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ABSTRACT

Application of the mathematical theory of groups to the
symmetry of molecules is a powerful method which permits the
prediction, classification, and qualitative description of
many molecular properties. In the particular case of vibra-
tional molecular spectroscopy, applications of group theory
lead to simple methods for the prediction of the number of
bands to be found in the infrared and Raman spectra, their
shape and polarization, and the qualitative description of
the normal modes with which they are associated. This report
contains the tables necessary for the application of group
theory to vibrational spectroscopy and instructions on how to
use them for molecular gases, liquids, and solutions. A brief
introduction to the concepts, definitions, nomenclature, and
formulae is also included.



THE USE OF GROUP THEORY IN THE INTERPRETATION .
. OF INFRARED AND RAMAN SPECTRA

1. INTRODUCTION

.Application of the mathématical theory of groups to the symmetry of
molecules isa powerful method which permits the prediction, classifi-
cation, and qualitative description of many molecular properties. -Most
of this information would be unobtainable from first principles because
of the difficulties in-solving the complicated’ equat1ons, and, in most
cases, very long calculations would be necessary in order to obta1n
equivalent information by other methods.-

In the particular case of vibrational molecular spectroscopy,
applications of group theory lead to simple methods for the prediction
of the number of'bands.to be found in the infrared and Raman spectra,
their ahape and polarization, and the qualitative description of the
normal modes with which they are associated.

This summary will include the tables necessary for the app11cat10n
of group theory to vibrational Spectroscopy and instructions on how to
use them for molecular gases, 11qu1ds, and solut1ons A brief intro-
duction to the concepts, definitions, nomenclature, and formulae w111 be
presented, but no theoretical Just1f1cat10n of the methods will be
given. More complete descrlptlons of the theory underlylng such methods,
as well as their extensions to molecular solids and polymers, can be
found, at d1fferent levels of d1ff1culty, 1n the annotated b1b11ography

‘1nc1uded at the end of thlS sectlon

2. THE POINT GROUPS

The movement of a molecule from one position to another that is
indistinguishable from the original one (because every atom has been
replaced by another of the same kind or has not moved at all) is called
a symmetry operation. Each symmetry operation has to be carried out
with respect to a geometrical entity (point, line, or plane)' which is

called a symmetry element. There are a limited number of possible



symmetry operations; they are listed in Table 1, together with their
usual symbols and associated symmétry elements. The identity, a trivial
symmetry which all molecules have, has been included because it has to
be taken into account in the calculations that follow. The axis of
symmetry of the highest order (if it exists) is called '"principal axis,"
and it is customarily considered to be vertical; if a coordinate system

" is used, the principal axis should coincide with the z axis.

Table 1. Symmetry operations

Symbol "~ Operation : - Description

I Identity Rotation by 360°

Cp p-Foid rotation Rotation by angle 2n/p.

o Reflection Reflection by a plane

Sp, Rotgtion-réflection Rotation py ahgle 2n/p followed by
reflection

z Inversion ‘ "Reflection" of each point through

- the origin, or center of mass

A molecule may have one or more symmetry elements. Not all com-
binatioﬁs of symmetry elements are possible; on the other hand, the
presence of certain pairs of symmetry elements implies the existence of
certain 6thers Each set of compatible symmetry operatlons is called a
"'"point group” because (1) no symmetry operation can move the point
coincident with the center of mass (which is unique and cannot, therefore,
be shifted to an ''equivalent' position), and (2) each set must satisfy
the conditions to constitute a mathematical "'group."

Because very few known molecules have symmetry axes of order greater
than six .(except =), the number of point groups of practical.interest is
limited. Table 2 lists those groups and gives typical examples of
molecules that have the corresponding stmetry,in their equilibrium
configuration. Some point groups for which examples are not known are
listed because of the possibility of having to deal with molecules that
belong to them in a perturbed configuration (as may happen in liquids)

or in excited states.



Table 2. The symmetry elenents of the point groups of interest to molecular spectroscopy

Point groupa

Symmetry elements

b,e

Examples

Q O a 9O

P

oo

2h

uh

Q O O O

Q _Q

S R

3k

Q

Q

6h

e ¢

Cg(ci 06)3 C3(C, 05)

Ch(c. Sy)
Calc. Sg), ©

o} (p. 0,)°

v
20} (p. ¢,), Cg(c. c,)
s,(b. 0,), Cite. Co),
C3(C. Cs)
W'.Cp.‘(c", ‘)
; .

S3(C. Cs)‘

Cale. €); 5, (c. C), ©

C;(c:-ce)) Cyle. Ce),
SG(Q. Ce)s 33(9. Ce)s

CHFC1Br, CH3-CHO
H202 (nonplanar)

traﬁs-ClBrHC°CHBrC1

NOC1 (noniinearj:‘NHZD,
CoHsC1

H20; Hchlz, chlorobenzene

NHj, HCCls, OPCls |

IF,, Fe(CO), .

7

5)

HC1, HCN, HCCCl

trans-C1HC=CHC1, C302
+

H3B03, C (NH3)3



Table 2 (continued)

