and x(k) t h a t :  

F (k-1)  + c ( k - l ) T  c ( k - l )  S F  ( k )  + C ( k ) T c ( k )  
(k -1 )  (k -1 )  

and 
(k) ( k )  P ( k - l ) T  (k-1) F j k )  pT (k )T  < & k - l )  + 2 C 

P (k) 

Mult ip ly ing  t h e  f i r s t  i neq l l a l i t y  by P T l ) ,  and adding it 

t o  t h e  second, g ives ,  a f t e r  re- ar ranging:  
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3 .  (k)T ( k )  C c , k = 1,2, . . . , i s  nonincreasing . 

2 OJ and s ince ,  from p rope r ty  2, - I" (k-1)  

._ -.. 
These p r o p e r t i e s  show t h a t  t h e  success ive  x*( p )  d i sp l ay  a 

decreas ing  measure of i n f e a s i b i l i t y  and an inc rease  i n  F(x) a s  the  

i t e r a t e s  approach t h e  f e a s i b l e  s o l u t i o n  x*. 

The minima of success ive  p e n a l t y  func t ions  provide a s e t  

of p o i n t s  from which no move e x i s t s  t n a t  s imul taneous ly  decreases  

T F and c c .  A t  x*(p), t he  minimum of P(x,P):  

VP(x,p) = g -I- PAC = 0. 

Any d i r e c t i o n  p a long  which c T c i s  decreas ing  from x*(p) s a t i s f i e s  

T -1 T p kc  < 0; bu t  s i n c e  Ac = - g, it fo l lows  t h a t  p g > 0, and any such 
P 

p x i 1 1  l o c a l l y  i nc rease  ~ ( x ) .  

Lagrange M u l t i p l i e r  E s t i m a t e s  

The c ond i t ion : 

g = -PAC,  

which holds  a t  x*(p), i s  of t h e  same form a s  t h e  necessary  condi t ion  

for a minimum a t  x* when A(x*) has full rank, i . e . ,  

\ g(x*) = A(x*)P .  

The q u a n t i t i e s  A i ( P )  = - pci(x*(P)) a r e  thus  analogous t o  

t h e  Lagrange m u l t i p l i e r s  a t  x*) s i n c e  they  a r e  the c o e f f i c i e n t s  i n  t h e  

expansion of g a s  a l i n e a r  combination of t h e  ccl-mns of A .  It can bs 



shown t h a t  under s u i t a b l e  cond i t i ocs  - f o r  example, when t h e  

s u f f i c i e n c y  cond i t i ons  given i n  Sec t ion  1.2 L o l d  a t  x*, and A(x*) 

has f u l l  renk - t h e n  l i m  Ai( p )  = Ai*. 
P -+a 

T r a j e c t o r y  of x*C(p) 

Under s u i t a b l e  assumptions, t h e  pena l ty  parameter can be 

regarded a s  an independent v a r i a b l e  de f in ing  a t r a j e c t o r y  of values 

x*( p ) ,  w i t h  corresponding m u l t i p l i e r  func t ions  h ( P ) ,  converging r e -  

s p e c t i v e l y  t o  x*-and A*. The fo l lowing  r e s u l t  i s  proved i n  Fiacco 

and McCormick (1968) . I f :  

(1) 

( 2 )  A(x*) has f u l l  rank; 

( 3 )  

F and {ci] a r e  twice d i f f e r e n t i a b l e ;  

The s u f f i c i e n t  condi t ions  given i n  Sec t ion  1 .2  

for a cons t ra ined  minimum a r e  s a t i s f i e d  a t  x"; 

Then for p s u f f i c i e n t l y  l a r g e  t h e r e  e x i s t  conxinuously d i f f e r -  

e n t i a b l e  func t ions  x * ( p ) ,  A(p), such That l i m  x i c ( p )  = x*, 
P + Q 3  

l i m  h ( p )  = A*J and for any f i n i t e  p , x * ( p )  i s  a l o c a l  minimm of 
P + a  

p(x ,  P I .  

When t h e  t r a j e c t o r y  x"(P) e x i s t s ,  it i s  p o s s i b l e  t o  use 

e x t r a p o l a t i o n  techniques t o  p r e d i c t  x* based on previous  values cf 

x*(p) .  This  technique w i l i  not  be d iscussed  f u r t h e r  here ;  for ae- 

t a i l s ,  s ee  F iacco  and McCormick (1.968). 

The t r a j e c t o r y  def iced by x* ( p )  has s e v e r a l  i n t e r e s t i n g  pro-  

I n  o rde r  t o  d iscuss  t h e  condi t ions  z t  t h e  l i m i t ,  we in -  per t ies \ .  
1 troduce t h e  v a r i a b l e  r = - use the  n o t a t i o n  x*(p) 5 x*(r), and 
P J  

t a k e  t h e  l i m i t  a s  r 4 0 .  

of i t s  expansion about x* a s :  

It i s  ~os;:ibI.s -to express  x*(r) i n  ierrns 
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2 x*(r) = x* + r y  + C ( r  ), 

x*( r )  -x* dx*-( r )  
wnere N = l i m  r = l i m  d r  

At x*(r), rVP(x,r) = r g  + Ac 5 0. 

D i f f e r e n t i a t i n g  t h i s  i d e n t i t y  w i t h  r e spec t  t o  r a t  x*(r) 

g ives  : 

d 
d r  (rg + Ac) = 
- 

0 

d ax*( r) 
- g + z* ( r g  + Ac) d r  - 

dx*( r )  T m 

i=l 
g + ( r G  + C ciGi + AA ) d r  = 0.  

As r 3 0, by d e f i n i t i o n  c 3 0, and the  above becomes: i 

T g(x*) + A(x*)A(x*) y = 0, 

dx*( r )  
where y = l i m  d r  . If  A(x*) has f u l l  rank, g(x’) = A(x*)X*, 

s o  t h a t  by s u b s t i t u t i n g  f o r  g(x*) and c a n c e l l i n g  A(x*), t h e  r e s u l t  

i s  : A(x*) T y = - A * .  ( 2 . 2  .l) 

This  r e l a t i o n s h i p  can a l s o  be obtained by t h e  fol lowing a l -  
-1 

t e r n a t i v e  d e r i v a t i o n .  A t  x*(r ) ,  h ( r )  = r c ( x * ( r ) ) .  Expandiag 

t h e  i t h  c o n s t r a i n t  and m u l t i p l i e r  e s t ima te  about  x*, and l e t t i r l g  

t h e  v e c t o r  u d e n o t e d x  , we obta in :  
i - 

i 

-1 - 
Ai(x*(r)) = r c i (x* ( r ) )  

T 2 -1 \ 
- T Ai(x*) + r ui(x*) y = r c . (x*)  1 - ai(”*) y + O ( r  ) 

T 2 
= - ai(x*) y +O(r  :I, 

s i n c e  c,(x*) = 0 for a l l  i. Takicg the  l i r s i t  as r 4 0  gives ,  a s  
I 
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be fo re  : 

T n(x*) y = - h*. 

T If hi* + 0, it fo l lows  t h a t  a y + 0.  The pena l ty  f m c t i m  i 

t r a j e c t o r y ' s  approach t o  x*, t he re fo re ,  does no t  l i e  i n  a t angent  

p lane  f o r  any constraint w i t h  a non-zero Lagrange m u l t i p l i e r .  For 

s u f f i c i e n t l y  small  r, a s i m i l a r  r e s t i l t  v i 1 1  hold f o r  t h e  s t e p  from 

x*(r) t o  x*-(?), ? < r, by t h e  continuous d i f f e r e n t i a b i l i t y  of x*(r). 

This  c h a r a c t e r i z a t i o n  of t h e  p a t h  of i t e r a t e s  t o  x* c o n t r a s t s  t o  

t h a t  of o the r  a lgor i thms,  f o r  example, "pro jec ted  g rad ien t "  mexhods, 

which genera te  a t a n g e n t i a l  approach t o  t h e  s o l u t i o n .  Figure 2.3 

d i s p l a y s  t h e  t y p i c a l  approach of e pena l ty  f u n c t i o n  t r a j e c t o r y  t o  

X* . 

.. a 

The non-zero s c a l a r  product between B and y impl ies  t h z t  i 

t h e  l i n e a r  t e r m  w i l l  dominate t h e  l o c s l  Taylor  s e r i e s  expansior, of 

c a long  t h e  t r a j e c t o r y .  If c.{x+ocp) is  approximated by c.+ctai T p, 
1 1 T i 

l a i  PI 
and -= i s  very  small ,  t h e  l i n e a r  approximation i s  poor: 

and h igher- order  in format ion  i s  requi red  t o  model a c c u r a t e l y  the  

behavior  of c a long  p .  I n  Chapter > >  t h e r e  i s  f u r t h e r  diiscl;sstlon 

of t h e  s i g n i f i c a n c e  of t h e  non- tangent ia l  approach t o  x* of t h e  

i 

p e n a l t y  func t ion  t r a j e c t o r y ,  inc luding  cons ide ra t ion  of how t h i s  

p rope r ty  can be exp lo i t ed  i n  s l g w i t h m  5es lgn .  

To d e r i v e  an express ion  f o r  yJ  we use t h e  i d e n t i t y  f o r  

vp(x*t(P J p  ' 
0 = VP(X*(P ),P 1 

i 

= g(x*(p > >  - A(X*(P ) >  U X * ( P  I > ,  
1 1 

and expand each  func t ion  about x*, us ing  x*(p ) = x* + 7 y + 0 ( p 2 ) .  

In t he  fol lowing,  a l l  ma t r ix  and v e c t o r  Pimetions a r e  eva lua ted  a t  

x* un le s s  otherwise s p e c i f i e d .  The sbove i d e n t i t y  becomes: 
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\ FIGURE 2.3 



&A. i - where t h e  columns of U a r e  {ui], Ui =ax 
cance l l i ng ,  mu l t ip ly ing  by p,  and l e t t i n g  p + m y  we obta in :  

. Since  g = AA*, a f t e r  

m 
where W = G - C 

i= 1 
hi*Gi, t he  Hessian of t h e  Lagrangian f u n c t i o n .  

If W i s  non- singular ,  t h e  above becomes: __  - 
-1 T (2.2.2)  y = W  A U y .  

T T 
From t h e  previous  de r iva t ion ,  A y = -A*; app ly ing  A t o  

t h e  above equat ion  g ives :  

T T A y = A%-'A U y = -A*-. 
-I If A% A i s  non- singular ,  then  

T T -1 

-1 
U y = - (A W A)-\*. 

By apply ing  W A, which i s  of f u l l  rank, t o  both  s i d e s ,  and u s i n g  

( 2 . 2 . 2 ) ,  we ob ta in  an express ion  f o r  y i n  terms of W, A ,  and A*: 

y = -WmlA ( A  T W -1 A)-+*. ( 2 . 2 . 3 )  

2.2.4 D i f f i c u l t i e s  

Although p e n a l t y  func t ion  methods have some s i g n i f i c a n t  a i -  

vsn tages ,  t hey  s u f f e r  from s e v e r a l  d e f f c i e n c i e s  a s  w e l l .  

I l l -Cond i t  ion ing  of Iiessian 

The n m e r i c a l  s o l u t i o n  of the unconstrained sub-problems 
1 

i s  i n c r e a s i n g l y  more d i f f i c u l t  a s  t h e  p e n z l t y  parameter  becomes 

l a r g e .  

(1969a) and Lootsrna (1969) i n  terms of  t h e  cond i t i on ing  of t he  Hessian 

matr ix  a t  the minimum of each succ,c;=sive pena l ty  f u n c t i o n .  

The causes of t h i s  phenomenon have been analyzed by Murray 

The Hessian of t h e  pena l ty  f u n c t i o n  i s  given by: 
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T m 
C PciGi + @A . 
i=l 

2 V P(x,p) = G + 

A t  x*(p), f o r  l a r g e  p, t h e  f i r s t  two terms form an approximation 

t o  t h e  Hessian mat r ix  of t he  Lagrangian f u n c t i o n  a t  x*, s i n c e  l i m  
P 

2 pc(x*(p)) = -A*. 
T by t h e  term pAA , and hence approaches a r ank- de f i c i en t  mat r ix ,  

with rank equal  t o  my t h e  number of a c t i v e  c o n s t r a i n t s  a t  x*. 

However, t h e  mat r ix  V P is dominated f o r  l a r g e  p 

Expressions can be given f o r  t h e  e igenvalues  and e igenvec tors  
.. - 

2 of V P(x*(p) ,p)  a s  p+m ( s e e  Murray, 1971), which r e v e a l  t h a t  ( n - 9 )  

e igenvalues  a r e  bounded, and have e igenvec tors  t h a t  i n  t h e  l i m i t  

l i e  i n  t h e  n u l l  space of A(x*); however, t h e r e  a r e  m e igenvalues of 

orde r  p,  i . e . ,  unbounded i n  t h e  l i m i t ,  whose corresponding eigen-  

vec to r s  l i e  i n  t h e  range of A(x*). 

The p rog res s ive ly  worse cond i t i on ing  of t h e  Hessian mat r ix  

Of P(x*( p ) ,  p )  w i l l  cause numerical d i f f i c u l t i e s  f o r  t he  methods used 

t o  so lve  each unconstrained sub-problem, and a f f e c t  t he  t h e o r e t i c a l  

r a t e  of convergence of t h e  unconstrained a lgor i thm.  

Deviat ion from O r i g i n a l  Problem 

A f u r t h e r  u n s a t i s f a c t o r y  f e a t u r e  of p e n a l t y  f u n c t i o n  meth- 

ods i s  i l l u s t r a t e d  by assuming t h a t  t h e  o r i g i n a l  s t a r t i n g  p o i n t  i s  

very  clos:: t o  t h e  des i r ed  s d u t i o n ,  x*-. For a t y p i c a l  i n i t i a l  

va lue  of p ( o f t e n  chosen t o  be u n i t y ) ,  t h e  subsequent e s t ima te s  of 

x*(p) would tend t o  move away from even a neighborhood of x*. The 

e f f i c i e n c y  of a p e n a l t y  func t ion  method i s  thus  h i g h l y  dependent 

on the choice of p .  Although a p e n a l t y  f u n c t i o n  method provides  

c r i t e r i a  for measuring success  a t  each i t e r a t i o n ,  t h e  concent ra t ion  

on t h e  sub-problem c r e a t e s  a diversion from the s o l u t i o n  of t h e  
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o r i g i n a l  cons t ra ined  proclem, becausz t h e  sub-prablem s c ~ l u t i o n s  

approach x* only i n  the l i m i t .  

2.2 .> Extension t o  I n e q u a l i t y  Cons t ra in t s  

A p e n a l t y  f u n c t i o n  method can be used t o  so lve  the i n-  

e q u a l i t y  cons t ra ined  problem: 

E: minimize F( x) 

s u b j e c t  t o  c.(x) 1 2 0, i = 1 , 2 , .  . .,&. 

By analogy t o  t h e  e q u a l i t y  case,  the func t ions  t o  be mini-  _ _  - 
mized should inc lude  a pena l ty  f o r  i n f e a s i b i l i t y .  

p e n a l t y  func t ion  i s  used a s  be fo re ,  bu t  only t h e  v i o l a t e d  con- 

s t r a i n t s  a r e  included i n  t h e  pena l ty  te rm.  

f o r  i n e q u a l i t i e s  may be w r i t t e n  a s :  

The quadra t i c  

The pena l ty  func t ion  

A more compact n o t a t i o n ,  which w i l l  be used throughout  t h i s  s e c t i o n ,  

is : 
n 

where it i s  assumed t h a t  m c o n s t r a i n t s  a r e  c u r r e n t l y  v i o l a t e d ,  

arid $ i s  a v e c t o r  of l e n g t h  m correspcnding only  ta t h e  v i o l a t e d  

c o n s t r a i n t s .  For  s i m p l i c i t y ,  t he  elements of $ w i l l  be numbered a~ 

A A c i’ i=1,2.. . . .,R, where ci should be taken t o  mean the  i t h  currentl-3’ 

v i o l a t e d  c o n s t r a i n t .  

ma t r ix  A ,  whose columns a r e  gived by {si], i = 1 , 2 , . .  .,m, t he  grad- 

i e n t s  of the c o n s t r a i n t s  i n  e. 

A s i m i l a r  n o t a t i o n  w i l l  be used f o r  t h e  
A 

The convergence cf a pena l ty  f u n c t i o n  method appl ied  t o  

problem €2 can be proved under t h e  same cond i t ions  a s  for problem 

Ply w i t h  the  same r e s t r i c t i o n  t k t  the des i r cd  l o c a l  minima of 

P(x,p)  e x i s t  i n  a compact domain i x l - 1 % d i r g  x*. The ex i s t ence  of a 
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t r a j e c t o r y  x*( p) ,  w i t h  a m u l t i p l i e r  f a n c t i o n  ?,( F), can a l s o  be 

demonstrated under condi t ions  s i m i l a r  t o  those  f o r  t h e  e q u a l i t y  

problem, w i t h  t h e  f u r t h e r  r e s t r i c t i o n  t h a t  hi* > 0 .  

For p s u f f i c i e n t l y  l a r s e ,  t h e  s e t  of c o n s t r a i n t s  v i o l a t e d  

a t  x*(p) i s  equ iva len t  t o  t h e  s e t  of c o n s t r a i n t s  a c t i v e  a t  x*, 

s i n c e  t h e  c o n s t r a i n t s  i n a c t i v e  a t  x* a r e  s t r i c t l y  f e a s i b l e  i n  a 

neighborhood of x* by c o n t i n u i t y .  Hence, t h e  minima of success ive  

p e n a l t y  func t ions  occur, f o r  s u f f i c i e n t l y  l a r g e  P ,  a t  po in t s  

s t r i c t l y  -infeasible w i t h  respect t o  t h e  a c t i v e  c o n s t r a i n t s  a t  x*. 
. -  

Since t h e  condi t ion:  

g = -  p% 
h 

holds  a t  x*(p), and g(x") = A(x*))h*, where a(x*) denotes the  matr ix  

of { a . ]  corresponding t o  a c t i v e  c c n s t r a i n t s ,  it follows t h a t  f o r  

* < 0, and t h e r e f o r e  < 0 .  A^(x*) of f u l l  rank, l i m  p 2 = - h i  

1 

i i 
P 3 0 2  

The r e s u l t s  given for t h e  p e n a l t y  func t ion  methods appl ied  

t o  e q u a l i t i e s  - concerning t h e  non- tangen t ia l  approach of the  t r a -  

j e c t o r y  x * ( p ) ,  and t h e  express ion f o r  l i m  d r  - a r e  i d e n t i c a l  

f o r  t h e  i n e q u a l t t y  problem, including lsnly t h e  c o n s t r a i n t s  a c t i v e  

a t  +, s o  t h a t  2 and $ appear i n  all t h e  corresponding r e l a t l  1 ons 

dx*( r )  

r 4 0  

for i n e q u a l i t i e s .  The d i f f i c u l t i e s  of p e n a l t y  f u n c t i o n  methods r n -  

main t h e  same for t h e  i n e q u a l i t y  prGklem. 

2.3 B a r r i e r  Functions - Introductdon 

B a r r i e r  func t ion  methods a r e  used t o  so lve  t h e  i n e q u a l i t y  con- 

s t r a i n e d  problem : 

E: minimize F( x )  
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To apply  t h e  b a r r i e r  f u n c t i o n  approach t o  E?, the  reg ion  for which 

a l l  c o n s t r a i n t s  a r e  s t r i c t l y  s a t i s f i e d  must have an i n t e r i o r .  This  r e -  

s t r i c t i o n  means t h a t  b a r r i e r  func t ion  methodz cacnot be used f o r  e c p a i i t y  

const ra ined problems. 

be expressed by spec i fy lng  two i n e q u a l i t i e s  (e.(.) 1 1 0, -ci(x) 2 0) ,  t h e r e  

e x i s t s  no p o i n t  t h a t  can simultaneously s t r i c t l y  s a t i s f y  both .  

Although an e q u a l i t y  c o n s t r a i n t ,  c .  1 (x )  = 0, can 

I n  many p h y s i c a l  and engineer ing a p p l i c a t i o n s ,  t h e  c o n s t r a i n t  func- 

t i o n s  no t  only c h a r a c t e r i z e  t h e  d e s i r e d  p r o p e r t i e s  of t h e  s o l u t i o n ,  but  

a l s o  def ine  t h e  region i n  which t h e  pro’clen s ta tement  i s  nneaningful ( f o r  

example, F(x)  or some of the  c o n s t r a i n t  func t ions  may be undefined cut-  

s i d e  t h e  f e a s i b l e  r e g i o n ) .  An a r t i f i c i a l  convention f o r  extending t h e  

problem s ta tement  outs ide  t h e  f e a s i b l e  region would not lend i t s e l f  t o  

the des ign of a computationally ressona‘sle a l g o r i t h n ,  and might iritroduce 

complications not presen t  i n  the  o r i g i n a l  prob?-em. 

- 

The methods t o  be considered r e q u i r e  s t r i c t  s a t i s f a c t i o n  of 211 con- 

s t r a i n t s  a t  t h e  s t a r t i n g  p o i n t  and subserluent i t e r a t e s ,  and a r e  sometimes 

c a l l e d  “ f e a s i b l e ”  methods. The continued enforcement of f e a s i b i l i t y  con- 

t r a s t s  w i t h  pena l ty  func t ion  methods f o r  i n e q u s l i t i e s ,  where t h e  con- 

s t r a i n s d  minimm i s  approached t h r m g h  a sequence of s t r i c t l y  i n f e a s i b l e  

p o i n t s  w i t h  r e s p e c t  t o  the  a c t i v e  c o n s t r a i n t s ,  and f e a s i b i l i t y  i s  en- 

forced only i n  - .‘e l i m i t .  

As i n  t h e  pena l ty  f u n c t i o n  case,  2 b a r r i e r  func t ion  method c r e a t e s  

a sequence of modified func t ions  whose success ive  unconstrained min im 

should converge i n  t h e  l i m i t  t o  t h e  const ra ined s o l u t i o n .  Since F(x)  

will, i n  genera l ,  be minimized a t  an i n f e a s i b l e  po in t ,  and t h e  success ive  

e s t im t e s  a r e  rcquired t o  be fe- ls ib le ,  ?he rn3dified ob jec t ive  func t ion  

f o r  a f e a s i b l e  a l e o r i t h a  includes  i? ie: IL: ?:o prpvent success ive  i t e r a t e s  



from becoming i n f e a s i b l e .  

boundary of t he  f e a s i b l e  region,  by cons t ruc t i ng  a continuous func t ion  

with a p o s i t i v e  s i n g u l a r i t y  ( t h e  "ba r r i e r " ) ,  any unconstralned minimum 

of the  modified func t i on  must l i e  s t r i c t l y  i n s ide  t he  f e a s i b l e  reg ion .  

i f  t he  weight ass igned t o  t h e  b a r r i e r  term i s  decreased toward zero  i n  

success ive modified fui ic t ions ,  t h e  sequence of unconstrained minima should 

generate  a s t r i c t l y  f e a s i b l e  approach t o  t h e  constra ined minimum. 

If a ' ' b a r r i e r "  is  i n  e f f e c t  c rea ted  a t  'che 

2 .4  Ba r r i e r  Functions - Theory 
% 

2.4.1 Def in i t i on  

A " b a r r i e r  func t ion"  can be defined w i th  wide gene ra l i t y ,  

but  only a p a r t i c u l a r  b a r r i e r  func t ion  w i l l  be considered here:  

c a l l e d  the  " logar i thmic"  ' c a r r i e r  func t ion  (F r i s ch ,  1.955) . 
most commonly used b a r r i e r  func t ion  i s  the " inverse"  b a r r i e r  func-  

t i o n  (Ca r ro l l ,  1961), given by: 

The o ther  

& l  
B(x,r)  = F(X) + r c '.iT;;) . 

i=l 

The weighting f a c t o r ,  r, which w i l l  approach ze ro  t o  allow 

the  minima of B(x,r) t o  converge 'io x*, w i l l  be ca l l ed  t he  " b a r r i e r  

pararae t e r "  . 

2.4.2 Iksc , r iy?icn of Algorithm 

A b a r r i e r  f unc t i on  method for so lv ing  8n i n e q u a l i t y  con- 

s t r a i n e d  problem h a s  t h e  fol lowing form: 

(Choose a s t a r t i n g  po in t ,  c a l l ed  x.(,(*)), suck t h a t  

c . ( x " ( r ( ' ) ) )  1 > 0 for a l l  i,' i = 1,2, ..., q,, and cn 
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(1) i n i t i a l  value of r, s a y  r ; 

i + 1 ; )  

(i-1)) are while - (the condi t ions  for a constra ined minimm a t  x*(r 

not  s a t i s f i e d )  

r e p e a t  ( 

( T I ) ,  Find x*(r(i)), the Unconstrained minimum Of B(x , r  

( i - l j  s t a r t i n g  a t  x*( r ); 

Choose % r (i+O < ,(i) . 

i +i i- 1; 

> .  
The use of such a b a r r i e r  func t ion  a l g o r i t h  involves the 

unconstrained minimization of a -par t i cu la r  f w c t i o n ,  and thus  a t  

each i t e r a t i o n  t h e  computation i s  guided ’cy the  e f f o r t  t o  solve the 

sub-problem. As i n  t h e  pena l ty  func t ion  case ,  an a d d i t i o n a l  decision 

must be made concerning the  choice and a l t e r a t i o n  of t he  b a r r i e r  

parameter .  

Figure 2.4 i l l u s t r a t e s  t h e  convergence of the  f e a s i b l e  se-  

quence x*(r) t o  a constra ined minimum. 

2.4.3 P rope r t i e s  

-_. 

cess ive  B(x,r) ,  converges t o  x* a s  r -+ 0 .  A s  i n  the analogous proof 

for pena l ty  func t i on  methods, t h e  condi t ions  f o r  con’lrc,rgence d o  not 

r equ i r e  ’chat t h e  c o n s t r a i n t  q u a l i f i c a t i o n  holds  a t  t h e  l i r q i x  po in t ,  

s o  t h a t  b a r r i e r  func t ion  methods will converge t o  minima not s a c i s -  

- 54 - 





I 

f y i n g  t h e  Ku'm-Tucker condi t lons  . 
However, the condi t ions  under which a b a r r i e r  func t ion  

method w i l l  converge r equ i r e  t h a t  x* must l i e  i n  t h e  c losure  of 

the i n t e r i o r  of the f e a s i b l e  region,  and consequently x* i s  not  

permitted t o  be i s o l a t e d  from s t r i c t l y  f e a s i b l e  p o i n t s .  

Because t he  convergence proof guarantees  convergence of 

x*(r) t o  x* only w i th in  a compact s e t  inc lud ing  x*, it i s  possiktle 

f o r  t he  logar i thmic  b a r r i e r  func t ion  t o  be unbounded below. This 

p o s s i b i l i t y  is  i l l u s t r a t e d  i n  an example given by Powell (1972) : 
. %  

-1 
2 x +1 
- 

minimize 

sub j ec t  t o  x l  1. 

The s o l u t i o n  i s  x* = 1, but t he  logar i thmic  b a r r i e r  func-  

t i o n  is givezz by: 

1 

x +l 
- 

B(x,r) = - 2 - r & ( x - l ) ,  

and can decrease wi thout  bound. 

l i k e l y  t o  happen than  w i th  peca l t y  functions, because t h e  f e a s i b l e  

Sowever, t h i s  problem i s  much less 

! 
reg ion  i s  o f t en  c losed .  I 

I Prope r t i e s  of success ive x*( r )  

The minima of success ive b a r r i e r  func t ions  e x h i b i t  t he  

I fol lowing 'p roper t i es ,  w:here x ( ~ )  denotes x"( r(k' ) , I?(') denotes 

( k )  F(xX(r 11, and 1 denotes ci(x*(r 

(1) B(x(k) , r (k ) ) ,  k = 1,2,. . ., i s  s t r i c t l y  decreasing for 

(k) s u f f i c i e n t l y  smal l  r'") and bounded ci  

I Proof: By d e f i n i t i o n  
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Since {ci ( k ) ]  a r e  bounded bbove, f o r  s u f f i c i e n t l y  sml1 

r (k-l), t he  term B ( x  (k-l) > *  ( k ) )  can be boun-id a s  fol lows:  

( 2 )  F(x(~)), k = 1,2,. .., i s  nonincreasing.  

Proof :  By d e f i n i t i o n  of x*(r(k)) ,  
__ . 

%q Mult iplying ( a )  by the  f a c t o r  r > 1, and adding t o  ( b ) ,  

( k )  
& 

(3)  - C & ci 
i=l 

, k = 1,2,. . . is  nondecreasing.  

(IC) (k-1) Proof :  Combining (b)  and the  r e s u l t  F' 5 F , we obtain:  

It should be noted t h a t  p roper ty  ( 3 )  does not  imply t h a t  

the c o n s t r a i n t  values  decrease a t  success ive  x* ( r ) .  A reduc t ion  i n  
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t h e  b a r r i e r  parameter only allows t he  c o n s t r a i n t s  t o  approach the 

boundary of the f e a s i b l e  region,  bu t  d o e s  no t  enforce  any decrease .  

Lagrange Mul t i p l i e r  E s t i m a t e s  

A t  the minimum of B( x , r )  : 
f-2-I 

- - -  
s o  t h a t  t he  g r ad i en t  of F(x) i s  a non-negative l i n e a r  cornkinaxion r 

of t he  c o n s t r a i n t  g rad ien ts ,  where t h e  c o e f f i c i e n t  of a i  i s  ci  . 

A s  x*(r)  approaches x*, the express ion c will go t c  z e r o  a s  r 4 0  
i 

if c i s  no t  a c t i v e  a t  x*, s ince  c w i l l  5e  bounded s t r i c t l y  away 
i 

from zero  i n  a neighborhood of x*. Hence, f o r  s u f f i c i e n t l y  s m a l l  

- 
* r - 

i 

It i s  assumed throughout t h a t  m c o n s t r a i n t s  a r e  a c t l v e  a t  x*. The 

vec to r  E, of l eng th  a, contains  the  a c t i v e  cons t ra i r l t s ,  w i t h  3ie- 

ments numbered f o r  s i m p l i c i t y  a s  c l , . .  . ,cm, where c should be i n -  

t e r p r e t e d  a s  the - i t h  a c t i v e  c o n s t r a i n t .  S imi l a r l y ,  the  matr ix  3 

conta ins  only t h e  m grad i en t s  of c o n s t r a i n t s  r a c t i v e  a t  x*. 

h A A 

i 

x- The q u a n t i t i e s  hi (x*(r) )  = Ai(r) = ci , defined only for 
& 

the a c t i v e  c o n s t r a i n t c ,  t he r e fo re  s a t i s f y  a r e l a t i o n s h i p  wi th  g arid 

8 analogous t o  t h e  m u l t i p l i e r  r e l a t i o n  t h a t  must hcld a t  x* i f  



h A(x*) has f u l l  rank: 

g(x*) = 2(X*)A*. 

By cont inu i ty ,  f o r  s u f f i c i e n t l y  smal l  r, t h e  vec to r  A(r) is  an i n-  

* c rea s ing ly  accura te  approximation t o  A*, t he  vec to r  of Lagrange 

. m u l t i p l i e r s  a t  x*. 

Tra j ec to ry  of x*(r)  

Under s u i t a b l e  assumptions, t he  b a r r i e r  parameter can be 

considered a s  .an- independent v a r i a b l e  de f in ing  a t r a j e c t o r y  of 

va lues  x*( r ) .  The fol lowing r e s u l t  i s  proved i n  Fiacco and 

McCormick ( 1968). I f :  

(1) 

(2 )  2(x*) has f u l l  rank; 

(3 )  AT > 0, i = 1,2,. . . ,m ( a l l  Lagrange m u l t i p l i e r s  s t r i c t l y  

F and {ei] a r e  twice d i f f e r e n t i a b l e ;  

p o s i t i v e )  ; 

t he  s u f f i c i e n t  condi t ions  given i n  Sec t ion  1 . 2  for a con- (4) 

s t r a i n e d  miniwxn of F2 a r e  s a t i s f i e d  a t  x*; 

Then f o r  s u f f i c i e n t l y  smal l  r, t h e r e  e x i s t s  a continuously 

d i f f e r e n t i a b l e  t r a j e c t o r y  x*(r) such t h a t  l i m  x*(r) = x*, and f o r  
r 4 0  

! 

any r > 0,  x*(r) i s  a l o c a l  minimum of B ( x , r ) .  

func t ions ,  it i s  pos s ib l e  t o  ex t r apo l a t e  a long the  t r a j e c t o r y ,  but  

A s  w i th  pena l ty  

t h i s  t o p i c  w i l l  not  be discussed he re .  

The t r a j e c t o r y  defined by x*( r )  has s e v e r a l  i n t e r e s t i n g  

p r o p e r t i e s .  Expanding about x* gives  t h e  fol lowing express ion for 

x*(r) : 
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I 

\ & ,  -- . - d  . - \ -  / >  

x*( r )  -x* dx*( r )  
. where y = lim r = l i m  d r  . 

r 4 0  r + O  

VB(x , r )  = g -A 

D i f f e r e n t i a t i n g  t h i s  i d e n t i t y  w i t h  r e s p e c t  t o  r y i e l d s :  

-A 

- 11 
i 

I - 
2 0 . .  

r 
2 
2 .  

- 1 C 

C 

Mul t ip lying tkrozgh by r, and re- arranging,  we obta in:  

2 t r  
( r G  - c G ~ + A  

i=l 

2 r - 
2 2  1 r  C 

.- 
2 .  
2 C 

dx*(r) T -  A ) ar =C. 

i For r s u f f i c i e n t l y  smal l ,  the  i n a c t i v e  c o c s t r a i n t s  a r e  bounded away 
r 

from zero,  and t h e  value  i s  O(r). If t h e  Lagrange multipl?’.ers 

a t  x* a r e  bounded, f o r  r suffici.eritl .y m a i l  t h e  q u a n t i t y  Ai(’) = 

‘IC 7c- c i s  a l s o  %ounded, s ince  l i m  ci = X i x .  A s  r approaches zero, 
r 4 0  i 

- 60 - 



t h e  only s i g n i f i c a n t  term on t h e  lef t- hand s i d z  of ( 2 . 4 . 1 )  is t h e  

mat r ix  

A 

r 

2 

2 
1 

r - 
C 

L 

1 AT, s i n c e  a l l  o the r  matr ices  

a r e  bounded i n  norm by a mul t ip le  of r .  The columns of A co r res-  

ponding t o  i n a c t i v e  c o n s t r a i n t s  make a n O ( r  ) cor l t r ibut ion t o  t h e  

elements of th_e matrix on the lef t- hand s i d e ,  and a n o k )  cor i t r i -  

bu t ion  t o  t h e  vec to r  on t h e  r-ight-hand s i d e .  Hence w e  obta in:  

2 

A 

2 r - 
2 

1 -  
A 2  

C r 

C 
2 .  

. 2  r 
A 2  

m 

- 
C 

.AT A 
dx*( r )  

d r  = + O ( r j .  

If  a(,*) has f u l l  rank, then  f o r  s u f f i c i e n t l y  small r, 

a(x*(r ) )  will a l s o  be of full rank.  Cancel l ing 2, ignor ing t h e  

2 r O ( r )  term, and d iv id ing  t h e  i t h  row 'cy -7 gives  
A 2  - 

dx%-(r) . 
- - AI' dr .4 

A 

1 C 
- 
r 

A 
C m 
r 
- 

r 
Since 5 3 Ai* a s  r 4 0, t h e  f i n a l  r e s u l t  i s  
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(2.4.2) 

An a l t e r n a t i v e  de r iva t i on  af t h i s  r e s u l t  can be obtained 

from t he  r e l a t i o n s h i p  t h a t  holds f o r  t h e  a c t i v e  c o n s t r a i n t s :  
.. - 

r = c"i(x*(r)) Ai(x*(r)) ,  i = 1,2; ..., n. 
Expanding about x* gives t he  following, where a l l  func t ions  a r e  

evaluated a t  x*, and J X i  - - 
u = a x  : i 

n T  2 T 2 
r = (e i + r a  i y + O ( r  ) )  [li* + ru i  y +o(r ) ) .  

Noting t h a t  ei = 0, and d iv id ixg  through by r, y i e l d s :  

1 = ii* i Ty + O ( r ) .  

k t t i n g  r 3 0,  f o r  h * ji 0, t h e  r e s u l t  i s  a s  before :  i 
1 

The r e l a t i o n s h i p  (2 .4 .2 )  implies t h a t  the minima of suc- 

ce s s ive  b a r r i e r  func t ions  d o  not  approach x* along any tangerlt t o  

a c o n s t r a i o t ,  for Xi* + 0, IXi*. l  C a, and thus  t h e  use of a l i n e a r  

approximation t o  t he  behavior  of an a c t i v e  c n n s t r a i n t  z long  this 

t r a j e c t o r y  i s  j u s t i f i e d .  Figure 2.3 d i sp l ays  the t y p i c a l  approach 
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FIGURE 2.5 



of a b a r r i e r  func t ion  t r a , j e c t o r j  t o  x*. 

cussed i n  more d e t a i l  i n  Chapter 5 ,  along ~ ~ x h  c o n s i d e r s t i c n  oT 

This p roper ty  will be d i s -  

how it may be exp lo i t ed  i n  t h e  des ign of a f e a s i b l e  algori thrc.  
dx*( r) 

An express ion fcr  y = l i m  d r  can be obtained fror? 
r -10 

t h e  i d e n t i t y :  

= g ( x * ( r ) )  - A(x*(r)) 

0 = VB(x*(r),r) 

% 

Let t h e  v e c t o r  func t ion  p (x*( r ) )  be def ined 'cy: 

(2 .4 .3)  

i n  t h e  following,  t h e  s e t  I denctes t h e  s e t  of  ind ices  of 

the  a c t i v e  c o n s t r a i n t s ;  i f  :€I, c.(x*) 1 = 0, and i f  i k 1 ,  c . ( x * )  1 i s  

bounded sway from zero. 

Case 1: The i t h  c o n s t r a i n t  is a c t i v e  a t  x* ( i c I ) .  

For a n  a c t i v e  c o n s t r a i n t ,  pi(x*{r))  13 en,ui-.ialent 'io t h e  

which i s  known t o  be d i f f e r e n t i a b l e  along t h e  t r a j e c t x y  x*(r), and 

it i s  poss ib le  t o  expand Gi(x*(r)) around x*. 

i n  the vec to r  $ of a c t i v e  c o n s t r a i n t s  (or, equ iva len t ly ,  ir ,  I )  

kt i be the  index 
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T “I 
pi(x*(r))  = hi*  + r u i y  -+O(r2) ,  where u i = d x  ; 

Case 2: The - i t h  c o n s t r a i n t  i s  i n a c t i v e  a t  x* (ikI). 

For an i nac t i ve  c o n s t r a i n t ,  p i (x*(r))  i s  d i f f e r e n t i a b l e  

because of t h e  assumed p rope r t i e s  of ci; i n  add i t ion ,  pi and a l l  

i t s  der ivat ives  a r e  of order r .  

accura te  expansion of pi (x*(r))  around x*., s ince  pi and a l l  i t s  de- 

r i v a t i v e s  a r e  _zero when r = 0. 

It i s  no t  poss ib le  t o  ob ta in  an 

The i d e n t i t y  (2 .4 .3 )  call be w r i t t e n :  

g(x*(r))  - A(x*(r))p(x*(r)) = 0. 

Expanding g and t he  elements of p and A corresponding t o  

a c t i v e  c o n s t r a i n t s  , we obta in  t he  following: 

m 2 
g + rGy - &i* - r C A%.y - r h T y  - c 

i=l 
a i ( x * ( r ) ) + c ( r  ) = 0, 

i&I 1 1  

where a l l  func t ions  a r e  evaluated a t  x* unless  otherwise spec i f i ed ,  

e. denotes t he  Hessian corresponding t o  
1 iJ and t h e  columns. of TJ a r e  

given by {u,] . 
A t  x*, g = a*; cance l l i ng  and d iv id ing  by r g ives :  

Taking the l i m i t  a s  r 3 0 gives :  

rn 

i= 1 
where.W = G - C h;ei, and the  vec to r  t i s  defined by:‘ 

t = C  ci(xn) 1 ai(x*) * 

i#I 
If’ FT is  non-singular,  t h e  r e s u l t  i s :  

y = u-12uTy f w-lt . 
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AT Since A y = , i f  gT i s  appl ied  

t o  both s i d e s  of (2.4.4), t h e  r e l a t i o n s h i p  becomes: 

AT -L A V A i s  nonsingular  i f  %i i s  of f u l l  rank ,  g iving:  

T AT -L -1 U y =  ( A W  A )  
-1 

- ( A  AT W -h A) AT A W -1 t . 

The des i red  r e s u l t  i s  o t t a ined  by applying W-% t o  t h e  above, and 

then us ing  the prev ious ly  given r e l a t i o n s h i p  ( 2.4 .';-) : 



2.4.4 D i f f i c u l t i e s  

I l l - c o n d i t i o n i n g  of Hessian 

The unconstrained minimization problems t o  be solved by 

a b a r r i e r  f u n c t i o n  method become more d i f f i c u l t  a s  the  i t e r a t e s  

converge t o  x*, i f  t h e r e  a r e  any c o n s t r a i n t s  a c t i v e  a t  x*, due t o  

t h e  i n c r e a s i n g l y  poor condi t ioning of t h e  Hessian matr ix  

V B(x*(r),r). 

b a r r i e r  func t ions  does no t  r e s u l t  from t h e  in f luence  of the b a r r i e r  

parameter, b u t  r a t h e r  from the s i n g u l a r i t i e s  caused by t h e  a c t i v e  con- 

s t r a i n t s .  

2 The i l l - c o n d i t i o n i n g  of t h e  Hessian mat r i ces  of 

. 

The Hessian of B(x,r) i s  given by: 

r 
c_ 

2 r  - 
2 
2 .  C 

T A .  

For i n a c t i v e  c o n s t r a i n t s ,  n c i i s  bounded ax37 f r m  Z.ZTO, 

L - r - 
and thus  t h e  q u a n t i t i e s  c i and c2 i go t o  z e r o  a s  x*(r) approaches 

r 
x*. For t h e  a c t i v e  c o n s t r a i n t s ,  m x  1 approaches t h e  cor res-  

ponding Lagrange m u i t i p i i e r ,  and hence for non-zero Lagrange mul t i -  

r 
2 p l i e r s  t h e  r a t i o  c . ( x * ( r ) )  1 

terms of v B(x*(r) , r )  c o n s t i t u t e  an  i n c r e a s i n g l y  accura te  spproxi-  

mation t o  W(x*), t h e  Hessian of the  Lagrangian func t ion ;  b u t  

V B(x*(r) ,r)  approaches a r ank- def ic ien t  mat r ix  of rar,k m, t h e  

number of a c t i v e  c o n s t r a i n t s  a t  x*. 

1971) t h a t  0 3(x i c ( r ) , r )  has m unbounded e igenvalues  as  Y -0, 

i s  unbounded a s  c i 4 0 .  The f i r s t  two 
2 

2 

It has been shown ( s e e  Murray, 
2 
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w i t h  corresponding e igenvectors  i n  t h e  range of f i ;  the  remaining 

(n-m) eigenvalues a;-e bounded and t h e i r  eigc&ivectors l i e  i n  t h e  

n u l l  space of 3 .  

Linear Search 

A f u r t h e r  d i f f i c u l t y  i n  applying t h e  u s u a l  unconstrained 

techniques  t o  minimize b a r r i e r  func t ions  is  t h a t  t h e  one-dimensional 

s e a r c h  procedures, based on polynomial approximation of t h e  func t ion  

t o  be minimized, a r e  o f t e n  i n e f f i c i e n t .  

d e t a i l  i n  Chapter 3 .  

This t o p i c  i s  dlscussed i n  
.. 

Deviation from O r i g i n a l  Problem 

A s  w i t h  pena l ty  func t ion  methods, t h e  sub-problem s o l u t i o n s  

f o r  b e r r i e r  func t ions  converge t o  x* only i n  t h e  l i m i t ,  because x* 

i s  not  t h e  minimum of B(x, r )  f o r  any non-zero r .  Hence tile s t r u c -  

t u r e  of the  sequence of unconstrained minimizations may 6bseux-e 

t h e  p r o p e r t i e s  of t h e  o r i g i n a l  const ra ined problem. 

ment of mainta ining f e a s i b i l i t y  i n  a reasonable way adds f u r t h e r  

complicatiorls t o  a b a r r i e r  func t ion  a lgor i thm.  

The requ i re-  

2.5 Summary 

Both pena l ty  and b a r r i e r  func t ion  methods a r e  e f f e c t i v e  i n  so lv ing  

l ionl inear ly  const ra ined problems, bu t  t h e i r  design conta ins  notable  i n-  

heren t  d e f e c t s .  Tne o r i g i n s 1  hope f o r  t h e s e  methods was t h a t  a n  unccc- 

s t r a i n e d  minimization technique could be appl ied  t o  the modified func-  

t i o n s  w i t h  t h e  same success  a s  f o r  any o t h e r  f x n c t i o n .  

d i f f i c u l t i e s  discussed have made t h i s  hope u n r e a l i z a b l e .  

of i l l - c c i d i t i o n i n g  impair  t h e  convergence of unconstrained methods f o r  

bo th  pena l ty  and b a r r i e r  func t ions  methods. For b a r r i e r  func t ions ,  any  

unconstrained a lgor i thm must undergo nor , - t r iv ia l  ~ o d i f i c a t i o n s  i n  order  

t o  maintain f e a s i b i l i t y .  

However: t h e  

The problems 
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Many recen t  a lgor i thms have been devised i n  an e f f o r t  t o  overcome 

t h e  d e f i c i e n c i e s  of pena l ty  and b a r r i e r  f u n c t i o n  methods - for example, 

t o  d e a l  more d i r e c t l y  with p r o p e r t i e s  of the const ra ined s o l u t i o n ,  and 

t o  avoid cons t ruc t ing  a sequence of sub-problems t h a t  converges only i n  

t h e  l i m i t .  The motivation and s t r u c t u r e  of a l a r g e  c l a s s  of a l t e r n a t i v e  

methods, based on t h e  Lagrangian funct ion,  a r e  presented i n  Chapter 4 .  
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CHAPTER 3 

LINEAR SEARCHES TO EE USED WITH THE 
LOGARITHMIC aAP3IER FZTNCTION 

3 .1  General Discussion of Linear Searches; Inadequacy of Usual 
. S t r a t e g y  f o r  Minimizing B a r r i e r  Functions 

The model minimization a lgor i thm r e q u i r e s  a t  each i t e r a t i o n  the  

, determinat ion of a p o s i t i v e  s t e p ,  a, along t h e  given sea rch  d i r e c t i o n ,  

p .  

was a h ighly  accura te  approximation t o  the  minimum of F(x) along p.  

