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ABSTRACT 

Application of the mathematical theory of groups to the 
symmetry of molecules is a powerful method which permits the 
prediction, classification, and qualitative description of 
many molecular properties. In the particular case of vibra- 
tional molecular spectroscopy, applications of group theory 
lead to simple methods for the prediction of the number of 
bands to be found in the infrared and Raman spectra, their 
shape and polarization, and the qualitative description of 
the normal modes with which they are associated. This report 
contains the tables necessary for the application of group 
theory to vibrational spectroscopy and instructions on how to 
use them for molecular gases, liquids, and solutions. A brief 
introduction to the concepts, definitions, nomenclature, and 
formulae is also included. 



THE USE OF .GROUP THEORY -IN THE INTERPRETATION. . 
OF INFRARED. . . AND RAMAN SPECTRA 

. .. . , , . . . 
1. INTRODUCTION 

. . 

. Applicatio'n of the:mathematical theory of groups to'the symmetry of 

molecules is'.:a powerful method..which 'permits the prediction, c'lassifi- 

cation, and qualitative description of many molecular properties. -Most 

of this information would be unobtainable from first principles because 

of the difficulties in.solving the complicated 'equations, and, in most 
. . 

cases, very long calculations would be necessary in order to obtain . 

equivalent information by other methods. 

In the particular case of vibrational molecular spectroscopy, 

applications' of group theory lead to simple 'methods for the prediction 

of the number of bands to be found in the infrared and Raman spectra, 

their s'hape and polarization, and the qualitative description of the 

normal modes with which they . . are associated. . . 

This swnma'ry will include the tables necessary for the application 
, , .  . . . ,  . . 

of group theory to vibrational spectroscopy and instructions on how to 

use them for molecular gases, liquids, and solutions. A brief intro- 

duction to the concepts, definitions, nomenclature, and formulae will be 

presented, but' no theoretical justification of the methods will be 
. . 

given. More complete descriptions of the theory underlying such methods, I 

as' well as their extensions to molecular solids and polymers, can be 

found, at different levels of difficulty, in the annotated bibliography 

included at the end of this section. 

The movement of a molecule from one position to another that is 

indistinguishable 'from the original one (because every atoni has been 

replaced by another of the same kind or has not moved at all) is called 

a symmetry operation. Each symmetry operation'has to be carried out 

with respect to a geometrical entity (point, line,' or 'plane) : which is 

called a symmetry element. There. are 'a limited nuinber'.of possible 
' 

. . ,  



symmetry operations; they are listed in Table 1, together with their 

usual symbols and associated symmktry elements. The identity, a trivial 

symmetry which all molecules have, has been included because it has to 

be taken into account in the calculations that follow. The axis of 

symmetry of the highest order (if it exists) is called."principal axis," 

and it is customarily considered to be vertical; if a coordinate system 

is used, the principal axis should coincide with the z axls. 

. Table 1. Symmetry operations 

Symbol Operation : Description 

I Identity Rotation by 360" 

C p-Fold rotation 
P 

Rotation by angle 2n/p 

0' Reflection Reflection by a plane 

S Rotation-reflection ~ota'tion by angle 2nlp followed by 
P .  reflection 

i Inversion "Reflection" of each point through 
the origin, or center of mass 

A molecule may have one or more symmetry elements. Not all com- 

binations of symmetry elements are possible; on the other hand, the 

presence of certain pairs of symmetry elements implies the existence of 

certain others. Each set of compatible symmetry operations is called a 

"point groupt1 because (1) no symmetry operation can move the point 

coincident with the center of mass (which is unique and cannot, therefore, 

be shifted to an "equivalent" position), and (2) each set must satisfy 

the conditions to constitute a mathematical "group." 

Because very few known molecules have symmetry axes of order greater 

than six (except m),  the number of point groups of practical interest is 

limited. Table 2 lists those groups and gives typical examples of 

molecules that have the corresponding symmetry in their equilibrium 

configuration. Some point groups for which exhples are not known aye 

listed because of the possibility of having to deal with molecules that 

belong to them in a perturbed configuration (as may happen in liquids) 

or in excited states. 



Table 2. The symmetry elenents of the point groups of interest to molecular spectroscopy 

a Point group Symmetry elements b, c Examples 

20' v (p. a ,  q c .  C4) 

30; (b. av) ci (c. c6) , 
c3 ( C .  C,) 

. . 
Any, C ( c .  Ca) . 

P- 
i 

CHFClBr, , CH3*CH0 

H202 (nonplanar) 
. . . .  . . 

trms -C 1 BrHC CHBrC 1 

. ., . 