Point groupa Symmetry elementsb’c Examples
D=V - Ca, Ca(p. C2) - Ca(p. €2C3)
D3 : C3, 3C2(p. C3) »
Dy, | Cy, 205(p. Cu, m.p.)¥ 203 (b. C3), C3(c. Cy)
D¢ | Cg, 3C2(p. Cg) 3¢5 (b. Ca), Ch(c. Cg),
R C3(C. CG)
- '
DZd (_Vd) { €5 2C,(p. Ci’ m.p.), Sq(c. 02) ‘ 82C1u’ H2C3H2, Nusu
Zod(t. Cz) o
3d Cs, SCz(p. Cs), 30d Ss(c. 03), 1 CzHg, CgHyz (cyclohexane),
(SiH3) 20
. 11
ud Cy» 402(p. C,), 40,4 C,(c. €), Sgle. Cp) ' Sg ‘ . )
- ~ E ] ' - : - .
ok (:Vh) C,s C5(p. Cy), C%(p. CZCZ),'O'(t. CyCy0, | C,Hy, p-dichlorobenzene,
_ o(t. €.C7) Co''(t. C,0h) 2 : naphtalene
sh C.o 3C,(p. C,), oy 5,(c. C3), 30, BF3, 1,3,5-25H3C13
. 1t -
th Cu’ ZCZ(p. Cu)’ Cz(c._Cu), Su(c.‘Cw), : Cu“e’ PtCl‘+ |
-Zcz(p. Cu)’ 9, ‘ 2°v’ Zod, i
sh Cs, SCZ(p. CS)’ %, Ss(c. CS)’ Sov Cyclopenténe (plane and
; symmetric), ferrocene
eclipsed) -
o 06, ?Cz(p. CG), Cz(c. CG), C3(c. Cs)’ ' CGH6 (benzene)‘
SCZ(P- '96)9 Uh Sa(C. CG): SG(C' CG),
300, 30d



Table 2 (continued)

Point groupa . Symmetry elementsb’c Examples
Dmh Co» °°Cz(p. c.), % Any Cp(c. c.), any - 0,, €O,, C,H,
‘ ' Sp(c. c, >0, 7
T . 433, Scz(m.p., b. C3's) '
T | 42,, 3¢,(m.p., b. C,'s), ‘ CH,, BF,, Nuq*, s0,2°
35,(c. C,), i
. 60;(t. C,'s) o
Th S 403, 302(m.p.), 7 30 (t. Cz's), 4SB(C. 03'5)
0 i, (m.p.), 4C, ~3c'2'(c. c,), 6C,
0y, 3¢, (m.p.), 4C;(cube . :3C,(c. €,), 6C,(t. centers’ SFg, PtC1,2-, UF,
diagonals), opposite cube edges),
' - 35, (c. €,), 45, (c. s
Soh(p. Cu)’ God(t. oppo-
site cube edges)

4w
sometimes labeled ¥ in Cuv and CGD), if the rule is not applicable, o v shouldklntersect more bonds

%In the sz’ ¢ _, and Cev groups, o, should (if possible) pass through more atoms than o (which is

than c;. Similar rules should;be used to label Cz,'Cé, and C; in groups Dz‘and Dzh’ and C, and C;
in groups D 4 D 6 2d, h’ and P o'
The element E (1dent1tv), which is contained in every point group, has been omitted.

®Axes and planes preceded by a number are equivalent (can be transformed one 1nto the other by another
symmetry operation).
c. = coincident with. _ fb = blsectlng _ : A ht._é through.

ep. = perpehdicular to. gm.p. = mutually perpendlcular



A few remarks may facilitate the use of Table 2:

1. The first column gives the name of the group in the Schoenflies
notation habitually used by molecular spectroscopists; the corresponding
notation in the Hermann and Mauguin system used in crystallography, and
more recently in solid state spectroscopy, can be found in most of the
tables given in the bibliography. Although it is not necessary to
memorize the symbols and symmetry elements of the point groups, it can
be useful to notice that: (a) the groups Cp and Sp contain essentially
only the corresponding axis, the special cases being ¢, (which really
does not have any symmetry) and Ci (which has only a center of symmetry
equivalent to the operation S;); (b) the groups va and Cph are generated
by adding a 0, Or o, plane to the groups Cp’ the special case being C_,
~whose plane of symmetry can equally well be considered horizontal or
vertical, justifying the equivalent names Clv and Clh; (c) the dihedral
groups Dp are generated by adding a_C2 perpendicular to the principal
-axis of a group Cp; the operations with both axes generate new 02'5
‘perpendicular to the Cp; (d) the addition of vertical planes 9y bisecting
adjacent Cz's of each Dp group gives origin to the Dpd groups; (e) the
“addition of a horizontal plane 0; to each Dp_group gives origin to the
Dph groups; and (f) all the above mentioned groups are called axial
point groups and can be characterized as not having more than one (if
any) axis of order three or higher. Groups that have more than one
three-fold or four-fold axis are called cubic point groups, and only two
of them are likely to be found in free molecules —-Td, which has the
,» of which thc cube and the

h
regular octahedron are the typical examples, The cubic groups T, Th’

‘symmetry of a regular tetrahedron, and 0

and O have been included because of their usefulness in the study of the
spectra of many crystals.

'2. The symmetry elements that constitute each point group have
been separated into two columns to facilitate the search when trying to
assign symmetry to a molecule. The first column lists the minimum set
‘that characterizes the group and, in most cases, justifies its symbol.
The second column contains symmetry elements that are a consequence of

the presence of the former ones. All the elements are equally important
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for the deduction of the molecular properties derived from the molecular
symmetry.

3. - The table contains the 32 "crystallographic" point groups from
which' the 230 crystal space groups can be derived by addition of new
elements of symmetry (translations, screw axes, glide planes). The
reader must be reminded that the methods for the interpretation of
crystal spectra are more complicated than the methods applicable only to
isolated.molecules- that will ‘be described. A first approximation to the
spectra of molecular crystals can be obtained, however, by treating each
molecule or ion in the crystal as isolated, but with its own symmetry
reduced to the symmetry of the crystal at the '"'site" where the molecule

or ion is located.

3. GROUPS, REPRESENTATIONS, CHARACTER TABLES, - .
AND THE REDUCTION FORMULA

A set of elements 4, B, C, ... that can be combined in pairs
according to a certain rule is said to constitute a group if (1) each
binary combination yields an element of the set, (2) the associafivé law
holds for the combination of more than two elements, (3) the set contains
én identity element (its combination with all the other elements leaves
them unchanged), and (4) each element has an inverse in the set (théir
combination yields the identity). The combination is usually called
"product'" although it does not need to be a product in the ordinary
algebraic sense and, in general, will not be commutative. It may be
useful to tabulate all the binary products in a "multiplication table."