I n  e a r l y  a lgor i thms,  t h e  s t e p  l eng th  CY was chosen S O  t h a t  x f crp 

In 

general ,  t h i s  one-dimensional minimization sub-problem cannot be solved 

e x p l i c i t l y ,  nor t h e  s t e p  t o  t h e  minimum loca ted  e x a c t l y .  Hence, an 

i t e r a t i v e  procedure i s  required,  wi th  t e rmina t ion  c r i t e r i a  t h a t  w i l l  be 

s a t i s f i e d  by a s u f f i c i e n t l y  accura te  es t imate  of the  minimum. 

It is no longer  Considered necessary  or e f f i c i e n t  t o  l o c a t e  a 

h ighly  accura te  es t imate  of t h e  minimum of F(x) along the  sea rch  d i -  

r e c t i o n  a t  every i t e r a t i o n  of most minimization a lgor i thms .  However, 

t h e  same i t e r a t i v e  procedure t h a t  would be used t o  f i n d  an accura te  

minimum can be followed t o  determine an "acceptable" s t e p  along p9  which 

s a t i s f i e s  l e s s  s t r i n g e n t  t e rmina t ion  c r i t e r i a .  The var ious  terminati.cn 

c r i t e r i a  t h a t  might be s p e c i f i e d  a r e  not  d i r e c t l y  r e l e v a n t  t o  the  p resen t  

d iscuss ion,  which w i l l  be concerned wi th  the  procedure by which suc-  

c e s s i v e  es t imates  of t h e  s o l u t i o n  a r e  obta ined.  The teras "one-dimen- 

s i o n a l  minimization" and " l i n e a r  search"  w i l l  be used t o  denote t h i s  

i t e r a t i v e  procedure, which remains the  same f o r  whatever terminatLon 

c r i t e r i a  .are g iven.  

It w i l l  be assumed t h a t  t h e  func t ion  whose (approximate) minirnm 

is  sought i s  decreas ing a long  the  s p e c i f i e d  s e a r c h  d i r e c t i o n  a t  the 

i n i t i a l  po in t ,  or, equ iva len t ly ,  t h a t  any s e a r c h  d i r e c t i o n  i s  guaranteed 
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t o  be a descent d i r e c t i o n  for the  given func t ion .  This assumption means 

t h a t  the  s t e p  CY t o  the (approximate) mir!imum i s  posit i-ve.  The i t e r a t i v e  

methods f o r  l o c a t i n g  an acceptable  CY determine a n  i n l t i a l  s tep ,  CY , 
and success ive ly  compute CY (‘1 , a(*), e t c . ,  u n t i l  x + cy(k)p s a t i s f i e s  t h e  

given terminat ion c r i t e r i a ;  s i n c e  CY is known t o  be p o s i t i v e ,  a l l  e s t imates  

( 0 )  

a r e  required t o  be p o s i t i v e  a s  w e l l .  

The t a s k  of developing an e f f i c i e n t  and r e l i a b l e  a lgor i thm f o r  one- 

dimensional minimization i s  extremely d i f f i c u l t .  There i s  a l a r g e  l i t e r -  

a t u r e  on t h i s  sub jec t ,  and e x i s t i n g  methods continue t o  be improved ( sec  

G i l l  and Murray, 1974a; Brent ,  1973). The c h a r a c t e r i s t i c s  t h a t  a i i n e a r  

s e a r c h  a lgor i thm should possess  include:  r ap id  convergence en well-behaved 

funct ions;  guaranteed convergence f o r  any func t ion  s a t i s f y i n g  c e r t a i n  weak 

assumptions; numerical  s t a b i l i t y ;  and f i n i t e  terminat ion f o r  any f u n c t i o n .  

These q u a l i t i e s  may be incompatible,  i n  t h a t  techniques t o  achieve guaran- 

teed convergence and numerical  s t a b i l i t y  may impede poss ib le  f a s t  conver- 

gence. 

vergence and s t k b i l i t y  w i l l  n o m a l l y  t ake  precedence over t h a t  of rap id  

convergence i f  these aims c o n f l i c t .  

I n  software designed f o r  genera l  use, t h e  goals of guaranteed con- 

The approach taken i n  t h e  b e s t  a v a i l a b l e  i i n e a r  s e a r c h  a 1 g o r i t h . s  i s  

t o  combine safeguards t o  guarantee convergence and s t a b i l i t y  w i t h  a p1-o- 

cedure f o r  polynomial i n t e r p o l a t i o n  o r  e x t r a p o l a t i o n .  

func t ion  t h a t  s a t i s f i e s  t h e  assumption of s u f f i c i e n t  s m o o t h e s s  can be 

approximated i n  a neighborhood by the  low-order terms of i ts  Tay lo r  s e r i e s ,  

and hence i n  one dimension by a quadra t i c  3r cubic polynomial. 

= 

A well-behaved 

Most 

l i n e a r  sea rch  a lgor i thms f i t  e i t h e r  a parabola or cubic t o  known va lues  

of the  func t ion  and i t s  d e r i v a t i v e s  along t h e  sea rch  d i r e c t i o n .  The co- 

e f f i c i e n t s  of t h e  f i t t e d  polyncmial  sol:^^ a system cf l i n e e r  equat ions;  
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the minimum of the  f i t t e d  polynomial  can thus be computed exp l i c i t l -y ,  t o  

be taken a s  t h e  next es t imate  of t h e  m i n i a m  of t);: genera l  f u n c t i o n  if 

appropr ia te  safeguarding checks a r e  s a t i s f i e d .  

a b l e ,  and h igh ly  success fu l ,  f o r  ncst  func t ioos  t o  be minimized by 

This procedure i s  reason- 

unccnstrained methods . 
However, t h e  u s u a l  tec:mique of approximation by quadra t i c  c r  cubic  

polynomials s u f f e r s  from c e r t a i n  de fec t s  when used t o  minimize b a r r i e r  

func t ions ,  which, al though continucus a n d  smooth i n  t h e  s t r i c t l y  f e a s i 5 l e  

region,  a r e  not  l'well-behaved'l i n  t h e  normal sense .  

c h a r a c t e r i s t i c  i s  s i n g u l a r i t y  a t  t h e  boundary of t h e  f e a s i b l e  reg ion .  

Unlike p e n a l t y  func t ions ,  whose l a rge  d e r i v a t i v e s  a r e  due t o  a parameter 

unc?er e x t e r n a l  con t ro l ,  a b a r r i e r  f a x t i o n  mdst con ta in  a s i n g u l a r i t y ;  

and a continuous func t ion  w i t h  E s i n g u l a r i t y  will have by d e f i n i t i o n  

l a r g e  and r a p l d l y  varying der:vati%:. 

b a r r i e r  func t ion ,  t h e  first d e r i v a i l v e s  &G t o  i n f i n i t y  a s  l / c  a s  c 

Their  d e f i n i n g  

I n  t h e  case of t h e  l o g a r i t h a l e  

2 approaches zero, and t h e  seccnd d e r i v a t i v e s  'cehave like 1/c . Hence, 

t h e  hope of a good approxirnation tc? a ' c a r r i e r  func t ion  by neg lec t ing  the  

h igher  d e r i v a t i v e s  w i l l  not 'ce f u l f i l l e d  i n  the v i c i n i t y  of t h e  boundary 

of the  f e a s i b l e  reg ion  Figure  3 .  I disp lays  th: cne-dimensional . Jar is t ion 

of a logs r i thmic  b a r r i e r  func t ion  a s  the boundary i s  approached. 
. -- 

Although an adequate ly  sa fegwrded  l i n e a r  sea rch  based on poiync.miai 

f i t t i n g  w i l l .  be a b l e ,  w i t h  proper  care ,  t o  l a c a t e  t h e  approximate min iam 

of a b a r r i e r  func t ion  accurate ly:  t h e  number of constrain-t  and func t lon  

e v a l u s t i c n s  required t o  converge may be excess ive .  

of the f i t t e d  polynomials o f t e n  lie i n  t h e  i n f e a s i b l e  region;  arid even 

The p red ic ted  minima 

w i t h i n  t h e  f e a s i b l e  region,  t h e  f i t t e d  polyccmisls tecd t o  be a poor 

approxinat ion t o  t h e  b a r r i e r  f u n c t i o n .  T I x  inadequacy of t h e  u s u a l  
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s e v e r a l  au thors  ( see  F l e t c h e r  and McCann, 1969 ; Murray, 1969s ; Lasdon e t  

a l . ,  1973 ; Ryan, 1974 ) . Various a l t e r n a t i v e  s t r a t e g i e s  have been pro- 

posed, which involve u s ing  an approximating func t ion  t h a t  w i l l  b e t t e r  

emulate the  behavior of t h e  b a r r i e r  f unc t i on .  

an approxiEating func t ion  wi th  t h e  same kir,d cf s i n g u l a r i t y  a s  the  pa r -  

t i c u l a r  b a r r i e r  func t ion ;  t h e  behavior of the  f i t t e d  func t ion ,  inc lud ing  

t h e  l oca t i on  of i t s  minimum, should then  be s i m i l a r  t o  t h a t  of a b a r r i e r  

f unc t i on .  Consequently, t h e  minimum of such a s p e c i a l  func t ion  could ?;e 

taken a s  the  next e s t ima te  of the  minimum of the  b a r r l e r  func t ion ,  t o  be 

used w i tb in  t h e  l i n e a r  search  procedure i n  exac t l y  t he  same way a s  t he  

es t imated minima of polynomial approximations.  

parameters of such a s p e c i a l  approximating func t ion  w i l l  no longer be 

determined i n  genera l  by a system of l i n e a r  equat ions ,  i t  may not be 

poss ib le  t o  determine e x p l i c i t l y  t he  def in ing  paraLqeters and t h e  minimml 

cf the  f i t t e d  f a n e t i o n .  

3.2 F i t t i n g  of S p e c i a l  Functions 

One p o s s i b i l i t y  i s  t o  use 

However, because t h e  

3 .2 .1  Discuss ion  

The s p e c i a l  func t ions  t o  be considered a r e  designed t o  

T h i s  r e s t r i c t i o n  t o  a con ta in  a s l n g l e  logar i thmic s i n g u l a r i t y .  

p a r t i c u l a r  b a r r i e r  func t ion  c o n t r a s t s  wi th  the- gene ra l  approach 

taken by Lasdon e t  a 1  . (1973 ), where a s p e c i a l  func t ion  is  developed 

by t h e  a p p l i c a t i o n  of t h e  form cf t he  b a r r i e r  func t ion  t o  l i n e a r i z e d  

approximations t o  t h e  ob jec t ive  func t ion  and t he  c o n s t r a i n t s .  The 

approach taken here  allows a much s impler  so lu t i on  t o  t h e  problem, 

where t he  known form of t he  s i n g u l a r i t y  i s  d i r e c t l y  exp lo i t ed .  

s i n g l e  func t ion  is used t o  approximate t h e  behavicr  of the  b a r r i e r  

f unc t i on  a long t h e  seerch  d i r e c t i s n ,  am? i-5 i s  not  necessary t o  make 

s epa ra t e  approximations t o  F and [ci3. 

A 

- 75 - 



The logaritbxuic b a r r i e r  func t ion  can be evaluated only a t  

f e a s i b l e  p o i n t s ,  and i s  undefined beyond the  i i r s t  s i n g u l a r i t y  a long 

a p a r t i c u l a r  d i r e c t i o n .  Therefore,  only f e a s i b l e  p o i n t s  a r e  con- 

s ide red  i n  f i t t i n g  t h e  approximating func t ions ,  since the  data  t o  be 

used w i l l  be values  of t h e  b a r r i e r  func t ion  and i t s  g r a d i e n t .  

It w i l l  be assumed t h a t  we seek an approximation t o  t h e  

.e 1 minimum along t h e  sea rch  d i r e c t i o n  of B(x, r )  = F - r C 
i= 1 

In(c i , ,  

where the b a r r i e r  parameter, r, i s  known and f ixed  throughout t h e  

l i n e a r  sea rch .  The s p e c i a l  funct ions  t o  be considered a r e  t h e  

following,  where the parameter 8 represen t s  the '  one-dimensional 

v a r i a t i o n  a long t h e  s e a r c h  d i r e c t i o n :  

( a )  a l i n e a r  func t ion  p lus  a logar i thmic  s i n g u l a r i t y ,  of 

the form: 

f L ( g )  = 2 -+ 6 Q - r In ( 8  - e ) ;  

( b )  a quadra t i c  func t ion  p lus  a logar i thmic  s i n g u l a r i t y ,  of 

the form: 
h f ( e >  = a -+ 6 e +; e2 - r I n ( d  - e > .  Q 

These formulat ions  a t t r i b u t e  a l l  the s i n g u l e r  behavior t o  

one l o c a t i o n  ( 0  = 8 ) ;  i n  f a c t ,  t h e  s i n g u l a r i t y  displayed by a b a r r i e r  

f u n c t i o n  depends i n  g e n e r a l  upon t h e  f i r s t  c a i s t r a i n t  ze ro  encountered 

a long a gj-ven d i r e c t i o n ,  and zeros -that nay occur beyond t h e  f i r s t  

a r e  i r r e l e v a n t .  This behavior Feccxes e s p e c i a l l y  marked f o r  s m a l l  

va lues  of the b a r r i e r  parameter when t h e  c o n s t r a i n t  func t lons  

bounded away from zero  have almost no inf luence on the  b a r r i e r  func- 

t ion,and t h e  n e a r e s t  c o n s t r a i n t  has inf luence only very  c lose  t o  i t s  

z e r o  along t h e  given d i r e c t i o n .  A smooth func t ion  with a s u i t a b l e  

damped s i n g u l a r i t y  should, therefore :  be an e x c e l l e n t  model of a 

barrier f u n c t i o n  c l o s e  to t h e  boundary of the  f e a s i b l e  reg ion .  
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3.2 .2  Linear Flmction Plus Logarithmic S ingu l a r i t y  

The s p e c i a l  func t ion  t o  be f i t t e d  i s  of t he  form: 

f L = $ +  6 e - r 1n(d - e ) .  
D i f f e r e n t i a t i n g  f L  w i t h  r e spec t  t o  8 gives:  

A f i = b +  , and 
3% 

Since t h e  b a r r i e r  f unc t i on  i s  decreasing a t  8 = 0, t h i s  same con- 

d i t i o n  w i l l  be requ i red  of f L' s@ t h a t  

The s i n g u l a r i t y ,  a, i s  assumed t o  be a p o s i t i v e  s t e p  a long 

t h e  cur ren t  d i r e c t i o n ,  and there fore ,  6 < 0. 

A s t a t i o n a r y  po in t  of f L  occurs a t  @ such t h a t  f; (S*) = 0, 

o r  

= 0, s o  t h a t  r 
$ + -  

e * = a + $  . 

The express ion f o r  0* is  equa l  t o  t h e  value of f;l ( 0 )  t imes 
a d (F), and s ince  (F) and fi ( 0 )  a r e  negat ive ,  e* must be p o s i t i v e .  

* -  

f i  i s  everywhere posi t ive . ,  s o  t h a t  t he  s t a t i o n a r y  po in t  must be a 

minimum of fL. 

I n  order  t o  spec i fy  t h e  func t ion  fL, t h r e e  indepecdent 

p ieces  of informat ion a r e  required about t h e  behavior of the func t i on  

t o  be f i t t e d  a long t he  s ea r ch  d i r e c t i o n ;  f L  w i l l  t h e r e fo re  be used 

i n  c i r c m s t a n c e s  where a parabol ic  f i t  would normally be c a r r i e d  out 

t o  minimize a gene ra l  f unc t i on .  

f unc t i on  and its approximations by the func t ion  f L  and a parabola,  
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both. us ing t h e  same d a t a .  It i s  c l e a r  t h a t  the s p e c i a l  fbnct ion 

gives  a more accura te  p r e d i c t i o n  t han  t h e  P’Tbola of t h e  minimum 

of the b a r r i e r  f a n c t i o n .  

The s p e c i a l  f unc t i on  f L  w i l l  be f i t t e d  with th.e same sets  

of data  used by a t y p i c a l  parabol ic  l i n e  search,  namely: (1) one 

func t ion  va lue ,  the  corresponding grad ien t ,  and a second functiorl  

value;  (2 )  t h r e e  func t i on  va lues .  I n  the fol lowing d i scuss ion ,  f i  

w i l l  denote the  func t i on  value a t  Bi, and gi i s  t h e  corresponding 

grad ien t  value I 

- Case 1. Two func t i on  va lues ,  one grad ien t  

The t h r e e  unknown parameters of f L  - g, 6 ,  and a - must 

be solved f o r  i n  terms of t h e  known va lues .  Assuming t h a t  O2 > S1, 

the equat ions  spec i fy ing  f a r e :  L 

- r (8 - e,,). ( c )  f2 = a + % e2 A 

L 

There i s  no loss of gene ra l i t y  i n  assuming t h a t  = 0, 

s o  t h a t  from (A) and (B)  w e  obta in:  

A a = f l  + r & a, and 
.. 

r f 3 = g i - 3 .  

S u b s t i t u t i n g  t he se  values  i n t o  (C) y ie ld s :  

a f t e r  re- arranging:  

( 3 . 2  .i) 
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folind which s a t i s f i e s  ( 3.2.1) ,  the  values  2, 6, and 8” can then be 

computed from the  p rev ious ly  derived re1a t i rF ;h ips .  

Consider (3.2.1) a s  a nonl inear  equat ion i n  terms of the 

h 

func t i on  

The problem t o  be solved then be- l where kl = ; (f2-f1 - e2g1). 

comes t h a t  of f i nd ing  8 so lu t i on  d t o  s a t i s f y  

Q l ( d )  = 0 .  

Because Cj2 i s  f e a s i b l e ,  t he  value of the s i n g u l a r i t y ,  d,  

must l i e  i n  t h e  i n t e r v a l  ( e2, 0; ) . The func t ion  @ , ( a )  L 

following p r o p e r t i e s  : 

has t h e  

@ l - + - c o a s d + 8 2 + j  

Ip +k a s d + m  ; 

Ql > 0 for a l l  f i n i t e  d ;  

i l  -+a a s  d -+e2 -t ; 

4 0  a s  d +a; and 

Ip < 0 for a l l  f i n i t e  d .  

1 1  
1 

1 

I 

$1 
I! 

1 
These r e l a t i o n s  imply t h a t  t he r e  i s  a unique zero  of Q j l  i n  ( e 2 ,  m), 

provided t h a t  kl > 0, i .e ., f 2 - f l  > gl. This . -  requirement means 

e2 

t h a t  t he  func t ion  value a t  e2 must be l a r g e r  than the  l i n e a r  approxi-  

ma€ion a t  €I1 would have prcd ic ted ,  i . e . ,  f 2 must l i e  i n  t h e  shaded 

reg ion  u f  Figure 3 .2 .  

Although the  numerical. so l~u t ion  of the equa t ion  @,(a) = 0 

would y i e l d  the  des i red  value 8, 4 - i s  an i l l- behaved func t ion ,  un- 

s u i t a b l e  fc r  the  usua l  zero-finding techniques sach a s  Newton’s 

- 79 - 



f 

\ 

\ 
\ 

\ 

\ 

\ -  

f 2 must l i e  in s h a d e d  r eg ion  

z i 

- so - 



method. Figure 3 .S i l l u s t r a t e s  t he  behavior of 'Pl. 

An at tempt  t o  apply  Newton's method i n  Region I would 

cause very slow convergence t o  t he  zero,  al though all es t imates  

would undershoot and hence could not  d iverge .  i n  Region 11, Newton's 

method might e a s i l y  y i e l d  an es t imate  t o  t ne  l e f t  of 02, and s a f e -  

guards would need t o  be incorporated t o  prevent divergence.  

To avoid t he se  d i f f i c u l t i e s ,  t h e  problem of so lv ing  

$ l ( d )  = 0 can be transformed i n t o  an equivalent  prGblem t h a t  is  easy 

t o  so lve .  If we def ine  a new va r i ab l e  y = d , s o  t h a t  0 < y < 1 f o r  I 82 

t he  admiss ible  range of d ,  the  equat ion G1(d) can be w r i t t e n  i n  teras 

of - y a s  

&(l-y) = -y-kl. 

Taking exponent ia ls  of bo th  s i de s  gives  the  equat ion 

1-y = e -Y ,-k1 J 

and t h e  value y^ which s a t i s f i e s  this  equation is  a ze ro  Of a new 

func t ion ,  

-Ye+.  y , ( y )  = 1-y-e 
* 

D i f f e r e n t i a t i n g  w i t h  r e spec t  t o  y gives:  

I Yl = -1 + e -Ye-kl 

I t  -Ye 'kl, 
- 

y"l - -e 

and thus  Y i  and Yl a re  negat ive  f o r  a l l  y i n  t h e  i n t e r v a l  (O,l), i f  
I 1  

kl > 0 .  

Furthermore 

Y,(?) = -e -1 e -k1 < 0 ,  

. so  t h a t  Y1 has a unique z e r o  5 i n  (0,l) i f  kl > 0 .  Figures  3.4 and 
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3.5 i l l u s t r a t e  t h e  behavior of Y1 f o r  twc va lues  of kl. Even f o r  

k 1 small ,  when t h e  nonl inear  po r t i on  of Yl is more s i g n i f i c a n t ,  Yl 

i s  very c lo se  t o  l i n e a r  i n  (0,l). 

&cause 'Yl i s  well-behaved, Xewton's method w i l l  converge 

t o  

t h e  form of Y1 by no t i ng  t h a t  

kl = -^y - &(I-$) . 

Since the 'right-hand s i d e  of ( 3 .2 .2 )  depends only on t h e  pa- 

vs ry  r a p i d l y .  However, even f u r t h e r  advantage can be taken of 

s a t i s f i e s  the r e l a t i o n  

(3  - 2  - 2 )  

rameter $, and i s  inde2endent of t h e  problem d s t a ,  t he  values  of the  

func t i on  on t he  right-hand s i d e  can be t abu l a t ed  f o r  a Set Of Y i n  

(0,l). For a p a r t i c u l a r  value of klJ t a b l e  loolrup could then be used 

t o  determine a highly accura te  es t imate  of ^y. With a s u f f i c i e n t l y  

l a r g e  t a b l e ,  no i t e r a t i o n  would be necessary t o  l oca t e  t he  s o l u t i o n  

t o  any d e s i r e d  accuracy; bu t  s i nce  Newton's method converges r ap id ly ,  A 

a smell t a b l e  p lu s  a s i n g l e  i t e r a t i o n  i s  s u f f i c i e n t  t o  l oca t e  y (snd 

8) t o  t h e  required accuracy.  

Case 2 .  Three Function Values 

Assuming t h a t  8 > 8 > el, the t h r e e  equat ions  spec i fy ing  
3 2  

t he  parameters 2, 6, and a of f L  a r e :  

A ( A )  fl = a + €0, - r &(%e1) 

( B )  f 2  = . a  + %e2 - r &@-e,) 

(c) f, 3 = a -t €e3 - r b ( a - 0 , ) .  

There i s  no loss of g e n e r a l i t y  i n  assumicg t h a t  O1 = 0 .  

A 

A 

A Using equat ions  ( A )  and (B) t o  e l imina te  a ,  we obtain:  
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and s i m i l a r l y ,  us ing  ( A )  and (C) gives:  

be m a n i p b t e d  t o  e l imina te  6, y ie ld ing :  

t i e s  : 
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i n  Figure  3.6, so t h a t  t h e  l i n e  j o i n i n g  f 3 and f 1 must l i e  above 

the l i n e  j o in ing  f 2 and fl. 

Because of i t s  highly nonl inear  behavj-or, I 
2 i s  unsui ted 

f o r  app l i ca t i on  of t h e  u s u a l  zero- f inding techniques .  The behavior 

of (P2 i s  i l l u s t r a t e d  i n  Figure  3.7.  

To transform the  problem of f i nd ing  8 t o  solve I ( a )  = 0 
2 

i n t o  a computationally manageable f orm, we int roduce the v a r i a b l e s  

e3, w i t h  '5 3 > 1; i n  essence,  w e  con- a 2 = - s o  t h a t  a 2 1, and 5 = - %' 3 02 
L 

s i d e r  e2 t o  be u n i t y  and scale  8 and d accord ing ly .  If we mul t ip ly  

t h e  equat ion 12(d) = 0 by e3 and s u b s t i t u t e  the va r i ab l e s  
3 '  

3' and s 

(3 .2 .4)  

d 
miss ib l e  d .  Taking exponent ia ls  of' bo th  sj.des cf (3 .2 .4)  g lves :  

and the va lue  which s a t i s f i e s  th is  r e l a t i o n  i s  a ze r c  of the func- 

where - 
7 =  8 3 >1, a n d B  = e  -k2e3 ( s o  t h a t  0 C ,6 1 for k2 > 2). 

Dif f e r en t i a t i ng  Y 2  with  r e spec t  t o  y, we ob ta in  

i' 



FIGURE 3 -6 
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Y 2 has the  fol lowing p rope r t i e s :  

Y & O )  = 1-f3 > 0 (y=O corresponds t o  d + a); 

- .i’ < 0 ( y = l  corresponds t o  d + @ 3 +); 
Y l  

Y2(1) = -y 
Y 2 ( 0 )  = - 1 + p  < o  

1 

< 0, and 
1 ) Y - l  

P;(l)  = -1 I- f3 (1 - - \ y i  
I 1  

Y 2 < 0 f o r  y i n  t h e  i n t e r v a l  (0,l). 

These-conditions imply t h a t  Y 2  has a unique zero  i n  ( O , l ) j  

vh i ch  could be loca ted  by Newton’s me thod .  Y 2 i s  a well-behaved 

func t ion ,  i n  c o n t r a s t  t o  G 2 .  The n o n l i n e a r i t y  i n  Y 2  r e s u l t s  from 
9 

t h e  express ion / 1 - :) ’, where y > 1, and i s  t he  quot ien t  - fvXl 

the o r i g i n a l  problem. 

s e v e r a l  runs  w i th  p a r t i c u l a r  b a r r i e r  func t ions ;  it never exceeded 

2.0, and was u sua l l y  i n  t h e  range ( 3 . 0 1 ,  1.5) 

the express ion ‘1 - l)’ approaches e-’ a s  y approaches m, and hence 

the func t ion  Y 2  t akes  on t h e  fo rm of Y1 i n  Case 1. Fuythermcre, t he  

va lue  of p (  = e-k2e3) i s  u sua l l y  smal l ,  s o  t h a t  t he  nonl inear  com- 

ponent of Y2 i s  even l e s s  s i g n i f i c a n t .  

3 i 
\ O2 

The value of y has been monitored during 

Even i f  y were la rge ,  

\ y  

Figures  c 3.8 and 3.9 i l l u s t r a t e  t h e  behavior of Y2 f o r  two 

sets  of parameters ( a , y ) .  

l i n e a r i t i e s  d o  not  have a 

Note t h a t  even f o r  l a rge  8 and y ,  t he  non- 

s i g n i f i c a n t  e f f e c t .  

It i s  not  computationally ccnvenient t o  obtain  a t a b u l z t i o n  

of Y 2  i n  order  t o  f i n d  an  l n i t i a l  es t imate  of y, s i nce  t h e  in f luences  

of y and y a r e  not  separab le .  However, Newton’s method w i l l .  converge 

r a p i d l y  f rom a reasonable  s t a r t i n g  po in t  ( f o r  example, the es t imate  

from C P s e  1). 

h 
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M\ _. _ f% + r i s  nega t ive .  Therefore,  'ikie s i gn  of the term 8$(r+ua) LS 

h oFposite t o  t h e  s i gn  of c .  

Consider two cases:  

Q c > 0 ( t h e  quadra-cic term 4n f has a pos i t iVe  c o e l f i c i c n t )  . 
The quan t i t y  (% i 2%)c + 8rC invol-fled i n  fxc1uI-a (3.2.6) for 

h Case A :  
A 

0* must be p o s i t i v e ,  s o  t h a t  two r e a l  r o o t s  e x i s t .  I n  formula ( 3 . 2 . 5 )  

f o r  @, t h e  q u a n t i t y  under t h e  square roo t  has magnitude l e s s  than 

123-61 s ince  8$(r+m) % The express ion 23-6 i s  pc s l -  

t i v e  s i nce  $ > 0, a > 0,  6 < 0, and t he r e fo re ,  bo th  roo t s  a r e  pos i-  

t i v e .  From fcrmula (3.2.6) for @*, we nc te  t h a t  t h e  quan t i t y  under 

t h e  square roo t  exceeds I$  i 2 3 1  i n  msgnitude. 

Case A - i :  

i s  nega t ive .  

6 -I- 2 8  > 0.  

The value of €I* corresponding t o  t h e  p o s i t i v e  square roo t  

Since 

6 t h a t  d > - J 

s a t i s f i e s  : 

A 6 + 2% i s  p o s i t i v e ,  and c i s  p o s i t i v e ,  it f o l l o w s  

6 Since 6 -t- 2% < 0, 8 must be less than - ; thus, 

e", > 8, and i s  unacceptable .  
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me s g l u t i o n  corresponding t o  t h e  nega t ive  EGuare r 9 O t  

and i s  accep tab le .  

Case B: c < 0 (the c o e f l i c i e n t  sf t h e  quadra t ic  tern. i n  
% A 

is 

nega t i ve ) .  

The q u a n t i t y  under t he  square roo t  must be FDsi t ive  s i nce  

$ < 0, r i- # C 0,  and thus  there a r e  two r e a l  r o o t s .  I n  formula 

(3 .2 .5 )  for 0.; t h e  quan t i t y  under rhe square root exceeas 2%-t i n  

magnitude, and hence t h e r e  must be one p o s i t i v e  and one negat ive  

r o o t .  Because of t h e  s i g n  r e v e r s a l  caused by d i v i s i o n  b Y  C ,  

p o s i t i v e  square roo t  corresponds t a  a value e* < 0, aud can -de 

e l iminated f r o n  cons ide ra t i on .  The only p o s i t i v e  e* can be w r i t t e n  

A 
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b a r r i e r  func t ion  and i t s  approximations by the  func t ion  f 
Q 

cubic,  b o t h  us ing  the  same d a t a .  The more accura te  moaeling of t h e  

b a r r i e r  f u n c t i o n  by t h e  s p e c i a l  func t ion  i s  q u i t e  n o t i c e a b l e .  

and a 

The s p e c i a l  func t ion  f Q w i l l  be f i t t e d  wi th  the same s e t  

.of da ta  used by a t y p i c a l  cubic l i n e  search,  namely, two func t ion  

values  and t h e  corresponding two g r a d i e n t s .  

d iscuss ion,  f .  L w i l l  denote the  f u n c t i o n  va lue  a t  €Ii, and gi i s  t h e  

corresponding g rad ien t  value  . 

A s  i n  t h e  previous 

h h The f o u r  unknown parameters of € Q - a ,  6, e ,  and 8 -- 

must be solved f o r  i n  terms of t h e  known v a l u e s .  Assuming t h s t  

O2 > t h e  equat ions  spec i fy ing  f Q a r e :  

( A )  f l  = a + %ei + col - r t n  (a-e,) n A 2  

A r 
(D) g2 = $ + 2cO2 + 7 

There i s  no l o s s  of g e n e r a l i t y  i n  assunling t h a t  B1 = 0, 

( d - 0 2  

s o  t h a t  from ( A )  and ( B )  we obta in  express ions  for t h e  c o e f f i c i e n t s  

a and 6 i n  terms of a :  A 

h a = f , + r b a  

S u b s t i t u t i n g  f o r  6 i n  equa-cion ( D ) ,  we ob ta in  an express icn 

f o r  the  parameter $ i n  terms of 8 :  
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These t h r e e  express ions  f o r  g, 6, and ? can tn5n be SUbStitUtcd 

i n t o  equat ion ( c ) ,  t o  ob ta in  t h e  fol lowing:  

If a value  8, t h e  l o c a t i o n  of the s i n g u l a r i t y ,  can be 

h found which s a t i s f i e s  (3.2.7),  t h e  Values $, G, c ,  and 8* Can th22 

be computed from the  previously  derived r e l a t i o n s h i p s  . 

Consider (3 .2 .7)  a s  a nonl inear  equat ion i n  terms c1 the 

/e \ 
where k 

becomes t h a t  of f ind ing  a s o l u t i o n  8 t o  s a t i s f y  

= 1 ‘5 ( g  1 2  +g ) - (f2-fl),,i . The problen; t o  be solved then 
3 r \\ 

Q1 3 ( a )  = 0. (3.2 .s> 
e2 @-e,)  - , where 

d 5- = 
If we int roduce t h e  -Jar iable  z = 

0 < z < 1, we can then w r i t e  the  equat ion $,(a) = 0 i n  terms of t h e  

v a r i a b l e  z a s :  

( 3  -2.9) 

The non l inear  equati-on ( 3 . 2 . 9 )  could be solved for z s u i t -  

a b l e  2, b u t  t h e  func t ion  represented i s  extremely F11-behaved. A s  

z 4 0 ,  t h e  logari thm tern? is approaching ( - o o ) ,  while t h e  r e c i p r o c a l  

terni i s  simultaneously approaching (4-00); it i s  evilenr.  t h a t  ( 3 . 2 . 9 )  

i s  q u i t e  unsu i t ab le  f o r  purposes of computation. 

However, t h e  r e l a t i o n s h i p  ( 3.2.9)  can be transformed i n t o  

an equ iva len t  form t h a t  i s  compu-cationally reasonab le .  A f u r t h e r  

change of v a r i a b l e  i s  made: 

v = & z ,  
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O < Z < l .  

When w r i t t e n  i n  terms of v ,  , t he  r e l a t i o n  (3.2.9) becomes: 

v - s i n h  (v )  =: k 3 -  
The value ? t h a t  s a t i s f i e s  t h i s  r e l a t i o n  i s  a zero of t h e  func t ion  

% 

y,, where 
2 

Y3(v) = k 3 + s i n h  ( v )  - v .  

D i f f e r e n t i a t i n g  Y 3 with respec t  t o  v,  we ob ta in :  

1 

= cosh ( v )  - 1 y3 
1 1  

Y 3  = s inh ( v ) ,  

s o  t h a t  t he  y 3  has  t h e  fol lowing proper t j -es :  

y 3 (0)  = k 3 (v=O corresponds t o  d 3 CO) ;  

1 1  

< 0 f o r  v < 0 .  *3 
These condi t ions  imply t h a t  I' has a unique zero  i n  3 

( -  co, 0) if kS > 0. This requirement means xh2t t h e  average of 

the g rad i en t s  a t  and O2 a u s t  exceed the s lope  of t h e  s t r a i g h t  

l i n e  j o in ing  f l  and f2. If t h e  f u m t i o n  TC be approximated were 

quadra t ic ,  t h e  average of th?  s lopes  a t  and 92 would exac t ly  
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equa l  t h e  s lope of t h e  l i n e  j o i n i n g  f 1 snd f 2 .  

thus 

r a p i d l y  than  a q u a d r a t i c .  

The cond i t ion  k3 > 0 

impl ies  t h a t  t h e  func t ion  t o  be approximated i s  r i s i n g  trlore 

Figure  3.11 i l l n s t r a t e s  t h e  behavior of Y 3 .  

Aithough t h e  func t ion  Y 3 i s  unbounded below a s  v 3 - cr 

(i  .e ., when z 3 0,  or d 3 9 

computational  d i f f i c u l t i e s  i n  t h e  c u r r e n t  c o n t e x t .  The unbounded 

behavior  of Y occurs when t h e  es t imated value  of The s ingu la r i t ) -  

i s  very  c l o s e  t o  e2; if a to le rance ,  say E ,  i s  s p e c i f i e d  such t h a t  

+), t h i s  p roper ty  does not  causs any 

, 

3 %  

any es t imate  of d i s  required t o  s a t i s f y  d 1 zG, O2 then the -jEria?,le 

z i s  bounded below by E ,  and t h e  v a r i a b l e  v iE bounded below by 

-M, M > 0, where M = - &(E). If values  of v a r e  r e P t r i c t e d  tC :he 

range ( - M , O ) ,  t he  region where Y 3 i s  un'ccunded i s  e l i n i n a t e d .  If 

k i s  ve ry  l a r g e ,  it i s  poss ib le  that the  value YT(-M) i 

negat ive  f o r  the p a r t i c u l a r  -Jalue of M chosen, and hence no ze rc  nf 

w i l l  not be  3 

Y w i l l  e x i s t  i n  ( - M , O )  Under these  circumstances,  we simply 3 e, 
rl accept  = -M a s  the  s o l u t i o n ,  s o  t h a t  d = rE. 

We can e a s i l y  solve  t h e  equat ion Y 3 ( v )  = 0 w i t h  Newton's 

method, consider ing the  following p r o p e r t i e s  of Y 3' Since Y 3 " < 3 

throughout t h e  i n t e r v a l  of i n t e r e s t ,  i f  t h e  s t a r t i n g  p o i n t  is  

chosen s o  t h a t  'Y 3 < 0, the  Newton i t e r a t e s  w i l l  undershoot the  

s o l u t i o n ,  and cannot d ive rge .  Furthermore, %he ccnd i t ion  Y 3 ( v )  = 0 

can be w r i t t e n  a s :  

k3 = v - s i n h  ( v ) ,  

and t h e  express ion on t h e  r ight-bnd s i d e  i s  independent of the  pro-- 

blem d a t a .  

i n  the range ( -M,O) ,  and by t a b l e  lookup us lzg  t h ?  value  k 3' a k;:',gh:y 

Hence, t h e  func t ion  v - s i n h ( v )  can >e -i;abulater! for v 
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y 3 ( v )  = - 2  k + s i n h  (v )  - V 

condi t ion  ? 

1 
vJ = 0, k3 + T- 

7 with e x p l i c i t  so lu t i on  v* = (-6k,) . & c a m e  we a re  ignoring ne@- 

t i v e  higher-order  terms, th i s  value V* w i l l  be t o  t he  l e f t  of the  

c o r r e c t  G ,  and Newton's method caynot S iverge .  However, t h e  estima 

v* i s  s o  accura te  t h a t  no I t e r a t i c r !  a t  a11 i s  nPcessary t o  ob ta in  

J 

an acceptable  s o l u t i o n .  

t e  

3.3 Implementation 

p o l a t i o n  ( c f .  G i l l  and Murray, 1974a) 'rave been modified for use w i t h  

the logar i thmic b a r r i e r  f unc t i on  by a l lowing in te rpo lax ion  w i t h  t h e  

s p e c i a l  func t ions  descr ibed .  Several  r a t h e r  complicated modif icat ions  

a r e  requ i red  i n  order  to creaxe an  e f i i c i en - l  a l g o r i t h x .  If 110 cons t rd in t  

The safeguarded l i n e a r  searches  baszd on q m d r a t i c  o r  cubic i n t e r -  
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i s  decreas ing a long t h e  c u r r e n t  s e a r c h  d i r e c t i o n ,  or i f  n c  constr3i;;t 

approaches zero  u n t i l  s u f f i c i e n t l y  f a r  beyond the- s t a r t i n g  p o i n t ,  t h e n  

t h e  s i n g u l a r i t y  introduced t o  preserve  f e a s i b i l i t y  w i l l  have no s i g n i f  i- 

c a n t  e f f e c t  on t h e  l o c a t i o n  of t h e  minimm, and t h e  u s u a l  l i n e a r  s e z r z b  

procedure should be followed. 

way t o  determine a - p r i o r i  whether these  cond i t ions  e x i s t  because the 

c o n s t r a i n t s  and ob jec t ive  f u n c t i o n  may be. h igh ly  nonl inear ,  and the  

e f f o r t  expended t o  compare t h e  l o c a t i o n  of t h e  n e a r e s t  c o n s t r a i n t  ze ro  

w i t h  the predict ion- of the  b a r r i e r  f u n c t i o n ' s  minimurrr might 'GE b e t t e r  

used d i r e c t l y  t o  minimize t h e  b a r r i e r  f u n c t i o n .  

descr ibed seems t o  be a s a t i s f a c t o r y  compromise between excess ive  s a f e-  

guards and unwarranted assumptions of l i n e a r i t y  or smoo7;hness . 

There i s  no conputa t iona l ly  reaeonable 

The procedure t c  be 

3.3.1 I n i t i a l  S t e p  

The choice of t h e  f i rs t  s t e p  a long the sea rch  d i r e c t i c i a  

a t  which t h e  func t ion  i s  t o  be evaluated i s  a f f e c t e d  by rhe possi- 

b i l i t y  t h a t  a c o n s t r a i n t  may become nonposi t ive  i f  t h e  u s u a l  chcice  

of s t e p  f o r  t h e  a lgor i thm i s  t a k e n .  

method, t h e  i n i t i a l  sxep taken a long t h e  s e a r c h  d i r n c t i c n  is  uii i ty;  

f o r  a quasi-Newton method, there i s  normally a procedure asscc ia ted  

with t h e  method f o r  choosing the i n i t i a l  s t e p .  

i n i t i a l  s t e p  t h a t  would be taken f o r  a p a r t i c u l a r  m c m s t r a i n e d  a l -  

gcri thm i f  used t o  minimize t h e  b a r r i e r  func t ion  along the given 

d i r e c t i o n .  

s h o r t e r  s t e p  than  Q~ should be t a k e n .  

termining t h e  i n i t i a l  s t e p  i s  t o  f i n d  a h igh ly  accura te  es t imate  of 

t h e  s t e p  t o  t h e  neares t  ze ro  of a c o n s t r a i n t ,  say  :a, and t e s t  

whether $ < cyu. A subrout ine  i s  ava5l.aFI.e t h p t  ;!ill, w i t h  high re-  

For example, w i t h  a Newtcn-T;rpe 

L e t  CY U denote t h z  

If a c o n s t r a i n t  might become z e r o  a t  '& < Q' U' c l e a r l y  a 

One p o s s i b l e  method for d e-  
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f 

l i a b i l i t y ,  l o c a t e  t h e  ze ro  of t h e  n e a r e s t  c o m t r a i n t  by ase cf 3 

combination of safeguarded zero- f inding teck!iqu.es . 

l o c a t i n g  $ g e n e r a l l y  requ i ree  s e v e r a l  c o n s t r a i n t  eva lua t ions ,  

and it may t u r n  out t h a t  % exceeds Q;. o r  is very c lose  t o  cy U , S O  

t h a t  t h e s e  eva lua t ions  were essen t i a l - ly  redundant .  

of us ing  the zero- f inding technique u n t i l  t h e  ze ro  has beer? shown 

conclus ively  t o  l i e  beyond %, but  t h i s  approach invclves  q u i t e  cam- 

However, 

One might t h i n k  

~ p l i c a t e d  housekeeping, and, more s i g n i f i c a n t l y ,  may s t i l l  r e q u i r e  

c o n s t r a i n t  c s l c u l a t i o n s  t h a t  do n o t  advance t h e  computatior,. 

(0) With t h e  "compromise" algori thm, t h e  i n i t i a l  s t e p  cu iS 

computed a s  follows : 

(1) Compute cy t h e  s t e p  normally taken by the  unconstreiced 
U' 

method; 

Compute the g rad ien t  of each constrain", a l o n g  p, i . e  ., 
T 

a i  p .  

i .e . ,  the - i t h  c o n s t r a i n t  is  l o c a l l y  decreaciag along 

p, compute cyi = -ci/ai p, the p red ic ted  newton s t e p  

t o  t h e  ze ro  of' c i .  Find & = min (cr.), 1 and l e t  be 

t h e  index f o r  which & = crr . I n  o the r  words? i s  

the sruallest  p o s i t i v e  f i r s t - o r d e r  s t e p  t o  a c o n s t r a i n t  

( 2 )  

For a l l  i such t h a t  t h i s  g r a d i e n t  i s  negat lve ,  

T 

1 

a e r o .  If no c o n s t r a i n t  is  decreas ing a long  p, set t he  

i n i t i a l  s t e p  cy t o  cyuy and s k i p  the remaining logic. 

Estimate t h e  s t e p  t o  t h e  minitnun of t h e  t a r r L e r  func-  

t i o n ,  a s  fo l lows .  The p ro jec ted  g rad ien t  of t h e  b a r r i e r  

f u n c t i o n  w i l l  be ze ro  a t  t h e  minimum along t h e  l i n e ,  

and we assume t ha t  only the in f luence  of t h e  c o n s t r a i n t  

( 0 )  

( 3 )  

- 
i will be s i g n i f i c a n t  iu, the  l o c a t i m  of %he m i n i a m .  
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This assumption Is based Gn t h e  idea t h a t  for sua11 r ,  

only t h e  c o n s t r a i n t  whose ze ro  i s  c l o s e s t  t o  the  

s t a r t i n g  po in t  w i l l  a f f e c t  t h e  b a r r i e r  f u n c t i m  by 

a l t e r i n g  t h e  behavior of t h e  ob jec t ive  f u n c t i o n .  

A crude es t imate  f o r  t h e  min inm of t h e  barrle:  

funct ion,  cyh., may be obtained by asstuning t 5 a t  t h e  

g r a d i e n t s  of t h e  ob jec t ive  func t ion  and z th  c o n s t r a i n t  

w i l l  remain f i x e d  l o c a l l y .  Thus, we o b t a i n  t h e  fol lowing 

Y 

r e  l a  t i’on inv olv ing  ~ i 3  : 

I 

Ignoring a l l  b u t  t h e  7th c c n s t r a i g t  and second-order - 
terms gives :  

T r a -  p i = o ;  T T 
p g - c- i -F aha; p 

C- r i - -  - - ;  
T a-  P 

- T  
ab P g i 

T If p g > 0, i . e . ,  p i s  n o t  a descent d i r e c t i o n  f o r  the 

ob jec t ive  func t ion ,  then  the assumption t h a t  only one 

c o n s t r a i n t  will have an e f f e c t ,  confined t o  t h e  neigh- 

borhood of the s i n g u l a r i t y ,  i s  not J x s t i f i e d ,  and we 



, *  

(0)- (4) If % exceeds wLl J l e t  be wu; otherwise,  CY - \ .  

I n  this vay, t'ne i n i t i a l  s t e p  can be chosen based on t h e  

es t imated decrease of tlie c o n s t r a i n t s  i f  i t  seems t h a t  t h e i r  e f f e c t  

w i l l  be s i g n i f i c a n t  i n  t h e  l o c a t i o n  of t h e  minimum of t h e  b a r r i i r  

f u n c t i o n .  