N O C ~  . . (nonlinear) , N"H~D, 

C2H5C1 
W 

H~o', ~ 2 ~ ~ 1 2 ,  ch,lorobenzene . . .  
NH3, HCC13, OPC13 

IF5, Fe(C0I5 . 

. HC1, HCN, HCCCl 

: trans-ClHC=CHC 1, C 302 

H3m3, cf ( ~ ~ 2 1 3  



Table 2 (continued) 

a b, c Point group Symmetry elements. Examples 

c'; (c. 1 ,  S,(c. C,) 

. c2c;), a' (t. c2c;:1, 

o" (t. c2G) , i 
S3(c. C3). 3av 

cpc. C 4 1, S4(c. C4), 

2uv, 2ad, i 

S5(c* C5), sov 

C2H6, C6H1 2 (cyclohexane) , 
(SiH3) 20 

CI 

8 
C2H4, p-dichlorobenzene, 

naphtalene 

B F 3 ,  1,3,5-CgH3Cl3 

C4H8, ~ t ~ 1 ~ ~ -  

Cyclopentane (plane and 
symmetric), ferrocene 
eclipsed) 

C6H6 (benzene) 



Table 2 (continued) 

a Point group Symmetry elementsb' Examples 

a 
In the C2v, C4b, and C6V groups, u v should (if possible) pass through more atoms than u; (which is 

sometimes labeled ad in Cbv and CBV); if the rule is not applicable, uv should intersect more bonds 

than a;. Similar rules should be used to label Cp, C;, and C; in groups D2 and Dph, and C2 and C; 

in groups D4, J6, D2d, Dbh, and D6h. 

b ~ h e  element E (identity), which is contained in every point group, has been omitted. 

o,, CO,, C2H2 

+ 
CH4, B F ~ - ,  NH4 , sor2- 

SF6, ptc16,-, UF6 

Dwh 

T 

C Axes and planes preceded by a number are equivalent (can be transformed one into the other by another 
symmetry operation:!. 

dc. = coincident kith. fb. = bisecting. ht. = through. 
e p. = perpendicular to. 9m. p. = mutually perpendicular. 

CoD, wc2 (p* C,) 9 Oh Any C (c. Coo) , any 
P 

s (c. C-1, W " , i  P 
41; 3C2(m.p., b. C3's) 

3' 

Td 42 3' X2(m.p., b. C3's), 

3S4(c. C2) , 
6Ud(t. C3' S) 

Th 
0 

Oh 

I 

4C3, 3C2(m.p.), -i 3o(t. Czls), 4Sg(c. C3's) 

x4(m.p.), 4C3 3~; (c. C4) , 6C2 
X4 (m.p.) , 4C3 (cube 3C (c. C4), 6C2 (t . centers 

2 
diagonals) , i opposite cube edges) , 

3S 4 (c. '4) 9 4s6(c' 9 

30 (p. C4) , 6Ud (t . OppO- h 
site cube edges) 



A few reinarks may facilitate the use of Table 2: 

1. The first column gives the name of the group in the Schoenflies 

notation habitually used by molecular spectroscopists; the corresponding 

notation in the Hermann and Mauguin system used in crystallography, and 

more recently in solid state spectroscopy, can be found in most of the 

tables given in the bibliography. Although it is not necessary to 

memorize the symbols and symmetry elements of the point groups, it can 

be useful to notice that: (a) the groups C and S contain essentially 
P P 

only the corresporiding axis, the special cases being C1 (which really 

does not have any symmetry) and Ci (which has only a center of sylul~str-y 

equivalent to the operation S2); (b) the groups CPv and Cph are generated 

by adding a ov or o plane to the groups C the special case being Cs, h P ' 
whose plane of symmetry can equally well be considered horizontal or 

vertical, justifying the equivalent names C and Clh; (c) the dihedral 
1 v 

groups D are generated by adding a C2 perpendicular to the principal 
P 

axis of a group C ' the operations with both axes generate new C2's 
P ' 

perpendicular to the C (d) the addition of vertical planes ad bisecting 
P * 

adjacent C2's of each D group gives origin to the D groups; (e) the 
P Pd 

addition of a horizontal plane ah to each D group gives origin to the 
P 

D groups; and (f) all the above mentioned groups are called axial 
ph 
point groups and can be characterized as not having more than one (if 

ally) axis of order three or higher. Groups that have more than one 

three-fold or four-fold axis are called cubic point groups, and only two 

of them are likely to be found in free molecules - Td, which has the 
symmetry of a regular tetrahedron, and Oh,  sf which thc cube and the 

regular octahedron are the typical examples. The cubic groups T, Th, 

and 0 have been included because of their usefulness in the study of the 

spectra of many crystals. 

