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ABSTRACT

MEASUREMENTS OF PION-HELIUM TOTAL CROSS SECTIONS
AT EXNERGIES FROM 51 TO 105 MeV
BY

KENNETH FLOYD JOHNSON, B.S., M.S.

boctor of Philosophy in Physics
New Mexico State University
Las Cruces, New Mexico, 1976

Professor George R. Burlescen, Chairman

Measurements of ni-“He total cross sections have been made at
energies from 51 to 105 MeV using a superfluid YHe target at the
Low Energy Pion channel of the LAMPF accelerator in Los Alamos,
Pions were selected with either a DISC counter or a time-of-flight
system. The scattered pions were detected by a series of circular
plastic scintillation counters using standard transmission tech-

niques. The resulting partial removal cross sections were

xi



extrapolated to zero solid angle after being corrected for Coulomb
effects, pion decay, accidental counts, counter absorption and
efficiencies, and statistical correlations. The resulting statisti-
cal errors were generally ~3-5%. The measured total cross sections
were found to be in good statistical agreement with previous
measurements and in poor agreement with the predictions of several
optical potentials in current use. Through an optical theorem the
imaginary part of the forward scattering amplitude was found. The
total cross sections have been used with previously-measured angular
distributions through a phenomenological model to obtain the real
part of the forward scattering amplitude at four energies between
50 and 75 MeV. These results were found to be in good agreement

with forward dispersion relation calculations.




1. INTRODUCTION

Ever since their discovery in 1947,! and their later production
by particle accelerators, pions have been used to probe the nucleus.
The early experiments suffered from the low intensity and poor energy
resolution of the then available pion beams as cormpared to conven-
tional nuclear beams (protons, neutrons, alphas, etc.j. In recent
years, the quality of data from pion-nucleus scattering experiments
has greatly improved and a review of these experiments is given by
Stroot.? They are expected to continue to improve with the completion
of the new meson facilities. They will provide high-intensity pion

beams with good energy resolutior.

The Pion as a Nuclear Probe

There are several properties of the pion which make it attractive
as a nuclear probe. The mass of the charged pion is mwi==139.6 MeVv,
and that of the neutral pion is m_o =135.0 MeV. This makes the pion
the lightest of the strongly-interacting particles, having about 1/7
the mass of a nucleon. Cansequently, a nucleon in the nucleus is
less likely tec suffer severe recoil effects in pion scattering than
in the scattering of other strongly interacting particles.

The charged pion has a long lifetime (26 ns) which allows beams

of charged pions to be transported over reasonable distances. The

. . p
mean decay length A of a charged pion is A==mé; ¢t or A=5.56P cm

2

where P is the pion laboratory momentum in MeV, mc“ the pion rest

energy in MeV, and ct the mean lifetime in cm.



Another property which makes the pion a useful probe is its
zero spin. This greatly simplifies the theoretical analysis of pion
reaction and scattering processes. Furthermore, it means that the
pion is a boson. It can be created or destroyed singly. Pion
production and absorption processes are fundamentally different from
processes involving nucleons alome. Pion absorption has a drastic
effect on a nucleus because it gives a minimum of ~140 MeV to the
nucleus.

The pions (ﬂ+, 70, ©7) form an isospin triplet. This is of use
in theoretical attempts to separate electromagnetic from strong inter-
action effects. The symmetry is not perfect since nuclei consist of
rieutral and positively-charged nucleons. Thus, in scattering off
nuclei, positively- and negatively-charged pions of equal energy will
experience different Coulomb effects which are not easily calculable
in a model-independent way. Neutral pions have too short a lifetime
to be a useful nuclear probe, The three charge states allow the pion
to undergo double charge exchange in pion-nucleus scattering. This
is an exotic feature not available in nusleon-nucleus scattering.

Another useful point about the pion as a nuclear probe is that
the wm-nucleon interaction is simple to describe theoretically in the
isospin T =3/2 state (i.e., n+p or T n interaction). In addition,
the T=23/2 state is much stronger than the T=1/2 state in the energy

range 50 to 400 MeV. This aspect of the w-nucleon interaction will

be discussed later.



The increased interest in the pion as a nuclear probe has led
to the building of meson facilities such as LAMPF (the Clinton P.
Anderson Meson Physics Facility at the Los Alamos Scientific Labora-
tory), TRIUMF (the Tri-University Meson Facility in Vancouver,
Canada). and SIN (Schweizerisches Institut Fiir Nuklearforschung in
Zurich, Switzerland). The LAMPF machine is an 800 MeV proton linear
accelerator with a design average beam current of 1 mA. The TRIUMF
machine is a 500 MeV H™ «yclotron and the SIN machine is a 510 MeV
proton ring-cyclotron. The TRIUMF and SIN accelerators both have a

design dverage d>eam current of 100 uA.

Total Cross Section Measurement

The nuclear total cross section OroT is defined as the sum of

the total nuclear elastic cross section Une and the total nuclear

rexaction cross section o,

10T = %ne ¥ Or 1)

In general it is of physical interest because it readily gives an
overall picture of the strength of the interaction. Total cross
sections provide constraints on the analysis of elastic scattering
data through certain model-independent relations with elastic
scattering amplitudes. Through the optical theorem SroT is related
to the imaginary part of the elastic forward scattering amplitude f

by

4 o
Sror = 1 Im£(0°) (2)



where k is the pion wave number. Relationships also exist (forward
dispersion relations) between the total cross section and the real
part of the forward scattering amplitude Re f(0°). These forward
dispersion relations®s* allow the calculation of Re £(0°) in terms
of an integration of Im €(0°) or the total cross section 9ot OVer
all energies. They can be used with the difference in total cross
sections Ac =(0+6T -Uf%T), where Srot is the m -nucleus total cross
sections, to determine an effective pion nucleus strong coupling
constant. >

In principle, one of the "easiest" and most precise measurements
is the total cross section. It is determined from a transmission or
attenuation measurement of a beam of particles through a slab of the
nuclei under study. When a new energy range becomes available at a
new accelerator, total cross section measurements are among the first
tc be performed. In the past, this has been highly rewarding, leading
to the detection of new resonances or new features of the interaction.

In general, measurements of the total cross section are less
sensitive to some effects than would be the measurement of an appro-
priate partial cross section. However, the simplicity and high

precision of total cross section measurements compensate for their

lack of sensitivity.

Pion-Nucleon Total Cross Sections

One of the priacipal reasons for using the pion as a nuclear

probe is the strength of the pilon-nucleon interaction at energies



below 500 MeV. Below 100 MeV, the pion-nucleon (w-N)} total cross
section is cunsiderabiy less than the nucleon-nucleon (N-N) total
cross section which means that the w-nuclecn interaction is weak and
the pion de Broglie wavelength is large compared to the nuclear
radius. Between 100 and 300 MeV, the n-N total cross section is
dominated by the (3,3) resonance. Above 300 MeV, the 7-N cross sec-
tion is comparable to the N-N crcss section which is steadily decreas-
ing as the energy is increasing. At these energies, the pion
wavelength is less than the nuclear radius.

The (3,3) resonance gives a large peak in the 7-N total cross
section occuring at approximately 180 MeV. The resonance derives its
name from the fact that it occurs in the angular momentum J = 3/2,
isospin T =3/2 state. The peak for ﬂ+p is nearly three times larger
than the peak for = p. This is because ﬂ+p is a pure T=3/2 state
while n p contains an admixture of the T=1/2 state. The J=3/2
means that this is principally p-wave scattering. From the assumption
of charge independence and from isospin considerations, the total
cross sections for ﬂ+p (v p) and 7 n (n'n) should be equal. This is
of interest in the analysis of w-nucleus scattering.

A good discussion of the properties of the pion and of the

pion-nucleon interaction may be found in the text by Lock and Measday.®



Pion-Nucleus Total Cross Sections

Prior to 1973, there was little data on m-nucleus total cross
sections. Since then systematic data has become available at Ruther-
ford Labs,” CERN,8 BNL,? and at LAMPF,

The interest in pion-nucleus total cross sections comes from
several sources. First there is the question of whether or not the
(3,3) resonance continues :o be present at all. Of more interest is
the comparison of measured total cross sections to the theoretical
optical model predictions. Because the pion-nucleus interaction is
a many-body problem, attempts have been made to reduce it to a two-
body problem via an optical model. An optical model replaces the
various interactions by a single potential between the incident pion
and the target nucleus. It contains both a real and an imaginary
part to simulate both the elastic and reaction channels. Since an
essential requirement of any optical model is that it be able to
predict the total cross section, it follows that precise measurements
of the total cross section as a function of energy and atomic number
will be a stringent test of any optical model. These measurements
can find classes of acceptable models and set limits on their energy
range of applicability. Unfortunately, as will be seen later, there
is some difficulty in this approach. The extraction of a total cross
section from the raw data cannot be done in a model-independent way.
A deviation from this standard approach has been proposed by M. Cooper
and M, Johnson.!® It is a model-independent analysis leading to an

in-egrated cross section different from the standard total cross



section. This technique was not used in the present work and is
mentioned only for complcteness.

The large enhancement near resonance of ﬁ+p {m n) over n p (n+n)
total cress sections suggests using the pion as a probe of the nuclecon
surface distribution in a nucleus. At the resonant encrgy, the mean
free path of the pion in the nucleus is so small that it only inter-
acts with the surface nucleons. Specifically, it should be possible
to look for the neutron halo of neutron-rich nuclei using the proton
distribution as determined from electron scattering.

Lastly, it is possible to find Re f(0°) using a phenomenological
model for the strong amplitude, valid for scattering angles inside
the first minimum of the elastic differential cross section. Inputs
for this analysis include the total cross section and elastic
differential cross section data for both #° and ©~. The resulting
Re £(0°) can then be compared to forward dispersion relation calcula-
tions in an attempt to verify them experimentally.

There are several good review articles on the pion iucleus
interaction such as those by Eisenberg,!! Koltun,!2 Sternhiem and

Silbar,!3 and Hiifner.l"

Dissertation Experiment

The thrust of this experiment was twofold. The first was to
measure the nuclear total cross section for both 7° and =~ at low
energies on a suitable target, Because of the Coulomb problems

encountered at low energies, a low Z target, “He, was chosen. The



total cross sections were measurced at pion laboratory kinetic cpergies
of 31, 61, 75, 85, 95 and 105 MeV.

The =" - “Me total cross sections of this experiment have been
compared to the limited number of previous total cross section mea-
surements for “He. The agreement was found to be recasonably good.

There has been a shortage of low energy data to compare to
theoretical models, and the comparisons that have been made have shown
extremely poor agreement. As wiil be discussed tater, there has been
a growing literature on the subject. The “He total cross sections
of this cxperiment have been compared to several optical potential
models for the w-nucleus interaction. These models contain adjustable
parameters and the effect of changing these parameters on the agree-
ment between data and models has been investigated in a limited way.

With the measured “He total cross sections of this cxperiment,
the previously measured 7" - YHe clastic differential cross sections,
and a phenomenological model for the nuclear elastic scattering ampli-
tude, the real part of the forward nuclear elastic scattering ampli-
tude was found at pion laboratory kinetic energies of 5i, 60, 68 and
75 MeV. The results were then compared to two dispersion relation
calculations of the real part of the forward amplitude as a function
of the pion laboratory kinetic energy.