3 *3 93 Fe a s i b  i li t y Che c k 

For each s t e p  t o  be taken, t h e  s e t  of c c n s t r a i n t s  i s  

evaluated i n  order  t o  assure  t h a t  f e a s i b i l i t y  i s  never v i o l a t e d .  
-% 

If any c o n s t r a i n t ,  say  the Jth, i s  non-posit ive a-c 

x + c ~ ( ~ ) p ,  the  secan t  s t e p  t o  t h e  p red ic ted  ze ro  cf that consxraint  

i s  computed, and the next e s t imate  of the l o c a t i c n  c7; the rninlrrum 

i s  computed a s  descr ibed above i n  S tep  ( 3 ) ,  where t h e  secan t  s t e p  
- 
a .  given by: 

*I 
- a  ( k ) c ,  (x> 

i s  used a s  G. 
quirement t h a t  t h e  c o n s t r a i n t s  no t  be evaluated a t  p o i n t s  thaL  a r e  

t o o  c l o s e  t o g e t h e r  ( s e e  G i l l  and Murray, 19748; Brent,  1973, f o r  a 

This  procedure i s  s u b j e c t  t o  the safsguarding rp- 

discuss ion  of t h i s  a spec t  of safeguarded l i n e a r  sea rches )  

Normal I t e r a t i o n  of Modified Linear  Search 

The s p e c i a l  func t ions  a r e  f i t t e d  during t h e  i t e r a t i m  i f  

3 f i a g  has been s e t  t o  ' t r u e ' .  The f l a g  i s  s e t :  (1) when t h e  initial 

d i e t e d  t o  be s i g n i f i c a n t  i n  l o c a t i n g  t h e  rr,inixm; and ( 2 )  when sny 

negat ive  c o n s t r a i n t  value  is  encountered during execut ion of t h e  

l i n e a r  search,  s i n c e  it has  then  been deuonFTrsted t h z t  the  w r r e n t  

?I tera te  is  i n  a reg ion  of inf luence of t h e  s i c g d e r i t y .  
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The s p e c i a l  func t ions  a r e  f i t t e d  i t e r a t i v e l y ,  us ing t h e  

same c r i t e r i a  f o r  r ep lac ing  po in t s  a s  the  usua l  l i n e a r  searches ,  

u n t i l  t h e  p a r t i c u l a r  convergence c r i t e r i a  a r e  s e t i s f i e d .  

a few subtle d i f f i c u l t i e s  i n  t h a t  f o r  smal l  r, i t  may be d i f f i c u l t  

t o  l o c a t e  the minimum because t h e  d i s t a n c e  from t h e  s i n g u l a r i t y  t o  

the minimum may be l e s s  than  t h e  spacing requ i r sd  f o r  constrain;  

e v a l u a t i o n s .  

volved, s o  t h a t  impossible accuracy i s  n c t  sought, will assure  t h a t  

t h e  process  w i l l  work a s  d e s i r e d .  

3.3.4 

There a r e  

However, a c a r e f u l  r e g u l a t i c n  of t h e  to le rances  i n-  

Comparison w i t h  Usual Linear  Searches 

In order  t o  determine whether t h e  s p e c i a l  l i n e a r  searches 

a E  worthwhile, nulrierical experiments were c a r r i e d  ou’t f o r  s e v e r a l  

b a r r i e r  func t ions ,  with varying values  of r J  t h e  b a r r i e r  parameter, 

and ‘ll, t h e  l i n e a r  sea rch  convergence parameter.  F x  t h e  cubic ciiae 

where g rad ien t s  a r e  evaluated a t  every po in t ,  the l i n e a r  sea rch  

u s u a l l y  terminates  when 

( d x  f w ) [  < 1? Ig (x )  ; 

i n  the quadra t i c  case ,  t h e  l i n e  

when t h e  minim7m i s  known t o  be 

r sea rch  i s  u s u a l l y  terminated 

bracketed i n  t h e  i n t e r v a l  [a ,k]  

I < ri I d d l ,  F(x+a/p) - F(x+ap) and 

I cy-a 

i . e . J  when the  l i n e a r i z e d  approximatioc t o  t h e  g rad ien t  a t  x i rp 

s a t i s f i e s  the  same t e s t  a s  g(x i- CQ) i n  t h e  cubic c a s e .  

o t h e r  occasions when t h e  normal l i n e a r  s e a r c h  prscedure w i l l  t e r -  

minate,  involving s u f f i c i e n t  smallness of t h e  in te rva  1 of uncer- 

t a i n t y ,  c loseness  t o  t h e  maximm permitted s t e p ,  e t c .  

There ? re  

Numerous runs (about 40) were nade. For both  the special 

func t ions  and t h e  u s u a l  polynomials, the  same i n i t i a l  s t e p  was 



taken,  and t h e  same procedure was followed f o r  determining t h e  ns : t  

p o i n t  i f  a c o n s t r a i n t  became negat ive  dur ing t h e  l i n e  s e a r c h  

i t e r a t i c n .  

of s p e c i a l  func t ions ,  r a t h e r  Than of cubic o r  quadra t i c  p o l y n m i a i s ,  

Hence, the only difTerence was i n  t h e  use of t h e  mJnina 
I 

. t o  y i e l d  the next p c i n t  a t  which t h e  func t ion  and c o n s t r a i n t s  a r e  

t o  be evaluated a s  the l i n e a r  sea rch  proceeds.  I n  every case,  use 

of $he s p e c i a l  func t ion  reduced t h e  number of c m s t r a i n t  evaluatLons; 

the reduc t ion  became progress ive ly  more s i g n i f i c a n t  a s  the  value of 

r was reduced. 

s t r a i n t  eva lua t ions  ranged from 7% t o  2$, s o  t h a t  the-? was c l e a r  

improvement wi th  the s p e c i a l  f u n c t i o n s .  

= 

The reduct ion i n  t h e  n u b e r  of funczioL and con- 

T'le e x t r a  work required i n  the  l i n e a r  sea rch  t o  f i t  these  

Some of t h e  housekeeping (checking l o r  

I 

s p e c i a l  func t ions  i s  s m a l l .  

f e a s i b i l i t y ,  e t c . )  must be c a r r i e d  out w i t h  b a r r i e r  f u n c t i m s  r e -  

g a r d l e s s  of whether s p e c i a l  func t ions  a r e  used or n o t .  

l a t i o n s  preserzted here  allow c a l c u l a t i o n  of t h e  minimum of the i i r t e d  

func t ions  w i t h  the same information required t o  f i t  the u s u a l  p~1.y- 

nomials.  The s i n g u l a r i t y  m s t  be loca ted  through an i -csra t icn ,  b u t  

because of the  s p e c i a l  form of t h e  i t e r a t i o n  func-cions, we a r e  a b l e  

t o  ob ta in  a h ighly  accura te  s t a r t i n g  guess; i n  f a c t ,  i n  t t i o  of the  

three cases ,  th? s o l u t i o n  cculd be obtained by t a b l e  lookup .Lor B 

s u f f i c i e n t l y  l a rge  t a b l e .  

and Newton's method w i l l  usua1I.y converge t o  the des i red  accuracy 

w i t h i n  two i t e r a t i o n s .  Each i t e r a t i o n  t o  l o c a t e  t k  s i n g u l a r i t y  

requires eva lua t ion  of a t r anscenden ta l  func t ion ,  bu t  t h e  subse- 

quent r educ t ion  i n  the  number of f u n c t i o n  and c c n s t r a h t  evs l imt ions  

requtred t o  loca te  a s a t i s f a c t o r y  approximation t o  t h e  rr ,S .~ imurc  of 

The i c ~ m -  

The i t e r a t i o n  f u n c t i o c s  a r e  we! 1-bekaved, 
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the b a r r i e r  f unc t i on  seems ample j u s t i f i c a t i o n  f o r  use of tne 

s p e c i a l  l i n e a r  searches designed t o  minimize b a r r i e r  functiorls . 
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cHAmE14 

METHODS BASED ON THE I L ~ G E A N G I A N  -FUNCTION 

4.1  In t roduc t ion  

The motivation for t h e  algori thms t o  be discussed i n  th i s  chapter  

i s  t o  improve over t h e  performance of pena l ty  arid b a r r i e r  func t ion  I 

methods by cons t ruc t ing  a s e t  of  sub-problems t h a t  n e i t h e r  conta in  i n-  

e v i t a b l y  inc reas ing  i l l - c o n d i t i o n i n g ,  nor assure  convergence only i n  the  

l i m i t .  
.. 1 

The problem t o  be considered f i r s t  i s  t h e  e q u a l i t y  const ra ined 

problem: 

PI: minimize F(X) 

s u b j e c t  t o  c . ( x )  = 0, i=1,2 ,  ..., m .  
1 

The suf f i c iency  condi t ions  given i n  Sec t ion  1 .2  for a const ra ined 

minimum w i l l  be assumed t o  hold a t  x*, s i n c e  the  methods t o  be described 

a r e  a l l  c r i t i c a l l y  dependent on those p r o p e r t i e s ;  i n  a d d i t i o n ,  A(x*) w i l l  

be assumed t o  have f u l l  rank.  Under these  condi t ions ,  t h e r e  e x i s t s  a t  

X* a v e c t o r  A* of Lagrange m u l t i p l i e r s  such t h a t :  

g(x*) - A(x*)A* = 0. 

The p o i n t  x* i s  t h e r e f o r e  a s t a t i o a a r y  p o i n t  of t h e  Lagrangian func t ion  

L(x) = F - A *  c, b u t  i s  not  i n  ger,eral a l o c a l  mininum. T However, the  s u f f i -  

c iency  cond i t i c l ;  guarantee t h a t  the Hessian ms t r ix  of L(x)  a t  x*, given by 
I 

1 1  

m + +  2 v L ( X )  5 w = G - 2 h i  G ~ ,  i s  p o s i t i v e  t j i . f ini te  r e s t r i c t e d  t o  th.e EUU 

i =1 

space of A(x*); equ iva len t ly ,  Z b  i s  p o s i t i v e  d e f i n i t e ,  where the  matr ix  

Z i s  a s  defined i n  Chapter 1, a matr ix  whose columns form an orthogonal 

basis  f o r  t h e  n u l l  spzce o f  A .  Consequently, t h e  Lagrangizn f u c t i o n  can 

d i s p l a y  negat ive  curvature  a t  x*. only a long d i r e c t i o n s  i n  t h e  r a n g  of ;e 
1 
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A(x*), and x* i s  a l o c a l  minimm of L(x) r e s t r i c t e d  t o  t h e  : lull  space .  

The a lgor i thms t o  be described i n  t h i s  chapter  a r e  based on e t tempts  

t o  use t h e s e  p r o p e r t i e s  of t h e  Lagrangian f u n c t i c n  t o  cons t ruc t  a sub- 

problem of which x* i s  t h e  s o l u t i o n .  Two approaches t o  dev i s ing  t h e  sub- 

problem w i l l  be considered:  

1) Unc ons t r a  i n e  d Minimization 

A func t ion  i s  const ructed of which x* is  an unconstrained l o c a l  

minimum, S O  t h a t  a n  algori thm f o r  unconstrained minimization can I;e 

app l ied  d i r e c t l y .  

the Lagrangian func t ion  through a d d i t i o n  of a t e r m  t h a t  r e t a i n s  the  

s t a t i o n a r y  p r o p e r t i e s  of x*, but  a l t e r s  t h e  Hessisn i n  the  r e q u i s i t e  

subspace t o  make it p o s i t i v e  d e f i n i t e  a t  x*. 

2)  L inear ly  Constrained Minia izat ion 

- -  
A s u i t a b l e  func t ion  can be generated by augmenticg 

A l i n e a r l y  const ra ined sdo-problem i s  developed of which x* 

i s  t h e  s o l u t i o n .  

X* w i l l  r e t a i n  i t s  s t a t i o n a r y  p r o p e r t i e s ;  t h e  l i n e a r  c o n s t r a i n t s  z r e  

const ructed s o  t h a t  t h e  subspace i n  which t h e  minimization takes  

p l a c e  i s  r e s t r i c t e d  t o  t h a t  i n  which t h e  Hessian a t  x* i s  i n  genera l  

p o s i t i v e  d e f i n i t e  . 
Any algor i thm based on t h e  Lagrangian f u n c t i o n  includes  the  inheren t  

The func t ion  t o  be minimized i s  s e l e c t e d  s o  t h a t  

d i f f i c u l t y  t h a t  the Lagrange m u l t i p l i e r s  a t  x* a r e  i n  genera 1 unknown. 

All t h e  a lgor i thms t o  be described,  whether t h e y  generate  an unconstrained 

o r  l i n e a r l y  const ra ined sub-problem, n e c ? s s a r i l y  involve  some method f o r  

e s t i m a t i n g  t h e  Lagrange mul. t ipl iers  . 

t o  be noted w i l l  be based on o the r  aspec t s  of t h e  methods, s i n c e  t h e  

e s t i m a t i o n  of t h e  m u l t i p l i e r s  can u s u a l l y  be considered a separable  

However, t h e  primary d i s t i n c t i o n s  
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4.2 Augmented Lagrangian Function 

There a r e  v a r i o u s  p o s s i b i l i t i e s  f o r  cons t ruc t ing  a f u n c t i o n  of which 

x* i s  a n  unconstrained l o c a l  minimum, bu t  only  one such f u n c t i o n  w i l l  be 

T . LA(x,h , p )  = F - h. c -f- cTDc, (4.2.1) 

where p i s  a p o s i t i v e  p e n a l t y  parameter, A i s  a n  es t imate  of t h e  v e c t o r  

of Lagrange m u l t i p l i e r s ,  and D i s  a pcjsitive d e f i n i t e  symmetric mat r ix .  

The q u a n t i t i e s  p, A ,  and D d o  not  depend on x .  

There a r e  numerous forms for t h i s  type of augmented Lagrangian func- 

For example, the mat r ix  D may be a s s m e d  t o  be diagonal ,  and t h e  t i o n .  

parameter p can be absorbed i n t o  t h e  elements of D, s o  t h a t  c Dc becomes 

a weighted q u a d r a t i c  p e n a l t y  term; o r  t h e  matr ix  D may be t h e  i d e n t i t y  

matrix,  corresponding t o  an  unweighted q u a d r a t i c  p e n a l t y .  

any p a r t i c u l a r  a lgor i thm w i l l  depend on t h e  choice of D, b u t  t h e  purpose 

of t h i s  term i s  t h e  same i n  a l l  cases  - t o  add p o s i t i v e  curvature  i n  t h e  

T 

The d e t a i l s  of 

range of A(x*). 

The augmented Lagrangian func t ion  (4.2.1)  h3s t h e  p roper ty  t h a t  ::* 
could be found by a s i n g l e  unconstrained minimization i f  t h e  optimal mul- 

t i p l i e r  v e c t o r  A *  and a s u i t a b l e  p were known. 

Theorem 7: I f  t h e  s u f f i c i e n c y  condi t ions  glven i n  Sec t ion  1 . 2  hold 

A a t  x* and A(x*) has f u l l  rank, then  t h e r e  e x i s t s  p > 0 

such t h a t  x* i s  an unconstrained l o c a l  minimum of 

L ~ ( X J * , P )  f o r  P > ?. 
Proof :  D i f f e r e n t i a t i n g  LA w i t h  respec t  t o  x g ives :  

V L A ( ~ , A * , p )  = g - M* I- ~ A D c .  (4.2.2) 

Since t h e  s u f f i c i e n c y  condi t ions  hold a t  x*, g - a* = 0, and 

c = 0, s o  t h a t  VLA(x*,h",p)  = 0, and x* i s  a s t a t i o n a r y  p o i n t  of LA(x,A*,p), 

a necessary  cond i t ion  f o r  x* t o  be a l o c a l  rninl 'mum. 
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T where. v i = d .  1 c f o r  d i' the  i t h  column of D. A t  x*, c = 0:  and thus the 

Hessian a t  x* reduces to: 

T 

2 

2 
0 LA($h*,p)  = X + pAUA . 

I f  t he r e  ex is t s  p > 0 such t n a t  V LA(x*,hXJp) i s  p o s i t i v e  d e f i n i t e ,  t he  

s u f f i c i e n t  conditiorzs %ill be s a t i s f i e d  for x* t o  be an unconstrained 

loca 1 minimum. 

Le t  y be  a u n i t  vec to r ,  which can be w r i t t e n  a s  a l i n e a r  corn-rjfnation 

of t h e  columns of Ql and Z, where t he  columns of Q1 form an orthoganal 

b a s i s  for the space spanned by t he  columns of A (so t h a t  A Ql is  non- 

singular), and t h e  columns of Z form an orthogonol basis for the n u l l  spec? 

cf A. If y = Q 1 u + Zv, t he  product y (W + pADA )y can be w r i t t e n  a s  

T 

T T 

fol lows : 

To v e r i f y  t h a t  t h e  mat r ix  i s  p o s i t i v e  d e f i n i t e  f o r  s u i t a b l y  chosen p,  

th i s  q u a n t i t y  must be bounded below. 

T For a genera l  mat r ix  C,  x c y 1  - I I x / j  ~ I c ~ I  1 / y I I  . 
Because t h e  c o l m n s  of Ql and Z a r e  orthogonal, 1 I Qld 1 = 1 14 I , and 

I I Zvl 1 = I 1 V I  I . Since Z dZ i s  p o s i t i v e  d e f i n i t e  a t  x* by t h e  suff ic ier icy 

condi t ions ,  it fol lows t h a t :  

' T  

f o r  some cy > 0 .  

T The tmtrix D i s  p o s i t i v e  d e f i n i t e ,  and Q 1. A i s  nonsirgu-ar;  thus  
T T  "ADA Q1 i s  a l s o  p o s i t i v e  d e f i n i t e ,  s a t i s f y i n g :  
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for some ,9 > 0.  L e t  y denote I lhi I . 
Therefore,  us ing a l l  t he se  bounds, we obtain:  

8 yT(W+pADAT)y 2 4 1 I - 271 1 I 1 1  4 I - 71 14 I * + PPI Id I - 
2 If 1 1  4 I = 0, t h e  express ion on t he  right-hand s i d e  i s  simply cy! 1.1 1 , 

which i s  known t o  be p o s i t i v e  ( th is  case c.orresponds t o  a vec to r  y i n  

t h e  n u l l  space of A ) .  Otherwise, i f  I I uI 1 * 0, the right-hand s i d e  w i l l  

be p o s i t i v e  i f :  = 

2 p > $ ( -  ak- I- 2yk + Y>, (4 .2 .3)  

2 
so  t h a t  p > L (5 +. y ) ,  t h e  matr ix  W I- pAWT w i l l  be p o s i t i v e  d e f i n i t e ,  

B 
and x* w i l l  be  a l o c a l  m-constrained minimum of L A (x,A*,p). 

Figure  4 . 1  i l l u s t r a t e s  t h a t  x* i s  a l o c a l  unconstrained minimum of 

LA(x,A*,p), bu t  only a s t a t i o n a r y  po in t  of LA(x,X*,0), t h e  ordinary 

Lagrangian func t i on .  

I n  p r ac t i c e ,  of course,  A* i s  gene ra l l y  unknown. FLli-thermore, t he  

i n e q u a l i t y  t h a t  must be s a t i s f i e d  by p i s  based on q u a n t i t i e s  evaluated 

a t  x - ~ ,  and hence a s u i t a b l e  choice f o r  p is  a l s o  unknown. 

f o r  so lv ing  Pl, based on th is  augmented Lagrangian funcxion, must there-  

f o r e  inc lude  procedures f o r  es t imat ing  A* and f o r  choosing -an appropr ia te  

The methods 
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Hestenes '  Method 

Hestenes (1969) suggested a method for so lv ing  P1 involving a se- 

quence of unconstrained subp rob l ems .  A t  each s t ep ,  t h e  unconstrained 

minimum of t h e  fol lowing func t ion  i s  determined, given a p a r t i c u l a r  choice 

(4.3.1) 

The va lues  of and p % a r e  then  modified, t he  unconstralned minimization 

procedure i s  repea ted  f o r  t he  func t ion  ( 4.3.1) with  t h e  new va lues ,  and 

s o  on, u n t i l  s u i t a b l e  convergence c r i t e r i a  a r e  s a t i s f i e d .  Clear ly  ( 4.3 .I) 

i.s a s p e c i a l  case  of t he  more genera l  augmented Lagrangian func t ion  given 

i n  Sec t ion  4.2, and the procedure suggested by Hestenes can be folloT4ed 

P T  w i t h  a pena l ty  term i n  ( 4.3.1)  of t h e  fcrm - 2 c Dc, where D i s  a p o s i t i v e  

d e f i n i t e  symmetric ma t r i x .  

This method w i l l  be termed a s equen t i a l  augmented L3grangian e i g o -  

rithm; each s t e p  cf a s e q u e n t i a l  a igor i thn:  involves  f i nd ing  t h e  u3con- 

s t r a i n e d  minimum of an augmented Lagrangisn funct ioi l  i n  which t h e  i n v i l t i -  

p l i e r  vec to r  A and parameter p a r e  kept f ixed  throughout t h e  minimizatian,  

and a l t e r e d  only a t  t he  unconstrained minirr,m. An a lgc r i t hmic  descr ip-  

t i o n  of such a method i s  t h e  foilotrin~?,: 

(1) ( Choose an i n i t i a l  vec to r  I . ,  say  >, 

; 

, ar: l c i t i a l  v a h e  Cf p,  

( 0 )  say  p ' l ' ,  and an i n i t i a l  x, x 

while  ( t h e  condi t ions  for x ('-') t o  be a l o c a l  minim,u.m of - 

I 

a r e  no t  s a t i s f i e d )  
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('1 const ra ined minimum of L ~ ( X , A  , J 

( 2 )  If I I c ( x ( j ) ) (  I i s  not  s u f f i c i e n t l y  less than  l l c ( x  ( j -O) l  I 
p' j)) ,  s t a r t i 2 g  a t  x (3-1-1. 

( j )  ( 3 )  Estimate A ( j+-l)  , poss ib ly  by updating A ; 

(4) j t j  +- 1; 

Powell's Method 

Powell (1969) proposed an e s s e n t i a l l y  i d e n t i c a l  method, bu t  de'rlvsd 
= 

it from a d i f f e r e n t  viewpoint ,  us ing  a quadra t i c  pena l ty  term w i t h  a 

' ' sh i f t ' '  and weight f o r  each c o n s t r a i n t .  I n  Powel l ' s  algori thm, t h e  

f u n c t i o n  t o  be minimized a t  each s t a g e  i s  given by: 

F f - l m  c O.(c . -e i )  2 y 

1 1  2 i=l 
( 4 . 3 . 2 )  

where oi i s  t h e  p o s i t i v e  weight and €Ii t he  s h i f t  for t h e  - i t h  c o n s t r a i n t .  

The s e t s  of parameters Eoi], {ei],  o r  both,  a r e  a l t e r e d  fol lowing each 

unconstrained minimization.  

The func t ion  (4 .3 .2 )  d i f f e r s  by a constant  from t h e  genera l  aug- 

mented Lagrangian f a n c t i o n  LA(x,A,p)  given by (4.2.1) i n  Sec t ion  4.2, 

s i n c e  (4 .3 .2)  may ke w r i t t e n  a s :  

2 1 "  2 m 
F - C c . i . 0 .  + c" O . C .  + -  c 0 . 8  

i i  1=1 1 1  i=l 1 1 1  2 i= 1 

= F - 1  T c + ~ c T D c + k ,  

O i where h i  = eiaiY D i s  a d iagonal  matrix,  d iag  ( d i ) ,  w i t h  d i  = - and 
P Y  

k = 1 OTDB. . Hence, Powell's a lgor i thm'can  be considered a s  a sequen t ia l  

augmented Lagrangian method. 

2 
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For s imp l i c i t y ,  the remair_der of t h e  d i scuss ion  will d e a l  only with 

t h e  p a r t i c u l a r  augmented Lagreizgian- func t ion  ( 4.3.1) proposed by Xestenes, 

s o  t h a t  t h e  pena l ty  term i s  i d e n t i c a l  t o  t h e  s ingle- parameter  quad ra t i c  

pena l t y  discussed i n  Chapter 2 .  

a s t ra igh t forward  way t o  t h e  more genera l  form given i n i t i a l l y .  

However, a l l  r e s u l t s  can be appl ied i n  

Boundedness of p 

A f e a t u r e  of t h e  Hestenes and Powell methods i s  t h a t  t h e  2arameier 

r ep re sen t i ng  the  pena l t y  for c o n s t r a i n t  v i o l a t i o n  -- p i n  (4.3.1), or  the 

va lues  Cui] i n  (4.3.2)--- need not be increased t o  i n f i n i t y  t o  assure  

convergence of success ive unconstrained minima t o  x*. 

each s o l u t i o n  x*(A,p) i s  a l o c z l  minimum of t h e  constra ined problem: 

Powell showed t h a t  

minimize F( x )  

sub j ec t  t o  c i (x )  = c. (x*(A,p)) ,  i=1 ,2 , .  . .,m. 
1 

Therefore ,  i f  the parameters 1 and p can be chosen s o  t h a t  c i (x*(h,p))  = 0,  

i = 1,2,. . . ,m, t h e  s o l u t i o n  of t h e  unconstrained sub-problem w T l l  a l s o  

so lve  t h e  o r i g i n a l  problem P1. 

The modif icat ion of p i n  S tep  (2) of tk s e q u e n t i a l  augmented algo- 

rithm i s  c a r r i e d  out t o  a s su re  t h a t  t h e  Hessian matr ix  of L (x,A,p) is  

p o s i t i v e  d e f i n i t e  a t  the so lu t i on ,  and t o  enforce  an i nc r ea s ing  pena l ty  

f o r  i n f e a s l b i l i t y  i f  the  m u l t i p l i e r  es t imates  a r e  poor .  The hope wi th  

an augmented Lagrangian method i s  t h a t  t h e  parameter p will eventual]-y 

(or even i n i t i a l l y )  exceed t he  proper th resho ld ,  and w i l l  no t  subsequently 

be a l t e r e d .  If the value of P Is s u f f i c i e n t l y  l a r g e  s o  t h a t  it remains 

f i x e d ,  the e x p l i c i t  dependence of x*(h, p >  on p may be suppressed,  and t h e  

s o l u t i o n  of a p a r t i c u l a r  unconstrained sub-problem w i l l  be  w r i t t e n  a s  

x*(A) t o  emphasize t h e  c r i t i c a l  r o l e  of t h e  m u l t i p l i e r  es t imate .  

A 

Some 

f u r t h e r  a spec t s  of choosing p a r e  discussed i n  Sec t ion  4.7.  



Re s t ene s /Pow e 11 Mult i p  1. i e r Upd a t  e 

The modif icat ion of A i n  S tep  ( 3 )  of the s e q u e n t i a l  augmented 

Lagrangian a lgcr i thm I s  d i r ec t ed  toward generat lng an improved es t imate  

of A*, s ince  x* i s  known t o  be an unconstrained l o c a l  ninimum of L (x ,h*,p\ i  
A 

f o r  s u i t a b l e  p.. The a l t e r a t i o n  t o  1 can be c a r r i e d  ou t  i n  numerous ways, 

and derived from s e v e r a l  perspec t ives  (see F le tcher ,  1974). 

The update suggested o r i g i n a l l y  by bo th  Hestenes and Powell i s :  

A ( j + l ) x + A ( j )  - Jj) c ( x ( j ) )  

where x(’) i s  t h e  unconstrained minimum of LA(x,A ( j )  , p ( j ) ) .  At , ( j )  I 

t h e  fol lowing holds:  

(j! A t  x * ~  g = AI,*, and consequently t h e  updated vec to r  A s a t i s f i e s  a t  x 

a r e l a t i o n s h i p  of t h e  form t h a t  holds a t  x*; it 

squares  s o l u t i o n  of rain l l g  - &ill2, where g and A a r e  evaluated a t  x 

Powell showed t h a t  t h i s  update w i l l  y i e l d  a l i n e a r  r a t e  of convergence 

t o  x*, w i th  a f a c t o r  of r educ t ion  i n  e r r o r  t h a t  depends on p.  

is, i n  add i t i on ,  a l e a s t -  

( 3 )  . 

Other M u l t i p l i e r  Updates 

Many other methods f o r  a l t e r i n g  the  m u l t i p l i e r  e s t ima te s  have been 

proposed (see Buys, 1972; Fle tcher ,  197P), and only one p m s i b l e  f o r m  of 

an update w i l l  be given he re .  

on t h e  e f f o r t  t o  use a v a i l a b l e  information t o  choose A t o  s a t i s f y  the  

The m u l t i p l i e r  updates a r e  gece ra l l y  based 

condi t ions  t h a t  must hold a t  x*: 

g(x*) = A(x*)~* ; and 

c(x*) = 0 .  
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An approximation 8x t o  Ax can be obtained by ignor ing a l l  b u t  f i r s t -  

order  terms,  and spec i fy ing :  

I n  order  t o  achieve t h e  r e l a t i o n s h i p  ( 4 . 3  . 3 ) ,  we consi6er  indepenfienyl-, 

t h e  v a r i a t i o n  i n  b o t h  x and A, and at tempt t o  c h a r a c t e r i z e  Ax and Ai thst  

s a t i s f y :  

g(x +Ax) = A(x + Ax) (A + AA) 

If g = AA a t  the c u r r e n t  p o i n t ,  which occurs a t  t h e  minimum of t h e  A 

augmented func t ion ,  we o b t a i n  an express ion r e l a t i n g  approximations A x  

and 8?, by ignor ing a l l  but f i r s t - o r d e r  terms i n  Ax and A h :  

In  t h e  following,  all v e c t o r  and matr ix  functS.ons a r e  evs luated a t  

the current p o i n t  un less  otherwise i n d i c a t e d .  I f  xhe c o n c t r a i n t s  a r e  

n o t  ze ro  a t  t h e  current p o i n t ,  the  s t e p  Ax t h a t  must be taken t o  s a t i e f y  

(-4.3.4) can be es t imated by: 

w r i t t e n  a s :  

m 

i=l 
- C X . G . ) - l  AfI 8 ~ .  = ( G  1 1  

The cond i t ion  on 8x derived e a r l i e r  i s  er?forced by multiplying both  

T s i d e s  by A , yie ld ing :  
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rn 
I f  AT(G - C hiGi)-’ A i s  nonsingular,  t h e  update . t o  t h e  multiplL:’.er 

i=l 

v e c t o r  i s  given by 

-1 -1 m 

i=l 

T $A = - ( A- ( G  - c h i ~ i )  A) C .  (4.3.5) 

T h i s  c o r r e c t i o n  y i e l d s  a l o c a l l y  second-order r a t e  of convergence t a  

1%- i f  t h e  exac t  Hessian mat r i ces  a r e  a v a i l a b l e ,  and t h e  s p e c i f i e d  asswnp- 

% 

t i o n s  a r e  s a t i s f i e d .  It should be noted t h a t  t h i s  formulat ion for tnc  

c o r r e c t i o n  n”h i s  derived under assumptions much s t r o n g e r  than  the  si-iffi- 

c i e n t  condi t ions  f o r  a minimum given i n  Sec t ion  1 . 2  ( f o r  example, i f  the  

matr ix  G - C h . G .  i s  s i n g u l a r  a t  x* or i n  a neighborhood of x*, t h e  given 
m 

i= 1 1 1  

form cannot be u s e d ) .  

D i f f i c u l t i e s  

The s e q u e n t i a l  augmented Lagrangian methods can overcome t h e  problem 

of p e n a l t y  func t ion  methods t h a t  t h e  p e n a l t y  assoc ia ted  wi th  i n f e a s i b i l i t y  

must be increased t o  i n f i n i t y  t o  assure  convergence; however, d e t e r n i n a t i o n  

of a s u i t a b l e  value  of p remains E d i f f i c u l t  Froblem ( s e e  Sec t ion  4 .7 ) .  

These methods r e q u i r e  repeated unconstrained minimization of a se-  

quence of f u n c t i o n s .  If t h e  e a r l y  es t imates  of A a r e  inaccura te ,  o r  an  

unfor tuna te  value  of p i s  chosen, the  sequen t ia l- type  a lgor i thms may be 

q u i t e  i n e f f i c i e n t  due t o  execut ion of unconstrained minimizations thar. 

generate  l i t t l e  progress  toward t h e  s o l u t i o n .  

4 . 4  Progress ive  Augmented Lagrangian Methods 

An obvious extension of the  methods given i n  Sec t ion  4.3 is t o  up- 

d a t e  t h e  es t imate  of t h e  Lagrange m u l t i p l i e r s  niore i r equen t ly ,  r a t h e r  

than  keeping A f ixed  throughout a complete unconstrained minimization.  
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Haarhoff and Buys (1970) noted t h a t  an accLlrate minimization of t h e  aug- 

mented Lagrangian func t ion  w i tn  a ccns tan t  1 may be unnecessar i ly  lengthy; 

th is  idea has s i nce  been repeated i n  varying forms ( s e e  Miele e t .  a l . ,  

1971; Tapia 1975). 

A progress ive  augmented Lagrangian a lgor i thm i s  defined a s  B method 

where an unconstrained minimizatiGn technique i s  appl ied a t  each s t e p  

t o  minimize an augmented Lagrangian func t ion  of t h e  u sua l  form, for 

given h and p :  

Eowever, t h e  vec to r  h and t h e  parameter p a r e  a l t e r e d  a t  i n t e r v a l s  dur ing 

the uncGnstrained minimization, s o  t h a t  t h e  method does  no t  i n  gene ra l  

a t tempt  t o  l oca t e  t h e  minimum of a f i xed  func t i on  of x from beginning i o  

end. 

h* a s  x approaches x*. 

The hope i s  t h a t  t h i s  procedure w i l l  allow t h e  v e c t o r  h t o  approach 

Such an a lgor i thm i s  of t h e  fol lowing form: 

( Choose an i n i t i a l  h ,  A(’), an i n i t i a l  p: p‘’), and an 

(1) i n i t i a l  x, x ; 

j + l ;  ) 

while ( t h e  convergence c r i t e r i a  f o r  x ( j )  t o  be a l o c a l  

minimwn of ~1 a r e  no t  s a t i s f i e d )  

r epea t  ( 

compute a d i r e c t i o n  of s ea r ch  p ( j )  and a s t e p  c t ( j ) J  using 
an unconstrained technique t o  minimize LA(” ( j , ) , i ( j  ), ,(j )). 
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S t e p  (3)  need not  involve  an a l t e r a t i o n  of h a t  every s t e p ,  so t h a t  

(j+l> = A  ( j )  . f o r  some i t e r a t i o n s  it i s  p o s s i b l e  t h a t  h 

The method used i n  S t e p  (3)  t o  e s t i n a t e  h (j+') nus t  not  r e q u i r e  t h e  

o p t i m a l i t y  of x(j) f o r  L ( x , ~  ( 'I  , p ('I), and should be s e l e c t e d  s o  t h a t  

h -)A* a s  x 4 x * .  
A 

A p o s s i b l e  choice f o r  t h e  es t imate  of h i s  the  v e c t o r  

2,  t h e  l eas t- squares  s o l u t i o n  of min I Ig-Ahl I 2 , f o r  g and A evaluated a t  

t h e  c u r r e n t  po in t ;  the  mot ivat ion f o r  t h i s  choice i s  t h a t  A* s a t i s f i e s  an 

analogous r e l a t i o n s h i p  a t  x*. For A of f u l l  rank, 2 may be w r i t t e n  a s  

= (ATA)-lA"g, and w i l 3  approach A* a s  x approaches x*. This modi f i ca t ion  

of A is  s i m i l a r  t o  t h e  o r i g i n a l  Hestenes/Powell update f o r  s e q u e n t i a l  a l -  

gorithms, where t h e  next  e s t imate  of h i s  an 

l u t i o n .  

correcti .cn corresponding t o  (4 .3  .>) may ke derived without assuming t h s t  

t h e  c u r r e n t  p o i n t  i s  t h e  unconstrained minimum of the  augmented functiom. 

exac t  l eas t- squares  so-  

Other es t imates  of h may a l s o  5e Qsed; f o r  example, 3 second-order 

The approach of f requen t  r e- es t imat ion  of A during t h a  u n c o n s t r a l i e d  

minimization procedure i s  o f t e n  q u i t e  s u c c e s s f u l  i n  p r a c t i c e  ( s e e  Chapier 

6 ) ,  and may avoid t h e  i n e f f i c i e n c y  displayed by t h e  s e q u e n t i a l  a lgor i thms 

when t h e  i n i t i a l  e s t imates  of h a r e  poor.  However, a new d i f f i c u l t y  i s  

t h a t  t h e  c r i t e r i a  f o r  measuring progress  toward x* beccne 

s i n c e  each unconstrained sub-problem i s  not  solved completely.  

l e s s  apparent ,  

An example of t h i s  d i f f i c u l t y  i s  t h e  s t r a t e g y  used t o  choose an 

a p p r o p r i a t e  value  for p .  The s e q u e n t i a l  a lgor i thms normally inc rease  p 

i f  t h e r e  i s  an i n s u f f i c i e n t  decrease i n  i n f e a s i b i l i t y  from t h e  uncon- 

s t r a i n e d  min imum f o r  a p a r t i c u l a r  h t o  the  next  minimum. I n  an a lgor i thm 

where a i iew e s t imate  of h i s  obtained before  t h e  unconstrsined minimum 

i s  loca ted  f o r  t h e  previous A ,  it would be unreasonable t o  expect a d e-  
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f 

c r e a s e  i n  i n f e a s i b i l i t y  a t  every s t e p .  

p must be included i n  a robus t  al.goritkm; hence the dec i s ion  t o  inereas?  

However, t h e  a 3 i l i t y  t o  a l t e r  

p may involve monitoring t he  c o n s t r a i n t  v i o l a t i o n  over a "reasonable" 

number of s t eps ,  and i s  no t  a t  a l l  s t r a igh t fo rward .  

4.5 Continuous Augmented Lagrangian Methods 

A f u r t h e r  p e s s i b i l i t y  for developing a func t i on  of which x* i s  an 

unconstrained l o c a l  minimum is  t o  cons t ruc t  a m u l t i p l i e r  func t ion  h (x), 

and c r e a t e  a continuous augmented Lagrangian func t ion  .which depends only 
.. . 

on x and p: 

where D i s  a p o s i t i v e  d e f i n i t e  s p m e t r i c  matr ix .  Such a continuous aug- 

mented Lagrangian func t i on  was proposed by F l e t che r  (1970) . The depend- 

ence of h on x i s  t h e  reverse  of the  analogous re la t ionshTp i n  t he  a lgo-  

rithms descr ibed i n  Sec t ions  4.3 and 4.4: i n  t he  s equen t i a l  methocis, esch 

es t imate  of x* depends e x p l i c i t l y  on t h e  p resen t  es t imate  of A* ;  and i n  

the progress ive  methods, every s t e p  i n  x depends on The cur ren t  A ,  which is 

f i x e d  dur ing an i t e r a t i o n  of t h e  unconstrained sub-problem. 

The hope for a continuous augmented Lagrangian method i s  t h a t  x* 

w i l l  be an  unconstrained minimurn of L C (x ,p)  wi th  app rop r i a t e  chcice  of 

p ,  a s  f o r  t h e  augmented Lagrangian func t ion  given i n  Sec t ion  4 .2 .  

f e r e n t l a t i n g  L (x,  p >  wi th  r e spec t  t o  x gives:  

D i f -  

C 

- 1  where t h e  i t h  column of t h e  matr ix  A i s  - . - a x  
a sui table  f u n c t i o n a l  r e l a t i o n s h i p  must s a t i s f y  l i m  h ( x )  = A*, S G  t h a t  

A t  x*, c=O. I n  add i t ion ,  

x +x* 

g-Ah(x*) = g-M* = 0 because of the  s u f f i c i e n t  condi t ions  f o r  a minimu! 



a t  x*. Therefore,  VL C (x*, p)  = 0,  and x* i s  a s t a t i o n a r y  p o i n t  of L,(X, p ) .  

The Hessian matrix of L C (x ,p )  i s  given by: 

m p h i  T 
pvi G ~ )  - A A ~ - A ~ + ~ A I I A  2 V LC(x,p) = G - C ( A  . G .  + ci 3 - 

'X 
1 1  i= 1 

T - where vi  = d .  1 c for di, t h e  - i t h  c 0 1 . m  of D .  A t  x*, c = O and t he  Hessian 

reduces t o :  

T 2 T T  
V LC(x*, p )  = W .. A A  -AA +pADA . 

% 

2 V L (x*, p)  i s  p o s i t i v e  d e f i n i t e  i n  t h e  n u l l  space of A(x*), s i nce  t h e  

a p p l i c a t i o n  of ZT and Z a n n i h i l a t e s  the  terms involving A and A , l e av i cg  

only Z%Z, which i s  p o s i t i v e  d e f i n i t e  by t he  s u f f i c i e n t  condi t ions  for a 

C 

T 

2 minimum a t  x*. 

only a long d i r e c t i o n s  i n  t h e  range of A .  

t o  t h a t  given i n  Sec t i on  4.2, it can be shown t h a t  t he r e  e x i s t s  a pos i -  

Any nega t ive  curvature  of V L C a t  x* must thus  occur 

By a bounding procedure s i m i l a r  

2 t i v e  value,  say  6, such t h a t  for p > ;, V Lc(x*, p )  i s  p o s i t i v e  d e f i n i t e  

(see F le tcher ,  1970), and x* i s  t h e r e f o r e  an unconstrained l o c a l  minimum 

of t h e  continuous augmented Lagrangian func t ion  L C (x, p )  . 
l a t i o n  h3s been ca l l ed  an "exact"pena1ty func t ion ,  s i nce  a s i n g l e  uncon- 

s t r a i n e d  minimization of L (x ,p)  w i l l  determine x* for a s u i t a b l e  choice 

of p .  

This formu- 

C 

The m u l t i p l i e r  f unc t i on  proposed o r i g i n a l l y  by F l e t che r  i s :  

h (x )  = A ( X ) + d X ) ,  

T -1 T where A+ i s  t h e  usua l  pseudo-inverse of A,  given by A+ = ( A  A )  

A i s  of f u l l  rank (see  F e t e r s  and Wilkinson, 1970). 

makes A(x) the l ea s t - squa re s  so lu t i on  of min 1 I g ( x )  - A(x)A I l 2  a t  each 

p o i n t .  

1973b) - 

A when 

This d e f i n i t i o n  

Other c o n s i s t e n t  d e f i n i t i o n s  of A ( x )  a r e  pos s ib l e  ( s e e  F l e t che r ,  
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A notab le  disadvantage of the  continuous approach i s  t h a t  t h e  6 e f i -  

n i t i o n  of the Lagrange m u l t i p l i e r s  i n  t a m s  of x depends on t h e  g r ad i en t s  

of t h e  ob jec t ive  and c o n s t r a i n t  f unc t i ons .  

problem func t ions  a r e  consequently required i n  order  t o  use  g r ad i en t  

Second d e r i v a t i v e s  of t h e  

techniques  f o r  unconstrained minimization to minimize L C (x, p )  . 

(1970) suggests  s e v e r a l  methods f o r  approximating t h e  de r iva t i ve s  of h (x) 

without  r equ i r i ng  h igher  derivatives of F and {c . ] ;  1 however, these  methods 

a r e  f a i r l y  complicated and have not always been succes s fu l  i n  cornpartson 

wi th  t h e  methods of Se'ctTons 4.3 and 4 .4 .  

F l e t che r  

A continuous augmented Lagrangian method must a l s o  d e a l  w i th  t he  p ~ c -  

blem of determining 

with t h e  same d i f f i c u l t i e s  described for the m e t h o d s  of Sec t ion  4.4 ( s ee  

Sec t i on  4.7 f o r  fu r ther  d i s cus s ion ) .  

4.6 Extension t o  I n e q u a l i t i e s  

a s u i t a b l e  value of 9 a s  t h e  c a l c u l a t i o n  proceeds, 

The augmented Lagrangian methods given i n  Sect ions  4 . 3  - b .5  deal 

only with equ.al i ty  c o n s t r a i n t s ;  we s h a l l  now b r i e f l y  consider  t h e i r  

a p p l i c a t i o n  t o  t h e  i n e q u a l i t y  constra ined problem: 

E: minimize F ( X )  

sub j ec t  t o  c i (x )  2 0, i=1,2,.  .., .e. 
The s u f f i c i e n t  condi t ions  given i n  Sec t ion  1.2 for 8 minimum of €2 

w i l l  be assumej t o  hold a t  x*, and A(x*) w i l l  be assured t o  have f u l l  

rank, where 8 denotes  t h e  n by m matr ix  whose columns a r e  t h e  g rad ien ts  

of t he  m a c t i v e  c o n s t r a i n t s  a t  x*. 

mean t h a t  a t  x*, g = a*, A T 2  0 .  

methods based on using p r o p e r t i e s  of t he  Lsgrangian func t i on  a t  x* t o  

I n  p a r t i c u l a r ,  t he se  assumptions 

It can be seen immediately t h a t  

cons t ruc t  a s u i t a b l e  func t i on  of which x* i s  an unconstrained mFnimum 

must somehow nake a determinat ion of the a c t i v e  se t  of c o n s t m l n t s .  
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Rockafel lar  (1970, 1973a,b) and Euys (1972) suggested a gene ra l i z a t i on  

of t h e  augmented Lagrangian f u n c t i m  for the i nequa l i t y  constrairled pro- 

blem, w i t h  t h e  fol lowing d e f i n i t i o n :  

3: r -  -hiei 4 c: i f  c i p  I- c 
& ( c i  i s  " ac t i ve" )  

L 

A s  f o r  t h e  augmented func t i on  LA(xJh , p )  given e a r l i e r ,  this d e f i n i t i o n  

can be made more gene'ral by including weigh ts for  each c o n s t r a i n t ,  bu t  

i s  an  "extended" r i iul t ip l ier  vec to r ,  s i nce  t h e r e  i s  b component corres- 

ponding t o  every problem c o n s t r a i n t .  The genera l  convention used tkrcu&- 

O u t  t h i s  d i s s e r t a t i o n  (see Sec t ion  1.2 .?) is t h a t  Lagrange a u l t i p l i e r s  

a r e  def ined only f o r  t h e  a c t i v e  c o n s t r a i n t s ,  and t he  vec to r  A*- i s  always 

corisidered t o  have m components, whei-e t h e r e  a r e  m a c t i v e  c o n s t r a i n t s  a t  

x*. However, I n  t h i s  s e c t i o n  it may be considered t h a t  t h e  " mu l t i p l i e r "  

corresponding t o  an i n a c t i v e  c o n s t r a i n t  i s  ze ro  a t  x*, i n  order  t o  allow 

a c o n s i s t e n t  no t a t i on  f o r  the augmented Lagrangian methods t o  be descr ibed 

The d e f i n i t i o n  of t h e  augmented Lagrangian func t ion  LA for i nequa l i -  

ties i s  based on t h e  known non-negat ivi ty  of t h e  Zlagrange m u l t i p l i e r s  

corresponding t o  c o n s t r a i n t s  a c t i v e  a t  x*. A t  t n e  unconstrained minimum 

of LA(x,h , p ) ,  g = C ai(Xi - pci), where the summation incl.l;.des only i n -  
- x i  

d i c e s  f o r  which c S - . For such an index, the quan t i t y  x i  - pci  thus  

se rves  a s  an approximation t o  t he  Lagrange multi -Flier  a t  x*, and should 
i p  

be non-negative if ci i s  an a c t i v e  cons t rF in t  . The r e s u l t i n g  require-  

ment t h a t 1  i - p c i 2  0 is  p r e c i s e l y  t h e  t e s t  t o  determine whether 
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or n o t  t h e  i t h  c o n s t r a i n t  i s  s i g n i f i c a n t  i n  the d e f i n i t i o n  of lh. The 
- 

- 

cons t an t  - h 2  , which i s  added t o  cA for a cons t r a in t  cur ren t l j r  con- 2 i  
s i de r ed  " inac t ive" ,  simply makes the func t i on  d e f i n i t i o n  continuous a t  

c 

any po in t  where h i  = pci* 

no con t r i bu t i on  t o  the func t i gn  LA(x,A , p) s ince  c w i l l  be  S t r i c t l y  

p o s i t i v e  and bounded away from zero,  and t h e  corresponding m u l t i p l i e r  

e s t ima te  should approa,ch ze ro .  I f  ci i s  an a c t i v e  c o n s t r a i n t ,  i t s  r o l e  

i n  the augmented Lagrangiail func t ion  i s  exac t l y  t h a t  given f o r  an equality 

c o n s t r a i n t  i n  Sec t ion  4.3, w i t h  the a d d i t i o n a l  r e s t r i c t i o n  thaT- i t s  

If c .  1 i s  n o t  an a c t i v e  c m s t r a i n t ,  near  X* it w i l l  u l t i m a t e l y  make 

i 

m u l t i p l i e r  es t imate  must be  non-negative.  

was proposed by F l e t che r  (197%) i n  t h e  context  of Z'oweli's o r i g i n a l  

a lgor i thm,  wi th  the func t i on  t o  be minimized given by: 

An equiva len t  g e n e r a l i z a t i o n  of t h e  augmented Lagrangian func t i on  

2 
.e 

2 i=l 
F -t- - 1 c o.(min(ci-ei ,o))  1 , 

where, a s  before ,  oi i s  a p o s i t i v e  weight and Oi a sh i f t  ass igned t o  t h e  

i t h  c o n s t r a i n t .  The i n t e n t i o n  with i n e q u a l i t i e s  i s  t o  determine 8 s y l i f t  

t h a t  remains n0n-zer-o only for t h e  ac t i ve  c o n s t r a i n t s ;  i f  ci i s  a c t i v e  

a t  x*, t h e  product oiei should approach t h e  corresponding o p t i m a l  m G ; l t i -  

p l i e r ,  3s i n  Powel1's formulat ion of t he  e q u a l i t y  c a s e .  

i=1,2,. . . ,my 

t h e  augmented Lagrangian func t i on  proposed by F l e t che r  d i f f e r s  by a con- 

s t a n t  frcrn the e a r l i e r  d e f i n i t i o n  of 5 A ( X J ~  Y P I  * 

For ei ther  formulat ion of t h e  augmented LagranGian func t i on  f o r  i n -  

equ-a l i t i es ,  it can be shown ( s e e  Buys, 1972) t h a t  if h? > 0 (all mul t i -  

- 

If {o:!, 
I 

# a r e  zll equa l  t o  p, and t h e  r e l a t i o n s h i p  P O i  = A .  holds, 
1 

- 

1 
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p l i e r s  s t r i c t l y  p o s i t i v e ) ,  then the re  e x i s t s  $ > 0 such t h a t  f o r  p > 3,  

the s o l u t i o n  x* of P2 i s  En unconstrained l o c a l  Lnimum of fi (x,x*,,?), 

where t h e  components of the extended vec to r  A* a r e  defined i n  terms of 

whether the corresponding c o n s t r a i n t  i s  a c t i v e  a t  x*: 

-4 - 

if the i t h  c o n s t r a i n t  i s  a c t i v e ,  corresponding 

t o  index 2 i n  t h e  s e t  I of a c t i v e  c o n s t r a i n t s ;  

if the d i t h  c o n s t r a i n t  i s  i n a c t i v e  a t  x*. 

