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ASSTRACT

MEASUREMENTS OF PION-IIELIUM TOTAL CROSS SECTIONS

AT ENERGIES FROM 51 TO 105 MeV

BY

KENNETH FLOYD JOHNSON, B.S., M.S.

Doctor of Philosophy in Physics

New Mexico State University

Las Cruces, New Mexico, 1976

Professor George R. Burleson, Chairman

Measurements of ir -'•He total cross sections have been made at

energies from 51 to 105 MeV using a superfluid **He target at the

Low Energy Pion channel of the LAMPF accelerator in Los Alamos.

Pions were selected with either a DISC counter or a time-of-flight

system. The scattered pions were detected by a series of circular

plastic scintillation counters using standard transmission tech-

niques. The resulting partial removal cross sections were

XI



extrapolated to zero solid angle after being corrected for Coulomb

effects, pion decay, accidental counts, counter absorption and

efficiencies, and statistical correlations. The resulting statisti-

cal errors were generally -3-5%. The measured total cross sections

were found to be in good statistical agreement with previous

measurements and in poor agreement with the predictions of several

optical potentials in current use. Through an optical theorem the

imaginary part of the forward scattering amplitude was found. The

total cross sections have been used with previously-measured angular

distributions through a phenomenological model to obtain the real

part of the forward scattering amplitude at four energies between

50 and 75 MeV. These results were found to be in good agreement

with forward dispersion relation calculations.

xii



1. INTRODUCTION

Ever since their discovery in 1947,l and their later production

by particle accelerators, pions have been used to probe the nucleus.

The early experiments suffered from the low intensity and poor energy

resolution of the then available pion beams as compared to conven-

tional nuclear beams (protons, neutrons, alphas, etc.). In recent

years, the quality of data from pion-nucleus scattering experiments

has greatly improved and a review of these experiments is given by

Stroot.2 They are expected to continue to improve with the completion

of the new meson facilities. They will provide high-intensity pion

beams with good energy resolution.

The Pion as a Nuclear Probe

There are several properties of the pion which make it attractive

as a nuclear probe. The mass of the charged pion is m +=139.6 MeV,

and that of the neutral pion is m Q=135.0 MeV. This makes the pion

the lightest of the strongly-interacting particles, having about 1/7

the mass of a nucleon. Consequently, a nucleon in the nucleus is

less likely to suffer severe recoil effects in pion scattering than

in the scattering of other strongly interacting particles.

The charged pion has a long lifetime (26 nsj which allows beams

of charged pions to be transported over reasonable distances. The

Pc
mean decay length X of a charged pion is X = — J C T or A = 5.56P cm

where P is the pion laboratory momentum in MeV, me2 the pion rest

energy in MeV, and CT the mean lifetime in cm.



Another property which makes the pion a useful probe is its

zero spin. This greatly simplifies the theoretical analysis of pion

reaction and scattering processes. Furthermore, it means that the

pion is a boson. It can be created or destroyed singly. Pion

production and absorption processes are fundamentally different from

processes involving nucleons alone. Pion absorption has a drastic

effect on a nucleus because it gives a minimum of -140 MeV to the

nucleus.

The pions (ir , ir°, ir ) form an isospin triplet. This is of use

in theoretical attempts to separate electromagnetic from strong inter-

action effects. The symmetry is not perfect since nuclei consist of

neutral and positively-charged nucleons. Thus, in scattering off

nuclei, positively- and negatively-charged pions of equal energy will

experience different Coulomb effects which are not easily calculable

in a model-independent way. Neutral pions have too short a lifetime

to be a useful nuclear probe. The three charge states allow the pion

to undergo double charge exchange in pion-nucleus scattering. This

is an exotic feature not available in nucleon-nucleus scattering.

Another useful point about the pion as a nuclear probe is that

the ir-nucleon interaction is simple to describe theoretically in the

isospin T = 3/2 state (i.e., IT p or ir n interaction). In addition,

the T = 3/2 state is much stronger than the T = 1/2 state in the energy

range 50 to 400 MeV. This aspect of the ir-nucleon interaction will

be discussed later.



The increased interest in the pion as a nuclear probe has led

to the building of meson facilities such as LAMPF (the Clinton P.

Anderson Meson Physics Facility at the Los Alamos Scientific Labora-

tory), TRIUMF (the Tri-University Meson Facility in Vancouver,

Canada), and SIN (Schweizerisches Institut Fur Nuklearforschung in

Zurich, Switzerland). The LAMPF machine is an 800 MeV proton linear

accelerator with a design average beam current of 1 mA. The TRIUMF

machine is a 500 MeV H '-.yclotron and the SIN machine is a 510 MeV

proton ring-cyclotron. The TRIUMF and SIN accelerators both have a

design average jeam current of 100 yA.

Total Cross Section Measurement

The nuclear total cross section CJ_.O_ is defined as the sum of

the total nuclear elastic cross section a and the total nuclear
ne

reaction cross section a
r

°TOT = °ne + °r (1)

In general it is of physical interest because it readily gives an

overall picture of the strength of the interaction. Total cross

sections provide constraints on the analysis of elastic scattering

data through certain model-independent relations with elastic

scattering amplitudes. Through the optical theorem a is related

to the imaginary part of the elastic forward scattering amplitude f

by



where k is the pion wave number. Relationships also exist (forward

dispersion relations) between the total cross section and the real

part of the forward scattering amplitude Re f(0°). These forward

dispersion relations3'1* allow the calculation of Re f(0°) in terms

of an integration of Im f (0°) or the total cross section o over

all energies. They can be used with the difference in total cross

sections Ao = C°T0T " °TOT^ »
 w h e r e 0

T O T
 is tfie 1T~"nucleus total cross

sections, to determine an effective pion nucleus strong coupling

constant.5

In principle, one of the "easiest" and most precise measurements

is the total cross section. It is determined from a transmission or

attenuation measurement of a beam of particles through a slab of the

nuclei under study. When a new energy range becomes available at a

new accelerator, total cross section measurements are among the first

to be performed. In the past, this has been highly rewarding, leading

to the detection of new resonances or new features of the interaction.

In general, measurements of the total cross section are less

sensitive to some effects than would be the measurement of an appro-

priate partial cross section. However, the simplicity and high

precision of total cross section measurements compensate for their

lack of sensitivity.

Pion-Nucleon Total Cross Sections

One of the principal reasons for using the pion as a nuclear

probe is the strength of the pion-nucleon interaction at energies



below 500 MeV. Below 100 MeV, the pion-nucleon (it-N) total cross

section is considerably less than the nucleon-nucleon (N-N) total

cross section which means that the ir-nuclecn interaction is weak and

the pion de Broglie wavelength is large compared to the nuclear

radius. Between 100 and 300 MeV, the TT-N total cross section is

dominated by the (3,3) resonance. Above 300 MeV, the TT-N cross sec-

tion is comparable to the N-N cress section which is steadily decreas-

ing as the energy is increasing. At these energies, the pion

wavelength is less than the nuclear radius.

The (3,3) resonance gives a large peak in the TT-N total cross

section occuring at approximately 180 MeV. The resonance derives its

name from the fact that it occurs in the angular momentum J = 3/2,

isospin T=3/2 state. The peak for i p is nearly three times larger

than the peak for Tip. This is because n p is a pure T= 3/2 state

while Tip contains an admixture of the T= 1/2 state. The J= 3/2

means that this is principally p-wave scattering. From the assumption

of charge independence and from isospin considerations, the total

cross sections for TT p (IT p) and Tr~n (TT n) should be equal. This is

of interest in the analysis of ir-nucleus scattering-

A good discussion of the properties of the pion and of the

pion-nucleon interaction may be found in the text by Lock and Measday.6



Pion-Nucleus Total Cross Sections

Prior to 1973, there was little data on ir-nucleus total cross

sections. Since then systematic data has become available at Ruther-

ford Labs,7 CERN,8 BNL,9 and at LAMPF.

The interest in pion-nucleus total cross sections comes from

several sources. First there is the question of whether or not the

(3,3) resonance continues io be present at all. Of more interest is

the comparison of measured total cross sections to the theoretical

optical model predictions. Because the pion-nucleus interaction is

a many-body problem, attempts have been made to reduce it to a two-

body problem via an optical model. An optical model replaces the

various interactions by a single potential between the incident pion

and the target nucleus. It contains both a real and an imaginary

part to simulate both the elastic and reaction channels. Since an

essential requirement of any optical model is that it be able to

predict the total cross section, it follows that precise measurements

of the total cross section as a function of energy and atomic number

will be a stringent test of any optical model. These measurements

can find classes of acceptable models and set limits on their energy

range of applicability. Unfortunately, as will be seen later, there

is some difficulty in this approach. The extraction of a total cross

section from the raw data cannot be done in a model-independent way.

A deviation from this standard approach has been proposed by M. Cooper

and M. Johnson.10 It is a model-independent analysis leading to an

integrated cross section different from the standard total cross



section. This technique was not used in the present work and is

mentioned only for completeness.

The large enhancement near resonance of n p (u n) over u p (it n)

total cross sections suggests using the pion as a probe of the nucleon

surface distribution in a nucleus. At the resonant energy, the mean

free path of the pion in the nucleus is so small that it only inter-

acts with the surface nucleons. Specifically, it should be possible

to look for the neutron halo of neutron-rich nuclei using the proton

distribution as determined from electron scattering.

Lastly, it is possible to find Re f(0°) using a phenomcnological

model for the strong amplitude, valid for scattering angles inside

the first minimum of the elastic differential cross section. Inputs

for this analysis include the total cross section and elastic

differential cross section data for both n and it". The resulting

Ref(0°) can then be compared to forward dispersion relation calcula-

tions in an attempt to verify them experimentally.

There are several good review articles on the pior. nucleus

interaction such as those by Eisenberg,11 Koltun,12 Sternhiem and

Silbar,13 and Hiifner.11*

Dissertation Experiment

The thrust of this experiment was twofold. The first was to

measure the nuclear total cross section for both it and ir at low

energies on a suitable target. Because of the Coulomb problems

encountered at low energies, a low Z target, ''He, was chosen. The



total cross sections were measured at pion laboratory kinetic energies

of 51, 61, 75, 85, 95 and 105 MeV.

The v~ - "*He total cross sections of this experiment have been

compared to the limited number of previous total cross section mea-

surements for ''He. The agreement was found to be reasonably good.

There has been a shortage of low energy data to compare to

theoretical models, and the comparisons that have been made have shown

extremely poor agreement. As will be discussed later, there has been

a growing literature on the subject. The '•He total cross sections

of this experiment have been compared to several optical potential

models for the n-nucleus interaction. These models contain adjustable

parameters and the effect of changing these parameters on the agree-

ment between data and models has been investigated in a limited way.

With the measured Hie total cross sections of this experiment,
+

the previously measured it" - 4He elastic differential cross sections,

and a phenomenological model for the nuclear elastic scattering ampli-

tude, the real part of the forward nuclear elastic scattering ampli-

tude was found at pion laboratory kinetic energies of 5i, 60, 68 and

75 MeV. The results were then compared to two dispersion relation

calculations of the real part of the forward amplitude as a function

of the pion laboratory kinetic energy.

In addition to the '•He cross sections, the nuclear total cross

sections for v and v~ were measured for the isotope sets (12C, 1 3 C ) ,

(160, 1 8 0 ) , and (l*0Ca, '•'•Ca, l*8Ca, with natural Ti) at pion kinetic

energies between 85 and 200 MeV and for IS nuclei with 4<A<208 at

85 MeV (A is the mass number).



The isotope measurements were made to look for the presence of

a neutron halo in those isotopes which are neutron-rich. For the

self-conjugate nucleus in each isotope set, presumably the neutron

and proton distributions are the same. By comparing the total cross

sections for v and IT on a neutron-rich nucleus and a self-conjugate

nucleus in the same isotope set, the presence or absence of the

neutron halo should be detectable. The measurements on the 18 nuclei

at 85 MeV were made to look for the A-dependence of the total cross

section at a fixed energy. The results of these measurements will be

d-scussed elsewhere.

In Chapter II, the general principles of a total cross section

measurement will be given while in Chapters III and IV the experi-

mental layout and the data evaluation will be discussed. Chapter V

will contain the experimental results, comparisons to theory, and the

conclusions. The appendices will contain the details of some of the

data correction calculations.



II. PRINCIPLES OF A TOTAL CROSS SUCTION MKASURBIIiNT

Elements of an Ideal Measurement

The usual definition of the total cross section o is that it

is the sum of the total elastic cross section a and total inelastic
ne

cross section o . la a measurement of the total cross section, one

is measuring the cross section for all interactions to occur between

the incident particle and the target nucleus. This is accomplished

by measuring the flux of particles incident on the target and by

measuring the flux of removed particles into 4n steradians or by

measuring the flux of noninteracting particles at zero solid angle.

The actual method used is closer to the latter.

Since the total cross section for the strong interaction between

pions and nuclear matter is being sought, ideally a beam of n° should

be used, so that the Coulomb interaction would be absent.

Since it is necessary to have detectors to measure the incoming

and outgoing pions, they should be such that they are a hundred per

cent efficient, do not disturb the beam, and are of infinitesimal

dimension*) on a macroscopic scale. In the geometrical limit, the

beam should be a pencil beam. That is, it should have a negligible

spatial extent perpendicular to the beam axis and the particles

should have negligible momentum components in the directions perpen-

dicular to the beam axis. This would eliminate geometrical effects

which arise from the use of a beam with a finite size and finite

di/ergence. This geometrical treatment of the beam is adequate if

10



the de Eroglie wavelength of the incident pions is very small on a

macroscopic scale as is the case in the energy range covered by this

experiment. When the geometrical limit is no longer valid, the beam

must be described by quantum mechanics (i.e., the particles in the

beam are represented by wave packets of various shapes and sizes).

An experimental arrangement for measuring totai cross

sections is shown schematically in Figure 1. It consists of three

elements. The first is a beam-defining counter, capable of detecting

individual pions, to measure the incident flux. The second is a

target containing a sufficient number of nuclei to obtain good

statistical precision on the number of pions removed. It must also

be sufficiently thin so that an incident pion interacts with at most

one nucleus. The third is a counter after the target to detect the

number of pions that did not undergo an interaction in the target.

The total cross section o is then calculated as follows. If

NQ is the number of pions incident on the target and N is the number

of pions which traverse the entire thickness of the target without

having encountered any interaction, then they are related by

N = N0e-
nt°TOT (3)

or

°TOT = - nT ln k

where t is the target thickness in cm and n is the number of scatter-

ing nuclei/cm3; n = A/N p where A is the atomic mass of the target in g,

N is Avogadro's number, and p is the target mass density in g/cm3.
3

n



B,
TARGET

BEAM

-~z

Figure 1. Schematic view of the experimental arrangement used
to measure the total crcs section. The counters Bj and B2 are used
to detect the incident and unscattered pions, respectively.

12



In principle then, the measurement of the total cross section is

determined by the attenuation of the pion beam in passing through

the target of nt nuclei/cm2.

Complexities of an Actual Measurement

In this section the complexities of an actual measurement will

be discussed briefly, with the detailed discussion of these problems

deferred until Chapter IV.

The most serious difficulty in performing a measurement of the

total cross section is the inability of an experimenter to remove the

effects of the Coulomb interaction through the use of a ir0 beam.

This is because of the short mean lifetime (0.84 xlO~16 sec when at

rest) of the ir° before it decays, usually to two gamma rays. The

charged pions, when at rest, have a much greater mean lifetime of

2.6xlO"e sec before they decay into a muon and a neutrino.

If A is defined as the decay length in the laboratory, then X is

given by X = -*-JCT where pc is the laboratory momentum in MeV, mc^ is

the pion rest energy in MeV, and CT = 780.4 cm is the mean life, in

cm, of the pion at rest.

Table I compares X for ir° and ir~ at two laboratory kinetic

energies. From Table I, it can be seen that only charged pions can

be transported over sufficiently long distances to make them useful

as strong interaction probes.

The use of ir~ beams mean

are unavoidably composite cross sections (i.e., a mixture of the

The use of ir beams means that the measured total cross sections

13



Table I, Comparison of X as a function of the laboratory
kinetic energy T for ir° and TT*.

(MeV) A 0(cm) X ±(cm)

50

200

2

5

.34

.68

xlO"6

x 10'6

7

1

.17 xlO2

.73 xlO3

Coulomb and strong interactions). The handling of these Coulomb

effects will be discussed in Chapter IV.

As already mentioned, the pion is unstable and decays. The data

need to be corrected for this effect since it is a false removal from

the flux of incident pions. For example, in Figure 1 an unscattered

pion, •• .ch decays before being detected by B2, would be counted as

a scattered pion should its decay muon not be detected by B2. In

general, the muon does not continue in the same direction as its

parent pion.

The problem of the finite geometry of the detectors and the tar-

get, along with the finite size and divergence of real pion beams, can

give erroneous removal cross sections. It is not possible to con-

struct detectors for detecting the unscattered pions which subtend

zero solid angle at the target. This means that real detectors will

count pions that have been scattered at small angles. Thus the

measured cross section is less than the "true" cross section. The

finite thickness of both the target and the downstream detector

create some uncertainty in the solid angle subtended by the detector.

14



The finite beam size and divergence make it possible for an unseat-

tered pion to miss the detector, which makes the measured cross

section too large. The above arguments are oversimplified since there

is a replacement effect because of the finite cross sectional area of

both the beam and target.

Another difficulty occurs because any detector placed in the

beam will act as a target. This is most serious for the upstream

beam-defining detector system (this system identifies pions and puts

constraints on the beam divergence).

Furthermore, real detectors suffer from inefficiencies, absorp-

tion, and accidental counts. These must be accounted for to arrive

at the number of pions which should have been detected by a detector.

Lastly, there is multiple Coulomb scattering which will be

treated separately from the other Coulomb effects. This process is

statistical in nature and results in particles being scattered at

small angles. This undesirable effect can be reduced by decreasing

the number of scattering centers in the target (i.e., by making the

target thinner). Unfortunately, this decreases the number of pions

which are scattered by the strong interaction, and some compromise must

be reached.

Elements of an Actual Measurement

As in the last section, much of the following discussion will be

treated in greater detail later. In this section the aim is to show

15



how a total cross section can be measured in view of the complexities

discussed in the last section.

In the ideal experiment, the incident pions had to be detected

individually to obtain the incident flux. In an actual experiment,

this is, of course, still true, but with the further complication that

the beam is contaminated with muons and electrons. Thus the beam-

defining counters must have the capability of distinguishing between

different species of charged particles.

In addition, the beam-defining counters, through their geometry,

put constraints on the beam. The maximum acceptable divergence of

the beam at the target can be fixed by the beam-defining counters.

The spatial extent of the beam, perpendicular to the beam axis, is

set by the pion channel magnets through which the pion beam comes.

A target cannot be made sufficiently thin that an incident pion

interacts with at most one nucleus. Its thickness is chosen to

minimize some of the effects discussed in the last section.

The detector, downstream of the target, cannot, of course, be

made to subtend zero solid angle at the target, and, even if possible,

it would not be desirable since a real pion beam is not a pencil beam.

The problem is handled by the use of a circular counter which sub-

tends a solid angle ft at the target. A circular counter is used to

match the roughly circular geometry of the beam.

An attenuation measurement is performed and a cross section is

calculated using

1
a(W\ = - —— In
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This is different from equation (4) because the counter now subtends

a solid angle ft at the target and the number of particles it detects

N(ft) is a function of ft. The cross section a (ft) is not the total

cross section but rather the partial cross section for scattering

outside of ft. The counter is then moved to a new position subtending

a new solid angle ft1, and the measurement is repeated yielding a new

partial cross section a(ft'). This is repeated for several solid

angles, and an extrapolation to zero solid angle is made, yielding

the total cross section.

An alternate procedure, shown schematically in Figure 2, is to

use a series of circular coaxial counters of increasing radii so that

several partial cross sections may be measured simultaneously. These

counters are called transmission counters. Unlike the first method

where each a(£5) was statistically independent, these a(ft) are statis-

tically correlated. Each counter counts the same particles as the

smaller counter in front of it plus a little extra. Because of the

correlations, the extrapolation to zero solid angle must be done with

care.

Data Analysis

In this section, the procedure will be discussed for extracting

the strong interaction total cross section from a set of measured

partial cross sections.

For each of the transmission counters T̂  in Figure 2, a partial

or removal cross section o(ft) is calculated from equation (5). This
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T4

B,
TARGET

BEAM

Figure 2. Schematic view of the experimental arrangement used
to measure a(Q). The Bi counter is used to detect the incident
pions. The Tt through T5 counters are used to detect the scattered
pions.
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a(ft) contains many background effects which are handled to first

order by comparison of target "in" and target "out" data runs. If

T (B) denotes a target (blank) run, then from Allardyce et al.,15

NB(Q) =

= NTOexp(-A)exp(-nto(J2)) ,

(6)

(7)

where A is a measure of the beam attenuation due to all effects

which are independent of the target's presence such as absorption in

the air and other materials surrounding the targe md transmission

counters. So o(Q) is then given by

"TO

or

llt
(8)

where R(Q) - NT(O}/NT() (R0(a) =
 J V f i ^ ! ' W is the fraction of the beam

detected by the transmission counter for the target '"in" ("out" of)

the beam. The partial cross section o(ft), R(H), and Ro(P.) are written

as functions of ft since each counter subtends a different n at the

target.

Now o(Q), as given in equation (S), still contains effects which

are not necessarily the same for both the target and biank runs.

These include the efficiencies of the transmission counters along with

absorption and accidental coincidences in the counters. There are

It)



also pion decay and multiple Coulomb scattering. All of these effects

will be treated in detail in Chapter IV and the appendices.

After o(ft) is corrected for the above effects, there remains the

question of what is the physical meaning of a(£2). The partial cross

section o(ft), as seen by the i-th transmission counter, measures the

cross section for scattering outside the solid angle ft subtended by

the counter at the target. This is

where U-rl is the elastic scattering differential cross section,
ld"Jel

a is the total reaction cross section, and |-r=-| is the differen
r (d&Jii

|-r=-|(d&Jinei

Idjtial cross section for all inelastic interactions. Now |-nd is

given by

•*£l = If + f I2

= | f j 2 + |fn|
2 + 2Re(fc*fn) , (10)

where f and f are, respectively, the Coulomb and nuclear elastic

—I
ld"Jel

scattering amplitudes. Also — can be written as

<Mjel - ldnjc • M n e M e n l

where -r̂ - , -rH , and -7̂ - are the Coulomb, nuclear elastic,
\ J c ^ J ne v ) en

and Coulomb-nuclear interference elastic scattering differential cross

sections. From equations (10) and (11)

(da) i,. 19 j.j2i
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(-] - If I (13)

and

Starting with the definition of the total cross section

= ane + < V One can Write °TOT aS

/ fe • / fe] dfl (15)
0 ld";ne n ld"Jne

0TOT = °r

If an equation (15), / \-£-\ dfi is solved for and used along with
JJ ld"Jne

equations (9) and (11), then o(ft) can be written as

fe) idB

or

4ir
aTOT = ° ( f i ) • /

(17)

The usual experimental procedure for obtaining the total cross

section a_.„ is to take the measured values of a(ft) for each trans-

mission counter and to subtract the first integral on the right-hand

side of equation (17). The resulting removal cross sections a are

then fitted with a polynomial in fi, usually linear or quadratic,
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using the method of least squares. Sometimes the fit is a polynomial

in t, the square of the momentum transfer for elastic scattering;

t = -2p2(l - cos 6) or t = 1 —p2fi, where p is the pion center-of-mass

momentum and Q is the center-of-mass scattering angle. An extrapola-

tion to zero (1 or t is then made yielding the total cross section.

The justification for using a polynomial in t (or £2) is presented

by Giacomelli16 and is based on the assumption that -JT- and -jr-

are roughly exponential in t (or ft) before the first minimum in

-rr- This is satisfactory since all of the measured o(fi) are at

values of t inside the first minimum. Then after subtraction of the

Coulomb and Coulomb-nuclear interference terms in equation (16), o(fi)

is

a,
o(ft) = °TOT '

TOT

°TOT "

I
0

a

0

te] Idf2jinelj
dfi (18)

where a, b, c, and d are constants. If the exponentials are expanded,

then a (£2) becomes

or by renaming the constants

o(fl) = A + Bfi + cQ2 + ••• (19)

or equivalently
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o(t) = A + B't + C'tz + ••• , (20)

where A = °-pQ-i-- Thus the partial cross sections may be approximated

by polynomials in Q or t. To include higher-order terms in t, Allaby,

et al.17 fit the partial cross sections with oft) = exp(A + Bt + Ct2)

where o =exp(A).

The procedure is thus, in principle, quite straightforward.

However, because f is highly model-dependent, the resulting a T 0 T is

also model-dependent. Now, even though the Coulomb-nuclear inter-

ference correction is model-dependent, it is principally a small-

angle effect, typically for angles less than 10°. This is especially

true for light nuclei (e.g.. kHe and 12C) at energies near the (3,3)

resonance. The interference correction increases as Z, the nuclear

charge, increases and it also increases as T , the pion kinetic

energy, decreases. For the large transmission counters subtending

angles greater than 10°, this cori-ection is typically 1.5% or less

for ''He for T^ in the range 100 to 250 MeV. Below 100 MeV, the

interference correction begins to increase going from a 1% correction

at 10° and 100 MeV to a 10°6 correction at 10° and 50 MeV. This

correction is roughly model-independent and will be further discussed

in Chapters IV and V.

Thus this typical analysis, when applied to the case of ^He with

small T^, yields a a that is fairly model-independent because Z

is small. The model-dependent features contribute an uncertainty

of -±5%.
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I-ina 11 y» a practice which is sometimes adopted is to take a

model and calculate the integral over I-TTH in equation (18). Then
(us.j ne

this is added to each partial cross section o(i2) before making the

extrapolation to fi=O. Because this integral goes to zero as 9. goes

to zero, it does not affect the extrapolated cross section o(i2=0).

However, it can serve as a smoothing function to allow the possible

use of a lower-order polynomial in the least squares fit to the

data.
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III. EXPERIMENTAL DESIGN

LAMPF

The experiment was performed at the Clinton P. Anderson Meson

Physics Facility (LAMPF) at the Los Alamos Scientific Laboratory.