In addition to the "He cross sections, the nuclear total cross
sections for »t and 7~ were measured for the isotope sets (IZC, l3C),
(60, 180), and (“°Ca, ““Ca, “8Ca, with natural Ti) at pion kinetic
energies between 85 and 200 MeV and for 18 nuclei with 4 <A <208 at

85 MeV (A is the mass number).



“The isotope measurements were made to look for the presence of
a neutron halo in those isotopes which are neutron-rich. For the
self-conjugate nucleus in cach isotope set, presumably the neutron
and proton distrilbutions are the same. By comparing the total cross
sections for m  and 7~ on a neutron-rich nucleus and a self-conjugate
nucleus in the same isotope set, the presence or absence of the
neutron halo should be detectable. The measurements on the 18 nuclei
at 85 McV were made to look for the A-dependence of the total cross
section at a fixed cnergy. The results of these measurements will be
d:scussed elsewhere.

In Chapter 11, the general principies of a total cross section
measurcment will be given while in Chapters III and IV the experi-
mental layout and the data evaluation will be discussed. Chapter V
will contain the experimental results, comparisons to theory, and the

conclusions. The appendices will contain the details of some of the

data correction calculations.



II. PRINCIPLES OF A TOTAL CROSS SECTION MEASUREMENT

Elements of an Ideal “easurement

The usual definition of the total cross section Yot is that it
is the sum of the total elastic cross section O e and total inclastic
cross section O Ia a measurement of the total cross section, one
is measuring the cross section for all interactions to occur between
the incident particle and the target nucleus. This is accomplished
by measuring the flux of particles incident on the target and by
measuring the flux of removed particles into 4n steradians or by
measuring the flux of noninteracting particles at zero solid angle.
The actual method used is closer to the latter.

Since the total cross section for the strong interaction between
pions and nuclear matter is being sought, ideally a beam of w9 should
be used, so that the Coulomb interaction would be absent.

Since it is necessary to have detectors to measure the incoming
and outgoing pions, they should be such that they are a hundred per
cent efficient, do not disturb the beam, and are of infinitesimal
dimensions on a macroscopic scale. In the geometrical limit, the
beam should be a pencil beam. That is, it should have a negligible
spatial extent perpendicular to the beam axis and the particles
should have negligible momentum components in the directions perpen-
dicular to the beam axis. This would eliminate geometrical effects
which arise from the use of a beam with a finite size and finite

divsergence. This geometrical treatment of the beam is adequate if



the de Broglie wavelength of the incident picns is very small on a
macroscoj-ic scale as is the case in the energy range covered by this
cxperiment. When the geometrical limit is no longer valid, the beam
must be described by quantum mechanics (i.e., the particles in the
beam are represented by wave packets of various shapes and sizes).
An cxperimental arrangement for measuring totai cross
sections is shown schematically in Figure 1. It consists of three
elements., The first is a beam-defining counter, capable of detecting
individual pions, to measure the incident flux. The second is a
target containing a sufficient number of nuclei to obtain good
statistical precision on the number of pions removed. It must also
be sufficiently thin so that an incident pion interacts with at most
one nucleus. The third is a counter after the target to detect the
number of pions that did not undergo an interaction in the target.
The total cross section 1o is then calculated as follows. If
Ny is the number of pions incident on the target and N is the number
of pions which traverse the entire thickness of the target without

having encountered any interaction, then they are related by

N = Nge MTETOT (3)
or
1N
oToT = " at 1" N (4)

where t is the target thickness in cm and n is the number of scatter-
ing nuclei/cm3; n==A/Nap where A is the atomic mass of the target in g,

Na is Avogadro's number, and p is the target mass density in g/em3,

11



TARGET

BEAM

Figure 1. Schematic view of the experimental arrangement used
to measure the total cre-s section. The counters B; and By are used
to detect the incident and unscattered pions, respectively.

12



In principle then, the measurement of the total cross section is
determined by the attenuation cf the pion beam in passing through

the target of nt nuclei/cm?.

Complexities of an Actual Measurement

In this section the complexities of an actual measurement will
be discussed briefly, with the detailed discussion of these problems
deferred until Chapter IV.

The most serious difficulty in performing a measurement of the
total cross section is the inability of an experimenter to remove the
e¢ffects of the Coulomb interaction through the use of a 70 beam.

This is because of the short mean lifetime (0.84 x10-16 sec when at
rest) of the w0 before it decays, usually to two gamma rays. The
charged pions, when at rest, have a much greater mean lifetime of
2.6 x 10" sec before they decay into a muon and a neutrino.

If X is defined as the decay length in the laboratory, then A is
given by A==é%%cr where pc is the laboratory momentum in MeV, mc? is
the pion rest energy in MeV, and ct =780.4 cm is the mean life, in
cm, of the pion at rest.

Table I compares A for w° and 7 at two laboratory kinetic
energies. From Table I, it can be seen that only charged pions can
be transported over sufficiently long distances to make them useful
as strong interaction probes.

The use of — beams means that the measured total cross sections

are unavoidably composite cross sections (i.e., a mixture of the

13



Table I. Comparison of l+as a function of the laboratory
kinetic energy T_ for =9 and #~.

Tn(MeV) A“g(cm) A“i(cm)
50 2.34x 1076 7.17 x 102
200 5.68 x 10~6 1.73 x 103

Coulomb and strong interactions). The handling of these Coulomb
effects will be discussed in Chapter 1V.

As already mentioned, the pion is unstable and decays. The data
need to be corrected for this effect since it is a false removal from
the flux of incident pions. For example, in Figure 1 an unscattered
pion, - _ch decays before being detected by By, would be counted as
a scattered pion should its decay muon not be detected by B,. 1In
general, the muon does not continue in the same direction as its
parent pion.

The problem of the finite geometry of the detectors and the tar-
get, along with the finite size and divergence of rezl pion beams, can
give erroneous removal cross sections. It is not possible to con-
struct detectors for detecting the unscattered pions which subtend
zero solid angle at the target. This means that real detectors will
count pions that have been scattered at small angles. Thus the
measured cross section is less than the '"true' cross section. The
finite thickness of both the target and the downstream detector

create some uncertainty in the sclid angle subtended by the detector.
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The finite beam size and divergence make it possible for an unscat-
tered pion to miss the detector, which makes the measured cross
section too large. The above arguments are oversimplified since there
is a replacement effect because of the finite cross sectional area of
both the beam and target.

Another difficulty occurs because any detector placed in the
beam will act as a target. This is most serious for thke upstream
beam-defining detector system (this system identifies pions and puts
constraints on the beam divergence).

Furthermore, real detectors suffer from inefficiencies, absorp-
tion, and accidental counts. These must be accounted for to arrive
at the number of pions which should have been detected by a detector.

Lastly, there is multiple Coulomb scattering which will be
trcated separately from the other Coulomb effects. This process is
statistical in nature and results in particles being scattered at
small angles. This undesirable effect can be reduced by decreasing
the number of scattering centers in the target (i.e., by making the
target thinner). Unfortunately, this decreases the number of pions

which are scattered by the strong interaction, and some compromiss must

be reached.

Elements of an Actual Measurement

As in the 1ist section, much of the following discussion will be

treated in grester detail later. In this section the aim is to show
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how a total cross section can be measured in view of the complexities
discussed in the last section.

In the ideal experiment, the incident pions had to be detected
individually to obtain the incident flux. In an actual experiment,
this is, of course, still true, but with the further complication that
the beam is contaminated with muons and electrons. Thus the beam-
defining counters must have the capability of distinguishing between
different species of charged particles.

In addition, the beam-defining counters, through their geometry.
put constraints on the beam. The maximum acceptable divergence of
the beam at the target can be fixed by the beam-defining counters.

The spatial extent of the beam, perpendicular to the beam axis, is
set by the pion channel magnets through which the pion beam comes.

A target cannot be made sufficiently thin that an incident pion
interacts with at most one nucleus. Its thickness is chosen to
minimize some of the effects discussed in the last section.

The detector, downstream of the target, canmnot, of course, be
made to subtend zero solid angle at the target, and, even if possible,
it would not be desirable since a real pion beam is not a pencil beam.
The problem is handled by the use of a circular counter which sub-
tends a solid angle @ at the target. A circular counter is used to
match the roughly circular geometry of the beam,

An attenuation measurement is performed and a cross section is

calculated using

o(R) = L ln[N(Q)] (5)
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This is different from equation (4) because the counter now subtends
a solid angle 2 at the target and the number of particles it detects
N(?) is a function of 2. The cross section o(?2) is not the total
cross section but rather the partial cross section for scattering
outside of 2, The counter is then moved to a new position subtending
a new solid angie @', and the measurement is repeated yielding a new
partial cross section o(2'). This is repeated for several solid
angles, and an extrapolation to zero solid angle is made, yielding
the total cross section.

An alternate procedure, shown schematically in Figure 2, is to
use a series of circular coaxial counters of increasing radii so that
several partial cross sections may be measured simultaneously. These
counters are called transmission counters. Unlike the first method
where each o(R) was statistically independent, these o(2) are statis-
tically correlated. Each counter counts the same particles as the
smaller counter in front of it plus a little extra. Because of the

correlations, the extrapolation to zero solid angle must be done with

care.

Data Analysis

In this section, the procedure will be discussed for extracting
the strong interaction total cross section from a set of measured
partial cross sections,

For each of the transmission counters T{ in Figure 2, a partial

or removal cross section o(2) is calculated from equation (5). This



TARGET

Figure 2.
to measure o(R).

Schematic view of the experimental arrangement used
The By counter is used to detect the incident

pions. The Ty through Tg counters are used to detect the scattered

pions.
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a(2) contains many background effects which are handled to first
order by comparison of target "in' and target "out" data runs. If

T (B) denotes a target (blank) run, then from Allardyce et al.,!3

Ng(2) = Npoexp(-A) (6)

NT(Q) Nrocxp(-A)exp(wnta(ﬂ)] . (7

where A is a measure of thc beam attenuation due to all effects
which are independent of the target's presence such as absorption in
the air and other materials surroundingy the targe: nd transmission

counters. So o(R) is then given by

)
N
I To
a{) = - s In INB(Q)
¢ wNBo
or
Ro ()
o) = nt in _R_-(?ZT {8)

where R(Q) = &r(ﬂ)/NTo {Ro(Q) = NB(Q]/NBG) is the fraction of the beam
detected by the transmission counter for the target "in" ('out" of)
the beam. The partial cross section 6(2), R(Q), and Ry(2) are written
as functions of ¢ since cach counter subtends a different 2 at the
target.

Now o(f1), as given in cquation {8), still contains effccts which
are not necessarily the same for both the target and biank runs.
These include the efficiencies of the transmission counters along with

absorption and accidental coincidences in the counters. There are
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also pion decay and multiple Coulomb scattering. All of these effects
will be treated in detail in Chapter IV and the appendices.