* - x* i = A h  1 

I* i = 0 

The augmented func t i on  ?J,(x,X , p )  conta ins  d i s c o n t i n u i t i e s  i n  t h e  

second d e r i v a t i v e  a t  any po in t  where h i  = pci, bu t  t h e  hope i s  t h a t  such 

po in t s  w i l l  occur f a r  from x* and hence have l i t t l e  e f f e c t  on t h e  sue- 

cess of whatever unconstra ined a lgor i thm is  used t o  minimize LA. 

A sequent ia l- type  a lgor i thm -- i n  which success ive  unconstrained 

-- can be appl ied t o  an in- minima of E A (x,'i;,p) a r e  found for f ixed  

e q u a l i t y  constra ined problem, and t h e  t e s t  a s  t o  which c o n s t r a i n t s  are  

included i n  t h e  summation a t  any po in t  i s  an i m p l i c i t  decisiol? ab0X.t the 

a c t i v e  s e t .  However, t h e  problem of u p d a t i n g 1  a t  t h e  end of each UP- 

constra ined minimization i s  more complicated than  f o r  t h e  equalit:? yro- 

blem . 
The analogue of the o r i g i n e l  Hestenes/Powell co r r ec t i on  i s  : 



- c 

remains v io l a t ed  a t  t h e  next  mininm of f '*(x,h,p),  t h e  updated X i  u i l l  

again  be p o s i t i v e .  

a s su re s  non-negative mult ipl ier  e s t i n a t c s  i f  the o r i g i n a l  e s t ima te s  a r e  

nor,-negative. 

Hence, t h e  Hestenes/Powell-l~.n.e updating proce?ure 

The guarantee  of non-negatPJity f o r  m u l t i p l i e r  es t imates  corres- 

ponding t o  a c t i v e  c o n s t r a i n t s  does no t  neces sa r i l y  apply t o  o the r  up- 

da t e s  of 1, and may need t o  be imposed on t h e  updating method. 

(1973a) suggests  some pos s ib l e  approaches t o  ob ta in ing  higher- order  

e s t ime te s  of which -essure t h a t  a l l  e s t imates  a r e  non-negative . 

Fle t che r  

The progress ive  methods described i n  Sec t ion  4.4 may slso be extendea 

to the i n e q u a l i t y  case (see Buys, 1972), but  t he  two r e l a t e d  problems 

of determining t he  cu r r en t  " ac t ive  s e t "  and es t imat ing  the m u l t i p l i e r s  

a t  each  i t e r a t i o n  can become q u i t e  complicsted.  

t imate  of ?I analogous t o  t h e  l eas t- squares  s o l u t i o n  descr ibed i n  Sec t ion  

4.4 is  e n t i r e l y  dependent on t h e  chosen s p e c i f i c a t i o n  of t h e  a c t i v e  con- 

s t r a i n t s ,  and t he  m u l t i p l i e r s  a r e  not  guaranteed t o  be p o s i t i v e .  

OF non-negative m u l t i p l i e r s  can be found by solving:  

For example, t h e  e s -  

A s e t  

min I I g - ~ h  I 1 
s u b j e c t  t o  h 2 0, 

where the matr ix  % might include only t h e  conjectured " ac t i ve  s5t" OF 

poss ib ly  a l l  t h e  problem c o n s t r a i n t s ;  bu t  t h i s  c a l c u l a t i o n  may 5 a  length;., 

and t h e  v a l i d i t y  of the r e s u l t i n g  m u l t i p l i e r s  may be ques t i onab l e .  

non-negat ivi ty  i s  no t  imposed on t he  es t imates  of A ,  a s u i t a b l e  s t r a t e g y  

must be devised t o  d e a l  w i t h  any cons t r a in t  w i t h  a nega t ive  m u l t i p l i e r  

est imate .  

If 

The contir_uous augmented Lagrangian,methods can be appl ied t o  t he  

i n e q u a l i t y  problem by using an " ac t ive  s e t ' '  s t r a t e g y  f o r  every eva lua t ion  
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of t h e  func t ion  

t h e  undes i rab le  

c o n t i n u i t i e s  i n  

Lc(x, p )  (see L i l l ,  1972); however, t h i s  approach con ta ins  

f e a t u r e  t h a t  any change i n  t h e  a c t i v e  s e t  in t roduces  d i s -  

%he P m c t i o n  being minimized. To overcome t h i s  d i s a d -  

van%age, F l e t c h e r  (1973a) has defined t h e  m u l t i p l i e r  func t ion  for the i n-  

e q u a l i t y  problem a s  t h e  s o l u t i o n  of a n  i n e q u a l i t y  const ra ined q u a d r a t i c  

programming problem. 

t h e  continuous methods apply i n  ei ther  c a s e .  

4 .‘7 

Eowever, the complications mentioned e a r l i e r  for 

Discussion of Unconstrained Lagrangian Methods 

The methods described i n  Sec’iions 4 .3  - 4.6 convert  a n  o r i g i n a l  con- 
1 

s t r a i n e d  minimization problem i n t o  a f i n i t e  sequence (possibly of l eng th  

one) of unconstrained sub-problems. 

t h e  i l l - c o n d i t i o n i n g  assoc ia ted  with pena l ty  funct ions  by genera t ing  a 

p rogress ive ly  more accura te  es t imate  of the  Lagrange m u l t i p l i e r s  a t  x*, 

s o  t h a t  it i s  p o s s i b l e  to avoid t h e  n e c e s s i t y  of inc reas iog  t o  infinity 

t h e  pena l ty  f o r  i n f e a s i b i l i t y .  

mented Lagrangian a lgor i thms have been h igh ly  success fu l ,  p a r t i c u l a r l y  the 

s e q u e n t i a l  and progress ive  methods (see Chapter 6 ) .  

These methods can i n  theory  overcome 

For many problems, the  unconstrained aug- 
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- Unboundedness 

The danger t h a t  t h e  unconstrained f u n c t i o n  iu be minimized i s  un- 

bounded below, which can occur with a pena l ty  func t ion  formulation,  

c l e a r l y  exists  f o r  t h e s e  methods a s  w e l l ,  and any unconstrained a lgo-  

rithm t o  he appl ied  t o  an augmented Lagrangcan func t ion  should be a b l e  

t o  recover  from t h i s ' s i t u a t i o n .  

e s s a r i l y  increased a f t e r  every  unconstrained minimization,the r i s k  of un- 

boundedness may be g r e a t e r  for t h e  Lagrangian- type methods. 

Since the  pena l ty  parameter i s  not  nec- 

.. 
Choice of Parameter p 

The n e c e s s i t y  t o  choose a parameter p occurs i n  a l l  t h e  Lagrangian 

a l g o r i t h m  discussed thus  f a r .  

of these  a lgor i thms was t o  allow convergence t o  x* f o r  a f i n i t e  value  of 

p, i n  c o n t r a s t  t o  p e n a l t y  func t ion  methods. However, i n  genera l  P must 

still be bounded below, s i n c e  x* w i l l  be an unconstrained l o c a l  minimum 

of L (x,).*,p) only if p i s  chosen t o  exceed a th resho ld ,  say p ,  such t h a t  

t h e  Hessian mat r ix  of LA(x*,h*, p )  i s  p o s i t i v e  d e f i n i t e .  

P a r t  of t h e  motivation for development 

A 
h 

2 The n e igenvalues  of t h e  matr ix  V LA(x*,A*,p) = W -k PAAT, where W i s  

t h e  Hessian of t h e  Lagrangian funct ion,  can be considered a s  a func t ion  

of p ,  s i n c e  W and A remain f ixed ;  l e t  p , ( p )  I p 2 ( p ) S  . . 5 p n ( p )  denote 

t h e  ordered se t  of e igenvalues  of W + PAA For V-LA(x*,h*,p) t o  be 

p o s i t i v e  d e f i n l t e ,  pl(p) must be s t r i c t l y  p o s i t i v e .  Let v ( p )  'ce the  

s p e c t r a l  cond i t ion  number of V L(x*,A*,P), def ined a s :  

T 2 . 

2 

Figure 4 . 2  d i sp lays  a t y p i c a l  p l o t  o f . t h e  v a r i a t i o n  i n  7 3 ) .  The 

number of po les  i n  q ( p )  i s  e q u a l  t o  the nu&ber of negat ive  eigenvalues of 



1 

I 

j 

I t 

i 

i 

I 



W(xx-), and each pole corresponds t o  a value  of p t h a t  s h i f t s  an  o r i g i n a l  

nega t ive  eigenvalue of W to zero .  

Asymptotically, t h e  behavior of V ( p )  f o r  l a r g e  p has keen s tud ied  

i n  d e t a i l  by Murray (1971), and h i s  a n a l y s i s  r e v e a l s  t h a t  

l i m  
P +a 
4 5 O  a s  p 3 c o .  

condi t ion ing  of the  mat r ix  W + pAA ; hcwever, t h e  d e f i n i t i o n  of " l a rge"  

may vary  d r a m a t i c a l l p f r o m  problem t o  problerr. because a " la rge"  va lue  of 

p may, i n  some cases ,  be requ i red  t o  make W + pAA A 

' 

= 1, s o  t h a t  t h e  curve i n  Figure 4.2 approaches a cons tan t  
P 

It i s  c l e a r  t h a t  3 "1arge" 'value  of p will cause ill- 

T 

T p o s i t i v e  def in i -Le.  

f u r t h e r ,  perhaps more i n t e r e s t i n g ,  f e a t u r e  of Figure iL.2 is  t h o t  there 

is danger of s i n g u l a r i t y  or i l l - c o n d i t i o n i n g  of the  matr ix  W + pAA 
T when 

the value  of p i s  " too  small", s i n c e  t h e r e  may be l i t t l e  v a r i a t i o n  'ce- 

tween a value  of p for which 

and tlie value  p 

T 
$. p4.A i s  s i n g u l a r  o r  c lose  t o  s ingu la r :  

f o r  which W + pAAT i s  p o s i t i v e  d e f i n i t e  and tlie opt  
s p e c t r a l  cond i t ion  number i s  sma1l.est. 

The method used t o  determine a s u i t a b l e  p for a n  augmented Lagrsn;;ian 

a lgor i thm may, the re fo re ,  have d i f f i c u l t y  i f  a n  e f f o r t  i s  made t o  chaose 

t h e  s m a l l e s t  poss ib le  va lue  of p .  

s p e c i f y  a lower bound for p a r e  based on func t ions  evaluated a t  (;<*,A*), 

the es t imate  of t h e  bound will be based on s i m i l a r  q u a n t i t i e s  obtained 

Since t h e  q u a n t i t i e s  r equ i red  t o  

a t  some o ther  po in t  (x,A), and-moy be q u i t e  i n a c c u r a t e .  

where p i s  kept  f i x e a  f o r  s e v e r a l  i t e r a t i o n s ,  o r  for an e n t i r e  unconstrained 

minimization,  an  unfor tunate  choice of p mqy lead t o  considerable  i n-  

e f f i c i e n c y  . 

For algor5-Luhi5 



Rate of Convergence 

T'ne r a t e  a t  which t h e  sequence of i t e r a x e s  generated by a n  augmented 

Lagrangian method converges t o  x* i s  c r -L t ica l ly  dewndent  on t h e  accuracy 

of t h e  c u r r e n t  m u l t i p l i e r  e s t i m a t e .  Even i f  a secol-id-order method i s  used 

t o  ob ta in  t h e  s t e p  a t  each i t e r a t i o n ,  convergence t o  x* w i l l  cn ly  be 

l i n e a r  i f  t h e  convergence of t h e  m u l t i p l i e r s  t o  A* i s  l i n e a r .  

This r e s u l t  w i l l  be dernonstraxed f o r  t h e  case when exac t  second de- 

r i v a t i v e s  of F and {ci ]  a r e  a v a i l a b l e .  The p o i n t  ;; i s  t h e  cur ren t  est im- 

a t e  of x*, with a s i m i l a r  meaning f o r  x 
t h e  Newton s t e p  t o  t h e  minimum of t h e  augmented f u n c t i m  

% 

The s t e p  t o  be computed i s  

T 
LA(x,x,p) = F -1 c + 2 cTc ( p  i s  assumed t o  be f ixed  and bounded), and 

i s  defined by: 

(4.7 .l) 

= -  The next e s t imate  of t h e  s o l u t i o n  is  x = x + p .  - 
Let 

aSout 2, w e  ok ta in  t h e  fol lowing estiniaT;es: 

2 
( a )  

( b )  

( c )  a i  - Gie = ai(x*) +c ( I  1.1 I 1, 

g - E; = g(x*) + Q ( I l e l I  >; 

2 2 - AT; = c(x*) +O(I];II ) =c(I1ElI ); 
2 

I I  - 1 1  11 I 1  
where t h e  n o t a t i o n  ct means t h e  func t ion  CY evaluated a t  x .  

- =  I n  (4.7.1), s u b s t i t u t i n g  t h e  express ion p = e - e ,  w r i t i n g  out t h e  

LA mul t ip ly ing  e ,  and re-grouping, we ob ta in :  2 elements of - 

S u b s t i t u t i n g  from ( a ) ,  ( b ) ,  end ( c )  i n  thz f i r s t ,  second, and t h i r d  ex- 

press ions  i n  parentheses ,  r e s p e c t i v e l y ,  g ives :  
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wliere the boundedness of p i s  required i n  order t o  group same r;f t h e  

p i s  bounded. 

The r e s u l t i n g  r e l a t i o n s h i p  i s  : 

t h e  e r r o r  i n  x. This r e s u l t  w f . 1 1  ';e 

i l l u s t r a t e d  by numerical  examples i n  Chapter 6 .  

4 .8  L inear ly  Constrained Lagrangian Methods 

4.8 .i mtr o d w t  ion  

The problem t o  'De considered f i r s t  i s  the  e q u a l i t y  constra ined 

SPC- problem, p l .  The augmented Lagrangian a lgor iTbls  discussed 

t i o n s  4.3 - 4.6 were based on cons t ruc t ing  a f unc t i on  of which the  

constra ined s o l u t i o n  x* i s  an unconstrained rninlmurr.. Because the 

Hessian of the Lagrangian func t i on  may be indef in ixz  i n  the  sukspace 

spanned by t he  columns of A(x*), 8 penai ty  term m i l s t  be included Fn 

the augmented Lagrangian func t ion  i n  order  t o  abd  s u f f i c i e n t  p o s i t i v e  

c m v a t u r e  i n  th i s  subspace t o  make the  Hessian of t h e  augmented func- 

tior1 posiJLp<e d e f i n i t e  ax x*. The r e s u l t i n g  neces s i t y  t o  Choose and 



acijust a pena l ty  parameter p c r e a t e s  d i f f i c u l t  problems for t h e  

augmented methods. 

An a l t e r n a t i v e  p o s s i b i l i t y  f o r  -the sub-problem s a t i s f i e d  by 

x* i s  a l i n e a r l y  constra ined minimization proklem based on t h e  

Lagrangian func t i on .  W i t h  a s u i t a b l e  choice of l i n e a r  c o n s t r a i n t s ,  

it may be poss-ible t o  r e s t r i c t  t h e  subspace i n  which the  minimization 

occurs t o  t h a t  i n  which the Hessian of t he  Lagrangian func t ion  i c  

p o s i t i v e  d e f i n i t e  a t  x*. Such a formulat ion would e l imina te  t h e  

c r i t i c a l  r o l e  of-the pena l ty  term i n  a s su r ing  t h a t  x* i s  a s o l u t i o n  

of t he  sub-problem. 

The s u f f i c i e n t  condi t ions  given i n  Sect ion 1 . 2  for x* t o  'ce i! 

constra ined minimum of P1 include:  

(1) c(x*) = 0; 

T (2)  g(x*) = A(x*)A*, or, equiva len t ly ,  Z(x*) g(x*) = 0; 

(3) p W(x*) p > 0 f o r  any p such t h a t  A(x*) p = 0, 

or, equivalent ly ,  Z(x*) W(x*)Z(x*) i s  p o s i t i v e  d e f i n i t e ,  where 

T T 

. T  

The l i n e a r l y  constra ined sub-problem t o  be considered i s  of 

t h e  f orm: 

LCP : minimize f L (x) 

sub j ec t  t o  A L x = T 
dL 

The s u f f i c i e n t  condi t ions  t h a t  x* be a minimum of the. l i n e a r l y  con- 

s t r a i n e d  prcblem LCP a r e :  

(1') . ALx* = dL; 

( 2 '  ) 

T 

VfL(x*)  = ~~p f o r  some vec to r  p, or ,  equ iva len t ly ,  

- 11.38 - 



T 
L L  

I 

Z Vf (x") = 0, where t h e  colunns of ZL f o r a  8n 

or thogozal  b a s i s  f o r  t h e  null.  space of tkrc columns 

of AL; 

T 2  - ( 3 ' )  ZL V fL(x*)ZL i s  p o s i t i v e  d e f i n i t e .  

A b e n e f i c i a l  f e a t u r e  of t h e  formulat ion U P  might be t h a t  the  

m u l t i p l i e r s  p of t h e  l i n e a r l y  const ra ined problem ( s a t i s f y i n g  con- 

d i t i o n  ( 2 ' )  a t  t h e  s o l u t i o n )  E r e  r e l a t e d  t o  t h e  Lagrange m u l t i p l i e r s  

A* of the o r i g i n a l  problem P1. However, t h i s  p roper ty  i s  n o t  re- 

quired for x* t o  so lve  t h e  sub-problem. 

4.8.2 Design of L inear ly  Constrained Sub-Problen 

Clea r ly  a sub-problem LCP solved by x* could be fcrmul?ted 

i f  values  a t  x*, such a s  h* and A(x*), were used t o  cons t ruc t  t h e  

func t ion  and s e t  of l i n e a 2  c o n s t r a i n t s  ( i n  e x a c t l y  the  same way 3s 

an augmented Lagrangian func t ion  cf which x* i s  a n  unconstrained 

minimum can be defined i f  A* and a value  of p, dependir,g on x*, a r e  

known -. a p r i o r i ) .  However, because x* i s  unknown, t h e  d e f i n i t i o n  of 

t h e  sub-problem LCP w i l l  depend on t h e  c u r r e n t  est irnate of t h e  

s o l u t i o n ;  t h e  f u n c t i o n  and c o n s t r a i n t s  of LCP should be s p e c i f i e d  

s o  t h a t  x* w i l l  s a t i s f y  cond i t ions  (l'), (2'), and ( 3 ' )  if t h e  sub- 

problem happens t o  be def ined a t  x*. 

There a r e  many possi'x;le s p e c i f i c a t i o n s  of t h a  s u b - p r ~ b l e ~  

LCP, and only one w i l l  be given h e r e .  

Let be t h e  c u r r e n t  e s t imate  of x'*, w i t h x  t h e  c u r r e n t  

m u l t i p l i e r  e s t imate ;  

The p a r t i c u l a r  fomula t i c jn  of LCP t o  be ccnaidered depends on bo th  

2 and x, and w i l l  be w r i t t e n  a s  LCP (2,x). 

and c denote A(<) and  c(s), r e s p e c t i v e l y .  



-T -T-Ty 
LCP(;,~):  minimize F(X) - A C ( X )  + A A .. 

s u b j e c t  t o  A x = - + A x . - - __ 

A,  dL  - 

-T -T- 

I n  terms of the e a r l i e r  d e f i n i t i o n  of LCP, AL 

-T -T-T - c + AT:, and fL(x) E F(x)  - A c ( x )  + h A x ;  note t h a t  

VfL(x) = g(x)-A(x)T + i z ,  and V fL(x)  = G(x) - C 1 1 1  .G.(x) . 
i= 1 

m, 2 

The 'const ra ined s o l u t i o n  x* s a t i s f i e s  the condi t ions  for 

a m i n i m a  of LCP( x*,A*) : 

T 2  (3) zLv fL(X*)ZL i s  p o s i t i v e  d e f i n i t e ,  si_nce 

2 ZL = Z(x*) and V fL(x*) = W ( X * ) .  

Furthermore, t h e  Lagrange m u l t i p l i e r  Vector G f  LC?(X",h*) 

i s  A*, the m u l t i p l i e r  v e c t o r  of t h e  o r i g i n a l  problem. 

I -  - The l i n e a r  c o n s t r a i n t s  of LCP(X,A) s p e c i f y  a s t e p ,  p, t o  

-T be taken from t h a t  s a t i s f i e s  A p = - 6 .  These c o n s t r a i n t s  a r e  a 

l i n e a r i z a t i o n  of t h e  c o n s t r a i n t  func t ions  about x, and give a f i r s t -  

o rder  p r e d i c t i o c ,  exac t  for l i n e a r  c o n s t r a i n t s ,  t h a t  t h e  const ra int :  

w i l l  be ze ro  a t  the  next  p o i n t .  Even f o r  non l inear  c o n s t r a i n t s ,  p 

i s  a descent  d i r e c t i o n  f o r  t h e  func t ion  c c, s i n c e  p V(c c)l; = 

2p Ac = -2c c C 0. However, t h e  full s t e p  p w i l l  not  n e c e s s a r i l y  

reduce i n f e a s i b i l i t y  with respec t  t o  t h e  o r i g i n a l  non l inear  con- 

s t r a i n t s  (see Sec t ion  4.8.7) . 
4.8.3 

- 

T T  T 

T- - -T- 

S e q u e n t i a l  L inear ly  Constrained Lagrangian Methods 

Robinson (1972) aild Rosen and ICreuser (1972) have proposed 

a lgor i thms b a s e d  on s o l u t i o n  of a sequence of l i n e a r l y  constraizled 
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su5-problems c l o s e l y  r e l a t e d  t o  t h e  given fcrmulat ion of 

UP(x,h) .  A s e q u e n t i a l  a l g o r i t h  based on forrnuZati5:l Ls: 

, (0). (Given an i n i t i a l  x, say  x"), znd an i n i t i a l  h., say h 

while  ( the  condi t ions  f o r  x ('"'to be 8 sol.;ticn of P1 
_I_ 

a r e  not  s a t i s f i e d )  

r epea t  ( 

(1) s t a r t i n g  a t  x ( j - i ) y  f i n d  t he  so lu t i on  x'j '  and 

- the m u l t i p l i e r  vec to r  A ( j )  of t h e  l i n e a r l y  ccn- 
s t r a i n e d  pr9blem LCP(x (j-l), A ( j - l ) ) .  

( 2 )  

) 

j + j I- 1; 

Robinson (1972) presented a proof t h a t  under c e r t a i n  tm- 

d i t i o n s  on x*, if ( ~ ( ~ ) , h ( ~ ) )  i s  s u f f i c i e n t l y  c lose  t o  ( ; i * , A * ) ,  t h e  

sequence {x ( j ) , h ( j ) ,  j=1,2, . . . I  converges q u a d r a t i c a l l y  t o  ( ~ Y ' , x * ) .  

Some aspec t s  of the  convergence of th is  a lgor i thrr  vi11 be discussez 

i n  Sec t ion  4.8.5. 
(x ( j -1) ,J j -1))  to 

l i n e a r l y  constra ined sub-problem, and tne  quad ra t i c  r a t e  of con- 

It should be noted t h a t  the s t e p  from 

( J ) , A ( ' j ) )  i i v o l v e s  the  s o l u t i o n  of a genera l  

vergence, t h e r e f o r e ,  a p p l i e s  t o  a r a t h e r  broad d e f i n i t i c n  cf " s t e p t t .  

A s e q u e n t i a l  I-isear3.y constra ined method s u f f e r s  f r o 2  %k 

same pos s ib l e  de f ec t  mentioned f o r  s equen t i a l  augnectud Lsgrangian 

methods, t h a t  t h e  a lgor i thm may be i n e f f i c i e n t  bectiuse Gf $he efii;i"t 

requ i red  t o  so lve  completely a sub-problem which has relevance t c  

t h e  o r i g i n e l  probI.em only c lose  t o  x*. Other d i f f i c u l t i e s  w i l l  ?re 

considered i n  Sec t ion  4.8.7. 



4.8.4 Progress ive  L lnear iy  Cons Lrained Lagrangian Mexnods 

A progress ive  approach, s i m i l a r  t o  t h a t  described i n  

Sec t ion  4.L f o r  t h e  augmented methods, may be taken f o r  t h e  1inearl;q 

const ra in2d Lagrangian methods, i n  o rdz r  t o  overcome possi’ole in-  

e f f i c i e n c y  of t h e  s e q u e n t i a l  a l g o - i t h i s .  I n  a progress lve  method, 

the  sub-problem t o  be solved ( a p p o x i m a t e l y )  a t  t h e  next  i t e r a t i o n  

i s  modified, based on information acquired dur ing s t e p s  toward the 

s o l u t i o n  of t h e  previous  sub-pr oklem . Only one progress ive  a l g o r i t h s  

w i l l  be d iscussed here ,  t o  h i g h l i g h t  t h e  primary s t r a t e g y  involved.  
> 

If t h e  func t ion  fL i n  t h e  l i n e a r l y  const ra ined sub-prcbler- 

LcP(x,x) were a quadra t i c  w i t h  a known Hessian, t h e  sub-problem 

would reduce t o  a quadra t i c  programming problem w i t h  e q u a l i t y  con- 

s t r a i n t s ,  whose s c l u t i o n  cen under c e r t a i n  condi t ions  be e x p l i c i t l X  

w r i t t e n  down ( s e e  G i l l  and Murray, 19741;). A progress ive  ;r.eth?d 

could thus  be based on making a quadra t i c  approximation t o  the 

func t ion  fL a t  every  p o i n t ,  and so lv ing  t h e  r e s u l t i n g  quadra t i c  

p rograming  problem. The quadra t i c  programming problem asscciDted 

w i t h  LcP(x,x), can be conveniently w r i t t e n  i n  terms of t h e  s t e p  p 

f r m  x t o  t h e  next  p o i n t ,  x, a s  fo l lows:  

QP(,,h): 

- - 

1 T- T- 
minimize - 2 p Sp -I- p g 

s u b j e c t  t o  A”p = - c , -v 
P - 

where 

funct ion,  based on x and 7 ,  and where g, x, and E denote g ( x ) ,  

i s  a l o c a l  approximation t o  the Hessian of t h e  Lagrangian 

A(;) and c(G), r e s p e c t i v e l y .  

This type of progress ive  a lgor i thm was suggested by Wilson 

(1963), and may be described 3s follows: 



(1) (Given a n  i n i t i a l  x, say  x , and an i n i t i a l  A ,  s a y  

(1). A >  

while  ( t h e  conGitions for x ('-I) t o  be a minimum of P1 
-I 

a r e  n s t  s a t i s f i e d )  

r epea t  ( 

( j )  (1) Compute the s o l u t i o n  p ' j )  of QP(x , 

which s a t i s f y :  

(4) j t j + 1; 
) 

It can be shown ( s ee  Robinson, 1573) t h a t  i f  t ne  exac t  

Hessian matr icez  of F and { c . ]  1 a r e  used t o  c a l c u l a t e  S ' j ) ,  s o  that 

S 

t o  (x*,A*), then  t h e  progress ive  a lgor i thm w i l l  d i sy l ay  quadra t ic  con- 

vergence t o  x*. Addi t iona l  comments on t h e  r a t e  of convergence a r e  

given i n  Sec t ion  4.8.5. 

I+ .a .5 

( 3 )  = , i j )  - A ( j ) G  i ('1, and if ( x ( 1 ) , ^ ( 1 ) )  is s u f f i c i e n t l y  c l o s e  
i= 1 

Convergcace of Linear ly  C onstra  ine  d Lagrangian Aig o r  itlms 

For an i r ? i t i a l  (XJ) s u f f i c i e n t l y  c lo se  t o  (x*,A+), a 

quad ra t i c  r a t e  of convergence can be proved for e i t h e r  t he  s e q u e n t l a l  

methods, o r  progress ive  methods where exac t  second de r ive t i ve s  a r e  

ava i l ab l e  (see Robinson, 1573). ThEse cases  have e s senc i a l l y  ider.- 

t i c a l  p rnofs ;  thus ,  t he  arialysis %ill be given f o r  a progressive 

method based on t h e  quaura i ic  p r o c r a m i n g  su-Ci-prsb?ex qP(x,A. ) , where - -  

the exac t  second de r iva t i vz s  a r e  a v a i l a b l e .  
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an  augmented Lagrangian algorithm, even on6 -.-llch uses  a secorld- 

o rder  method t o  solve t h e  unconstrained sub-prcblem: t h e  r a t e  of 

convergence t c  x* i s  defil?ed by the r a t e  of convergence of t he  

m u l t i p l i e r  es t imates  (see Sect ion 4 .7) .  Howe-rer, th i s  l i m i t a t i o n  

does no t  apply xi0 t h e  given formulat ion of l i n e a r l y  constra ined 

methods; hence, a f i r s t - o r d e r  es t imate  of the m u l t i p l i e r s  need no t  

prevent  second-order con-fergence t o  x*. 

L e t s  a n d X  be t he  cu r r en t  es t imates  of x* and A*. The 

-T - 
s u b j e c t  t o  A p = -e, 

- 11 - 11 I 1  11  

where CY denotes cy evaluated a t  x .  The new m u l t i p l i e r  es t lnla te  

h will be given by t h e  m u l t i p l i e r s  of the  quadra t ic  programcing 
- 

S u b s t i t u t i n g  fram ( a ) ,  tSis r e l a t i o n s h i p  becomes: 

( 4.8 .1) 
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= -  Again, s u b s t i t u t i n g  e-e for 5, t h e  r e s u l t  - i s :  

m ,  
Defining t o  be (2 - C A 1 1  . G . ) ,  and s u b s t i t u t i n g  from ( b )  giTres: 

i-1 

S u b s t i t u t i n g  from ( c ) ,  we obtain:  

and, s i nce  g(x*) = A(x*)A*, t h e  resul'i  i s :  

(4.8.2) 

The der ived r e l a t i o n s h i p s  (4 .8 .1 )  and (4 .8 .2 )  for 2 and 

x*, the n a t r i x  on the  l e f t - hand  s i d e  of (4.8.3) is non-s iWular .  

The form of t h e  right-hand s ide  shows t h e  second-order convergence, 

t o  (x* ,h*) .  Th i s  proper ty  i nd i ca t e s  t h a t  c lose  t o  x* t h e  conver- 

gence of t h e  l i n e a r l y  constra ined methods i s  no t  l im i t ed  by f i r s t -  

order.  e r r o r s  i n  the Lagrange m u l t i p l i e r  e s t i m a t e s .  



4.8.6 I n e q u a l i t y  Cons t r a  i n t  s 

The formulation of a l i n e a r l y  const ra ined sub-problem for 

t h e  i n e q u a l i t y  const ra ined problem, Z?, i s  analogous t o  the e q u a l i t y  

. c a s e ,  except  t h a t  t h e  l i n e a r  c o n s t r a i n t s  of t h e  corresponding scb- 

problem a r e  i n e q u a i i t i e s  . 
prev ious ly  for e q u a l i t i e s  may be appl ied  t o  t h e  i n e q u a l i t y  probl-em 

by changing the c o n s t r a i n t s  of LCP t o  thil form: 

Consequently, t h e  approaches discussed 

T A x 2 d L  L - . 
An i n a c t i v e  c o n s t r a i n t  of t h e  l i n e a r l y  const ra ined sut-  

problem should i d e a l l y  correspond t o  an i n a c t i v e  c o n s t r a i n t  of the 

non l inear  problem, s o  t h a t  p r o p e r t i e s  of t h e  s o l u t i o n  of LCP or Qp 

can be used t o  provide information about t h e  s o l u t i o n  of €2. If 8 

l i n e a r  c o n s t r a i n t  of t h e  sub-problem i s  a c t i v e ,  i t s  m u l t i p l i e r  +!ill 

of n e c e s s i t y  be non-negative, and i s  assoc ia ted  wi th  a non-negative 

es t imate  for a m u l t i p l i e r  of t h e  o r i g i n a l  problem; s i m i l a r l y ,  when 

a l i n e a r  c o n s t r a i n t  i s  i n a c t i v e ,  the predic ted m u l t i p l i e r  f o r  t h e  

corresponding non l inear  c o n s t r a i n t  may be taken a s  ze ro .  Hence, the 

r e l a t i o n s h i p  of t he  l i n e a r i z e d  c o n s t r a i n t s  t o  those  of t h e  o r i g i n a l  

problem becomes c r i t i c a l .  

4.8.7 Discussion of Linear ly  Constrained Lagrangian Methods 

The methods based on f o r m d a t i n g  a l i n e a r l y  const ra ined 

sub-problem involving t h e  Lagrangian f u n c t i o n  a r e  h igh ly  s u c c e s s f u l  

c l o s e  t o  t h e  s o l u t i o n ,  and avoid t h e  n e c e s s i t y  of dea l ing  wi th  a 

p e n a l t y  term whose only pur2ose i s  t o  s h i f t  nega t ive  eigenvalues of 

W(x*). However, t h e  sub-prcblem t o  be solved has become more compli 

ca ted ,  p a r t i c u l a r l y  i n  t h e  case of f n e q u a l i t y  C o n s t r a i n t s .  
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A more fundaments1 difficulty is  t h a t  t h e  r e l a t i o n z h i p  

between the s o l u t i o n  of t k e  l i n e a r l y  const ra ined sub-problem sc2 

t h a t  of the o r i g i n a l  problem i s  quest ionable  when t h e  i n i t i a l  

e s t imates  of x* and A *  a r s  f a r  from opt imal .  For example, a t  any 

s t age  t h e  sub-problem may be unbounded below. 

technique used t o  so lve  t h e  sub-problem can d e t e c t  t h i s  s i t u a t i o n ,  

Even i f  t h e  numerical  

the subsequent d e f i n i t i o n  of t h e  a l g o r i t h n  i s  unclear ;  with an aug- 

mected algori thm, t h e  a b i l i t y  t o  inc rease  t h e  p e n a l t y  parameter 

could overcorn$ t h i s  problem. 

of an u l t imate  decrease  i n  i n f e a s i b i l i t y  w i t h  t h e  l i n e a r l y  con- 

s t r a i n e d  methods a s  presented here; nor  i s  t h e  meaning obvious of 

an approximation t o  t h e  Lagrangian func t ion  a t  a p o i n t  where [ I C /  I 
is  l a r g e ,  o r  d i f f e r s  widely from A*. 

Furthermore, t h e r e  i s  no guarantee 

Safeguards inus t bz included i n  l i n e a r l y  const ra ined 

Lagrangian a lgor i thms i n  order  t o  assure  t h a t  some measure of prc- 

g r e s s  toward x*- i s  s a t i s f i e d .  

s tudy  and refinement t o  make them robust and of g e n e r a l  usefulness. 

These methods thus  r e q u i r e  f u r t h e r  
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CHAPTER 5 

METHODS EAS%D ON ET% TRAJECTORY O F  PENALTY 

AND BARRI%R FUNCTIONS 

5.1  In t roduc t ion  

.The Lagrangian methods descri-bed i n  Chapter 4 overcome only some of 

the d e f i c i e n c i e s  ass'ociated w i t h  pena l ty  and b a r r i e r  func t ion  methods. 

Moreover, t h e i r  design includes  a d d i t i o n a l  l e v e l s  of complication and un- 

c e r t a i n t y .  

the s o l u t i o n ,  and c r i t i c a l l y  depends on a s u i t a b l e  choice of va r ious  

parameters;  away from t h e  s o l u t i o n ,  where the  l o c a l  cond i t ions  f o r  a 

minimum a r e  not  s a t i s f i e d ,  such methods can f a i l  t o  make any p rogress  

toward t h e  s o l u t i o n  wi thout  r e v e r t i n g  t o  use of a penal ty- type method. 

For a problem where s t r i c t  f e a s i b i l i t y  must be maintained throughout,  

t h e  Lagrangian-type methods cannot be appl ied  d i r e c t l y ,  s i n c e  they  d o  

n o t  t h e o r e t i c a l l y  r e s t r i c t  t h e  sequence of es t imates  of the  s o l u t i o n  t o  

Their  t h e o r e t i c a l  s u p e r i o r i t y  i s  demonstrated only c lose  t o  
-.. 

be f e a s i b l e .  

The algori thms t o  be  discussed i n  t h i s  chap te r  a r e  based on an e f f o r t  

t o  overcome t h e  d i f f i c u l t i e s  assoc ia ted  w i t h  p e n a l t y  and b a r r i e r  f u n c t i o a s  

wi thout  incur r ing  adc7,itional problems . 
by Murray (1969a,b),  who presented a d e t a i l e d  a l g o r i t h  f o r  t h e  pena l ty  

f u n c t i o n  c a s e .  

fo l lowing p r o p e r t i e s  of pena l ty  and ' c a r r i e r  func t ion  methods: ( i) t h e  

c h a r a c t e r i s t i c  non- tangent ia l  approach t o  t h e  s o l u t i o n  t h a t  j u s t  i f  i e s  t h e  

This approach was f i r s t  developed 

These " t r a j e c t o r y 1 '  a lgor i thms a r e  designed to ex21cit the 

use of l i n e a r  approximations t o  the  c o n s t r a i n t  func t ions  even c lose  t o  

t h e  s o l u t i o n ;  ( 2 )  a s t ra igh t fo rward  s e t  of c r i t e r i a  t o  measure progress  

a t  each i t e r a t i o n ;  ( 3 )  v a r i a t i o n  of' a s i n g l e  parametnr t o  con t ro l  conver- 

gence; ( 4 )  a s p e c i a l  relationship betwEen the va lues  of the  c o n s t r a i n t  
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f u n c t i o n s  and the  es t imates  of t h e  Lagrange m u l t i p l i e r s ;  ( 5 )  i n  t h e  

b a r r i e r  func t ion  case  , maintenance of f e a s i b i l i t y  i n  t h e  seqaence of 

e s t i m a t e s  of t h e  sadut ion.  

5.2 F u r t h e r  P r o p e r t i e s  of t h e  Quadratic Per?alty Function 

E q u a l i t y  C ons t ra  i n t s  

The i n i t i a l  d i scuss ion  i n  t h i s  s e c t i o n  w i l l  be concerned w i t h  t h e  

s o l u t i o n  of t h e  e q u a l i t y  const ra ined problem, P1, by use of t h e  quadra t i c  

p e n a l t y  func t ion  f i r s t  described i n  Chapter 2: 
1 

T P(x,p) = F(x) + c ( x )  c ( x ) .  

We s h a l l  assume the  fol lowing:  the s u f f i c i e n c y  condi t ions  giver? i n  

Sec t ion  1.2 for a minimum of P1 hold a t  x*, A(x*) i s  of f u l l  rank,  h?+0 

' f o r  any i, llG(x")11 and llGi(x")l 1 ,  i = l , 2 , . , . , m J  a r e  bounded, and  

g(x*(P>> = - c ( x * . ( P ) > J  Or 

g(x*(p) + A X )  = - ~ A ( x * ( P )  -+ A X )  c(x*( p )  + A X ) .  

Expanding E, A ,  and c i n  t h e i r  Taylor s e r i e s  about x*( p )  y i e l d s :  

We now es t imate  t h e  s i z e  of each term. &cause cf t h e  

p r o p e r t i e s  of t h e  t r a j e c t o r y  defined by m i r , i m s  

2.2 .3) ,  I lax1 1 = o \ p  /L .- $1 . I / G I  1 and I lGi l  I a r e  Sounded a t  x*, s c  khc-t 

I I G(x*( p ) )  I 1 and I I Gi(x*( p ) )  I ! , i=1,2 ,  . . .,a, a r e  guaranteed by continuitY 

of P(x,p)  ( s e e  Sec t ion  
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t o  be  bounded f o r  p s u f f i c i e n t l y  l a rge ;  however, th is  cond i t ion  may hold 

f o r  modest va lues  of p, even p = 0 .  By the s u f f i c i e n c y  cond i t ions ,  

{ l h $ ] ,  i = 1 , 2 , .  . .,m a r e  bounded, and s i n c e  l i m  pci(x*(p)) = - A T ,  it 
p 3 c o  

1 follows t h a t  I c.(x*(p)) 1 

I I C  ~ c ~ ( x * ( P ) ) G ~ A x I  I a r e  of t h e  order  of 1 lax1 1 ,  i . e . ,  

1 i s  of order  = P f o r  a l l  i. Hence 1 1 GAxl I and 

(s - +) m 

i=l 

Because of the non- tangen t i a l  approach of x*( p )  t o  x* (see Sec t ion  

= 

r e l a t i o n s h i p  thus  holds  a t  x*(p): 

11 1) - - T  pAA A X  = -g -PAC +O(T - 5 
Because A(x*)  has  f u l l  rank,  A(x*(P)) i s  assured  t o  be of f u l l  rank  

f o r  p l a r g e  enough, where, again ,  " l a rge  enough" need no t  imply a very  

l a r g e  va lue  of p .  If we s u b s t i t u t e  f o r  g from ( 5 . 2 . 1 )  t h e  express ion  

( - P A C ) ,  and cancel  t h e  f u l l - r a n k  matr ix A ,  t h e  r e s u l t  i s :  

(5 .2 .2 )  

Exact ly  t h e  same r e s u l t  can be derived f m m  an a l t e r n a t i v e  v iewpoint .  

Since l i m  pc(x*( p ) )  = -A*, and 1)f 1 + 0 for any i, t h e  e s t i m a t e  of t h e  
P +a 

Lsgrange m u l t i p l i e r s  a t  x*( p ) ,  given by: 

A. (x*( P) 1 = -Pc(x*( P) ), 

i s  bounded away f rom z e r o  f o r  2 l a rge  enough, and is accura te  t o  w i t h i n  

order  (i) by t h e  p r o p e r t i e s  of t h e  t r a j e c t o r y  of minima of ?(x, 0). I f  

t h e  requirement i s  imposed t h a t  t h e  Lagrange m u l t i p l i e r  e s t ima tes  a t  

x*( p)  and x*(p), > p, agree  t o  order  I 1 Ax1 1 ,  i . e  ., ($ - i), t he  r e s u l t  i s :  

pc(x*( p ) )  = pc(x*(p) + A X )  + Cl{$ - $) - 
of c about x" (p )  i s  given by: 

( 5  -2  - 3 )  

The expansion 
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1 1  

11 

orde r  ($ - -$). S u b s t i t u t i n g  t h e  expans ion . (> .2 .4)  i n  ( 5 . 2 . 3 )  g ives :  
I 

1 
- 

pc = pc f a($ - ;I, I 

which i s  i d e n t i c a l ' t o  t h e  previous  r e s u l t  ( 5  -2 .2 )  - 
T h i s  r e s t r i c t i o n  of t h e  p o r t i o n  of Ax i n  t h e  range of A(x"(p)) 

ex is t s  because a change i n  the pena l ty  parameter induces a s p e c i f i e d  
= 

f i r s t - o r d e r  v a r i a t i o n  i n  t h e  c o n s t r a i n t  va lues  a s  x* i s  approached a long  

t h e  t r a j e c t o r y  of t h e  q u a d r a t i c  pena l ty  f u n c t i o n .  An i n t e r e s t i n g  pro-  

p e r t y  of Ax, i nd ica ted  by t h e  derived r e l a t i o n s h i p ,  i s  t h a t  t h e  s t e p  Ax 

i s  l e s s  than  t h e  es t imated  f i r s t - o r d e r  s t e p  t o  a ze ro  of t h e  c o n s t r a i n t  

v e c t o r ,  because t h e  f a c t o r  mul t ip ly ing  ( - c )  on t h e  r ight-hand s i d e  of 

( 5 . 2 . 2 )  i s  less. than  u n i t y .  T h i s  c h a r a c t e r i s t i c  is a ref inement  of the 

well-known proper ty  t h a t  the signs of [c i (x*(p)) ]  remain cons tant  f o r  p 

s u f f i c i e n t l y  l a r g e  . 