The elements of a group may have any degree of complexity or
abstractness, and the operations necessary to obtain their products may
be very éomplicated. Usually it is hossible to establish a correspon-
dence between each element of a group and a number or a matrix belonging
to another group in such a way that the multiplication tables of both
groups are ''parallel." The groﬁp of numbers or matrices is called a
representation of the original group and its dimension is equal to the‘
order of the square matrices that constitute it'(the dimension is 1 if

its elements arc numbers). Many properties of a group can be found by’



'Opérating with their representations, which may vary in'number and
dimensions. Frequently, mathematical operations may be performed that
will factorize the matrices of a high-order representation into matrices
of lower orders, which constitute representations of lower dimensions.
-When that process is carried out in such a way that the lower order
matrices cannot be further factorized, it is said that the higher order
reducible representation has been reduced to its irreducible represen-
tations. It can be proven that there are only a limited number of
| irreducible representations of any group; they can, therefore, be found
and tabulated. For many applications of group theory it is cnough to
know the character (sum.of diagonal elements) of the representations, a
fact which explains the interest in the availability of tables of char-
acters of the irreducible representations of the point groups.

The reduction -of a reducible representation to its irreducible
components may be a complicated process, but there is a simple reduction
formula which gives the number of times each irreducible representation
willnappear when the reduction process is completed. If the g elements
of a group have characters.xi (=1, 2,3, ..., g) in some reducible
representation and characters XZ (z =1, 2, 3, ..., g) in the irreducible
representation g, the reduction of the former will contain the latter NY

times, with

4. THE CHARAUTER TABLES OF THE POINI GROUPS

The symmetry operations of the point can be described hy the
equétions that relate the coordinates of each atom before and after each
operation. The coefficients of these equations may be arranged in
matrices that represent the symmetry operations. The dimension of these
reducible representations will depend on the choice of a coordinate
system. If cartesian coordinates are used, each atom will require three

coordinates, and a molecule with N atoms will yield a representation of



dimension 3N; use of interhal-codrdinates (distanees befmeen atoms,
angles between bonds, etc.) may yield representations of dimension
3N - 6 (3N - 5 for linear molecules). All these representations can be
factorized into the irreducible representations whose characters are
given in Table 3, together with some additional information that will be
necessary for the applications to molecmlar spectroscopy. .

To explain Table 3, we will use a typical example. Let us reproduce
part of the character table for the p01nt group D3h’ to which the planar

molecule BF3 belongs.

'Aé

Dy, E 20, 3, o 25, 3o
Ay 1 1 1 1 1 1
A 11 1 -1 -1 -l
1 1 -1 1 1 -1
A 1 1 a1 a1 a1 |
E' 2 -1 0 2 -1 0 BF3 molecule
B 2 -1 o -2 1 0

In addition to the Schoenflles symbol of the group, the first 11ne
contains all the symmetry operations that constitute it. The number 2
in 2C3 indicates that. the group 1nc1udes, in fact the two C3 0perat10ns
03 and C3 (rotations of 120° and 240° around the C3 axis); but because
both operations have the same characters in all the representations, it
is unnecessary to. repeat the column. The number 3 in 3C, indicates,

similarly, that there are three binary axes [through BF(I), BF(Z)

, and
BF( ) in BF3], each one contributing an identical column to the table
There is one reflection through a horizontal plane (the plane of the
molecule, which is perpendicular to the principal axis C3), to improper
rotations S3 and S3 around the axis 53 (c01nc1dent w1th C3), and three
reflections through the vertical planes (wh1ch contain 03 and each one
of the C3's). Addition of the trivial symmetry E completes the 12
elements of Dsh'

Each one of the following lines of the table contains the characters

of one of the irreducible representations of the group, preceded by its
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‘Table 3. Character tables of point groups

The Cp groups )

ale] |

C E
a | : || R; T | a
c, | € czﬂ
A 1 8° i %o ayy’ “az’ axy
B -1 T, Iy; R, Ry %z Opz
A é g!i
A 1 1 1 T,; R - a +a ., 0
A A 2 2 xXx yy 22
1 ¢ ¢ ) o
'E' {1 e‘ e} (Tx,Ty), (Rx’Ry) (am ayy“ axy)’ (ayz’ azx)
" 3
}® f B G
A 1 1 1‘ 1 _ Tz; Rz 4 | A + ayy’ uzz
B 1-1 1 -'-1 . . am ayy’ axy
1 1 -1 -1 . : '
E ‘{1 i L1 i% (Tx,Ty), (Rx,Ry) (ayz,azx)
) s o
] ¢ ’ 6
el E % € G ¢ | | e=e”
A1 1 1 1 1 1 |7T;R Gt O O
B |1 -1 1 -1 1 -1 | | |
* 1 € e* ‘
€ -& - - .
& {; et e a1 - ef (Tx,TU)’ (Rx’Ry) (ayz,azx)
1 - 1 -
E -e =€ -€ -€ (6 -« a_)
? {1 -€ ~c* 1 ~-€ -e* = vy oy




The Sp groups
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c. e < || |
A || 1 1 {R| «
g .
A 1 -1 T
u
. [ 3 T
34 . E 34.. CZ : 34- .
A 1 1 1 1 Rz qm + ayy’ a..,
B |1 -1 1 | -1 | T, O = Fys Oy
17 1 -1 -z ' ‘
Bl -+ -1 i (Tp Ty); (R Ry) (ayz’ !
: 2mi
A 2 , 3
g 1 1 1* 1 1 1* sz ‘aw + ayy’ o,
. R ] . % - ; .
Eg 1 e e 1 et e (Rx,Ry) (a ayy,' axy), (ayz, azx)
A |1 1 1 -1 -1 -1 |T " '
u %, % 2
1 € € -1 -e =€ ,
* %
Eu 1 € e -1. -e -€ (I:x’Ty)
The va groups
¢, [ o “ |
’ ' . s
AT 1 Tx’ "Ty’ ,Rz am, ayy’ a.zz, axy
A" -1 |T”;R,R o,
z y .yz® zx
Cow | € €5 o,l2x) o&(yé)
A 1 1 1 1 T a s, e , a
"z xx’ Tyy’ zz
P 1 1 -1 -1 R a o
z xYy
B, 1 -1 1 -1 ;R |a
x* Ty 2%
B, 1 -1 -1 1 T; R | a
y = Yz
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C3u E 203 30\)

A 1 1 1 Tz axx + ayy’ .