After o(2) is corrected for the above effects, there remains the
question of what is the physical meaning of o(22). The partial cross
section o(2), as seen by the i-th transmission counter, measures the

cross section for scattering outside the solid angle @ subtended by

the counter at the target. This is

A dOJ IQ do
Q) = [ |55] de - —J de 9
o £ [dﬂ " o 0 [dg iner™) ®

where [g%} ] is the elastic scattering differential cross section,
‘je

o is the total reaction cross section, and ﬁBZ. is the differen-
r d@Jinel
tial cross section for all inelastic interactions. Now [g%} 1 is
ldije

given by

do _ 2

[dQJel - lfc * fn[

- 2 2 *
[£.12 + |£ 12 + 2Re(f *£ ), (10)

where £ and f_ are, respectively, the Coulomb and nuclear elastic

scattering amplitudes. Also [g%} can be written as
e
do _ |do do do
[Eﬁiel - [dg]c * [dg]ne * [dg]cn (n
do do do .
where [dg]c’ [dQJne’ and [aﬁicn are the Coulomb, nuclear elastic,

and Coulomb-nuclear interference elastic scattering differential cross

sections. From equations (10) and (11)

do
[agg}c = |£,]2 (12)
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do] l 2
= =112 (13)
[dQ ne n

and
dat .
[‘m]cn = 2Re(f_*f ) . (14)
Starting with the definition of the total cross section
GTOT'=Ohe +ar, one can write OTOT as
Q - 47
do [do]
g = g + == + —-— dQ 15
TOT Ty [dQJne é dQne (15)
4 g
If an equation (15), f [3%] d@? is solved for and used along with
Q ne

equations (9) and (11), then o(R) can be written as

o(2) = o + f4ﬂ dol , |d9] I4g
~ UTOT d2) ¢ d2)¢cn

Q

Q
do + QEJ d 16
g [[ Q}ne [dQ inel’ Q (1e)

or
_ "((do do
“ror = °@ -/ (), -« ()

Q
do 92} }d 17
' g [[ Q}ne ' [dQ inel # ’ an

The usual experimental procedure for obtaining the total cross
section 9roT is to take the measured values of o(Q) for each trans-
mission counter and to subtract the first integral on the right-hand
side of equation (17). The resulting removal cross sections O.m 2T€

then fitted with a polynomial in f, usually linear or quadratic,
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using the method of least squares. Sometimes the fit is a polynomial
in t, the square of the momentum transfer for elastic scattering;
t=-2p2(l-cos8) or t=1 -i—pzn, where p is the pion center-of-mass
momentum and  is the center-of-mass scattering angle. An extrapola-
tion to zero Q or t is then made yielding the total cross section.
The justification for using a polynomial in t (or Q) is presented
< :16 . . do do
by Giacomelli‘® and is based on the assumption that |- and [~ .
dQ)ne d®}inel
are roughly exponential in t (or ) before the first minimum in
[g%) . This is satisfactory since all of the measured o(R) are at
*Jne

values of t inside the first minimum. Then after subtraction of the

Coulomb and Coulomb-nuclear interference terms in equation (16), o(R)

is
fQ do do
U(Q) = g - [[—] + [—] ]dﬂ (18)
TOT o d2j e d9J;inel
Q
= oror " f [aebs2 + cedg]dﬂ
0
= a. bo c, do _
oroT " [b(e 1) + d(e 1)] s

where a, b, ¢, and d are constants. If the exponentials are expanded,

then o(Q) becomes

cd
o(2) = opgp - (@+c)9 - %{b-+:;992 + een

or by renaming the constants
o(R) = A+ BR + cQ2 + ose (19)
or equivalently
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a(t) = A+ B't + C't? + ves | (20)

where A:=0T0T. Thus the partial cross sections may be approximated
by polynomials in Q@ or t. To include higher-order terms in t, Allaby,
et al.!7 fit the partial cross sections with o(t) = exp(A + Bt + Ct2)

where o = exp(A).

TOT
The procedure is thus, in principle, quite straightforward.
tHiowever, because fn is highly model-dependent, the resulting SroT is

also model-dependent. Now, even though the Coulomb-nuclear inter-
ference correction is model-dependent, it is princip2ily a small-
angle effect, typically for angles less than 10°. This is especially
true for light nuclei (ec.g.. “He and 12C) at energies near the (3,3)
resonance. The interference correction increases as Z, the nuclear
charge, increases and it also increases as Tn, the pion kinetic
energy, decreases. For the large transmission counters subtending
angles greater than 10°, this correction is typically 1.5% or less
for “He for T1T in the range 100 to 250 MeV. Below 100 MeV, the
interference correction begins to increase going from a 1% correction
at 10° and 100 MeV to a 10% correction at 10° and 50 MeV. This
correction is roughly model-independent and will be further discussed
in Chapters IV and V.

Thus this typical analysis, when applied to the case of “He with

(o]

small T, yields a 9roT that is fairly model-independent because

is small. The model-dependent features contribute an uncertainty

e

of ~#5%.
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Finally, a practice which is somectimes adopted is to take a
model amd calculate the integral over {g%- in equation (18). Then
“Ine
this is added to each partial cross section o() before making the
extrapolation to 2=0. Because this integral goes to zero as { goes
to zero, it does not affect the extrapolated cross section o(u=0).
However, it can serve as a smoothing function to allow the possible

use of a lower-order polynomial in the least squares fit to the

data,



ITI. EXPERIMENTAL DESIGN

LAMPF

The experiment was performed at the Clinton P. Anderson Meson
Physics Facility {LAMPF) at the Los Alamcs Scientific Laboratory.
The heart of the facility is the 800 !MeV proton linear accelerator
with a design average intensity of 1 mA. A layout of LAMPF is shown
in Figure 3. Figure 4 shows a detailed layvout of Beam Area "A"
which is the pion experimental area. For more information on the
general facilities of LAMPF, a good reference is the LAMPF Users

Handbook .’ 8

Pion Beam

The Low Energy Pion Channel (LEP) was used as the source of the
experimental pion beam. The channel and its characteristics are
described in depth by Amato et al.l? and Fulton?® and in less detail
in the LAMPF Users Handbook.'®

The pions were produced at Target A-1 shown in Figure 4. The
production target was 1 cm of aluminum, which was in the form of a
rotating wheel to reduce local heating effects.

The LEP channel was designed to provide ot beams in the energy
range ~20 MeV to 300 MeV. Thus it spans the energy range of the (3,3)
resonance and extends down to low energies. The layout of the
channel is shown in Figure 5. It consists of four rectangular bend-

ing magnets with two entrance and two exit quadrupole magnets. The
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bend plane of the channel is vertical to reduce the effect of the
production target length on the momentum resolution of the channel.
The channel is symmetric about a plane midway between the second and
third bending magnets. Located at the symmetry plane are vertical
slits which can be used to select the momentum bite Ap/p desired at
the channei exit. Immediately after the momentum slits is an absorber
to remove protons from the n" beam. The flux of particles through

the channel can be adjusted by four collimaters and also by the
momentum slit. The collimators determine the solid angle acceptance
and emittance of the channel.

The channel is capabie of providing both ©° and 7~ beams with a
minimum resolution of Ap/p= 0.05%. It is achromatic and isochronous,
which means that the position and angle of the exit beam are indepen-
dent of the momentum and that the channel preserves the 200 MHz pulsed
time structure of the beam. The beam size and divergence at the exit
can be varied by adjusting the exit quadrupoles. The length of the
channel was kept short in design (14 m including a 0.62 m drift space
after the last quadrupole) to minimize 7 decay at low energies.

The beam contamination consists of protons (for ﬂ+), muons, and
electrons. In addition, there is a neutron background. The protons,
which come from the production target, have the same momentum but
much lower energies than the positive pions and have a correspondingly
higher stopping power. They were eliminated by an absorber at mid-
channel which does not deteriorate the 7 energy very much,

The neutrons are produced both in the channel and at the produc-

tion target and come to the experimental area through the shielding.
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The magnitude of the background they produce is measured in the
accidentals, and, furthermore, their effect largely cancels out in
the comparison of target "in" and 'out" runs.

The muon contamination, coming from both the production target
and from pions decaying at thc end of the channel, and the clectron
contamination, coming from the production target, increase with
decreasing energy. They were eliminated by either a time-of-flight
system or a DISC Cherenkov counter, both of which will be described

in detail in later sections,

Experimental Arrangement

An idealized view of the counter arrangement, for a typical data
run, is shown in Figure 6. This shows the three essential elements
of the experiment, namely the beam-defining counters, the target, and
the transmission counters. The multiwire proportional chambers (MWPC)
in the downstream position are part of the transmission counters.
They could also be placed upstream between the halo counters and the
DISC, where, as part of the beam-defining counters, they gave informa-
tion on the beam profile at the target.

There was considerable versatility in the setup. The transmis-
sion stack and the MWPC box could be moved along a pair of rails on
the support table. The MWPC could also be moved along a pair of
rails mounted on the MWPC box. The target mechanism, second timing
counter, and halo counters could be positioned on either side of the

MWPC box. For those pion energies when the DISC was not in use, it
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could be rolled out of the beam on rails mounted to the floor.

Beam-defining counters. The beam-defining counters consisted

of the two time-of-flight (TOF) counters, the DISC, and a pair of
halo counters. When the “He target was used, a sccond set of halo
counters were placed immediately after the DISC. A description of
the TOF, DISC, and halo counters is given below, wlong with the pur-
pose of cach of them.

Time-of-flight. The time-of-flight system was designed, built,

and tested by M. Cooper.<! It consisted of two l-em thick Pilot-M
(manufactured by Nuclear Enterprises) plastic scintillators. The
light was collected by lucite light pipes which illuminated an
Amperex 56AVP photomultiplier tube. In the “lic data runs, the
separation between the two TOF counters was 113 cm. The diameters
of the scintillators were 5.08 cm and 2.54 cm for the first and
second TOF counters, respectively (see Figure 6). The small diumeters
were used to limit the acceptable beam divergence to #2°. The dia-
meter of the second TOF counter was less than or equal to the size
of the target.

The purpose of the TOF counters was for particle identification
(i.e., to remove the muon and electron background). They were used
to discriminate against muons and electrons by measuring the time
distribution (or spectrum) of particles in the beam, which corresponds
to measuring the differences in flight times of the particles between
the two counters. By suitably delaying the signal from the first
TOF counter by an amount equa! to the time-of-flight of the species

of particle desired, clean particle identification was achieved. As
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the enerygy of the particles increased, it became necessary to
increase tne distance between the counters to achieve particle
identitication. ‘This was not necessary at those energies where the
“fie data was taken.

A sccond mode of operation for the TOF system utilized the 200
MHz rf structure of the proton beam together with the isochronous
property of the LEP channel to gain an approximate 14 m of flight
path. The timing was then done coffectively between the A-1 production
target and the sccond TOF counter, with a flight path of 14.7 m.
This would not wori at all cnergics. For muons and pions with a
momentum of 195 MeV/c, for example, the flight time of muons over a
15 m path was shorter than the pion by almost exactly one rf period
(5 ns). This caused the muon and pion peaks to coincide becausc of
the repetitive nature of the rf signal.

By simultaneously doing timing between the first timing counter
TOFI and the second timing counter TOF2 and between the production
target and TOF2, a two-dimensional TOF spectrum may be made. An
example of such a spectrum, for 51 MeV n7, is shown in Figure 7. In
this figure, time-of-flight 1 represcnts time separation between
particles covering the flight path (14.7 m) between the production
target and TOF2. Time-of-flight 2 represents flight times between
TOF1 and TOF2 with a flight path of 113 cm. The scale for both is
200 ps per channel. The major groups shown are: upper right, pions;
lower right, electrons; and center left, muons from the production

target. The pion, muon, and electron peaks are well separated.
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Figure 7. A sample two-dimensional TOF spectrum for 51 MeV n~
coming from LEP. Time of flight 1 represents time separations
between particles covering the flight path (14.7 m) between the
production target and TOF2. Time of flight 2 represents flight times
between TOF1 and TOF2 with a flight path of 113 cm. The scale for
both directions is 0.2 ns per channel, The major groups shown are:
upper right, pions; lower right, electrons; and center left, muons
from the production target
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However, the simplest mode of operation of the TOF counters was
in conjunction with the DISC. Here they were used to count any
charged particle which fulfilled the geometry requirements they
imposed on the beam (i.e., no time of flight constraint was imposed
to select out a particular species of particle). To identify a pion
a three-fold coincidence was required with the DISC and the two tim-
ing counters. Pion identification was done in this way for pion
kinetic energies above 75 MeV. Below 75 MeV, the DISC would not
count pions and the TOF system was used exclusively.