2. The symmetry elements that constitute each point group have 

been separated into two columns to facilitate the search when trying to 

assign symmetry to a molecule. The first column lists the minimum set 

'that characterizes the group and, in most cases, justifies its symbol. 

The second column contains symmetry elements that are a consequence of 

the presence of the former ones. All the elements are equally important 



for thededuction'of the molecular properties derived from the molecular 

symmetry. 

. 3 .  , The. table contains the 32 llcrystallographicll point groups from 

whichthe 230 crystal space groups can be derived by addition of new 

elements of symmetry (translations, screw axes, glide planes). The : 

reader must be reminded that the methods for the interpretation of 

crystal spectra are more-complicated than the methods applicable only to 

isolated.molecules~that will #be described. A first approximation to the 

spectra of molecular crystals can be obtained, however, by treating each 

molecule or ion in the crystal as isolated, but with its own symmetry 

reduced to the symmetry of the crystal at the "site" where the molecule 

or ion .is located. 

3. GROUPS, REPRESENTATIONS, CHARACTER TABLES;. 
. , , . AND THE REDUCTION FORMULA, . ,.. 

A set of elements A, B, C, ... that can be combined in pairs ' 

according to a certain rule is said to constitute a group if (1) each 
. . 

binary combination yields an element of the set, (2) the associative law 

holds for the combination of more than two elements, (3) the set contains 

an identity element (its combination with all the other elements leaves 

them unchanged), and (4) each element has an inverse in the set (their 

combination yields the identity). The combination is usually called 

I1product" although it does not need to be a product in the ordinary 

algebraic sense and, in general, will not be commutative. It may be 

useful to tabulate all the binary products in a 'lmultiplication table." 

The elements of a group may have any degree of complexity or 

abstractness, and the operations necessary to obtain their products may 

be very complicated. Usually it is possible to establish a correspon- 

dence between each element o'f'a group and a number or a matrix belonging 

to another group in such a way that the multiplication tables of 'both 

groups are'llparallel.ll The group of' numbers or matrices is called a 

representation of the 'original group and its dimension is equal to the 
. . 

order of the square matrices that constitute it (the dimension is 1 if 

its elements arc numbers). Many properties of a group can be foundby' 



operating with their representations, which may vary in'number and 

dimensions.. Frequently, mathematical operations may be performed that 

will factorize the matrices of a high-order representation into matrices 

of lower orders, which constitute representations of lower dimensions. 

.When that process is carried out in such a way that the lower order 

matrices cannot be further factorized, it is said that the higher order 

reducible representation has been reduced to its irreducible represen- 

tations. It can be proven that there are only a limited number of 

irreducible representations of any group; they can, therefore, be found 

and tabulated. For many applicat.inns of group theory it is cnou~h to 

know the character (sum of diagonal elements) of the representations, a 

fact which explains the interest in the availability of tables of char- 

acters of the irreducible representations of the point groups. 

The reduction of a reducible representation to its irreducible 

components may be a complicated process, but there is a simple reduction 

formula which gives the number of times each irreducible representation 

will appear when the reduction process is completed. If the g elements 

of a group have characters xi (i = 1, 2, 3, ..., g) in some reducible 
represenration and characters Xi (i = 1, 2, 3, . . . , g )  in the irreducible 

representation q, the reduction of the former will contain the latter N~ 

times, wi,t.h 

4. Till: CHAKAC'I'EK TABLES OF THE POIN'I' GROUPS 

The symmetry operations of the pojnt can be described hy t.ha 

equations that relate the coordinates of each atom before and after each 

operation. The coefficients of these equations may be arranged in 

matrices that represent the symmetry operations. The dimension of these 

reducible representations will depend on the choice of a coordinate 

system. If cartesian coordinates are used, each atom will require three 

coordinates, and a molecule with N atoms will yield a representation of 



dimension 3N; use of internal coordinates (distances between atoms, 

angles between bonds, etc.) may yield representations of dimension , 

3N - 6 (3N - 5 for linear molecules). All these representations can be 

factorized into the irreducible representations whose characters are . 

given in Table 3, together with some additional information that will be 

necessary for the applications to molecular spectroscopy. . . 

To explain Table 3, we will use a typical example. Let us reproduce 

part of the character table for the point group D3h, to which the planar 
. . . . . , . molecule BF3 belongs. .. . . 

BF3 molecule 

In addition to the ~choenflies symbol of the group, the first line' 

contains all the symmetry operations that constitute it. The number 2 

in 2C3 indicates that the gioup includes, in fact, the two C3 operations 

C: and C: (rotations of 120' and 240' around the C3 axis); but because 

both operations have the same characters in ail the representatiurls, it 

is unnecessary to.repeat the column. The number 3 in 3C2 indicates, 

similarly, that there are three binary axes [through BF(i), BF(~), aid -' 

BF(~) in BF3], each one contributing an identical column to the table. 