A,y 1 -1 Rz .

E 2 -1 0 (Tx,Ty); (Rx,Ry) (aw - ayy’ axy); (ayz, azx)

1] l_

C4v E 2C4 C_2 Zov Zov

Ay 1 1 1 1 1 r, Nyt o o

A, 1 1 1 -1 an ‘ Rz '

- . - o -0
B 1 1 1 1 1 O vy
- - ) o

B, | 1 -1 1 -1 . A Oy

g .

E 2 0 -2 0 0 (Tx’Ty)’ (Rx’Ry) (ayz’ az:c)

o '

cév E ZC‘6 2C3 c 3°v ' 30‘V

Ay 1 - 1 1 1 1 1 |7 O +a ,

3 . : z xx = yy’ =2z
Ag 1 1 2 1 -1 -1 Rz

B, 1 -1 1 -1 1 -1 '

B, 1 -1 1 -1 -1 1

Ey 2 1 -1 =2 0 0 (Tx,Ty),' (R:n’Ry) (ayz’ azx)

E 2 -1 -1 2 0 - »

2 2 (a ayy axy)

PR Ny
Cclw E | 2c; SR N
- » 2 e ¥y~ &z

Az E E 1 1 . @ "1 Il'z
By .f )it 2 cos ¢ . . 0 (T-_t’Ty)" (Rx’Ry) ,(uyz’ aﬂx)
Es = A 2 cos 2¢ . 0 . (am - ayy’ o_)
E3 = ¢ 2 cos 3¢ 0
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yy

7,7
(1,.7)

-1

-1

-1

1
-1
-1

-1
-1

1
-1

-1
1

-1
1

1

groups
T
-1

)

1
1

-1
-1

-7
T

The C

~-€
'.e*
~-c*
-1

-1
-1
-1

-c*
-€
-€
-1

et
€

et
1 -g*
-1 -¢*
et

-1 -1
-1 -¢
-1
-1

c4
-€

-t
C‘
€
=€
-g 4

-€
-gc*
-e
-€
- ¥
g%

-1
-1
-1

~c#
-€

-ct
gt
-g*

1 -¢*
€% =g
-€




The Dp groups
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D, = V|l E Cylz) Cyly) c;(xﬂ
A 1 1 1 1 azx’ ayy, azz
B 1 1 -1 -1 |7, R %y
B, 1 -1 1 -1 (7. R o,
Ba 1 -1 -1 1 I;, R& ayz
03 E 2C3 302
Al 1 1 _ o _+0 _, a
xx yy’ zz
Aa 1 1 -1 T; R .
3 . .3 .
E 2 -1 0 (Tx’Ty); (Rx’Ry) (au - ayy’ uzy); (ayz’ aza:)
o, le 2, cZ-c" 2¢, uc
4 4 ‘47 %7 4 2
Ay fl1 1 1 1 1 o +a
. xx © Tyy' “as
A, 1 1 1 <1 . -1 |7, R 4
2 2
8 1 =1 1 1 =] s] - &
xx yy
B, |1 -1 1 -1 1 a
. . X xy
E 2 0 -2 0 0o (Tx,Ty); (RE,RQ) ‘(ayz’azx)
!
. . ‘ W o xp ! ”
06 “ E 2('6 | 2C3 L2 3C 5L2
A || 4 1 1 1 1 ot ayy" ..,
A || 1 1 1 -1 -1 |r;¢R
2 2
B 1 -1 1 -1 1 =1
B, |1 -1 S | 1 ”
E) ’2 1 -1 -2 0. 0 ,I(Tx,Ty); (Rx"Ry) (ayz’ azx)
E, |2 -1 «~1 | 2' 0 0 : (am - ayy’ o )




22
& (ayz,‘ ax
+ ayy, azz

a

+ O
vy
o'lyz),

(a

(R_,R )
0
-
dlzx)

L »o(xy)

15

204
-1

¢, |
0
-1
-1
-2
"(x)