Throughout t h i s  s e c t i o n ,  it has been assumed t h a t  p i s  " s u f f i c i e n t l y  

l a rge ' '  for t h c  va r ious  a s s w p t i o n s  t o  ho ld .  However, it should be em- 

phasized t h a t  t h e s e  r e s t r i c t i o n s  d o  not  mean t h a t  x*(p) i s  i n  8 c l o s e  

neighborhood of x*. The r e s u l t  ( 5 . 2 . 2 )  may hold even f o r  modest ValuPs of 

p, -provided tYx=iT p i s  m a r  enough t o  p .  
- 

Ine q u.2 lit y C ons trz ints 
The r e l a t i o n s h i p s  derived f o r  t h e  e q u a l i t y  case  w i l l  a l s o  hold 

under s u i t a b l e  assumptions for t he  quadra t i c  pena l ty  func t ion  appl ied  t o  

the i n e q c a l i t y  cons t ra ined  problem, €2: 
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i 

f 
I 

A s  seen i n  Chapter 2, f o r  s u f f i c i e n t i y  l a r g e  p t h e  se t  of v i o l a t e d  

c o n s t r a i n t s  a t  x*( p )  i s  i d e n t i c a l  t o  the  s e t  of a c t i v e  c o n s t r a i n t s  a t  xx. 

It w i l l  be assumed t h a t  m c c n s t r a i n t s  a re  v i o l a t e d  a t  x*( p ) . ,  and the 

v e c t o r  $ i s  used t o  denote t h e  v e c t o r  of v i o l a t e d  c o n s t r a i n t s ,  w i th  a 

A s i m i l a r  conventicn far A .  

If the s e t  of v i o l a t e d  c o n s t r a i n t s  a t  x*(p) i s  t h e  same a s  the  

v i o l a t e d  se t  a t  x*(p)., t h e  d e r i v a t i o n  p rev ious ly  given w i l l  apply t o  

t h e  i n e q u a l i t y  pmblern, % and t h e  r e s u l t  (5 .2 .2)  can 'ce w r i t t e n :  

AT A Ax = -(L - - P \ $ +  o p i q  . 
p /  \ p  

5.3 Fur the r  P r o p e r t i e s  of the LogaritPmic B a r r i e r  f i m t i c n  

I n  t h i s  s e c t i o n ,  w e  s h a l l  be concerned wi th  s o l u t i o n  of t h e  i n -  

e q u a l i t y  cons t ra ined  problem, E, by us ing  the  l o g a r i t h i c  b a r r i e r  func-  

t i o n  f i r s t  descr ibed  i n  Chapter 2 :  

.e 
3(x , r )  = F(X)  -r c b ( c i ( x j ) .  

i=l 

The n o t a t i o n  used w i l l  be i d e n t i c a l  t o  t h a t  defined i n  Chapter 2, 

s o  t h a t  the s e t  of a c t i v e  c o n s t r a i n t s  i s  represented  a s  f o l l o w s .  The m 

cons t ra i r l t s  a c t i v e  a t  x* a r e  grouped i n  t h e  vec to r  c ,  whose elements a r e  

numbered c1,c2, . . . ,ern, where c i denotes t h e  i t h  a c t i v e  c o m t r a i n t ;  a 

s i m i l a r  convention a p p l i e s  ta t h e  n by m mat r ix  P. whose c o l m s  a r e  t h e  

g r a d i e n t s  of the  a c t i v e  c o n z t r a i n t c ,  and t o  ei, which denotes t h e  Hessien 

of the i t h  act5ve c o n s t r a i n t .  The m Lagrange m u l t i p l i e r s  {A?] zire num- 

bered t o  correspond w i t h  t h e  components d c .  

A 

; I A  I 1  A A A  

A 

1 
- 

A 

It w i l l  be  assumed t h a t :  t h e  s u f f i c i e n t  cond i t ions  given lz l  S e c t i o r  

1.2 f o r  a minimum of E hold a t  x*, z(x*) h a s  f u l l  r3nkJ 1; * 0 f o r  any 

i, I IC;/ I and I l G i l  I ,  i =1 ,2 , .  . .,XI, a r e  hounded a t  x*, and l i m  x*(r)  = x*. 
r 4 0  



i 
i 

A t  t he  minimum of B(x, r ) ,  

E g-rAd = 0,  

where t h e  funct io l l  d i s  def ined  a s  t h e  vec to r  

(3.3.1.) 

The n o t a t i o n  8 w i l l , r e f e r  t o  t h e  v e c t o r  lT, I which inc ludes  
m 

only t h e  a c t i v e  c o n s t r a i n t s .  

Consider t h e  p e r t u r b a t i o n  Ax = x*(G) - x*(r), where 

(r-G) i s  sma l l  r e l a t i v e  t o  r and G .  By d e f i n i t i o n  of x*(G): 

< r and 

g(x*(r)) = ;A(>:*(;)) d(x*(r)). 

Expanding g and A ii1 t h e i r  TaylGr s e r i e s  about  x*(r )  y i e l d s :  

We now es t ima te  t h e  s i z e  of each term. Because of t h e  p r o p e r t k s  

of the t r a j e c t o r y  of B(x,r)  ( s e e  Sec t ion  2.4.3), I [Ax! 1 = 

q u a n t i t i e s  I / G I  I and I lGi l  I a r e  bounded a t  x*, s o  t h a t  I IG(x*-(r))l  I and 

I 1 Gi( x*( r )  ) 1 1 , i=l, 2, . . . ,&, a r e  S a r a n t e e d  by continuii ty t o  be bouaded 

f o r  r s u f f i c i e r L t l y  small; however, t hese  q u a n t i t i e s  may be boundea for 

any va lue  of r ,  s o  t h a t  " s u f f i c i e n t l y  small'' r may not  imply t h a t  r i s  

c l o s e  t o  z e r o .  

t o  i n a c t i v e  c o n s t r a i n t s  a r e  s t r i c t l - y  bounded, and thus  t h e  term 

? di(x*(r))  i s  of order  ? i f  ci is i n a c t i v e  a t  x*. By t h e  s u f f i c i e n c y  

r cond i t ions  f o r  a ninimmu, I I!.*1 I i s  bomded; s ince  l i m  x--- 

O ( r - r ) .  The 

For ? smal l  enough, t h e  components of d emresponding  

- - 
Ci( x* ( r ) ) r + O  

l i m  r a i (x*( r ) )  = A T ,  it fo l lows t h a t  for I smal l  enough the component 
r -3 0 
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r di(x*(')) corresponding t o  an a c t i v e  c c n s t r a i n t  i s  bounded. Therefore ,  

-e 
a l l .  elements of t h e  sum C 

O(r-G). Grouping t o g e t h e r  a l l  te ims of order  (r-G) o r  less, t h e  re- 

d . ( x * ( r > )  1 G.Ax  1 a r e  of o rde r  a t  most Ax, i . e . ,  
i=l 

s u l t  i s :  

g = EAd(x*(r)) i O ( r - E ) .  

A t  x* ( r ) ,  g = rAd(x*(r));  s a k s t i t u t i r l g  th is  va lue  for g g ives :  

rAd(x*(r)) = rAd(x*(r))+" o(r-r), or 
7 

r A  

where A i s  e v a l r a t e d  a t  x*(r) . 
The r e l a t i o n s h i p  (5.3.2)  may hold anywhere along t h e  t r a j e c t o r y  i f  r 

is s u f f i c i e n t l y  c l o s e  t o  r, and the assumptions inhe ren t  i n  the hounding 

procedure a r e  s a t i s f i e d .  However, because A(x*(r))  is  no t  n e c e s s a r i l y  

of full rank, it i s  no t  possib1.e i n  g e n e r a l  t o  draw any meaningful con- 

c l u s i o n  about t h e  v a r i a t i o n  i n  t h e  c o n s t r a i n t  values. To r e f i n e  (5 .3 .2)  

t o  correspond t o  t h e  r e s u l t  i n  the  penal -ty case,  it is  necessary  t o  

assume t h a t  the va lue  of r i s  s n f f i c i e n t l y  sma l l  s o  t h a t  an 5 ( r )  tern1 

i s  n e g l i g i b l e ;  then t h e  a c t i v e  and i n a c t i q e  c o n s t r a i n t s  may be considered 

s e p a r a t e l y .  

t h e  components 

Sincc t h e  i n a c t i v e  c o n s t r a i o t s  a r e  bounded away from zero,  

f ' \ {  ;. ' corresponding t o  i n a c t i v e  con- 1 
1-3 ' ci(x*iP))j 

s t r a i n t s  may be included i n  an order  r term, l e a v i n s  a r e l a t i o n s h i p  t h a t  
L 

holds  for t h e  a c t i v e  c o n s t r a i n t s :  
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A l l  elements i n  t h e  denominators a r e  bounded away from ze ro  f o r  

r , & O y  and hence t h e  if-" row of each v e c t o r  can be mul t ip l i ed  bji t h e  

A c i (x*( r ) )  Si(s*(')) 
f a c t o r  r which i s  of orde r  G ,  y ie ld ing :  

- 
r~ 

Expanding $ i n  a Taylor s e r i e s  about x* ( r )  g ives :  

s t a T b x  = - r A C  t O ( r . r )  . 

s [ x * ( ? ) )  = ; Ac(x*(r ) )  + C ( r - r )  . 

- 
r w  

Because of t h e  nGn-tongenti31 approach of x+(r) LG x*, t he  t e r n  
MT Ab Ax i s  of order  Ax, i . e . ,  (r-:). Since 2(Y;") has ful-1 rank,  g(x+(r) )  

i s  guaranteed by c o n t l n u l t y  t o  be of full rank  for s u f f i c i e n t l y  small 

r .  n Cancel l ing  t h e  f u l l - r a n k  maTr3.z A bnd re- ar ranging ,  we ob ta in  the 

des i r ed  c h a r a c t e r i z a t i o n  c.f Ax: 

( 5  - 3 . 3 )  

t h e  p r e v i m s  s e c t i o n .  

An a l t e r n a t 2 v e  d e r i v a t i o n  can be given by r e q u i r i n g  the  Lagrange 

. m u l t i p l i e r  e s t ima te s  for a c t i v e  c o n s t r a i n t s  at x*(r) and x*(r) t o  agree 

FJSG-n' t o  w i t h i n  order  r .  

s o  t h a t  'die requirement  i s  

At x*(r), t h e  i t h  m u l t i p l i e r  es t i rnate  i s  
2. 
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A 
c ( x* ( 1’ ) ) si ( x* ( I ) ) 

and expanding $ about  Mul t ip ly ing  each s i d e  by r i 

x*(r) ,  w e  aga in  ob ta in  ( 5 . 3 . 3 ) .  

A s  v i t h  t he  pena l ty  func t ion ,  it i s  p o s s i b l e  t o  c h a r a c t e r i z e  a s t e p  

a long  t h e  t r a j e c t o r y  of approach because t h e  f i r s t - o r d e r  v a r i a t i o n  of 

the a c t i v e  consz ra in t s  i s  con t ro l l ed  by t h e  b a r r i e r  parameter .  

s t r i c t i o n  i n  t h e  b a r r i e r  func t ion  case  i s  t h a t  t h e  i n a c t i v e  c o n s t r a i n t s  

cannot be ignored except  f o r  sma l l  va lues  of t h e  b a r r i e r  parameter,  s i n c e  

t h e i r  in f luence  i s  always p re sen t  i n  a b a r r i e r  func t ion  a lgor i thm.  

3.4 A Penal ty  T ra j ec to ry  Algorithm 

A key re-  

= 

5.4.1 General  Descr ip t ion  

The pena!.ty t r a j e c t o r y  a lgor i thms t o  be discussed w i l l  be 

concerned i n i t i a l l y  w i t h  t h e  e q u a l i t y  cons t ra ined  problem, P1, and 

extended t o  d e a l  wi th  i n e q u a l i t y  c o n s t r a i n t s  i n  Sec t ion  3.4.4. 

In a pena l ty  t r a j e c t o r y  a lgor i thm,  t h e  sequence of i t e r -  

a t e s  i s  cons t ruc ted  s o  t h a t  i t s  p a t h  approaches t h e  t r a j e c t o r y  of 

the quadra t i c  pena l ty  func t ion  method converging t o  x*. 

t r a j e c t o r y  a lgor i thm r e t a i n s  i n  every s t e p  a t  l e a s t  one pena l ty  

pa rane te r  with t h e  u s u a l  s i g n i f i c a n c e ,  t o  serve  a s  a measure of pro- 

g r e s s  toward t h e  s o l u t i o n  and u l t i m a t e l y  t o  be increased t o  i n f i n i t y  

t o  enforce convergence. However, t he  pena l ty  parameter i s  monitored 

and possib_”ji a l t e r e d  a t  every i t e r a t i o n ,  and does no t  remain f i x e d  

u n t i l  8n unconstrained minimization of a pena l ty  func t ion  i s  com- 

p l e t e d .  

p o i n t s  c lo se  t o  t h e  pena l ty  t r a j e c t o r y ,  b u t  does no t  cause inc reas-  

i n g l y  poor cond i t i on ing  of t h e  l i n e a r  systems t o  be so lved .  

A pena l ty  

I ts inf luence  i n  a t r a j e c t o r y  a lgor i thm tends  t o  genera te  

A t  each  i t e r a t i o n  of a pena l ty  t r a , j ec to ry  a lgor i thm,  we 

wish t o  compute a s t e g  ’coward the  t r a j e c t o r y  of x * ( p )  . Because t h e  
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c o n s t r a i n t  va lues  a t  x*(p) for s u f f f c i e n t l y  l a r g e  p a r e  r e l a t e d  i n  

a known way t o  the Lagrange mv.ltipll.ers a t  and t h e  approach cf 

x*(p) t o  x* i s  no t  t a n g e n t i a l  t o  any c o n s t r a i n t ,  t h e  p o r t i o n  of a 

move toward x*(p) t h a t  causes  a f i r s t - o r d e r  change i n  t h e  c o n s t r a i n t s  

t ends  to s a t i s f y  c e r t a i n  cond i t ions .  The key c h a r a c t e r i s t i c  of a 

pena l ty  t r a j e c t o r y  a lgor i thm i s  t h a t  the p o r t i o n  of t h e  sea rch  d i -  

r e c t i o n  i n  t h e  range of A a t  t h e  c u r r e n t  p o i n t ,  which genera tes  a 

f i r s t - o r d e r  change i n  t h e  c o n s t r a i n t s ,  i s  s p e c i f i e d  by a system of 

l i n e a r  e q u a l i t y  c o n s t r a i n t s  derived from t h e  p r o p e r t i e s  of the quad- 

r a t i c  pena l ty  f u n c t i o n  t r a j e c t o r y  . This d e r i v a t i c n  c o n t r a s t s  w i t h  

t h e  l i n e a r  e q u a l i t y  c o n s t r a i n t s  of t h e  Lagracgian- type inethods d i s -  

cussed i n  Chapter 4, which a r e  based on cond i t ions  holdi1;g oniy a t  

x*. A s  t h e  p e n a l t y  parameter i n  a t r a . j ec to ry  a lgor i thm approaches 

i n f i n i t y ,  however, t h e  p o r t i o n  oi t h e  sea rch  d i r e c t i o r ,  i n  t h e  range 

of A becomes a r b i t r a r i l y  c l o s e  t o  the  analogous p o r t i o n  of t h e  s t e p  

taken  by a l i n e a r l y  cons t ra ined  Lagrangian method. 

- 

Much of t h e  d l scuss ion  Tn t h i s  chapter  w i l l  ke concerned 

with quadra t i c  progremming problems; t h e  fo l lowing I s  a b r i e f  review 

of the necessary  background ( see  G i l l  and Nurray, 197473, f o r  f u r t h e r  

d e t a i l s ) .  

Consider the quadrat-ic programming problerr?: 

minimize - 2 p Sp -t p d T 1 T  

P 
T s u b j e c t  t o  A p = u, 

where A i s  n by m,  of rank rx I ri. The s o l u t i o n  p* can be w r i t t e n  

as the sum of t ido or thogonal  components , i .e . ,  p* = QlpR f ZpN. 
Ql 

i s  an n by m ma t r ix  whose columns forn 3n or thogonzl  b a s i s  f o r  t h e  

c o l u m  space of A ,  snd Z i s  an I; ?y (n-Lc) matrix whose columns form 
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an orthogonal  b a s i s  for the n u l l  space of A .  

A p a r t i c u l a r  r e p r e s e n t a t t o n  of Q1 and Z car, be &ta ined  

by p a r t i t i o n i n g  t h e  or thogonal  matrix Q i n  the 

A (see G i l l ,  Golub, Murray, an3 Saunders,  1974), d e f i m d  by: 

f a c t o r i z a t i o n  of 
T 

When AT i s  of f u l l  rank,  L i s  a non- singular  m by m Lower t r i a n g u l a r  

ma t r ix  s a t i s f y i n g :  -.. 

A ~ Q ,  = L . 
T h i s  f a c t o r i z a t i o n  may be computed i n  v a r i o u s  ways, i n  p a r t i c u l a r  

by a p p l i c a t i o n  of Householder t ransformat ions  or plane r o t a t i o n s  

(see Chapter 6 f o r  a d d i t i o c a l  d i scuss ion)  . 
The vec to r  Q1pR w i l l  be termed the component of p* i n  t h e  

range of A, and Zp N w i l l  be r e f e r r e d  t o  a s  t h e  nul l- space  component 

, it fol lows of p* 

t h a t  : 

Because the columns of Q1. and Z a r e  orthogona 

2 2 2 2 
I P * I I ~  = I I Q ~ P ~ I I  + I IZPJ/ = I I P ~ I I  + I I P ~ I  - 

The v e c t o r  p R i s  ulriquely determined by the e q u a l i t y  con- 

s t r a i n t s ,  s i n c e  : 
T T T A p = A (Q1pR + ZpN) = A QlpR = LpR = u, and 

L i s  by d e i i n i t i o n  non- singular  . 

The v e c t o r  pN i s  defined by t h e  minimization of t h e  quad- 

I r a t i c  func t ion  i n  t h e  n u l l  space of A ,  and i s  t h e  s o l u t i o n  o f :  
T rn T 

Z SZpN = -Z"d - Z SQ1pR . 
T 

. For p* t o  be a s t r i c t  minimum, t h e  ma t r ix  Z SZ must be 

p o s i t i v e  d e f i n i t e  . 
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It should be noted t h a t  any p o r t i o n  of' t h e  v i c t o r  d i n  

T the range of  A i s  a n n i h i l a t e d  by t h e  appl-ic,o'lon of Z s o  t h a t  the 

s o l u t i o n  p* i s  not  a f f e c t e d  i f  terms of t h e  form Av f e r  some v a r e  

included i n  d .  

3.4.2. S p e c i f i c s t i o n  of the Search  Direc t ion  arid St,ep k n g t h  

Murray's O r i g i n a l  T ra jec to ry  A l g o r i t h  

From the r e s u l t s  of Sec t ion  5.2J we see  t h a t  an approxi-  

mation, p, t o  the s t e p  Ax from x*(p) t o  x*(p), b > P J  w i l l  under 

c e r t a i n  c m d i t i o n s  s a t i s f y  w i t h  h igh  accuracy t h e  l i n e a r  equal j - ty  

c o n s t r a i n t s  : 
T D 

LC1 : P p = - (1 - +,  P 

where A and c a r n  eva lua ted  a t  x*( F )  . Eased on t h e  assumption t h a t  

the c u r r e n t  va lue  of x i s  c l o s e  t o  x*(p),  t h e  o r i g i n a l  pena l ty  t r a -  

j e c t o r y  a lgor i thm of Earray  (1969a , b )  so lves  t h e  fo l lowing quadra t i ;  

programming problem t o  ob ta in  t h e  sea rch  d i r e c t i o n  a t  each s t e p :  

T 1 T  minimize - 2 p Sp -t p g QP1: 

T P 
s u b j e c t  t o  A p = - (1 - =)c . 

P 
I n  $pi, t h e  v e c t o r  g is  a s  u s u a l  t h e  g r a d i e n t  of F(x), and 

p i s  t h e  c u r r e n t  e s t ima te  of the  pena l ty  parameter; p i s  the penal?;y 

parameter such t h a t  x+p i s  an  e s t ima te  of x*( 5). 

- 

Murray d iscussed  t h r e e  p o s s i b l e  choices  f 3r t h e  f m c t i 3 n  

t o  be  approximsted by the q u a d r a t i c  Gbjective f imct ion  i n  6Q1 : F(Y) ,  

the pena l ty  func t ion  P(X,  p), or  an approximat? Lagrangien func t ion  

~ ( x , h )  = F-L c fcr some vecLor h, of est imated Lagrange m u l t i p l i e r s .  

Regardless  of which choice i s  made, only the g r a d i e n t  of F(x) needs 

t o  be included i n  the l i n e a r  term of t h e  quadraxic func t ion ;  be-  

cause t h e  g r a d i e n t s  of bo th  P(x,p) ana L(x ,h )  c o n s i s t  of g p l u s  a 

T 
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v e c t o r  of the form Av for some v,  t h i s  l a t t e r  term i s  a n n i h l l s t e d  

by Z wheii computing p ( s e e  the  discussior l  of quadra t i c  programs T 
N 

i n  Sec t ion  5.4.1). 

of one of t h e  three  choices .  

The matr ix S i s  t h e  exact  or approsimate Hessian 

_I_ Modified T r a j e c t e r y  -4lgorithtn 

The ' l i n e a r  c o n s t r a i n t s  LC1 a r e  based on the assumption 

tha t  t h e  c u r r e n t  p o i n t  is tile minimum of t he  quadra t i c  pena l ty  

f u n c t i o n  w i t h  pena l ty  parameter p, and thus  a d i r e c t i o n  s a z i s f y i n g  

LC1 is  always a l o c a l  d i r e c t i o n  of descent  f o r  c i for every  con- 

s t r a i n t .  This  p rope r ty  i s  unnecessar i ly  r e s t r i c t i v e  for a gene ra l  

a lgori thm, s i n c e  a t  times it may be d e s i r a b l e  t o  i nc rease  i n f e a s i -  

b i l i t y  f o r  some, or even a l l ,  of t h e  c o n s t r a i n t s .  A se t  of l i n e a r  

e q u a l i t y  c o n s t r a i n t s  t h a t  c h a r a c t e r l z e  a s t e p  toward the pena l ty  

f u n c t i o n  t r a j e c t o r y  i n  a more gerieral way can be derived i f  the  

c u r r e n t  po in t  is  "c lose"  t c  the t r a j e c t o r y ,  and an estimate of the 

Lagrange m u l t i p l i e r  v e c t o r  is a v a i l a b l e .  

2 % 

The method for computing the e s t ima te  of t h e  Lagrange 

m u l t i p l i e r s  w i l l  no t  be s p e c i f i e d  here,  s i n c e  t h e r e  a r e  variclus 

p o s s i b i l i t i e s ,  depending on t h e  information a v a i l a b l e .  The only 

assumptions a r e  t h a t  t h e  method i s  always defined,  and i s  consis tenr .  

i n  a neighrorhood of x*, i . e . ,  A +J.* a s  x +x*. 

The cond i t i on  sought on t h e  sea rch  d j r e c t i o n ,  p, i s  t h a t  

x+p be a good approximation t o  x*(p) f o r  sone i. 
t o r  -pc(x*(b)) i s  an  e s t ima te  of t h e  Lagrange m u l t i p l i e r s  a t  x*, 

w i t h  accuracy r e l a t e d  t o  0 .  Hence, u s ing  t h e  c u r r e n t  m u l t i p l i e r  

approximation, A ,  we r e q u i r e  t h a t :  

A t  x*(p), -che vec- 

-pci(x+p) A i' i=1 ,2 , .  . .,ma 
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Becallse of the rion-tai?gefitiai appi’ach i o  x*, it i s  

reasonable t o  appr3ximate c,(x+p) I 

t h e  Taylor  s e r i e s  expansion akout. x .  Igncr ing  a l l  bu t  f i r s t - o r d e r  

by only khh- f i r s t - c r d e r  term s f  

terms, t h e  result, i s :  

T - -p i p = h i ,  s o  t h a t  

T 1 Lc2 : A P = - c  - =  P A J  

where A and c are‘ eva lua ted  a t  t h e  cu r r en t  point. This  s p e c i f i -  

c a t i o n  of t h e  p c r t i o n  of p i n  t he  range of t h e  c u r r s n t  A i s  a f i r s t -  

o rde r  p r e d i c t i o n  t h a t  each c o n s t r a i n t  va lue  a t  t h e  updated po in t  

w i l l  s a t i s f y  the  epp ropr i a t e  r e l a t i o n s h i p  w i t h  t h e  corresponding 

m u l t i p l i e r  e s t ima te  and the  pena l ty  parameter .  Algorithms w i t h  

s i m i l a r  r?lotivation, based on Murray’s method, nave been descr ibed 

by  Biggs (1972, 1.974) . 
It should be noted t h a t  i f  t he  c u r r e n t  p o i n t  i s  s u f f i -  

c i e n t l y  c l o s e  t o  x * ( ~ ) ,  t h e  d i f f e r e n c e  i n  t h e  formulat iogs LC1 an2 

LC2 i s  n e g l i g i b l e .  The i i r s t - o r d e r  e s t ima te  of h a t  x*(p) i s  -Pc; 

s u b s t i t u t i n g  t h i s  express ion  f o r  h i n  LC2, t h e  righT-hand s i d e  be- 

comes ( - c  + =: P c ) ,  a s  i n  LC1. Furthermore, a s  

t h e  r e l a t i o p  X2 approaches t h e  s p e c f f i c e t i o n  cf a f i r s t - a r d e r  s t e p  

t o  a z e r o  of t h e  c o n s t r a i n t s ,  A p = - c .  

0 
goes t o  i n f l n i t y ,  

T 

The l i n e a r  e q u a l i t y  c o n s t r a i n t s  t o  be s a t i s f i e d  by the  

s e a r c h  d i r e c t i o n  i n  a l l  t h e  pena l ty  t r a j e c t o r y  a lgor i thms t o  be cor.- 

s ide red  8re given by LC2. This  c h a r a c t e r i z a t i o n  uniquely determines 

t h e  v e c t o r  QlpR, s i n c e  p R s a t i s f i e s :  
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where the lower t r i a n g u l a r  mat r ix  L i s  a s  descr ibed  i n  Sec t ion  

3.4.1, and i s  by d e f i n i t i o n  non- singular  . 
The method f o r  computing the  nul l- space  component of t h e  

s e a r c h  d i r e c t i o n  fol lows the  idea  o r i g i n a l l y  given by Murray; pN i s  

chosen t o  minimize a quadra t i c  approximation t o  some func t ion ,  which 

i s  one of :  F(x), ~ ( x , p ) ,  or L ( x , A )  for an es t imated  m u l t i p l i e r  vec-  

t o r  A .  
T The l i n e a r  term of t h e  quadra t i c  func t ion  i s  always g p, 

s i n c e  t h e  o the r  terms i n  t h e  g rad ien t s  of t h e  given choices  a r e  of 

the forrc Av f o r  some v, and d o  not  a f f e c t  t h e  c a l c u l a t i o n  of pN. 

The Hessian mat r ix  of t h e  quadra t i c  func t ion  i s  t h e  e x a c t  Hessian 

or a n  approximation 'io t n e  Hessian of one of t h e  t h r e e  cho ices .  

The u s u a l  s t r a t e g y  f o r  c a l c u l a t i n g  pN i s  t h a t  pN mini-  

mizes t h e  p a r t i c u l a r  quadra t i c  approximation i n  t he  n d l  space of 

A,  g iven  t h a t  t h e  move Qlpa has been made from the o r i g i n a l  p o i n t  

i n  order  t o , s a t i s f y  t h e  l i n e a r  c o n s t r a i n t s .  Tnis  l o g i c  makes the 

s e a r c h  d i r e c t i o n  t h e  s c l u t i o n  of t h e  quadra t i c  progmmming problem: 

QF2 : T 1 T  minimize - 2 p Sp + p g 

T A 
s u b j e c t  t o  A p = -e - = P . 

The sea rch  d i r e c t i o n  i s  then. given by QlpR $- ZpN, where Q1pK i s  

determlned by t h e  l i n e a r  e q u s I 3 t i e s  and p N so lves  t h e  equat ions :  
m T T E2 : z SZPIi = - z g - zLSQ,p, . 

The v e c t o r  pN can a l t e r n a t i v e l y  be chosen t o  minimize the 

q u a d r a t i c  func t ion  independkntly of Q1pR, by assuming t h a t  the  only 

move from t h e  c u r r e n t  p o i n t  w i l l  be i n  t h e  n u l l  space of A .  

t h i s  formula t ion  , pN so lves  the  Polldwing s e t  of l i n e a r  e q m t i o n s :  

With 



T h i s  d e f i n i t i o n  of p N might be used i n  t h e  con tex i  of t h e  g e n e r a l  

approach of computing t h e  s e a r c h  d i r e c t i o n  a:: a l i n e a r  combination 

of two orthogonal  components. The d i r e c t i o n  t h a t  so lves  &E i s  not  

n e c e s s a r i l y  8 d i r e c t i o n  of descent  f o r  t h e  q u a d r a t i c  f u n c t i c n  t o  be 

minimized, s i n c e  t h e  move requi red  t o  s a t i s f y  t h e  l i n e a r  c o n s t r a i n t s  

may increase  t h e  func t ion  from i t s  va lue  a t  t h e  c u r r e n t  p o i n t .  The 

l i n e a r  c o n s t r a i n t s  t o  be s a t i s f i e d  by t h e  s e a r c h  d i r e c t i o n  a r e  based 

on the combined assumptions of c loseness  t o  t h e  pena l ty  t r a j e c t o r y  

and reasonable ~ u l t i p l i e r  e s t i m a t e s .  When t h e s e  cond i t ions  a r e  un- 

c e r t a i n ,  it seems l o g i c a l  t h a t  t h e  nul l- space  p o r t i o n  of t h e  s e a r c h  

d i r e c t i o n  should be independent of t h e  l i n e a r  c o n s t r a i n t s ,  s o  t h a t  

an appropr i a t e  l i n e a r  combination of Q1pR and Zp?, can ’ce a descent  

d i r e c t i o n  f o r  t h e  qLiadratic f u n c t i o n .  

After the s e a r c h  d i r e c t i o n  has been determined, a l i n e a r  

s e a r c h  i s  c a r r i e d  out t o  ob ta in  a s t e p  l eng th  CY > 0 such t h a t  

x + 

f o r  t h i s  func t ion  a r e :  P(x,$) f o r  some ’?, or  an augmented Lagrangian 

fknc t ion ,  L(x,h,T) = F - A c + 2 c c ,  f o r  some F. The f i r s t  choice 

i s  t h e  more u s u a l  and s t ra ight forward;  it w i l l  guarantee a r educ t ion  

a t  every i t e r a t i o n  i n  a p e n a l t y  func t ion ,  thereby provid ing  a s tand-  

a rd  of progress  toward t h e  s o l u t i o n .  The second func t ion  i s  chosep 

by reasoning s i m i l a r  t o  t h a t  given f o r  t h e  Lagrangian-type methods 

described i n  Chapter 11. 

j.s an approximate minimum of some f u n c t i o n .  The two choices  

T T T  

Summary 

The e s s e n t i a l  elements of a pena l ty  t r a j e c t o r y  a l g o r i t h  

-- 

a r e  : 

(I) mainteparnce of B Cfintiti’Jously monitored p e n a l t y  pz r -  

ameter t o  r e g u l a t e  convergence a s  i n  a s tandard  p e n a l t y  

functio’l method; 
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( 2 )  c a l c u l a t i o n  of t h e  sea rch  d i r e c t i o n ,  p, a s  

p = Q1pR -+ ZpN, such t k a t :  

( a )  Q1pR i s  computed s o  t h a t  p s a t i s f i e s  a system 

T of l i n e a r  e q u a l i t y  c o n s t r a i n t s  of t h e  form A p = d ,  

where t h e  v e c t o r  d depends on the cont rGl l ing  

p e n a l t y  parameter and t h e  c u r r e n t  es t imate  of t h e  

Lagrange m u l t i p l i e r s ;  and 

ZpN minimizes a quadra t i c  approximation t o  some 

func t ion ;  

( b )  
. %  

(3)  a l i n e a r  s e a r c h  a t  every i t e r a t i o n  t o  a s su re  progress  

toward x* by a guaranteed decrease i n  some s u i t a b l e  

f u n c t i o n .  

The above d e s c r i p t i o n  of a p e n a l t y  t r a j e c t o r y  a lgor i thm 

i s  q u i t e  genera l ,  and t h e r e  i s  room f o r  v a r i a t i o n  i n  d e t a i l s  of 

s t r a t e g y  and implementation ( s e e  d i scuss ion  i n  Chapter 6 ) .  

a l l  methods of t h i s  c l a s s  possess  t h e  same d i s t i n c t i v e  motivat ion,  

based on t h e  quadra t i c  pena l ty  f u n c t i o n .  

5.4.3 

However, 

P r o p e r t i e s  of t h e  Penal ty  T r a j e c t o r y  Algorithm 

P r o p e r t i e s  of pR 

An important p rope r ty  of p o i n t s  on a pena l ty  func t ion  t r a -  

j e c t o r y  2.i t h a t  f o r  a s u f f i c i e n t l y  l a r g e  va lue  of t h e  pena l ty  par-  

ameter,  each c c n s t r a i n t  va lue  i s  of s i g n  oppos i te  t o  t h e  co r res-  

ponding Lagrange m u l t i p l i e r  a t  x*; when t h i s  cond i t ion  holds a t  a 

p o i n t ,  the  p o i n t  i s  s a i d  t o  be on t h e  "penal ty  s i d e "  of the  con- 

s t r a i n t .  If  the  c u r r e n t  p o i n t  i s  on the p e n a l t y  s i d e  of a l l  t h e  

c c n s t r a i n t s ,  p i s  s u f f i c i e n t l y  l a r g e ,  and a l l  n u l t i p l i e r  e s t ima tes  

have the c o r r e c t  s ign ,  t h e  s t e p  induced by the l i n e a r  cons t ra i l i t s  

- 

I 
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T I L 2  will tend t o  decrease the c o n s t r a i n t  p e n a l t y  f o r  each  c o n s t r a i n t  

wh i l e  remaining on t h e  pena l ty  s i d e  o: a l l  cons t r a fn to ,  s ince  it i s  

'a descent  d i r e c t i o n  f o r  ci, i = l , 2 ,  ..., m: and an underest imate of 

the f i r s t - o r d e r  s t e p  t o  a ze ro  of a l l  t h e  c o n s t r a i n t s .  

2 

If' a cons t r a i l l t  value i s  c lose  t o  ze ro  a t  a po in t ,  t h e  

p o i n t  i s  s a i d  t o  be "near" the c o n s t r a i n t ;  i f  a c o n s t r a i n t  i s  zero,  

the po in t  is  s a i d  t o  be "on" t h e  c o n s t r a i n t ;  i f  a s t e p  causes an 

inc rease  i n  i n f e a s i b i l i t y  f o r  a p a r t i c u l a r  c o n s t r a i n t ,  t h e  move i s  

s a i d  t o  be "away from" the c o n s t r a b t .  It i s  d e s i r a b l e  for an  a l -  
> 

gorithm t o  be ab le  t o  genera te  s ea rch  d i r e c t i o n s  t h a t  move awby 

from c e r t a i n  c o n s t r a i n t s  ander  app ropr i a t e  circumstances - f o r  ex- 

ample, i f  a p o i n t  happem t o  be n e a r  a subse t  of the  Cons t ra in ts ,  

y e t  far from x*. If a mzthod i s  committed t o  produce d i r e c t i o n s  

t h a t  y i e l d  a f i r s t - o r d e r  decrease i n  v i o l a t i o n  for every  c o n s t r a i n t  

a t  each s t e p ,  t h e  method may beccme "trapped" i n t o  a sequence of i n-  

e f f i c i e n t  sma l l  moves c l o s e  t o  t h e  c o n s t r a i n t s .  An advantage of t h e  

formidat ion LC2 is  t h a t  t h e  sea rch  d i r e c t i o n  i s  not  n e c e s s a r i l y  a 

descent  d i r e c t i o n  for every  c o n s t r a i n t .  If  a c o n s t r a i n t  va lue  i s  

" t o o  small"  f o r  t he  given pena l ty  parameter,  i . e . ,  f o r  some i 

pIc.1 i s  much sma l l e r  than / A i l ,  and A i has t h e  c o r r e c t  s ign ,  the 
1 

s t e p  given by 1x2 w i l l  tend t o  move away from t h e  &th c o n s t r a i n t  

i n  order  t o  s a t i s f y  the  condi t ions  on t h e  p e n a l t y  t r a j e c t c r y .  

I n  r a r e  cases ,  normally only  i n  t h e  neighborhood or"  he 

s t a r t i n g  po in t ,  i t  can happen t h a t  a c o n s t r a i n t  i s  ze ro  f a r  from 

x*, o r  t h a t  a c o n s t r a i n t  and t h e  corresponding m u l t i p l i e r  es t imate  

agree  i n  s i g n .  

t h e  pena l ty  sid" of t h e  g i w n  c o n u t r a i n t ,  or t h e  r c u l t i p l i e r  e s t b a t e  

has the  wrong s i g n .  

I n  t'nis w e n t ,  e i t h e r  the  c u r r e n t  po in t  is  not  on 

The rove given  by LC2 i n  such B is a pre- 
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d i c t i o n  t h a t  t h e  next  p o i n t  w i l l  Lie on tile o the r  s i d e  of t h e  con- 

s t r a i n t ,  s i n c e  t h e  under ly ing  assumpticr, i s  i;hat th? s i g n  of t h e  T 

m u l t i p l i e r  e s t ima te  i s  c o r r e c t .  The b e s t  way t o  s p e c i f y  a Ip i 
f o r  th i s  s i t u a t i o n  i s  n o t  known ( see  Chapter 5 f o r  d e t a i l s  of 

c u r r e n t  s t r a t e g y ) ;  t h e  approach s e l e c t e d  depends on which of the  

two a l t e r n a t i v e s  (x i s  not  o n t k  p e n a l t y  s i d e  of ci, o r  A i  has t h e  

wrong s i g n )  i s  considered more l i k e l y  a t  t h e  c u r r e n t  p o i n t .  I n  

e i ther  case ,  i t  is  always poss ib le  t o  choose the s e a r c h  d i r e c t i o n  

s o  t h a t  the des i r ed  descent  p r o p e r t i e s  wi th  r e s p e c t  t o  t h e  o r i g i n a l  
. 

problem a r e  r e t a i n e d .  

Ca lcu la t ion  0.i” pN 

Any term included i n  the matr ix  S used t o  compute pN 

T which i s  a mul.tiple of ADA , f o r  symmetric non- singular  D, i s  

T a n n i h i l a t e d  by app l i c s - t ion  of Z and does no t  a f f e c t  t h e  r e s u l t i n g  

see t h e  d i scuss ion  of quadra t i c  programming i n  Sec t ion  5 .4 .1 ) .  PN ( 

Thus, i f  S i s  taken t o  be t h e  Hessian ma t r ix  of the pena l ty  func t ion  

P(x,p), the p o r t i o n  of S t h a t  causes i l l - c o n d i t i o n i n g  for t h e  usua l  

pena l ty  func t ion  ae thod,  i . e . ,  pAA , has no e f f e c t  on, the  searck, T 

d i r e c t i o n  i n  t h e  tr3 j e c t o r y  a lgor i thm.  

To o b t a i n  

s t r a i n e d  Lagrangian 

chosen s o  t h a t  Z SZ T 

111 
G - hTGi.  If t h e  

i= 1 

the l o c a l  convergence r a t e s  of l i n e a r l y  con- 

methods c lose  t o  x*, the ma t r ix  S should ‘ce 

i s  a good approximation t o  Z WZ, where W = 

c u r r e n t  p o i n t  i s  very  c l o s e  t o  P ( p )  f o r  s u f -  

T 

f i c i e n t l y  l a r g e  p ,  the choice of S a s  e i t h e r  t h e  Hessian of P(x ,p)  

o r  L(x;A) w i l l  s e rve  t o  make Z SZ a n  approximation t o  ZTWZ, m because T 

2 t h e  p o r t i o n  of V P(x,p) t h a t  remain5 a f t e r  a p p l i c a t i o n  of Z’ i s  



C ; U L l  LLII-LW-L V d  - -  

The f3rmula t icn  g iven  for computing pn does not  r e q u i r e  

I' rN ------- m 

Lculation of t h e  nul l- space  corn- I l J - L C ,  L V  -- - . .~ 

Ponent be a l t e r e d  aI.ong t h c s e  l i n e s ;  o t h e m i s e ,  pN i s  a s t e p  t o v e r i  a 

which it i s  designed to minimize. 



Descent Pmpertjr 

The s e a r c h  d i r e c t i o n ,  p, generated by a pena l ty  t r a j e c t o r y  

algoritlixn is  guaranteed t o  be a descent  d i r e c t i o n  for a per ,a l ty  

f u n c t i o n  or an  augtiisnted Lagrangian func t ion ,  given a s u i t a b l e  

choice  of t h e  va r ious  pena l ty  p a r a n e t e r s ,  

f i c a n t  because a t  each  s t e p  of a psnalxy t r a j e c t o r y  a l g o r i t h  a 

l i n e a r  s ea rch  i s  executed t o  f i n d  s p o s i t i v e  s t e p  along the search  

d i r e c t i o n  t o  t h e  approximate rninirnun of' one of thesc two cho ices .  

This  p rope r ty  i s  si@- 

The r e g u l t  w i l l  be demonstrated by us ing  t h e  l i n e a r  

e q u a l i t i e s  LC2 s a t i s f i e d  by p .  

ameters of t h e  pena l ty  func t ion  and t h e  augmented Lagrangian func- 

t i o n  w i l l  bo th  be denoted k) ;, s i n c e  the requi red  s i z e  of ei-thel 

For convenience, t he  p n a l t ; '  par-  

parameter can be deduced fro= The proof'. 

t h e  penal-ty or asgmented Lagrangisn func t ion  can then  be w r i t t e n  a s  

g - f;c + $Ac, where f = 0 far t h e  p e n a l t y  func t ion ,  and 

c u r r e n t  m u l t i p l i e r  e s t ima te  for t h e  augmented f u n c t i o n .  

The g rad ien t  Of e i t h r  

i s  the 

The descent  pr9,perty w i l l  be v e r i f i e d  i f  t h e  s c a l a r  p ro-  

duct  of p w i t h  the  a p p r c p r i a t e  g rad ien t  can be guaranteed t o  be neg- 

a t i v e .  The s c a l a r  product  i s :  

T (g - A? 4- P A C )  p = 

A T T  b3 - d ) T p  + p c  A p . 
T k 

P 
Because A p = -c - = , t h e  above express ion  becomes: 

(5.4.1 j 

For  s u f f i c i e n t l y  l a r g e ,  the  Tirst term i n  (5 .4 .1 )  LS bolmded 
- 

i n  magnitude by q u a n t i t i e s  icdependent, of p, by cons t ruc t ion  ol p .  

lcil +O, j.=1,2, . . .,m, t hen  f o r  6 s u f f i c i e n t l y  l a r g e  the  sign of each  

component of t he  v e c t o r  ( - e  - w i l l  be t h e  s i g n  of t h e  app ropr i z t e  

If 

A 
P 
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component of - e ,  s o  t h a t  the second term i n  (5.4.:) w : i l l  be ?+g?-?Trc.  

Therefore ,  if p is  l a r g e  enough, t h e  s i g n  of t h e  second t ? r n  vi11 

dominate t h e  s c a l a r  product ,  and p i s  L d e e u  a 3cscent d i r e c t i o n .  

A s i m i l a r  argument can  be made provided a t  l e a s t  one component of 

A 

c i s  non-zero. 

If I I c I  I = 3,  t h e  e t r a t e g y  used by a pena l ty  t r a j e c f s r y  

a lgor i thm w i l l  compute a s e a r c h  d i r e c t i o n  t h a t  decreases  t h e  ob jec t ive  

func t ion ,  and hence the appropr i a t e  descent  prclperty w i l l  be s a t i s -  

f i e d  f o r  a pena l ty  func t ion ,  s i n c e  VP(x, p )  = g if 1 IcI 1 = G. 

augpented functcon w i t h  I I C I  I = 0, t ne  s c a l a r  p r o d ~ c t  of p a c e  t h e  

For t h e  

g rad ien t  becomes : 

pT(g - AA) = 

pTg - p.LM = 
v 

T If p g < 0, and  I 

term 'h will-  become negligible, and p i s  t h e r e f o r e  n descent  d i r e c t i o n  

f o r  t h e  augmented Lagrangian f u n c t i o c .  

I I i s  bounded, t hen  f o r  s u f f i c i e n t i y  l e r g E ,  t h e  
T 
P 

The proof' given f o r  the czse  when 1 I I + 0 r e s t s  OD b.'wo 

p can be E s d e  8 descent  d i r e c t i o n  f o r  c c by choosing T cond i t i ons :  

p s u f f i c l e n t l j r  largo i n  the  v e c t o r  on the r ight- hand s i d e  oi  he i i n t a r  

c o n s t r a i n i s  LC2; 3;id the  g r a d i e n t  of e i t h e r  a pena l ty  func t ion  o r  ari 

augmented Lagrangian func t ion  - csn be d m i n a t e d  a t  such a pcl.i?t 'cy the 

P T  grad ien t  of t h e  p e n a l t y  term -e c f o r  s u f f i c i e n t l y  large p .  I n  f a c t ,  2 
t h e  descent  propeyiy would hold f o r  any Gi rec t ion  t h a t  decrease; c c ,  

and hence the result i s  ~ o t  of  g r e a t  usefulncss. 

t h a t  t h e  l i n e a r  s e a r c h  i n  a t r a j ec io r : .  al~ix?If-h'Ji can always be success-  

- 

h 

T 

It merely a s su re s  

f u11y executed . 
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Local Convergence P r o p e r t i e s  

The l o c a l  convergence p r o p e r t i e s  of a pena l ty  t r a j e c t o r y  

a lgo r i thm can be made e s s e n t i a l l y  t h e  same a s  those  of a l i n e a r l y  

constrained Lagrangian a lgor i thm w i t h  a quadra t i c  programming sub- 

problem, i f  i n  the  l i n e a r  c o n s t r a i n t s  IC2 i s  s u f f i c i e n t l y  l a r g e .  