There is one reflection through a horizontal plane (the plane of the 

molecule, which is perpendicular to the principal axis C3), to improper 
1 rotations S3 and S: around the axis S3 (cdincident with C3), and three 

reflections thro+gh the vertical planes .,(which contain C3 and each one:' 

of the C2(s). Addition of the trivial symmetry E completes the 12 

elements of D3h. 

Each one of the following lines of the table contains the characters 

of one of the irreducible representations of the group, preceded by its 



Table 3. Character tables of point groups 

The C groups ' 

P 

a a a 
Y. LZ. 5y 

a yz' azx 

2ni 

5; Rn 
R Tz TY; Rx' 

n 

/I 

s 

C2 

1 1 

1 -1 

A 

B 
T,; Rx 

~ T ~ , T ~ ) ;  ( R ~ , R ~ )  

1 1  1 I I 1 

I -1 1 -1 I -1 
' * rt 

- 
~ = e  6 

+ Oyy' azn 

fa YR' a zx 

fa, - a yyJ  aLy) 

E € -1 -€ 
4 

€ '* 
- €  -€ 

4 
-€  -c I - -€  





C 

A , = c +  

Az  5 1- 

~ ~ r n  
E2 A 
E 3 E @  

. . . 

E 2cm 4 .  . . .  
' -v 

I 1 . . .  I 

1 1 a *  -1 

2 .2 cos 4 . . . 0 

2 2 cos 241 . . . 0 

2 2 cos 34 . . . 0 

... . . . ... . . . 

T~ . 

lrZ 

IT T 1; (R  R ) "' Y xJ Y 

+ a  um y . ~ ' ~ z z  

(aya,  q X )  
(as - a a 

YY' w 



The C groups 
ph 

A 
9 

B 
9 

A 
U .  

Bu 

I 1 i I 

1 -1 1 -1 

1 1 -1 -1 

1 -1 -1 1 

R ~ .  
. Rx, R 

Y 
T 

.Z 

T - , T  .. 
x Y 

a=,. a, a a ' 

yy' zz' x g  
a a 

y z J  zx 

. .  

276 
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The D groups 
P 



The D groups  
?? d 

a + a  a 
3CCC yy' zz 

(aur - a a I ,  (agz, sax) YY' 

The D g roups  
??h 



a + a  a  yy' a z  

l a x z - a  a  1 
YY' X Y  

E 2C5 
2 

2C5 SC, a,, ?.S3 l S g l  k, 

1 1 1 1 1  1 1 I 

1 1 1 -1 1 1 1 -1 

2 2 cos 72' 2 cos 144' 0 2 2 cos 72' 2 cos 744O 0 

2 2 cos 144' 2 cos 72' 0 2 2 cos 144' 2 cos 7X0 0 

1 1 1 1 -1 - 1 -1 -1 

1 1 1 -1 -1 - 1 -1 1 

2 2 cos 72' 2 cos 144' 0' -2  -2 cos 72' -2 cos 144O 0 

2 2 cos 144' 2 cos 72' 0 -2 -2 'cos  144' -2 cos 72O 0 



E ZC,~  . . .  =aV i 2s-4 . . .  
OC2 

1 . . .  I 1 1 . . .  I 

1 . . .  -1 I 1 . . .  -1 

9 
2  2 c o s 4  . . .  0 2  - 2 c o s +  . .  . 0 

A 
B 

2  2COS24 . . a  0 2  2.C0824 . . .  0 

... ... . . . ... ... ... . . . ... ... 
c +  1 1 . . .  1 - 1  -1 . . .  -1 

'4- 
I I . . . -1 -1 - 1 . . .  I 

nu 2  2 c o s 4  . . .  0 -2 2 ~ 0 . 4  . . .  0 

Au 2  2  cos 24 . . . 0 -2  -2 cos 24 . . . 0 

... ... ... . . . ... ... ... ... ... 

Ri3 

(RdRy) 

Ta 

fT9Ty)  

a,'aYY~ 

(a .a ) 
Y a  sJc 

(a -a a )  = YY' zy 



The Cubic groups 

T 

A 

E 

E 4c3 
4 4  3c2 

1 I I 1 

1 8  s* I 

1 E*  E  1 

F 3 O  0 -1 (T), (R) 

2ni - 
~ = e  3 

a  + a  
n yy + 

+ a  - 2 a  a  - a  ) 
YY zz' xx yy 

( a  u u 1 q' yz' zx 





conventional symbol. This symbol gives some information about the 

characteristics of the representation, according to the following 

convention: 

A one-dimensional representation will be recognized to be "symmetrictt 

or ttasymmetrict' with respect to a symmetry operation when the 

corresponding character is +1 or -1 respectively. For two- and 

three-dimensional representations the characters may be +2 and 23 

respectively. 