The heart of the facility is the 800 MeV proton linear accelerator

with a design average intensity of 1 mA. A layout of LAMPF is shown

in Figure 3. Figure 4 shows a detailed layout of Beam Area 1;A"

which is the pion experimental area. For more information on the

general facilities of LAMPF, a good reference is the LAMPF Users

Handbook.]8

Pion Beam

The Low Energy Pion Channel (LEP) was used as the source of the

experimental pion beam. The channel and its characteristics are

described in depth by Amato et al.19 and Fulton20 and in less detail

in the LAMPF Users Handbook.18

The pions were produced at Target A-l shown in Figure 4. The

production target was 1 cm of aluminum, which was in the form of a

rotating wheel to reduce local heating effects.

+
The LEP channel was designed to provide T beams in the energy

range -20 MeV to 300 MeV. Thus it spans the energy range of the (3,3}

resonance and extends down to low energies. The layout of the

channel is shown in Figure 5. It consists of four rectangular bend-

ing magnets with two entrance and two exit quadrupole magnets. The
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bend plane of the channel is vertical to reduc? the effect of the

production target length on the momentum resolution of the channel.

The channel is symmetric about a plane midway between the second and

third bending magnets. Located at the symmetry plane are vertical

slits which can be used to select the momentum bite Ap/p desired at

the channel exit. Immediately after the momentum slits is an absorber

to remove protons from the ir beam. The flux of particles through

the channel can be adjusted by four collimators and also by the

momentum slit. The collimators determine the solid angle acceptance

and emittance of the channel.

The channel is capable of providing both v and TT~ beams with a

minimum resolution of Ap/p= 0.05%. It is achromatic and isochronous,

which means that the position and angle of the exit beam are indepen-

dent of the momentum and that the channel preserves the 200 MHz pulsed

time structure of the beam. The beam size and divergence at the exit

can be varied by adjusting the exit quadrupoles. The length of the

channel was kept short in design (14 m including a 0.62 m drift space

after the last quadrupole) to minimize v decay at low energies.

The beam contamination consists of protons (for ir ), muons, and

electrons. In addition, there is a neutron background. The protons,

which come from the production target, have the same momentum but

much lower energies than the positive pions and have a correspondingly

higher stopping power. They were eliminated by an absorber at mid-

channel which does not deteriorate the IT energy very much.

The neutrons are produced both in the channel and at the produc-

tion target and come to the experimental area through the shielding.
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The magnitude of the background they produce is measured in the

accidentals, and, furthermore, their effect largely cancels out in

the comparison of target "in" and "out" runs.

The muon contamination, coming from both the production target

and from pions decaying at the end of the channel, and the electron

contamination, coming from the production target, increase with

decreasing energy. They were eliminated by either a time-of-flight

system or a DISC Cherenkov counter, both of which will be described

in detail in later sections.

Experimental Arrangement

An idealized view of the counter arrangement, for a typical data

run, is shown in Figure 6. This shows the three essential elements

of the experiment, namely the beam-defining counters, the target, and

the transmission counters. The multiwire proportional chambers (MWPC)

in the downstream position are part of the transmission counters.

They could also be placed upstream between the halo counters and the

DISC, where, as part of the beam-defining counters, they gave informa-

tion on the beam profile at the target.

There was considerable versatility in the setup. The transmis-

sion stack and the MWPC box could be moved along a pair of rails on

the support table. The MWPC could also be moved along a pair of

rails mounted on the MIVPC box. The target mechanism, second timing

counter, and halo counters could be positioned on either side of the

MWPC box. For those pion energies when the DISC was not in use, it
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Figure 6. A schematic view of the counter arrangement used
in this experiment.
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could be rolled out of the beam on rails mounted to the floor.

Beam-defining counters. The beam-defining counters consisted

of the two time-of-flight (TOP) counters, the DISC, and a pair of

halo counters. When the '4lle target was used, a second set of halo

counters were placed immediately after the DISC. A description of

the TOF, DISC, and halo counters is given below, along with the pur-

pose of each of them.

Time-of-flight. The time-of-flight system was designed, built,

and tested by M. Cooper."-1 It consisted of two I-cm thick Pilot-M

(manufactured by Nuclear Enterprises) plastic scintiIlators. The

light was collected by lucite light pipes which illuminated an

Amperex 56AVP photomultiplier tube. In the "*He data runs, the

separation between the two TOF counters was 113 cm. The diameters

of the scintiUators were 5.08 cm and 2.54 cm for the first and

second TOF counters, respectively (see Figure 6). The small diameters

were used to limit the acceptable beam divergence to ±2°. The dia-

meter of the second TOF counter was less than or equal to the size

of the target.

The purpose of the TOF counters was for particle identification

(i.e., to remove the muon and electron background). They were used

to discriminate against muons and electrons by measuring the time

distribution (or spectrum) of particles in the beam, which corresponds

to measuring the differences in flight times of the particles between

the two counters. By suitably delaying the signal from the first

TOF counter by an amount equal to the time-of-flight of the species

of particle desired, clean particle identification was achieved. As



the energy of the particles increased, it became necessary *o

increase tlie distance between the counters to achieve particle

identification. This was not necessary at those energies where the

''He data was taken.

A second mode of operation for the TOF system utilized the 200

Mil?, rf structure of the proton beam together with the isochronous

property of the LEP channel to gain an approximate 14 m of flight

path. The tim.»ng was then done effectively between the A-l production

target and the second TOF counter, with a flight path of 14.7 m.

This would not work at all energies. For muons and pions with a

momentum of 195 MeV/c, for example, the flight time of muons over a

15 m path was shorter than the pion by almost exactly one rf period

(5 ns). This caused the rciion and pion peaks to coincide because of

the repetitive nature of the rf signal.

By simultaneously doing timing between the first timing counter

TOF1 and the second timing counter T0F2 and between the production

target and TOF2, a two-dimensional TOF spectrum may be made. An

example of such a spectrum, for 51 MeV u~, is shown in Figure 7. In

this figure, time-of-flight 1 represents time separation between

particles covering the flight path (14.7 m) between the production

target and T0F2. Time-of-flight 2 represents flight times between

TOF1 and TOF2 with a flight path of 113 cm. The scale for both is

200 ps per channel. The major groups shown are: upper right, pions;

lower right, electrons; and center left, muons from the production

target. The pion, muon, and electron peaks are well separated.
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However, the simplest mode of operation of the TOF counters was

in conjunction with the DISC. Here they were used to count any

charged particle which fulfilled the geometry requirements they

imposed on the beam (i.e., no time of flight constraint was imposed

to select out a particular species of particle). To identify a pion

a three-fold coincidence was required with the DISC and the two tim-

ing counters. Pion identification was done in this way for pion

kinetic energies above 75 MeV. Below 75 MeV, the DISC would not

count pions and the TOF system was used exclusively.

The time resolution of the TOF system was ±1/2 ns, allowing for

a clean separation of pions, muons, and electrons. There was less

than 1% contamination of muons and electrons. For more details on

the capabilities of the TOF system, the paper by M. Cooper21 should

be consulted.

The beam-defining system was kept reasonably short to reduce the

number of decays. TOF2 was smaller than the target so that all pions

which passed through it would hit the target and miss any surrounding

material (e.g., the target holders). However, because of the size

of this counter, it was possible for pions to miss it and still hit

the target. This could lead to undesirable effects, which were

removed by the use of the halo counters. These effects and the halo

counters are described in the next section.

Halo counters. The halo counters consisted of two barely

overlapping Pilot-M plastic scintillators with an opening left in the

center for the beam to pass through. The light from each scintil-

lator was collected by lucite light pipes which illuminated an



EMI 9813B two-inch photomultiplier tube. The halo counters were

positioned just upstream of TOF2 (see Figure 6).

As mentioned in the last section, TOF2 was smaller than the tar-

get. This made it possible for a pion to miss TOF2 and still hit the

target. Such a pion could then scatter backwards into TOF2 and thus

be counted as a beam particle. It would appear as a removed pion,

since it would not be detected in the transmission stack, so that the

measured partial cross sections would be systematically too large.

Another systematic error arises if there are two pions traveling

together in time. Suppose one passes through TOF2 and the other does

not. Further, suppose the tagged pion interacts in the target and is

not detected by the transmission stack, while the untagged pion does

not interact in the target and is detected by the stack. This would

cause a scattered pion to be counted as an unscattered pion, so that

the measured partial cross sections would be too small.

The above effects do not cancel in the comparison of blank and

target data runs and must be compensated for in another way. The halo

counters were designed to remove these effects by detecting those

pions which miss TOF2 (i.e., they detect the beam halo). For example,

whenever the DISC and the TOF system identified a particle as a pion,

that event would be vetoed if a charged particle was detected at the

same time by either of the halo counters.

The opening in the halo counters was centered about the beam

axis; it was square and slightly smaller than TOF2. The square open-

ing was used simply because of the ease in construction. The mis-

match in geometry did not cause a significant change in count rate.



The sharie of the beam was nearly circular, with a radius of 1 cm,

so nearly all of the beam passed through the opening in the halo

counters.

The halo scintiliators had to be kept small, while, at the same

time, they had to be large enough to mask the portion of the target

extending radially beyond the edge of T0F2. It was necessary for

the scintillators to be small because of a new effect created by

their presence. It was now possible for a perfectly good pion,

identified by the DISC and TOF, to interact in the target and

scatter backwards. If the pion hit the halo counters, the event

would be vetoed. The measured partial cross sections would be too

small because "true" scattered pions would be discarded. To reduce

this effect, the halos were made small and placed 152.4 mm upstream

from the target to reduce the solid angle they subtended at the tar-

get. T0F2 was placed 101.6 mm downstream from the halos. This kept

it close to the target in order to minimize the number of tagged

pions that decayed between it and the target. It also kept small

the solid angle subtended by T0F2 at the target, which reduced the

number of backward scattered pions going into T0F2. This type of

event could be misconstrued as a new beam pion. lnis fictitious

pion would be recorded as a scattered pion and would lead to the par-

tial cross sections being too large. Lastly, the separation between the

halo counters and T0F2 was small enough to prevent a pion with a

large divergence from not being detected by either one. Chapter IV

contains a discussion of how these effects were tested for.
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In the special case of the ''He target, a second set of halo

counters was needed since the spatial extent of the **He target was

too large for the original halo counters to mask it. This set was

placed as far upstream as possible (i.e., immediately downstream of

the DISC).

The halo counters were mounted vertically and scaled separately.

A significant increase in counting rate for either counter would

indicate a drifting of the beam caused by a drifting of the fields

of the bending magnets.

DISC. In addition to tne TOF system, a DISC Cherenkov counter

was used for particle identification. DISC is an acronym for

Differential Isochronous Self-Collimating Cherenkov counter. The

general principles of operation will be reviewed below. More detailed

information on the design considerations may be found in the papers

by Meunier22 and by Leontic and Teiger.23 The original design for

the DISC used at LAMPF was due to Leontic and Teiger. However, modi-

fications were required for use on the LEP channel.

All Cherenkov counters use the property that whenever a charged

particle passes through an optical medium with velocity v, which is

greater than that of light in the medium, light is emitted at an

angle 6 with respect to the particle's trajectory. The angle 6 is

given by cos 6 = 1/nB, where n is the index of refraction of the

medium and 6=v/c, where c is the velocity of light in vacuum.

Thus, if a light detection system is built which is sensitive

to the angle e at which the light is emitted, then the detector is

able to distinguish between particles with different velocities. In
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particular, for beans of particles having the same momentum, it will

be able to distinguish between different types of particles, since

their masses are different. Since these counters depend on good

velocity and angular resolution, they are ideally suited for particle

beams with good angular, spatial, and momentum resolution such as the

LEP channel.

Now a typical differential Cherenkov counter works as follows.

A flat radiator (i.e., a material in which Cherenkov light can be

produced) is placed in a beam with its face perpendicular to the beam

axis. Cherenkov light is emitted in the radiator in a cone charac-

terized by an angle 6, and the light will emerge at an anglr 8',

where sin 6' =nsin6, and n is the index of refraction of the radi-

ator. If this light is collected with a spherical mirror whose

optical axis coincides with the beam axis, it will form a ring image

in the focal plane of the mirror. The radius of the ring will depend

on the velocity 3 of the particle, and the position of the center of

the ring will depend on the angle of the particle's trajectory with

respect to the beam axis. Both are independent of the displacement

of the particle's trajectory from the beam axis. In a DISC counter

the ring is detected by a bank of photomultiplier tubes.

In the design of a differential Cherenkov counter, several prob-

lems have to be overcome. One arises from effects which introduce a

spread A6 in the Cherenkov angle 9. This results in a loss of

efficiency due to light missing the photomultiplier tvbes and a loss

in velocity resolution, given by the expression -T-= A8(n282 - I ) 1 / 2

39



or AB/g = tan9A9. To find conditions for distinguishing between

pions and muons, let A6/B = (6-6 )/6 where 6 and 3 are the pion

and muon velocities. This condition puts constraints on the maximum

acceptable magnitude of A9, since if A6 should exceed this the

counter's ability to distinguish these particles could be diminished

or even destroyed. Now, contributions to the angular spread A6 come

from multiple scattering in the radiator, beam divergence, momentum

spread of the beam, and optical aberrations. Neglecting the latter,

which can be corrected for, one has A9 = [(A6) 2+ (A9g)
2+ (A6 ) 2] 1/ 2

where A9 is the contribution due to multiple scattering, A9- is that

due to beam divergence, and A6 is that due to momentum spread.

The optical aberrations fall into three classes. There are

geometrical aberrations in the optical system, variations in the

angle of the Cherenkov light due to dispersion in the radiator, and

absorption of the UV portion of the Cherenkov spectrum by elements

in the optical system.

If A9' is the angular width of the photomultiplier tube aperture

and A6 the angular width of the ring image, there is a loss of

efficiency when A0' <A9. A particle passing through the radiator

with a large angular divergence, or far off the central momentum, or

experiencing large multiple scattering will usually not produce a

Cherenkov light cone detectable by the phototubes and will be

rejected by the counter. This illustrates the self-collimating

feature of the DISC. It should be noted that if A9 is too large, it

becomes possible for the light cones of different particle species

40



to overlap. By making the aperture A91 small, it is still possible

to get a pure signal but with reduced efficiency.

Another consideration in the design of these counters is the

electronic efficiency. If the average number of photoelectrons

detectable by all phototubes is n and if the electronics is capable

of detecting single photoelectrons, then the efficiency c for a

q-^old coincidence arrangement of the phototubes is

e(q) = (l-exp(-i))q . .

It is important for good efficiency that n be fairly large. Since n

is proportional to the radiator thickness a, increasing I increases

n. Unfortunately the multiple scattering increases as (l/l J)1^2^

where I , is the radiation length of the radiator. Therefore, the

actual I used is a compromise.

The basic design for the DISC is shown schematically in Figure

8. There were two coaxial circular ports in the center of the counter

for the beam entrance and exit. All elements of the counter were

coaxial about a line through the center of these ports. When placed

in a beam, this line, which defines the optical axis, was made to

coincide with the beam axis.

The cell indicated in Figure 8 contained a liquid radiator. Its

entrance window was 0.38 mm of Al and its exit window was 2.54 mm of

Vycor (quartz). The cell diameter was 12.7 cm, which defined the

maximum sensitive region of the DISC. It was mounted in a holder

which could be moved along the optical axis by an electrical stepping
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Figure 8. A schematic view of the DISC. The cell contained
the liquid radiator. The Cherenkov light from the radiator was
collected by the spherical mirror and lens system, focussed on the
conical mirror, and dete-ted by the coincidence or anticoincidence
channels. The figure was adapted from Ref. 23.



motor. Some of the characteristics of the different liquid radiators

used in the DISC are given in Table II. These include the index of

refraction, density, radiation length, and thickness. For each

radiator there was a characteristic pion velocity range AB for which

the DISC would detect pions. This, along with the corresponding

kinetic energy range AT and momentum range AP , is given in Table

II. Muons from the production target have p =p and Ap = Ap . The

velocity range A3 , corresponding to Ap , is also listed. The radi-

ator for each energy range AT was chosen so that the Cherenkov light,

for pions with energies covered by AT , would be detectable by the

DISC'S optical system.

The Cherenkov light from particles passing through the radiator

formed a ring in the focal plane of the spherical mirror and lens

system. The lens was made of lucite and used to correct for disper-

sion in the radiator. The diameter of the ring was dependent on the

particle velocities. To facilitate light collection by the detection

system, a conical mirror was employed which projected the focused

light rings onto an imaginary cylindrical surface. Therefore by mov-

ing the detection system along the optical axis, it can be brought

into the position required for a given velocity response of the

counter. This light detection system consisted of two groups of nine

phototubes (two-inch EMI 9S13B photomultiplier tubes). Each tube

was connected to a light guide which was mounted on a plate. The

detector formed a circle centered about the optical axis and could be

moved by a stepping motor along the optical axis.

43



Table II . Characteristics of the liquid radiators used in the DISC. These include the index of
refraction n, the density p, the radiation length £ra<i, and the thickness I. Also given are the pion
kinetic energy range AT,,, momentum range Ap^, and velocity range AB̂  in which each radiator was used.
Lastly, the muon velocity range AjS,, for muons with Ap = Ap.,, ( i . e . , these are muons from the produc-
tion target with PM=P^) is l isted.

CS2 1.630 1.266 18.6 2.03 60-75 140-160 0.715-0.760 0.800-0.836

CSj 6 Isopropaiiol (C3II7OH) 1.550 1.188 39.2 2.03 75-90 160-180 0.755-0.70S 0.836-0.864

Decahydronapthaltne (Ct0Hle) 1.476 0.887 52.0 2.03 90-120 180-220 0.790-0.840 0.864-0.902

2.2,4 Trimethylpentane (C0H18) 1.392 0.692 70.7 2.08 115-160 215-265 0.835-0.885 0.899-0.930

Methanol (CH3OH) 1.331 0.796 54.2 2.08 150-240 2S5-350 0.875-0.930 0.925-0.958

2,2,2 Trifluroethanol (C2F3OH3) 1.291 1.382 25.8 2.10 190-360 300-480 0.905-0.960 0.944-0.977

Preon C-51-12 (C6Fl2) 1.256 1.672 20.6 2.10 240-670 350-800 0.930-0.985 0.9S8-0.991



The upstream (downstream) detector group was the anticoincidence

(coincidence) ring (see Figure 8). The coincidence ring of photo-

tubes was set to detect Cherenkov light from pions with the proper

velocity. Cherenkov light from particles with larger velocities

(such as muons) and/or outside the angular acceptance of the DISC

(i.e., particles with too great a divergence) was detected by the

anticoincidence ring. Any signal from the coincidence ring was

vetoed if there was a signal from the anticoincidence ring. To avoid

a blind region between the two phototube rings, the two sets of light

guides were placed one flush with the other. The opening aperture

for the coincidence ring light guides was 1.5 cm which allowed for a

maximum beam divergence of approximately ±34.

The logic diagram for the DISC is shown in Figure 9. The nine

phototubes in the coincidence ring were broken into three groups of

three. The signals for the three tubes in each group were added

together, with the combined signal going to a discriminator. The

output then went to a coincidence unit where a two-out-of-three

coincidence lugic identified a pion. The nine anticoincidence tubes

were all added together and sent to a discriminator. The output went

to the coincidence unit as a veto. The output from the coincidence

unit was then required in a two-fold coincidence with a signal from

the TOF counters to identify a pion onto the target.

To insure that the DISC worked properly, several tests were made.

The first one was to produce a curve similar to the one in Figure 10,

which was made by Leontic and Teiger23 when they tested their DISC

in a kaon beam. For these tests, their DISC was placed in a beam
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Figure 9. Fast logic diagram for the DISC. The numerals 1
through 9 and 10 through 18 refer to the phototubes in the coinci-
dence ind anticoincidence channels, respectively. M, D, C, and S
stand for dc mixer, discriminator, coincidence unit, and scalar,
respectively.
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Figure 10. Performance curve for the DISC used in Ref. 23. It
shows the IT and K peaks as a function of the position of tlie coin-
cidence channel when their DISC was placed in a 1.30 GeV/c K beam.
The curve is described in detail in the text.
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along with a scintillation counter telescope S. The number of counts

in S and the number of coincidences S*OC were scaled where C and C

are signals from the coincidence and anticoincidence rings, respec-

tively. Then the ratio S«OC/S was plotted versus the position of

the phototube ring (in arbitrary units). The result shows two peaks,

due to TT and K . It should be noted that their coincidence ring was

also split into three groups of three tubes each. The signal C was

the result of a three-fold coincidence between the three groups.

A similar curve, produced bv placing the LAMPF DISC in the LEP

channel pion beam, is shown in Figure 11. The test was made for 100

MeV ir . The number of TOF"DISC coincidences, normalized to the number

of TOF counts, was plotted versus phototube ring position in arbitrary

units. Note that the TOF counters were not used in their time-of-

flight mode. For this test, a three-fold coincidence was required

between the three groups of tubes in the coincidence ring. No muon

peak was seen, as expected. From Table II, it can be seen that at

100 MeV Ag and &B do not overlap and so there should be no muon

peak. This was still true at 200 MeV, which was the highest energy

at which the DISC was operated.

In addition to the muons from the production target, there are

muons from pions decaying after the last bending magnet. Because of

the TOF geometry, only backward or forward decay muons could be mis-

taken for pions. In Table III, the minimum and maximum velocity of

the decay muon (corresponding to backward and forward) is given for

different pion velocities. The probability that they could be iden-

tified as pions is small.
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Figure 11 Performance curve for the DISC used in this experi-
ment. It shows the v* peak as a function of the position of the
coincidence channel. The curve is described in detail in the text.



Table III. Kinematics for TT decay O ^ p ) , T^ and fi^ are the
pion kinetic energy and velocity. 6y is the muon velocity for pv =p^
where p^ and p y are the pion and muon momentums. Tu (min) (Tp (max))
and By (min) (6,, (max)) are the minimum (maximum) kinetic energy and
velocity of the decay muon. All the energies are in MeV.

T

50

100

150

200

250

300

6
7T

0.677

0.813

0.876

0.912

0.934

0.948

0

0

0

0

0

0

\

.772

.879

.923

.946

.960

.969

T (min)

17

41

68

95

123

150

S (min)

0.49

0.69

0.80

0.85

0.89

0.91

T (max)

71

124

175

227

278

329

P (max)

0.80

0.89

0.93

0.95

0.96

0.97

Electrons, at the energies in Table II, have velocities of P= 1.

Therefore they are not detectable by the DISC. At two energies, 90

and 150 MeV, the TOF counters were set to measure time-of-flight.

When the DISC was put into coincidence with the TOF system, the

electron and muon peaks disappeared from the time spectrum.

At each energy where the DISC was used a curve such as that in

Figure 11 had to be made. For the data run the phototube ring would

be positioned on the peak of the curve. However, instead of a three-

fold coincidence from the coincidence ring, a two-out-of-three

coincidence was used. The effect of this on the curve in Figure 11

was to increase the counting rate on the peak by a factor of three.
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The increased counting rate is attributed to the low intensity of

the Cherenkov light.

Multiwire proportional chambers. A brief description of the

MWPC will be given below. For a general discussion on the design

and performance of MWPC, the papers by Charpak21*»25»2G are a good

source.

A MWPC is a position-sensitive detector having good spatial

resolution (it is essentially an ionization chamber), capable of

handling high counting rates. It also has the desirable property

of presenting a small amount of mass to a particle passing through

it.

Three MWPC were used in this experiment and are shown in their

downstream position in Figure 6. When used to measure the beam

intensity profile, they were placed between T0F2 and the DISC, In

either position, they were centered about and perpendicular to the

beam axis.

All three MWPC were identical. The structure of each was like

a sandwich with a 6.35 mm spacing between each parallel layer.

First there was the entrance window, consisting of 0.05 mm of mylar,

then a high-voltage plane, a signal plane, another high-voltage

plane, another signal plane, another high voltage plane, and finally

the exit window consisting of 0.05 mm of mylar. There was a con-

stant flow of gas throughout the interior of the chamber.

The high-voltage planes consisted of sheets of 0.05 mm mylar

aluminized on both sides. A signal plane consisted of a plane of

independent wires with a 2 mm spacing. The wires were 0.02 mm

51



diameter gold-plated tungsten. A constant potential difference of

4300 to 4500 volts was maintained between the high-voltage and signal

planes, with the signal planes at ground. The negative high voltage

for each chamber was different. The wires in one signal plane were

perpendicular to the wires in the other signal plane, so that the

wires of the two signal planes, along wirh the beam axis, formed a

rectangular coordinate system. There were 128 vertical wires and 196

horizontal wires in each chamber, which determined the x and y posi-

tions of the particle. The spatial resolution of each MWPC was ±1

mm, which was equal to half the wire spacing.

The gas flowing through the MWPC was a mixture of 679« argon,

0.4% freon, 33% isobutane, and a small amount of propanol. The pur-

pose of the mixture of argon, freon, and isobutane was for amplifica-

tion of the signal. The propanol was for quenching. Gases for

MWPC's are discussed in more detail in the papers by Charpak.2<*»25»26

Each wire had its own amplifier for further amplification of the

signal.

By knowing the x and y coordinates of the pion in each chamber

and the z coordinates of the x and y signal planes in each chamber

(z = 0 is the center of the target), it was possible to fit a straight

line in space to the three x coordinates and another one to the

three y coordinates. The two straight lines were extrapolated to

the target (i.e., to z=0) to give the pion's x and y coordinates

there. The slopes of the two straight lines also tell the pion's

divergence in both the xz and yz planes. In this way, when the wire
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chambers wore in their upstream position, they measured the beam pro-

file at the target. The beam profile was found to be roughly

gaussian in x and y and in the divergence of the beam in the xz and

yz planes.

If more than one x or y wire fired in a chamber then the pion's

x or y coordinate was taken from the centroid of the group of wires.

Multiple wire firings were accepted up to and including eight wires.

If more than eight fired the event was rejected.