Le t  pL denote t h e  s o l u t i o n  of the  quadra t i c  programming 

problem posed i n  a l i n e a r l y  cons t ra ined  Lagrangian method : 
1 T  T min - 2 p Sp + g p 

s u b j e c t  t o  A p = -e,  T % 

where S i s  an approximation t o  W, t h e  Hessien of t h e  Lagrangian 

f u n c t i o n .  A method t h a t  t akes  a u n i t  s t e p  along t h e  s e a r c h  d i ree t i .cn  

has been shown to ccn.Jerge l o c a l l y  t o  x* a t  a secsnd-order  r a t e  PL 

i f  the exac t  Hessians of F and {c,] a r e  used i n  S, s o  t h a t  S = 
m 

G- C h . G .  (See Sec t ion  4.8.5); o t h e r  convergence r e s u l t s  for such 

methods have been given ( s e e  Robinson, l973), depending on t h e  
i=l 1 1 

approximations used i n  obta in ing  S .  

I f  t h e  n a t r i x  S used i n  t h e  quadra t i c  p r o g r a m i n g  problem 

m 

i=l 
QP2 i s  given by S - C AiGi fGr t h e  c u r r e n t  e s t ima te  A ,  or an approxl -  

mation t h e r e t o ,  t h e  s e a r c h  d i r e c t i o n  of t h e  t r a j e c t o r y  a i g o r i t ’ m  can 

be made a r b i t r a r i l y  c l o s e  t o  pL f o r  t h e  same S by choosing p suff l -  - 

away from s i n g u l a r i t y ,  t h e  v e c t o r  pR t h a t  s a t i s f i e s  t h e  e q u a l i t i e s  

LC2 thus  d i f f e r s  from t h e  corresponding p o r t i o n  of pL by a p e r t u r -  

1 b a t i o n  of o rde r  (;). If  t h e  i d e n t i c a l  mat r ix  S i s  used i n  b o t h  

formula t ions ,  t h e  nui l- space  p o r t i o n  of t h e  t r a j e c t o r y  s e a r c h  
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- 7  d i r e c t i o n  will s i m i l a r i y  be pertui-bed f rom tLe  nu^- space portiorl  

of p L by order  (F),  s i n c e  th?  matrLs:  ZTSZ used t o  cOmpu:s 1J is 

guaranteed t o  be s t r i c t l y  positive d e f i n i t e .  

t r a j e c t o r y  a lgor i thm wi th  t h e  quadra t i c  progrsm s e a r c h  d i r e c t i c n  

can achieve the local convergence r a t e  of an  analogous l i n e a r l y  e m -  

s t r a i n e d  Lagrangian method if ; i s  l a rge  enough s o  t h a t  t h e  or6er  

1 

Therefore ,  a pena l ty  

L (=) p e r t u r b s t i o n  i s  i n s l g n i f i c a n t  d i t h  respect  t o  t h e  terms t h a t  

determine the  r a t e  of convergence. FurTher comments on the  local 

convergence of the t r a j e c t o r y  s l g c r i t t m  a r e  given i n  Sec t ic i l  5.6. 

P 

When the v e c t o r  pN is  conputed to s a t i s f y  t h e  a l t e r n a t i v e  

formulat ion : 

c lose ly  a p r o x i m a t e d  by: 

w k r e  71 is a n  e s t i m a t e  of the Lagrasgt: m u l x i p l i e r s .  These relations 

h ? I d  because t h e  Hecsisn of P(x,$ evalua ted  31 x*(p) ~ S E  - k e n  showri 

( s e e  Chapter 2 )  t o  s p l i t  i n t o  two p a r t s  -- G + C pc.G. 
- 
“1 f l  

which i=l 1 1: 
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approaches t h e  Eess i an  of t h e  Lagrangian f u n c t i a n  a s  p 4 00, and 

s o  becomes independent of t h e  pena l ty  parahA, L e y ;  and the  mat r ix  

~AA'. 

The expres s i cns  f c r  ( V  2 P(X*(?),~))-~ a l low a close 

approx ina t ion  of t h e  Newton s t e p ,  5, t o  t h e  minimum of P(x,F), 

which i s  given by:  

d p = - (v  2 P(x*(*;),g)-l ( g  f FAC) . 

The v e c t o r  g may be decomposed i n t o  components i n  t h e  
.. = 

range and n u l l  space of A ,  s o  t h a t  g = A s  4- Z?r f o r  some s and G-, an6 

hence Z T g = v .  Using t h e  exp res s ion6 j .4 .2 )  f o r  (G 2 P(x*(T):,)) -1 

because i t s  independence of 'F; i s  e x p l i c i t ,  t h e  d e f i n i t i o n  of 5 
s e p a r e t e s  i n t o  two orthogonal. components : 

d The nul l- space  cc,mponent of p can, t h e r e f o r e ,  be .wrS.tten 
T m 

a s  Z& A -Z(Z (G - C A.G.)Z)-L,?,  which i s  e x a c t l y  equa l  t o  t h e  ex- 
1 1  i= 1 

p r e s s i o n  f o r  t h e  n d l - s p a c e  component of t h e  t r a j e c t o r y  sea rch  

d i r e c t  ion,  

T -1 ZpH = -z(z SZ) v, 

if S i s  chosen 8s h d i c a t e d .  

These results show t h a t  l o c a l  cGnvergence can be provel, 

f o r  a Zenal ty  t r a j e c t o r y  a lgor i thm.  

local convergence c a n  be proved under s u f f i c i e n x l y  s t r o n g  assmp*;ionz 

However, a s  seen i i i  Clrapte: 4, 

f o r  any of t h e  Lagrangian a lgor i thms,  some of which a r e  based on 

cond i t i ons  hold ing  only i n  a smal l  nzighborhoad of x*. Although of 

some importance, l o c a l  convergence drles no t  guararlt-.e a robus t  cir 

e f f e c t i v e  al-gorithm. The s t r e n g t h  of t h e  p e n a l t y  t r a j e c t o r y  alga- 
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5.4.4 ExTencion t o  lnequa l i t y  Cons t r a in t s  

A p e n a l t y  t r a j e c t o r y  a lgo r i tk r ,  for i n e q u a l i t y  consTraints  

i s  based on t h e  same mot iva t ion  a s  the t r a j e c t o r y  a lgor i thm f c r  

e q u a l i t i e s ,  where only v i o l a t e d  c o n s t r a i n t s  a r e  inciuiied I n  t h ~ l  

p e n a l t y  term.  

of c u r r e n t l y  v i o h t e d  c o n s t r a i n t  g rad iex t s ,  w i t h  a s i d l a r  conJentFcn 

for $ .  

v e c t o r  e ,  where t h e  va lue  of m may ‘rary from i t e r a t i o n  tc i t e r s t i 3 2 ,  

and denotes  t h e  number ~f c u r r e n t l y  v i o l a t e d  c c c s t r a i c t s  (as>LZl?d 

always I n)  . The es t imated  Lagrange m u l t i p l l e r s  correspccd c)z!~-J TO 

v i o l a t e d  constr t i inxs,  and Qr and 2 have t h e  u s u a l  p r o p e r t i e s  K i t h  

r e s p e c t  t o  2. 

A 
% 

I n  t h i s  d i scuss ion ,  t he  mat r ix  A dencte; the  .3?.exrix 

The v i o l a t e 6  c o n s t r a i n t s  a r e  nmkered  from 1 to m i n  t he  

A 

A 

S o e c i f i c a t i o n  cf t h e  Search Direc t ion  

With i n e q u a l i t y  c o n s t r s i n t s ,  t he re  i s  uncerTainty a s  tcj 

which c o n s t r a i n t s  a r e  a c t i v e  a t  tke s o l u t i o n ,  arid all algori-L;mc for 

the i n e q u a l i t y  pro’olem must make s3me determlna$ion, e x p l i c i t  or i m -  

p l i c i t ,  about t h e  a c t i v e  s e t .  It I s  c h e r a c t e r i s t i c  cf ttis t r a j e c t o r y  

of t h e  quadra t i c  pena l ty  func t ion  t h a t  a“L a p o i n t  suf fici-ntly close 

t o  x*(p) for p l a r g e  enoagh, xhe s e t  of v i o l a t e d  consLrs in ts  i s  

i d e n t i c d l  t o  t h e  s e t  of c o n s t r a i n t s  a c t i v e  a t  x*. 

a lgo r i thm based on t h e  quadra t l c  pena l ty  f u n c t i o n  I s  j u s t i f i e d  i n  

u s ing  t h e  s e t  of currezl t ly  v i o l a t e d  c o n s t r a i n t s  a s  8 p r e d i c t i o n  of 

the a c t i v e  s e t ,  a l though it must ti. yr.ncikle T O  mo3ify *-kis escv;i?p-. 

Therel3re,  an 

t i o n  a t  any s t a g e  of t h e  2lgorit‘ilm, p r t i c u l a r l y  near  the c’:arting p o l n t .  

- 17h - 



me r e l a t i o n s h i p  be?decn t h e  s e t s  o r  -1 io lc tes  332  o c t l 7 c  

c o n s t r a i n t s  is re f l ec ted  i r _  t he  l i n e a r  e q u a l i t i e s  ax t h e  end of 

Sec t ion  5 .2  for t h e  s t e p  along the  pena l ty  f u n c t i o n  rrej?ctor:', 

which a r e  based only on t h e  behavior  ol" t h e  c u r r e n t l y  v i o l e t e d  

c o n s t r a i n t s .  -4s t h e  e s t ima te s  of t k  ~ o l u t i s n  zpproach xX a1or.g 

t h e  p e n a l t y  fui lc t lon t r a j e c t o r y ,  t hese  l i n e a r  e q u a l i t i e s  v i 1 1  in-  

clude p r e c i s e l y  t h e  s e t  of a c t i v e  c o n s t r a i n t s  a t  x y J  ~ ? T , C >  a s  ex- 

pec ted ,  s p e c i f y  t h e  f i r s t - o r d e r  v a r i a t i o n  5-11 t h e  actLve consTrs in ts  

on ly .  it should be noted t h a t  t h e  d e r i v a t i o n  of t h e  l l n e a r  cori- 

s t r a i n t s  of t h e  l i n e a r i y  cons t ra ined  Lsgrangian methods f o r  i n-  

e q u a l i t i e s  i s  a l s o  based on including 0n1)- xhc a c t i v e  c 5 n c t r a i n t z .  

Ey reasoning  eitri i lar t o  t h e  e q u a l i t y  case: -,he t r a j e e t c r y  

s e a r c h  d i r e c t i o n  for i n e q u a l i t y  c o n s t r a i n t s  should s8-iiSfY a s e t  of 

e q u a l i t i e s  analogous t o  LC2: 
$Tp = -c n h  , LC2' : P 

where h i s  the c u r r e n t  e s t ima te  of t h e  Lagrange m u l z l ~ l i e r s .  The 

c o n s t r a i n t s  LC2' provide a p r e d i c t i o n  of t h e  v i o l a t e a  set a t  t he  

next  s t e 7 ,  based on t h e  s igns  of t h e  m u l t i p l i e r  e s I i n e t e s ,  i f  p i s  

s u f f i c i e n t p y  l a r g e .  I f  s i g n  (i 1 . )  = - s i g n  (Gi), s3 t h a t  A i  > 0, a 

s t e p  p t h a t  s a t i s f i e s  t h e  i t h  c o n s t r a i n t  of LZ2' gives a f i r s t - o r d e r  

p r e d i c t i o s  t h a t  m e  - i t h  c o n s t r a i n t  b 7 i l l  contir?ue I: be v j r l a t e i :  a t  

t h e  next  po in t ;  i f  h i  i s  nega t ive ,  t h e  s a t i s f a c t i c n  33 t h e  i t h  con- 

s t r a i n t  of LC2' amounts t o  a f i r s t - o r d e r  p r e d i c t i c a  i 2 a t  The it" COC- 

s t r a i n t  w i l l  no t  be v i o l a t e d  a t  the next  p o i n t ,  s i nce  t h e  va lue  on 

the right-Land s i d e  i s  p o s i t i v e  and exceeds c i n  msgni tude.  The 
i 

i n i t i a l  s t e p  of the pena l ty  tr3 j e c t o r y  a lgo r i thm f OT i n e q u a l i t i e s  

i s  thus  computed t o  s a t i s i y  t he  1-near c o n s t r s i n i s  LC2', and x%e 

- 

- 

- 

h 
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nul l- space  component of t h e  sea rch  d i r e c t i o n  i s  c e l c u l a t e d  a s  aes-  

c r ibed  f o r  t h e  e q u a l i t y  c a s e .  

Hogever, a more accLLrate p r e d l c t l o n  of t he  a c t i v e  s e t  and 

a be t t e r  sea rch  d i r e c t i o n  may be obtained through t h e  fol lo\qing 

q u a d r a t i c  progmuining prdblem, where the  l i n e a r  c o n s t r a i n t s  LC2' 

a r e  genera l ized  to a s e t  of i n e q u a l i t i e s :  

QP2' : minimize 1 2 p%p + p g 

s u b j e c t  t o  A p 2  - C - 7 P * 

The i n i t i a l  t r a j e c t o r y  sea rch  d i r e c t i o n  so lves  &E' w i t h  

T 

AT # % A  

% 

a l l  c o n s t r a i n t s  taken a s  e q u a l i t i e s .  The Lagrange m u l t i p l i e r s  of 

w' f o r  t h i s  s o l u t i o n  provide a nigher-order  e s t ima te  of t h e  

Lagrange m u l t i p l i e r s  of t h e  o r i g i n a l  non l inea r  r)rc?cle;ll, and s o  may 

be used t o  a l t e r  t h e  p r e d i c t i c n  oi t h e  a c t i v e  s e t ,  a s  fo l lows:  a 

nega t ive  m u l t i p l i e r  of &E?' i n d i c a t e s  t h a t  t h e  q u a d r a t i c  oi; j e c t i v e  

f u n c t i o n  can be f u r t h e r  decreased by d e l e t i n g  one sf t h e  acxive 

l i n e a r  c o n s t r a i n t s .  A modified sea rch  d i r e c t i o n  can thus  be computed 

which so lves  QE' w i t h  a reduced a c t i v e  s e t ;  w i t h  t he  new s e a r c h  d i -  

r e c t i o n ,  t he  f i r s t - o r d e r  v a r i a t i o n  i n  t h e  c o n s t r a i n t  p red ic t ed  t o  

be i n a c t i v e  is  n c t  r e s t r i c t e d  t o  s a t i s f y  t h e  corresponding c o n s t r a i n t  

a s  an  e q u a l i t y -  

A t  each  i t e r a t i o a  of t h e  t r a j e c t o r y  a l g c r i t M ,  t h e  sea rch  

d i r e c t i o n  could be cornpuxed by so lv ing  completely t h e  quadra t i c  pro-  

gramming problem €$€?', poss ib ly  d e l e t i n g  s e v e r a l  c o n s t r a i n t s  and r e -  

eval-uating t h e  mul- t lpl iers  . However, a s impler  procedure, which 

has been s u c c e s s f u l  I n  p r a c t i c e ,  

&c: Llve l i n e a r  cclrlstrair1-c Fer iLe ra t ion ,  and accepr t h e  s o l u t i o n  cf 

i z  t o  delete o ~ l j r  m e  
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t h e  a l t e r e d  q u a d r a t i c  program a s  t he  sea rch  dli . ,?Ttion. 

s t r a i n t  t o  be de l e t ed  can be s e l e c t e d ,  i f  t he re  a r e  s e v e r a l  poss i -  

b i l i t i e s ,  based on some coi i s i s ten t  c r i t e r i o n  (<3 r  ~ x a n ~ p l e ,  i f  t h e  

c o n s t r a i n t s  a r e  wel l- sca led ,  choose the constra?’.nt w i t h  the  most 

The ccn- 

nega t ive  m u l t i p l i e r ) .  

Ca lcu la t ion  of Step  -kngth 

After computing the  search  directiol;, a l i n e a r  s ea rch  is  

executed,  a s  ir, t h e  P e q u a l i t y  case,  t o  l o c a t e  CY > 0 such t h a t  x + CQ 

i s  t h e  (approximate) minimum of a pena l ty  func.,xio;l o r  a n  augmezteb 

Lagrangian f u n c t i o n .  

Des c e n t  2% cper ty  

The s e a r c h  d i r e c t i o n  r e s u l t i n g  f ron  a n y  nethod vhere the  

s o l u t i o n  s a t i s f i e s  t he  Linear i n e q u a l i t i e s  of Q,Ef i s  a descent  

d i r e c t i o n  f o r  a pena l ty  func t ion  F(x,$) o r  2~ avgmrited Lagrzngian 

f u n c t i o n  L(x,A, p) ,  given a s u i t a b l e  choice of :he pena l ty  pa r31~5 te r ;  . 

The descent  p rope r ty  i s  v e r i f i e d  by examining :he s c a l a r  produ.ci 05 

the sea rch  d i r e c t i o n ,  p, and t h e  g r a d i e n t  of the pena l ty  o r  au.g- 

meiited Legrangiar, func t ion ,  which may be w r i t t e n :  

n 

* T M  pT(g - AA) + p p A C  = 

- 
(5.4 .:I 

LIl 
h / ‘ ,A!? ‘p 

p-(g - K )  + p c ciai p , 
i=l 

where f i  = 0 f D r  t h e  pena l ty  func t ion  and f = 7, for t h e  augmented 

Lagrangian func t ion ,  and where the “ a c t i v e ”  s e z  included i n  t he  

augmented Lagrangian func t ion  i s  assumed t o  b e  t h e  se t  of v i o l s t e d  



must be p o s i t i v e .  

mation i n  t h e  second term of (5 .4 .3)  i s  n e g s t i v e .  

the right-hand s i d e  of (5 -4 .3 )  i s  bounded i n  magnitude, and i f  3 i s  

s u f f i c i e n t l y  l a rge :  t h e  Degative s i g n  of t h e  second term must dom- 

i n a t e  t h e  e n t i r e  exp res s ion .  

for s u i t a b l e  p,  p, and p i s  a descent  d i r e c t i o n .  

case ,  t h i s  r e s u l t  i s  implied by t h e  l c c a l  dominance of t h e  penb l ty  

term c c i n  e i t h e r  t he  pena l ty  o r  augmented Lagrangian f u n c t i o n .  

For  suzh a va lve  of p, each eleme-ilt of the  zum- 
- 

The f i r s t  t e m  on 

Her!ce, t h e  s c a l a r  product  Is negat ive 
A As i n  t h e  equal i tY 

2 ATA 

P 

5 . 5  A B a r r i e r  Trajectory Algorithm 

3 -5 -1 General  Descr ip t  ion  

A b a r r i e r  t r a j e c t o r y  a lgor i thm genera tes  a sequence of 

i t e r a t e s  whose p a t h  zpproachcs t h e  t r a j e c t o r y  sf a I c g a r i t h i c  

b a r r i e r  func t ion  me-chod converzing t o  xx-, whi le  main ta in tng  s ~ r i c r  

f e a s i b i l l t y  st every success ive  e s t ima te  of t h e  s o i u i i o n .  

one b a r r i e r  p a r a w t e r  i s  involved i n  every  s t e p  of a ' c a r r i e r  t r a -  

j e c t o r y  a l g o r i t h ,  w i t h  t h e  u s u a l  role: 

r e t e  a t  which t h e  s t r i c t l y  f e a s i b l e  i t e r a t e s  a r e  a i lowed  t o  approach 

x*, which l i e s  on xhe boundery of t h e  f e a s i b l e  r eg ion .  However, 

t h e  b a r r i e r  pararnett?r i n  a t r a j e c t o r y  a lgor i thm i s  regula ted  and 

p o s s i b l y  a l t e r e d  a t  evep?r i t e m t i o n ,  r s t h e r  t han  remzln2-q ?k;zc! 

u n t i l  t h e  unconstrained minimizst i32 cf a p a r t i c u l a r  ?xrrlcr func- 

t i o n  i s  completed. 

A t  l e a s t  

i t s  decrease c o n t r o l s  t h e  

. .  

A t  every i t e r s t l o o ,  a b a r r i e r  t r a . j r c t 3 n  c lgor i thm csn- 

pu'ces a s t e p  toward t h e  t r a j e c t o r y  of x * ( r ) .  

va lues  s t  x*(r) f o r  s u f f i c i e n t l y  s m a l l  r must s a t i s f y  a know2 r e -  

l a t i o n s h i p  w i t h  t h e  Lagrarige mul tFp l i e r s  a t  x%-, an? t h e  approach of 

x*(r )  t o  x* is  n c t  t a n g e n t i a l  t o  any a c t i v e  c o n s t r a i n t .  Accordingly, 

The a c t i v e  c c n s t r a i c t  
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t h e  p o r t i o n  of t h e  s t e p  that genera tes  a f i r s t - x d z r  change I n  the 

a c t i v e  c o n s t r a i n t  va lues  i s  sub jec t  t o  c e r t a i n  cond i t i ons ,  s o  t h a t  

t n e  a c t i v e  c o n s t r a i n t s  s t  t h e  subsequent poin-r: Tend t o  s a t i s f y  t h e  

app ropr i a t e  r e l a t i o n s h i p .  

b a r r i e r  t r a . j ec to ry  algori-chm i s  t h a t  t he  p o r c i m  of t h e  s ea rch  d i -  

r e c t i o n  ir, the  range of t h e  mat r ix  8 of a c t i v e  constrain- t  g r a d i e n t s  

a t  t he  c u r r e n t  p o i n t  i s  s p e c i f i e d  Sy a s e t  of l l n e a r  equal ixy  con- 

s t r a i n t s  der ived frcul the p r o p e r t i e s  of t h e  logar i thmic  t a r r i e r  

func t ior ,  t r a j e c t o r y  . 

5 *5 -2 

The d i s t i n c t i v e  c h e r a c - k r i s t i c  of a 

I 

S p e c i f i c a t i o n  of the Sesrch  Di rec t ion  and S t e p  Length 

I n  all d i scuss ion  cf t h e  b a r r i e r  trajectcry algori thm: t h e  

mat r ix  A w i l l  be taken t o  include the  grPdients  cf all the c o n s t r a i n t s  

of t h e  pro'clem; A" w i l l  denGtz a f u l l - r a n k  rnd -k? i j :  whose c o > u n s  tire a 

subse t  of cons t r a ine  g red ien t s  corresponding t c  t h e  c o n s t r a i n t s  cur- 

r e n t l y  considered a c t i v e ,  with a s i m i l a r  convextion €or c an2 c .  A 

The a c t i v e  c o n s t r a i n t s  

i n  t h e  vec to r  c, where 

i t e r a t i o n ,  and deriotes 

A 

a r e  considered t o  Se nulliiered -from 1 t o  EI 

t h e  value of n: may vary  Irom i t e r a t i o n  tG 

the n lake r  cf  c o n s t r a i n t s  c u r r e n t l y  considered 

a c t i v e  ( a lxays  5 n> . 

t o  correspond only t o  a c t i v e  c o n s t r a i n t s .  

p r o p e r t i e s  w i t h  r e s p e c t  to A .  

The es t imsted  Lagrange m i l t i p l i e r s  a r e  assixzed 

A A 

Q7 I en? Z have t h e  usua i  
h 

i n  Sec t ion  3.3, it was shewn t h a t  a n  approxinaTion, p, t o  

t h e  s t e p  Lx from x*(r) tc x*(G), r < r, w i l l ,  u t i e r  certai_n cond i t i ons ,  

s a t i s f y  wi-th h igh  accuracy the  following l i n e a r  e q u a l i t y  constraints: 

where 3 and $ E r e  evalua ted  a t  x*(r). 

The I.i.ne3r c o n s t r e i n t s  LC3 are k a s s d  ~'ii the a s c u q ~ t i o n  
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t h a t  t h e  c u r r e n t  po in t  is  t h e  min iam of t5e l s g 3 l ’ i t h i c  tarrier 

func t ion  with b a r r i e r  parameter r,  and a d iTec t ion  s a t i s f y i n g  LC3 

A 2  i s  always a l o c a l  d i r e c t i o n  of descent  f o r  c for every “ a c t i v e ”  
i 

c o n s t r a i n t .  This proper ty  i s  u r n e c e s s a r i l y  r e c t r L c t i v e  f o r  a gene ra l  

f e a s i b l e  algori-thn, s i n c e  it may be d e s i r a k l e  a t  t imes t o  increaze  

some c o n s t r a i n t s ,  or t h e  cu r r en t  p r e d i c t i o n  of t h e  a c t i v e  s e t  nay 

be i n c o r r e c t .  A s e t  of l i n e a r  c o n s t r a i n t s  t h a t  c h a r a c t e r i z e  a s t e p  

toward t h e  b a r r i e r  func t ion  t r a j e c t o r y  i n  a more gene ra l  way can -Le 

der ived  i f  t h e  cu r r en t  p o i n t  i s  “ c l o s e ”  t o  t h e  t r a j e c t o r y ,  and an 

e s t ima te  of t h e  Lagrange m u l t i p l i e r  v e c t o r  i s  a v a i l a b l e .  The CSE- 

d i t i o n  des i r ed  for t h e  search  d i r e c t i o n ,  p, i s  t h a t  x + p be a gcod 

. 

approximation t o  x* (F ) .  A t  x*(?j, t h e  vec to r  m 

- .  f o r  t h e  a c t i v e  c o n s t r a i n t s ,  i s  an es t imate  of t h e  Lagrange m.1!-1~- 

p l i e r s  a t  x*, w i t h  accuracy r e l a t e d  t o  r .  We thus  r equ i r e  thar, ic;r 
- 

each  a c t i v e  c o n s t r a i n t :  

h - .  
r = i i  c (x+p), i=1,2,  ..., m. 

Because of t h e  non- tangen t i a l  approach t o  x*, a l i n e e r  

approximat!+-ln t o  Gl(x+p) w i l l  be accu ra t e  f o r  I Ip /  I suff ic icr i t>-  

small. 

expamion  about x ,  t he  r e s u l t i n g  cond i t i on  i s :  

Inc luding  only t h e  f i r s t - o r d e r  tercns i n  t h e  Taylor s e r i e s  



The e q u a l i t i e s  LCh s a t i s f i e d  by p a r e  k,ased 3n t h e  r e -  

l a t i onsh$  t h a t  should hold along t h e  b a r r i e r  t r a j e c t o r y  between t h e  

a c t i v e  c o n s t r a i n t  va lues  and the  m u l t i p l i e r  e s t imsxes .  If t h e  cur- 

o rde r  m u l t i p l i e r  e s t ima te  A .  i s  given by & 
1 i C 



second and t h i r d  choices  a r e  no t  r e l e v a n t  i n  computing plj ( s e e  Sec- 

t i o n  5.4.1). The Hessian of t he  quadyat ic  f u r i d i o n  Fs The e x s c t  

Hessian or an  approximation t o  t he  Hessian of one of t h e  t h r e e  

cho ices .  

The two poss ib l e  s t r a t e g i e s  f o r  cQmp7Jting F a r e  s i m i l a r  
1: 

t o  the two opt ions  i n  t h e  pena l ty  t r a j e c t o r y  a lgo r i thm.  Bowever, 

i n  t h e  b a r r i e r  t r b j e c t o r y  algori thm, the  u s u a l  proceo.me i c  TO choose 

p t G  mininlize t h e  quadra t i c  func t ion  by moving i n  the n u l l  Space 

of 3 from the  cu r r en t  p o i n t ,  independent ly of' t h e  m c ~ e  i n  t h e  range 

of 3 ,  i . e  . , pN sg lves  t h e  system of equat ions :  

.. 11 

T T 
E3 : 2 S2pn = -2 g .  

The a l t e r n a t 5 v e  s p e c 5 f i c a t l c n  of pN, used n s a r  x*, t a k e s  t h e  s e a r c h  

d i r e c t i o a  a s  t h e  s c l u t l c n  af t h e  q u a c r a t i c  prcgramFn3 &rck lec :  

T QP4 : minimize 1 2 pl'sp <- p g 

S O  t h a t  yN s ~ t i s f i e s :  

E4 : 

1 

hl  

1 - 

The reason f o r  customari ly  choosing p t o  s aT i s fy  E3, to 
11 

be explored more f u l l y  i n  S e c t j c n  5 . 5 . 3 ,  i s  the  d i f f e r e n c e  betideen 

t h e  roles of t h e  f o r c i n g  parameter and the c o n s t r a i n t  va lues  f o r  

pena l ty  acd ba r r i e r .  f u n c t i o n s .  I n  t h e  pena l ty  case ,  i nc reas ing  t h e  

p n a l t y  parameter a t  a ncn-bound6ry pL1t makes t lLe  i c c a l  t e h a v i o r  
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T of t h e  p e n a l t y  term c c dominate t h e  p e n a l t y  f u n c t i o n .  

c o o s t r a i n t s  s a tLs f i ed  by thE sea rch  direct l : - -  i n  a pena l ty  t r a j e c t o r y  

a lgo r i thm a r e  c o n t r o l l e d  by t h e  pena l ty  parameter s o  t h a t  t h e  re- 

s u l t i n g  d i r e c t i o n  cafi always be made a descent  d i r e c t i o n  f o r  c c y  

and hence f o r  t h e  p e n a l t y  f u n c t i m .  

s o l u t i o n  of t h e  q u a d r a t i c  pmgramming sub-problem f o r  t he  penal-q 

t r a j e c t o r y  a lgor i thm thus depend only on t h e  spec i a l  f o r a  of the 

l i n e a r  c o n s t r a i n t s ,  LC2. 

The I i n z z r  

T 

The descent  p r o p e r t i e s  of t h e  

h 

For a b a r r i e r  func t ion ,  on t h e  o ther  hand, decreas ing  the  

b a r r i e r  psrameter  makes t h e  inf luence  of -<he c o n s t r a i n t s  lese si@- 

f i c a n t ,  and the behavior  of t h e  ob jec t ive  f u n c t i o n  tends  t o  dm-.Lns+e 

l o c a l l y .  The l i n e a r  c o n s t r a i n t s  LC4, s a t i s f i e d  by the  sea rch  d ' r r c -  

t i o n  i n  a b a r r i e r  t r a j e c t o r y  a l g o r i t h ,  a f f e c t  only t h e  f i r s t - z r d e r  

change i n  t h e  a c t i v e  c o n s t r a i n t s ,  and do not  i n  gene ra l  t e n d  1: mke 

t h e  s e a r c h  d i r e c t i o n  a descent  d i r e c t i o n  f o r  t h e  o b j e c t i v e  5l ;~z-cZcn.  

In  f a c t ,  t h e  move gen@rated by t h e  s o l u t i o n  of t h e  q u a d r a t i c  prc-  

gramming problem QPL may tend t o  i nc rease  t h e  b a r r i e r  function f w  

any reasonable  va lue  of t h e  b a r r i e r  parameter;  t he rp fo re ,  the icrnu- 

l a t i o n  QP4 cannot be use2 a t  a gene ra l  po in t ,  because t h e  t r2 : jec tory  

8 l g o r i t . m  demands a monotonic decrease i n  a b a r r i e r  f u n c t i o n  e7 

every  i t e r a t i o n .  

t o  x*(r) f o r  s u f f i c i e n t l y  smal l  r, t h e  q u a d r a t i c  program s e z r c r  d i -  

r e c t i o n  can be guaranteed t o  be a descent  d i r e c t i o n  f o r  sn eppro-  

p r i a t e  b a r r i e r  f u n c t i o n .  

It w i l l .  be seen, however, t h a t  for p o i n t s  clzse 

After t h e  s e a r c h  d i r e c t i o n  has been determined, a l i n e a r  

s e a r c h  i s  c a r r i e d  ou t  t o  obta in  a s t e p  l e n g t h  CY > (3 such t h a t  x + cup 

i s  an  approximste m i n i m u m  of t he  barr 'cr Eulrctior? B(x , r )  f o r  some r .  
+- r-/ 
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der ived  from the  behavior  of t h e  logar i thmic  kaz- r i s r  

The s e l e c t i o n  of a bsrr ier  func t ion  t o  be decreased a t  ever2 z t r -2  

i s  designed t c  main ta in  an Gppropr ia te ly  cCi-',;olled d i s t ance  ke- 

tween t h e  i t e r a t e s  and the c o n s t r a i n t  boundary. Although B rns t lmd 

cou1.d be devised wherein t h e  l i n e a r  s ea rch  attempted t o  f i n 2  the 

approximate m i n i m u m  of some c t h e s  func t ion ,  r e s t r i c t e d  t o  f e a ~ f b 1 . e  

p o i n t s ,  t h i s  s t r a t e g y  could r e s u l t  i n  a p o i n t  a r - c i t r a r i l y  close to 

t h e  boundary, b u t  f a r  enough from the  s o l u t i o n  t o  cause d i f l i c u l x i e s  

on subsequelzt i t e r a t i o p s .  Because a b a r r i e r  f u n c t i o n  a l l o d s  2 con- 

t i n u o u s l y  r egu la t ed  d i s t a n c e  t o  be maintained bexween the  e c t k ~ ? t z  

and the boundary, and b2cause an efficient l i n e a r  s e a r c h  i; a v t - ; l l s L l e  

f o r  use w i t h  t h e  l o g a r i t l m i c  b a r r i e r  func t ion  ( s e e  Chapter 2 ; .  113 

o t h e r  choice seems a p p r o p r i a t e .  

The e s s e n t i a l  e lements  of  a b a r r i e r  t r e j e c t o r y  :lgcritha 

a r e  : 

(I) maintenance of a t  l e a s t  one cont inuously monitored ~ E T Y L L Y  

parameter whose decrease  c o n t r o l s  t h e  approach of Lr,e:*etes 

t o  the  bou.ndary of t h e  f e a s i b l e  reg ion;  

6- A 
( 2 )  c a l c u l a t i o n  of t h e  sea rch  d i r e c t i o n ,  p, a s  p = Q1PE di~sj 

such t h a t  : 

( 5 )  6 p i s  computed s o  t h a t  p s a t i s f i e s  a system cf 

l i n e a r  e q u a l i t y  c o n s t r a i n t s  of the f o r m  A p = 6: 

1 R  
*T 

f u n c t i o n  t r a j e c t o r y ,  where t h e  v e c t o r  d depc-nss 03 

the  c o n t r o l l i n g  b a r r i e r  parameter and t h e  curre1z-c 

est iuiatn of t he  Lagrange m u l t i p l i e r s ;  and 

&prr minimizes a quadra t ic  approximation t o  sone 

fufic t ion;  

(b )  
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( 3 )  a l i n e a r  s2a rch  w i t 5  r e spec t  t o  E t a r r l e r  f i l ~ ~ c t i o i ~  a t  each 

i t e r a t i o n  t o  guarantee a measure ci.? progrees t s w o r d  x*. 

The above d e s c r i p t i o n  of a b a r r i e r  “Lajecto?y a lgor i thm 

i s  q u i t e  gene ra l ,  and d e t a i l s  cf s t r a t e g y  CI- inplernentatlon may va ry  

( s e e  Chapter 6 ) .  However, a11. t h e  methods of t h i s  c l a s s  a r e  d i s -  

t i n c t i v e l y  cha rac t e r i zed  by t h e i r  d e r i v a t i o n  i n  term of rhe  be-  

h a v i o r  of t h e  logar i thmic  b a r r i e r  f u n c t i o n .  

5.5 .3  P r o p e r t i e s  ... of t h e  B a r r i e r  Tra j e e t o r y  Algcrlthm 

P r o p e r t i e s  of QlpR 

Because a b a r r i e r  a lgor i thm i s  r e s t r j c t e d  -LO feas i ‘ r le  

p o i n t s  only, a l l  c o n s t r a i n t  val.Jes a r e  r”,ic tly pozi t l r -e ,  and the re-  

f o r e  have t h e  same s i g n  a s  the Lagrange m d t i p l i e r c  a t  x*. 

c o r r e c t  a c t i v e  se t  has been chosen, r i s  suificien:kLT ~~1711: alzd a l l  

the es t imated  m d t i p l l e r s  a r e  p o s i t i v e ,  2 s ea rcn  Z l r ec t ion  satisiyi:., 

LCh w i l l  tend TO decrease 811 t b e  3 c t F ~ k  e m s t r a i n t n ,  -pu t  s t o p  s h o r t  

of t h e  f i r s t - o r d e r  s t e p  to the bcundary. 

t h e  s t e p  s a t i s f y i n g  LCk is  a r b i t r a r i l y  c l o s e  t c  t h e  f i r s t - c r d e r  s t ep  

t o  a ze ro  of each  a c t i v e  c o n s t r a i n t ,  g l v e ~  by A p = - e .  

If t he  
- 

, .  

For r s - d f i c i e n t l y  s m a i l ,  
- 

A AT 

However, it should be noted tha t  t h e  s t e p  generated by 

L C ~  is  not  n e c e s s a r i l y  2 i c c a l  descent  ZLrectLsr, i c r  each a c t i v e  con- 

s t r a i n t .  

dard b a r r i e r  func t ion  a lgor i thn :  i s  t h a t  a ~ u b s e t  cf t h e  c c n s t r a l n t s  

may become sma l l  f a r  from The so lu t ion :  because GE l o c a l  i n f luences .  

From such a p o i n t ,  d i r e c t i o n s  along v1hic11 t h e  b a r r i e r  i m c t i s n  i s  

decreas ing  tend t o  cause n e g l i g i b l e  changes i n  t he  a l r eady  smal l  con- 

s t r a i n t  valixes, and, s t n e e  feas lb i l i ; ) -  must be !naintaiinedJ a l a r g e  

niJmber of subseqEent i t e r a t i o n =  may m k e  es senx ic l lY  no prq , r e s s  

*”+ s e r i o u s  weakness t h a t  can c r i t i c r l l 2 i  I m p a l r  even a starz- 



toward xt. An e f f i c i e n t  f e a s i b l e  a lgor i thm shou-L? be ab le  t c  Tove 

away from a c o n s t r a i n t  boundary; t h i s  Froper ty  i s  more important  

t han  i n  t h e  perizlty func t ion  case because i n  a f e a s i b l e  aigori t 'm- 

t h e r e  i s  no freedom t o  move t o  t h e  o t h e r  s i d e  of t he  c o n s t r a i n t .  

if h i  is  p o s i t i v e ,  and an  a c t i v z  c o n s t r a i n t  i s  " too  s m a l l "  for t he  

va lue  of r, i . e . ,  t h e  e s t ima te  
i 

by LC4 w i l l  tend t o  i nc rease  the  i t h  c o n s t r a i n t  and trove away fro?; 

t h e  boundary, a s  i t  should t o  achieve a non- tangent ia l  approach t o  

x*. 

- 
T b  

i s  l a r g e r  than  A i' t h e  s t e p  given 
C 

= 

riumerical experiments  ( s e e  Chapter 6 )  have c l e a r l y  d e m o z x t r a t e d  

t h e  va lue  of t h i s  p rope r ty  of a b a r r i e r  t r a j e c t o r y  al.gcrith-T. 

If t h e  c u r r e n t  es t imate  of a m u l t i p l l e r  i s  negat ive ,  t h e  

assumptions upon which the  l i n e a r  e q u a l i t i e s  LCb were k z s e d  a r e  n m  

s a t i s f i e d ,  and an a l t e r n a t i v e  method should be used t o  coxpute the  

s e a r c h  d i r e c t i o n .  I n  such a case, e i t h e r :  (1) the  given c o n s t r a i n t  

has been i n c o r r e c t l y  c i a s s i f ' i ed  a s  a c t i v e ,  o r  12) al though t h e  con- 

s t r a i n t  i s  a c t i v e ,  t h e  m u l t i p l i e r  e s t ima te  has t h e  wrong s i g n .  

Vari0u.s s t r a t e g i e s  a r e  poss ib l e  t o  d e a l  w l t h  t h i s  s i t u a t l o n ,  but  tne 

procedure followed depends DE which of t h e  two a l t e r n a t i v e s  i s  con-  

s idered  more l i k e l y  . 
If the  nega t ive  m d t i p l i e r  e s t ima te  i s  taken a s  a s i g n a i  

the t h a t  t he  c o n s t r a i n t  has been i n c o r r e c t l y  c l a s s i f i e c !  8 s  ac t ive :  

p a r t i c u l a r  c o n s t r a i n t  i s  de le ted  f rom the  "actPJe set '!, a n d  new 

es t imates  of t h e  m u l t i p l i e r s  and sea rch  d i r e c t i o n  a r e  'iken computed 

f o r  the diminished s e t  of ac tPJe  c o n s t r a i n t s .  

t i n c t  from t h e  s t r a t e g y  of t he  p e n a l t y  t r a j e c t o r y  a lgor i thm for i n -  

e q u a l i t i e s  because he re  t he  c o n s t r a i n t  I s  de le t ed  from t h e  ' ' ac t ive"  

se t  before  so lv ing  f o r  the search  . 3 i r ec t ion .  

This  s t r a t e g y  i s  d i s -  

. .  

In.  t h e  pena l ty  case 
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f o r  i n e q u a l i t i e s ,  i f  A i  < 0, t h e  s t e p  given bj- the usua l  r e l a l i c r  

f o r  a p is  8 p r e d i c t i o n  t h a i  t h e  - i -th  c m s t r a i n t  vi111 not be -:iv- 

lated a t  t h e  next  po in t ,  s o  t h a t  even t h e  predic-ced move wi th  The 

A T  
i 

nega t ive  m u l t i p l i e r  i n  essence d e l e t e s  t h e  - i t h  zonstraimt,  f ron  the  

a c t i v e  s e t .  I n  t h e  b a r r i e r  case,  however, if h < 0, t h e  express ion  

given for $ Tp by E 4  p r e d i c t s  t h a t  t he  next  p o i n t  w i l l  be i n f e a s i b l e  

w i t h  r e s p e c t  t o  t h e  - i t h  c o n s t r a i n t ,  which i s  not  pe rmi t t ed .  

- 

i 

Tilore- 

fo re ,  t h e  u s u a l  c o n s t r a i n t  for 2 'p should not  hcld if t h e  - 5th i 

a nega t ive  m u l t i p l i e r  e s t ima te  from t he  l i n e a r  EqualFties a t  ;nlr 

a 

m u l t i p l i e r  has t h e  wrong s i g n ,  and a rnodified s e t  cf e q u a l i t y  ccn- 

s t r a i n t s  t o  be s a t i s f i e d  by t h e  sea rch  d i r e c t i c r ,  should be der-ivec?, 

for a reduced a c t i v e  s e t .  If  t h e  c o n s t r a i n t  i s  be l ieved  t o  ke 
A T  a c t i v e  d e s p i t e  t h e  negat ive  m u l t i p l i e r  e s t ima te ,  a p can be lcrmu- 

l a t e d  t o  decrease t h e  - i t h  c c n s t r a i n t :  f o r  e x a q k ,  acccrdir:g t~ E?. 
i 

The c u r r e n t  s t r a t e g y  i s  t o  d e l e t e  only- m e  co i i s t r z in t  w i t i i  

A T  i t e r a t i o n ;  t h e  s p e c i f i c a t i o n  of a .  p for any c o n s t r s i n t s  t h a t  h a w  
1 

nega t ive  r ; u l t f p l i e r  e s t imz te s  even for t h e  modified a c t i v ?  s e t  czn  

always be given s o  t h a t  t h e  s ea rch  d i r e c t i o n  i a  a descent  d i r e z t i o n  

for t h e  b a r r i e r  f u n c t i o n .  Since t h e  cu r r en t  p c i n t  i s  not  c l o s e  t o  

x* i n  t h i s  s i t u a t i o n ,  it seems more s a t i s f y i n g  t o  t ake  th5 st6-i;' TZ 

a new p o i n t ,  where b e t t e r  m u l t i p l i e r  e s t ima te s  car;, be ck ta ine t i ,  than 

t o  cont inue  a d j u s t i n g  t h e  sea rch  d i r e c t i o n  t o  crirrespond t o  i n f 3 r -  

mation a t  t he  c u r r e n t  p o i n t .  

S p e c i f i c a t i o n  of >. - 
I n  a b a r r i e r  a lgori thm, where t h e  l o c a l  in f luence  or" tine 

o b j e c t l v e  func t ion  becomes more s i g n i f i c a n t  a s  t h e  k a m i e r  parameter 

i s  decreased,  the v e c t o r  h of e s t l n a t e d  Lagrange rnultipl.jers use5 in 

W?L w i l l  alwsys be taken a s  t h e  l ea s t- squa res  so l t l t ion  cf 
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min 1 I g - f i  I I 
used, i n  va r ious  

treetor A* s a t i s f i e s  a l e a s t - s q u a r s  r e l a t i o n s h i p  wi th  g ( x ” )  and 2(x*). 

It is  e s p e c i a l l y  app ropr i a t e  for a b a r r i e r  func t ion  a lgor i thm because 

t h e  e x a c t  r e l a t i o n s h i p  of g sr_d t, a t  any given p c i n t  is  s i g a l f i c a n t  

i n  t h e  behavior  of t h e  algori thm, a s  w i l l  be seen i n  l a t e r  d i scus-  

s i o n  of t h e  method’s p r o p e r t i e s .  

a t  t h e  c u r r e n t  poi.nr.. Tiiis choice of A is  wids ly  

Lagrangian-type a lgor i thms,  because a t  x* t h e  

h 

Calcu la t ion  of p N 
a 

I n  c a l c u l a t i n g  t h e  nul l- space  con;ponent of t h e  s ea rck  d i -  

r e c t i o n ,  any tern? included i n  t h e  Hessian ma t r ix  S which is a ~ u l -  

t i p l e  of ADA , for D symmetric and non- singular ,  i s  a n n i h i l a t e d  by 

a p p l i c a t i o n  of 2 . 
B(x,r ) ,  t h e  p o r t i o n  cf S t h a t  c a m e s  i t s  i l l - c o n d i t i o n i n g  f o r  t he  

usual. b a r r i e r  fUnctiGi1 nethod, i .e ., 

A AT 

T Therefore,  if S i s  taken  a s  t h e  H e z i z n  of 

p . -i 
1 bT, has no e f f e c t  on the sea rch  d i r e c t i o n  i n  

! I r%i , ‘1 

1 i I 

L 
t h e  b a r r i e r  t r a j e c t o r y  a lgo r i thm.  The s i n g u l a r i x y  csuse2 l;ji -ihe 

approach to ze ro  GI“ t h e  a c t i v e  consxraiizt va lues  does fin7 affecc .  

the c a l c u l a t i o n  of t h e  s ea rck  d i r e c t i c n ,  b u t  only ’;hs 5 ~ 3 2  kni ;?k  

computed dur ing  t h e  l i n e a r  s ea rch .  

If t h e  c u r r e n t  p o i n t  i s  c l o s e  t o  x*(r)  for s u f f i c i e n t i y  

sroal l  r., t h e  choice of e i t h e r  t h e  I iessian of B(x,r) o r  L (x ,h )  f o r  S 

w i l l  g ive a s in i i l a r  r e s u l t  for p l!d’ s i n c e  t h e  po r t iov  CJ: V 8(x,r) 

t h a t  rercains i n  computing p 

2 

r 
c i i s  a 

m y  
i=1 i 

i s  given by G - C r G i ,  and 7;- 
C N 
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f i r s t - o r d e r  spproximation t o  i near  x* ( r ) .  

The formula t ions  given f o r  conputing pN do not  reqliir;. 