A or B: one-dimensional representations which are spmetric or 

anrfs)4nn1cLrlc, respectively, with respect to rotations about the 

principal axis C . 
P 

E: two-dimensional representations. 

F: three-dimensional representations (sometimes designated T) . 
1 or 2: subscripts attached to A's and Bts to designate represen- 

tations that are symmetric or antisymmetric, respectively, with 

respect to rotations about a C2 perpendicular to the principal axis. 

If such a C2 does not exist, it is replaced by a av. 

g or u: subscripts attached to all letters in groups with a center 

of symmetry to indicate representations that are respectively 

symmetric or antisymmetric with respect to the inversion tl~rougl~ Lhe 

center. 

Primes or double primes: superscripts attached to all letters, when 

appropriate, to designate a representation that is symmetric or 

antisymmetric, respectively, with respect t n  reflection through a a .  h ' 
+ or  : one-rli~~~ensional representations for the groups of linear 

molecules that are respectively symmetric or antisymmetric with 

respect to reflection through a av. 

IT, A, @, etc.: two-dimensional representat.ions for tl~e groups of 

linear molecules. 

The physical meaning of the symmetric or antisymmetric behavior of 

the representations will become clearcr after the explanarion of their 

use in vibrational spectroscopy. 



The right side of the character tables contains information about 

the symmetry of the components of molecular translations (T), rotations 

(R), and polarizabilities (a). This information is given through their 

assignment to the different representations and will be used in the 

prediction of vibrational spectra. The symbol T is an abbreviation for 

a the set Tx, T Tz; the R replaces Rx, R RZ and means azx, aYy, za, Y' Y' 
a a a Degenerate components are enclosed in parentheses. y yz' zx' 

5. GROUP THEORY AND MOLECULAR VIBRATIONS 

Up to this point we have mentioned only the symmetry of molecules 

in their equilibrium configuration. But it can be proven that the 

displacements of the atoms during molecular vibrations are constrained 

to specific patterns determined by the molecular symmetry. This fact 

results in a close relationship between the normal vibrations and the 

irreducible representations of the point group. This relationship is 

the basis for the application of the group theory to vibrational spec- 

troscopy. The most important consequences of this application are: (1) 

The normal modes of vibration can be classified according to the irre- 

ducible representation to which they "belong." (2) This classification 

provides some description of the normal modes because the character 

table indicates if they are symmetric or antisymmetric with respect to 

some symmetry operations; in this application, "symmetric" means that 

the operation performed on the vibrating molecule will keep the.vectors 

representing the atomic displacements unchanged, while "antisymmetric" 

means that the same vectors will change to the opposite direction. 

(3) The degeneracy of the normal modes is given by the dimensions of 
j. 

their representations. (4) The normal modes belonging to the same 

representation as any component of a translation are infrared active. 

(5) In the gas phase of symmetric top molecules, the vibrations in the 

same representation as T are "parallel" and should show the typical YQK 
2 

structure. (6) The normal modes belonging to the same representation as 

any component of the polarizability are Raman active; only the vibrations 

belonging to the completely symmetric representation (all characters 

equal to 1) can originate polarized bands. 



6. THE PREDICTION OF THE FUNDAMENTAL VIBRA'I'lONAL BANDS 

In  t h i s  s e c t i o n  we w i l l  d e sc r ibe  s t e p  by s t e p  a  procedure f o r  t h e  

c a l c u l a t i o n  cf  t h e  number and p o l a r i z a t i o n  o f  t h e  fundamental bands t h a t  

should appear  i n  t h e  i n f r a r e d  and Raman s p e c t r a  o f  a  molecule o f  known 

c o n f i g u r a t i o n .  

S t e p  1: Assignment o f  t h e  molecule t o  a  p o i n t  group 

By working on a  model o r  a  good drawing of t h e  molecule, one can 

l o c a t e  a l l  Llle symmetry elements .  l 'here  a r e  no sys temat ic  procodurcs t o  

perform t h i s  s t e p ,  b u t  exper ience  shows t h a t  a  s h o r t  p r a c t i c e  per iod  

w i l l  p rovide  t h e  neces sa ry  s k i l l s .  I t  may be  use fu l  t o  look f i r s t  f o r  a  

p rope r  a x i s  of r o t a t i o n  o f  t h e  h ighes t  order .  I f  none e x i s t s  t h e  molecule 