C,
-1
=7

-v2

23,
-1
0

T T T N oA T

Ay
A2
B
B,

3 "
D4d E 238 2C4 238 Cz 4C2 4od
- !
Dzh z Vh E Cz(z) Cz(y) C

The Dpd groups
The Dph groups

D2d = V4

A
A2
B,
B2
E,
Ez
Ey

o S T 33
o ™~ L2 ] o~
<M M @ o< M M A
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D3h E 2C3 3C2 o 233 30\)
! 1 1 1 1 1
AI 1 o +a ., o
a2 1 -1 -1 R, = ¥y 2=
E' 2 -1 0 2 -1 0 T.,T -
( = y) ( e ayy’ axy)
A;’ 1 1 -1 -1 -1
Al 1 1 -1 -1 -1 T
2 z
E" 2 -1 0 -2 1 R LR
"( x, y) (ay’,:, azx)
. 1] » ] .
D4h E 2C4 CZ 2C2 2C2 ' 234 Uh ZOV ZCd
A 1 1 1 1 21 1 1 1 1 1 a + 0 ,a
1g 2z yy’ 2
A2g 1 1 1 -1 -1 1 1 1 -1 -1 Rz
B 1 -1 1 1 -1 1 -1 1 1 -1 a -~
1g yy
82 1 -1 1 -1 1 1 -1 1 -1
- - R ,R a , a
Eg 2 0 2 0 0 2 0 2 0 0 o y) yz 'y
A 1 1 1 1 -1 -1 -1 -1 -1
lu
A2 1 1 -1 -1 -1 -1 -1 -1 1 1 T
u 2
Blu 1 -1 1 1 -1 -1 1 -1 -1 1
B? 1 -1 1 -1 1 -1 1 -1 1 -1
2) I
E, 2 0 -2 7 ] -2 0 2 0 0 rTx,Ty)
2
_th E 205 ZCS 5(?z o, Z.Ss 2853 5a,,
A;" 1 1 1 1 1 1 1 1 a_+a , 0
4" 12 1 1 -1 1 1 1 -1 | B =W
E1']l 2 2 cos 72° 2 cos 144° 0 2 2cos 72° 2 cos 144° ¢ (; ,T )
x
Ey'|l 2 2 cos 144° 2 cos 72° 0 2 2 cos 144° 2 cos 72° 0 y (6 -o ,a }
A 1 1 1 1 ’ = W
1 —1 '1 "1 -1
A" 1 1 1 -1 -1 -1 -1 1 Tz
E\"|| 2 2 cos 72° 2 cos 144° 0 -2 -2 cos 72° -2 cos 144° ¢ (Rx"R ) (o 2 uu)
E"|l 2 2 cos 144° 2 cos 72° 0 -2 -2 cos 144° -2 cos 72° ¢ Y Y
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The Cubic groups
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_ 3
T 403 4C§ 302 €e=e
A 1 1 1 a _+a  +a
fo o yy 22
€ ek 1
E fa +a -2 ,a =a )
ek € 1 vy 2z yy
F 0 0 -1 (T), (R) (a a _, u_ )
xy’® “yaz' zx
Td t 8C3 3C2 634 6od
Av || 1 1 1 1 a _+a +a
: 20 yy 22
A2 |1 1 -1 -1
E 2 -1 0 0 fa +a -20 ,0 -0 )
Yy 22" xx Yy
Fy 3 o -1 1 -1 (R)
- 0 - -
1 1 1 (1) (axy, ayz, azx)
oni
. 3
Th E 403 4nﬁ 302 1 430 433 3ah €E=e
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E yy 22
q 1 £W £ 1 1 e* > 1 %oz~ uyy)
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i e ¥ 1 =1 -€ —-c* -1
E .
“A o2 e* e 1 -1 -e*x - -1
F 3 0 0 -1 -3 0 0 1 (T, T, T)
u x Ty Tz
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conventional symbol. This symbol gives some information about the

characteristics of the representation, according to the following

convention:

A one-dimensional representation will be recognized to be '"symmetric"
or "asymmetric'' with respect to a symmetry operation when the
corresponding character is +1 or -1 respectively. For two- and
three-dimensional representations the characters may be *2 and *3
respectively.

A or B: one-dimensional representations which are symmetric or
antisyminélric, respectively, with respect to rotations about the

principal axis Cp.

® F: two-dimensional representations.

"If such a C, does not exist, it is replaced by a ¢

F: three-dimensional representations (sometimes designated T).

1 or 2: subscripts attached to A's and B's to designate represen-
tations that are symmetric or antisymmetric, respectively, with
respect to rotations about a (; perpendicular to the principal axis.
o

g or u: subscripts attached to all letters in groups with a center
of symmetry to indicate representations that are respectively
symmetric or antisymmetri¢ with respect to the inversion through Lhe
center.

Primes or double primes: superscripts attached to all letters, when
appropriate, to designate a representation that is symmetric or
antisymmetric, respectively, with respect to reflection through a SR
" or £": one-dimensional representations for the groups of linear
molecules that are respectively symmetric or antisymmetric with
respect to reflection through a %y

I, 4, ¢, etc.: two-dimensional representations for the groups of

linear molecules.

The physical meaning of the symmetric or antisymmetric behavior of

the representations will become clearcr after the explanation of their

use in vibrational spectroscopy.
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The right side of the character tables contains information about
the symmetry of the components of molecular translations (7), rotations
(R), and polarizabilities (a). This information is given through their
assignment to the different representations and will be used in the
prediction of vibrational spectra. The symbol T is an abbreviation for
the set Zx’ Ty,'Tz; the R replaces Rx’ Ry, Rz and means L ayy’ @,

a__, Degenerate components are enclosed in parentheses.

xy’® Yz’ ® 2’
5. GROUP THEORY AND MOLECULAR VIBRATIONS

Up to this point we have mentioned only the symmetry of molecules
in their equilibrium configuration. But it can be proven that the
displacements of the atoms during molecular vibrations are constrained
to specific patterns determingd by the molecular symmetry. This fact
results in a close relationship between the normal vibrations and the
irreducible representations of the point grbup. This relationship is
the basis for the application of the group theory to vibrational spec-
troscopy. The most important consequences of this application are: (1)
The normal modes of vibration can be classified according to the irre-
ducible representation to which they '"belong." (2) This classification
provides some description of the normal modes because the character
table indicates if they are symmetric or antisymmetric with respect to
some symmetry operations; in this application, 'symmetric' means that
the operation performed on the vibrating molecule will keep the vectors
representing the atomic displacements unchanged, while "antisymmetric'
means that the same vectors will change to the opposite direction.

. (3) The degeneracy of the normal modes is given by the dimensions of
their represenéﬁtions. (4) The normal modes belonging to the same
representation as any component of a translation are infrared active.