Only a small subset of the good events in the chambers was ever

recorded. These events were any for which the pion missed counter

T2 in the transmission stack. This criterion was used whether the

wire chambers were upstream or downstream of the target. A pion was

considered to be a beam or a scattered pion if it missed T2.

Targets. For completeness, all of the targets used in the total

cross section measurements are described here. However, only for

the He target will a detailed description be given. The results for

the other targets will be reported elsewhere.

Solid and liquid targets. In all, there were 17 targets. They

are listed in Table IV, along with their thicknesses in g/cm^. They

were all solid, with the exception of the H2
160 and the H2

180, which

were liquids.

All targets were in the form of disks with diameters from 3.175

to 4.445 cm. Because the beam spot on the target was not of uniform

distribution, it was important to know the uniformity of the target

density. Radiographs were made of the targets, and the densities
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Table IV. Targets and target thicknesses. Each target thick-
ness t is in g/cm3.

Target t Target t Target t

Al 1.936 ^ C a 1.5561 6Li 0.8944

10B 2.01 CD2 0.9981 7Li 1' 0 7 0

12C 0.9321 CH, 0.8481 Pb °" 2 9 7

1.936

2.01

0.9321

0.720

1.5113

1.4591

Ca

CD2

CH2

Cu

H 2
1 60

H 2
1 80

1

0

0

1

0

1

.5561

.9981

.8481

.776

.922

.025

13C 0.720 Cu 1.776 Sn 1.430

Ti 1' 7 4 6 5

were found to be uniform to better than 0.1%= A radiograph was made

by measuring the transmission of gamma rays through the target

material.

The targets were mounted in holders which in turn were mounted

on a target wheel along with blanks for target "out" runs, which

were identical to the real target except for the absence of the tar-

get material. A target wheel could hold a maximum of 8 targets or

blanks and could be rotated by remote control to change a target or

blank. It was positioned 5.08 cm downstream from TOF2, as shown in

Figure 6.

''He target. For measuring the total cross section of n~ on ''He,

a thin-walled superfluid ^He target was used. The target was built

and tested by H.O. Meyer.27
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The principal difficulty in designing a kHe target is in know-

ing accurately the absolute thickness of the target. This is essen-

tial in making a precise measurement of the total cross section.

This is easily seen from equation (8), which shows the measured

partial cross section a(ft) to be inversely proportional to the target

thickness t.

To achieve this, a cryogenic target was used which was capable

of cooling liquid He below the A point (2.19°K) where it makes the

phase transition to a superfluid. In the superfluid phase, ̂ He

excludes the formation of small bubbles in the target volume, so

that its density can be determined to better than ±0.1% by a rough

measurement of the vapor pressure (±1 mm Hg). This is because near

the A point the density is a slowly-varying function of the vapor

pressure.

A second uncertainty in the target thickness arises from deforma-

tion under pressure of the thin entrance and exit windows, which

define the target surface. This uncertainty can be made small by

having a cylindrical target whose axis of symmetry is perpendicular

to the beam axis, so that the windows form the surface of a cylinder.

Meyer27 determined that, under operating conditions, the stretching

of the Kapton windows introduced an uncertainty in the target thick-

ness of less than 0.1%.

On the other hand, a cylindrical target geometry requires know-

ledge of the intensity distribution of the incident beam over the

target. This intensity profile was measured with the MIVPC as

described above.
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A schematic view of the target is shown in Figure 12. The three

major elements are the vacuum vessel {<!), a liquid nitrogen radiation

shield (5), and a Hie vessel (6). The He vsipor pressure was moni-

tored with an accuracy of ±0.3 mm llg.

The target cell is shown in Figure 13. It contains two identi-

cally-shaped cavities. The upper one is the target cell, containing

the **ller and the lower one is the dummy target for blank runs. The

dummy target is evacuated together with the main vacuum container.

The entrance and exit windows consisted of IS mg/cm2 Kapton

(C22H10N2O5)• "^° target diameter was 7.6 cm at room temperature.

In order to optically align the cylindrical target with respect

to the beam axis, a 0.15 mm diameter steel wire was strung along the

central axis of the target cell. It is shown in Figure 13.

During a data run, the uHe target was placed at. the position of

the target wheel as shown in Figure 6. It was suspended from above

by a hoist and was raised and lowered for target "in" and "out" runs.

The target could be used for more than 30 hours before being refilled.

Table V gives the target thickness in mg/cm3 at the A point as

a function of the lateral displacement S from the beam axis. The

direction of S is perpendicular to both the beam and the target axis.

These thicknesses were folded with the be=im profile to calculate the

effective target thickness. It was found to be 1085 mg/cm3 with a

systematic error of 0.5%. The details of this calculation will be

discussed in Chapter 4.

Transmission detectors. After passing through the target, the

transmitted beam was detected by the wire chambers (if placed
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Figure 12. Ocwar and target system. As seen in the beam
direction the elements are: (1) filling and pumping post for helium
volume; (2) vents; (3) radiation shield; (4) outer vacuum container;
(5) liquid-nitrogen shield; (6) helium container; (7) side viewport;
(8) target cell; (9) dummy target cell. The figure is from Ref. 27.
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Figure 13. Target cell. The elenents are: (1) stainless-steel
tube; (2) fillii^ holes; (3) aluminum clamps; (4) side strut of brass
target cell; (5) central wire for alignment of target; (6) dummy
target cell. The figure is from Ref. 27.
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Table V. ''He target thickness t as a function of the displace-
ment S. The direction of S is perpendicular to the beam axis and
the target axis.

S(cm) t(mg/cm2) S(cm) t(mg/cm2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1101

1101

1099

1097

1095

1091

1087

1082

1076

1070

1062

.4

.0

.8

.9

.2

.7

.5

.5

.7

.0

.5

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1054.2

1045.0

1034.8

1023.9

1011.9

998.99

985.01

967.97

953.82

936.48

downstream) and the transmission stack. The wire chambers and trans-

mission stack served as two independent systems for measuring the

beam attenuation.

Transmission stack. The transmission stack was the last set of

counters encountered by the beam in the counter arrangement shown in

Figure 6. The stack consisted of 9 circular coaxial plastic Pilot-M

scintillators centered about the beam axis. It could be moved along

the beam line.
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The counters were labeled sequentially Tj, Tj, •••, Tg and E

with Tj and E being the furthest upstream and downstream, respectively.

The radii of counters Ti through Tg, which monotonically increased,

are given in Table VI. Each counter was 6.35 mm thick. Kith the

exception of Ti and T2, the radii were chosen to correspond to equal

steps of t between counters where t is the square of the momentum

transfer. The ninth scintillator E was used to monitor the efficiency

of counters Tj through T8 and was the smallest scintillator.

Half the circumference of each counter was optically coupled to

lucite light pipes which transmitted the light to an EMI 9813B two-

inch photomultiplier tube.

Ideally the pulse height from each scintillator should be inde-

pendent of the pion's position in passing through the scintillator.

This would assure that the efficiency was uniform throughout the

sensitive region of the detector. To test this, a 207Bi gamma source

was placed at different positions on the face of each scintillator

Table VI. Radii of the Transmission Counters.

T3 Th T5 T6 T7 T8 E

Radius (mm) 25.4 50.8 76.2 107.7 132.1 152.4 170.4 186.7 12.7
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and the resulting output pulses were observed. By comparing the

pulse height as a function of position, the most sensitive region of

each counter was found to be that half of the scintillator opposite

the photomultiplier tube. This effect was believed to be due to

light reflections from the semicircle that was not connected to the

light pipes. After this edge was sanded, the pulse height variation

across the face of the scintillators was reduced to 25% or less which

was felt to be acceptable. The largest variations were found in the

largest counters and decreased for the smaller ones.

For a given position of the transmission stack, it was possible

to measure seven partial cross sections simultaneously. Counter T^

was found not to be usable because its diameter was too small. In a

blank run, 1/3 of the beam would miss it because of the beam size and

divergence.

Multiwire proportional chambers. A general discussion of the

multiwire proportional chambers was given above. In this section, a

few comments will be made concerning utilizing the wire chambers for

measuring the transmitted beam.

As stated earlier, the wire chamber data was acquired only for

those events for which the pion was not detected by T?.

The wire chambers had two distinct advantages over the trans-

mission stack. The first one was the fact that they present a small

amount of mass to the pion passing through them as compared to the

transmission stack. Therefore they have the ability to detect lower-

energy pions than the transmission stack.
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To obtain absolute values for the total cross sections, it is

necessary to know the absolute efficiencies of the wire chambers

and their associated electronics. Unfortunately, it was found that

this was not well known, so that it has not been possible to extract

total cross sections from the wire chamber data. However, uncertain-

ties in the MWPC efficiencies do not affect their use as a beam

profile monitor. All that is necessary is to know the relative beam

intensity as a function of the displacement from the beam axis.

Electronics. The electronic system was fairly conventional for

a counter experiment. It utilized standard NIM28 (Nuclear Instrument

Modules) modules (i.e., discriminators, D.C. mixers, coincidence

units, etc.) for the fast logic circuits and standard CAMAC29 (i.e.,

sealers, analog to digital converters (ADC), time-to-digital

converters (TDC), etc.) as an interface between the electronics and

a PDP-11/45 minicomputer which recorded information on magnetic tape

and generally controlled the data acquisition operations. The

PDP-11/45 had 24K of memory with the following peripherals: a tele-

typewriter, CRT display, paper tape reader and punch, two magnetic

tape drives, and a RF disk with 256K of storage.

In the electronics for the fast logic, timing pulses of 10 to

15 ns were used with typical discriminator dead times of 10 ns.

Coincidences of interest were recorded in scalars capable of handling

counting rates of 50 MHz and in a few cases 100 MHz,

The first important coincidence was the determination of a pion

to a target. This was accomplished in two ways depending upon

whether or not the DISC was used for particle identification. If it
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was, the coincidence Y = TOF1-TOF2-DISOH defined a pion to target

where TOF1 and TOF2 are signals from the two timing counters (without

a time-of-flight constraint), DISC is a signal from the DISC, and H~

is a veto signal from either of the halo counters. The logic diagram

for this is shown schematically in Figure 14; the logic diagram for

the DISC was shown previously in Figure 9.

When particle identification was done without the DISC, then the

coincidence Y=TOF«H defined a pion to target, where TOF was a three-

fold coincidence between the two timing counters and the 200 MHz rf

signal from the accelerator. The logic diagram for this is shown

schematically in Figure 15. In this case, particle identification

was achieved with time-of-flight constraints between TOF1 and T0F2

and between the production target and T0F2. A two-dimensional plot

(see the previous discussion of the TOF) was used to select events

and to study the rejection of muons and electrons. The TOF system

was capable of 1/2 ns time resolution. Not all Y coincidences were

due to pions. Some of them were due to accidental coincidences.

The source of these accidentals is described in Chapter IV.

time, only the measurement of the accidentals will be described.

When the DISC was in use, the accidental coincidences Y in Y
a

were monitored by the coincidence Y, = T0F1•TOF2-DISC-H, where DISCd

is the DISC signal delayed by several rf periods of the beam. When

only the TOF system was used, the accidental coincidences Y were not

measured. However, they ar^ believed to be small, for the following

reason. For an accidental to occur in Y, there must first of all be

an accidental coincidence between T0F1 and TOF2 and an accidental
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Figure 14. Fast logic diagram for pion identification ivhen
the DISC was used. Here, T0F1, TOF2, DISC, Hy, and HL refer to
signals from the first timing counter, second timing counter, DISC,
upper halo counter, and lower halo counter, respectively. D, C,
and OR stand for discriminator, AND coincidence unit, and OR coinci-
dence unit.
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Figure IS. Fast logic diagram for pion identification when the
DISC was not used. Here. TOFl, T0F2, Hy, HL, and 200 MHz rf signal
refer to the signals from the first timing counter, second timing
counter, and the 200 MH2 rf signal from the accelerator, respectively.
D, C, and OR stand for discriminator, AND coincidence unit, and OR
coincidence unit.
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coincidence between the 200 MHz rf signal and TOF2, In addition,

these two accidentals must occur within a small time interval in

order to be mistaken as a pion in the two-dimensional time-of-flight

spectrum.

Whichever way the Y coincidence was formed, it was recorded by

a scalar. A typical data run consisted of approximately 106 Y events

(i.e., beam particles).

Figure 16 indicates schematically the fast logic circuits for

the transmission stack and shows the coincidences that were required

for the detection of charged particles, the measurement of accidental

counts, and the measurement of each counter efficiency.

The detection of a charged particle by the i-th transmission

counter was gî 'en by the coincidence Y'T., where T. was the signal

from the i-th counter. The Y-T. were recorded by scalars.

During the data runs, the efficiency at the center of each

transmission counter was continually monitored by tne sir.all efficiency

counter E at the back of the transmission stack. The efficiency of

the i-th counter was given by the ratio of coincidences E. =Y*T.'E

to E.=Y»E, where E was a signal from the efficiency counter. This

efficiency was always better than 99.5°^.

To monitor the number of accidental coincidences in Y*T. due to

a stray particle passing through some or all of the transmission

counters, the coincidence Y, «T. was made. In this coincidence, Y, is

the Y signal delayed by several rf periods of the accelerator.

The coincidence Y'T. has been the standard way of detecting a

charged particle in the i-th transmission counter. However, a better
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IslslslslslslsTsl (Y-Tj)e

Figure 16. Fast logic diagram for the transmission stack. Tj
through Tg are the different transmission counter signals, Y is the
pion signal. D, C, OR, and S stand for discriminator, AND coinci-
dence unit, OR coincidence unit, and scalar.
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way is to use the coincidence S. =Y'(Tj or ••• or T.)» which was

suggested by T. Kyc.ia,30 This is preferable because it compensates

for the loss of pions due to absorption in the transmission stack,

which is a fairly large effect at low energies where pions passing

through the central region of the stack are absorbed and therefore

do not reach the larger counter (e.g., T7 and T 8). Thus the number

of Y'T. coincidences will not be a true indication of the number of
i

nions that should have been detected. The accidentals in S. were

given by Y, '(Tj or -•• or T.).

In each data run, the Y coincidences, Y accidentals, AND coinci-

dences (Y-T.), OR coincidences (Y*(Tj or ••• or T.)), AND accidentals,

OR accidentals, and the efficiencies (the Y*T.«E and Y«E coincidences)

were recorded on scalars. The scalar information was then recorded

on magnetic tape by the computer.

In addition to these scalar measurements, there was another

class of information that was written on magnetic tape. This informa-

tion came from two types of events. The first were events for which

an interaction took place (i.e., there was a scattered pion). Experi-

mentally, a pion was defined to have scattered if there was no Y-T2

coincidence. These were called "good" events. The second were

events for which there were no interaction?. Only a small subset of

these events, triggered at random by the time of flight, were recorded.

These were called '"random" events. The purpose of the random events

was to monitor the beam as well as normalize the scattered event

information to the unscattered.
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Good events, as well as random events, included information from

a coincidence register, two TDC's, and eight ADC's. The good events

also included MIVPC information, while the random events did not.

The signals from the eight transmission counters were fed

directly to eight ADC's to obtain pulse height information. This v. is

done to obtain information on the number of protons reaching the

transmission stack.

When the TOF counters were used for the purpose of time-of-flight

information, their signals and the 200 MHz rf signal were fed to two

TDC's and stored on magnetic tape. The TOF2 signal served as the

start pulse for each TDC and the TOF1 pulse and the 200 MHz rf signal

were the two respective stop signals. In this way, the time spectrum

of the beam particles between TOF1 and TOF2 and between the production

target and TOF2 was obtained to allow for particle identification.

As discussed before, this information was displayed in a two-dimen-

sional plot to select events and to study muon and electron rejection.

The coincidence register recorded essentially the same informa-

tion as Y-T. coincidences, except that it had poorer statistics. Its

information was more detailed than the scalars because it could

identify which counter was hit first. Also, it could check the con-

sistency of the ADC's. If, according to the coincidence register,

T. did not detect a particle, then the ADC for T. should be zero.

However, the coincidence registers did not operate properly and so

this information was unfortunately not available.

The MWPC electronics put out a fast logic signal whenever a

signal plane detected a charged particle. A MWPC event was defined
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by two coincidences. First there had to be a two-out-of-three coinci-

dence among the three x signal planes, and a two-out-oi-three among

the three y signal planes. There then had to be a twc-fold coinci-

dence between the x and y signals. If there was a two-fold coinci-

dence between the Y and MWPC signals and no Y«T2 coincidence, then

the MWPC event was read into the comparer and stored on magnetic tape.

This event contained information on which wires fired in each of the

x and y signal planes. With this information the trajectory of the

particle could be constructed, to give such information as the slope

of the track and its intersection at the target.

To summarize, for each data run the following information was

written on magnetic tape: the ADC's, TDC's, and coincidence register

for good and random events; the MWPC events for good events, and the

scalars. This task was accomplished by a data acquisition computer

program written in MACRO, an assembly language, and FORTRAN. In

addition to writing information on magnetic tape, the program handled

the transference of data from the CAMAC system to the computer. It

also allowed for the monitoring of data runs through histograms and

other outputs which were displayed on a CRT. Some of the more useful

histograms were the raw MWPC inputs, the raw TDC and ADC inputs, the

calculated beam divergences in x and y, and the x and y intercepts of

the pion trajectory at the target. The scalar totals and various

scalar ratios (e.g., the calculated efficiencies) could also be

displayed.

Finally, it should be mentioned that there were some troubles

with the computer due to disk failures and hardware failures in the
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interface between the computer and the CAMAC system. These troubles

resulted in computer crashes (at irregular time intervals) which

resulted in some data runs being divided up into several short runs.

These were then added together at a later time. Aside from their

inconvenience, these crashes did not appear to have any effect on the

data.
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IV. DATA EVALUATION

In this chapter, the details of the corrections to the data and

the statistical treatment of the data will be discussed. In some

cases many of the details of a particular correction have been placed

in an appendix, to avoid obscuring the principal points of the dis-

cussion.

The corrections to the data fall into two classes, with little-

coupling between them. First * there are those due to the detection

system (i.e., systematic effects). These include efficiencies,

accidentals, rate effects, geometry of detection system, incorrect

identification of pions, absorption, etc. Secondly, there are cor-

rections due to effects caused by interactions of the pion in the

target. These include Coulomb effects and knockout protons in the

target and T0F2. Another correction in this class is pion decay.

Pions will decay whether the target is "in" or "out." For pion

decays before the target, the angular distribution of the muons will

be different in the two cases because of the multiple Coulomb scat-

tering of the muons in the target. For pion decays after the target,

the angular distributions of the muons will be different in the two

cases because of the multiple Coulomb scattering of the muons in the

target. For pion decays after the target, the angular distributions

of the muons will be different n the two cases because of the energy

loss of the pion passing through the target. In a sense, pion decay

is a third class of correction, in that the presence of the target

modifies the background present in a blank run. From equations (6),
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(7), and (8), it was shown that by comparing target and blank data

rims, background effects common to both cancel exactly. If the

presence of the target modifies this background, then they do not

cancel exactly and must be corrected for. All of the classes of

corrections are made to the ciata from each transmission counter

before calculating the total cross section itself.

The statistical treatment of the data also falls into two

classes. First there is the determination of the statistical error

to be assigned to each of the partial cross sections. Then there is

the extrapolation of the partial cross sections to zero solid angle.

This involves a generalized method of least squares which takes into

account the statistical correlations between the counters.

Also in this chapter, there is a discussion of the energy loss

calculations which was used to find the pion energy at the center of

the target.

Systematic Corrections

To look for systematic effects on the partial cross sections and

on the extrapolated total cross section, several tests were made.

These will be discussed below.

Positioning of the halo counters and TOF2. The various effects

which arise from the presence or absence of the halo counters as well

as the relative positioning of these counters and TOF2 with respect

to the target have already been discussed.
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For a fixed position of TOF2, data runs were made both with and

without the halo counters The partial cross sections were found to

be systematically larger without the halo counters. With the halos

in, the distances between TOF2 and the target and between the halos

and the target were varied. The partial cross sections were found to

decrease as the separations increased. The final geometry was set

with 101.6 nan between the halos and the TOF counter and with 50.8 mm

between TOF2 and the target. With these positions, the above system-

atic errors were felt to be negligibly small. The separation between

TOF2 and the target was still small, which helped to keep the number

of v decays small.

Positioning of the transmission stack. The effect of different

transmission stack positions on the partial cross sections is shown

in Figure 17 for TT on both Al and Sn at 85 MeV. The error bars on

the Al data is the same size as the data points. All corrections

have been included in these points except for the Coulomb-nuclear

interference correction. These data come from two transmission

stack positions, and they are statistically consistent. Therefore

it is believed that no systematic effects arc introduced by changing

the position of the transmission stack. Because of this, for most

energies, targets, and pion sign, the data were taken for only one

position of the ti'ansmission stack. This includes all of the **He

data.

Solid angle. The solid angle covered by each transmission

counter was calculated as a mean over the target length £] = 76 nun and

counter thickness £2
 = 6-35 mm, using the expression
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Figure 17. Partial cross sections for two positions of the
transmission stack. The data are for 85 MeV n* on Al and Sn. They
have not been corrected for rr-decay and Coulomb-nuclear interference.
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where d is the distance from the center of the transmission counter

to the center of the target. The solid angle Q is

il = 2TT (1 - cos 9 )
c c

7TR2

ana

cos6 = <!(d2 + R 2 ) - ] / 2

wnerc R is the radius of the transmission counter. The contributions

of '! i and i-2 to ft" are quite small. For Tj, the transmission counter

nearest to the target, d=770 mm and ft is only 0.3% larger than ft .

The uncertainty in Q comes principally from d which was measured

to within ±0.-1". By allowing d to vary by +0.4°. in the calculation

of the fi's and by then using these n's in the least squares fit to

the data, it was found that the uncertainty in d had a negligible

effect on the extrapolated total cross section.

In equation (21), the finite beam size was ignored. If the solid

angle was calculated as a mean over the cross-sectional area of the

beam (it. was roughly circular with a radius of 1 cm), while ignoring

the target and counter thickness, ft* was found to deviate from ft by

Jess than 0.3^. This calculation assumed that the beam intensity was

uniform within the circle and zero outside of it. From the MWPC data,

the beam intensity was found not to be uniform as a function of the

lateral displacement from the beam axis Rather it was found to be
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roughly a gaussian distribution with a standard deviation of ~1 cm.

The beam divergence was also found to have approximately a gaussian

distribution. If the "true'; beam distribution were used, it would

have no effect on Q.

Target thickness. Another possible systematic error concerns

the target thickness. The measured total cross section should be

independent of the thickness.

For a fixed number of incident pions, the thicker the target the

greater the number of scattered pions because of the increased number

of scattered centers. This is desirable because it increases the

statistical accuracy of the data. Unfortunately, increasing the tar-

get thickness also increases the magnitude of the single and multiple

Coulomb scattering corrections and of the pion decay correction. This

is undesirable because it puts greater importance on how well these

corrections are made.

This effect was tested for by using 12C targets. With the

counter arrangement fixed, two 12C targets with thicknesses of 0.9321

g/cm2 and 5.467 g/cm2 were used to measure the total cross section

for 145 MeV -n . The two extrapolated cross sections were 654 i 13 nib

and 659±3 mb for the thinner and thicker targets, respectively

(these cross sections do not contain the Coulomb-nuclear interference

correction). The smaller error for the thicker target is due to the

larger number of scattered centers which resulted in a larger number

of scattered pions. The two cross sections are statistically consis-

tent, so there does not appear to be any systematic error due to the
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target thickness within the statistical errors. Most of the targets

used, including the ^He, had thicknesses of -1 g/cm .

Rate problems. The consideration of the appropriate counting

rate for a data run has several aspects.. A high counting rate is

desirable to reduce data-taking time. But it can be undesirable if

it leads to a loss in particle detection due to dead time effects in

the electronics, specifically with the transmission stack electronics.

The dead time was typically 10 ns for the transmission stack

discriminators. Thus, if the beam-defining counters identified two

pions less than 10 ns apart and neither one was scattered, the second

pion would not be detected by the transmission stack; it would be

considered as a scattered pion and would systematically give too

large a cross section. This could, of course, occur at any counting

rate, but the probability for its occurrence increases as the beam

intensity increases (i.e., as the counting rate increases').

At high counting rates, the probability increases for two pions

to come through the particle-identifying counters together and to be

labelled as a single pion. If only one of them scatters, it will not

be counted as a scattered pion. This would systematically decrease

the measured cross section.

Another effect, which increases at high counting rates, concerns

thf problem of accidental coincidences in the beam-defining counters.

Those accidentals which occur when there is a true pion coincidence

do not affect the measured cross section. However, the remaining

accidentals create a problem since they indicate an incident pion which

77



is not detected by the transmission stack. These events can lead to

a systematically higher cross section.

During the experiment, the beam intensity was controlled by

suitably opening or closing the momentum slits in the LEP channel.

The chief source of accidentals was then due to too large a momentum

bite in the channel.

To determine whether or not the counting rate was acceptable,

the accidentals in the AND coincidences, the OR coincidences, and in

the Y coincidences were monitored. If the accidentals in the AND and

OR coincidences were less than 1% of the number of AND and OR coinci-

dences for each transmission counter, the measured cross section was

found to be rate-independent. This was determined by comparing the

total cross sections calculated from **He data runs with different

accidental rates. All data runs with an unacceptable accidental

rate (i.e., greater than 1%) were not. used to calculate cross sections.

Tests to compare directly the effect of high and low accidental

rates on the extrapolated total cross sections were made by using 145

MeV -<t~ on !2C. For both the target and blank runs, the momentum

spread was -E-=±Q.2% (±1.0*) in the low (high) rate case. The percent-

age of OR accidental coincidences to OR coincidences monotonically

increased from T1 to T8, going from 0.37-& to 0.96% (1.43% to 2.bO"i)

for the low (high) rates. From the low (high) rate target and blank

runs, the extrapolated cross section (it has not been corrected for

Coulomb-nuclear interference) was 753 + 13 mb (781 ± 13 mb) with a

reduced Xn2 (*•©•» the x2 Pe** degree of freedom) of 0.1 (5.1). The
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high rate data yielded a 4% larger cross section than the low rate

data. This is consistent with the dead time effect.