can  on ly  belong t o  Cs, C7:, o r  C1, and t h e  search  f o r  a  p l ane  o r  c e n t e r  

of symmetry w i l l  d ec ide  among them. I f  one o r  more C ' s  e x i s t ,  s e l e c t  
P 

t h e  one o f  t he  h i g h e s t  o r d e r  and determine i n  Table 2 t h e  groups t h a t  

c o n t a i n  it.  The l e f t  h a l f  o f  t h e  l ist  o f  symmetric elements can be used 

as a  gu ide  t o  s e l e c t  which elements t o  look f o r  next  t o  reduce t h e  

p o s s i b l e  choices .  Th i s  procedure should cont inue u n t i l  on ly  one group 

i s  l e f t  and a  c a r e f u l  check has  been done t o  v e r i f y  t h a t  no e1eme11L , 

belonging  t o  a h ighe r  symmetry group i s  p r e s e n t .  

S t e p  2:  Ca lcu la t ion  o f  t h e  c h a r a c t e r s  o f  a  r e d u c i b l e  r e p r e s e n t a t i o n  

Once a l l  t h e  symmetry elements  have bean locatcd ~ n d  t h e  po in t  

group has  been determined,  t h e  c h a r a c t e r s  o f  each symmetry o p c r ~ t i o n  i n  

a  r e d u c i b l e  r e p r e s e n t a t i o n  o f  dimension 3 N  - 6 can be c a l c u l a t e d  according 

t o  t h c  f o l l a w i ~ l g  rules :  

For each ope ra t ion  E o r  C : Count t h e  number o f  atoms t h a t  a r e  not  
P 

s h i f t e d  when t h e  symmetry ope ra t ion  i s  performed. Sub t r ac t  2 .  

Mul t ip ly  by t h e  a p p r o p r i a t e  f a c t o r  i n  Table 4 .  

For  each ope ra t ion  i, S, o r  a:  Count t h e  number of  atoms t h a t  a r e  

n o t  s h i f t e d  when t h e  symmetry ope ra t ion  i s  performed. Mult iply by 

t h e  a p p r o p r i a t e  f a c t o r  i n  Table 4 .  



Table 4. Contribution to character per unshifted atom 

Operation i Xi 

Step 3: Calculation of the number of fundamental vibrations belonging 
to each representation (symmetry species) 

In molecular spectroscopy, the irreducible representations of the 

point groups are often referred to as "symmetry types" or "symmetry 

species," and the reduction formula is slightly modified to account 

explicitly for the fact that the columns of the character table may 

contain more than one symmetry operation. 

The number of fundamental vibrations of symmetry type y is given 

by: 

where 

n. = number of operations in the ith column of the character 
Z 

table, 

c = number of columns in the character table (equal to number of 

representations), 

C 

g = 5 ni = total number of operations in the point group, 
z= 1 



X i  = charac te r  o f  t h e  reducible  representa t ion  of  t h e  opera t ions  

o f  column i (determined i n  s t e p  2) ,  

XT = charac te r  o f  t h e  y i r r e d u c i b l e  representa t ion  o f  t h e  opera t ions  
Z 

o f  column i. 

In  some groups t h e r e  a r e  imaginary o r  complex charac te r s ,  but they 

always appear a s  conjugate p a i r s  i n  two one-dimensional r ep resen ta t ions  

which a r e  t h e  components of  a degenerate mode E. When t h e  reduction 

formula i s  app l i ed ,  t h e  r e a l  sum of  both complex charac te r s  has t o  be 

used as t h e  cha rac te r  f o r  t h e  species  E. Notice t h a t  

2 n 2ni/n + .-2ni/n = cos - i + ( - i )  = 0 and e 
n 

S t e p  4: Determination o f  t h e  number o f  fundamental bands 
i n  t h e  i n f r a r e d  and Raman spec t ra  

In f ra red  spec t ra :  w i l l  include a l l  t he  fundamental modes with t h e  

same symmetry a s  T Z ,  T and/or T Z .  The v ib ra t ions  i n  t h e  same 
J i ' .  

spec ies  a s  (Tx,T. ) o r  I T  T ,TZ) w i l l  be double o r  t r i p l e  degenerate 
3 x' Y 

r c s p c e t i v e l y .  