The time resolution of the TOF system was *1/2 ns, allowing for
a clean separation of pions, muons, and electrons. There was less
than 1% contamination of muons and electrons. For more details on
the capabilities of the TOF system, the paper by M. Cooper?! should
be consulted.

The beam-defining system was kept reasonably short to reduce the
number of decays. TOF2 was smaller than the target so that all pions
which passed through it would hit the target and miss any surrounding
material (e.g., the target holders). However, because of the size
of this counter, it was possible for pions to miss it and still hit
the target. This could lead to undesirable effects, which were
removed by the use of the halo counters. These effects and the halo
counters are described in the next section.

Halo counters. The halo counters consisted of two barely

overlapping Pilot-M plastic scintillators with an opening left in the
center for the beam to pass through. The light from each scintil-

lator was collected by lucite light pipes which illuminated an
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EMI 9813B two-inch photomultiplier tube. The halo counters were
positioned just upstream of TOF2 (see Figure 6).

As mentioned in the last section, TOF2 was smaller than the tar-
get, This made it possible for a pion to miss TOF2 and still hit the
target. Such a pion could then scatter backwards into TOF2 and thus
be counted as a beam particle. It would appear as a removed pion,
since it would not be detected in the transmission stack, so that the
measured partial cross sections would be systematically too large.

Another systematic error arises if there are two pions traveling
together in time. Suppose one passes through TOF2 and the other does
not. Further, suppose the tagged pion interacts in the target and is
not detected by the transmission stack, while the untagged pion does
not interact in the target and is detected by the stack. This would
cause a scattered pion to be counted as an unscattered pion, so that
the measured partial cross sections would be too small.

The above effects do not cancel in the comparison of blank and
target data runs and must be compensated for in another way. The halo
counters were designed to remove these effects by detecting those
pions which miss TOF2 (i.e., they detect the beam halo). For example,
whenever the DISC and the TOF system identified a particle as a pion,
that event would be vetoed if a charged particle was detected at the
same time by either of the halo counters.

The opening in the halo counters was centered about the beam
axis; it was square and slightly smaller than TOF2. The square open-
ing was used simply because of the ease in construction. The mis-

match in geometry did not cause a significant change in count rate.
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The shape of the beam was nearly circular, with a radius of 1 cm,
so nearly all of the beam passed through the opening in the halo
counters.

The halo scintillators had to be kept small, while, at the same
time, they had to be large enough to mask the portion of the target
extending radially beyond the edge of TOF2. It was necessary for
the scintillators to be small because of a new effect created by
their presence. It was now possible for a perfectly good pion,
identified by the DISC and TOF, to interact in the target and
scatter backwards. If the pion hit the halo counters, the event
would be vetoed. The measured partial cross sections would be too
small because ''true" scattered pions would be discarded. To reduce
this effect, the halos were made small and placed 152.4 mm upstream
from the target to reduce the solid angle they subtended at the tar-
get. TOF2 was placed 101.6 mm downstream from the halos. This kept
it close to the target in order to minimize the number of tagged
pions that decayed between it and the target. It also kept small
the solid angle subtended by TOF2 at the target, which reduced the
number of backward scattered pions going into TOF2. This type of
event could be misconstrued as a new beam pion. 1nis fictitious
pion would be recorded as a scattered pion and would lead to the par-
tial cross sections being too large. Lastly, the separation between the
halo counters and TOF2 was small enough to prevent a pion with a
large divergence from not being detected by either one. Chapter IV

contains a discussion of how these effects were tested for.
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In the special case of the “He target, a second set of halo
counters was needed since the spatial extent of the *le target was
too large for the original halo counters to mask it, This set was
placed as far upstream as possible (i.e., immediately downstream of
the DISC).

The halo counters were mounted vertically and scaled separately.
A significant increase in counting ratz for either counter would
indicate a drifting of the beam caused by a drifting of the fields
of the bending magnets.

DISC. 1In addition to the TOF system, a DISC Cherenkov counter
was used for particle identification. DISC is an acronym for
Differential Isochronous Self-Collimating Cherenkov counter. The
general principles of operation will be reviewed below, More detailed
information on the design considerations may be found in the papers
by Meunier2? and by Leontic and Teiger.2® The original design for
the DISC used at LAMPF was due to Leontic and Teiger. However, modi-
fications were required for use on the LEP channel.

All Cherenkov counters use the property that whenever a charged
particle passes through an optical medium with velocity v, which is
greater than that of light in the medium, light is emitted at an
angle 8 with respect to the particle's trajectory. The angle 8 is
given by cos 8 =1/nf, where n is the index of refraction of the
medium and B8 =v/c, where ¢ is the velocity of light in vacuum.

Thus, if a light detection system is built which is sensitive
to the angle 8 at which the light is emitted, then the detector is

able to distinguish between particles with different velocities. 1In
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particular, for beams of particles having the same momentum, it will
be able to distinguish between different types of particles, since
their masses are different. Since these counters depend on good
velocity and angular resolution, they are ideally suited for particle
beams with good angular, spatial, and momentum resolution such as the
LEP channel.

Now a typical differential Cherenkov counter works as follows.
A flat radiator (i.e., a material in which Cherenkov light can be
produced) is placed in a beam with its face perpendicular to the beam
axis. Cherenkov light is emitted in the radiator in a cone charac-
terized by an angle 0, and the light will emerge at an anglre 6',
where sin8'=nsin®, and n is the index of refraction of the radi-
ator. If this light is collected with a spherical mirror whose
optical axis coincides with the beam axis, it will form a ring image
in the focal plane of the mirror. The radius of the ring will depend
on the velocity 8 of the particle, and the position of the center of
the ring will depend on the angle of the particle's trajectory with
respect to the beam axis. Both are independent of the displacement
of the particle's trajectory from the beam axis. In a DISC counter
the ring is detected by a bank of photomultiplier tubes.

In the design of a differential Cherenkov counter, several prob-
lems have to be overcome. One arises from effects which introduce a
spread A® in the Cherenkov angle 6. This results in a loss of
efficiency due to light missing the photomultiplier tvbes and a loss

in velocity resolution, given by the expression %§4=A6(n262 —1)1/2
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or AB/B=tan®A8. To find conditions for distinguishing between
pions and muons, let AR/8 = (Bu--ﬁﬂ)/ﬁTI where BTT and Bu are the pion
and muon velocities. This condition puts constraints on the maximum
acceptable magnitude of A8, since if A6 should exceed this the
counter's ability to distinguish these particles could be diminished
or even destroyed. Now, contributions to the angular spread A6 come
from multiple scattering in the radiator, beam divergence, momentum
spread of the beam, and optical aberrations. Neglecting the latter,
which can be corrected for, one has 48 = [(Aa)s2 + (AGB)Z + (AeAp)Z]l/2
where Aes is the contribution due to multiple scattering, AGB is that
due to beam divergence, and AeAp is that due to momentum spread.

The optical aberrations fall into three classes. There are
geometrical aberrations in the optical system, variations in the
angle of the Cherenkov light due to dispersion in the radiator, and
absorption of the UV portion of the Cherenkov spectrum by elements
in the optical system.

If A8' is the angular width of the photomultiplier tube aperture
and A6 the angular width of the ring image, there is a loss of
efficiency when A8' <A9. A particle passing through the radiator
with a large angular divergence, or far off the central momentum, or
experiencing large multiple scattering will usually not produce a
Cherenkov light cone detectable by the phototubes and will be
rejected by the counter. This illustrates the self-collimating
feature of the DISC., It should be noted that if A8 is too large, it

becomes possible for the light cones of different particle species
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to overlap. By making the aperture A8' small, it is still possible
to get a pure signal but with reduced efficiency.

Another consideration in the design of these ccunters is the
electronic efficiency. If the average number of photoelectrons
detectable by all phototubes is n and if the electronics is capable
of detecting single photoelectrons, then the efficiency ¢ for a

q-fold coincidence arrangement of the phototubes is

e(q) = (1- exp(-g-))q

It is important for good efficiency that n be fairly large. Since n
is proportional to the radiator thickness £, increasing % increases
n. Unfortunately the multiple scattering increases as (E/Erad)l/z,
where Zrad is the radiation length of the radiator. Therefore, the
actual £ used is a compromise.

The basic design for the DISC is shown schematically in Figure
8. There were two coaxial circular ports in the center of the counter
for the beam entrance and exit. All elements of the counter were
coaxial about a line through the center of these ports. When placed
in a beam, this line, which defines the optical axis, was made to
coincide with the beam axis,

The cell indicated in Figure 8 contained a liquid radiator. Its

entrance window was 0.38 mm of Al and its exit window was 2.54 mm of

Vycor (quartz). The cell diameter was 12.7 cm, which defined the

maximun sensitive region of the DISC. It was mounted in a holder

which could be moved along the optical axis by an electrical stepping
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Figure 8. A schematic view of the DISC. The cell contained
the liquid radiator. The Cherenkov light from thec radiator was
collected by the spherical mirror and lens systemn, focussed on the
conical mirror, and dete~ted by the coincidence nr anticoincidence
channels. The figure was adapted from Ref. 23,



motor. Some of the characteristics of the different liquid radiators
used in the DISC are given in Table II. These include the index of
refraction, density, radiation length, and thickness. For each
radiator there was a characteristic piom velocity range AB1T for which
the DISC would detect pions. This, along with the corresponding
kinetic energy range AT1T and momentum range AP“, is given in Table
II. Muons from the production target have P, =Py and Apu= ap_. The
velocity range ABu’ corresponding to Apﬂ. is also listed, The radi-
ator for each energy range ATTr was chosen so that the Cherenkov light,
for pions with energies covered by AT“, would be detectable by the
GISC's optical system.

The Cherenkov light from particles passing through the radiitor
formed a ring in the focal plane of the spherical mirror and lens
system. The lens was made of lucite and used to correct for disper-
sion in the radiator. The diameter of the ring was dependent on the
particle velocities. To f.cilitate light collection by the detection
system, a conical mirror was employed which projected the focused
light rings onto an imaginary cylindrical surface. Therefore by mov-
ing the detection system along the optical axis, it can be brought
into the position required for a given velocity response of the
counter. This light detection system consisted of two groups of nine
phototubes (two-inch EMI 9813B photomultiplier tubes). Each tube
was connected to a light guide which was mounted on a plate. The
detector formed a circle centered ahbout the optical axis and could be

moved by a stepping motor along the optical axis.



Table II. Characteristics of the liquid radiators used in the DISC. These include the index of
refraction n, the density p, the radiation length 2,4, and the thickness £. Also given are the pion
kinetic energy range AT,, momuntum range Ap,, and velocity range AB; in which cach radiator was used.