Another test matched the low (high) rate target run with the

high (low) rate blank run, giving an extrapolated cross section of

742 + 13 mb with a reduced xn
2 of 2.1 (1.9). This can also be

accounted for by the dead time effect as may be seen by considering

equation (8). The effect of the dead time at high rates is to

decrease the values of R and Rg from what they would be at a lower

counting rate. Using a low (high) rate R and a high (low) rate R ,

the measured o(Q) will be systematically decreased (increased).

The results of these tests are summarized in Table VII.

TABLE VII. Comparison of high- and low-rate data runs for 145
MeV IT" on 1 2C. The extrapolated cross section o was obtained from a
quadratic fit in il to the five largest counters. The reduced XR 2 is
also given.

Targe- Rate Blank Rate o(mb)
*R

low

high

low

high

low

high

high

low

753 + 13

781+13

742 + 13

793 + 13

0.1

5.1

2.1

1.9

It should be noted that Table VII also illustrates the necessity of

having the counting rates equal for both the target and the blank



runs. This is important even at low counting rates since this is an

effect which will not cancel out in the comparison of target, "in"

and "out" data runs (see equations (6), (7), and (8)).

Beam profile. Knowledge of the beam profile is important for

the 4He target because of its nonuniform thickness. By folding the

beam profile with the target geometry, the average target thickness

was found to be 1.085 mg/cm2 with a systematic error of 0.5%. This

error was due to an uncertainty in the tails of the beam profile which

was roughly gaussian in x and y.

This averaging was accomplished by first making a histogram,

using the MIVPC data, of the number of particles in both the positive

and negative x directions, in 2 mm steps, A weighted average of the

target thickness was then made by using the target thickness at each 2

mm step in x (see Table V) weighted by the fraction of the pions in

that 2 mm step.

Efficiency, Accidental, and Absorption Corrections

At this time it is appropriate to introduce some notation which

will be used here and in the appendices. For the i-th transmission

counter T., S., Ta., Sa., and E~ are the total number (as recorded on

sealers) of AND coincidences, OR coincidences, AND accidentals, OR acci-

dentals, E, coincidences, and E™ coincidences, respectively. These coin-

cidences were defined in the previous discussion of the electronics. The

total number of pions to target is Y, whereY is the number of accidental

coincidences in Y. Lastly, E. =E./E is taken to be the efficiency of
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the i-th transmission counter. A zero subscript on any symbol denotes

that quantity for a blank run.

An important point is that only the OR data were used in calcu-

lating the partial cross sections. The AND data were used only as an

aid in making corrections. The principal reason for this is the

effects of the absorption of pions in the transmission stack or the

AND data, A pion moving through the central region of the stack may

be absorbed before passing through all of the counters. The partial

cross sections, for those counters that the IT does not reach, would be

too large using the AND data. This effect is a function of the pion's

energy, increasing (decreasing) as the energy decreases (increases).

By using the OR data, the problem is decreased in magnitude as can be

seen in Table VIII which gives the raw scalar readings for 51 MeV ir

on kHe. The absorption of pions in the stack is demonstrated in Table

VIII where S. >T. and T 7 > T 8 .

Table VIII. The scalar readings for the AND and OR data. The
raw scalar readings are T and S, with S a c, Se, and S c being the values
of S corrected for accidentals; efficiency; and accidentals,
efficiency and absorption; respectively. The numbers are from a data
run with 51 MeV ir+ on ''He. The number of beam pions was 1032956.

Counter
Number

2

3

4

5

6

7

8

T

780412

898844

931463

937442

940774

942075

939623

S

781849

904295

941203

954973

964588

972737

978370

Sac

781259

903806

940746

954529

964148

972310

977951

Se

782750

904579

941289

955027

964617

972761

978387

sc

782162

904090

940832

954583

964177

972334

977969
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Another advantage of using the S. over the T. is that the OR

efficiencies are greater than the AND efficiencies. Even though the

OR efficiencies were not measured, they can easily be seen to be

nearly 100% by the following argument. Suppose that all of the AND

efficiencies for detecting a charged particle were 99.5% (the

measured AND efficiencies were always greater than 99.5%). If a

charged particle passes through two counters, the probability of (or

the efficiency for) being detected is e= 1 - (l-e)(l-e) where e is

the efficiency of each counter. For e- 0.995, e = 0.999975 for two

counters, e=0.999999875 for three, and e=0.9999999994 for four.

The value of e is essentially 1 (i.e., the efficiency is 100%) for

charged particles passing through two or more counters. For all but

the first OR coincidence, most of the particles detected have passed

through two or more counters. This becomes especially true for the

OR coincidences associated with the larger counters. This means

that the efficiency correction should be quite small for S 7 and S8

and, in fact, it is as can be seen in Table VIII. The details of

the efficiency correction will be discussed later.

Accidentals. Accidental counts in Y, 7., and S. have several

sources. The principal one of these is charged particles (e.g.,

muons and electrons) associated with the beam; this is dependent on

the beam intensity. Other sources of accidentals include cosmic

rays, the neutron background (from neutrons produced in the channel

and from the production target), and noise pulses in the photomulti-

plier tubes.
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Before using equation (8) to calculate the o(Q), the measured

R and RQ need to be corrected for accidentals. To understand how to

do this, consider the i-th transmission counter. Let S. be the true

number of counts due to pions and S and S be the measured number of

counts and accidentals, respectively. Then R =S /Y is the fraction

of pions which are incident on the target and which are detected by

the i-th counter. The problem is to relate R to the measured ratios

R =S/Y and R =S /Y. Now R is also the probability that a count

is due to a pion, R is the probability that a count is an acciden-
a

tal, and R is the probability that a count is due to either an acci-

dental, or a pion, or both. From probability theory,31 R is given

by

R = R + R - R.R (22)
m t a t a

or

S = St + Sa " RtSa • ( 2 3 )

This can be rewritten as

R = Rm"Ra (24)

or

S- S
S = Y

Y-S
(25)

iNote that in the limit of R going to zero, R =R . Equations (22)

through (25) hold true for the AND coincidences, with R =T/Y and
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To calculate the partial cross sections, equation (23) is

applied to both the target "in" and target "out" data. This gives

for a(J2)

a(fl) = — In
R " R o a 1 - Ra

R - Ra
(26)

where the subscript m has been dropped.

To handle the Y accidentals, an equation similar to equation

(23) may be written. To find this, let P be the probability that a

Y coincidence is due to a pion. Also let the measured number of

pions by Y, the measured number of accidentals be Y , and the true
3.

number of pions by Y . Then

Y = Y + Y - PYt a a (27)

where the last term accounts for tnose accidental counts which

occur at the same time as counts due to pions. Solving for Y ,

one obtains from equation (27)

Yt = Y - (1 - P)Ya (28)

Unfortunately P is an unknown and cannot be determined from the

experimental data. However, (1 - P) can be approximated by Y /Y,

which is an overestimate, since some of the ".ccidental counts occur

at the same time as counts due to pions. This then gives for Y

Y t " Y - (r]Ya

Now in all cases where the counting rates were acceptable, it

was found t^at 0.001 <Ya/Y<0.02. Whether equation (29) or Y were
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used in the calculation of the partial cross sections, the total

cross section was found to be essentially the same. For example,

the total cross sections for 85 MeV and 105 MeV r on **He decreased

by 0.15% and 0.097%, respectively, when equation (29) was used to

correct Y.

The problem of accidentals in Y is an effect which cancels out

in the comparison of the target and blank runs if (Y /Y) = (Y /Y ).
a ac o

To see this, equation (28) is written as

Yt = Y 1 - (1-P) -^- (30)

and

= Y0|l- (1-P) Y a 0 • (31)
[0 J

for the target and blank runs, respectively. The terms in the square

brackets cancel to first order when equations (30) and (31) are

substituted into equation (26). Thus, by using only data for which

Y /Y and Y /Y are small and nearly equal, the correction for Y
a ao

accidentals is unnecessary since it is negligible.

The accidental corrections to the transmission stack data were

the only ones that were necessary and they were made using equation

(26). The accidental rate in the transmission stack does not cancel

in the comparison of the target "in" and "out" data. This is due to

the scattering of the beam due to the target, which makes the acci-

dental rate different for the target "in" and "out" data.

Pion losses in the transmission stack. The transmission counter

data must be corrected for the inefficiency of the counters and for
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pion absorption in the counters. These corrections will be described

briefly in this section with the details given in Appendix A. The

formalism used here was suggested by G. Burleson.32

Let the distribution of particles in the transmission counters

be given by Nj, •••, N7, and Ng, where N. is the number of particles

that hit the i-th counter first. If Nj start in the first counter,

then "12^1 reach the second counter, C13N1 reach the third counter,

etc.; and if Nj start in the second counter, then 023N2 reach the

third counter, 0124N2 reach the fourth counter, etc. This is shown

schematically in Table IX. Each a-; is the probability that a

particle starting in the i-th counter will reach the j-th counter.

The pion losses due to nuclear interactions in the counters are

dependent upon the thickness of the material the pions pass through.

So each a..N. should be multiplied by 8. = Ccos8.)-1, where 9. is

the angle of the particles measured from the z axis to the center of

the angular ring defined by the edges of the i-1 and i-th counters.

Table IX. The fractions of N. starting in the i-th counter and
reaching the j-th counter.

Counter
Number 1

til

2

«12N1
N2

3

«13Nl

a2 3N2

N3

4

(X24N2

5

"isNl
0125N2

a 3 5 N 3

Oti5Nit

6

«16N1
a 2 6N 2

336N3

a i 4 6N4

a56N5

N6

7

017N1

(X27N2

a3 7N3

au7Ni»

a 5 7N 5

067^6
N7

8

«18Ni

a2 8N2

Ott| 3N14

«58N5

"68^6
a 7 8N 7

N8
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Now the measured T. and S. may be expressed in terms of the

unknown quantities in Table IX and the measured AND efficiencies ;..

In order to make the equations tractable it is necessary to make the

following assumptions:

a? £ a12 = a23 = • • • = a 7 8

a 3 :- a j 3 =

at, - a 18

Then a2, a3, •••, u8 are the probabilities that a pion will not be

absorbed in passing through 1, 2, •••, or 7 transmission counters.

The equations for Tj, Sj, T 2, and S2 are given below:

Ti = EJNI , (32a)

T2 = e2(N2 + a2N1) , (32b)

Sj = Tj , (35a)

S2 = GjNi + E2N2 + (l-ei)e2a2Ni , (33b)

where (1 - c\)^2a2 is tne probability that a charged particle will not

be absorbed or detected in the first counter but will be detected in

the second counter. The equations for T3 through Tg and S3 through

S 8 are given in Appendix A. Altogether, there are 15 equations and

15 unknowns, so that the ct's and N's can be solved for.

Before calculating the a's and N's, each T. and S. was corrected

for accidentals using equation (25). Using the corrected T.'s and
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S.'s, the N.'s and a.'s were calculated using the results of Appendix

A. By knowing the N.'s, the number of particles that should have

been detected by each counter were easily calculated. These numbers

were then used in equation (8) to calculate the partial cross sections.

The values of a.'3 were found to be all about equal. A typical

value of a. was -.99 even at 51 MeV.

This procedure for correcting the data for counter inefficiencies

and pion absorption in the counters has not been used in previous

measurements of total cross sections which utilized a transmission

stack.7'9 It is relatively important to the present measurements

because low energies are involved. For very low energy (e.g., 20

MeV), this correction could become quite important.

Table VIII gives the raw scalar readings S for 51 MeV i» on ''He.

It also gives the scalar readings S which were corrected for only

the counter inefficiency, and the scalar readings S^ which were cor-

rected for counter inefficiency, pion absorption and accidental

counts. The S were obtained by ignoring accidentals and setting all

the a.'s equal to unity. The S are less than the raw data because

of the accidental correction.

Knockout protons. Another effect which needs to be considered

deals with the knockout of protons from the target and T0F2. This

could affect the data in two ways. First, protons from the target

can be detected by the transmission stack. If they are, a pion which

did interact in the target and missed the transmission stack could

be counted as a pion that did not interact. Secondly, protons from

T0F2 will be detected by the transmission stack i^ *he case of a
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blank run but will not in a target run. This is because they are of

low energy and will probably stop in the target.

The source of knockout protons is inelastic pion interactions in

the target and T0I"2. For this reason, it is not necessary to correct

the data for any effects due to these protons. This can be seen by

considering either equations (16) or (18) in Chapter II. Both of

these equations contain a correction term for inelastic events which

is given bv / U^H do, where \-~\ is defined to be the differen-
' o0^inel ldniinel

tial cross section for all inelastic interactions. Because this cor-

rection goes to zero as Q goes to zero, it does not affect the extra-

polated cross section o(n=0). Consequently, it is unnecessary to

correct the data for knockout protons.

Statistical Analysis and Extrapolation Procedure

The calculation of the statistical errors or the partial cross

sections and the extrapolation procedure used to obtain the total cross

sections are the subjects of this section. The statistical correlations

between the partial cross sections are included in the extrapolation

procedure. This is done using a generalized least squares fit with a

polynomial in t, the square of the momentum transfer. This is a tech-

nique which has not been employed in previous measurements of the

total cross section.7'8

Error analysis. In this experiment the following question is

asked: What fraction of the pions incident on the target will be
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found within the solid angle fl. subtended by the i-th transmission

counter at the center of the target? The probability distribution

which is appropriate for this situation is the binomial distribution.

This distribution gives the probability of finding exactly r suc-

cesses in N independent trials, when the probability of success in

each trial is a constant P. In this experiment, the number of

independent trials Y and the number of successes S. are both measured

(the effects of accidental counts, pion absorption, and inefficien-

cies cf the counters on S. are being ignored for the moment). The

probability of there being 5>. successes is R = S./Y.

The variance a2, where a is the standard deviation, for the

binomial distribution is

a2 = NP(1 - P) . (54)

If P is unknown, an unbiased estimate of the variance is given by

N
o2 =

N- Ij
1 * r s *

(35)

for large N. In terms of the notation used to describe the present

experimental data, equation (35) becomes

(AS.) = Y(Ri)(l-R.) (36)

or

(AS.)2 = [^-](Y-S.) , (37)
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where AS., instead of o, denotes the standard deviation (o has been

used to represent cross sections). Writing equation (36) in terms

of AR., one obtains
i

R.(l
(AR.)2 = y

or

IT
I

R.Y
(38)

It should be noted that equation (37) is not the error that is some-

times quoted in total cross section papers. In these -ases the

error is given by

( iS.)2 = Y - S . (39)

which is appropriate for the normal or Gaussian distribution. Equa-

tion (39) approaches equation (37) in the limit that R. gor-s to

unity.

The partial cross sections a. =a(£2.) are given by, according to

equation (S),

o. = — In
i ut R.

The statistical error Aa. in a. is then

Aa. = V
(40)

With the use of equation (38), Aa. is then given by



Ao. = —
i nt.

1 - R
Qi

1 - R.

R.Y

1/2

Ml)

A
The next matter to be considered is the effect of the statisti-

cal errors of the measured efficiencies on the Ao.'s. The statisti-

cal errors of the AND efficiencies are given by the binomial

distribution. Using the definition c. = li./V...., one obtains the error

is. is jjiven by

C . / ! -
(ue.) (42)

or

1 - c.
(13)

Kith e. - .995, (Ac./c.)-1 is negligible compared to (AP../R.)'-.

If e. is the OR efficiency, the Ae. is also given by the

binomial distribution as

Ae. 1 -e.
\_

e.li
i

The c.'s are unknown, except for Cj - e i , but they arc given

approximately by

44)

e. - 1 - (1 -f. -c 2) (1 -c.) . (45)

For the counters four through eight the approximation e. = 1 is quite

go>d, as was discussed earlier. Because e. - 1 , (Ae./c) 2 is also

negligible compared to (AR./R.)2. Consequently, it has a negligible

effect on Ao..



The effect of the statistical errors of the accidentals count

on V". will be considered next. First, it was shown in equation (24)

that

Then R /R is given by

a '

(R-

R
__a

1 -
(46)

where equation (5S) has been used in deriving equation (45). Kith

this result, Ac. can be calculated from

Ac. =
nt

(' , fR .(1 - R..) +R .
l o t Or oai

(1 -R n .1 Dai

* R oai

R.(l -R.) + R .(1 -R .) R .
ai

(R. -\ 1 - R .
ai

1/2

Finally, it should be noted that this expression reduces to equation

(41) in the limit of no accidentals.

Fitting the data. The data consists of partial cross sections

a. (with statistical errors Ao.) which were measured at different

values of t., the square of the momentum transfer. Tnis is illus-

trated in Figure 18, where the partial cross sections are plotted
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Figure 18. Partial cross sections for v~ on 4He at 85 MeV.
The partial cross sections contain all the experimental corrections.
The curve is a least-squares quadratic fit to the last five partial
cross sections with a reduced xR

2 -f I-8- The intercept at -t =0
gives the total cross section oj-QT ~ 173.5 ±6.4 mb.
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versus t for 85 MeV IT" on 4He. The data points contain all the

experimental corrections.

The total cross section a r 0 T
 ro(t=0) was found from the partial

cross sections by fitting an appropriate function to the data and

then extrapolating this function to t=0. The curve in Figure 18 was

obtained by fitting a second-order polynomial in t to the five points

with the largest values of t. Also shown in the figure are the t=0

intercept (i.e., cT0T) and the reduced >,p
2. The purpose of this

section is to indicate how the data were fit.

In Chapter II, two possible fitting functions were given. These

were

o(t) = A * Bt + Ct2 + ••• (48)

and

In ait) = A1 + B't + C't'2 . (49)

In either case, the fitting function is a polynomial in t so that

the following formalism will apply to both.

Consider the polynomial fitting function o(t.,a.) =a.(a.),

where

N

a. (a.) = I a.t.J . (50)
1 J j=o •" l

The a.'s are a set of parameters which define a polynomial of order

N. Initially, each a. is unknown, but it can be found, along with

its associated statistical error Aa., by the method of least squares.



If the partial cross sections a. are statistically uncorrelated, then

the a.'s are found by minimizing the function M, defined by

P (a -a (a ) ) 2

M = T J fcll
M >. (Aa.)2 U 1 J

\=1 l t'
with respect to each a.. In equation (51) P is the number of data

points and CT. (a.) is given by equation (50). The minimizing of M

with respect to each a., which is

= 0 , (52)

gives N+l equations which can be solved for the a.'s. The minimum

value of M is designated by x2> the chi-squared function. The good-

ness of the fit is determined by the value of x2 o r the reduced xR
2

(i.e., the chi-squared per degree of freedom) defined by

where P-N gives the degrees of freedom in the fit. Here, P and N

are the number of points and the order of the polynomial, respectively.

A useful criterion for a good fit is that Xt^ = l- However, the

usual procedure is to look up the x? probability in a table of the

X2 distribution. Note that the condition (P-N) si must be fulfilled

to allow for a statistical error analysis.

The variance (Aa.)2 of the a. obtained from equation (52) is

given by

(A S j )
2 = Hjj'1 (54)

where H is a matrix whose elements are given by
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H = !Hij 2ij 2 3a.3a.

The above treatment of M to find the a.'s is standard and can be

found in many texts on statistical analysis.31>33»31+

What has just been described, however, is not appropriate for

fitting the a. because they are statistically correlated. Therefore,

it is necessary to use the covariance form of the method of least

squares,31 where M is now defined by

M = D TV"1D , (56)

where D is a column matrix (or vector) with elements D. =o. =a.(a.)

and V is the covariance matrix for the errors Aa. with elements

i

... - < a{ <a.>j (a.. - <a.>

° (Aa{j)
2 (57)

(note that V is symmetric with diagonal elements V.. = (Ao.)2j.

Assuming V is known, then the a.'s are found by minimizing M as

before and solving the equations

#-=0 .

The variance (Aa.)2 of each a. is again determined by equations (54)

and (55) with M given by equation (So). To measure the goodness of

fit, M was treated as a generalized x2» so that the criterion for a

good fit was still X D 2 ~ 1 -

The difficulty in applying the covariance form of the method of

least squares to the a. is in finding the covariance matrix V. The
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first step is to determine the covariance (AS..)2 of 5. and S.,

which is shown in Appendix B. The result is

(AS. ̂ 2 = YR.fl-R.) , (58)

where j >i. Using this result, it is shown in Appendix C that

V.. = (Ao..)2

2 , (59)

where j il. Since V is symmetric, V. . = (Aa.)2 also.

The details of how the a-'s are found from equations (56) and

(59) are given in Appendix D.

It was found that whether equation (48) or (49) was to fit the

partial cross sections, the total cross sections o T 0 T (and its

statistical error) were essentially the same in the two case?. How-

ever, equation (48) was preferred because in general it gave a

slightly better xR
2- Hence, all of the results presented in Chapter

V have been obtained by using equation (48). Furthermore, it was

found that in most cases a quadratic fit in t gave the best Xp2> s°

that all of the final results were obtained from a quadratic fit in

t.

Finally, the use of the smoothing function / Hrr dH discussed

at the end of Chapter II was tried. It was found to have no effect

on the order of polynomial used in the fit. Also, as expected, tfT0T

(i.e , a(t=0) was found to be unaffected by the smoothing function.

Consequently all of the final results do not include the use of this

smoothing function.
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Single and Multiple Coulomb Scattering

In addition to the corrections for accidental counts, counter

inefficiency, and pion absorption in the counter, each measured par-

tial cross section o(fi) was also corrected for those pions which were

scattered outside the solid angle Q by multiple and single Coulomb

scattering. If a (0.) and a (ft) are the cross sections for a pion to
m c

undergo multiple scattering and single Coulomb scattering outside the

solid angle ft, respectively, then the corrected partial cross section

a'(Q) is given by

o'(fi) = a(fi) - am(Q) - a (ft) . (60)

Two approaches have been adopted in making single and multiple

Coulomb scattering corrections. The first was to ignore all finite

geometrical effects of the beam. For this assumption the corrections

could be done analytically. The second approach folded in the beam

geometry to see what effect it had on the corrections. This was

handled through the use of a Monte Carlo computer program. Both

approaches will be explained in detail.

Multiple Coulomb scattering. Multiple Coulomb scattering arises

from the many successive Coulomb scatterings of the pion as it passes

through the target. Because of the very large cross section for

Coulomb scattering at small angles and the high velocity for even a

51 MeV pion (51 MeV was the lowest energy at which the total cross

sections were measured), the probability for pions to scatter at

small angles is large. Furthermore, a pion undergoing very small
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angle scatterings will generally emerge from the target at a small

angle relative to its original trajectory. This small angle is the

cumulative statistical superposition of a large number of deflections.

Because of its statistical nature, it is useful to treat multiple

scattering in terms of probability. If dP is the probability for a

pion incident on a target to be scattered between 6 and (6 + d0) (see

Figure 19), it is given by

dP = f(6) dQ

= 2ir f (d) sin 9 d6

- 2ir f(9) 6d6 , (61)

where dfi is the solid angle subtended by the angular ring shown in

Figure 19 at the target. The function f(6) is the multiple scatter-

ing angular distribution, and the approximation sinQ-6 is adequate

for small-angle scattering.

The standard representation of f(6) is due to Moliere35 and is

given by

f(9) = — 1 _ fo(e) + ^-^(6) + ^2"f2(9) + •*•} > (62)
Xc (

where usually only the first three terms are used. The ^(6) are

defined by

with k=0,1,2 and where fo(8) is the well-known Gaussian

f-e2]
fo(6) = 2exp (6-0
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TARGET

BEAM

Figure 19
incident beam.

The effect of multiple Coulomb scattering on the
Here, 0 is the multiple Coulomb scattering angle.
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There are slight variations in the definitions of x and B; those of

Marion and Zimmerman36 were adopted, so that x 2 is given by

X 2 = 0.1569 - V ' (65)
Ac [ A pv2|

where Zj is the atomic number of the target, Z2 is the atomic number

of the pion (Z2 = ±l), A (in g) is the atomic weight of the target,

t (in g/cm2) is the target thickness, and p (in MeV/c) and v are the

momentum and velocity of the pion in the center of mass frame,

respectively. The quantity B is defined by

B - In B = b , (66)

where

[2730(2!
b = In r-^ I - 0.1544 . (67)

For small 6 the Gaussian term fo(8) is the dominant term in the

series. For large 9 the dominant term is fi(6), and f^(9) is signi-

ficant only for a small range of intermediate values of 9.

Using the expression for f(9), one can correct the measured

partial cross sections cr(J2) for multiple Coulomb scattering. If

a (W) is the cross section for a pion to multiple scatter outside

Q, then the probability P(ft) for the pion to be found within ft is

exp(-ntam(fl)) , (68)am

where n is the number of nuclei/cm3 and t is the target thickness

in cm. This gives
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as the correction for multiple Coulomb scattering. To make the

correction the o (fl) are subtracted from each partial cross section

a(ft), as shown in equation (60). The probability P(f;J is, with the

use of equation (61),

e
P(n) = 2*/ f(e) ede (70)

o
or

P(n) = l - 2n/ f(e) ede . (7i)

e
The last step follows from the normalization of f(6), which is

/™f(e) 2u6de = 1 (72)
0

Finally, o (fi) is given by

1 oo

a (ft) = ln(l - 2u/ f(6) ede) . (73)
m nt e

In using equation (73), f(6) is approximated by the first

term in equation (62), which is a good approximation for small

angles, where fo(9) is the dominant term (the validity of this

approximation for larger 0 will be discussed later). By using the

approximation

1

xc

one can write equation (72) as
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1 CB

= --- ln(l - 2vJ exp(-u')du') , (74)

92

where u = —j-g- . The integral in equation (74) is the incomplete
xc

gamma function. For the energy range spanned by the ullc data (i.e.,

51 to 105 MeV), the correction given by equation (74) to the

measured partial cross sections o(Q) was large for counter number

one, very small for counter number two, and zero for counters three

through eight. Since only counters four through eight were used in

obtaining the total cross section (the reason for this will be

explained later), the multiple scattering correction given by

equation (74) had no effect on the total cross section.

Equation (74) does not include the multiple scattering of pions

by the atomic electrons. This effect may be taken into account by

changing the parameter B as shown by Fano.37 However, in the case

of the ^He data, this had no effect on the total cross sections.