61 Raman spec t ra :  w i l l  include a l l  t h e  fundamental modes with t h e  

same symmetry a s  any component. o f  0 .  The v ib ra t ions  i n  the  same 

spec ies  a s  az5, a gg' azZ  
w i l l  be polar ized  ( t o t a l l y  i n  t h e  cubic 

groups, p a r t i a l l y  i n  t h e  r e s t ) .  The vibr 'at ions i n  t h e  same species  

a s  a a and/or aZCC w i l l  be depolarized.  xy' yz' 

7 . 1  AMMONIA (NHs) 

S tep  1 

A s  a pyramid with t h e  N a t  t h e  cusp and 

t h e  t h r e e  H a t  t h e  corners  o f  an e q u i l a t e r a l  , 
t r i a n g u l a r  base, ammonia shows lC3 (through 

t h e  N ,  perpendicular  t o  t h e  base) and 3ov 



(through t h e  C3 and each NH bond). Inspection of  Table 2 g ives  imrnedi- 

a t e l y  a point  group C3v. 

S tep  2 

Atoms unshi f ted  per  symmetry operat ion:  

U - 4 ,  
E 

u = 1 ( the  N) , 
c 3 

u = 2 ( the  N ,  one H) , 
0 v 

Step  3 

From the  charac ter  t a b l e  f o r  t h e  group C . 
3v' 

Ammonia has, therefore ,  two nondegenerate v ib ra t ions  of species  A 1  

and two doubly degenerate v i b r a t i o n s  of  species  E. This r e s u l t  is 

usua l ly  represented by 

Step  4 

The charac te r  t a b l e  shows t h a t  (1) a l l  bands being i n f r a r e d  and 

Raman a c t i v e ,  each spectrum should show four  bands; (2) i n  the Raman, 



t h e  A l  bands may be p a r t i a l l y  polar ized  and t h c  E bands w i l l  be depolar- 

i zed ;  and (3 )  i n  t h e  i n f r a r e d  spec t ra  of gaseous ammonia the  A 1  bands 

a r e  "pa ra l l e l "  and should show PQR s t r u c t u r e .  

7 .2  MONODEUTERATED AMMONIA (NH2D) 

S tep  1 

ti 
There i s  on ly  a a (through ND and b i s e c t i n g  

 lie two NH bonds). The point  group i s ,  the re fo re ,  

S tep  2 

S tev  3 

Monodeuterated ammonia has,  the re fo re ,  s i x  nondegenerate v ib ra t ions  

which can be represented by 



Step 4 . . 

From the  charac ter  t a b l e  f o r  t h e  point  group Cs: (1) A l l  bands 

being in f ra red  and Raman a c t i v e ,  each spectrum should show s i x  bands. 

(2) In t h e  Raman, t h e  A' bands may be p a r t i a l l y  polar ized  and t h e  A" 

bands w i l l  be depolarized. (3) No p red ic t ion  about the  shapes of t h e  

in f ra red  bands of  the  gas can be made. 

7.3 1,2-DICHLOROETHYLENE ( c i s )  (c-ClHC*CClH) 

S tep  1 
c 

The plane of  t h e  molecule (a) and t h e  

p lane  through t h e  cen te r  o f  t h e  C=C bond 

and perpendicular  t o  it (a1) a r e  p lanes  

o f  symmetry. The i n t e r s e c t i o n  o f  both p lanes  i s  a (72.. There are no 

o t h e r  symmetry elements (except t h e  i d e n t i t y )  and t h e  molecule belongs, 

the re fo re ,  t o  ihe CZv po in t  group. 

Step  2 

Step  3 

n = 1 ,  E n = 1 ,  n = I ,  n = 1 ,  
C2 u v 0 v ' 

c = 4 ,  g = l + l + l + l = 4 ,  



There fo re  

S t e p  4 

From t h e  c h a r a c t e r  t a b l e  o f  p o i n t  group C2V: (1) A l l  bands a r e  

Raman a c t i v e  and only  t h e  A 2  bands a r e  i n f r a r e d  i n a c t i v e .  There w i l l  

b e ,  t h e r e f o r e ,  5 A 1  + d B 1  + 1B2 = 10 i n f r a r e d  bands and 5A1 + 2 A 2  + 

4Bl + 1B? = 1 2  Raman ha.nds (of  which 10 should cv inc ide  w i t h  t h e  i n -  

f ra rcd) .  ( 2 )  The 5A1 Kaman bands may be po la r i zed ;  t h e  r e s t  w i l l  be  

d e p o l a r i z e d .  

7 . 4  1,2-DICHLOROETHYLENE (trans) (t-CIHCeCCIH) 
+cz 

S t e p  1 

The p l a n c  of t ho  molceul t  i s  Lhe only 

p lane  01 synmcrry and t h e r e  is a C2 perpen- 
I 

d i c u l a r  t o  it i n  t h e  c e n t e r  o f  t h e  C=C bond. I 
T h i s  c e n t e r  i s  a l s o  a  c e n t e r  o f  symmetry. I 
Table  2 shows t .hat t h e  p o i n t  group i s  C 

272' 



. . . . 

Step 2 . .  