Lastly, the muon velocity range AB, for muons with Ap,, = Apy (i.e., these are muons from the produc-
tion target with P, =Pg) is listed.

vy

=

- cmT

;Zfl:§g§ n o elp/em?) . (cm) A(cm) AT, (MeV) &P (MeV) 88 o8,

cs, 1.630  1.266 18.6  2.03  60-75  140-160 0.715-0.760 0.800-0.836
CS, & Isopropanol (Csll,0H) 1.550  1.188 39.2  2.03  75-90 160-180 0.755-0.795 0.836-0.8064
Decahydronapthalene (CyoHyp) 1.476  0.887 §2.0  2.03  ©90-120  189-220 0.790-0.840 0.864-0.902
2,2,4 Trimethylpentane (CgHyp) 1.392 0.692 70.7 2,08  115-160  215-265 0.835-0.885 0.899-0.930
Methanol (CH30H) 1.331  0.79 $4.2  2.08 150-240  255-350 0,875-0.930 0.925-0.958
2,2,2 Trifluroethanol (CoF30l3) 1.291 1,382 25.8  2.10 190-360  300-480 0.905-0.960 0.944-0.977
Preon C-51-12 (CgFy3) 1.256° 1,672 20.6 2,10 240-670  350-800 0.930-0.985 0.958-0.991




The upstream (downstream) detector group was the anticoincidence
(coincidence)} ring (see Figure 8). The coincidence ring of photo-
tubes was set to detect Cherenkov light from pions with the proper
velocity, Cherenkov light from particles with larger velocities
(such as muons) and/or outside the angular acceptance of the DISC
(i.e., particles with too great a divergence) was detected by the
anticoincidence ring. Any signal from the coincidence ring was
vetoed if there was a signal from the anticoincidence ring. To avoid
a blind region between the two phototube rings, the two sets of light
guides were placed one flush with the other. The opening aperture
for the coincidence ring light guides was 1.5 cm which allowed for a
maximum beam divergence of approximately +34.

The logic diagram for the DISC is shown in Figure 9. The nine
phototubes in the coincidence ring were broken into three groups of
three., The signals for the three tubes in each group were added
together, with the combined signal going to a discriminator. The
output then went to a coincidence unit where a two-out-of-three
coincidence lugic identified a pion. The nine anticoincidence tubes
were all added together and sent to a discriminator. The output went
to the coincidence unit as a veto. The output from the coincidence
unit was then required in a two-fold coincidence with a signal from
the TOF counters to identify a pion onto the target.

To insure that the DISC worked properly, several tests were made.
The first one was to produce a curve similar to the one in Figure 10,
which was made by Leontic and Teiger23 when they tested their DISC

in a kaon beam. For these tests, their DISC was placed in a beam
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Figure 9. Fast logic diagram for the DISC. The numerals 1
through 9 and 10 through 18 refer to the phototubes in the coinci-
dence nd anticoincidence channels, respectively. M, D, C, and S
stand for dc mixer, discriminator, coincidence unit, and scalar,
respectively.
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Figure 10. Performance curve for the DISC used in Ref. 23. It
shows the 7 and K peaks as a function of the position of the coin-
cidence channel when their DISC was placed in a 1.30 GeV/c K beam.
The curve is described in detail in the text.
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along with a scintillation counter telescope S. The number of counts
in S and the number of coincidences S+C:C were scaled where C and C
are signals from the coincidence and anticoincidence rings, respec-
tively. Then the ratio S+C-C/S was plotted versus the position of
the phototube ring (in arbitrary units). The result shows two peaks,
due to w and K . It should be noted that their coincidence ring was
also split into three groups of three tubes each. The signal C was
the result of a three-fold coincidencc between the three groups.

A similar curve, produced by placing the LAMPF DISC in the LEP
channel pion beam, is shown in Figure 11. The test was made for 100
MeV v+. The number of TOF+DISC cuvincidences, normalized to the number
of TOF counts, was plotted versus phototube ring position in arbitrary
units. Note that the TOF counters were not used in their time-of-
flight mode. For this test, a three-fold coincidence was required
between the three groups of tubes in the coincidence ring. No muon
peak was seen, as expected. From Table II, it can be seen that at
100 MeV ABTT and ABu do not overlap and so there should be no muon
peak. This was still true at 200 MeV, which was the highest energy
at which the DISC was operated.

In addition to the muons from the production target, there are
muons from pions decaying after the last bending magnet. Because of
the TOF geometry, only backward or forward decay muons could be mis-
taken for pions. In Table III, the minimum and maximum velocity of
the decay muon (corresponding to backward and forward) is given for

different pion velocities, The probability that they could be iden-

tified as pions is small.
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Figure 11  Performance curve for the DISC used in this experi-
ment. It shows the 7* peak as a function of the position of the
coincidence channel. The curve is described in detail in the text.



Table III. Kinematics for n decay (w-+u), T; and B, are the
pion kinetic energy and velocity, 8, is the muon velocity for py =pg
where p, and p, are the pion and muon momentums. T, (min) (T, (max))
and 8y, (min) (Bu (max)) are the minimum (maximum) kinetic energy aad
velocity of the decay muon. All the energies are in MeV.

T" B7r Bu Tu(min) Bu(min} Tu(max) Pu(max)
50 0.677 0.772 i7 0.49 71 0.80
100 0.813 0.879 41 0.69 124 0.89
150 0.876 0.923 68 0.80 175 0.93
200 0.912 0.946 95 0.85 227 0.95
250 0.934 9.960 123 0.89 278 0.96
300 0.948 0.969 150 .91 329 0.97

Electrons, at the energies in Table II, have velocities of B=1.
Therefore they are not detectable by the DISC. At two energies, 90
and 150 MeV, the TOF counters were set to measure time-of-flight.
When the DISC was put into coincidence with the TOF system, the
electron and muon peaks disappeared from the time spectrum.

At each energy where the DISC was used a curve such as that in
Figure 11 had to be made. For the data run the phototube ring would
be positioned on the peak of the curve. However, instead of a three-
fold coincidence from the coincidence ring, a two-out-of-three
coincidence was used. The effect of this on the curve in Figure 11

was to increase the counting rate on the peak by a factor of three.
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The increased counting rate is attributed to the low intensity of
the Cherenkov light.

Multiwire proportional chambers. A brief description of the

MWPC will be given below. For a general discussiorn on the design
and performance of MWPC, the papers by Charpak2?“,2%,2% are a good
source.

A MWPC is a position-sensitive detector having good spatial
resolution (it is essentially an ionization chamber), capable of
handling high counting rates. It also has the desirable property
of presenting a small amount of mass to a particle passing through
it.

Three MWPC were used in this experiment and are shown in their
downstream position in Figure €. When used to measure the beam
intensity profile, they were placed between TOF2 and the DISC, 1In
either position, they were centered about and perpendicular to the
beam axis.

A1l three MWPC were identical. The structure of each was like
a sandwich with a 6.35 mm spacing between each parallel layer.
First there was the entrance window, consisting of 0.05 mm of mylar,
then a high-voltage plane, a signal plane, another high-voltage
plane, another signal plane, another high voltage plane, and finally
the exit window consisting of 0.05 mm of mylar. There was a con-
stant flow of gas throughout the interior of the chamber.

The high-voltage planes consisted of sheets of 0.05 mm mylar
aluminized on both sides. A signal plane consisted of a plane of

independent wires with a 2 mm spacing. The wires were 0.02 mm
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diameter gold-plated tungsten. A constant potential difference of
4300 to 4500 volts was maintained between the high-voltage ard signal
planes, with the signal planes at ground. The negative high voltage
for each chamber was different. The wires in one signal plane were
perpendicular to the wires in the other signal plane, so that the
wires of the two signal planes, along with the beam axis, formed a
rectangular coordinate system. There were 128 vertical wires and 196
horizontal wires in each chamber, which determined the x and y posi-
tions of the particle. The spatial resolution of each MWPC was 11
mm, which was equal to half the wire spacing.

The gas flowing through the MWPC was a mixture of 67% argon,
0.4% freon, 33% isobutane, and a small amount of propanol. The pur-
pose of the mixture of argon, freon, and iscbutane was for amplifica-
tion of the signal. The propanol was for quenching. Gases for
MWPC's are discussed in more detail in the papers by Charpak.2%,25,26
Each wire had its own amplifier for further amplification of the
signal.

By knowing the x and y coordinates of the pion in each chamber
and the z coordinates of the x and y signal planes in each chamber
(z=0 is the center of the target), it was possible to fit a straight
line in space to the three x coordinates and another one to the
three y coordinates. The two straight lines were extrapolated to
the target (i.e., to z=0) to give the pion's x and y coordinates
there. The slopes of the two stiraight lines also tell the pion's

divergence in both the xz and yz planes. In this way, when the wire
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chambers were in their upstream position, they measured the beam pro-
file at the target. The beam profile was found to be roughly
gaussian in x and y and in the divergence of the beam in the xz and
yz planes.

If more than one x or y wire fired in a chamber then the pion's
x or y coordinate was taken from the centroid of the group of wires.
Multiple wire firings were accepted up to and including eight wires,
If more than eight fired the event was rejected.

Only a small subset of the good events in the chabers was ever
recorded. These events were any for which the pion missed counter
T, in the transmission stack. This criterion was used whether the
wire chambers were upstream or downstream of the target. A pion was
considered to be a beam or a scattered pion if it missed Tj.

Targets. For completeness, all of the targets used in the total
cross section measurements are described here. However, only for
the "He target will a detailed descriptiorn be given. The resuits for
the other targets will be reported elsewhere.

Solid and liquid targets. 1In all, there were 17 targets. They

are listed in Table 1V, along with their thicknesses in g/cm3. They
were all solid, with the exception of the H,1%0 and the H,!80, which
were liquids.

All targets were in the form of disks with diameters from 3.175
to 4.445 cm. Because the beam spot on the target was not of uniform
distribution, it was important to know the uniformity of the target

density. Radiographs were made of the targets, and the densities
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Table IV. Targets and target thicknesses. Each target thick-
ness t is in g/cm3.

Target t Target t Target t
Al 1.936 48Ca 1.5561 6Li 0.8944
10p 2.01 CD; 0.9981 7Li 1.070
12¢ 0.9321 CH, 0.8481 Pb 0.297
13c 0.720 Cu 1.776 Sn 1.430
40Ca 1.5113 H,160 0.922 Ti 1.7465
H4Ca 1.4591 H, 180 1.025

were found to be uniform to better than 0.1%. A radiograph was made
by measuring the transmission of gamma rays through the target
material.

The targets were mounted in holders which in turn were mounted
on a target wheel along with blanks for target 'out" runs, which
were identical to the real target except for the absence of the tar-
get material, A target wheel could hold a maximum of 8 targets or
blanks and could be rotated by remote control to change a target or
blank. It was positioned 5.08 cm downstream from TOF2Z, as shown in
Figure 6.

“He target. For measuring the total cross section of "t on “He,
a thin-walled superfluid “He target was used. The target was built

and tested by H.O. Meyer.27
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The principal difficulty in designing a “He target is in know-
ing accurately the absolute thickness of the target. This is essen-
tial in making a precise measurement of the total cross section.

This is easily seen from equation (8), whizh shows the measured
partial cross section o({} to be inversely proportional to the target
thickness t.

To achieve this, a cryogenic target was used which was capable
of cooling 1liquid “He below the A point (2.19°K) where it makes the
phase transition to a superfluid. In the superfluid phase, “He
excludes the formation of small bubbles in the target volume, so
that its density can be determined to better than #0.1% by a rough
measurement of the vapor pressure (*1 mm Hg). This is because near
the X point the density is a szlowly-varying function of the vapor
pressure.