Hmevcr,  the t h a t  S be p o s i t i v e  d e f i n i t e ,  or even non- s ingular .  

s p e c i f i c a t i o n  t h a t  p 

is S i n  t he  n u l l  space of %; impli.es t h a t  gT& should b e  pcs i t ive  

d e f i n i t e  . 

If 2 S2 i s  a good approximation t o  Z I&, then  2 S& should SISP be 

minimizes a quadra t i c  func t ion  whose i i e sc ian  N 

m 
A t  xsc, 2% i s  p o s i t i v e  d e f i n i t e ,  where W = G - C AT$-. I -  . 

i=l 
T AT T 

p o s i t i v e  d e f i n i t e  % i n  a neighborhood of x*. 

p e n a l t y  t r a j e c t o r y  algori-chm, t o  d e a l  w i t h  t h e  i n e v i t a b l e  t imes 

when 2 S& i s  not  p o s i t i v e  d e f i n i t e ,  t h e  l i n e a r  system i o r  ?-- 1 U  L, 

solved w i t h  a modified Cholesky algori thm, s o  t h a t  t h e  maxr ix  LLJ? 

t o  compute p 

( s e e  G i l l  and Murray, 19722, f G r  d e t a i l s ) .  

Nonetheless,  3 2  ir! t n e  

T 

i s  always guaraizteed t o  be s t r i c t l y  p o s i i i v e  d ~ f l ~ , i - ~ e  N 
T I€ 2 S& i s  POT. p c ? t t i v e  

d e f i n i t e ,  t h e  c a l c u l a t i o n  of t h e  nul l- space component must br? E L -  

t e r e d  i n  t h i s  way; otherwise,  t he  s e a r c h  d i r ec - t i on  may no: be E 

descen t  d i r e c t i o n  for t h e  quadra t i c  f u n c t i o n  which it Is chosen tci 

minimize. 

T When p i s  w r i t t e n  i n  terms of t h e  mat r ix  2 S&: tinis N 
l a t t e r  r e p r e s e n t a t i o n  shoulc! be i n t e r p r e t e d  a s  a mat r ix  tha;  12 

p o s i t i v e  d e f i c i t e  an2 s t r i c t l y  bounded away from singuler:--- - / >  t\-En 

if t h e  u i x l t e r e d  L 32 a t  t h e  c u r r e n t  po in t  i s  s i n g u l a r  01- in6ei i i l i - ic .  eTn 

Choice of Act ive S e t  

A complicat ion inhe ren t  i n  a b a r r i e r  t r a j e c t o r y  a lgor i tk im 

i s  the dec i s ion  a s  t c  which cons t r a in t , s  a r e  a c t i v e  a t  x*, s ince  only 

t h e i r  behavior  i s  u l t i m a t e l y  s i g n i f i c a n t  a s  t h e  s o l u t i o n  i s  approached. 

There a r e  nutxcrous p o s s i b l e  s t r a t e g i e s  for choosing t h e  a c t l v e  s e t  

of constraints a t  each i t e r s t i o n ,  and d e t a i l s  of t h e  p a r t i z u l z r  



iniplenrentatiuil repor ted  he re  a r e  given i n  Chsyter 6. 

p r i n c i p l e s  a r e  t h a t  t h e  information generated dur ing  tiis prcvious 

i t e r a t i o n  and a v a i l a b l e  a t  t he  beginning of t h e  c u r r e n t  i t e y a t i o n  i s  

used t o  p r e d i c t  t h e  a c t i v e  s e t .  Ind ica t ions  t h a t  a p a r x i c u i a r  con- 

s t r a i i l t  i s  :lot a c t i v e  a r e :  (1) i t s  m u l t i p l i e r  e s t i m a t e  i., neza t ive ;  

The bec i c  

o r  ( 2 )  i t s  va lue  i s  bounded away from ze ro  a s  t h e  b a r r i e r  Faramexer 

i s  decreased .  

s ide red  i n a c t i v e  i s  i n  f a c t  a c t i v e  a r e :  (?-) it i s  v i o l a t e 6  Suring 

t h e  l i n e a r  search ,  s o  t h a t  i t s  inf luence  i s  s i g n i f i c a n t  L r  d s e r -  

mining t h e  minimum of t h e  ba r r i e l -  func t ion ;  o r  ( 2 )  i t s  v z l l ~ e  i s  

approaching ze ro  a s  t he  b a r r i e r  pereixzter approachzs z e : ~ .  

t h e s e  c r i t e r i a  , an a c t i v e  set of l i n e z r i y  independent c m s x r a i n t  

g r a d i e m s  i s  determined a t  each i t e r a Z i o n  oi t h e  t a r r i e r  zcrajectcl-y 

a l g o r i t h a .  Fu r the r  d e t a i l s  w i l l  n s t  be given he re ,  s i n e s  ,hi.. methsd  

f o r  dec id ing  on t h e  a c t i v e  s e t  iz a separable  f e a t u r e  oi th?e ' s a r r i e r  

t r a j e c t o r y  a lgo r i thm.  An i n c o r r e c t  choice of t h e  a c t i v e  se: a x  3 

p a r t i c u l a r  i t e r a t i o n  Eay S ~ J W  down local progress ,  but  s h o u l d  no-" 

The ind ieaxions  t h a t  a c o n s t r a i n t  previo.iis.ljr con- 

. 

'Jsinq 

im-pede u l t h a t e  convergence. 

Des cent  -Pr oyer t 3- 

Because a l i n e a r  scarcn t o  ninimfze a b a r r i e r  f u n c t i c n  is 

it must be v e r i i i e d  t h a t  t h e  searcr? d t recyion  i s  a descent  d l r e c t i o n  

w i t h  r e s p e c t  t o  some b a r r i e r  f m c t i o n .  

If a l l  t h e  c u r r e n t  multiplier es t ima te s  { A i  a r e  p o s i t i v e ,  
2. 

t h e  descent  p rope r ty  can be demonstrated f o r  t h e  xra jeczory  sea rch  

d i r e c t i o n ,  p, whzre p = QlpE + 2px, such t h a t :  

( A )  pR i s  determined ty Lhe l i n e - r  e q u a l i t i e s  LC4, i . e  .> 
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. 
, whers 

*T, 
P. Q i s  'cy d e f i n i t i o n  non- singular ,  and A i  > 0, i=1 ,2 ,  . . .,E; 1 

( B )  pN s a t i s f i e s  t h e  l i n e a r  equat ions 2 T S2plrr = -zTg, where the  

T mat r ix  2 SZ i s  s t r i c t l y  p o s i t i v e  d e f i c i t e .  

The v e c t o r  h. i s  t h e  l ea s t - squa res  s o l u t i o n  of riiin I I g-8A 1 I '; 
t h e  v e c t o r  g may thus  be w r i t t e n  a s  g = +- 2 v  f o r  some v ,  and 

ZTg = v .  

A s  usua l ,  t h e  descent  proper ty  of p w i l l  be v e r i f i e d  by 

showing t h a t  t h e  s c a l a r  product  of p and VB(x,$) i s  nega t ive  f o r  

s u i t a b l y  chosen ?.  

For  s i m p l i c i t y ,  we a s s m e  without  l o s s  of generali-cy t h a t  

t h e  mat r ix  A i s  p a r t i t i o n e d  s o  t h a t  t he  f i rs t  m columns con ta in  the 

g rad ien t s  of t h e  a c t i v e  c o n s t r a i n t s ,  wi th  a s i m i l a r  o rde r ing  for t h e  

c o n s t r a i n t  v e c t o r .  The mat r ix  A can then  be w r i t t e n  a s :  

where %i hcs m columns, and has (.em) columns. 

The g rad ien t  of t he  b a r r i e r  func t ion  B(x,?) i s  given by: 

VB(x,$) = g - h rA 



M = g - r A  

1 - 
1 C 

1 - 
C m .  

A d  - r A  

S u b s t i t u t i n g  t h e  express ion  ?h + &sr f o r  g, the above k:ecomes: 

A ’  V B ( x , r )  = A 
h -’ + 2v - r A  

The s c a l a r  pmduc t  p T VE(x,?)  i s  then  given by: 

1 

m + l  
- 
C 

1 - 
c& 

For 2 s u f f i c i e n t l y  s n i a l l  and a c r i t e r i o n  for choosing 

t h e  a c t i v e  c o n s t r a i n t s  t h a t  guarantees  t h a t  a l l  i n a c t i v e  c o n s t r a i n t s  

a r e  koundec! awey from zerc ,  t he  term of t h e  s c a l a r  prcduct  i r ,vo lv ing  

A i s  of order r. 

i d e n t i t y  rmtri;; of order  n-m. 

T the  By c c n s t r u c t i o n  of 2, t h e  m a t r i x  2 2 = I A * J  

n-rn’ 
Beceuse p s a t i s f i e s  LC4, s o  t h a t  - 

A T  ai  Q,p, = -c A - r , t h e  s c a l a r  product  cac, t h e r e f c r e ,  be w r i t t e n  
i ’ h ,  

i 

a s  f 0 l l . O h ~ S  : 

For. 

c 

and $ s u f f i c i e n t l y  small., xhe f i r s t  term is nega t ive  because 

i 3, A .  > 0; t h e  secorid term I s  negative becausz &TCf! i s  2osi‘CrVe 
i 1 
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d e f i s i t e .  Consequently, p i s  a descent  d i r e c t i o n  for B(x, l? ) .  

Throughout the  above proof, it wau asawned t h a t  

1. > 0, i ~ l , 2 ~  . . . , m .  The descent  p rcpe r ty  of t h e  t r a j e c t o r y  s e a r c h  

d i r e c t i o n  can a l s o  be v e r i f i e d  when sone of t h e  [ A i ]  a r e  nega t ive ,  

i f  each l i n e a r  c o n s t r a i n t  o f  LC4 corres7onding t o  a nega t ive  mul t i -  

p l i e r  i s  s u i t s b l y  a l t e r e d .  The s p e c i f i c a t i o n  of a p f o r  such a 

cons t rP in t  can take  va r ious  forms --  f o r  example, it might 'ce maae 

1 

\ 

A T  
i 

" neg l ig ib l e"  i n  order  t o  have no e f f e c t  on t h e  s i g n  of t h e  s c a l a r  

product .  The key p o i n t  i s  t h a t  t h e  d e f i n i t i o n  of a p must he A T  
i 

A a l t e r e d  if A. < 0 because a decrease i n  r only inc reases  t he  in -  i 

f luence  of A i  i n  t h e  s c a l a r  product (5.3.1), given t h e  d e f i n i t i o n  

of the rnn l t i p l i e r s  i n  terms of t h e  vec to r  g. This  s i t c a t i o n  con- 

'irasts w i t h  t h e  p e n a l t y  func t ion  case,  where t h e  in f luence  of a 

nega t ive  ff iul t iFl ier  can be made n e g l i g i b l e  f o r  a s u f f i c i e n t l y  l a r g e  

va lue  of t h e  p e n a l t y  param.. pxer .  

As mentioned e a r l i e r ,  t h e  s ea rch  d i r e c t i o n  t h a t  so lves  

t h e  quadra t i c  program Q64 may not  be a descent  d i r e c t i o n  for a 

s u i t a b l e  b a r r i e r  func t ion  a t  a gene ra l  p o i n t .  However, under nore 

r e s t r i c x i v e  condi t ions ,  an appropr i a t e  descent  p rope r ty  c3n ke  

demonstrated f or  t h i s  choice of t r a  jec'iory s e a r c h  d i rec t j -on .  Tne 

r equ i r ed  a s s m p t i o n s  a r e :  t h e  cu r r en t  p o i n t  >: i s  c l o s e  t o  x*(r), 

where r i s  sma l l  enough s o  t h a t  x*(r> i s  I n  a nea r  neighborhood of 

x*; arid ,I.? + 3, i = 1 , 2 , .  . . ,m .  
1 

To v e r i f y  t h e  descent  p:-operty, we must f i r s t  estimate 

t h e  magcitudes of thz v e c t o r s  p and p The v e c t o r  L ' ~  i s  the  R N' 
s o l u t i o n  o f :  
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A -  2Ttjl pR = -e + r ( 5  - 5 . 2 )  

ATA 
Q WhFre In a neighbor-  

hood of x*(r ) ,  t h e  va lues  {ei]  a r e  of order  r, s i n c e  A? = i + O ( r ) .  

The r ight- hand s i d e  of ( 5 . 5 . 2 )  i s  thus  O ( r )  f o r  r sma l l  enough; be- 

cause 8'8 1 i s  non- singular ,  it fol lows t h a t  I Ip 3 I I = @(r )  . Since 

t h e  columns of G1 a r e  orthogonal,  1 \GlpRl I i s  a l s o  of order  r .  The 

-feetor  p TI i s  giverl by: 

is Q d e f i n i t i o n  non- singular ,  and r < r .  - 

r 
1 

A 

1 

! I  

p?l = - (ZTS2) (& -t &"SQ1PR) * ( 5  - 5 . 3 )  

TnP .. 

aT,o \ -1 

The matr ix  2 
hence 1 I \ L  ab) 1 1  i s  bxmded.  The norm of t h e  v e c t o r  2TSQlp, 

1s guaranteed t o  be s t r i c t l y  p o s i t i v e  d e f i n i t e ,  and 

s a t i s l i e s :  

T The norm of 2 S i s  bounded i n  a neighborhood of x*(r)  f o r  any of 

t h e  given choices f c r  S .  Since I ( B  1 R  p I I has 'seen shown t o  'ce c(r); 
it fo l lows  that 1 I Z  S Q ~ P ~ I  I = C ( r > .  T 

T To e s t ima te  112 gI I , cons ider  t h e  func t ion  e ( x )  repre-  

s e n t i n g  t h e  l ea s t - squa res  e r r o r ,  

e i x )  = min I I g - a  I l 2  = I IgTgl I*, f o r  g ,  2,2 in a neighborhood of 

x*( r ) .  Became the  mat r ix  8 has f u l l ,  cons tan t  rank  i n  a neighbor.- 

hood oi x*( r ) ,  f o r  r sma l l  enough, arid t h e  second d e r i v a t i v e s  of F 

and {e.] 1 a r e  continuous by assm-pt ion ,  t he  func t ion  e ( x )  can be 

w r i t t e n  : 
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some neighborhood cf x*(r) (pep G 3 h b  aiid T-leyra,  1973). 
2 

Since a t  x*!r), [isTg1 1; = e ( x * ( r ) )  =c(r ), t h e  r e -  
2 2 rn 

l a t i o n s h i p  I l!??(x*(r)+E) g(x*jr)+6)1 l 2  = e (x* ( r )+5>  - G ( r  ) w i l l  

hold for s u f f i c i e i i t l y  s m a l l  I 161 1 ,  by c o n t i n u i t y  of e ( x )  . 

f o r e  \ 1ZTg1 I i s  ? ( r )  i n  an appropr i a t e  neighborhood of x * ( r ) .  

There- 

From 

( 5 .  5 .  3 ) >  G(I  IPXl I ) =‘-‘(I 1 (zTs2)-11 1 ) max ( 1  lzTSGlPRI > I lzTgl I), 
2 2 2 

and thus  we see  t h a t  I IpN 1 I i s  C(r). Since I / P I  I 
l l p l l  must a l s c  b e O ( r ) .  

= I lp,l 1 + 1 lpRl I , . 

Given t h e s e  e s t ima te s  of I /pR( I and J lp,l 1 ,  we cons ider  

t h e  s c a l a r  product of’ t h e  search  d i r e c t l c n  w i t h  VB(x,$), given ky: 

w 
- A  

A r 

m+l 
- 
C 

r 
cP, 

Replacing g by i t s  r e p r e s e n t a t i o n  + &v, and p by p + &p we l H  €1 ’ 
o b t a i n  2s t h e  s c a l a r  product :  

T T- 
+ P N V - P A  

A r 
rn+ 1 C 

A r - 
c& 

AT S u b s t i t u t i n g  tiie value of each component of  A p t h e  express ion  3- R’ 
becomes : 

A r 

m + l  
- 
C 

A r 



- 
A 

A r .  Each 'Lerm ( - c  + c) ( h i  - -1 C .  i s  O ( r )  and negat ive ,  f o r  >, r 

s u f f i c i e n t l y  small ,  s i n c e  each h i i s  p o s i t i v e  c lose  t o  x * ( r ) .  The 

term p N v i s  o(r2), s i n c e  1/pNl I i s  C J ( r ) ,  and v = F g  = O ( r ) ;  t h e  

term involv ing  A i s  e($), and $ < r .  

negat ive  s i g n  of t h e  f i rs t  term dom?-nste t he  s c a l a r  product ,  and the  

t r a j e c t o r y  sea rch  d i r e c t i o n  t h a t  so lves  @4 i s  a descent  d i r e c t i o n  

for E(x,$) under t h e  s t a t e d  assumptions. It shoula be emphasized, 

however, t h a t  t h t s  descent  proper ty  does not  hold a t  a gene ra l  point; 

even i f  a l l  t h e  es t imated  mult ipi ie l-s  a r e  p o s i t i v e .  

i A i  1 

T 

d 

Therefore,  t h e  magxitude and 

% 

Loca 1 C onve rge r.ce Pr  s p  r t i e  s 

A u n i t  s t e p  can be taken along the  t r a j e c t o r y  s e a r c h  d i -  

r e c t i o n  i f  it w i l l  maintain f e a s i b i l i t y .  For any non-zero r, t he  

t r a j e c t o r y  s e a r c h  d i r e c t i o n  s a t i s f i e s  : 

A AT A p = - c + r  
. I  

A The expansion of c i about t h e  cu r r en t  p o i n t  can be w r i t t e n  : 

3, * ( 5  -5 .4)  

A T' A r Substit . ; t in-- t he  va lue  -c .  + - for a i  p i n  ( 5 .5 .4 ) ,  we obta in :  
1 A i  

I-or x s u f f i c i e n t l y  c l c s e  t o  x t ( r ) ,  t h e  s t e p  taKen by the  

t r a j e c t o r y  a lgor i thm i s  

(5 p Gip) w i l l  be G ( r * ) .  The t e r m  - 
2 A  if -(I.) :> C ( r  >, c . ( x  1 + p)  will  t e  p o s i i i v e ,  and a u n i t  s t e p  

a long  p will maintain f e a s i k i l i t y .  

G ( r )  i n  magnimde, and thus  t h e  term - 
r i s  C ( G )  , and , consequently,  

I T  

Ai 
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The t r a j e c t o r y  s e a r c h  d i r e c t i o n  t h a t  so lves  t h e  quadra t i c  

p rog raming  formula t ion  QP4 foi- s u f f i c i e n t l y  small r can be made 

a r b i t r a r i l y  c lo se  t o  t h e  s t e p  taken 'cy an  ana1.ogcu.s l i n e a r l y  con- 

s t r a i n e d  Lagrangian a lgor i thm i f  t h e  same m a t r i x  S i s  used i n  both 

methods. This  r e s u l t  i s  demonstrated by t h e  same reasoning  g iven  

i n  Sec t ion  5 . b . 3  f o r  the p e n a l t y  t r a j e c t o r y  elgori thm; the  r i g h t -  

hand s ide  of t he  l i n e a r  c o n s t r a i n t s  or' QP4 i s  an 0 ($)  p e r t u r b a t i o n  

of t h e  c o n s t r a i n t s  i n  a Lagrangian method, and thus t h e  sea rch  d i -  

r e c t i o n  generated by the  b a r r i e r  t r a j e c t o r y  a lgor i thn ,  d i f f e r s  f r m  

t h e  Lagrangian s t e p  by 0 (r) .  
c ious  choice of r t h a t  main ta ins  f e a s i b i l i t y ,  t h e  b a r r i e r  t r a j e c t o r y  

a lgor i thm based on QFL may achieve t h e  l o c a l  convergence r a t e  C J ~  a 

1- inearly ccns t r a ined  Lagrangian algori thm i f  r i s  sma l l  enough s o  

t h a t  t h e  a($) p e r t u r b a t i o n  i s  i n s i g n i f i c a n t  w i t h  r e s p e c t  t o  t he  terns 

t h a t  detersline the  r a t e  of convergence. Fu r the r  comments on t h e  

l o c a l  convergence of t h e  b a r r i e r  t r a j e c t o r y  a lgor i thm a r e  giver, i n  

% 

Therefore,  c lo se  t o  xic, w i t h  a j u d i -  

Sec t ion  3.5. 

When t h e  vec to r  py, i n  t h e  t r a j e c t o r y  s e a r c h  d i r e c t i o n  i s  

computed t o  s a t i s f y  t h e  a l t e r n a t i v e  formulat ion E3, i.e., 

( 5 - 5  -5) T' 2 s%pw = - ZTg, 

and S i s  given by t h e  Hessian of an approximate Lagrangisn f ? m c t i c n ,  

t h e  nul l- space  component of the t r a j e c t o r y  sea rch  d i r e c t i o n ,  2pN, 

becomes an a r b i t r a l - i l y  c lo se  approximation t o  t h e  nul l- space com- 

ponent of t h e  Eewton s t e p  t o  t he  minimum of B(X,;) for %: s u f f i -  

c i e n t l y  small. 

give  a n  e x p l i c i t  and highly accura te  approximation of the inverse  

As i n  t h e  p e n s l t y  case,  t h e  r e s u l t s  of Mu.rray (1971) 
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I 

where [A 1 . ] a r e  t h e  est imated Lagrange m u l t i p l l e r s  . 

An approximation t o  t h e  Newton s t e p ,  yy t o  t he  minimum of 

~(x,?) cari be w r i t t e n  a s :  

1 - 
c1 

1 
c 

C m 

where t h e  c o n t r i b u t i o n  of t h e  i n a c t i v e  c o n s t r a i n t s  has kznn i z s o r e d .  

Wri t ing  g i n  t e r m  cf its expansion a s  + Zv, p s e p a r a t e s  i n t o  tvr 

orthogonal  composents, and the  nul l- space  component of  p i s  approxi-  

* 

mately given by: 

which i s  e x a c t l y  equa l  t o  t h e  nul l- space component of t he  t r a j e c t c r y  

d i r e c t i o n  given by (5  .> .5 ) i f  S = G - C A .e . 
i i  

rn 

i= 1 
These r e s u l t s  show t h a t  it i s  p o s s i k l e  t o  demonstrate l o c a l  

convergence' i c r  t h e  ' c a r r i e r  t r a j e c t c r y  a lgor i thm.  

for t h e  p e m l t y  t r a j e c t o r y  a l g o r i t h n ,  l o c a l  convergence does no-c 

n e c e s s a r i l y  imply a robus t  or gene ra l ly  e f f e c t i v e  a lgor i thm.  The 

s t r e n g t h  cf t he  ' c a r r i e r  t r a j e c t o r y  a lgor i thm i s  based on i t s  d e r i -  

v a t i o n  t h r w g h  t h e  logar i thmic  b a r r i e r  func'iion, i n  terms of proper-  

t i e s  t h a t  dc, not c r i t i c a l l y  depend on be lng  i n  a neighborhood of xx. 

Emever,  a s  noted 
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5.6  Swaary 

The pena l ty  and b a r r i e r  t r a j e c t o r y  algorithms t h a t  have been pre-  

sen ted  a r e  'cased on t h e  idea of u s ing  the  p r o p e r t i e s  of t h e  q u a d r a t i c  

pena l ty  functi.cn and t h e  l o g a r i t b i c  b a r r i e r  f u n c t i s n  t o  c h a r a c t e r i z e  

t h e  s e a r c h  d i r e c t i o r  e t  each  i t e r a t i g n .  The measure of progress  throu-gh- 

out i s  provided by a s u i t a b l e  decrease  i n  e i t h e r  a pena l ty  or b a r r i e r  

func t ion ,  w i t h  a f o r c i n g  parameter t h a t  may be a l t e r e d  a t  every s t e p .  

If t h e  t r a j e c t o r y  s e a r c h  d i r e c t i o n  so lves  t h e  app ropr i a t e  q u a d r a t i c  

p r o g r a m i n g  problem, t h e  l o c e l  r a t e  of corivergence of t h e  t r a j e c t o r y  al- 

gorithms i s  not  l imi t ed  t o  The r a t e  r,f convergence of t h e  m u l t i p l i e r  

e s t ima te s ,  given a s u i t a b l e  choice of t h e  pena l ty  o r  b a r r i e r  parameter .  

The a n a l y s i s  02 l o c a l  comrergence f o r  t h e  t r a j e c t o r y  a l g o r i t h n s  fol lows 

t h a t  given i n  Sec t ion  4 .8  f c r  tks l i n e a r l y  cons t ra ined  Lagrangian e lgc -  

rithms, and the  d i scuss ion  h e r e  w i l l  ccnsequently be abbrev ia t ed .  The 

method t o  be coiisidered i s  t he  pena l ty  t r a j e c t o r y  a lgor i thm for e q u a l i t i e s ,  

where the  exac t  Hesclans of F and {ci}, i = 1 , 2 , .  . . ,m,  a r e  a v a i l a b l e  a t  

, the currenx p o i c t .  

Let -> and 'i; be t h e  cu r r en t  e s t ima te s  of x* and  A * .  The s t e p  p t o  - 
- - 

the next  estimaxe, x, i s  t h e  s o l u t i o n  of t h e  quadra t i c  p rog raming  pro-  

blem : 

- -T - A  
sub jec t  t o  A p = -C  - - P , 

where "cy1'  denotes  t he  func t ion  "Cy" evaluated a t  x .  The new mul t ip l - i e r  

esti~qst,? )L w i l l  be 6;liren by the tnultipl-iers of t h e  quadra t i c  p rog raming  
- - 

problem . 
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- -  - - -  - -  _- - 
Define e = 

-T- 
- x*, e = x - x*, A = A - A*, and = x  - A X - .  Siilce 

- - - - , by w r l t i n g  5 a s  e - e ,  d e  ob ta in :  p s a t i s f i e s  A p =: -c - - 
P 

- - 
( 5  .6. I-) -n- 1- -T- A 

P 
A e = -c + A  e - -  . 

The Taylor  s e r i e s  expansion of c about x* gives :  
- -T- 2 
c - A e +0(11&11 ) = c(x*> = O .  

S u b s t i t u t i n g  (5 .6 .2)  i n  (5.6.1), t h e  r e s a l t  i s :  

The es t ima te  i s  def ined by: 

m 

i=l 
G = + ( E  - c A , G . ) 5  ' 

i l  (5.6.4) 

Using t h e  same procedure a s  I n  Sec t ion  4.8, we expand g an? { a . ] ,  1 

i=1 ,2 ,  . . .,my about x*, s u b s t i t u t e  t he  expansions i n  (5 .6 .4 ) ,  and r e -  

group, y i e  Id i ng  : 

m 
= G - C XiGi -  

i=l 
where 

The derived r e l a t i c n s h l p s  (3.6.3) and ( 5 . 6 . 5 )  for e and a' may then  

1. 2 
Parameter p i s  ad jus t ed  near  x* s o  t h a t g ( - )  P =3( 11 .1  I - ) ,  t h e  t r a j e c t o r y  

a lgor i thm w i l l  maintain t h e  l o c a l  r a t e  of convergence of t h e  analogous 

l i n e a r l y  cons t ra ined  Lagrangian a lgor i thm A s i m i l a r  r e s u l t  a p p l i e s  i o  

t h e  p e n a l t y  a lgor i thm f c r  i nequa l i t i . e s  , 
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F o r  t h e  h a r r i e r  t r a j e c t o r y  algori thm, a r e s u l t  analogous t o  (5.6.6) 

h o l d s  if the  b a r r i e r  p r a m e t e r ,  1, which de f ines  ,de r ight- hand s i d e  of t h e  

l i n e a r  c o n s t r a i n t s  LC4 s a t i s f i e d  by t h e  sea rch  d i r e c t i o n ,  i s  chssen s o  t h a t  

c(E) = o( 1 I 
of f e a s i b i l i T y  nust a l s o  be  considered i n  a d j u s t i n g  t h e  ' c a r r i e r  parameter 

i n  t h e  b a r r i e r  t r a j e c t o r y  method. If r i s  t o o  Small, t h e  s t e p  given by 

the  l i n e a r  c o n s t r a i n t s  may y i e l d  a non- feas i t l e  p o i n t ,  and thus a l i m i t  

t o  t h e  r s t e  3f l o c a l  convergence may be imposed by t h e  requirement of 

f e a s i b i l i i y  . 

- 

12). However, a s  noted i n  Sec t ion  5 .5, t h e  maintentince 

. 

For -;he i n e q u a l i t y  conzt ra ined  proklem, the  t r a j e c t o r y  algori tbms 

gene ra t e  information t h a t  i s  u s e f u l  i n  i d e n t i f y i n g  t h e  c o r r e c t  a c t i v e  

s e t .  

r a t i c  p o g r a m i n g  sub-prsklem may allow a t e t t e r  p r e d i c t i o n  0;' t h e  a c t i v e  

s e t .  

P ienal ty  f u n c t i x ,  t h e  convention of choosing t h e  c u r r e n t l y  v i o l a t e d  

s e t  of c o n s t r a i n t s  a s  a p r e d i c t i o n  of t h e  a c t i v e  s e t  remains reasonable .  

With t h e  p e n a l t y  algori thm, t h e  Lagrange m u l t i p l i e r s  of t h e  qu3d- 

Moreover, because cf t he  under ly ing  r e l i a n c e  or! t h e  p r o p e r t i e s  cf 

For t h e  b a r r i e r  a l g c r i t h ,  t h e  a c t i v e  s e t  i s  p red ic t ed  throughout 

by monitor ing the  s igns  of the m u l t i p l i e r  e s t i m a t e s  and the  decrease i n  

c o n s t r a i n t  va lues ,  and by not ing  which c o n s t r a i n t s  a r e  v i o l a t e d  during 

eacn i i n e a r  saarch. Near t h e  s o l u t i o n ,  when the q u a d r a t i c  p rog raming  

f c r r d l a t i o n  i s  used to c o r ; p t e  t h e  s e a r c h  d i r e c t i o n ,  t h e  m > i l t i p l i e r z  sf 

the sub-problem provide a h igher -order  e s t ima te  of A*, and hence of the? 

a c t i v e  s e t .  

The beha J i o r  of t h e  pena l ty  and c a r r i e r  t r a j e c t o r y  algoritkxns ? re-  

d i c t e d  by the t h e o r e t i c a l  a n a l y s i s  of t h i s  chapter  has  been v e r i f i e d  

exper imenta l ly  Icy t h e  numerical r e s u l t s  presented  i n  Chapter 6, which 

democstrate t h a t  the t r a j e c t o r y  algcri thmc -rz quftE succ~s ; ; fL~ l  I n  

s o l v i n g  a v a r i e t y  of problems. 
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6.1 --- I j iscussion of Comparison ci’ Optimization Algorithms 

The complicat ions inhe ren t  i n  msking an adequate comparison amocg 

d i f f e r e n t  a lgor i thms f o r  c e r t a i n  c l a s s e s  of pro‘clena a r e  well known ( s e e  

Lgness and ICaganolJe, 1976; G i l l  an3 Nurray, 1974b) 

i n  comparicg opt imiza t ion  methods include t h e  fol lowing:  

The d i f f i c u l t i e s  

(1) 

(2) 

t h e  q u a n t i t i g s  used to measure performance may vary  widely; 

The d e t a i l s  of implementation may have an encrrnous e f f e c t  

on t h e  results, buT a r e  u sua l ly  not  publlshec?; 

most pdcl ished t e s t s  a r e  l imi t ed  t o  a s m a l l  numker of 

s t a r t i n g  p o i n t s  ( o f t e n  only one) ,  and the va lues  chosen 

for c r i t i c a l  parameters cf some a spec t s  of the methods 

may no t  be s p e c i f i e d  . E’crrhermore. the examples given 

do not usua l ly  proviae  s u f f i c i e n t  v a r i e t y  to t e s t  a l l  

r e l e v a n t  a spec t s  of t h e  methods cons idered .  

( ? )  

The f a c t c r s  ( 2 )  and ( 3 )  may be overcome t o  a large ex ten t  ‘cy pukli- 

c a t i o n  cf a l l  s l g n i f i c s n t  d e t a i l s  of the p a r t i c u l a r  implementatj  ons used 

i n  t h e  comparison, ky increaz ing  the  number of t e s t  problems and s t a r t i n g  

p o i n t s ,  and by ,-isteKiatic experimentat ion t o  deterrninp the effects of 

v a r i a t i o n  i n  t h e  s i g n i f i c a n t  parameters of each method. 

The d i f f i c u l t y  posed by (1) is more c o q l i c a t e 2 ,  bec3us? t h e r e  Is 

simply no u n i v e r s a l  measure of performance for an opzimization a l g o r i t ’ m .  

Assunling t h a t  t h e  methods do not  f a i l ,  t h e  r e l a t i v e  m e r i t  of d i f f e r e n t  

a lgLr i t -ms  i s  e n t i r e l y  dependent on t h e  c h a r a c t e r i s t i c s  c l  t h e  problem 

tc be calved. Therefme,  the qliest ion f which a l g o r i t h  ir: “ b e s t ”  car’,- 
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riot be ansvered rlithoint some q u i t e  s p e c i f i c  zeclmpticnz a'cout t h e  p robkm 

i n  q u e s t i o n .  

For example, it i s  soxetimes s t a t e d  that. t h e  measure of comparison 

should be the number of "equiva len t  funct ior ,  eva lua t ions"  requi red  f o r  

convergence, where a g rad ien t  i s  considered t o  be worth n func t ion  eva l -  

n(ll-cl) func t ion  eva lua t ions  . This ua t ions ,  and a Hassi,.tn i s  counted a s  

weight ing i s  obviously derived from t h e  not ion  of u s ing  f i n i t e  d i f f e r ences  

t o  approximate the  g rad ien t  and Hessian, and it might be a reasonakle 

measure i f  these procedures  were always fol lowed.  

s e n s i c a l  t o  impose t h i s  s tandard  to conlpare a l g o r i t h m  an a problen; hhere 

t h e  g r a d i e n t  or Hessian can be evaluated much more r a p i d l y  than  one would 

expec t  from the  f i n i t e  d i f f e r e n c e  analogy.  

b e r  of "equiva ien t  f i r n c t i m  eva lua t ions ' '  i s  h ighly  n i s l e a d i n g  . 

2 

% 

However, it i s  non- 

For such  a problem, the num- 

A s i m i l a r  c r i t i c i s m  can 're made when the ccmp,oriscn ic based on thn 

There a r e  obvious d e f e c t s  i n  us ing  this measure- e lapsed  conputer time. 

ment t o  compare d i f f e r e n t  implementations of a lgori thms,  because cf t h e  

very  l a r g e  v a r i a t i o n  i n  execut ion  time t h a t  depends on f e s t u r e s  of the 

p a r t i c u l a r  computer, che compiler,  and program s t r u c t u r e ,  r a t h e r  t han  on 

t h e  methcd i t s e l f .  A more fundamental inadequacy i s  t h a t  this measure 

does n o t  distingu5sh between t h e  time spent  ca r ry ing  out  the  f ixed  pro-  

cedures  of each methad, which normally depend only on t h e  dirxensional i ty  

of t h e  problem, and t h e  time requi red  t o  eva lua t e  t h e  problem f m . c t i o n a .  

I f  t h e  problem furicticjns can be evaluated r ap id ly ,  a naive method with a 

m a l l  amount of housekeeping p e r  i t e r a t i o n  may appesr  " b e t t e r "  than  a 

more pcwerful  and robus t  method, since t h e  former mighr: use less computer 

t ime,  d e s p i t e  r e q u i r i n g  many more i t e r a t i o n s  and fw,etic,n eva lua t ions  t o  
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i f  t h e  t h e  spent  c a l c u l a t i n g  t h e  problem funct ions  completely domiris-ces 

t h e  program overhead, s i n c e  i n  t h i s  case a saving of computer time w i l l  

r e s u l t  from us ing  t h e  more s o p h i s t i c a t e d  method t h a t  converges w i t h  fewer 

func t ion  e v a l u a t i o n s .  

A f u r t h e r  f a c t o r  w o r t h  ezphas iz ing  i s  t h a t  the  i n c l u s i o n  of s a f e -  

guards to ensure r e l i a b i l i t y  and numerical " s t a b i l i t y  always makes pro- 

grams more lengthy and complicated, s o  t h a t  t h e  " s imp l i c i ty"  of a prcgram 

may merely imply t h a t  i t  i s  non-rokust .  

should inc lude  examples t h a t  pose a s  many d i f f i c u l t i e s  a s  poss ib l e ,  

o rder  t o  determine the  weaknesses of t he  methods t e s t e d .  

The problems i n  a compariscn 
= 

ir, 

Otherwise, a 

program where ca re  has  been taken  t o  p r o t e c t  a g a l r s t  f a i l u r e  and i n s t a -  

b i l i t y  may seern t o  ke l e s s  d e s i r a b l e  than a naive unsafeguarded prcgrarr: 

t h a t  might f a i l  ccmpleteiy on some examples. 

Give2 these  cons idera t ic r l s ,  the comparison lL3 be given here  i s  not  

c h i m e d  t o  be conprehe1:alve. Rr ther ,  t h e  emphasis h z s  been t o  examine i n  

d e t a i l  t h e  behavior  of each method, and t o  h igh l igh t  t h e  s i g n i f i c a n t  corn- 

p u t a t i o n s l  d i f f e r ences  i n  t h e  t h e o r e t i c a l  a l g o r i t h m .  

For  each algorithm, the work pe r  i t e r a t i o n  w i l l  be d iscussed ,  i n  

terms of a d e s c r i p t i o n  of t h e  numerical procedures followed, inc luding  

r e l e v a n t  func t ions  of d imens iona l i t y .  The fo l lowing  i n f  orr;lat,i.on w i l l  ke 

given for each t e s t  example: 

(1) number c,f i t e r a t i o n s ;  

( 2 )  

(3)  

( 4 )  

n m b e r  of eva lua t ions  of F and { c . ] ;  1 

number of eva lua t ions  of g and {a . ] ;  1 

n m k e r  of eva lua t ions  of G and { G .  1 1. 

In any given camparison, all a l g o r i t h m  use t h e  same te rmina t ion  c r i t e r i a ,  

and the  f r e e  parameters a s soc i a t ed  w i t h  the  analogous s t e p s  of eacn method 



a r e  t h -  same (€or example: t h e  c r i t e r i a  f o r  te rmina t ing  tne l i n e a r  

s e a r c h ) .  

5.2 Choice and Imnlementation of Algorithms 

Choice of M e t h a  

The a lgor i thms implemented were s e l e c t e d  t o  f o r a  a reasonably gen- 

e r a l  s e t  of approaches t o  so lv ing  non l inea r ly  cons t ra ined  opt imiza t ion  

problems; hciwever, c e r t a i n  c l a s s e s  of a lgori thms were excluded a- p r i c r i .  

For example, L inear ly  cons t ra ined  Lagrangian algori thms can e s s i l y  ke 

made t o  f a i l  if implemented i n  p r e c i s e l y  t h e  forms given i n  Sec t ion  4.8; 

t h e s e  a lgor i thms can be va r i ed  t o  improve robus tness  -- e . g . ,  by adding 

a f e a t u r e  t o  enforce decreas ing  i n f e a s i b i l i t y ,  'cy re- formula t ing  an  1.113- 

bounded sub-pyobkn -- bu t  such modif ica-cions a r e  not  t h e  primary concern 

i n  th is  d i s s e r t a t i o n .  A continuous augmented Lagraagian a l g o r i t b a  is  not  

included because of t h e  drawback t h a t  secord d e r i v a t i v e s  of t he  pro%lem 

func t ions  a r e  requi red  t o  use a f i r s t - o r d e r  technique t o  so lve  t h e  un- 

cons t ra ined  sub-prDblem ( see  Sec t ion  L . 5 )  . 

A c l a s s  of a lgor i thms no t  considered here  i s  t h a t  of "general ized 

reduced g rad ien t"  a c d  "pro jec ted  g rad ien t"  methods ( s e e  Rcsen, 1961; 

Abadie and Carpent ie r ,  1969; Sargent  and Murtagh, 1973; Lssdon e t  al., 

1974). E s p e c i a l l y  i n  t h e i r  l a t e s t  forms, t h e s e  methods have s t r o n g  

s i n i l a r i t i z s  t o  a l f ; o r i t b a s  t h a t  so lve  a quadra t i c  program t o  obta in  t h e  

sea rch  d i r e c t i o n .  The main d i s t i n g u i s h i n g  f e a t u r e  of such a l g o r i t m s  i s  

t h e  inco rpora t ion  of s p e c i a l  s t e p s  t o  r e t a i n  f e a s i b i l i t y ;  t h e s e  s t e p s  

have t h e  e f f c c t  of genera t ing  a sequence cf i t e r a t e s  t h a t  l i e  c lose  t o  

the boundary cf t h e  f e a s i b l e  r eg ion .  

The fo l iowing  methods were implemented : 
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(1) For the geyierai non l inea r ly  cons t ra ined  pr9blem 

( a )  quadra t i c  pena l ty  func t ion  method (Sec t ion  2 .2) ;  

(b) s e q u e n t i a l  augmented Lagrangian msthod (Sec t ion  4 .3) ;  

( c )  progress ive  augmented Lagrsngian method (Sec t ion  4 .4 ) ;  

( a )  
For problems where s t r i c t  f e a s i b i l i t y  i s  t o  be maintained 

( a )  

(53) 

p ena l ty  t r a j e c t o r y  method (Sec t ion  5 .4 ) ;  

(21 

l o g s r i t h i c  b a r r i e r  func t ion  method (Sec t ion  2 .4) ;  

b a r r i e r  t r a j e c t o r y  method (Sec t ion  5 . 5 ) .  
% 

Algor i t h s  w i t h  Unc ons t r a  i n e d  Sub -problem 

A s i n g l e  b a s i c  program s t r u c t u r e  can be used t o  implement a l l  the  

a lgor i thms involv ing  an uncoastrained sub-problem a t  each  i t e r a t i o n ,  

s i n c e  -.he sea rch  2 i r e c t i o n  may be computed us ing  one of t h e  methods for 

unconstrained cp t imiza t ion  descr ibed i n  Sec t ion  1.4. Two unconstrained 

a lgor i thms have beer, used i n  t h e  programs -- a Newton-type method, and a 

quasi-Newton methcd. With e i x h e r  of t hese  methods, the sea rch  d i r e c t i o n  

i s  g e n e r a l l y  given by t he  s o l u t i o n  of a system of l i n e a r  equat ions  of t h e  

f o m :  
Bp = - i;, (6.2.1) 

where b i s  t h e  g rad ien t  of t h e  func t ion  t o  'ce minimized. 

a lgor i thm implemented ( s e e  G i l l  and Murray, 1972a) overcomes t h e  d z f i c i e n -  

cFes of Newtos's E!nthod ( s e e  Sec t ion  1 . 4 )  'cy always us ing  a posixis-e 

deI"inj.te n?atri_x B i n  ( 6 . 2 . 1 ) .  

form .,he Choleshy f a c z o r i z a t i o n  of t h e  e x a c t  o r  approximated Hessian of 

t h e  g iven  func t ion .  

determine whether t h e  o r i g i n a l  Hessian i s  s t r i c t l y  p o s i t i v e  d e f i n i t e .  

If so ,  t h e  una l t e r ed  mtrix se rves  a s  t h e  mat r ix  B i n  (6.2.1). 

if the  Hessian i s  i n d e f i n i t e  91- A Q ' ~  s u f f i c i e n t l y  p o s i t i v e  d e f i n i t e ,  t h e  

The Newton-type 

The mat r ix  13 i s  ohta inez  by attem;jting t o  

A s  t h e  f a c t o r i z a t i o n  i s  computed, it i s  poss ib l e  t o  

iiowever, 
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matr ix  a c t u a l l y  f aczor i zed  i s  the  sum of the  o r i g i n a l  Hessian p lus  a 

p c s i t i v e  d iagonal  matr ix,  whose elements a r e  chosen s o  t h a t  t h e  modified 

matrix is guar ln teed  t o  be p o s i t i v e  Z e f i n i t e .  

The Lmplemenbd quasi-Newton a lgor i thm i s  a " revised  quasi-Newton 

method" ( s e e  S i l l  and Ncrray, 1372b), i n  which The Cholesky f a c t o r s  of 

an approximation t o  t h e  Hessian a r e  updated a t  each i t e r a t i o n ,  and t h e  

r e s u l t i n g  p o s i t i v e  de f in ixe  ma t r ix  serves  a s  B i n  (6.2.1). 

I n  a b a r r i e r  func t ion  a lgor i thm,  the  sea rch  d i r e c t i o n  a t  each  i t e r -  

a t i o n  i s  chosen by s c l v i n g  the  u s u a l  s e t  of l i n e a r  equa t ions .  HGwever, 

t h e  need t 2  main ta in  s t r i c t  f e a s i b i l i t y  l eads  t o  a d d i t i o n a l  l o g i c  i n  the  

program s t r u c t u r e  -- f o r  esample, t h e  i n i t i a l  s t e p  taken during t h e  l i n -  

e a r  searcb. i s  es t imated  by a s p e c i a l  method ( s e e  Sect ion  3 .3-1) .  
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Form of Unconstrained 3.7nc-cion 

s i m p l i c i t y ,  t he  n o t a t i o n  to be used during th i s  d i scuss ion  w i l l  

be t h a t  of t he  e q u a l i t y  cons t ra ined  problem, P1. The observa t ions  t o  be 

g iven  w i l l  apply t o  t he  sane metnods for t h e  i n e q u a l i t y  cons t ra ined  pro-  

blem, E?, 'cut w i t h  an e x p l i c i t  de te rmina t ion  cf t h e  " ac t ive  se t"  of con- 

s t r a i n t s  a t  each p 3 i c t .  Therefore,  m u l t i p l i e r s  correspond 

c o n s t r a i n t s ,  and ogly " a c t i v e "  c o n s t r a i n t s  e r e  included i n  

term. 

For a pena l ty  func t ion  method, a s e q u e n t i a l  augmented 
.. 

only t o  " ac t ive"  

any pena l ty  

La gra ng i a  n 

method, and a progress ive  Lagrangian method, t h e  unconstrained func t ion  

t o  be minimized a t  every i t e r a t i o n  has the  form of a n  augmented Lagrangian 

func t ion :  
T rn 

F(x) - A L  c ( x )  + ; c ( x >  c(x>. 