So far, the finite beam sise and beam divergence have not been

considered. To do so, one needs to consider the effect on the beam

of multiple scattering in TOF2. Note that because the MWPC were

positioned upstream of T0F2, they only gave information on the beam

size and divergence at T0F2.

It is not possible to handle the beam size and divergence

analytically, but they can be handled by Monte Carlo methods with a

computer. This is a technique which uses random numbers to simulate

statistical processes such as multiple scattering. The process of

simulation involves setting up a computer model of the physical

effect by performing operations which represent the motions and
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interactions of the real particles. The physical effects must be

directly represented by probability distributions so that the use

of random numbers allows sampling f~om these distributions in order

to simulate the physical effect.

The details of the multiple scattering Monte Carlo program are

discussed in Appendix H, The program starts with an individual pion

at the upstream face of TOI-2 and follows its history until it hits

or misses the transmission stack. It repeats this process thousands

of times for both the target "in"" and target "out" situations. The

program then gives r(ft) (ro(ft)) the fraction of pions starting at

TOF2 and hitting the i-th transmission counter when the target is

"in" ("out"). For nt nuclei/cm2, the correction o (ft) is

(75)

and it is subtracted from each n(Q).

It was found that a (Q) as obtained from equation (75) was

insensitive to the finite beam size but was quite sensitive to the

beam divergence. Because there were uncertainties in the tails of

the pion angular distribution in the x: and yz planes, a check was

made to see what effect the tails had on a (U). For 51 MeV pions,

where the multiple scattering correction was the largest, the

corrections a (il) for counters one through three were found to vary

considerably, depending upon what assumptions were made on the form

of the tails. For counter four, o (ft) was always very small or

zero, and for counters five through eight a (£2) was always zero.

Consequently, only counters four through eight were used to obtain
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the total cross section, The price paid for this is a larger

statistical error on the total cross section. This is necessary in

view of the difficulties in correcting the small angle counters.

This problem will reappear in the discussions of single Coulomb

scattering and pion decay. Its effect is shown rather dramatically

in Figure 17, where o(fi) is plotted versus -t (only counters two

through eight were plotted). The data points have been corrected

for all effects, yet a(fi) for counter two is considerably larger

than the other partial cross sections.

Because of the expense in running Monte Carlo computer programs,

equation (74) was used to correct for multiple Coulomb scattering.

In the case of "*He, this makes no difference in the final total

cross sections. However, it could make a difference for targets

such as Sn and Pb. It was felt that so long as equation (74) gave

a small correction for counters two and three, the corrections for

counters four through eight were negligible.

Single Coulomb scattering. The measured partial cross sections

o(S2) are corrected for single Coulomb scattering by subtracting

4ir'. •>

°c<0) "/ (d§Jc
dfi f 7 6>

from each a(£2), as in equations (17) or (60).

For nonrelativistic pions, -rr-J is given by the celebrated
{an) c

Rutherford scattering formula, given in cgs units, by

•
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where m is the pion's rest mass, z is the atomic number of the tar-

get, e is the unit of charge, and v and 8 are the pion velocity and

scattering angle in the center of mass, respectively. Equation (77)

is valid for both the classical calculation of or the quantum

mechanical treatment of Coulomb scattering (for spinless particles).

The relativistic generalization of equation (77) for spinless

particles is the Mott scattering formula,38 given in cgs units, by

j (78)

where B = v/c. Using the kinematic relations E=m^c2(l - 6 2 ) " 1 / 2 and

8 = pc/n, where H and p are the total energy and momentum of the pion

in the center of mass, one can write equation (78) as

[*L] = |(||_|]2(sin|j
or

where

t = 4 P
2sin 2|

= -2p2(l - cos 6)

since n = 2ir(l -cos 6). With the use of

(da) _ (do) dn
ldtjc " M e dt '

one can write
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f l c • «'
ze2E

or

where h is Plank's constant and a is the fine structure constant.

If in equation (80), Re = 197.33 MeV fm and t is in (MeV/c)2, \^-\
ldtJc

will have units of mb/(MeV/c)2.

In equation (80) it is assumed that both the pion and the Hie

nucleus are point charges. If the finite charge distributions of

the pion and the Hie nucleus are taken into account, equation (80)

becomes

where F (t) and F (t) are the charge form factors for the pion and

uHe nucleus, respectively. The form factors were assumed to be

Gaussian, so that

• «P[-jsH Wl

and

where |t| is the absolute value of t in (MeV/c)2, he= 197.33 MeV

fin, and R =0.8 fin and R = 1.63 fm are the charge radii of the

pion8'39 and the 'Hie nucleus1*0. Combining equations (81), (82),

and (83), one obtains
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5nc
(84)

In terms of -j— , the Coulomb correction given by equation
ldtjc

(76) becomes

a
c

( t )
t

= /
t

max do
[dt1 dt1 (85)

where t is the maximum t that is kinematically possible. For ease

of computation, t was assumed to be infinite. This introduces a
r max

negligible error, since

(84) is substituted in equation (85), the result is

12
Che}-

t

-r—j is very small for large t. If equation

f 1 2 °° , - - ( R 2 + R 2 ) J t ' | 1
c(t) = -40n [U (nc)2/ ^VexP[ ?-—£ Jdf (86)

Integrating by parts, one obtains the following expression for (t)

(in mb):

oc(t) = -40,|f)
2lf exp She

She She
(87)

where Ejfz) is the exponential integral

« -x

E i ( z ) = / V ^ .
The inclusion of the finite charge distributions of the pion and ''He

nucleus in equation (87) is a small correction to the result

obtained with point charges. The point charge limit is reached as

the quantity in square brackets in equation (87) goes to unity.
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Equation (87) does not include any effects due to the finite

size or beam divergence. To find their effedts on a (£2), a Monte

Carlo computer program was used. The details of this calculation

are given in Appendix E. This program calculates the probability

P (f2) for a pion to single Coulomb scatter within the solid angle

Then a (fi) is given by

For 51 MeV pions, where the single Coulomb scattering correction was

the largest, equation (88) was found to be insensitive to the beam

size, but sensitive to the beam divergence. The corrections a (fi) as

calculated from equation (88) and (87) were different for counters

one through three but essentially the same for counters four through

eight. Furthermore, it was found that the corrections for counters

one through three depended on the assumptions made about the form of

the tails of the angular distribution of the pions. Consequently,

the Coulomb corrections were made using equation (87), since only

counters four through eight were used to obtain the total cross

section. The size of the Coulomb effect on the total cross section

monatomically decreased from a ~10% correction at 51 MeV to -1.5%

correction at 105 MeV.

Pion Decay

For Y beam particles, the i-th transmission counter measures

S. counts. Because of pion decay, S.. contains a certain
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number of muons designated by S.̂ . These muons give effects that

must, be corrected for. For example, muons from the decay of pions

upstream of the target give some apparent additional scattering from

the target. For muons from the decay of pions downstream of the

target the problem is somewhat different. If the decay muon always

hit the same transmission counter that the parent pion would have

hit if it had not decayed, then there would be no need for a cor-

rection. However, this does not always happen, so the partial cross

sections a. need to be corrected for this effect,
i

The effect of muons from the decay of pions upstream of the

target will be considered first. If it were not for the presence

of the target, the distribution of muons hitting the transmission

stack would, in principle, be the same for target "in" and "out."

Consequently, these muons would form a background common to both the

target "in" and "out" runs and would cancel out according to

equations (6), (7), and (8). However, the distributions of muons

at the transmission stack will be different depending on whether the

target is "in1' or "out'1 because the muons undergo multiple and

single Coulomb scattering in the target.

It is difficult to make this correction because the angular

distribution of the beam is not known very well. Nevertheless, the

correction is believed to be small, if not zero, for the partial

corrections a^ through ag, which are the only ones used to obtain

the total cross section. In the first place, the number of muons

relative to the number of pions is small, and secondly, because the

muon mass m =105.66 MeV is comparable to the pion mass m =139.57,
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the multiple and (to a lesser degree) single Coulomb scattering

corrections are appreciable only for the partial cross sections aj,

a2, and a3. However, these three a.'s are not used to obtain oT0T-

The number of muons is small because of the effect of using the

DISC and the time-of-flight counters. The principal source of muons

is pions decaying slightly upstream of TOF2 and between TOF2 and the

target. For 51 MeV pions, where the number of decaying pions is the

largest, all muons from pion decays within 4 cm of the upstream face

of TOF2 could be identified as pions. Furthermore, there is another

5.08 cm between TOF2 and the target where pions could decay. The

probability of a 51 MeV pion decaying in this 9.08 cm is approximately

1°5, which decreases at higher energies.

As a result of these considerations, no corrections were made

to the a. for upstream pion decays.

Next, consider the effect of muons from pions decaying down-

stream of the target. They do not always hit the same transmission

counter that their parent pion would have hit had it not decayed.

This makes the measured partial cross section for that counter too

large. This effect would cancel in the comparison between target

"in" and "out" runs if there were no energy loss of scattering of

pions in the target. The effect of energy loss on the angular

distribution of the decay muons may be seen from the expression for

the maximum decay angle 8 (as measured from the pion's trajectory)
1T13.X

in the laboratory frame

n:



tan 6
max

1 -

2-.
n

S 2
71

- 1

(89)

where 6 and 8 are the pion velocity (as measured in the laboratory)

and muon velocity (as measured in the pion's rest frame), respectively.

If £„ (3 ) and Qn (8 ) are for a blank (target) run then
On iry Omax max

6n > e and Gr < 6
OTT ir Omax max

The formalism used to treat the pion decay correction was due to

and developed by G. Burleson.41 It starts by considering the i-th

transmission counter, which measures S. counts of which S. counts

are due to muons. If S.̂  can be calculated or measured then the num-
i

ber of pions detected is S.W = S. - S. . This number must be corrected

for the number of pions that decayed before reaching the i-th counter.

To do this, consider a single pion which travels a distance x before

reaching the transmission stack. The probability that it did not

decay is exp(-x/A), where A is the decay length. For the j-th pion

traveling a distance x.. before reaching the i-th transmission

counter, the probability that it will not decay is exp(-x../X). To

correct S.11 for those pions that decayed, it should be divided by

<exp(-x.J\)>, the average probability that a pion will not decay

before reaching the i-th counter. The average is taken over the

x../A for the sample of pions S. .

If S. was known, then the partial cross section a. would be

given by

a. = — In
i nt

to
S V Sbio 110

s.-s.w-s.v

<exp

<exp

- X . .-]

1 ^ 0 J
A j

>]
> (90)
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where S. is the number of muons from pions decaying upstream of

the target. Since S. « S . , equation (90) may be written as

a.
i nt In

S i o

l Y o J

m
[

i

nt

<exp -;

exp

(91)

The first term in equation (91) is the partial cross section calcu-

lated from the measured S. and S.Q and the second term is the

for decay a .

i = nt ln

[{ s.p
n ]

1 1 0

.1 s i •

<exp

<exp
r - x . - i

A
>

(92)

A Monte Carlo computer program was used to calculate S.1^, S.M,

<6XP >, and <exp

"io1

The calculation is discussed in

Appendix E. However, it should be noted that the effects of the

finite beam size and divergence are included in this calculation.

Furthermore, the downstream decays come from both scattered and

unscattered pions when the target is "in" or "out" (when the tar-

get is "out" pions still scatter in TOF2). Since the distribution

of scattered pions was not known, the observed distribution (which

included both pions and muons) was used to approximate it.

The downstream pion decay correction varied from -12" correction

at 51 and 61 MeV to -4% correction at 105 MeV. This correction

could vary by as much as ±3% at 51 and 61 MeV and by +1% at 105 MeV,

depending upon the assumed form of the tails of the angular
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distribution at the target. In addition, an estimate of the statisti-

cal error in the calculation was made with the use of the binomial and

normal distributions. This error was added in quadrature to the

statistical errors Aa. of the a. before extrapolating to t=0. The

statistical error in the decay corrections a.. was between 1/4 and

1/3 of the statistical error in o..

Coulomb-Nuclear Interference

The next correction to be considered is the interference of the

Coulomb and nuclear elastic amplitudes. The a(ft) are corrected for
Avr. -I

this effect by subtracting / -7771 dfi from a(Q) as shown in equation
52 IJS'Jcn

(17), where —' is given by equation (14) to be

wa;cn
= 2[Re f Re f + Im f Im f ] . (93)

Because it contains the nuclear amplitude f , this correction

is model-dependent. It could be made model-independent by measuring

the Coulomb-nuclear interference directly. This has been done for

12C by Binon et al. 4 2 and Scott et al.1*3 and for 1 60 by Mutchler

et al.1*1* at a few energies, but no data exist for **He. To measure

the interference effect, the elastic differential cross section needs

to be measured at small angles, where the two amplitudes f and f

become comparable in magnitude.

An alternate approach for self-con jr.sate nuclei is to calculate

_ 0 T)the average cross section oTsyCo.,™-ta_0T) and the cross section
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difference ACT = (0-rnT + oTOT^ w i t n o u t making the interference correc-

tion, where a™«^ and o™nT are the a and o total nuclear cross

sections, respectively. To first order, o" is independent of

the Coulomb-nuclear interference correction and can give a

reasonable estimate of the strong total cross section. The

difference Ao is independent of the pure Coulomb correction and

shows the combined effects of Coulomb distortion and Coulomb-nuclear

interference. Finally, if some reasonable estimate of the inter-

ference correction could be made to o"r and o _ , then the ratio

Aa/a could yield information concerning the Coulomb distortion

effects.

To see why a is nearly independent of the interference correc-

tion for low-Z self-conjugate nuclei, consider equation (93). The

Coulomb amplitude f is mostly real (i.e., Ref » Imf ) , so that
C C C

^•] = 2 Re f Re f

The sign of Re f is negative (positive) for tr (TT ) and Re f has

the same sign for both ?r and ir~, being positive (negative) for

energies below (above) the (3,3) resonance. This means that the

interference corrections for TT and ir~ are nearly equal in magnitude

and of opposite sign.

Models may be invoked to calculate the Coulomb-nuclear inter-

ference correction. Those that were used in this work belong to

the class of complex optical potentials. In this type of model,
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the many-body problem of the pion-nucleus interaction is turned into

a two-body problem of the pion interacting with a potential. The

various interactions between the pion and the nucleons in the

nucleus are replaced by a potential V, between the pion and the

nucleus, which has both a real and an imaginary part to account for

both elastic and inelastic processes.

The calculations were made using a computer program called

PIRK, which is documented in papers by Eisenstein and Miller1* and by

Cooper and Eisenstein.146 PIRK solves the problem of a relativistic

spinless particle interacting with a complex potential. It numeri-

cally integrates the Klein-Gordorn equation

^L + (m0c
2)2]U, = [E -2Vc

2 - 2EVN]^ , (94)

where V is the radial part of the gradient operator, L2 is the

operator for the square of the orbital angular momentum, VHQ is the

rest mass of the pion, ̂  is the pion wave function, E is the total

energy, V is the Coulomb potential energy, and V., is the complex

optical nuclear potential. The Klein-Gordon equation is numerically

integrated for each partial wave from the origin outwards to a

predetermined match point where the '"internal" logarithmic deriva-

tive is compared to the "external" or asymptotic Coulomb wave

function for that particular partial wave. The phase shifts are

obtained for each partial wave and are used to calculate the

scattering amplitude, the differential elastic cross section, the

interference between f and f , and the total cross section. The
c n

equations used are
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- |fc(6) *fn(8)|2 , (95)

fc(6) = nf2psin ̂ -le^Co-nln^in 6/2)) § (96)

vN
aE

n = ——

^ ^ ^ (97)

2\ao

S N 4 = e
 N* , (99)

and

where 0, E, p, and k are the center-of-mass scattering angle, total

energy, momentum, and wave number of the pion, 6 is the nuclear

phase shift for the Jl-th partial wave in the presence of the

Coulomb field, o. is the point charge Coulomb phase shift of the

Jl-th partial wave, and a is the fine structure constant.

Using equations (96) through (99), the interference correction

was found by numerically integrating equation (14) from Cl. to 4ir,

where ft. is the solid angle subtended by the i-th transmission

counter.

The optical potentials used in the Klein-Gordorn equation were

the Kisslinger and Laplacian potentials, which are given by
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VN* = -A[b0k
2pif, - bjV-CpVij;)] (101)

and

^ Z f (102)

respectively. In equations (101) and (102), A is the nuclear mass,

k is the pion wave number in the ir-nucleus center-of-mass frame,

o is the nuclear density, and b 0 and bj are complex parameters.

The models are discussed in the papers by Kisslinger1*7 and in the

papers by Lee and McNanus,1*8 Faldt,1*5 and Kock and ,°*ernheim.50

Both of these models aie attempts to describe the (5,5) reso-

nance with essentially only the S- and P-waves contributing to the

interaction. The parameters bg and bj give the strength of the S-

and P-wave contributions to the interaction, respectively. One

major difference between the two potentials is that the Laplacian

potential is local (i.e., it is a function of only the position

operator), whereas the Kisslinger potential is nonlocal. This

difference arises from the assumed form of the off-shell oion-

nucleon scattering matrix, which is not unique.

In solving the Klein-Gordorn equation, a Gaussian charge dis-

tribution was used to calculate the Coulomb potential. It was given

by

for r < R , where R is the charge radius of the nucleus divided by

A1/3. The corresponding potential at some point R > R is
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¥-(f
The nuclear matter distribution used in equations (]0i; and

(102) was also Gaussian and was given by

whei'e z is the charge of the nucleus and w is the width parameter

for the nuclear matter density.

It is desired to apply these models to the total cross section

data for n~ - **He in an energy range where they are not expected to

work especially well. This was demonstrated by Cooper and Eisen-

stein51 when they used the Kisslinger and Laplacian models to analyze

data from v elastic scattering on l2C and both n and n elastic

scattering on **He at 50 MeV. They allowed the complex parameters bg

and b| to vary in both the Kisslinger and Laplacian potentials to

obtain good fits to the data. The fits they obtained were found to

be unsatisfactory because the resulting potentials either violated

unitarity (by causing one or more scattering matrix elements to

have magnitude greater than unity) or produced pions in an unphysical

way in some regions of the nucleus. However, there are few options,

since at present there do not exist any models which have been shown

to be applicable in this energy regime.

As a limited check of the sensitivity of the models to the para-

meters b0 and b\, they were chosen in two different ways. In one

case they were an interpolation or extrapolation of the values

obtained by Crowe et al. 5 2 which were obtained by treating them
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as free parameters to obtain the best fit of the Kisslinger potential

to the elastic differential cross sections for * and f~ on "*He (at 51,

60, 68, and 75 MeV). In the other case, the values of bo and bj were

obtained from a fit to the free pion-nucleon phaS2 shifts by Saloman.53

Both sets of bo and bj are given in Table X as a function of the pion

kinetic energy T .

As can be seen from Table X, there is a considerable difference

in the two sets of parameters. Also, as was expected, the Coulomb-

nuclear interference correction and, consequently, the total cross

section are dependent both on the model used and on the parameters bg

and b]. The variation in the size of the correction at 51 MeV and 105

MeV is shown in Table XI. The total cross sections obtained from the

two models and two sets of parameters will be given in Chapter V.

Table X. The parameters bo and bj, as a function of the pion
kinetic energy Tw, from the fits by Crowe et al. (Ref. 52) and
Saloman (Ref. 53).

(MeV)

Crowe et al.

Re bo Imb0 Rebj Im I

Saloman

Reb0 Imbj

51 -2.8739 0.0788 5.8342 0.0443

71 -2.5558 0.2054 6.0012 0.2808

75 -2.1296 0.5864 6.2250 0.5979

85 -1.80830.8736 6.3936 0.8368

95 -1.4861 1.1616 6.5628 1.0765

105 -1.1584 1.4544 6.7348 1.3202

144 -0.0890 2.5692 7.3897 2.2479

-1.1303 0.6007 7.5302 0.9448

-1.0704 0.5467 7.7425 1.3156

-1.0094 0.4946 8.0334 1.9516

-0.9721 0.4657 8.2329 2.5611

-0.9395 0.4430 8.3811 3.3075

-0.9095 0.4247 8.4267 4.2216

-0.8091 0.3815 6.1695 8.5663
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Table XI. The size of the Coulomb-nuclear interference correc-
tion for 51 and 105 MeV pions. The abbreviations KC and LC refer to
the Kisslinger and Laplacian potentials using the parameters bg and
bj as obtained from the work of Crowe et al.(Ref. 52) and KS and I.S
refer to the same two models using values of bo and bj obtained from
the work of Saloman (Ref. 53).

T = 105 MeV
Model

% Correction

KC 7.1 6.2

LC 7.9 7.2

KS 9.5 1.9

LS 14.1 6.5

T =51 MeV

% Correction

7

7

9

14

.1

.9

.5

.1

Energy of the Pion Beam

The pion kinetic energies quoted in this work are the mean

kinetic energies of the pion beam at the center of the target.

They were determined by calculating the mean energy loss of the

pion beam along its path from the exit of the LEP channel to the

center of the target.

The mechanism for energy loss is the excitation and io^ization

of the atoms and molecules in the different materials along the

flight path of the pions. The energy loss per unit length (or

1 AT
stopping power) — -r? for

p GJ»

tivistic Bethe formula5"*

1 AT
stopping power) — -r? for each material was calculated from the rela-

P Q.A

/•EC.

1 dT _ 2*Noz^e* z^ ( 2mc W ] 2 J
p d X ~ mc2g2 A l n [ l a

2
d j C l - 32)J 23 [

(106)
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where W is the maximum kinetic energy which can be transferred to an

electron (̂ initially at rest) and is given by

.. _ f2mc2B2] f, t 2m
1 -3'

In equations (106) and (107), the meanings of the symbols are as

follows:

p = mass density of the stopping material,

T = pion kinetic energy,

X = thickness of the stopping material in mass per
unit area,

zi = charge of the pion,

c = velocity of light in vacuum,

e = electronic charge in esu,

m = electron rest mass,

A = atomic weight of the stopping material,

NQ = Avogadro's number,

z2 = charge of the stopping material,

I ,. = adjusted ionization of the stopping material,

& = velocity of the incident pion,

EC. = sum of the effects of shell corrections on the
i l stopping power,

A = polarization effect correction term,

and

M = pion rest mass.

The polarization effect A is the perturbation of the field of the

passing pion, which is caused by the electric polarization of the
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surrounding atoms. This results in a reduction of the energy loss

by the pion. This was assumed to be small, and A was set equal to

zero. The EC. contains the effects of nonparticipating inner shell
i *

electrons. It was also assumed to be small and was set equal to

zero.

The principal uncertainty in the kinetic energy of the pion was

due to the momentum bite AP/P of the LEP channel. This was typically

±1% or ±2%.

Summary of Data Corrections

Table XII lists all of the major data corrections, with the

approximate size of each. The remaining corrections to the data

were estimated to be less than 1%. These include multiple Coulomb

scattering, pion decay (upstream), effects due to the geometry of

Table XII. The major corrections to the data with the size of
each.

Correction Size of Correction

Accidentals 0.1 to 3.0%

Efficiencies and Absorption 0.1 to 0.5%

Single Coulomb 1.5 to 10.0%

Pion Decay (Downstream) 4.0 to 12.0%

Coulomb-Nuclear Interference 6.2 to 14.1%
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the detection system (i.e , positioning of the transmission stack,

TOF2, and the halo counters), effects due to the target thickness,

effects due to the finite bean size and divergence, knock-out pro-

tons , and effects due to the incorrect identification of pions by

the DISC and time-of-flight system.
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V. RESULTS AND DISCUSSION

The TT~- He total cross sections measured in this experiment will

be presented in this chapter, along with previous measurements made

in the same energy region. A discussion of how the measured total

cross section is related to the imaginary part of the forward elastic

scattering amplitude through a modified optical theorem will also be

giv«n. The real part of the forward scattering amplitude is obtained

with the use of a phenomenological model and is compared to forward

dispersion relation calculations. The measured total cross sections

are compared to the predictions of several optical model calculations.

Lastly, the chapter is concluded by a summary of what has been found

and what could be done in the future to extend this work.

Pion-'Ule Total Cross Section

In measuring the strong interaction total cross section for

pion-^He scattering, the emphasis was on low-energy data with small

statistical errors for both positively-and negatively-charged pions.

Here, low energy means pion laboratory kinetic energies below 100

MeV. It is desirable to have both TT and v~ data in order to have a

better means of studying the Coulomb problems discussed in Chapter IV.

There is a scarcity of low-energy data for the ir-nucleus total

and elastic differencial cross sections. This scarcity of data is

attributable to the low-intensity pion beams that have been available

at low energies. The data which does exist is for the nuclei 12C and
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''He. The choice of these low Z targets is due to the Coulomb prob-

lems which are increasing as the energy is decreasing. Only the **He

data will be considered in the present work.

+
The TT -4He elastic differential cross section da/dfi comes from

three experiments. Crowe et al.52 measured da/d£2 for both ir~ at

energies of 51, 60, 68, and 75 MeV. Nordberg and Kinsey55 measured

do/dn for both if" at 24 MeV. These two experiments were counter

experiments. The third measurement was a bubble chamber experiment

by Bloch et al.56 who also measured the total cross section. They

+

obtained data for both IT at 50, 58, and 65 MeV. Their quoted ener-

gies are the mean values of the three energy intervals into which

their experiment was divided. These three energy regions were:

(a) 45 to 55 MeV, (b) 55 to 62 MeV, and (c) 62 to 69 MeV. Conse-

quently their energy resolution was not particularly good. The total

cross section data of Bloch et al.56 is presented in Table XIII.

The table gives the 7r+-t*He total cross section OJQJ, the ir'-̂ He total

Table XIII. The ir~-'*He total cross section data of Bloch et al.
(Ref. 56).