A second uncertainty in the target thickness arises from deforma-
tion under pressure of the thin entrance and exit windows, which
define the target surface. This uncertainty can be made small by
having a cylindrical target whose axis of symmetry is perpendicular
to the beam axis, so that the windows form the surface of a cylinder.
Meyer27 determined that, under operating conditions, the stretching
of the Kapton windows introduced an uncertainty in the target thick-
ness of less than 0.1%.

On the other hand, a cylindrical target geometry requires know-
ledge of the intensity distribution of the incident beam over the
target. This intensity profile was measured with the MWPC as

described above.
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A schematic view of the target is shown in Figure 12. The three
major elements are the vacuum vessel (4), a liquid nitrogen radiation
shiceld (5), and a “He vessel (6). The He vapor pressurc was moni-
tored with an accuracy of 20.3 mm ilg.

The target cell is shown in Figure 13. It contains two identi-
caliyv-shaped cavities. The upper one is the target cell, containing
the “tle, and the lower one is the dummy target for blank runs. The
dummy target is cvacuated together with the main vacuum container.
The entrance and exit wiadows censisted of I8 mg/cm2 Kapton
{Ca2H16N205) . The target diameter was 7.6 cm at room temperature.

in order to optically align the evlindrical target with respect
to the beam axis, a 0.15 mm diameter stee]l wirc was strung along the
central axis of the target cell. It is shown in Figure }3.

During a data run, the “He target was placed at the position of
the target wheel as shown iu Figure 6. It was suspended from above
by a hoist and was raised and lowered for target "in" and "out' rums.
The target could be used for more than 30 hours before being refilled.

Table V gives the target thickness in mg/cm3 at the X point as
a function of the lateral displacement S from the beam axis. The
direction of S is perpendicular to both the beam and the target axis,
These thicknesses were folded with the beam profile to calculate the
effective target thickness. 1t was found to be 1085 mg_/cm3 with a
systematic error of 0.5%. The details of this calculation will be
discussed in Chapter 4.

Transmission detectors. After passing through the target, the

transmitted beam was detected by the wire chambers (if placed
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Figure 12. Dewar and target system.
direction the elements are: (1) filling ard pumping post for helium
volume; (2) vents; (3) radiation shield; (4) outer vacuum container,
(5) liquid-nitrogen shicld; {6) helium container; (7) side viewport;
(8) target cell; (2) dummy target cell. The figure is from Ref. 27.

As seen in the beam
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Figure 13. Target cell. The elenents are: {1) stainless-steel
tube; (2) filliuy holes; (3) aluminum clamps; (4) side strut of brass
target cell; (5) central wire for alignment of target; (6) dummy
target cell. The figure is from Ref, 27.
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Table V. “He target thickness t as a function of the displace-
ment S. The direction of S is perpendicular to the beam axis and
the target axis.

S(cm) t (mg/cm?) S(cm) t (mg/cm?)
0.0 1101.4 1.1 1054.2
0,1 1101.0 1.2 1045.0
0.2 1099.8 1.3 1034.8
0.3 1097.9 1.4 1023.9
0.4 1095.2 1.5 1011.9
0.5 1091.7 1.6 998.99
0.6 1087.5 1.7 985.01
0.7 1082.5 1.8 967.97
0.8 1076.7 1.9 953.82
0.9 1070.0 2.0 936.48
1.0 1062.5

downstream) and the transmission stack. The wire chambers and trans-

mission stack served as two independent systems for measuring the

beam attenuation.

Transmission stack. The transmission stack was the last set of

counters encountered by the beam in the counter arrangement shown in
Figure 6. The stack consisted of 9 circular coaxial plastic Pilot-M
scintillators centered about the beam axis. It could be moved along

the beam line.
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The counters were labeled sequentially Ty, Ty, *¢+, Tg and E
with T, and E being the furthest upstream and downstream, respectively.
The radii of counters T; through Tg, which monotonically increased,
are given in Table VI, Each counter was 6.35 mm thick. With the
exception of Ty and Ty, the radii were chosen to correspond to equal
steps of t between counters where t is the square of the momentum
transfer. The ninth scintillator E was used to monitor the efficiency
of counters T; through Tg and was the smallest scintillator.

Half the circumference of each counter was optically coupled to
lucite light pipes which transmitted the light to an EMI 9813B two-
inch photomultiplier tube.

Ideally the pulse height from each scintillator should be inde-
pendent of the pion's position in passing through the scintillator.
This would assure that the efficiency was uniform throughout the
sensitive region of the detector. To test this, a 207Bi gamma source

was placed at different positions on the face of cach scintillator

Table VI. Radii of the Transmission Counters.

T, T, Ta Ty Ts Te Ty Tg E

Radius (mm) 25,4 50.8 76.2 107.7 132.1 152.4 170.4 186.7 12.7
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and the resulting output pulses were observed. By comparing the
pulse height as a function of position, the most sensitive region of
each counter was found to be that half of the scintillator opposite
the photomultiplier tube. This effect was believed to be due to
light reflections from the semicircle that was not connected to the
light pipes. After this edge was sanded, the pulse height variation
across the face of the scintillators was reduced to 25% or less which
was felt to be acceptable, The largest variations were found in the
largest counters and decreased for the smailer ones.

For a given position of the transmission stack, it was possible
to measure seven partial cross sections simultaneously. Counter T,
was found not to be usable because its diameter was too small. In a
blank run, 1/3 of the beam would miss it because of the beam size and
divergence.

Multiwire proportional chambers. A general discussion of the

multiwive proportional chambers was given above. In this section, a
few comments will be made concerning utilizing the wire chambers for
measuring the transmitted beam.

As stated earlier, the wire chamber data was acquired only for
those events for which the pion was not detected by T,.

The wire chambers had two distinct advantages over the trans-
mission stack. The first one was the fact that they present a small
amount of mass to the pion passing through them as compared to the
transmission stack. Therefore they have the ability to detect lower-

energy pions than the transmission stack.
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To obtain absolute values for the total cross sections, it is
necessary to know the absolute efficiencies of the wirc chambers
and their associated electronics. Unfortunately, it was found that
this was not well known, so that it has not been possible to extract
total cross sections from the wire chamber data. However, uncertain-
ties in the MWPC efficiencies do not affect their use as a beam
profile monitor. All that is necessary is to know the relative beam
intensity as a function of the displacement from the beam axis.

Electronics. The electronic system was fairly conventional for
a counter experiment. It utilized standard NIM28 (Nuclear Instrument
Modules) modules (i.e., discriminators, D.C. mixers, coincidence
units, etc.) for the fast logic circuits and standard CAMAC2? (i.e.,
scalers, analog to digital converters (ADC), time-to-digital
converters (TDC), etc.) as an interface between the electronics and
a PDP-11/45 minicomputer which recorded information on magnetic tape
and generally controlled the data acquisition operations. The
PDP-11/45 had 24K of memory with the following peripherals: a tele-
typewriter, CRT display, paper tape reader and punch, two magnetic
tape drives, and a RF disk with 256K of storage.

In the electronics for the fast logic, timing pulses of 10 to
15 ns were used with typical discriminator dead times of 10 ns.
Coincidences of interest were recorded in scalars capable of handling
counting rates of 50 MHz and in a few cases 100 MHz.

The first important coincidence was the determination of a pion
to a target. This was accomplished in two ways depending upon

whether or not the DISC was used for particle identification. If it

62



was, the coincidence Y =TOF1-TOF2-DISC+H defined a pion to target
where TOF1 and TOF2 are signals from the two timing counters (without
a time-of-flight constraint), DISC is a signal from the DISC, and H
is a veto signal from either of the halo counters. The logic diagram
for this is shown schematically in Figure 14; the logic diagram for
the DISC was shown previously in Figure 9.

When particle identification was done without the DISC, then the
coincidence Y =TOF+H defined a pion to target, where TOF was a three-
fold coincidence between the two timing counters and the 200 MHz rf
signal from the accelerator. The logic diagram for this is shown
schematically in Figure 15. In this case, particle identification
was achieved with time-of-flight constraints between TOF1 and TOF2
and between the production target and TOF2. A two-dimensional plot
(see the previous discussion of the TOF) was used to select events
and to study the rejection of muons and electrons. The TOF system
was capable of 1/2 ns time resolution., Not all Y coincidences were
due to pions. Some of them were due to accidental coincidences.

The source of these accidentals is described in Chapter 1V.
time, only the measurement of the accidentals will be described.

When the DISC was in use, the accidental coincidences Ya inY
were monitored by the coincidence Yd==TOF1°TOF2-DISC-ﬁ; where DISCd
is the DISC signal delayed by several rf periods of the beam. When
only the TOF system was used, the accidental coincidences Ya were not
measured. However, they arr believed to be small, for the following
reason. For an accidental to occur in Y, there must first of all be

an accidental coincidence between TOF1 and TOF2 and an accidental
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Figure 14, Fast logic diagram for pion identification when
the DISC was used. lere, TOF1l, TOF2, DISC, Hy, and Hf refer to
signals from the first timing counter, seccnd timing counter, DISC,
upper halo counter, and lower hualo counter, respectively. D, C,
and OR stand for discriminator, AND coincidence unit, and OR coinci-

dence unit.
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Figure 15. Fast logic diagram for pion identification when the
DISC was not used. Here, TOF1l, TOF2, Hy, Hyp, and 200 MHz rf signal
refer to the signals from the first timing counter, second timing
counter, and the 200 MHz rf signal from the accelerator, respectively.
D, C, and OR stand for discriminator, AND coincidence unit, and OR

coincidence unit.
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coincidence between the 200 MHz rf signal and TOF2, In addition,
these two accidentals must occur within a small time interval in
order to be mistaken as a pion in the two-dimensional time-of-flight
spectrum,

Whichever way the Y coincidence was formed, it was recorded by
a scalar. A typical data run consisted of approximately 10 Y events
{i.e., beam particles).

Figurc 16 indicates schematically the fast logic circuits for
the transmission stack and shuws the coincidences that were required
for the detection of charged particles, the measurement of accidental
counts, and the measurement of each counter efficiency.

Tne detection of a charged particle by the i-th transmission
counter was givsen by the coincidence Y-Ti, where Ti was the signal
from the i-th counter. The Y-Ti were recorded by scalars.

During the data runs. the efficiency at the center of each
transmission counter was continually monitored by the small efficiency
counter E at the back of the transmission stack. The efficiency of
the i-th counter was given by the ratio of coincidences Ei==Y~Ti-E
to ET.=Y-E, where E was a signal from the efficiency counter. This
efficiency was always better than 99.5%.

To monitor the number of accidental coincidences in Y-T{ due to
a stray particle passing through some or all of the transmission
counters, the coincidence Yd'T{ was made. In this coincidence, Yd is
the Y signal delayed by several rf periods of the accelerator.