Therefore 

From t h e  charac ter  t a b l e  of t h e  po in t  group C 2h: (1) There w i l l  be  

2A + 4BU = 6 i n f ra red  bands and SA + 1B = 6 Raman bands; t h e r e  should 
U 9 9 

not be any coinciding frequencies.  (2 )  The SA. Raman bands may be 
Y 

p a r t i a l l y  polar ized;  the  B w i l l  be depolarized.  
9 



7.5  ETHYLENE (C2H4) 
$ 2 1 4  
X 

S t e p  1 

There a r e  no C 3 ' s  o r  higher order  a x e s , '  

b u t  it i s  easy t o  f ind  t h r e e  perpendicular  

C21s pass ing through t h e  cen te r  of  t h e  C=C 

bond - one coincident  with t h e  bond, one 

laying i n  t h e  molecular plane,  and t h e  

t h i r d  perpendicular  t o  t h e  f i r s t '  two. Thus, t h e  possib1.e groups a r e  

reduced t o  Dnj D o r  D The exisLv!!~t: of the rhrse plane5 nf  ad' zla ' 
symmetry determined by p a i r s  of  C decides i n  favor of D 

2 2h' 

S t e p  2 

S t e p  3 



Therefore 

Step  4 

From the  charac ter  t a b l e  of t h e  point  group U2h: (1) There w i l l  be  

2Blu + 2B2u + lB3u 9 29 39 = 5 i n f r a r e d  bands and 3A + 1B + 2B = 6 Raman 



bands; t h e r e  should n o t  be  any co inc id ing  f requencies .  (2) The 3A 
9 

bands may be p o l a r i z e d ;  t h e  o t h e r  t h r e e  Raman bands w i l l  be depolar ized .  

7.6 PHOSPHORUS PENTAF LUORIDE (PF 5) +C,ES, 

S t e p  1 

There i s  a n  obvious Cg through t h e  a x i a l  

f l u o r i n e  atoms and each  h o r i z o n t a l  PF bond 

coincides wirh a C 2 .  'I'he p l ane  of  t h e  equa- 

e o r i a l  f l ~ i o r i n ~  atoms i c  a plane o f  symletry. I 
'I'hese elements  can be  found i n  t h e  D3h group, 

which can be  v e r i f i e d  by f i n d i n g  t h e  S 3  ( co inc iden t  wi th  C3) and t h e  

3av ( through C3 and each C2) . 

S t e p  2 

S t e p  3 



A'; 
N = -  I  [1.12*1 + 2.001 + 3*0*(-1)  + l 0 4 * ( - 1 )  

12 

Theref o re  

S tep  4  

From the  charac ter  t a b l e  o f  t h e  point  group D 3 h :  (1) There w i l l  be  

3E' + 2A'; = 5 in f ra red  bands and 2A;  + 3E' + 1C' = 6 Raman bands, t h e  

frequencies o f  t h e  3E' bands coinciding i n  both spec t ra .  (2) The 2Ay 

i n f r a r e d  bands o f  gaseous PF5 should show PQR s t r u c t u r e .  (3)  The 2A'; 

Raman bands may be polar ized;  t h e  o the r  four Raman bands should be 

depolarized.  



7 . 7  CARBON TETRACHLORIDE (CC1 4) 

Each C C 1  bond co inc ides  with a  

C3 a x i s  and t h e r e  a r e  no C4's .  This  

d e s c r i p t i o n  i s  on ly  compatible  with 

t h e  groups T ,  T d ,  and Th. The f a c t  

t h a t  every  p a i r  o f  C3's  determines 

a p l ane  o f  symmetry dec ides  i n  favor  

of Td. The e x i s t e n c e  o f  3 C k 1 3 ,  

b i s e c t i n g  p a i r s  o f  C41s, can be v e r i f i e d .  

S t e p  2 



F 2  
[1.9.3 + 8.0.0 + 3*1- (-1) + 6*(-I)*(-1) + 6.3.11 = 2 N = -  

24 

Therefore ' 

Step 4 

From the character table of the point group Td: (1) All four bands 

should appear in the Raman spectra while only the 2F2 frequencies should 

show in the infrared. (2) The A 1  Raman band should be completely 

polarized, while the other three bands should be depolarized. 



Fig. 2. Mono- 
# 6 

deuterated ammonia. 

Fig. 3. cCc-1,2-Dichloroethylene. 

, Fig. l i  Ammonia. 

Fig. 4. trans-1,2-Dichloroethylene. 

+C,,s, 

Fig. 6. Phosphorus pentafluoride. 

& I  ( 

Fig. 5. Ethylene. 

w 

Fig. 7. Carbon tetrachloride. 
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