\ C M e V ) oT
+

QT (mb) o T 0 T (mr) Aa (mb) a (mb)

51 7 9 . 2 ± 3 . 4 9 1 . 1 ± 4 . 7 1 1 . 9 + 5 . 8 8 5 . 2 ± 2 . 9 0 . 1 4 + 0 . 0 7

58 8 0 . 1 + 3 . 0 1 0 9 . 2 ± 4 . 5 2 9 . 1 ± 5 . 4 9 4 . 7 ± 2 . 7 0 . 3 1 ± 0 . 0 6

65 1 0 6 . 8 ± 4 . 4 1 2 7 . 6 ± 5 . 8 2 0 . 8 ± 7 . 3 1 1 7 . 2 ± 3 . 6 0 . 1 8 + 0 . 0 6
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cross section a T 0 T» the cross section difference A a = o T O T - ° T O T. the

average cross section a = zf{o * o Q-.), and the ratio Ao/o as a

function of the pion laboratory kinetic energy T .

Finally, Fowler et al. 5 7 measured the average total cross section

0 at 60 and 105 MeV in a ''He diffusion cloud-chamber experiment. At

60 and 105 MeV c" was 89 ± 18 nib and 207 ±27 <nb, respectively. The 60

MeV data was an average of data taken at 53 and 68 MeV.

These experiments were all attempts to measure the rms electro-

magnetic radius of the pion. The results on the magnitude of this

radius were all greater than those obtained from experiments involv-

ing the scattering of pions from atomic electrons.39 The analysis

of the iT-'Tle data was based upon the use of n-nucieus optical poten-

tials to fit the data. As will be seen later, there is very poor

agreement between the different optical potentials and both their

experimental data and the results of this experiment. Consequently,

until such time as there is an improved agreement between theory and

experiment, ir -'•He scattering experiments are unlikely to yield

reasonable values for the rms elpctroir-.gnetic radius of the pion.

Recently, Alexandrov et al. 5 8 measured the elastic differential

cross section for ir~ on ''He and 3He at nine energies with the lowest

two being 68 and 98 MeV. In addition, Binon et al. 5 9 in a counter

experiment measured the ir -4He total cross section at eleven energies

and the ir -''He total cross section at one energy. Only three of these

energies (67, 85, and 110 MeV) are in the energy region of interest

here. Lastly, Wilkin et al.8 measured the average Tr~-'4He total cross

section a at five energies, with the lowest being 110 MeV.
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The rotivation for this experiment was a desire to improve on

the earlier u -4He total cross section data and to examine the poor

agreement in w-nucleus scattering between theory and experiment in

the low-energy region. A discussion of the discrepancy between

theory and experiment will be given later, along with a survey of

the growing literature on the problem. The present experiment

measured TI - 'He total cross sections in the energy range 50 to 105

MeV, in steps of approximately 10 MeV.

This experiment is an improvement over the earlier o T O T experi-

ments of Bioch et al.5& and Fowler et al., 5 7 in that it has better

energy or momentum resolution (i.e., AP/P, where P is the momentum,

was typically ±l?o or ±2%). The final statistical errors were between

3 and C>%, which are comparable to those of Bloch et al.56 and con-

siderably smaller than those of Fowler et al.^7 Furthermore, this

experiment covered a wider energy range than the two previous

measurements of o,.._™.

The IT -'•He and w'-^He total cross sections (aT0T and a T 0 T,

respectively) measured in this experiment are presented with their

statistical errors in Table XIV as a function of the mean pion

laboratory kinetic energy T at the center of the target. These

total cross sections were obtained, as discussed earlier, by the

following procedure: (1) The measured partial cross sections a(£2)

were corrected for those effects discussed in Chapter IV (i.e., pion

decay, single Coulomb scattering, Coulomb-nuclear interference, etc.);

(2) The corrected partial cross sections were then fitted with a
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Table XIV. The IT -''He total cross sections of this experiment
as a function of Tir, the pion laboratory kinetic energy. The reduced
chi-squared X R 2 is also given. The cross sections are in mb and !„
is in MeV. The errors are the statistical errors. Fitted parameters
and free parameters refer to the values of bg and bj obtained from
the fits of Crowe et al. (Ref. 52) and Saloman (Ref, 53) (see Table X).

No Coulomb-Nuclear Interference Correction

•£" Q """ O

TTT a T 0 T XR c r T 0 T X R

51
61
75
85
95
105
144

95.6+5.9
86.0+6.0
124.2+7.5
127.1+6.4
161.3+6.4
187.1+5.7
295.314.0

1.0
2.0
1.4
0.7
0.1
0.3
0.2

125.516.1
127.616.3
162.2+7.0
185.4+6.4
210.2+6.4
223.916.1

1.8
0.3
1.8
1.9
3.1
1.1

Interference Correction Using Kisslinger Model

Fitted Parameters Free Parameters

51
61
75
85
95
105
144

+
°T0T

105.1+5.9
95.8+6.0
135.1+7.5
138.9+6.4
173.9+6.4
200.3+5.7
305.0±4.0

Y 2
XR

1.1
2.0
1.4
0.8
0.1
0.3
0.2

°TOT

114.8+6.1
117.1 ±6.3
150.9±7.0
173.3±6.4
197.4±6.4
210.8±6.1

Y 2
XR

1.7
0.2
1.9
1.8
2.9
1.0

+
°T0T

109.2±5.9
98.0±6.0
133.817.5
134.9±6.4
167.3±6.4
191.515.7
293.9+4.0

X 2XR

1.1
2.1
1.4
0.8
0.1
0.3
0.2

112
116
153
178
204
220

0TOT

.4+6.1

.4+6.3

.5+7.0

.4+6.4

.9+6.4

.216.1

X 2XR

1.6
0.2
1.9
1.9
3.0
1.1

Interference Correction Using Laplacian Model

Fitted Parameters Free Parameters

i

51
61
75
85
95
105
144

+
CTT0T

106.8+5.9
97.5+6.0
136.517.5
140.1+6.4
175.3+6.4
202.515.7
316.4+4.0

X 2
XR

1.1
2.1
1.4
0.8
0.1
0.3
0.3

°T0T

114.4+6.
116.116.
150.017.
172.116.
196.016.
208.416.

1
3
0
4
4
1

X

1
0
1
1
2
1

2
R

.7

.2

.9

.4

.9

.0

+
°T0T

115.7+5
105.2+6
142.217
144.016
176.8+6
201.0+5
300.114

.9

.0

.5

.4

.4

.7

.0

X

1
2
1
0
0
0
0

2
R

.2

.1

.5

.8

.1

.3

.2

105
108
144
168
194
210

aT0T

.716.1

.716.3

.617.0

.816.4

.916.4

.116.1

X

1
0
1
1
2
1

2
R

.6

.2

.9

.8

.9

.0
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quadratic polynomial in t (i.e., the square of the momentum transfer)

using the correlated least-squares method; and (3) The fitted quad-

ratic polynomial was then extrapolated to t=0 to obtain the total

cross section. Only data from the five largest transmission counters

were used in the fitting procedure. Data from the three smaller

counters were omitted because of the uncertainties in correcting them

for pion decay and single and multiple Coulomb scattering. For the

fitting, the second-order polynomial in t (as opposed polynomials of

the other order) in general had the smallest value of the reduced

chi-squared Xn2 (i.e., the value of chi-squared per degree of freedom).

For this reason the total cross sections were obtained using a quad-

ratic polynomial in t as the fitting function. The Xî  of the fit

used to find each cross section is also given in Table IV. In Table

XV, the cross section difference Aa, the average cross section o,

and the ratio Ao/a are given as a function of the mean pion laboratory

kinetic energy T at the center of the target.

It should be noted that in Tables XIV and XV there appear five

sets of cross sections These contain all of the corrections to the

data described in Chapter IV, with the exception of the first set

which gives the results without the Coulomb-nuclear interference

correction. The remaining four sets contain an interference correc-

tion, which was calculated with the use of both the Kisslinger and

the Laplacian optical potentials. These were both discussed in some

detail in Chapter IV along with the procedure used to calculate the

Coulomb-nuclear interference. In both of these models, there are

two parameters bg and bj which give the strengths of the S- and
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Table XV. The difference Aa in and average o of <?-roT and O^QT
 a s

function of Tv, the pion laboratory kinetic energy. The cross sections
are in mb and T^ is in MeV. The errors are the statistical errors.
Fitted parameters and free parameters refer to the values of bo and bi
obtained from the fits of Crowe et al. (Ref. 52) and Suloman (Ref. 53).

Nu Coulomb-Nuclear Interference Correction

Aa Aa/o

51
61
75
85
95
105

30.0+ 8.5
41.6± 8.7
38.0+10.3
58.3± 9.1
49.0± 9.1
36.8± 8.3

110.5±4.3
106.8+4.3
143.2±5.2
1S6.2±4.5
185/7+4.5
205.5+4.2

0.27±0.08
0.39+0.08
0.27±0.07
0.37+0.06
0.26+0.05
0.18±0.04

Interference Correctiork Using Kisslinger Model

Fitted Parameters Free Parameters

T
IT

51
61
75
85
95
105

Ao

9.7+
21.3±

8.5
8.7

15.8110.3
34.4±
23.5 +
10.5±

9.1
9.1
8.3

a

110.0±4.3
106.514.3
143.0+5.2
156.1+4.5
185.7+4.5
205.6+4.2

Aa/a

0.09+0.08
0.20+0.08
0.11±0.07
0.22±0.06
0.13±0.05
0.06±0.04

Ao

3.2±
18.4+

8.5
8.7

19.7±10.3
43.5+
37.6+
28.7±

9.1
9.1
8.3

5

110.8±4.3
107.2+4.3
143.7+5.2
156.714.5
186.1+4.5
205.8±4.2

Aa/o

0.03+0.08
0.17+0.08
0.1410.07
0.2810.06
0.20+0.05
0.14+0.04

Interference Correction Using Laplacian Model

Fitted Parameters Free Parameters

T
ir

51
61
75
85
95
105

Ao

7.61
18.71

8.5
8.7

13.5110.3
31.9+
20.71
6.1+

9.1
9.1
8.3

5

110.614
106.8+4
143.2±5
156.1+4
185.6+4
205.314

.3

.3

.2

.5

.5

.2

Aa/5

0.0710
0.1810
0.09+0
0.21+0
0.1110
0.0310

.08

.08

.07

.06

.05

.04

-10
3
2
24
18
9

Aa

.01

.61
8.5
8.7

.5110.3

.9+

.11

.11

9.1
9.1
8.3

a

110.714.3
107.0+4.5
143.4+5.2
156.4+4.5
185.9+4.5
205.614.2

Aa/a

-0.09+0
0.0310
0.02+0
0.1610
0.10+0
0.0510

.08

.08

.07

.06

.05

.04
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P-wave contributions to the pion-nucleus interaction. As a limited

check of the sensitivity of these two optical potentials to bg and bj

two sets of b0 and bj were used in calculating the interference cor-

rection. As described in the discussion of the interference correc-

tion in Chapter IV, the first set used was the parameters obtained

from the fits of Crowe et al.52 and the second set was the free para-

meters derived from a fit to the free w-nucleon phase shifts made by

Saloman.53 Both sets of parameters were given in Table X. Of the

four sets of cross sections in Tables XIV ana XV with the inter-

ference correction, the first (second) two correspond to the use of

the Kisslinger (Laplacian) optical potential with the fitted and free

parameters.

To compare the results of this experiment to those of Bloch

et al.,56 Binon et al.,59 and IVilkin et al.,8 a, oT0T, and o 0 are

plotted as a function of T^ in Figure 20, 21, and 22. The smooth

curve in Figure 20 through the data from this experiment (i.e., the

LAMPF data) is drawn to guide the eye.

The agreement among the data of the four experiments is not as

good as one would like. In the case of o, there seems to be poor

agreement among the 110 MeV data of Wilkin et al.,8 and the 110 MeV

and 105 MeV data of Binon et al.,59 and the data of the present

experiment, as well as between the 51 MeV data of Bloch et al.56 and

that of the present experiment (i.e., the systematic errors appear

larger than the statistical errors). Although the data of Fowler

et al.57 was not included in Figure 20 because of its large statisti-

cal errors, it nevertheless agrees well with the data of this
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Figure 20. The average Tr-̂ He total cross section 5" versus the
pion laboratory kinetic energy Tv. The data are from this experi-
ment (LAMPF), IVilkin et al. CRef. 8), Bloch et al. (Ref. 56), and
Binon et al. (Ref. 59).
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theFigure 21. The ir -^He total cross section Q^OT v e r s u s

pion laboratory kinetic energy T^. The data are from this experi-
ment (LAMPF), Bloch et al. (Ref. 56), and Binon et al. (Ref. 59).
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Figure 22. The IT -^He to ta l cross section a-poT versus the pion
laboratory kinet ic energy Tw. The data are from th i s experiment
(LAMPF), Bloch et a l . (Ref. 56), and Binon et a l . (Ref. 59).
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experiment. In the case of aT0T and o T Q T the discrepancy in the data

at low energies appear worse. This is indicative of the difficulty

in measuring total cross sections at low energies. Many of the cor-

rections to the data increase rapidly at these low energies.

It is preferable to compare the values of a" obtained from dif-

ferent experiments rather than the values of a™™, and a " because to

first order a is independent of the Coulomb-nuclear interference cor-

rection (this was discussed in Chapter IV.) This is important since

the four experiments whose data are presented in Figures 21 and 22

have handled the interference correction in four different ways. The

values of o of this experiment shown in Figures 21 and 22 were

corrected for Coulomb-nuclear interference by using the Kisslinger

potential with the parameters bo and bj obtained from the work of

Crowe et al.52 This was felt to be the best combination of model and

parameters to be used in the interference correction (at least in the

energy region spanned by this experiment) since Crowe et al.52 used

the Kisslinger potential to fit their elastic differential cross

sections in order to find bg and bj.

The previous statement that a is nearly independent of the

Coulomb-nuclear interference correction is verified by the results of

Table XV. In fact, n is essentially the same whether or not the

interference correction is made. When it is made, a is independent

of which optical potential is used or which set of bo and bi para-

meters is used. This is a stringent test of this independence from

the interference correction since the Kisslinger and Laplacian are

quite different, as are the two sets of parameters bo and bj. In
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comparison, the values of a,™ and o~ vary by a few percent,

depending upon the choice of parameters and model used for the inter-

ference correction, as may be seen in Table XIV. Thus o and o "

are much more model-dependent than o7.

The total cross section o T was measured at 144 MeV to compare

with the data from total cross section measurements at higher energies.

To make this comparison, a Coulomb-nuclear interference correction

must be made. Because this energy is so much greater than those in

the experiment of Crowe et al.,52 the values of b0 and bj extrapolated

from their work are probably not too reliable. The value of a

obtained using the Kisslinger model with the free parameters to calcu-

late the interference correction was felt to be the best. The

Laplacian model with the free parameters was considered less reliable

than the Kisslinger model since it led to 0 T O T being greater than

o,.,__, at 51 MeV. Aside from disagreeing with the data of Bloch

et al.,°6 this was contrary to what is expected. According to an

argument due to I-aldt and Pilkuhn60'61 one should have o o~ < o~T.

This is because a if {~ ) will be repelled (attracted) by the Coulomb

field of the nucleus. Hence a TT~ will have a greater probability

than a * of strongly interacting with the nucleus because of its

smaller impact parameter and higher energy, and therefore will have

a larger cross section. This effect will be discussed later in

greater detail. At any rate, the 144 ̂ feV result of o_.o_. = 293.9 ± 4.0

mb is consistent with o^m results of Binon et al.59 at 130 and 150

MeV, which arc 292 and 320 mb, respectively. However, it agrees

poorly with oT= 336 ± 1 rah at 146 MeV from the work of Wilken et al.8
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The data from Bloch et al.,5G Binon et al.59 (at 110 MeV), and

the present experiment all show aT0T >oT_T for **He. This result has

also been seen for the self-conjugate nucleus 12C both in this experi-

ment and in the experiments of Clough et al.62 and of Carroll et al.5

The data for 12C were taken principally at energies greater than

100 McV.

The data from this experiment wiil be compared to the predic-

tions of several models in a later section in this chapter.

Discussion of the Optical Theorem

The nuclear total cross section o T n T and the imaginary part of

the forward nuclear elastic scattering amplitude Imf'(0°) are related

through the optical theorem. This relationship is given by

(108)

where k is the pion wave number. The optical theorem is independent

of any assumptions about the particular model used to describe the

strong interaction.63*61* This makes it useful because through it

the measured total cross section provides a constraint on the analysis

of elastic scattering data.

If, in pion-nucleus scattering experiments, one could use v°

rather than n or ' , then the Coulomb interaction would be absent

and o-„ would be directly measurable as would the nuclear elastic

differential cross section do'/dfi= jf'(6)|2. With the assumption

that the nuclear interaction can be represented by a spherically
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symmetric potential, the nuclear elastic scattering amplitude f'(<?)

has the following partial wave expansion

ft<e> = 2iir j o
( 2 * + 1 ) ( e - ' J V ^ (109>

OO

'-Dp. (cose) , (no)
~ 2ik L I F£

where 8 ' are the complex nuclear phase shifts, P. are the Legendre

polynomials of order I, and S ' = exp(2i6 ) are the matrix elements of

the scattering matrix. Without invoking the optical theorem, one can

write the total cross section oT'nT as

O - & I C2#.+ l)Cl-ReS:) . (Ill)

Equations (110) and (111) satisfy the optical theorem.

If the pion-nucleus total cross section and elastic differential

cross section are measured using charged pions, then one does not

obtain a„' and -rr-. Instead, one obtains o_nT and \-£-\ which are
TOl d" TOI d̂SsJgj

determined by both the Coulomb and nuclear interactions. The full

elastic scattering amplitude is not f'(8), but rather f(6), where

f(6) = fc(6) + fn(9) . (112)

Here, f (9) is the pure Coulomb elastic scattering amplitude and the

residual amplitude f (9) is the Coulomb distorted nuclear elastic

scattering amplitude. In equations (13) and (15), K-r- and o T n T

were defined to be
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and

where a was the total nuclear reaction cross section.

Unlike a'_, and f (9), which are related by the optical theorem,

a - and f (9) are not related by an optical theorem, as will be shown

below. The purpose of this section is to find the appropriate elastic

scattering amplitude which will be related to <W»p through an optical

theorem. The formalism was originated and developed by M. Cooper.

If the nuclear interaction is assumed to be represented by a

spherically-symmetric potential, then a partial wave expansion of

f(0) can be made,1*6'65

4 Z(2£+l)l-e MP(cos9) (113)

cr

2\ao( 2x6
f(9) = ~ I;(2*+l)||l-e *| + e *|l-e "|P«Ccose)

1=0

(114)

where a are the real Coulomb phase shifts and 5 are the complex

nuclear phase shifts in the presence of the Coulomb field. It is

important to note that the 6 are not equal to the 6 ' phase shifts

that would be obtained in the absence of the Coulomb field. The

Coulomb amplitude f,.O?) may also be expanded in terms of partial

waves:

~ X(2* + l)^l-e "jP^Ccose) (115)
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From equations (115) and (113), the partial wave expansion of f (G)

is

°° 2 i cr
= ^7 l(2Z*l)e Z(l -SJP.(cos 9) , (116)

where S =exp(2i5 ). With equations (115) and (116), c can be

written as

It can be shown by using the conservation of the probability current

density that a is given by6u

00

so that

4 I (2A + l)(l-ReS ) . (119)
R £,=0

From an examination of equations (116) and (119) one can see that

If a new amplitude f (6) is defined by

2{6o1
1-e X P (cose)

J
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or

oT Z (2*+l)(l-S )P (cos6) , (121)
£=0

then it can be seen from this definition and equation (119) that

and f (6) satisfy an optical theorem

Also, since o is real, then

4TT 4ir

/ |f m | 2 d n = / |f (e)|2dQ (123)
0 n 0 n

so that

4it

/ | n | 2 (124)

The Tr~-nucleus total cross section crTr)T does not satisfy an

optical theorem with f (6) but it does with the new amplitude f (6).

Unlike f (9) which contributes to the measured pion-nucleus elastic

differential cross section

f (6) does not. However, the amplitude f (9) should be calculable

from any model of the nuclear interaction so that equation (122) pro-

vides a link between the models and
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Real Part of the Forward Nuclear Elastic Scattering Amplitude

In the last few years several attempts have been made to verify

experimentally the forward dispersion relation calculations of the

real part of the forward nuclear elastic scattering amplitude for

pion-nucleon and pion-nucleu? scattering. For pion-nucleon scatter-

ing, this work has been done principally by Foley et al.66 and, for

pion-nucleus scattering, the work has been done by Scott et al.,**3

Mutchler et a.1.,1*1* and Binon et al.1*2* 59 To date the nuclei investi-

gated include 12C, 1 60, and **He (in the case of ^He only ir~ data has

been used). In this work, the real part of the forward scattering

amplitude for ir'-̂ He scattering at 51, 60, 68, and 75 MeV is deter-

mined from experimental data using a phenomenological model. The

results are compared to the predictions of two forward dispersion

relation calculations.

These experiments are usually performed by measuring the elastic

-—•differential cross section -—• in the angular region where the
tdSv el

Coulomb-nuclear interference is appreciable. The ratio of the real

to imaginary parts of the forward nuclear elastic scattering ampli-

tude a is obtained by fitting the data with a phenomenological model

of the strong amplitude f . This model contains two adjustable para-

meters a and R , where a is the above ratio and R is the radius of

the strong interaction (it is believed that R. is not too different

from the charge radius R , which is known from electron scattering).
c

The imaginary part of the forward scattering amplitude Im f (0°) is

obtained from the measured total cross section <^T0T- As shown in the
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last section this is not strictly true for charged pions; however

the discrepancy should be small for a low-Z nucleus like '•He. Hence,

by knowing a and Im f (0°), one can calculate Re f (0°).

The data are analyzed by assuming that the elastic differential

da]
cross section K-n is given by equation (10),

ldy;el

N = If + f 12 ,

Next, the Coulomb distorted nuclear amplitude f is assumed to be

given by

fn = f. exp(-2i<J>) , (125)

where f is the strong amplitude and 2<f> is a phase which includes the

pure Coulomb phase and the relative phase between the two scattering

amplitudes f and f . The pure Coulomb amplitude may be written as
c s

fc(t) = -2n-rjrrG(t) , (126)

with

z za
n = -4- , (127)

where k is the pion wave number (in fm " * ) , t is the square of the

momentum transfer (in fm"2), p is the effective Coulomb coupling

constant, z is the charge of the pion, z is the charge of the target

nucleus, a is the fine structure constant, and f5 = v/c is the velocity

of the pion. Here, k and B are center-of-mass quantities. The charge

form factor G(t) is assumed to be Gaussian and is given by
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G(t) = exp[-i(Rc2 + Rff
2)|t|j , (128)

where R =0.8 £m8'39 and R =1.63 fmk0 are the charge radii of the

pion and the **He nucleus, respectively. The standard approach is t"

represent the strong amplitude f (t) by a phenomenological

kc
I I . . . i

(129)f =
s 4TT

= Imf (t)(i+a(O
0)) ,

where a is the total cross section for the strong interaction, R is

the strong interaction radius, and

Ref (0°)

°<°°5 = liTrco") (130)

Some time ago, an estimate for the phase 2$ was made by Bethe.67

This was later improved upon by West and Yennie68 to be

fl 0 ( f (f)-,
2* = -2nln(siny) - n / . " t. 1 - f ft. , (131)

-4k2' " I ̂  s1" J '

where 6 is the center-of-mass scattering angle. Equation (131) may

be expanded as a power series in t. as done by Binon et al.:59

l n ( s i n | ) + c + ln(4k2p) - £ ^ ' ^ ' , ^ 1 , (132)
n=l

where c=0.5772 (Euler 's constant) and p i s given by

p = | ( R 2 + R2 + R2) . (133)
OS TT C
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The phase 2«> is small, being -1° for the uHe data analyzed in the

present work. With equations (10), (125), (126), and (129), one can

write

(134)

where -r?r refers to the IT -nucleus elastic differential cross
{dQ)el

section.

Equation (134) is the basic equation which Scott et al.1*3 used

in fitting their v -12C data, which Binon et al.1*2'59 used in fitting

their ir'-'+He and n"-12C data, and which Mutchler et al.14*1 used in

fitting their ir~-016 data (they also used the cross section difference

D = \y^\ ~ J?7 to fit their data). If one has both ir+ and ""

data that, rather than use equation (134) to fit the IT and IT data

separately, it is preferable to fit the ratio D/A where D is the

cross section difference defined above and A = — -JTT + -r̂-l is
2K d nJel ldftJelJ

the average cross section. The advantages of doing this are that,

first of all, D/A as calculated from the data will be independent of

those experimental corrections that are common to both TT and ir".

Secondly, D/A, as calculated from equation (134), will be sensitive

to a(0°) and at the same time insensitive to R . To see this, con-

sider the expression for D and A obtained from equation (134)
2a|n|'k2a cos 2$ ,

D = ^ exp(-I(Rc2 + R,2+R/)|t|) . (135)
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or

D = 4f cos 2(j> Re f (136)

and

1 I li 2 ^ k o 2

or

(137)

A = |f |2 • |f |2 • (138)
c b

Using equations (135) and (136), one can write

2ot|n|k2a cos 2<p

D
A

(139)

or

n 4 f cos 2<j> Re f
1 = K d 2 + l f

s l 2 * C140)

From equations (137) and (135) it can be seen that D is directly

proportional to a while D/A is not. However, because R and R are
3 C

not very different, D/A has a very weak dependence on R . This is

desirable, since the fitting function D/A has essentially only the

one adjustable parameter a which is the only parameter of interest

in this work. For small |tj, D/A goes like 1/ot. Lastly, it should
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be noted that D/A is also sensitive to a so that the quality of the
s

fit is dependent on how well the total cross section is measured.

In the analysis presented here for '•He, the ratio D/A was used

to fit the TT-'MIC clastic differential cross sections instead of the
expressions for rĵ r ~ given in equation (134). Unlike the previous

ldUJ el

work on 4He, data for both ir and IT" will be included in the analysis.

The differential cross section data were taken from the work of

-T-r and Urr at laboratory

kinetic energies of 51, 60, 68, and 75 MeV. The total cross sections

(which are needed for equation (139) and to calculate Im f (0°)) for

these energies were interpolated from the results of the present

experiment.