The coincidence Y-Ti has been the standard way of detecting a

charged particle in the i-th transmission counter. However, a better

65



] = : 5
. e :
" e i i)
0 S ey o >
U 3. 3
T »
o
haad -
by 3 h.
st
; 2 3
; o
LSl &
o _ean_ouT_ ) E »
| i
iD=
Tarf et o=
k2] - t %M -
} et
L4 AN + T
T D=0y Cr
D=t

-
ry
s
¢ $99
élm]m in
Y

i

£
)
O]
-0
1)
]
A\ A A
)
Y (1, OR...OR T}

Y-T)-£

Figure 16. Fast logic diagram for the transmission stack. Tj
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pion signal. D, C, OR, and S stand for discriminator, AND coinci-
dence unit, OR coincidence unit, and scalar.
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way is to use the coincidence Si==Y-(T1 or *** or Ti)’ which was
suggested by T. Kycia,.39 This is preferable because it compensates
for the loss of pions due to absorption in the transmission stack,
which is a fairly large effect at low energies where pions passing
through the central region of the stack are absorbed and therefore
do not reach the larger counter (e.g., T; and Tg). Thus the number
of Y-Ti coincidences will not be a true indication of the number of
pions that should have been detected. The accidentals in Si were
given by Yd-(T1 or “*° or Ti)'

In each data run, the Y coincidences, Y accidentals, AND coinci-
dences (Y-Ti), OR coincidences (Y+(Ty or ~-- or Ti))’ AND accidentals,
OR accidentals, and the efficiencies (the Y-Ti-E and Y<E coincidences)
were recorded on scalars. The scalar information was then recorded
on magnetic tape by the computer,

In addition to these scalar measurements, there was another
class of information that was written on magnetic tape. This informa-
tion came from two types of events. The first were events for which
an interaction took place (i.e., there was a scattered pion). Experi-
mentally, a pion was defined to have scattered if there was no Y-T,
coincicdence. These were called ''good" events. The second were
events for which there were no intcractions, Only a small subset of
these events, triggered at random by the time of flight, were recorded.
These were called 'random' events. The purpose of the random events
was to monitor the beam as well as normalize the scattered event

information to the unscattered.
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Good events, as well as random events, included information from
a coincidence register, two TDC's, and eight ADC's. The good events
also included MWPC information, while the random events did not.

The signals from the eight transmission counters were fed
directly to eight ADC's io obtain pulse height information. This wis
done to obtain information on the number of protons reaching the
transmission stack.

When the TOF counters were used for the purpose of time-of-flight
information, their signals and the 200 MHz rf signal were fed to two
TDC's and stored on magnetic¢ tape. The TOF2 signal served as the
start pulse for each TDC and the TOF1 pulse and the 200 MHz rf signal
were the two respective stop signals. In this way, the time spectrum
of the beam particles between TOFl and TOF2 and between the production
target and TOF2 was obtained to allow for particle identification.

As discussed before, this information was displayed in a two-dimen-
sional plot to select events and to study muon and electron rejection.

The coincidence register recorded essentially the same informa-
tion as Y-Ti coincidences, except that it had poorer statistics, Its
information was more detailed than the scalars because it could
identify which counter was hit first, Also, it could check the con-
sistency of the ADC's., If, according to the coincidence register,

Ti did not detect a particle, then the ADC for Ti should be zero.
However, the coincidence registers did not operate properly and so
this information was unfortunately not available.

The MWP(C electronics put out a fast logic signal whenever a

signal plane detected a charged particle, A MWPC event was defined
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by two coincidences. First there had to be a two~out-of-three coinci-
dence among the three x signal planes, and a two-out-oi-three among
the three y signal planes. There then had to be a two-fold coinci-
dence between the x and y signals. If there was a two-fold coinci-
dence between the Y and MWPC signals and no Y*T, coincidence, then
the MWPC event was read into the computer and stored on magnetic tape,
This event contained information on which wives fired in each of the

X and y signal planes. With this information the trajectory of the
particle could be constructed, to give such information as the slope
of the track and its intersection at the target.

To summarize, for each data run the following information was
written on magnetic tape: the ADC's, TDC's, and coincidence register
for good and random events; the MWPC events for good events, and the
scalars. This task was accomplished by a data acquisition computer
program written in MACRO, an assembly language, and FORTRAN. 1In
addition to writing information on magnctic tape, the program handled
the transference of data from the CAMAC system to the computer. It
also allowed for the monitoring of data runs through histograms and
other outputs which were displayed on a CRT. Some of the more useful
histograms were the raw MWPC inputs, the raw TDC and ADC inputs, the
calculated beam divergences in x and y, and the x and y intercepts of
the pion trajectory at the target. The scalar totals and various
scalar ratios (e.g., the calculated efficiencies) could also be
displayed.

Finally, it should be mentioned that there were some troubles

with the computer due to disk failures and hardware failures in the
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interface between the computer and the CAMAC system, These *roubles
resulted in computer crashes (at irregular time intervals) which
resulted in some data runs being divided up into several short runs.
These were then added tngether at a later time. Aside from their
inconvenience, these crashes did not appear to have any effect on the

darta,
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IV,  DATA EVALUATION

In this chapter, the detzils of the corrections to the data and
the statistical treatment of the data will be discussed. In some
cases. many of the details of a particular correction have been placed
in an appendix, to avoid obscuring the principal points of the dis-
cussion.

The corrections to the data fall into two ciasses, with little
coupling between them. First, there arc those due to the detection
system (i.e., systematic effects). These include efficiencies,
accidentals, rate cffects, geometry of detection svstemn, incorrect
identification of pions, absorption, etc. Secondly, therc are cor-
rections due to effects caused by interactions of the pion in the
target. These include Coulomb effects and knock-out protons in the
target and TOF2. Another correction in this class is pion decay.
Pions will decay whether the target is "in' or 'out." For pion
decays before the target, the angular distribution of the muons will
be different in the two cases because of the multiple Coulomb scat-
tering of the muons in the target. For pion decays after the target,
the angular distributions of the muons will be differcent in the two
cases because of the multiple Coulomb scattering of the muons in the
target. For pion decays after the target, the angular distributions
of the muons will be different "n the two cases becausc of the energy
loss of the pion passing through the target. In a sense, pion decay
is a third class of correction, in that the presence of the target

modifies the background present in a blank run. From equations (6),
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{(7), and (8), it was shown that by comparing target and blank data
runs, background cffects common to both cancel exactly. If the
presence of the target modifies this background, then they do not
cancel exactly and must be corrected for. All of the classes of
corrections are made to the data from each transmission counter
before calculating the total cross section itself.

The statistical trcatment of the data also falls into two
classes. First there is the determination of the statistical error
to be assigned to each of the partial cross sections. Then there is
the extrapolation of the partial cross sections to zero solid angle.
This involves a generalized method of least squares which takes into
account the statistical correlations between the counters,

Also in this chapter, there is a discussion of the energy loss
calculations which was used to find the pion energy at the center of

the target.

Systematic Corrections

To look for systematic effects on the partial cross sections and
on the extrapolated total cross section, several tests were made.
These will be discussed below.

Positioning of the halo counters and TOF2. The various effects

which arise from the presence or absence of the halo counters as well
as the rclative positioning of these counters and TOF2 with respect

to the target have already been discussed.
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For a fixed position of TOF2, data runs were made both with and
without the halo counters The partial cross sections were found to
be systematically larger without the halo counters. With the halos
in, the distances between TOF2 and the target and between the halos
and the target were varied. The partiai cross sections were found to
decrease as the separations incrcased. The final geometry was set
with 10!1.6 mm between the halos and the TOF counter and with 50.8 mm
between TOF2 and the target. With these positions, the above system-
atic errors were felt to be negligibly small. The separation between
TOF2 and the target was still small, which helped to keep the number

of = decays small.

Positioning of the transmission stack. The effect of different

transmission stack positions on the partial cross sections is shown
in Figure 17 fer n* on both Al and Sn at 85 MeV. The error bars on
the Al data is the same size as the data points. All corrections
have been included in these points except for the Coulomb-nuclear
interference correction. These data come from two transmission
stack positions, and they are statistically consistent. Therefore
it is believed that no systematic effects are introduced by changing
the position of the transmission stack. Because of this, for most
energies, targets, and pion sign, the data were taken for only one
position of the transmission stack. This includes all of the “He
data.

Solid angle. The solid angle covered by each transmission
counier was calculated as a mean over the target length 2y =76 mm and

counter thickness 2, =6.35 mm, using the expression
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Figure 17. Partial cross sections for twe positions of the
transmission stack. The data arc for 85 MeV =% on Al and Sn. They
have not been corrected for n-decay and Coulomb-nuclear interference.
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g = Qc[l + [?—12”(122}2] (21)

where d is the distance from the center of the transmission counter

to the center of the target. The solid angle QC is

Q = 2u(l - cos BC)

(o}

7R?

[H

and

cos 0 = d(d? +R2)-¥/2

waere R is the radius of the transmission counter. The contributions
of 2; and ¢, to Q arc quite small. For T;, the transmission counter
nearcst to the target, d =770 mm and & is only 0.3% larger than Q.-

The uncertainty in @ comes principally from d which was measured
to within x0.4%. By allowing d to vary by #0.4% in the calculation
of the 2's and by then using thesc Q's in the least squares fit to
the data, it was found that the uncertainty in d had a negligiblce
effect on the extrapolated total cross section.

In cquatioin (21), the €inite beam size was ignored. If the solid
angle was calculated as a mean over the cross-sectional area of the
beam (it was reughly circular with a radius of 1 cm), while ignoring
the target and counter thickness, { was found to deviate from Qc by
less than 0.3%. This calculation assumed that the beam intensity was
uniform within the circle and zero outside of it. From the MWPC data,
the beam intensity was found not to be uniform as a function of the

lateral displacement from the beam axis Rather it was found to be
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roughly a gaussian distribution with a standard deviation of -~1 cm.
The beam divergence was also found to have approximately a guussian
distribution. If the '"true'" beam distribution were used, it would
have no effect on Q.

Target thickness. Another possible systematic error concerns

the target thickness. The measured total cross section should be
independent of the thickness.

For a fixed number of incident pions, the thicker the target the
greater the number of scattered pions because of the increased number
of scattered centers. This is desirable because it increases the
statistical accuracy of the data. Unfortunately, increasing the tar-
get thickness also increases the magnitude of the single and multiple
Coulomb scattering corrections and of the pion decay correction. This
is undesirable because it puts greater importance on how well these
corrections are made.

This effect was tested for by using 12C targets. With the
counter arrangement fixed, two 12C targets with thicknesses of 0.9321
g/cm? and 5.467 g/cm? were used to measure the total cross section
for 145 MeV n'. The two extrapolated cross sections were 654 + 13 mb
and 659 +3 mb for the thinner and thicker targets, respectively
(these cross sections do not contain the Coulomb-nuclear interference
correction). The smaller error for the thicker target is due to the
larger number of scattered centers which resulted in a l}arger number
of scattered pions. The two cross secticns are statistically consis-

tent, so there does not appear to be any systematic error due to the
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target thickness within the statistical errors. Most of the targets
used, including the “He, had thicknesses of ~1 g/cm

Rate problems. The consideration of the appropriate counting
rate for a data run has several aspects. A high counting rate is
desirable to reduce data-taking time. But it can be undesirable if
it leads to a loss in particle detection due to dead time effects in
the electronics, specifically with the transmission stack electronics.

The dead time was typically 10 ns for the transmission stack
discriminators. Thus, if the beam-defining counters identified two
pions less than 10 ns apart and neither one was scattered, the second
pion would not be detected by the transmission stack; it would be
considered as a scattered pion and would systematically give too
large a cross section. This could, of course, occur at any counting
ratc, but the probability for its occurrence increases as the beam
intensity increases (i.e., as the counting rate increases).

At high counting rates, the probability increases for two pions
to come through the particle-identifying counters together and to be
labelled as a single pion. 1If only one of them scatters, it will not
be counted as a scattered pion. This would systematically decrease
the measured cross section.