(5) In the gas phase of symmetric top molecules, the vibrations in the
same representation as Tz are ''parallel" and should show the typical PQR
structure. (6) The normal modes belonging to the same representation as
any component of the polarizability are Raman active; only the vibrations
belonging to the completely symmetric representation (all characters

equal to 1) can originate polarized bands.
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6. THE PREDICTION OF THE FUNDAMENTAL VIBRATIONAL BANDS

In this section we will describe step by step a procedure for the
calculation o€ the number and polarization of the fundamental bands that
should appear in the infrared and Raman spectra of a molecule of known

configuration.

Step 1: Assignment of the molecule to a point group

By working on a model or a good drawing of the molecule, one can
locate all the symmetry elements. There are no systematic procedures to
perfdrm'this step, but experience shows that a short practice period
will provide the necessary skills. It may be useful to look first for a
propér axis of rotation of the highest order. If none exists the molecule
can'only belong to Cs’ Ci’ or Cl’ and the search for a plane or center
of symmetry.will decide among them., If one or more Cp's exist, select
the one of the highest order and determine in Table 2 the groups that
contain it. The left half of the list of symmetric elements can be used
as a guide to select which elements to look for next to reduce the
poséiblé choices. This procedure should continue until only one group
is left and a careful check has been dane to verify that no element

belonging to a higher symmetry group is present.

Step 2: Calculation of the characters of a reducible representation

Once all the symmetry elements have been located and the puint
group has been determined, the characters of each symmetry opcration in
a reducible representation of dimension 3N - 6 can be calculated according

to the followiug rules:

® For each operation E or Cb: Count the number of atoms that are not
shifted when the symmetry operation is performed. Subtract 2.
Multiply by the appropriate factor in Table 4.

® For each operation 7, S; or o: Count the number of atoms that are
not shifted when the symmetry operation is performed. Multiply by
the appropriate factor in Table 4.
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Table 4. Contribution to character per unshifted atom

Operation % X; . Operation < X;
E 3 o 1
Cy . -1 i -3
cl, 3 0 53, 53 -2
Cy» Ca 1 Sy, Sh -1
1 A4 1 b
cL, ct. 1.618 st, 58 -0.302
cZ, cg -0.618 52, 53 -2.618
C, C2 2 Se, S 0

Step 3: Calculation of the number of fundamental vibrations belongi g
to each representation (symmetry species) ‘

In molécular spectroscopy, the irreducible representations of the
point groups are often referred to as '"'symmetry types" or ''symmetry
species,'" and the reduction formula is slightly modified to account
éxplicitly for the fact that the columns of the character table may
contain more than one symmetry operation.

The number of fundamental vibrations of symmetry type vy is given

by:
) e
Yy _ 1 Y
N =3 iz;.lnzxixz ’
where
n. = number of operations in the ith column of the character

table, ,
¢ = number of columns in the character table (equal to number of

representations),

e
g = z: n, = total number of operations in the point group,
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X; = character of the reducible representation of the operations
of column 7 (detérmined in step 2),
xY = character of the y irreducible representation of the operations

of column 7.

In some groups there are imaginary or complex characters, but they
always appear as conjugate pairs in two one-dimensional representations
which are the components of a degenerate mode E. When the reduction
formula is applied, the real sum of both complex characters has to be

used as the character for the species E. Notice that

82ﬂi/n _2ni/n 2n

2+ (-2) = 0 and + e = 2 cos = .

Step 4: Determination of the number of fundamental bands
in the infrared and Raman spectra

® Infrared speétra: will include all the fundamental modes with the
sa@e symmetry as T;, Ty,,and/or Tz' The vibrations in the same
species as (Zx,Ty) or (IQ’Ty’Tz) will be double or triple degenerate
rcapectively. ;
® Raman spectra: will include all the fundamental modes with the
" same symmetry as any component of a. The vibrations in the same

species as a will be polarized (totally in the cubic

xx’ ayy’ ®2z ; _
groups, partially in the rest). The vibrations in the same species

as axy’ @ and/or L will be depolarized.

7. EXAMPLES

7.1 AMMONIA (NHg)

Step 1

As a pyramid with the N at the cusp and

the three H at the corners of an equilateral

triangular base, ammonia shows 1C3 (through

the N, perpendicular to the base) and SOv



25

(through the C3 and each NH bond). Inspection of Table 2 gives immedi-
ately a point group C, .

Step 2

Atoms unshifted per symmetry operation:

Up = 4 , uc3 =1 (the N) , uov = 2 (the N, one H) ,
xg = (4 -2)°3=6, xca= (1-2-+0=0, xov=2-1=2.
.SteE 3
From the character table for the group Cav
ng = ) nC3 =2, nov =3,
e =3, g=1+2+3=6,
N = & (1961 + 2:0-1 + 3:2:1] = 2,
NA = % [16°1 + 201 + 3+2-(-1)] = 0,
N = L [106°2 + 200-(-1) + 3+2+0] = 2 .

Ammonia has, therefore, two nondegenerate vibrations of species 4,
and two doubly degenerate vibrations of species E. This result is

usually represented by
[ = 24, + 2 .

Step 4

The character table shows that (1) all bands being infrared and

Raman active, each spectrum should showAfour bands; (2) in the Raman,
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the A; bands may be partially polarized and the EF bands will be depolar-
ized; and (3) in the infrared spectra of gaseous ammonia the 4; bands

are ''parallel” and should show PQR structure.

7.2 MONODEUTERATED AMMONIA (NH,D)

Step 1

" There is only a o (through ND and bisecting
the two NH bonds). The point group is, therefore,

AN
)

Step 2
up = 1, us, =2,
Xg = (4 -2)3=6, Xg = 201 =2
Step 3
n, = 1, n, - 1,
c=2, g=1+1=2,
Vs 216 s 1e201] = 4,

VA > (1601 + 1:2-(-1)] = 2 .