It is known that the expression for \-JK\ in equation (134)

does not. account for everything. The evidence for this comes from

this and previous experiments9'62 on self-conjugate nuclei. It has

been found that the ratio Ao/o (where Ao = aTflT - CTXOT

(7=jfa QT + a _)) which was expected to be zero for a self-conjugate

nucleus is cf the order of several percent (about 15% in the case

of the ^He data of this experiment), for the reasons discussed above.

The standard assumption that is usually made is that the force

experienced by the pion is of sufficiently short range that to a

good approximation the pion has a straight-line trajectory.

However, this becomes doubtful in the presence of the Coulomb field

of the nucleus. Consider a pion incident on a nucleus with an

impact parameter b close to the nuclear radius R . A H " will be
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dragged in and may disappear, assuming strong absorption. A n will

be repelled, miss the nucleus and, consequently, give little contri-

bution to the absorption cross section. Thus the measured a n will

be greater than the measured aTQT due to this Coulomb distortion of

the pion trajectory.

These two effects, the distortion and energy shift, have been

estimated by Faldt and Pilkuhn50'61 using a semiclassical model in

which the pion trajectories are taken to be hyperbolic trajectories

rather than straight line trajectories. In their first paper,60

the nucleus was treated as a completely-absorbing sphere of radius

R. This was later generalized in their second paper,61 to describe

scattering by gray nuclei. This model was used by Mutcher et al.1*1*

in the analysis of their 160 data.

Before showing how this model modifies equation (134), it is

necessary to introduce some notations. If k, E, and t are the

asymptotic values of the pion wave number (in f - 1 ) , the total

energy, and the square of the momentum transfer in the center-of-

mass frame, and kD, E.., and tn are the same quantities evaluated at

the nuclear surface, they are related by

kR " ITT

Z Zahc
ER = E - -JL— , (142)

TTT • (143)
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and

Z Zi3

-w- • (144)

where Z (Z) is the pion (nuclear) charge, 6 is the pion velocity,

and R is defined by 0 = 2irR 2, which is only meaningful if R =

nuclear radius. This definition of R is reasonable for energies

around the (3,3) resonance where the nucleus is essentially black

for pions. At lower energies the nucleus becomes more transparent

to pions and the definition is less adequate.

The model relates the measured total cross section to the

strong interaction total cross section evaluated at the energy of

the pion at the nuclear surface, but corrected by a flux factor.

The flux factor arises from the attraction (repulsion) of a" (a )

and, consequently, the nucleus appears to have a radius R~ given

by

R± = r ± V r (145)

If o T 0 T and a are the measured and strong interaction total cross

sections, respectively, then according to the model

a
aTOT " TTT1

As a result of this, the strong amplitude f is modified to give a

new amplitude f , where
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f _ = 1 +5 f (147)

The differential cross section evaluated lit the nuclear surface

is now

= ifc(kR'V

or

fez! 2kr
-n (t +a)e

In terms of the asymtotic values of k and t,

JLfR 2 + D ?*. l t |
d£ c n

5)24ir

(148)

i R2l t
6 s ^

(149)

(150)

By using eauation (150) to calculate D/A, one can compare the

result to equations (139) or (140) to see the effect of the Faldt

and Pilkuhn60'61 model. First, equation (148) is expanded to

first order in 6. That this is reasonable may be seen from Table

XVI, where 6<<1. In the exponentials, the S is dropped completely,

since the exponential nearly cancels out in the ratio D/A as shown

earlier. Now -̂ r becomes
ldfiJel

'dol
J (k,t)

1 + 6
f (k,t)e" (151)
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Table XVI. The values of 4 as a function of the pion kinetic
energy 'f-g. Two values of 5 arc given which correspond to K s= 1.63
fm, both of which are reasonable values for Rs.

T^MeV) 6(Rs = 1.63 fro) 6(R =1.42 fro)

51

60

68

7b

0.0200

0.0173

0.O1S5

0.0143

0.0229

0.0199

0.0178

0.0164

fcRe(fse (152)

Using the fact that

f* = fc c

46)|fJ2

fc '

and

(153)

one can write the cross section difference D and the average cross

section A as

D = (l-2|6|)|fc-|2 • (l + 4|6|)|fs|
2
 + 2(1+

c ' ~" s

153

(154)



- 4 | 6 | | f | 2 + 8 | 6 | | f j 2 + 4f cos2<J.Ref

- 4J6 | f c sin2<J> Im fg (155)

= 4f cos 2* Re f + Aj , (156)

where

Ai - -4i6||fc!
2 • 8|6|[fs|

2 - 4|6|fcsin2«lmfs (157)

and

A = i[(l-2J6|)|fc-|
2 • (l+4|6|)|fs|

2

• 2(1 * J6|)fc-Re(fse
2{*) * (1 • 2|6|) |fc

+12

• (l-4i6|)|fs|
2 + 2(1- |6|)fc

+Re(fse~
2i*)] (158)

= |f | 2 + jf | 2 + 416[f cos2<j.Ref - 4f^ sin 2$ Im f

(159)

= | f c l 2 * | f s l 2 + A2 . (160)

where

A2 = 4j«|fc cos 2<j)Refs - 4fc sin 2$ Im fg . (161)

The ratio of the difference to the average is then

D 4 f c cos 2«J> Re f s • A!

* = Ti^TTFTir ' (I62)

which is much like equation (140) except for the small corrections

Aj and A2 in the numerator and denominator. As with equation (140),

the R dependence is small because of cancellation of the exponen-

tial factors. However, some R dependence has reappeared via |<s|,but
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it is small for the energies being considered here, since |fi| is

small as shown in Table XVI. Consequently, the ratio of the differ-

ence to average differential cross section is still essentially only

sensitive to a.

In making the actual fit to the data, it was found that equation

(162) gave a better fit than equation (140). Furthermore, the approxi-

mations made in deriving equation (162) were not used, and the complete

expression for j-r̂ l (equation (150)) was used in a computer code to

calculate D/A.

To find a, the elastic IT -uHe differential cross sections from

Crowe et al.52were used. This data covered the center of mass

angular region from 31° to 152°. However, only scattering angles

before the first minimum in -JTC were used since the phenomenologi-

ld"Jel .
cal model is valid only in this angular interval. The \-p-\ data

I"-'; el

are given in Table XVII as a function of T and the center-of-mass

scattering angle, 6 . The total cross sections a at 51, 60, 68,

and 75 MeV were interpolated from Figure 20 where a is plotted as

a function of the laboratory kinetic energy T . They are given in

Table XVIII. That it is reasonable to set o = <T follows from the

previous arguments that the average of the measured total cross

sections aT0T and o T 0 T is independent of the Coulomb-nuclear

interference correction. Also, a is independent to first order of

the flux correction of Faldt and Pilkuhn. This can be seen from
- 1, - + .
a = j(o T O T + aT0T)
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Table XVII. The elastic n~ - ̂ He differential cross sections
from Crowe et al. (.Ref. 52). All cross sections are inmb, T n is inMeV,
and 9_,, is in degrees. The errors are the statistical errors.

T
•n

51

60

68

75

9CM

31

36

41

47

62

67

31

36

41

47

62,

67

31.

36.

42.

47.

62.

67.

31.

36.

42.

47.

62.

67.

.5

.7

.9

.1

.5

.6

.5

.7

.9

.1

.6

.7

.6

,8

,0

,2

,7

8

6

9

1

3

8

9

1

1

1

1

0

0

2

2

2

1

0

0

4,

3,

3.

2.

0.

0.

5.

5.

4.

3.

0.

0.

.516

.611

.223

.131

.434

.266

.661

.634

.327

.663

.534

.366

.031

.612

.247

,651

,722

,437

940

252

268

006

960

623

da*
da

±0

±0

±0

±0

±0

±0

±0

±0

±0

±0

±0

±0.

±0,

±0.

±0.

±0.

±0.

±0.

±0.

+ 0.

+ 0.

±0.

±0.

±0.

.140

.136

.093

.093

.024

.023

.075

.071

.052

.046

.010

.009

.190

,176

,135

126

025

020

205

167

141

104

025

019

5

3

2

2

0

0

6

5

3

2

0

0

7.

5,

4.

3.

0.

0.

9.

7.

5.

3.

1.

0.

do-

.192

.969

.978

.033

.560

.371

.712

.033

.854

.835

.747

.436

.299

.312

.494

.082

,925

,512

394

080

858

979

119

667

±0

±0

±0

±0

+ 1

±0

±0

±0

±0

±0

±0

±0,

±0.

±0.

±0.

+ 0.

+ 0.

+ 0.

±0.

+ 0.

+ 0.

+ 0.

±0.

±0.

.254

.166

.145

.107

.025

.020

.146

.106

.076

.062

.013

.009

.273

,361

164

223

,034

026

236

215

132

127

023

017

1

0

0

0

0

0

0

0

0

0

0

0

0,

0,

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

.096

.845

.835

.570

.254

.329

.864

.626

.494

.521

.332

.175

.577

.381

,322

,150

,246

158

451

296

314

279

153:

068:

D
A

±0

±0

±0

±0

±0

±0

±0

±0

±0

+ 0

±0

+ 0

±0,

±0.

±0.

+ 0.

±0.

±0.

±0.

±0.

+ 0.

-0.

±0.

+ 0.

.098

.083

.088

.092

.069

.095

.038

.035

.031

.035

.025

.033

.061

.092

,055

,089

.051

,070

042

045

039

047

033

030
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Table XVIII. Total cross section o as a function of the pion
laboratory kinetic energy T .

T (MeV) a (mb)

51 102

60 115

68 127

75 139

= a

by using equation (146).

Given the experimental data for a , U— , and -37H and the
s [da)el [a®) el

theoretical expression for D/A, the next problem was to find a(0°).

This was accomplished by choosing at a fixed energy a pair of values

for a and R and then by calculating the quantity

F(a,Rs,e.) = | (163)

(where equation (150) was used to calculate D/A) for each of the six

center of mass scattering angles 6.. The next step was to calculate

the experimental ratio
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D(e.j
^y (164))

for each 9.. This was then compared to F by calculating the valueof chi-squared,

6 fa(9.) - F(o,R ,6.2 1\ '
where Aa(6.) is the error in a(9.). The calculation was repeated for

many pairs of a and R . The pair which gave the minimum value of x2 gave

the best fit of F(a,R , ) to the data a(6) and the best values of a and

R_. The whole procedure was handled by a computer code.

As was expected, the goodness of fit of F(a,R ,8) to a(6) was

insensitive to R . Consequently, R was set equal to the charge

radius R = 1.63 fm and a was allowed to vary. Since only one para-

meter was determined from the six data points at each energy, there

were five degrees of freedom.

The best fit values of a are given in Table XIX, along with

Im f (0°) calculated from the optical theorem a =-r^Imf (0°),
S S JC S

Re f (0°), and the chi-squared per degree of freedom, Xn2 -
S K

Table XIX. The best values of a, Imfs(0°), and Refs(O°).
, Im f (0°), and Re f (0°) are in units of MeV, fm, and fm.

T
7T

51

60

68

75

o

1.10+ .25

1.05± .15

1.05± .43

1.03± .30

Imf(0°)

0.534

0.662

0.787

0.914

Ref(0°

0.587±0.

0.728 + 0.

0.82610.

0.941 ±0.

133

039

338

274

2

7

0

i

R

.7

.8

. 9

.7
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The error Aot on a was obtained by keeping R =R and allowing

to vary until the chi-squared x2 = ̂ Xn2 increased by one unit. The new

a' was then one standard deviation from the best fit value of a, so

that Aot = |a' - a|. This is a standard procedure for obtaining the error

on a fitted parameter and is described in detail by Bevington.33

The large errors on the a are probably due to the fact that the

Crowe et al.52 differential cross sections are not in the small-angle

interference region. Consequently, D is small with large errors, 10%

or greater except at 60 MeV (see Table XVII). Data in the small-angle

region with small statistical errors would be very desirable in try-

ing to extract Re f (0°). The large value of xn
2 f°r t n e 60 M e V data

S K

is due to the small statistical errors.

Having obtained the experimental values of Ref(0°), the aim of

this work was to compare these results to the forward dispersion

relation calculations of Re f(0°) by Wilkin et al.8 and by Batty,

Squier, and Turner.1* Some basic features of forward dispersion rela-

tions will be discussed in Appendix F. A more detailed account may

be found in the paper by Ericson and Locker3 and in the text by

Taylor.63

In Figure 23, the Ref (0°) is plotted versus T . The data

points from 110 to 260 MeV are from Binon et al.59 and the curves

are dispersion relation calculations by Wilkin et al.8 (dashed curve)

and by Batty, Squier, and Turner1* (solid curve). The data points

labeled by LAMPF refer to the results of this experiment.
The values of Ref (0°) at 51, 60, 68, and 75 MeV are consistent

s

with both theoretical curves. Even without the large error
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Figure 23 The real part of the forward 7r-"*He nuclear scatter-
ing amplitude Refs(O°) versus the pion laboratory kinetic energy T^.
The data are from Binon et al. (Ref. 59) and Crowe et al. (Ref. 52j
and this experiment (LAMPF). The curves are forward dispersion rela-
tion calculations. The solid curve is from Ref. 4 and the dashed
curve is from Ref. 8.
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bars the data are not in the right energy range to allow for a dis-

crimination between the two calculations. The data are also slightly

larger than the values obtained by Binon et a l . 5 ^ when they analyzed

the data of Crowe et a l . 5 2 using their measured o~ , However, they

do not quote any errors for their results, so that it is not clear how

consistent the two analyses are. Furthermore, their analysis differed

from the present one in several respects. They chose to lit i-rpr
\f* "J e 1

rather than D/A, only v total cross section data were used and they

did not include the flux correction of Faldt and Pilkuhn. t ; 0» 6 1 Lastly,

the phenomenologicai model they used for f contains a modification

-rz-\ which introduced another complex parameter to

be determined by the data.

Optical Model Calculations

In this section, the measured ir'-^He total cross sections will

be compared to different optical model calculations.

The optical model reduces the complex many-body problem of

it-nucleus scattering to an effective two-body problem. One method of

calculating the optical potential utilizes a multiple-scattering

s e r i e s . 1 1 ' 1 3 ' 6 9 ' 7 0 Using this approach (the details of the calcula-

tion are given in the references), the lowest-older optical potential

in momentum space is given by

<k'|v|k> = Ap(k -k')<k'|t|k> . (166)

In equation (166), k and k' are the initial and final pion momentum

in the tr-nucleus center-of-i?ass frame, A is the nuclear mass,

p(k-k') is the Fourier transform or form factor of the nuclear
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matter density P(R), <k'|t|k> is the off-shell rc-nucleon scattering

matrix, and <k'|v|k> is the lowest-order optical potential. By

taking the Fourier transform of equation (166), one obtains the

optical potential in coordinate space,

<r'|v|r> = A//d3kd3k'e~llsl'r'p(k-k1)<k/!t|k>el~*?' .

(167)

Equations (166) and (167) are the starting points for the comparison

of the optical potential to the data.

The different optical potentials that were compared to the data

come about from different assumptions as to the form of <k'|t|k>.

In order to account for the dominance of the (3,3) resonance,

Kiss linger47 assumed that

<k'|t|k> = b0 + bik/'k (168)

where bo and bj give the strengths of the S- and P-wave amplitudes.

This led to the Kisslinger potential in coordinate space

. (169)

It is nonlocal since it contains momentum operators, and it has a

strong sensitivity to w scattering in the nuclear surface because of

the Vp term.

Another possible form of the off-shell ir-nucleon scattering

matrix48"50 is given by

<k'|t|k> = b0 + bi(k
2 - |-q2) (170)
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where q = k' -k and ko= |k'| = |k| (for on-shell). This comes from

k'«k = |-(k2+kl2) - -q2. Equation (170) lead? to the Laplacian

potential in coordinate space

L ^ . (171)

It is local since it is a function of only the position operator

and, through the V2p term, it is sensitive to w scattering in the

nuclei surface.

A simple optical model without the derivatives of the nuclear

density can also accommodate the P-wave Tr-nucleon interaction through

an energy-dependent effective radius. Such a model was derived by

Silbar and Steinheim.71 They assumed

<k' jt|k> = bj(k2 -q2) (172)

and derived

VER« = -Abjk^Cr)* . (173)

If the nuclear charge density p(r) is characterized by R*, where

R*2 = R2 + \ . (174)

kz

and R is the nuclear radius, their model is called the "effective

radius" model. If R is used in place of R* in equation (174), then

V becomes the "matter-radius" model, given by

= -Ab]k2pR(r)ij, . (175)
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The "effective-radius" model can also be generalized. If the £-t

partial wave dominates, then R* is modified to become

R2 + UiLLll { 1 7 6 )
2kz

The off-shell w-nucleon scattering matrix used in equation (166)

is a function of momenta and energies which are evaluated in the

Tr-nucleus center-of-mass systems. However, the ir-nucleon scattering

amplitude is usually determined in the rc-nucleon center-of-mass sys-

tem. The necessary transformation of the iT-nucleon scattering matrix

from the ir-nucleon to the n--nucleus center-of-mass system leads to

ambiguities. One choice among them leads to a "modified" Kisslinger

potential,72"71* given by

E +m
VMR* = -Abok

2
P(r)* + AbjV-pV* - ±A — j - 1 b: (V

2p)* .

(177)

In equation (177), m is the pion mass, m is the nucleon mass, and

E is the kinetic energy of the IT in the ir-nucleus center-of-mass

system.

The last optical model that was considered was based on a

separable iT-nucleon scattering matrix given for each eigenchannel

n= (IL,I,j) by

. , <ko|t |ko>g (k')g (k)
<k' t k> = 2 n n ( 1 7 8 )

g ( k ) 2

where <kojt |ko> is the on-shell matrix element (kg = |k'| = |k|)

which, along with the g (k) functions, is constructed from the
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complex 7r-nucleon phase shifts.75*76 Equations (178) and (166) then

give a separable optical potential in momentum space.70*77

78 79

Landau » has used this separable potential to calculate the

average total cross section a for it~ - **He scattering. His results,

along with the calculations of a using the other optical potentials

discussed above, are given in Figures 24 and 25. (The average cross

section a was compared to the models, rather than cu™ or oTm, because

it is less model-dependent, in that it is independent of the Coulomb-

nuclear interference.) With the exception of Landau's calculation,

all of the curves in these figures were calculated with the computer

code PIRK45'46, which was also used to calculate the Coulomb-nuclear

interference correction. The data in the two figures are from

Wilkin et al.8 and the present experiment (LAMPF). Together they

span the energy range 50 to 250 MeV. In Figure 24, curve 1 is the

calculation of Landau, curve 2 is the prediction of the Laplacian

model, and curve 3 is the prediction of the Kissiinger model. In

Figure 25, curves 1, 2, and 3 are the predictions of the "effective

radius," the ''matter radius," and the modified Kissiinger potential,

respectively. Except for Landau's calculation, all of the models

were used with a Gaussian nuclear matter distribution p given by

equation (105), with the nuclear radius R equal to the charge radius

R =1.63 fm. Landau used a nuclear form factor equal to the nuclear

charge form factor p with the finite proton size removed:

p,(q)
p(q) = ~ (179)

P
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Figure 24. Comparison between the measured ir-'+He average total
cross sections and the predictions of the separable (Refs. 78 and
79) Laplacian, and Kisslinger optical potentials. The predictions
of these three potentials are given by curves 1, 2, and 3, respec-
tively. The data are from this experiment (LAMPF) and Wilkin et
al. (Ref. 8).
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Figure 25. Comparison between the measured ir-̂ He average total
cross sections and the predictions of the "effective-radius,"
"matter-radius, ' and modified Kisslinger optical potentials. The
predictions of these three potentials are given by curves 1, 2, 3,
respectively. The data are from this experiment (LAMPF) and U'ilkin
et al. (Ref. 8).
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where q is the momentum transfer and fP(q) is the proton form factor.

The nuclear charge form factor p was given by the experimental charge-

form factor80

Pc(q) = [1 - (

with a = 0.316 fm and b = 0.681 fra.

It should be noted that the bo and bj parameters used in these

calculations were derived from the fit to the free -n-nucleon phase

shifts, made by Saloman.53 For the "effective-radius11 and "matter-

radius" models a correction bo was added to the parameter b] in

equations (173) and (175) to account for the small S-wave ir-nucleon

amplitude.71

Unlike the other optical potentials, the separable potential of

Landau does not contain any adjustable parameters. In the Kisslinger

and Laplacian models, however, the bo and bj parameters can be

allowed to vary to obtain the best fit to the data. Crowe et al.52

did this to obtain the best fit of the Kisslinger model to their

elastic ir'-̂ He differential cross section data. By interpolating

between and extrapolating from their parameters, a was calculated

both with these parameters and with the free parameters in the

energy range 50 to 105 MeV. The results are given in Figure 26,

where curves 1 and 2 are the Kisslinger and Laplacian calculations

with the free parameters. Curves 3 and 4 are the Kisslinger

and Laplacian calculations with the fitted parameters. The data

are from the present experiment (LAMPF). It is clear that the

two models are quite sensitive to b0 and b1# Furthermore, for
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TV (MeV)
120

Figure 26._ The effect of different values of b 0 and b] on the
predictions of a by the Kisslinger and LapJacian optical potentials.
Curves 1 and 2 (3 and 4) are the Kisslinger and Laplacian predictions
using the free (fitted) parameters.
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the Kiss linger model with bg and bj obtained from fitting the

elastic scattering data, the agreement with the total cross section

data is not very good. Also as mentioned earlier, Cooper and

F.isenstein51 found that when they allowed b0 and b\ to vary to fit

fe|+ for12C and both \~\* and fel for '•He, the resulting

Kisslinger and Laplacian models violated unitarity. The uHe data

they used was from Crowe et al.52 and, by fitting -—-I and
, »_ l«''-Jel

separately, they obtained four sets of b 0 and bj. They
'Jel

found that the fits of Crowe et al. 5 2 also violated unitarity.

From Figures 24, 25, and 2b, it can be seen that none of the

different models fit the data very well. At the higher energies the

separable potential fits the best and at the lower energies the

Laplacian potential is the best. However, the Laplacian potential

is not successful in fitting the elastic differential cross section

as shown by Cooper and Eisenstein.51 Landau and Thomas81 found that

the separable potential did not fit the low-energy pion-nucleus

elastic scattering O +- 1 2C and ir~-hHc). This failure they attri-

buted to a lack of good low-energy Tr-nucieon phase shifts which are

essential for their model. Amann et al .,82 using free -rr-nucleon

phase shift information, found that the Kisslinger and Laplacian

potentials, along with the separable potential of Londergan, McVoy,

and Moniz,76 gave poor fits to their 51 MeV n - 1?-C elastic differen-

tial cross section data.

As mentioned at the beginning of this chapter, the experiments

of Crowe et al.,52 Nordberg and Kinsey,55 and Tloch et al.5fl

measured -ir~"-'4He elastic differential cross section at low energies
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in an attempt to measure the rms electromagnetic radius of the pion.

In their analyses, they used the Kisslinger potential. However, in

view of the poor agreement between experiment and the different

optical models at low energy, it appears that such analyses are

unlikely to yield a reliable rms electromagnetic radius for the

pion.

For the Kisslinger and Laplacian potentials, there are two other

adjustable parameters, the nuclear charge radius R (R =1.65 fm40

as measured from electron scattering) and the nuclear mass radius

R. IVith the free values of hp and bj, R and R were varied in

order to check, in a limited way, the sensitivity of the optical

potentials to these parameters. It is a standard practice to define

a new charge radius R ' = (R 2 + R 2) ̂ 2 where R = 0.8 fin15»39 is the
b c l c it

charge radius of the pion so that R,' = 1.82fm. Both R and R ' were

used in the Gaussian charge distribution given by equation (103) to

see what effect, if any, they had on the calculated a. There was

found to be a negligible difference (less than 0.5°;) between the two.

As for R, there are two common practices. The first is simply
to set R = R . The other is to calculate the R from R= (R2 - R 2 ) 1 ^ 2 ,c c p

where R =0.8 fm1*0 is the proton charge radius. Ti the first case,

R=1.63 fm and in the second R=1.42 fm. Figure 27 shows the results

of using R= 1.63 fm and R* 1.42 fm in the Kisslinger and Laplacian

potentials. Curves 1 and 3 (2 and 4) are for the Laplacian and

Kisslinger potentials, with R=1.63 fm (R=1.42 fin). The smaller

value of R gives a worse fit to a than the larger value of R. For

R=1.42 fin, the peak is lower, and at low energies R=1.42 fm leads to
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Figure 27. The effect of varying Rs on the predictions of o
by the Kisslinger and Laplacian optical potentials Curves 1 and 3
(2 and 4) are the Laplacian and Kisslinger predictions with
Rs = 1.63 fm (R= 1.42 fm).
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larger cross sections than R=1.63 fm (this is reversed at high

energies). This same behavior was exhibited by both the "matter-

radius" and the modified Kisslinger models. The "effective"radius"

model behaved differently. Up to about 110 MeV there was negligible

difference between the two cases. Above -110 MeV, R=1.42 fm gave

larger cross sections than R= 1.63 fm. The discrepancy was a maxi-

mum at -170 MeV, where it was -6% and then remained essentially con-

stant as the energy increased. However, using R=1.42 fm did not

substantially improve the fit of the' "effective-radius" model to the

data.

Finally, comparisons between the models and experiment were

made for the ratio -¥-, as shown in Figure 28. The data from this

experiment (LAMPFJ presented in Figure 28 have been corrected for

Coulomb-nuclear interference with the Kisslinger potential using the

fitted parameters derived from the work of Crowe et al.52 Curves

1, 2, and 3 were obtained from the semi-classical model of F31dt and

Pilkuhn,60'61 the Kisslinger potential and the Laplacian potential.

According to Faldt and Pilkuhn,

r i 8 r
U 8 U J

where E is the total pion energy, k is the pion wave number, 8 is

the pion velocity, and R is the strong interaction radius

(R =1.63 fm). Again, there does not appear to be any particularly

good agreement between theory and experiment. However, the errors

on the low-energy points are quite large and need to be reduced to
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Figure 28. Comparison between the measured ratio ho/a and the
predictions of the semi-classical model of Faldt and Pilkuhn (Refs.
60 and 61) and the Kisslinger and Laplacian optical potentials. The
predictions of these three models are given by curves 1, 2, and 3,
respectively. The data are from this experiment (LAMPF) and Wilkin
et al. (Ref. 8).