With a pena l ty  fiXictlon method, t h e  vec to r  A i s  always taken a s  

z e r o .  The va lue  of p i s  f ixed  throughout each ur,constrained minimization, 

and succes s ive ly  increased  u n t i l  

f i e d .  I i i  a seciuent ial  augmented 

c u r r e n t  e s t ima te  cf t h e  Lagrange 

s u i t a k l e  convergence c r i t e r i a  a r e  s a t i s -  

Lagrangian method, t h e  v e c t o r  h i s  the  

m u l t i p l i e r s ,  and is. f i xed  dar ing  each 

complete unconstraLned minimizat ion.  The pa rane te r  

each  minimization, a c d  may be increased  i f  t h e r e  i s  

i n  l n f e a s i b i l i t y  . 

p is f i x e d  during 

i n s u f f i c i e n t  decrease 

With a p rogress ive  method, t h e  v e c t o r  A is updated o r  re-computed a t  

The par-  the beginning of each i t e r a t i o n  ( o r  w i th  s c m  o the r  f r squeccy) .  

ameter  p i n  a progress ive  algori thm i s  inLreased i f  n e i t h e r  11.1 I nor 

I I g-AA I 1 decreased s u f f i c i e n t l y  d u r i n g  the  preceding i t e r a t i o n ;  however, 

some o the r  c r i t e r i o n  for modifying p can a l s o  be used .  It should be em- 

phasized t h a t  i n  a progress ive  a l e o r i t h i ,  each s t e p  i s  d i r e c t e d  t 0 ~ 7 8 r d  
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minimizing a d i f f e r e n t  f m c t i o n ,  s i n c e  i n  gene ra l  h w i l l  vary  from 

i t e r a t i o n  t o  i t e r a t i o n .  Therefore:  t h e  use cjl” B quasi-Newton method t o  

approximate t h e  Hessian may be ques t ionable  i f  t h e  m u l t i p l i e r  e s t i a a t e s  

and/c- pena l ty  parameter a r e  changing r a p i d l y .  

-- C a l c L b  t ion  cf lidt i p l i e 1  Es t imates  

The f i r s t - o r d e r  e s t ima te  of t h e  Lagrange m U l t  

g iven by t h e  l eas t- squares  s o l u t i o n  of mi; 1 1  g - u l  

p l i e r s  a t  a p o i n t  i s  

This problem is  

soltred throi3igh the  i m p l i c i t  c a l c u l a t i o n  of the  orthogcnal  f a c t o r i z a t i o n  

of A ( see  P e t e r s  and Wilkinson, 1970, f o r  complete d e t a i l s ) .  A sequence 

of Householder t ransformat ions  i s  cons t ruc ted ,  t o  be, apyl ied  on t h e  l e f t  

t o  reduce A t o  upper- t r i angu la r  i c rm.  Each t ransformat ion  may be s t o r e d  

a s  a v e c t o r .  

I f  the  matr ix  A i s  no t  of f u l l .  rank,  many of the  f r e q u e n t l y  propcsed 

fo rmi ia s  for conputicg t h e  muLt ip l ie rs  w i l l  f a i l  -- for e:<ample, t h e  e s -  

p r e s s i o n  ( A  A )  -A-g i s  undefirled i f  A i s  rank-def i c i e n t  . When s o l v e d  by 

use of orthogonal  t ransforrna t ions ,  a l eas t - squa res  s o l u t i o n  can s t i l l  be 

def ined ,  a l thocgh  it i s  not  unique.  However, I t s  i n t e r p r e t a t i o n  a s  a s e t  

T -1 rP 

of m u l t i p l i e r s  i s  not  completely s t r a i g h t f o r w a r d .  

Higher-order m u l t i p l i e r  e s t ima tes  a re  computed a s  t h e  l eas t- squares  

s o l u t i o n  of 

AX = SF + g ,  (6.2.2; 

wliere S i s  an approximation t o  t h e  Iiessian of t h e  Lagrangian funct ion ,  

The s o l u t i o n  5 i s  computed 3s the sum of two orthogonal  co!ponents, a s  

descr ibed  i n  che next  seciiol: f c x  t h e  Lra jec tory  sea rch  d i r e c t i o n .  T‘ne 
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mc-ii-2tioii  for t h i s  d e f j x i t i o n  of t he  mUl.tip1ierF i S  g?iEll i n  Sec t ion  

4 .3 .  

Program S t r u c t u r e  for Tx.ajec-cory Algorithms 

The sea rch  d i r e c t i o n ,  p, for t he  t r a j e c t o r y  algori thms i s  computed 

a s  t h e  sum of :WG cr thogonal  c a p o n e n t s ,  a s  described i n  Chapter 5 .  To 

sim?l.ify t h e  n o t a t i o n ,  t h e  d i scuss ion  w i l l  concern F r imar i ly  t h e  pena l ty  

t r a j e c t o r y  a lgor i thm f o r  e q u a l i t y  cons t ra ined  problems. 

We s h a l l  cons ider  i n  d e t a i l  only t h e  case where t h e  ma t r ix  A i s  cf 

f u l l  r ank .  Th,e estirriate of t h e  m u l t i p l i e r s ,  A ,  requi red  t o  de f ine  t h e  

r ight-hand s i d e  of t h e  l i n e a r  e q u a l i t y  c o n s t r a i n t s ,  i s  given by t h e  u s u a l  

l e a s t - s q u a r e s  s o l u t i o n  of min I f  g - ~ L  1 I 2 

To compute the  matr lces  Ql and Z, t h e  e x p l i c i t  product i s  formcd of 

a t  t h e  c u r r e n t  p o i n t .  

t h e  sequence of or thogonal  t ransformat ions  applied t o  A t o  so lve  t h e  

l eas t- squares  prcklcm. The r e s u l t i n g  n by n orthogonal  ma t r ix  Q i s  such 

m 

n-m 

--I T 
i Q ( t h e  “LQ” f a c t o r i z a t i o n  cf A ) . 

O _ I  

J 

t hen  
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foms the Cholesky f a c t o r s  of a perturbed mat r ix  t h a t  i s  guarantees  t o  

be s t r i c t l y  p o s i t i v e  d e f i n i t e .  

For t h e  t r a j e c t o r y  a l g c r i t h s  f o r  i n e q u a l i t i e s ,  t he  above procedure 

i s  a l s o  f o i l w e d  t o  compute t h e  search  d i r e c t i c n ,  except  t h a t  only t h e  

"ac t ive"  c o c s t r a i n t s  a r e  i n c h d e d  i n  t h e  defini ' i ion of t h e  l i n e a r  e q u a l i t y  

c o n s t r a i n t s  
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When t h e  m a t r i x  A i s  c o t  of full rank, t he  mat r ices  Q and Z may 1 
be obtained from t h e  t r3nsformat ions  appl ied  t o  A ,  bu t  t h e i r  dlmensions 

w i l l  be a l t e r e d .  

Linear  Search 

The l i n e a r  searches  i n  a l l  t h e  non-feasi-cle methods a r e  t he  imple- 

mentat ions by G i l l  arid Murray (1974a) of safeguarded s t e p  l eng th  a lgo-  

rithms, based on e i t h e r  cukic  or  pa rabo l i c  i n t e r p o l s t i o n  w i t h  safeguards 

t o  assure  te rmina t ion  and s t a b i l i t y .  The f e a s i b l e  methods use s p e c i a l  

l i n e  searches  f o r  t h e  16gari thmic b a r r i e r  func t ion ,  which a r e  the s t e p  

l eng th  aI-gorithms nentioned above, inc luding  t h e  opt ion  of f i t t i n g  appro- 

p r i a t e  s p e c i a l  func t ions  r ezhe r  than  po1ynon:ials ( s e e  Chapter 3 ) .  

A c t ive  Se t i n  Ea rr i e  r s r a  J e c t  ory  A l g  o r  it hrr; 

The cu r ren t  prr;ced?d.:r? f o r  choosing the  i n i t i a l  " ac t ive"  s e t  i n  t he  

b a r r i e r  t r a j e c t o r y  ~ 1 g c r i ' " k ~  i s  t h e  fol lowing,  where m r ep re sen t s  the 

number of ' ' ac t ive ' '  conztreLnxs, and I denotes the  s e t  03 i nd i ces  oi t h e  

"a c t ive  " c ons t r a  i n t  s . 
(m t 0 ;  I t y  (nu11 s e t ) ;  cy t usua i  i n i t i a l  s t e p  t o  

U 

be taken aloYig t r a j e c t o r y  sea rch  d i r e c t i o n ; )  

while  m < n 

(1) compL,.e t he  r r s j e c t o r y  search  d i r e c t i o n ,  p, w i t h  the  s e t  

I of a c t i v e  c c n s r r a i n t s ;  
h A ( 2 )  f o r  all i E I, compute i, the  index f o r  which cy = = 

1 

(-'i ' 

\T min 
i e 1  \sip 

T aip < 0 

a i s  l i n s a r i y  independent of [ a j  1, j€I . i 

T If a i P  > c f o r  a2.1- i E 1 ,  e x i t ;  
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h NOTE: This  procedur'e yielis a/ a s  t h e  f i r sT-o rde r  e s t ima te  

of the  sma l l e s t  p o s i t h e  s t e p  .long p t o  E? ze ro  of 

a c u r r e n t l y  l l i n a c t i v e l l  c o n s t r a i n t .  

( 3 )  If G < aa (I ~ I U  {$I; m t m  + 1;) 
\ 
/ 

The " ac t ive  se t ' '  m y  ke updated a t  every i l i e r a t i cn ,  based on t he  

fo l lowing  g e n e r s l  c r i t e r i a  . 
dur ing  t h e  l i n e a r  search ,  t h e  one v i o l a t e d  n e a r e s t  t o  t h e  s t a r t i n g  po in t  

i s  added t o  t h e  I'aCtivF: 9 s e t " .  A check i s  a l s o  made t o  determine whether 

any " inac t ive"  c o n s t r a i n t  i E  becoming "small",  o r  whether a n y  a l l e g e d l y  

"ac t ive"  c o n s t r a i n t  is kounded away from zero. 

higk?ly dependent xi ths cljrrent va lue  of t he  b a r r i e r  paramexer, and cn 

an i m p l i c i t  s e e l i n g  ( i  .e ., ttle d e f i n i t i o n  of " s m a l l " )  . 

If any l l i nac t ive l l  c o n s t r a i n t s  a r e  v i o l a t e d  

These t e s t s  a r e  obviously 

A t  t he  beginning cf e2ck i t e r a t i o n ,  t h e  m u l t i ? l i e r  e s t ima te s  a r e  

computed f c r  t h e  "aczive s z t "  

negat ive ,  t h e  c o n s t r a i n t  corresponding t o  t h e  most nega t ive  m u l t i p l i e r  

i s  de l e t ed  from the  s c t i v e  s e t -  

d e f i n i t i o n  of t h e  t r a j e c t o y y  sea rch  d i r e c t i o n  should not  ap?iy i f  thF: 

p red ic t ed  multiplier is nega t ive .  O n l y  one such c o n s t r a i n t  i s  de le ted  

p e r  i t e r a t i o n ,  f ollowirLg whicn the  x u l t i p l i e r  e s t ima te s  a r e  updated for 

t h e  reducsd act ' je  set. 

w i t h  a nega-Li?-e n ru l l i p l i e r  in t h e  modified s e x  i s  s e t  t o  (-E) for neg- 

l i g i b l e  E .  

If any of the est iv-ated mul-cipl iers  & r e  

As mentioned i n  Sec t ion  5 . 5 ,  t h e  usual 

T The spec i f ica tLon of ai p for any c o n s t r a i n t  

The u l t i u i ? t e  dec i s ion  about t h e  a c t i v e  set  m m t  be determinea by 

t h e  c o n s t r a i n t  v a i u ~ s ;  r a t h e r  than the s i g n s  of t h e  m u l t i p l i e r  es-cimaies.  

Along t h e  t r a g e c t o r y  of a h r r i e r  functioi? method, the grad ien t  of F i s  

always a ncn-nega-Live l i n e a r  ccm1,Lna c i i .  of a l l  t he  c o n s t r a i n t  g r a d i e ~ ~ t c ,  
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s o  t h a t  t h e  d i s t i n c t i o n  betweer! " ac t ive"  and " inac t ive"  cannot be based 

on t h e  s i g n s  of t h e  es t imated m u l t i p l i e r s .  

General  Notes on Programs 

The programs s r c  w r i t t e n  us ing  MORTR'IN, a F9RTRP.N language p re-  

processor  developed a+ t h e  Stanford  Linear Acce le ra to r  Center ( see  Cook 

and Shustek, 1975); the code a c t u a l l y  executed i s  w r i t t e n  i n  ANSI FORTRAN. 

A l l  runs were made on t h e  IBM 360/91 or  370/168 ( t h e  T r i p l e x  System a t  

SLAC), with double p r e c i s i o n  a r i t h m e t i c  throughout, i . e  . J  machine pre-  

c i s i o n  i s  16-13, or 2.220 x 10 
- 16 . %  

, w i t h  a range for f l o a t i n g  po in t  nun- 

b e r s  of ( 5 . 4  x 10 -79 , 7.2 1075). 

6.3 - Discussion cf Tes t  Problems 

The s e t  of meaningful t e s t  problems i n  the  l i t e r a t u r e  i s  very  small ;  

a i though some prev ious ly  published examples a r e  included,  it w t s  f e l t  

necessary  t o  generate  some new examples a s  we l l .  The r e s u l t s  presented 

a r e  t y p i c a l  of those  obtained on a wider group of problems, w i t h  va r ied  

s t a r t i n g  p o i n t s  and p a r a a e t e r s .  

Examples wi th  a l a r g e  number of l i n e a r  Cons t ra in t s  were d e l i b e r a t e l y  

n o t  chosen, because many a lgor i thms a r e  a v a i l a b l e  t o  t a k s  e x p l i c i t  advan- 

tage  of known l i n e a r i t y  i n  t h e  c o n s t r a i n t  func t ions  ( s e e  G i l l  and Murray, 

1972a; G i l l  and Murray, l974b) .  Furthermore, l i n e a r  c o n s t r a i n t s  d o  

not  t e s t  the d i f f i c u l t i e s  t h a t  a r i s e  from varying ccJnEtraint curvature 

and g r a d i e n t s ,  and many a s p e c t s  of the  computation s i m p l i f y  g r e a t l y  i n  

t h e  l i n e a r  case ( f o r  example, t h e  predic ted f i r s t - o r d e r  s t e p  t o  a ccn- 

s t r a i n t  ze ro  i s  e x a c t ) .  

All t h e  r e s u l t s  t c  be repor ted  a r e  based on implementation; t h a t  use 

the e x a c t  second d e r i v a t i v e s  of t h e  problem func t ions .  Other programs 

have been developed t h a t  r e q u i r e  only f i x $  d e r i v a t i v e s  ( o r  can approxi- 
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mate second deri-qatives by f i n i - t e  d i f f e r e n c e s ) ,  b c t  mariy quest ions  remain 

unanswered f o r  some of these  methods. 

t a i n t y  a s  t o  t h e  meaning of a quasi-Newton approximation t o  t h e  Hessian 

of a func t ion  t h 2 t  changes a t  every  i t e r a t i o n  when the m u l t i p l i e r s  a r e  

re-eomputed. 

cases  a r e  c o n s i s t e n t  w i t h  t h e  t r ends  indicated heere. 

For example, t h e r e  is s o m  uncer- 

I n  any case,  t h e  r e s u l t s  obtained this f a r  f o r  t h e  g rad ien t  

Each example w i l l  be discussed b r i e f l y ,  and any notable  f e a t u r e s  

w i l l  be mentioned. 

the  number of Hessian eTaluat ions ,  s o  t h a t  t h e  l a t t e r  w i l l  not be l i s t e d  

s e p a r a t e l y .  The parameter i s  t h e  c r i t e r i o n  f o r  t e rmina t ing  the  l i n e a r  

search,  and i s  defined i n  Sect ion 3 .3 .  

I n  a11 cases ,  the  number of i t e r a t i o n s  is equa l  t o  

6.3.1 Non- f e a s i b l e  Met hod s 

The s e q u e n t i a l  augmented methods use the  ze ro  v e c t o r  a s  

t h e  i n i t i a l  approximation t o  t h e  Lagrange m u l t i p l i e r s ,  s o  t h a t  the  

f i rs t  minimization of t h e  s e q u e n t i a l  method I s  i d e n t i c a l  t o  t h a t  of 

t h e  pena l ty  func t ion  method. 

The f i r s t - o r d e r  m u l t i p l i e r  update f o r  t h e  s e q u e n t i a l  

methods i s  given by t h e  Hestenes/Powell c o r r e c t i o n  described i n  

Sec t ion  4.3; t h e  f i r s t - o r d e r  m u l t i p l i e r  e s t imate  f o r  a progress ive  

method i s  t h e  l eas t- squares  s o l u t i o n  of min I Ig-.Q I I 
order  m u l t i p l i e r  update and es t imate  a r e  described i n  Sect ion 6.2.  

2 . The second- 

The l i n e a r  s e a r c h  parameter 7l i s  0.5 f o r  a l l  the non- 

f e a s i b l e  methods. 

t h e  g rad ien t  of t h e  unconstrained func t ion  s a t i s f i e s  I lgradl I 5 lom7; 
f i n a l  convergence is  a t t a i n e d  when IIcI  I 5 

Each unconstrained sub-problem terminates  when 

f o r  t h e  a c t i v e  con- 



2 
1 2  nin x x 

sub jec t  t o  

This two-dinensional example i s  included s o  t h a t  the convergence 

pa ths  for d i f f e r e n t  methods can be p l o t t e d  (Figure  6 . 1 ) .  O f  p a r t i c u l a r  

i n t e r e s t  is the  f a c t  t h a t  t h e  poir, t  located by t h e  s e q u e n t i a l  slgorlthm 

a f t e r  t h e  i n i t i a l  minimization i s  not  on the  "pena l ty  s t d e "  of the  con- 

= 

s t r a i n t  . 

I t e r a t i o n s  

6 

4 

3 

2 

2 

1 - 

Functions a n i  
Gradients 

8 

4 

3 

2 

2 

1 - 
LU 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  TOTAL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - -  
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f 

p = 1.0 

p = 10 

5 

5 

4 

3 

2 

8 

5 

4 

3 

2 

1 

22 24 
TOTAL ____________________-- -__- - - - - - - - - - - - - - - -  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - -  

Progress ive  Nethod, -- 2 i r s t - o r d e r  n i u i t i p l i e r  e s t ima te  : 

9 
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Actual  pa th  

Second 
Minimum Boundary 

of 
T r a j e c t o r y  Method 

of fetisikl-. 
reglon Method - ;X 

x*( 10) 
,, '7 _- - 
/ 

'. \ 
/ 

/ 

F i r s t  min imurn 
of Sequent ia l  

at; x*(1) 
@ -  Method s t a r t i n g  

/ 
,/ 

/ 

'1 Tra j ec to ry  of quadra t ic  
pena l t y  func t ion  

/ 

/ 

x e--- x"( 1.) 

FIGURE 6.1 
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EXAMPLE 2: 

- x1x2 - X1X3 2 2  
1000 - x1 - 2x2 - x3 2 

min 

scb j e c t t 0 

i 2 0, i=1,2,3 

x* = (3.15121 
-- .216988 

3.53217) 

A* = (-1.22346 
- .274937) 

Example 2(A) 
S t a r t  ( 1 O , 1 0 , l O )  

Functions and 
G r a d i e n t s  I t e r a t i o n s  

Penalty Method : 

2 D = 10 15 14 

3 3 3 10 

2 4 13 2 

1 1 

1 6 
10 

lo7 

1 

TO'TAL 
_____________-___ - - - - - - - -  ,-I- - . -  



P =  102 

It e r s t i o n s  

- yunct ions end 
Gra d i e  nt s 

I 

3 3 

Progre s s ive  Met hod, 
F i r s t -  order  m u l t i p l i e r  e s t imates  

lo2 14 15 
P =  

_ _ _I ^ _ _ _ _ _- _ _- - - - - - -  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - _ - ^ - - ^ - _ - - - _- - - - - - - - - ^ - -  

Pen3 l t y  Methcld 

P =  LO2 

4 10 

6 10 

29 

3 

2 

1 

1 

1 
II 

TOTAL 37 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ o ^ _ ^ ~ ~ ~ _ ~ ~ _ ~ ~ ~ ^ ~ - - - - - - - - - - - - - - - - - - - - -  

36 

3 

2 

1 

- 1  - 
44 
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Sequen t i a l  Method, 
F i r s t - o r d e r  m u l t i p l i e r  update 

I P =  lo2 

3 

Functions e n d  
Gra  d i e n t  s 

36 

3 

Progressive Method, 
F i r s t - o r d e r  u iu l t i p l i e r  estimates 

2 
( P  = m 29 34 
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F3(AMPLE 3 : 

ThLs example was given by F m e l l  (1969), and has Fince been quoted 

b;q 8 nilrnber of au thors  ( s e e  F l e t che r ,  1970; Glad, 1973). 

The problnm, a s  o r i g i n a l l y  formulated,  5.nvrjLves minimizing 

F ='x x xc,x x ; however, t h e  result!-ng pena l ty  func t ion  i s  unbounded 

below ( s ee  Sec t ion  2.3),  s o  t h a t  t h e  ob jec t ive  func t ion  i s  transformed, 

1 2 , 4 5  

. .  
sub j  ec t t 0 " 

2 2 2 2  + x q + x ; - l o  = 0 c 1 = x1 3- x2 + x3 

The s o l u t i o n  us113lljT given i s :  

x* = (-1.71714 

1.59571 

1.82725 

. O 3  795 78 

- .00522264) 

, F(x*) = .0539499 

T h i s  example i s  of some i n t e r e s t  because i t  i s  normally used t o  

demonstrate t he  success cf an augmented Lagrangian a l g o r i t b  for a 

modest value of p .  A s  discussed throughout Chapter 4, the  pena l ty  terra 

of an  augmentsd Lagrangian method i s  designed t o  ad3 p o s i t i v e  cu.rvsture 
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T w(x*) + pM , i s  p o s i t i v e  def i r , i te .  

For t h i s  exsmple, t he  e igeavalues  of G(x*; ilrz (.@494, .O576, . 
.2701, and 1.575); t he  e igenvalues  of W(x*) a r e  (.0887, .1607, .1633, 

.2263, and 1.811). Therefore ,  t he  HessLan cf t he  Lagrangian func t ion  

7, 

add p o s i t i v e  curva ture .  

Example 3 ( A )  
S t a r t  (-2,2,2, -1, -1) 

Note t h a t  t h i s  s t m t i n g  po in t  i s  very c l c se  t.3 t he  s o l u t i o n .  

I t e r a t i o n s  Gradients 
Functions 3 n d  

PenE I t y  Method 

p = l  

10 

7 

3 

1 

1 1 

Sequen t i a l  Method, 
F i r s  t - orde r mult ipl i e  r upd a t e 

7 

2 

( P  = 1) 

1 
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It era  t i  OW 
Functions snd 

Gra d i e n t  s 

Example 3 (5 )  
S t a r t  (-1, -1, -1, -1, -1) 

2 
Here, the i n i t i a l  pena l ty  parameter w 3 s  s e t  t o  10 , making t he  

f i r s t  minimization more d i f f i c u l t .  

Pena l ty  Method 

P =  lo2 16 17 

1 1 - 
1 1 cc 104 - 

18 19 

Sequent i a  i Method, 
F i r s t  - order  m u l t i p l i e r  update 

P =  lo2 



F(x*) = .438851. 

. This  example i l l u s t r a t e s  t h e  poss ib le  danger of r e l y i n g  on second- 

o rder  m u l t i p l i e r  es t imates  throughout,  even i f  exac t  second de r iva t i ve s  

a r e  a v a i l a b l e .  A s  mentionec? i n  Sec t ion  4.8, t h e  quadratPc p rograming  

sub-problem on which the  second-order a u l t i p l i e r  es t imates  a r e  based may 

have l i t t l e  meaning f a r  from the s o l u t i o n .  

veloped t o  decide when the  cu r r en t  i t e r a t e  i s  "close  enough'' t o  r e l y  on 

the second-order m u l t i p l i e r  e s t ima te s .  Note t h a t  the  s equen t i a l  method 

w i t h  a second-order m k l t i p l i e r  update converges i n  one s t e p  a f t e r  the  

i n i t i a l  minimization, s o  t h a t  t h e  second-order es t imate  i s  of g r e a t  

Some c r i t e r i a  must be de- 
L 

va lue  c lose  t o  x*. 

Functions and Iterations Gradients 

Pena l ty  Method 

p = lo2 

TOTAL 

4 10 

12 
6 10 

59 
L 

82 

4 

3 3 

1 

1 

1 

1 

69 

TOTAL 

59 82 

3 3 

63 E36 



It e ra t ions  
Functions and 

Grad i e p t  s 

Progress ive  Method, 
First - order  m u l t i p l i e r  es t imate  59 82 
_i__________________------------------------------------------------ 

Se qilent i a  1 Met hod, 
Se c ond - order mult i p l i e r  upd a t P 59 82 
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EXAMPLE 4: 

subject t o  

= o  c3 - - XrX5-2 

This problem i s  a modified vers ion  of an example given by Mieie e t  

a l .  (1971). Four d i f f e r e 5 t  l o c a l  minima have been determine6 . 
(1) x* = (1.11663 

1.79110) 

- .021-4797) 

The eigenvalues of W(x* (I)) a r e  (-2.49,  .208, .605, 4.10, 5.09), scJ 

T that W(x*) i s  not p o s i t i v e  d e f i n i t e .  The eigenvalues of W + 10 Al”, a r e  

( .338,  2.10, 1~0.3, 50.6,  64.0), s o  t h a t  p = 10 i s  s u f f i c i e n t  ts a s s w e  

p o s i t i v e  curvature  a t  x++ . (1.1 
. -_”  -a -.\ . . 

- 223 - 



I 

205371 
3.87474 

- .716623) 
A * ( ~ )  = ( 92.2563 

584 -778 
138 .722) 

(3) = ( -1.27305 (3) x* 
2.41035 
1 * 1gL86 

- .154239 
-1.57103) 

A* (3) = ( 2.12527 
1.55380 
0.93548) 
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( 4 )  A *  

( - -703393 
2.63570 

- .o?6361b 

-2.84336) 
- 1 - 79799 

( 8 38670 
-15 .1290 

6.49642) 

F(~*('))= 44.0221. 
The eigenvalues of%\T(x* ('I) a r e  (-14.1, .818, 8.26, 21.0, 76.3j. 

The eigenvalues of W + AAT a r e  (1.47, 17.7, 75 .6 ,  88.6, 303.0)  



S t a r t  (1, i, 1, 1: 1) 

With t h i s  s t a r t i n g  po in t ,  all methods  converged t o  the  l o c a l  mini- 

(1) aumx* . 
Functions and 

I t e r a t i o n s  G r a d  i e n  t s 

Pena l ty  Method 

2 p = 1.0 

4 .  
10 . .  

6 10 

lo7 

TOTAL 

14 

3 

2 

1 

I 

17 

3 

2 

1 

1 

1 1 - - 
22 25 

Sequen t i a l  Method, 
F i r s t - o r d e r  m u l t i p l i e r  update 

( p  = lo2) 14 17 

2 2 

1 1 

1 . -- 1 - 
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S t a r t  (2,2,2 J2,2) 

(1) 
. A l l  methods converged t o  x* . 

Pena l ty  Method. 
2 p = 10 

I t e r a t i o n s  

15 

Functions and 
Gra d i e n t  s 

18 

103 3 3 

4 2 2 10 
. 

6 10 

1 

1 

1 

1 

Sequen t ia l  Xethod 
F i r s t - o r d e r  m u l t i p l i e r  update 

15 18 ( p  = lo2) 

2 2 

1 1 

1 1 - - 



Exanple 4.( C )  

1 S t a r t  (-1,3J- ~ , - 2 ~ - 3 )  

(4) . Here, t h e  progress ive  and t r a j e c t o r y  algorithms converged t o  x* , 
( “ 1  while  the pena l ty  and s e q u e n t i a l  algorithms converge3 t o  x* . The 

l o c a l  advantage of t he  second-order multipli t3r uTdate i s  displayed f o r  

t h e  s e q u e n t i a l  method. 

It era  t i o n s  

Pena l ty  Method 

Functions and 
Gradients 

p = 102 . .. 

3 10 

6 10 

14 

4 

20 

4 

Sequent ia l  Method 
F i r s t - o r d e r  m u l t i p l i e r  update 

( p  = lo2) 14 20 

3 3 

2 2 

1 - 1 - 
TOTAL 20 26 

Sequen t i a l  Method 
Second-order m u l t i p l i e r  update 14 20 
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Progress ive  Method, 
F i r s t - o r d e r  m u l t i p l i e r  e s t imate  

I t  1 

I t e r a  t i o n  

11 

Functions and 
Gra  d i. ent s 

12 

(eonverged t o  x * ' ~ ' )  



Example 4(Z) 

S t a r t  ( -1,2, 1, -2, -2) 

(4) . With t h i s  s t a r t i n g  po in t ,  t he  progress ive  method converged t o  x* , 
while the o the r s  converged t o  x*(~). Again, t h e  improved l o c a l  con- 

vergence of t he  s equen t i a l  method wi th  a second-order m u l t i p l i e r  update 

i s  seen .  
Functions and 

I t e r a t i o n  - Gradients  

Penal ty  Method 

2 p = 10 

103 

105 

lo7 

4 10 

6 10 

8 10 

TOTAL 

5 12 

4 

3 

3 
1 

1 

1 
7 

25 

17 

4 

3 

3 

1 

1 

1 

30 

Sequen t i a l  Method , 
F i r s t - o r d e r  m u l t i p l i e r  update 

2 ( p  = 10 ) 12 17 

3 3 
2 2 

Sequent ia l  Method, 
Second-order m u l t i p l i e r  update 

2 
( P  = 10 ) 17 

2 



Exarcple 4 (E)  

S t a r t  (-2, -2, -2, -2, - 2 )  

( 2 )  With t h i s  s t a r t i n g  poir , t ,  all methods converged t o  x* , except 

f o r  t h e  t r a j e c t o r y  a l i o r i t h m  which converged t o  x * ( ~ ) ,  The s e q u e n t i a l  

a lgor i thm wi th  f i r s t - o r d e r  m u l t i p l i e r  updates increased the  pena l ty  par-  

ameter t o  10 , whereas p remained a t  lo2 f o r  t h e  s e q u e n t l a l  method w i t h  

second-order m u l t i p l i e r  upda tes .  

4 

This example i l l u s t r a t e s  the  impediment t o  convergence of a progress ive  

The progress ive  a lgor i thm posed by t h e  accuracy of the  mulx ip l i e r  e s t i m a t e .  

method w i t h  f i r s t - o r d e r  m u l t i p l i e r  e s t imates  had reduced I I cI I t o  5 x 10-3 

by i t e r a t i o n  33; but  the  next  24 i t e r a t i o n s  d i s p l a y  slow l i n e a r  convergence 

t o  x*. 

m u l t i p l i e r  e s t imates  converges r a p i d l y .  

On t h e  o the r  hand, t h e  progress ive  a lgor i thm wi th  second-order 

Functions and 
I t e r a t i o n s  Gradients 

Pena l t y  Method 

p = IO2 11 1.5 

103 6 5 

10 4 4 4 

ld 3 3 

10 6 2 2 



l t e r a  t i ons Gradients - 

I 

Sequent i a  1 Method, 
F i r s t - o r d e r  m u l t i p l i e r  update 

2 
( P  = 10 1 

3 ( p  = 10 ) 

4 
( P  = 10 ) 

11 

4 
h 

15 

4 

4 

3 

3 '  

3 

3 

2 2 

1 1 
L 

1 1 - - 

Sequen t i a l  Nethod, 
Second-order m u l t i 2 l i e r  update 11 

3 

15 

3 

2 
_LI 

2 

Progress ive  Method, F i r s t  - order  m u l t i p l i e r  es t imates  57 61  

( I I c~ 1 = 5 x10-3 a t  i t e r a t i o n  33) 

13 - '  11 Progr s s ive  Method, Se c 0113- order  m u l t i p l i e r  es t imates  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Fea s i b l e  Met hods , 6.3.2 1 

The unconstrained sub-problem for t h e  b a r r i e r  func t i cn  /- 

method terminated when I I grad1 IS 

was t h a t  15 f o r  the  " ac t ive"  c o n s t r a i n t s .  The eva lua t ions  of 

t h e  ob jec t ive  func t ion  and c o n s t r a i n t s  a r e  l i s t e d  s e p a r a t e l y ,  because t h e  

o b j e c t i v e  func t ion  is evaluated only a t  f e a s i b l e  p o i n t s .  

s e a r c h  to le rance ,  T), was  0 . 2 .  

the  o v e r a l l  convergence c r i t e r i a  

The l i n e a r  

% 
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FXAMPm 5 :  
2 

1’2 min x x 

sub j ec t  t o  

A* = ( .816497) 

T h i s  example i s  t h e  same a s  example 1, and was se lec ted  s o  t h a t  the  

convergence pa ths  could b 6  p l o t t e d .  The r e s u l t s  i l l u s t r a t e  how the  u s u a l  

b a r r i e r  func t ion  a lgor i thm can be “caught” near  the  boundary of the Teas-  

i b l e  region,  f a r  from x*, and be forced t o  t ake  nany smal l  s t eps  c lose  

t o  t h e  boundary. 

Example ?(A) 

S t a r t  ( -1 .o, - .7) 

Figure 6.2 d i sp lays  t he  s t eps  taken by t he  b a r r i e r  func t ion  Kethcd 

and the t r a j e c t o r y  method. 

Obj.  Functions Cons t ra in t s  
I t e r a t i o n s  and Gradients and Gradients 

Ba r r i e r  Function Method 

-2 r = 10 

10-3 

10-5 

-4 
10 

TOTAL 

1.9 42 

3 3 

3 8 

35 

3 

8 

2 2 2 

1 1 - 1 -- - 
28 56 69 

Tra j ec to ry  Method 4 6 7 

I 



i 

i, Function Method 

Pa th  of 
B B ~  r r ie r 

T r a  j e ct ory 
A 1g or it hm 

FIGURE 6.2 
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Figure 6.3 d i s p l a y s  

Example y (S)  

S t a r t  ( -  .8, - .6) 

the peths t aken  t o  x* 

Barrier Function Metnod 
-2 r = 10 

10-3 

10-5. = 

TOTAL 

i 

f o r  This s t a r t i r ,  

Ob j .Functions 
It era  t ions  and Gradients -- 

1.9 

2 

2 

2 

25 

- 

39 
3 
J 

8 

2 

52 

- 

c on4 tra ints 
and Qradiemts  



Path of 

Path of usual  
Barrier Method 

1 / / ’  

/ 
/ 

/ 
. .  / 

t/ 
r 

.+- S t a r t  
/ i  

’ :  
/ 

/ 
I 

/ I 

i 
I ,  

I 
I 

FIGURE 6 .3  
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EXAMPL;E 6: 

- 3x2 - 21x + 7x4 

- x1 + x 2 2  0 c1 --x1 - x2 - XL - x4 

c 2 = -x 1 - 2x2 - x3 

- 2x1 + x 2 2  0 c3 = - 2 5  - x2 - x3 

2 2 2 
3 

2 min x1 + x2 + ex3 + "4 - 5x, 
s u b j e c t  t o  

2 2 2 2 - 

- 2 x ; + x  Y O  2 2 2 

2 2 2 

1 

This  example i s  due t o  Rosen and Suzuki (1965). 

x* = (0 .o 
. .  

1 .o 

2 .o 

- 1.0) 
Cons t r a in t s  c 1 and c 3 a r e  a c t i v e ,  s o  t h a t  I = [1,3); A *  = (1.0, 2.93). 

S t a r t  (o,o, O,O)  O b j  .Function Constrainks 
I t e r a t i o n  and Gradients  and Gradiectc  

c 



x x x x x  1 2 3 4 5  min e 

subjeci t o  

2 - x4 - x52 + 102 0 
2 2 
2 - x3 - x  2 

c 1 = -xl 

c 2 = x2x3 - 5x4x5 2 0 

3 - 1 2 ,  3 - x2 c3 - -x 1 
- 

The problem h e r e  !& t h e  same a s  Example 3, t he  Powell exponent ia l ,  

with the  c o n s t r a i n t s  converted t o  i n e q u a l i t i e s  t o  correspond to t h e  s igns  

o f  t h e  m u l t i p l i e r s .  

l u t i o n  i n  order  t o  assure  t h a t  a l l  t h r e e  c o n s t r a i n t s  a r e  a c t i v e .  

should be noted t h a t  t h e  exponent ia l  t ransformat ion  i s  not  necessary  f o r  

The s t a r t i n g  p o i n t  i s  chosen v e r y  c l c s e  t o  t he  so-  

It 

t h e  f e a s i b l e  methods, and was r e t a ined  i n  order  t o  f a c i l i t a t e  comparison 

among t h e  a lgor i thms.  

S t a r t  (-1.74,1.61,1.81,- .7,- .7) 

O b j  .Function Cons t ra in ts  
I t e r a t i o n s  and Grad ien t  and Grsdients 

B a r r i e r  Function Method 

9 9 -2 r = 10 7 

6 9 9 

10-7 
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FXAMPIX 8 :  

This example i s  ca l l ed  the  "hexagon" problem ( see  Murray, 1969aj. 

It involves maximizing t h e  area of a hexagon, nr two of whose v e r t i c e s  

a r e  more than one u n i t  a p a r t .  The cons t ra in t s  a r e  derived from this r e -  

quirement, and from the  problem geometry, which i s  represented i n  Figure 

6.4.  

Hexagon Problem: 

+ x x  + x x  - x 4 x 9 - x x )  1 min - - 2 (x2x6 - x1x7 3 7  5 8  3 8  

2 0  
2 2 

2 

2 

- x7 = 1 - (x,-x2) 
(X4-x2) 2 - (x8-x7) 2 0 

- (x7-x9) 2 0 = 1 - (x2-x5) 

c 8 = 1 -  

2 

2 cl0= 1 - x3 1 0 

ell= 1 - (x4-x3) - X8 2 0 
2 2 

- 2 0  cz1= x3 x2 

c22= x4 - x3 1 0 

".e3= -x8 - 
c24= - x 9 2  0 

> o  

- x4" 0 '25= x3 



He xa g on GP m e  try 

FIGURE 6.4 
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x* = ( -257355 

.380129 

1.00000 

.79405? 

.156229 

235929 

,396006 

- .607843 
- -5367031 

The a c t i v e  se t  I = f 4 ,  8, 9, 10, 12, 133, 

and A* = ( ~71886 

.Ob15920 

.160131 

.16a13 1 

.099649 

.0415920) 

F ( ~ * )  = - .674981 
(max. a rea  = .674981) 

Figure  6.5 d i s p l a y s  the optimum conf igura t ion  found ( t h e r e  a r e  

o t h e r  equ iva len t  arrangements t h a t  produce t h e  same maximum a r e s ) .  



c 

. 

I '  

FIGURE 6.3 
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Obj .Function Cons t ra in t s  
I t e r a t i o n s  and Gradlent  and Gradients 



EXAMPLE 9 :  
2 4 2x 3 min 1 . 0 ~ ~ ~ ~  - 6x x + x x + 9 s i n ( x  -x ) + x x 

s u 5 j e c t  t o  

3 2  2 1  5 3  5 4 2  

.2 - x  + 2 0 2 0  

+ x x  + 2  2 0  

2 0  

2 2 2 
2 - x3 - x4 5 - x  2 

1 c = -x 1 

x1 x3 5 4 e =  2 

- 2 - x 2 x 4 + 1 0 x x  - 5  c3 1 5  

This  example provides ample i l l u s t r a t i o n  of t h e  need t o  try d i f f -  

e r e n t  s t a r t i n g  p o i n t s .  .The behavior  of t h e  algori thms a l t e r s  dramati-  

c a l l y  i n  t h i s  case,  depending on t h e  i n i t i a l  p o i n t .  

The results f o r  t h i s  example were obtained w i t h  an  e a r l i e r  ve r s ion  

of t h e  l i n e a r  search,  where a l e s s  e f f i c i e n t  procedure was used t o  

ob ta in  t h e  next  s t e p  i f  a c o n s t r a i n t  i s  v i o l a t e d  during t h e  l i n e a r  

search;  t h e  nunber of c o n s t r a i n t  eva lua t ions  could no doubt be reduceti 

w i t h  t h e  improved procedure descr ibed i n  Sec t ion  3.3.  

Example g(A) 

S t a r t  ( 1,1,1,1,1) 

Both methods converge t o  t h e  fo l lowing  l o c a l  rnininium: 

X* = (-.0814522 

-377134 

- 173983 1 
Cons t r a in t s  c and c a r e  a c t i v e ,  s o  t h a t  I = {1,3], and 

1 3 
A*(’) = (15.2198, .784830). 
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B a r r i e r  Funct ion Method 

r = l  

Obj .Function Cons t r a in t  5 
I t e r a t i o n s  and Gradien t2  and G r a d i e a  

40 47 75 

12 

8 

14 

12 

16 

13 

following l o c a l  minimum: 

x*(~) = ( 1.47963 

-2.63661 

1.05467 

-1.61131. 

2.67388) 

Cons t r a in t s  1 and 2 a r e  a c t i v e ,  so t h a t  I = {1,2], and 

A*(2)  = (531.963, 23 3609). 

1 i i -  , 
I t  
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B a r r i e r  Function Method 

r = l  

10-I 

10-3 

TOTAL 

I t e r a t i o n s  

306 

4 

4 

3 

3 17 
_L 

Ob j .Function 
and Gradient  

619 

7 

6 

5 
627 

Cons t ra in t s  
and Gradients  I 

8 1-9 

7 
6 

5 

837 

I_ 

Note: When t h e  t r a j e c t o r y  a lgor i thm was  s t a r t e d  a t  x*(l), it converged 

t o  x* i n  6 s t e p s ,  w i t h  6 func t ion  and c o n s t r a i n t  eva lua t ions ,  

compared t o  11 s t e p s ,  18 func t ion  and c o n s t r a i n t  evalviations, 

for t h e  u s u a l  b a r r i e r  func t ion  methods. 
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CHAPTER 7 

CONCLUSIONS 

The t e s t  r e s u l t s  presented  i n  Sec t ion  6 .3  i l l u s t r a t e  numerical ly  

most' of t h e  expected t h e o r e t i c a l  p r o p s r t i e s  of t h e  va r ious  a lgor i thms.  

Augmented La gra ngiaa  Me tho2 s 

Some notable  a s p e c t s  of computation w i t h  augmented Lagrangian algo-  

rithms a r e :  
= 

(1) The l o c a l  r a t e  of convergence of augmented Lagrangian 

methods i s  r e s t r i c t e d  t o  t h e  r a t e  of convergence of t h e  

m u l t i p l i e r  e s t ima te s  (see Exanple &(E)); 

Even "second-order' '  m u l t i p l i e r  e s t ima te s  may be u n r e l i a b l e  

i f  t h e  s t a r t i n g  p o i n t  i s  away from t h e  s o l u t i o n  ( s e e  Example 

( 2 )  

3(c>>; 

( 3 )  In genera l ,  t h e  progress ive  augaented Lagrangian methods 

d i s p l a y  improved e f f i c i e n c y  compared w i t h  t h e  s e q u e n t i a l  

methods . 
The s e q u e n t i a l  augmented Lagrangian algori thms have t h e  advantage 

t h a t  t h e  unconstrained sub-problem can be solved by s t r a igh t fo rward  

a p p l i c a t i o n  of a n  unconstrained method; however, i n  many cases  t he  se-  

q u e n t i a l  methods converged no more r a p i d l y  than  t h e  p e n a l t y  f m c t i o n  

method, because t h e  value o f  t h e  pena l ty  parameter requi red  for conver- 

gence was n o t  l a r g e  enough t o  induce s e r i o u s  i l l - c o n d i t i o n i n g  of t he  

Hessian of t h e  pena l ty  f u n c t i o n .  With the  p rog res s ive  methods, t h e  f r e -  

quent  updat ing of m u l t i p l i e r  e s t ima te s  and/or p e n a l t y  pararr,eter makes 

d i r e c t  use of' an  e x i s t i n g  unconstrained method d i f f i c u l t  . 
For any of t h e  augmented Lagrangian nlethoC!s, t h e  r a t e  of convergence 

of t h e  m u l t i p l i e r  e s t ima te s  is  c r u c i a l  ( f o r  d e t a i l s ,  see Sec t ion  4.7). 

- 253 - 



Since  second d e r i v a t i v e s  of t h e  problem func t ions  w l l l  no t  i n  genera l  be 

a v a i l a b l e ,  a n  augmented Lagrangian method cannot r e l y  on being ab l e  t o  

compute second-order m u l t i p l i e r  e s t i m a t e s .  

on developing m u l t i p l i e r  updates t o  accompany quasi-Newton methods appl ied 

t o  p rog res s ive  augmented Lagrangian algori thms;  however, the v a l i d i t y  cf 

t h e  quasi-Newton Hessian approximation requi red  f o r  such updates  is  

ques t ionable ,  e s p e c i a l l y  s ince  the  f u n c t i o n  t o  be approximated v a r i e s  

Some recel?t work h a s  focused 

from i t e r a t i o n  t o  i t e r a t i o n .  

T r a j e c t o r y  Algorithms 
. 

The t r a j e c t o r y  methods were c o n s i s t e n t l y  succes s fu l ,  and compare 

f avo rab ly  - i n  some cases  very  favorably  - w i t h  t h e  b e s t  of t h e  o the r  

methods. The t h e o r e t i c a l  de r iva t ion  and numerical r e s u l t s  i n d i c a t e  t h s  

fo l lowing  s t r e n g t h s  of t h e  t r a j e c t o r y  methods a s  gene ra l  a l g o r i t h m  : 

(1) Their success  does no t  depend on be ing  i n  a c lo se  nelghbor- 

hood of t h e  s o l u t i o n ,  s ince  they  a r e  based on t h e  p r o p e r t i e s  

of pena l ty  and b a r r i e r  func t ions ;  

Their l o c a l  r a t e  of convergence i s  not  r e s t r i c t e d  t o  t h e  

r a t e  of convergence of the  Lagrange mul - t i p l i e r  e s t ima te s ;  

A s e r i o u s  d i f f i c u l t y  of a gene ra l  b a r r i e r  func t ion  a l g o r i t h  

is t h a t  many i t e r a t i o n s  can be e s s e n t i a l l y  w a s t e d  i n  sma l l  

s t e p s  , c l o s e  t o  t h e  boundary of t h e  f e a s i b l e  r eg ion .  The 

d e r i v a t i o n  of t h e  b a r r i e r  t r a j e c t o r y  a lgor i thm i n d i c a t e s  

( 2 )  

( 3 )  

t h a t  it should no t  be s u b j e c t  t o  t h i s  tendency, and th i s  

expec ta t ion  has been v e r i f i e d  i n  t h e  examples t e s t e d .  

Because t h e  minimization sub-problem a t  each i t e r a t i o n  of 

a t r a J e c t o r y  method i s  solved i n  a reduced subspace, t h e  

use  of f i n i t e  d i f f e r e n c e s  t o  zpproximate t h e  p ro j ec t ed  

(4) 

4 
3 



I 

Hessian becomes reasonable f o r  most problems, where t h e  

number of a c t i v e  c o n s t r a i n t s  i s  a s i g n i f i c a n t  propor t ion  

of the number of v a r i a b l e s .  Hence, a p r s c t i c a l  second- 

order r a t e  of convergence can be a t t a i n e d  even when only 

g r a d i e n t s  of the problem func t ions  a r e  a v a i l a b l e .  

. 
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