Monodeuterated ammonia has, therefore, six nondegenerate vibrations

which can be represented by

I'= 44" + 24" .
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Step 4

From the character table for the point group Cs: (1) All bands
being infrared and Raman active, each spectrum should show six bands.
(2) In the Raman, the A' bands may be partially polarized and the A"
bands will be depolarized. (3) No prediction about the shapes of the

infrared bands of the gas can be made.

7.3 1,2-DICHLOROETHYLENE (ei8) (e-ClHC<CC1H)

Step 1

The plane of the molecule (o) and the

plane through the center of the C=C bond

and perpendicular to it (¢') are planes

of symmetry. The interseétion of both plahes is a Cy. There are no
other symmetry elements (except the idenfity) and the molecule belongs,
therefore, to the sz point group.

Step 2
uE =6 , ucz‘= 0,
xp = (6 -2):3 =12, x02=(0—2)'(-1)=2,
uy, = 6 , uo =0,
v v!
Xov = 61 =6, Xov' =0-1=0
Step 3
n, = 1, nC,2 =1, nov =1, nov' =1,

Q
n
H
-
Q
n
[
+
[
+
[
+
—
)
»H
-
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N =2 [1°12°1 + 1:2:1 + 1+6+1 + 1:0+1] = 5,
AZ 1 o )

N =3 [1:12°1 + 1e2+1 + 146+ (-1) + 1-0-(-1)] = 2,
Bl 1' '

N = z—[l'lZ'l + 1°2(-1) + 1‘6‘1 + 1‘0'(-1)] =4 ,
By . L A

‘N = Z—[l'lZ'l + 102¢(-1) + 1+6-(-1) + 1-0-1] =1 .

Therefore

I = SAy + 245 + 4By + By .

Step 4

From the character table of point groupbczv: (1) All bands are
Raman active and only the A; bands are infrared inactive. There will
be, therefore, 54, + 4B + 1B, = 10 infrared bands and 54; + 24, +
4B + 1B, = 12 Raman hands (of which 10 should coincide with the in-
frarcd). (2) The 54; Raman bands may be polarized; the rest will be

depolarized.

7.4 1,2-DICHLOROETHYLENE (trans) (t-C1HC+<CC1H)

Step 1
7 ] ¢!
The plane of tho molceule is Lhe only J/ ‘jcn:k;c:j::;(/
e L V4L

plane of symmetry and there is a ', perpen-

dicular to it in the center of the C=C bond.

This center is also a center of symmetry.

Table 2 shows that the point group is Czh'
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Step 2

uE = 6 > ucz = 0 ’
xp = (6 - 2):3=12, Xg, = (0 -2 (-1) =2,
u’l:=0 N uo =6’
h
x; = 0°(-3) =0, X, = 6°1=6
h
Step 3
nE=6’ ncz=1, n‘l’=1, no_h=1,
c =4, g=1+1+1+1=4,
A 1 :
N9 = 2 [1012:1 + 1-2°1 + 1+0-1 + 1+6°1] = 5,
B, 1
NI = 2 [1:12+1 + 1+2+(=1) + 1+0-1 + 1+6+(-1)] = 1,
.4 ,
Au 1 .
N“ = z‘[l’lz'l + 1021 + 10°(-1) + 1-6°(-1)] = 2,
Bu 1
N~ = E-[l-lz-l + 1¢2+(~1) + 1°0+(-1) + 1°6°1] = 4 .
Therefore
' =54 + B + 24 + 4B
a q u U
SteB 4

From the character table of the point group Czh: (1) There will be
ZAu + 4Bu = 6 infrared bands and SAg + lBg = 6 Raman bands; there should
not be any coinciding fréquencies. (2) The SAq Raman bands may be

partially polarized; the‘Bg will be depolarized.
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7.5 ETHYLENE (C,Hy)

G2l
Step 1 5
“\ S

There are no C3's or higher order axes,’ ‘mc.,;' 6

Y

but it is easy to find three perpendicular Cﬁ;' a U

Cy's passing through the center of the C=C /9 H:
bond — one coincident with the bond, one Caty) ﬂz{ﬁ "
al

laying in the molecular plane, and the

third perpendicular to the first two. Thus, the possible groups are

reduced to D ,

symmetry determined by pairs of 02 decides in favor of Dzh'

D_,, or D_,. The existeuce of the three planes of
ad ah

Step 2 |
Up = 6 , ucz = 2, uCé =0, 703 =0,
u; = o, U = o, Ugr = 2, Ugn = 6 ,
Xp = (6 -2):3 =12, X, = (2 -2)-(-1) =0,
Xgh = (0:2)-(-1) = 2, Xey = (0 - 2):(-1) =2,
X; =0(-3) =0, Xg = 0°1=0,
Xgr = 21 = 2, Xgn = 61 = 6
Steé 3
np = 1, nC2 =1, nC,2 =1, ncg =1,
n, = 1, n = 1, ngy = 1, N = 1,
c=28, g=1+1+1+1+1+1+1+1=28,
A

N9 = % (141241 + 10+1 + 1+2¢1 + 12+1 + 1-0-1

+ 140°1 + 1-2-1

+

1+6-1] = 3,
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B
N9 = % [1412:1 + 1001 + 1:2:(-1) + 12+ (-1) + 1:0-1
+ 1201 + 1+2¢(-1) + 1+6+(-1)] = 0,
Byg 1
N9 = 2 (101201 + 1°0°(-1) + 1+2-1 + 1:2+(-1) + 1:0-1
+ 1°0°(-1) + 1221 + 1¢6°(-1)] =1,
Bag 1 -
N %9 = g [1°12°1 + 120+ (-1) # 1°2:(-1) + 1:2:1 + 1-0-1
+ 120+ (-1) + 1¢2+(-1) + 1-6°1] = 2,
A,
N ¥ =g [1°12:1 % 120°1 + 1:2°1 + 1221 + 1:0-(-1) + 1+0*(-1)
+ 1-2-(-1) + 1+6°(-1)] =1,
Biu 1
N % e 2 [101201 + 10001 + 102+(-1) + 1:2+(-1) + 1:0°(-1)
+ 10°(-1) + 121 + 16°1] = 2,
BZu 1
N 7= 2 [1012:1 + 1°0+(-1) *+ 1+2¢1 + 122+(-1) + 1:0-(-1)
+ 120°1 + 1+2+(-1) + 1+6°1] = 2,
B3u 1
N = 2 [101201 + 1:0-(-1) + 1+2+(-1) + 1:2:1 + 1-0-(-1)
+ 140°1 + 12°1 + 1-6-(-1)] = 1 .
Therefore
= + 2 '
I 34 + Bzg + ZB3g + Au t Lglu * 252u + Bsu .
Step 4