174



make any definitive comment on the different models. The results are

the same for the other values of ha/a in Table XV. Also, the values

of Aa/a calculated from the data of Bloch et al.56 (see Table XIII)

are statistically consistent with the results of this experiment.

Concluding Remarks

The measured ^"-^He total cross sections of this experiment were

compared to the previous measurements of Bloch et al.,^ Fowler,

et al.,57 Binon et al.,59 and Wilkin et al.8 Within the statistical

errors, the agreement was good, except for the 51 MeV data of this

experiment and of Bloch et al.56 (i.e., the systematic errors appear

to be much larger than the statistical errors). There is a similar

disagreement among the 110 MeV data of Wilkin et al.3 and the 110

and 105 MeV data of Binon et al.59 and this experiment, respectively.

The average total cross section o was found to be independent

of the Coulomb-nuclear interference correction and therefore reason-

ably model-independent, since the variation in the measured values

of a due to the choice of the model used in the interference correc-

tion ranged from a 0.7% variation at 51 MeV to 0.2% variation at

105 MeV. This was not found to be true for the measured values of

a and oTOT> which varied by as much as 5%, depending upon how the

interference correction was made. This suggests the desirability of

measuring the elastic differential cross section in the small-angle

interference region. This would allow the interference correction to be

made in a model-independent way. Finally, a n_,was found to be greater than
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a (at all energies) as was seen in the 12C data of this experi-

ment and in the previous '•He data56'57 and 12C data.9'62 These

differences in the cross sections are presumably due to an incorrect

handling of the different Coulomb effects, such as distortion, inter-

ference, etc., by the different theoretical models.

The measured values of cr™™™ and o_o_ were shown not to be

related through the optical theorem to the imaginary part of the for-

ward nuclear scattering amplitude given by equation (110), due

to the Coulomb interaction. However, o T 0 T and aT0T were shown to

be related through the optical theorem to the imaginary part of the

forward scattering amplitude f (0°), where f (6) is defined by equa-

tion (121). It should be noted that f (0) is not the scattering

amplitude which contributes to the measured ir±-nucleus elastic

differential cross section (the scattering amplitude which does

contribute is f (0) defined by equation (116)). However, through the

optical theorem given by equation (122), f (0°) does put a constraint

on any model of the IT-nucleus interaction.

An attempt was made to verify experimentally the forward dis-

persion relation calculations'*'8 of the real part of the forward

nuclear scattering amplitude in the energy region of 50 to 75 MeV,

using a phenomenological model for the nuclear amplitude f . The

results were moderately successful in their agreement with the

forward dispersion relation calculations. However, it would be

desirable to measure the elastic differential cross sections in the

small-angle interference region in the hope that this would reduce the

large statistical errors on the experimental values of Re f (0°).
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The measured values of 5 from this experiment and from Wilkin

et al.8 were compared to several optical potential calculations.

The reason the experimental values of 5 were compared to the theoreti-

cal calculations rather than the experimental values of a~_ was

because they were not strongly dependent on the Coulomb-nuclear inter-

ference correction. The agreement between experiment and theory was

found to be very poor in the low-energy region. From this work and

the work of others,51»81»82 it was found that none of the optical

potentials could successfully describe both the total cross section

data and the elastic differential cross section data. These results

suggest the need for more work in the theory of low energy ir-nucleus

scattering and for more low-eneryy data of high statistical accuracy.

There are future plans for this experiment to measure ir~ - **He and,

possibly, IT" - 12C total cross sections, at energies as low as 20 MeV.

The poor agreement between theory and experiment also indicates that

attempts to measure the rms electromagnetic radius of the pion by

invoking optical models for the strong interaction are probably

unreliable and also probably unnecessary due to the results of the

ir-electron scattering experiments.
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APPENDIX A: EFFICIENCY AND ABSORPTION CALCULATION

The expressions for T and S in terms of N, a, fi, and e are given

below.

T, = ClNi

T 2 = e2(N2
 + c.,Ni)

T 3 s c3(N3 • 62a2N2 + a3N'])

T 5 = £ 5 (Ns • Bi«a2 \ \ + 8 3
2 a 3 N 3 • g2

3ai,.\'2 * a5?k'l)

T 6 = C 6 ( N 6 • 6 5 a 2 N 5 • 6i,2a3-N<« * e3 3 a, ,N 3 • e2'*a5Nz •

T7 = e 7 ( N 7 • Bea2N f i • B 5
2 a 3 N 5 • B , , 3 ^ , ^ • e 3

i j a s X3 • P j 5 a 6 N 2

8 • B 7 « 2 N 7 • 8 6
2 ^3^6 * r5S

3a«,N5 * fi,,^,^ • B 3
5 o 6 X 3

5 2 = c ^ i • c 2 N 2 • (1 -

5 3 - S 2 * c 3 . V 3 * ( I - € j

S(, = S 3 • et,Ni, • ( 1 - e j ) ( l - e 2 ) ( l - e 3 ) a « i c l | N j

+ (1 - e 2 ) ( l -

S5 = SM*e5N5* (1 -

* (I - t2)(l - G 3 ) ( 1 - t, ,)a^e5e

• (1 - e 3 ) ( l - c,,)a3e5e32N3 • (1 - C|l)a2csB(,Ntl
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S6 =

- c3)(l -

S7 = S6 • c7\

• {1 - c5)(l - e6)a6e76s
2N!5* fl - £6)a2c76€N6

Se = S7 + e8X8

• (1 - £5)(1 -e6)(l

• (1 - c6) (1 - £7)a3e886
2N6 • (1

These equations may be rewritten as

T, = cjN,

T 2 = c2N2 • E2a2Ni • X2

T 3 = c3N3 > e3a3N, + X3

T 8 = e8N8 • E8
a8!<l + X8
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and

52 = ^-2^2 * ^2^*2 + **2

53 = e3N3 + Y3a3 + Z3

S8 = c8N8
 + Y8a8 + Z8

So that solving for N and a gives

T. - X. - S. + 2.
\ \ i 1

a. =i e,Ni - Y.

T. - X. - c. a. N1
„ _ _j i i t 1

i £ .

where i - 2 . The quantities X., Y., and Z. arc defined as follows

where only the first three will be given.

X:, ; 0

X3 = E

Y 2 =

Y3 =

Yi. =

and
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Z 2 = E , !

2 N 2 + c 3 N 3 + ( 1 - E 2 ) ( l -

+ (1 - E 2 ) U 2 ( 3 & 2 \ ! 2 • (1 - cj)a2£2Nj
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APPENDIX B: COVARIANCI: OF S. AND S.

By definition the covariancc (AS..)2 of S. and S. is

. s.s. - s .

where <S.> is the expectation value of S..

The probability that S. aXo in Y trials is

Y] „ v v
IP °f I - P i 0

where P. is the probability of an event in S. and <S.> = VI'..

Now consider the covariance (AS. . ,) which has the constraint

S. .=S, *Z.. Let P' + j. P.. and Q. be the probabilities of an event

in S.^., S,, and Z., respectively, where 2. is the angular ring where

S, docs not shadow S. .. Also let X, Xo, and k be the number of

events in S. ., S., and Z.. Then the probability Q. for an event in

Zj is

" Y - X o

where X > Xo.

Then the conditional probability for Z. • k when S. * Xo is
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Prt2.-k|S.«X0) =
Y-xo]fP.+1-P.]k

!- pf
1 -

p - p
1*1 1
1 -p.

V-X0-k

Y - X o

* - x0

where k «O, 1 Y-Xo.

What is Jcsircd is the probability that S. . «!i and S. * Xo

a n d S i = X

Y]pX0fY.X01 ( p .p.)X-Xo (,.p. }V-J

>Y-X
-P

1

remembering that X'-Sj). That this is the correct probability distri-

bution is easily checked hy summing over Xo from 0 to X.

p. x0

, - ( , . .
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where the binomial theorem

x=ol

has been used.

Now for any j :: i and X. i.\.

This now permits ^X.X.> to be calculated

.X.> * T F X.X.P (S.=X. and S.=X.)
1 J X.-O X.-O ' J r J J l l

X.=0

The second summation can be done and

i ,
x.«o *lX{

P * ~P
XJ" l

"X'x.P.P.XJ"l(P.-P.)"X'

so that <X.X.> is given by

j X = 0 3 *>XjJ JX.=0

p.
=i- [YP (1-P.) • Y2P?j

ion



= P. [Y(l-P.)

Finally, the covariance (AS..)2, j M , is

(AS..)2 = <S.S.> - <S.><S.>
i.l i ] i J

.(Y(1 - P.) • Y 2P.] - Y 2P.P.

= YP.(1 - P ^ .

This reduces tc the variance (AS.) 2 for i = j
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APPENDIX C: COVARIANCE MATRIX

FOR THE PARTIAL CROSS SECTIONS

The sample covariance33 (Aa..) for the partial cross sections

a. and a. is
i 3

(Aa.
13

where a. and o. are the Jl-th observed values of a. and a. and j >i,
X At J At \ J

The partial cross sections a. are given by

1 1a. = —-ln
Roi

i nt "* R.

so that fa. -<a.>) can be expanded about

(a. - <a.>) = (R.. - <Rn.>)

bout

3a. i
i

3RoiJ

<R0.> and <R.=
i

i

>

i
[SR.J

where the partial derivatives are evaluated at <R(,-
> and <R.>,

respectively. A good approximation to (a. -<cr.>) is obtained by

keeping only the first two terms in the series since for large Y,

Rn. - <Rn.> and R. =<R.>.

Using this result, one obtains the following expression for

-
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(Ac..)2 - lim
N-+CO N-l

lim
N-l

r3a.

3R0i

2!i

r3a.

9R.

3a.

3a.'

3R.

3o.-»i

,3Ro

r 3c. 3a.

3R.

3a.

3ROi

3a.

+ »ir<V)(%r<V)fesj]
3RJ
3a.

where the last two terms are zero since there is no correlation

between RQ. and R. or between R. and RQ., so that

r3a.-i
X

9 R ' -

r 3 a . >

l3ROx-l

r 3 a . y

l 3 R
C jJ

J
If it is noted that the covariance (AR..)2 is

(AR..)^ = lim
N-l

then

(Aa.j)2 = (AR0{;j)
2

3a.
(AR,,)2

/•3a.-i

3R. i3 RJ

The partial derivatives are given by
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and

3a.

= (ntR,,.)"1

8a.

3R.

= -(ntR)-3

so that

mt

f(ARn,,)
2 (AR,,)2

w_ +
xoiiVoj R i R j

In Appendix B it was shown that

or

(AS. ̂ 2 = YR.O-R..)

so that

YRn.
 + YR.

where j > i and (Aa,)2 is the variance of a..

The covariance matrix V for the partial cross sections can now

be constructed using the expression for (ACT..)2- From equation (57),

V was defined by
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V.. =

therefore

(AtIij-

(Ao,)2

for j 2: i. Because V is symmetric, then V.. =V...

The above expression for V is appropriate when equation (48) is

used to fit the a.. However, if equation (49) is used to fit the

ln(o.)i then it is necessary to know the covariance matrix for the

ln(.a.)'s and ln(a.)'s. To do this, let

with a variance (AX.)2 given by

2 =fAX,)2 =
a.

The covariance matrix for the X.'s and X.'s is

(AX.,)Z = lim
N-l

y expanding (X.-<X.>) about <X.>, one obtains

3X.
I

where

.

da. ~ a.

3(7.

Then
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o)
2 = iim Ijjl-- I (o -<

3X.

3o.

0.0 .

1 J

a .Q .

for j s i. The covariance matrix is then

f An i2

V. = J-

and V.. =V.., since V is symmetric.
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APPENDIX D: COVARIANCE FORM

OF Till: METHOD 01- LEAST SQUARES

In this appendix, it will be shown how the best values of a.,

to be used in

are determined by minimizing M for each a.

From equation (56), M is defined by

M = nTV"lD

where V is the covariancc matrix with elements V.. - (Ha.)2 for j >• i

(with V'.. =^\(j) and 0 is a vector with components 0. -o.-o.(a-).

Now M can also be written as

P P
M • J. I D R^.D .

k=l )=1 K K} }

where R HV"' and P is the number of data points to be fit.

In the case of uncorrclatcd errors, then V.. -0 for \ *j and

V.. = (Ao.)2 so that M reduces to the standard x2 given by

N
Now using D, «o. - ^ a t. where N is the order of the polynomial

to be used in the fit, one obtains

P P
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I I»..[«.- Z » t n ) L - l\t.'l

P P ( N „ X N N „>
= > ) R, . o.o. - o. } a.t. - o. ) a t, + ) a t. ) a.t.

klj jL-, kj[ k i k^fl I j )n^Q n k n'o n k ̂ 0 . j J

To ninimiic M with respect to a , ~— is calculated and set equal to

:ero so

k i J k k ^ Q 4 j j n i o n k

It is now useful to make some definitions

P P ,
U = I 7 R. . o , t . m * a . t "m k=l i='l k-H k J J k

and

nm

Hiis Rives

U m =

P

= k - l

3:

" \

N
l a

n=0

P

I

in

11
n nm

or, in matrix notation

U = all .
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This leads to

or

n mf Q m mn

which is the desired result.

To find the variance (Aa ) ? of a , first expand (->.-•-;.•) in a.

about <a."- to first order so that
t

N f **o. i
o.-<o.> = Y -— (a -<a •>)
i i n {5a J n n

Then

X X r'ic

or

N N

KJ n=0 m=0

where

V.. = ) ) t.nt.mA.

A = <(a -<a >)(a -<am>nm n n n m

= V~1Then, using R = V~ 1, one obtains

P P
1 = 7 J R..V..

- L I L I H{iz; zi Anmi=l j=l n=0 m=0 lJ l J nm

This implies that the matrix inverse of A has the elements
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Using the definition of H and the fact that A is synunetric, one
w nm nin

obtains

or

Finally, the variance (Aan)
2 = A n n is given by

nn

(4an)2 • y ( i r l

nn
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AI'PI-NMX E- MONTH CARLO CALCULATIONS

Fn this appendix, the Ntonte Carlo computer programs used to

calculate tho multiple and single Coulomb scattering corrections

o V>i) and o i.Q), respectively, and the pion decay correction oQ(Q)

to the measured partial cross sections will be discussed briefly.

A right-handed coordinate system was used in these programs.

The origin was located at the perpendicular intersection of the

beam axis, which was horizontal and passed through the center of

the target. The positive z axis lay along the beam axis in the

downstream direction' the positive y axis was in the upward direc-

tion from the beam axis; and the positive x axis was to the left cf

the beam axis (i.e., it was to the left if one was looking down-

stream) .

Multiple Coulomb Scattering

The Monte Carlo computer program for calculating the multiple

Coulomb scattering correction started with an individual pion at the

upstream face of TOF2. It then followed the pion's history until it

hit or missed the transmission stack. It repeated this process for

thousands of events for both target ' in" and target "out" to obtain

the distribution of pions at the transmission stack for the two

situations. With this information, it was possible to calculate the

multiple Coulomb scattering eerrteeioH ^tfl) *® th© measured partial

cross sections.
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The calculation began with a random selection of both the pion's

x and v positions air! its divergencies •—- and ~f- in the xz and v;" ' d; dz

planes, respectively, at the upstream face of T0F2. From the Mh.'1'C

data, the pion distributions in x, y, -r̂ , and -£- were found to be-

nearly Gaussian. Therefore, these quantities were chosen randomly

from the Gaussian distribution f(x)

f(x) = exp - -,"• ;̂
~ x

where f(.\) is characterized by a central value XQ, a standard devia-

tion J , and a cutoff width w (it provided a cutoff point on the

tail of the distribution). Here, XQ, a , and w were obtained from

the Mh'PC data. It should be aoted that 0 *- f(x) -. 1.

After the pion's position and divergence were selected, its

multiple Coulomb scattering in TOF2 was simulated by the

random selection of a multiple scattering angle chosen from the

distribution given in equations (<>2) and (b.>)

c

and

which were modified as in the work of E.V. I lungerford et al. 8 3 to give

f(6 ? and f, (9 ). Here, 0 is the projected angle of ft onto some plane
p K p P

(e.g., the xx and yz planes). This parameter was used because it

was more convenient to work with the projected angles than with the
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spatial angle. As in the work of U.K. Mayes et al.8<4 the f, (h '•
K p

were written in terms of a set of functions I), (a;b;z), defined by

k ; ) g ( ) i ] ( ; ; j ,
a*

where I* (a) is the gamma function and JFJ is Rummer's confluent

hypergeometric function. The 0, functions are described and tabu-

lated as a function of a /(x B1/2) in the paper by W.T. Scott.85 It

was found necessary to keep only f0 and fj in the expression for

f(0 ). Kith f expressed in terms of l)0 and Dj, a table of f(6 )

versus 0 was created, and a was chosen randomly from it. The por-

tion of the computer code which handled the multiple scattering was

originated and developed by R. Hcffner.86

After selecting the multiple scattering angle of the pion in

T0F2, the program did one of two things. For a simulated target

"out'' run, it translated the pion in a straight line to the trans-

mission stack to find which counter it hit. For a simulated target

"in" run, it translated the pion in a straight line to the upstream

face of the target. Multiple scattering in the target was simulated

in the same way as it was in T0F2. After selecting the multiple

scattering angle, the program translated the pion in a straight line

to the transmission stack to determine which counter it hit. The

energy loss of the pion in both T0F2 and the target was included in

the random selection of the multiple scattering angles.

After repeating the above procedure for several thousand events

for both target "in" and "out," the program then calculated r(ii) and

t the fraction of pions starting at the upstream face of T0F2
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and hitting the i-th transmission counter for target "in" and "out,"

respectively. For nt nuclei/cm2 in the target, the multiple Coulomb

scattering correction a (Q) for each partial cross section was

calculated from

Single Coulomb Scattering

The calculation of multiple and single Coulomb scattering cor-

rections were similar. They differed in that in the latter there

was no target "out" calculation.

To simulate single Coulomb scattering, it was necessary to

determine the appropriate probability distribution from which the

scattering angle could be randomly selected. To see how this was

done, consider the expression

PCO) =

where a (Q) is the Coulomb cross section for a pion scattering out-

side the solid angle .Q, nt is the number of nuclei/cm2, and P(Q) is

the probability that a pion will not scatter outside ft. It should

be noted that P is uniformly distributed between 0 and 1 for 0 < Q < 4 n .

For convenience the pion and "*He nucleus were assumed to be point

charges, so that
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= IT
Ze2E

(1 -coseJ

where as given in equation (79),

do) _ I
dfijc

 = 4
Ze2El 1

sin''(6/2) •

Here, I is the charge of the nucleus, e is the electron charge, c is

the velocity of light in vacuum, and E, p, and 9 are the pion total

energy, momentum, and scattering angle in the laboratory, respectively.

With the above result for a (SI), one can write the probability dis-

tribution P(9), from which 6 was randomly chosen as

P(6) =

However, this is unwieldly at small angles because the Coulomb cross

section becomes infinite as 0 goes to zero. Consequently a minimum

angle 9 was chosen such that for 6 < 6 the pion was considered not

to have scattered since it would hit the second transmission counter

anyway. (It should be remembered that in the experiment any pion

hitting the second transmission was considered to be an unscattered

pion.) The probability for not scattering at an angle greater than

6 is given by P (0 ) >0. So in selecting an angle 9 from the

expression for P(6), the acceptable range for P(6) was P <P<1

rather than 0 < P < 1.

The program calculated the correction to the measured partial

cross section from the following expression:
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where m(fi) was the number of pions scattered outside of the i-th

transmission counter as determined from the program. Here, Y is the

total number of pions incident on the target and is related to V ,

the number of scattered events handled by the program for which

9 > 6 »m by

Y - 1
Y
-

t

P
m

If P (Q) is the probability for a pion to single Coulomb scatter

within the solid angle Si, then

Pc(n) -

and

iff lnPc
(n)

Pion Decay

As stated in Chapter IV, the calculation of the pion decay cor-

rection was concerned only with those pions which decayed after

leaving the target. Multiple scattering in the target was included

although for convenience only the gaussian term in the multiple

scattering distribution was considered. The finite size and diver-

gence of the beam were also included in the program, as well an the

large-angle tail of its distribution. The program started with an
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individual pion at the upstream face of the target and followed

its history until it or its decay muon hit the transmission stack.

By repeating this process for thousands of events, the program

calculated the muon distribution at the transmission stack.

In following the pion from the target to the transmission stack,

the distance it traveled before decaying and the angle which the

decay muon made with the original pion trajectory were randomly

chosen. The distance i. traveled by the pion before decaying was

chosen from the distribution

P(£) =

where XnA(p) is the mean decay length and P(£) is the probability

that the pion will not decay in traveling a distance £. The mean

decay length is a function of the pion momentum p and is different

for target "in'; and "out" runs. In choosing I, P(£) was restricted

to the range e'^"1'A > P(2) >1 rather than 0>P(«.) >1, where £m was

the maximum distance the pion could travel before being detected in

the transmission stack.

The angle between the trajectories of the decay muon and the

parent pion was chosen in the pion rest frame, where the decay is

isotropic, and transformed to the laboratory frame. Because of the

energy difference between the target "in" and "out" runs, the angular

distributions in the laboratory were different for the two cases.

After generating the muon distributions at the transmission

stack for both the target 'in" and target "out" situations, the
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program calculated the decay corrections to the measured partial

cross sections using equation (192). The exact correction depends

very sensitively on the actual number of pions that decayed and the

number of decay muons that were detected, for both target "in" and

"out."
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APPENDIX F. FORWARD DISPERSION RELATIONS

In this appendix, some of the basic features of forward disper-

sion relations will be discussed. A more detailed account may be

found in the papers by Ericson and Locher3 and by Batty, Squier, and

Turner,4 and in the texts by Taylor61* and by Bransden and Moorhouse.87

The forward amplitude f(0°) is a function of the total laboratory

energy w = (k 2+m 2) 1' 2, where k is the momentum and m the rest mass,

and will be written as f(u) Hf(u>,0°)." It is useful to allow w to be

complex. Then it is assumed that f(o>) is an analytic function of the

complex energy w for all o>, apart from certain cuts and poles. Also

it is assumed that there are no singularities in f(u) for Im<D>0.

Now by assumption, the scattering amplitude f(u) is analytic for

Im at >0 so that Cauchy's theorem can be applied

f<«> • s r f
V*

The path of integration is along the closed contour C consisting of a

segment along the real axis from z = -L to z = +L and closed by a semi-

circle of radius L in the upper half plane, where us lies within the

contour C. If the integrand is sufficiently small at infinity, so

that in the limit L >~ the distant contribution to the integral is

negligible, then the only contribution to the integral will come from

the real axis
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By writing w + u+ie, where w and c arc real, c "•(), and taking the

limit as e goes to zero, f(u>) is given by

where P denotes that a principal value integral is to be taken. By

separating the real and imaginary parts of f(u). the basic forward

dispersion relations arc given by

and
CO

Imf(tu) * - P / 7 — - ^ d : (ISS)

In this work only equation (18-1) is of interest, ft is characteristic

that this relation involves positive and negative energies. To use

this relation, Iinf(u) for all real w must be expressed in terms of

measurable or calculable physical quantities.

Frequently equation (IS 8} does not converge because rhe distant

contribution does not vanish. Any function of f(u) that is annlytic

in the upper half plane could be used in this expression in place of

f(u), such as (u - w3)"
11 f (••••) - f (; J0 > |. where u»0 is an arbitrary init

fixed energy. If this is done, equation (IHI) becomes

or

Re f («) . Re f («0) * SLLSO ̂ .^1111^^ m7)



lunation fJs~| could ho obtained formally by subtracting f(w0) from

equat ion f is I), so that Kv f[.f,i i>knotkit as a subtraction term. Further

convergence way be obtained by repeated subtractions. The price paid

fur convergence is that f(v:,) is unknown.

•\nothcr relation that is necessary before applying the general

relationship of equation {1ST) is the crossing relation. This

relates the scattering .ifojtJitude ff~S of the particle to the scatter-

ing amplilUile f{») of its ani ipart iclr .iccording to

Also it should he notcU that lmfs-»J ~ -ls?(^j.

tn the physical region, frafj.i is taeasurable, l-'rom the total

cros> section -Mvl -Hid the optical theorem.

l o r the a«t ipar t i c l e of energy ^« -^ • &_ and taoncntuss k,

ImftZ-} • ̂ £*- 3

so that

fj ^AlL:.fJ.

the t;%M equation fol lo»»rs from the crossing relation.

Tlte unphy^icai region for »•>nucleus scattering includes in

general many jwles corresj»oiHiing to nuclear excited states, and pion

absorption extends as a ct»t belovs the threshold for scattering.
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The amplitude to be used is f*(w) defined by

f*(«) = U^M • f^-M). (189)

which is symmetric under crossing f (-u>) = *f *(w), with the corres-

ponding total cross section

<»*(«) • il^.l") • o^CuJJ. (190)

In equation (18?) it is convenient to do the subtraction at the

threshold for scattering with >̂o = m^- Collecting the above results

and using k' = ur -m 2, the forward dispersion relation for f* for

--nucleus scattering becomes

i> e* t ^ o e*f i V ̂ Sl{ k* 2kZ-r^ u'du' Imf»(w')
kef (u.) - Ref fmj = izT^JTF? + T " PJ PTfu'S - > )

(191)

The summation term on the LI IS of equation (191) is the contribution

of the poles in the unphysical region, where w., k., and r. are the

total energy, the momentum, and the residue of the i-th pole. Also,

•j| is an energy close to u = 0 so that the unphysical region in

equation (191) is 0 = wi<u)<m.

It is argued by Ericson and Locher3 that the contribution of the

polo terms can be neglected, so that the final expression for the

dispersion relation becomes

Ref(w) • Ref (m̂ ) • =^~P/ -k,2(J2'_ Jg) <I92>
0

where Imf*(w')= — V • II was tn^s expression that Batty,

Sqnier, and Turner14 used in their calculations.
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