From the character table of the point group Dzh: (1) There will be

‘ ZBlu +28, + 1B, =5 1nfrare§ bands and SAg + lBZg + 2339 = 6 Raman
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bands; there should not be any coinciding frequencies. (2) The 3Ag

bands may be polarized; the other three Raman bands will be depolarized. ”
7.6 PHOSPHORUS PENTAFLUORIDE (PFs) #C325 i
o
Step 1 A%
There is an obvious (3 through the axial (j A,
fluorine atoms and each horizontal PF bond L el
coincides with a C3. The plane of the equa- ‘e m://riuv\ﬁiﬁ‘
torial fluarine atoms is a plane of symmetry.

Ihese elements can be found in the D3h group,
which can be verified by finding the S3 (coincident with C3) and the
300 (through C3 and each C3). '

Step 2
up = 6 , uc3 =3, uc2 =2, ﬁ
uUh = 4 , uS3 =1, uov = 4., .
Xg = (6;- 2)*3 =12, XCg = (3 -2)'0=0,
X02 = (2 -2)+(-1) =0, Xoh = 4-1 =4 ,
x_S3 = 1(-2) = -2, va =41 = 4 .
Step 3
hE =1, nc3 =2, nc2 =3,
noh =1, nS3 =2, nov =3,

c =6, g=1+2+3+1+2+3=12,
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A3 .
1
N =-%7 [1:12+1 + 2+0°1 + 3+0°1 + 1¢4°1 + 2(-2)<1 + 341} = 2,
A L]
2 1 .
N = TE—[1°12‘1 + 201 + 3¢0+(-1) + 1+41 + 2(-2)°1 + 3°4°(-1)] =0,

N 2 A [191202 4+ 200-(<1) + 39040 + 1+4+2 + 2+(-2)+(-1) + 340] = 3 ,

12
A
N = 15 [1012:1 + 2:0+(-1) + 301 + 1+4+(-1) + 2+(-2)+(-1)

+ 3'4'(‘1)] =0 s
Ay
N % =30 [1:12-1 + 2001 + 300+ (-1) + 1+4¢(-1)

+20(-2)e(-1) + 34:1] = 2,

+

]
N = L (14122 + 200-(<1) + 3+0-0

Vi 104¢(=2) + 2¢(-2)+1 + 3-4+0] = 1 .

Therefore

r = ZAi + 3B + 24 + B .

Step 4

From the character table of the point group Dsh: (1) There will be
3E' + 24% = 5 infrared bands and 24] + 3E' + 1E" = 6 Raman bands, the
frequencies of the 3E' bands coinciding in both spectra. (2) The ZAg
infrared bands of gaseous PFg5 should show PQR structure. (3) The 2A{
Raman bands may be polarized; the other four Raman bands should be

depolarized.
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7.7 CARBON TETRACHLORIDE (CCly)

Step 1
€125,
Each CCl bond coincides with a fﬁl \\\ //// Y
C3 axis and there are no Cy's. This Q(;:: ;f ¢
; »

description is only compatible with

the groups 7, T,, and Th' The fact

that every pair of (C3's determines
a plane of symmetry decides in favor
of Td' The existence of 3C;'a, '

bisecting pairs of Cy's, can be verified.

Step 2
up = 5, uC3 = 2, uc2 =1, uS'+ =1, uod =3
Xgp= (5-2:3=09, x03=(2-2)-o=o,
Xcz =(1-2)-(-1) =1, XSu = 1-(-1) = -1,
Xod = 31 =23 .
Step 3
"E-Jf 1w3=8, i%2=6, 1%q=6, r%d=
e=5, g=1+8+3+6+6 =24,
Ay 1
N o =57 [1:9°1 + 8:0°1 + 3:1+1 + 6:(-1)+1 + 6°3-1] = 1,
Ay 1
N =57 [1-9°1 + 801 + 3+1+1 + 6-(-1)-(-1) + 6-3:(-1)] = 0,
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N~ = 72—[1-9-2 + 8:0+(-1) + 312 + 6°(-1)+0 + 6°3-0] =1 ,

Fy 1

N = EZ—[1~9-3 + 8400 + 3¢1°(-1) + 6+(-1)°1 + 6°3-(-1)] =0,

FZ 1 .

N = 53-[1-9-3 + 8¢00 + 3+1¢(-1) + 6°(~1)*(-1) + 6°3-1] = 2 .
Therefore ’

F=A1+E+2F2.

SteE 4

From the character table of the point group Tﬁ: (1) A1l four bands
should appear in the Raman spectra while only the 2F; frequencies should
show in the infrared. (2) The A; Raman band should be completely

polarized, while the other three bands should be depolarized.
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Fig. 2. Mono- ..
deuterated ammonia.

Fig. 3. c¢tZs8-1,2-Dichloroethylene.
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Fig. 4. trans-1,2-Dichloroethylene. Fig. 5. Ethylene.

> CbES;

Fig. 6. Phosphorus pentafluoride. Fig. 7. Carbon tetrachloride.
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