Another cffect, which increases at high counting rates, concerns
the problem of accidental coincidences in the beam-defining counters.
Those accidentals which occur when there is a true pion coincidence
do not affect the measured cross section. However, the remaining

accidentals create a problem since they indicazte an incident pion which
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is not detected by the transmission stack. These events can lead to
a systematically higher <ross section.

During the experiment, the beam intensity was controlled by
suitably opening or closing the momentum slits in the LEP channel.
The c¢hief source of accidentals was then due to too large a momentum
bite in the channel.

To determine whether or not the counting rate was acceptable,
the accidentals in the AND coincidences, the OR coincidences, and in
the Y coincidences were monitored. If the accidentals in the AND and
OR coincidences were less than 1% of the number of AND and OR coinci-
dences for each transmission counter, the measured cross section was
found to be rate-independent. This was determined by comparing the
total cross sections calculated from “He data runs with different
accidental rates. All data runs with an unacceptable accidental
rate (i.e., greater than 1%) were not used to calculate cross sections.

Tests to compare directly the effect of high and low accidental
rates on the extrapolated total cross sections were made by using 145
MeV 7~ on !2C. For both the target and blank runs, the momentum
spread was %F= +0.2% (£1.0%) in the low (high) rate case. The percent-
age of OR accidental coincidences to OR coincidences monotonically
increased from T; to Tg, going from 0.37% to 0.96% (1.43% to 2.60%)
for the low {high) rates. From the low (high) rate target and blank
runs, the extrapolated cross section (it has not been corrected for
Coulomb-nuclear interfercnce) was 753+ 13 mb (781 + 13 mb) with a

reduced Xﬁ (i.e., the x2? per degree of freedom) of 0.1 (5.1). The
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high rate data yielded a 4% larger cross section than the low rate
data. This is consistent with the dead time effect.

Another test matched the low (high) rate target run with the
high (low) rate blank run, giving an extrapolated cross section of
742 + 13 mb with a reduced XR-’— of 2.1 (1.9). This can also be
accounted for by the dead time effect as may be seen by considering
equation (8). The effect of the dead time at high rates is to
decrease the values of R and Ry from what they would be at a lower
counting rate. Using a low (high) rate R and a high (low) rate R ,
the measured «(%) will be systematically decreased (increased).

The results of these tests are summarized in Table VII.

TABLE VII. Comparison of high- and low-rate data runs for 145
MeV 7~ on !2C. The extrapolated cross section ¢ was obtained from a
quadratic fit in @ to the five largest counters. The reduced xg? is

also given.

Targe* Rate Blank Rate o(mb) xn2
low low 763+ 13 0.1
high high 781 + 13 5.1
low high 742+ 13 2.1

It should be noted that Table VII also illustrates the necessity of

having the counting rates equal for both the target and the blank



runs. This is important even at low counting rates since this is an
effect which will not cancel out in the comparison of target "in"
and "out' data runs (see equations (6), (7), and (8)).

Beam profile. Knowledge of the beam profile is impoxtant for
the “He target because of its nonuniform thickness. By folding the
beam profile with the target geometry, the average target thickness
was found to be 1.085 mg/cm? with a systematic error of 0.5%. This :
error was due to an uncertainty in the tails of the beam profile which %
was roughly gaussian in x and y. |

This averaging was accomplished by first making a histogram,
using the MWPC data, of the number of particles in both the positive
and negative x directions, in 2 mm steps, A weighted average of the
target thickness was then made by using the target thickness at each 2
mm step in x (see Table V) weighted by the fraction of the pions in

that 2 mm step.

Efficiency, Accidental, and Absorption Corrections

At this time it is appropriate to introduce some notation which
will be used here and in the appendices. For the i-th transmission
counter T,, Si’ Tai, Sai, and ET are the total number (as recorded on
scalers) of AND coincidences, OR coincidences, AND accidentals, OR acci-

dentals, E, coincidences, and ET coincidences, respectively. These coin-

i
cidences were defined in the previous discussion of the electronics. The
total number of pions to target is Y,whereYais the number of accidental

coincidences in Y. Lastly, Ei'=Ei/E is taken to be the efficiency of

80



the i-th transmission counter. A zero subscript on any symbol denotes
that quantity for a blank run.

An important point is that only the OR data were used in calcu-
lating the partial cross sections. The AND data were used only as an
aid in making corrections. The principal reason for this is the
effects of the absorption of pions in the transmission stack or the
AND data. A pion moving through the central region of the stack may
be absorbed before passing through all of the counters. The partial
cross sections, for those counters that the 7 do2s not reach, would be
too large using the AND data. This effect is a function of the pion's
energy, increasing (decreasing) as the energy decreases (increases).
By using the OR data, the problem is decreased in magnitude as can be
seen in Table VIII which gives the raw scalar readings for 51 MeV .
on “He. The absorption of pions in the stack is demonstrated in Table

VIII where Si >Ti and T4 > Tg.

Table VIII. The scalar readings for the AND and OR data. The
raw scalar readings are T and S, with S e e’ and S. being the values
of S corrected for accidentals; eff1c1ency, and acc1§entals,
efficiency and absorptlon, respectively. The numbers are from a data
run with 51 MeV 7* on “He. The number of beam pions was 1032956.

gﬁ:ﬁii? T S Sac Se Sc
2 780412 781849 781259 782750 782162
3 898844 904295 903806 904579 904090
4 931463 941203 940746 941289 940832
5 937442 954973 954529 955027 954583
6 940774 954588 964148 964617 964177
7 942075 972737 972310 972761 972334
8 939623 978370 977951 978387 977969
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Another advantage of using the Si over the Ti is that the OR
efficiencies are greater than the AND efficiencies. Even though the
OR efficiencies were not measured, they can easily be seen to be
nearly 100% by the following argument. Suppose that all of the AND
efficiencies for detecting a charged particle were 99.5% (the
measured AND efficiencies were always greater than 99.5%). If a
charged particle passes through two counters, the probability of (or
the efficiency for) being detected is e=1- (1-e)(l-¢) where e 1is
the efficiency of each counter. For €=0.995, e=0.999975 for two
counters, e =0.999999875 for three, and e =0.9999995994 for four.
The value of e is essentially 1 (i.e., the efficiency is 100%) for
charged particles passing through two or more counters. For all but
the first OR coincidence, most of the particles detected have passed
through two or more counters. This becomes especially true for the
OR coincidences associated with the larger counters. This means
that the efficiency correction should he quite small for S, and Sg
and, in fact, it is as can be seen in Table VI11. The details of
the efficiency correction will be discussed later.

Accidentals. Accidental counts in Y, Ti, and Si have several
sources. The principal one of these is charzed particles (e.g.,
muons and electrons) associated with the beam; this 1s dependent on
the beam intensity. Other sources of accidentals include cosmic
rays, the neutron background (from nzutrons produced in the channel
and from the production target), and noise pulses in the photomulti-

plier tubes.
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Before using equation (8) to calculate the o(R), the measured
R and Ryp need to be corrected for accidentals. To understand how to 5

do this, consider the i-th transmission counter. Let St be the true

number of counts due to pions and S and Sa be the measured number of

counts and accidentals, respectively. Then Rt==St/Y is the fraction

of piuns which are incident on the target and which are detected by
the i-th counter. The problem is to relate Rt to the measured ratios
R = S/Y and Ra=sa/Y' Now Rt is also the probability that a count
is due to a pion, R, is the probability that a count is an acciden-
tal, and Rm is the probability that a count is due to either an acci-

dental, or a pion, or hoth, From probability theory, 31 Rm is given

by

= - 2
R =R +R - RR (22)

or

S = St + Sa - Rtsa . (23)

This can be rewritten as

R, = Rn - Ry (24)
1-R,
or
S-S
S, =Y a (25)
t Y-s ) -

Note that in the limit of Ra going to zero, Rt==Rm. Equations (22)
through (25) hold true for the AND coincidences, with Rm==T/Y and

Ra = Ta/Y.
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To calculate the partial cross sections, equation (23) is
applied to both the target "in" and target "out'" data. This gives

for o(9)

R -R 1-R
o(2) = = 1n 0a 2

- s (26)
nt 1- ROa R- RaJ

where the subscript m has been dropped.

To handle the Y accidentals, an eauation similar to equation
(23) may be written. To find this, let P be the probability that a
Y coincidence is due to a picn. Also let the measured number of

pions by Y, the measured number of accidentals be Ya’ and the true

number of pions by Y, - Then

Y=Y o+Y, -PY, (27)

where the last term accounts for tnose accidental counts which
occur at the same time as counts due to pions. Solving for Yoo

one obtains from equation (27)

Yt =Y - (1 -P)Ya . (28)

Unfortunately P is an unknown and cannot be determined from the

experimental data. However, (1-P) can be approximated by Ya/Y,

which is an overestimate, since some of the ~=ccidental counts occur
at the same time as counts due tc pions. This then gives for Yt
Ya
~ hY
Yo = Y- )Y, (29}

Now in all cases where the counting rates were acceptable, it

was found th»at 0.001 SYA/Y:s0.0Z. Whether equation (29) or Y were
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used in the calculation of the partial cross sections, the total

cross section was found to be essentially the same. For example,

the total cross sections for 85 MeV and 105 MeV = on “He decreased
by 0.15% and 0.097%, respectively, when equation (29) was used to

correct Y.

The problem of accidentals in Y is an effect which cancels out
in the comparison of the target and blank runs if (Ya/Y)= (Yao/Yo).

To see this, equation (28) is written as

Y . Ya -
= Y1-01-P) ¢ (39)

and

v
Y, - Yo[l - (1-P) [‘(:"00” (31)

for the target and hlank runs, respectively. The terms in the square
brackets cancel to first order when equations (30) and (31) are
substituted into equation (26). Thus, by using only data for which
Ya/Y and Yao/Y are small and nearly equal, the correction for Y
accidentals is unnecessary since it is negligible.

The accidental corrections to the transmission stack data were
the only ones that were necessary and they were made using equation
{26). The accidental rate in the transmission stack does not cancel
in the comparison of the target "in" and "out'" data. This is due to
the scattering of the beam due to the target, which makes the acci-
dental rate different for the target "in'" and "out" data.

Pion losses in the transmission stack. The transmission counter

data must be corrected for the inefficiency of the counters and for
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pion absorption in the counters. Thesc corrections will be described

briefly in this section with the details given in Appendix A. The
formalism used herc was suggested by G. Burleson.3?

Let the distribution of particles in the transmission counters
be given by Ny, *-+, N7, and Ng, where Ni is the number of particles
that hit the i-th counter first., If Nj start in the first counter,
then «j,N; reach the second counter, a;3N; veach the third counter,
etc.; and if N, start in the second counter, then a;3N» reach the
third counter, a,;N, reach the fourth counter, etc. This is shown
schematically in Table IX. Each i is the probability that a
particle starting in tha i-th counter will reach the j-th counter.

The pion losses due to nuclear interactions in the counters are
dependent upon the thickness of the material the picns pass through.
So each aijNi should be multiplied by Bi= (cos ei)'l, where 6{ is

the angie of the particles measured from the z axis to the center of

the angular ring defined by the edges of the i-1 and i-th counters.

Table IX. The fractions of Ni starting in the {-th counter and
reaching the j-th counter.

Counter

Number i 2 3 4 5 6 7 8
N1 appNp  ap3N1 ageNp apsNyp apeN; opyN; aggh
No  ag3Np  auNp  apsNy  aggNy  ap7Nz  apgN2
N3 a3zyN3  a3sN3  aggN3  az7N3  asgN3
Ny  aysNy  augNy  ay7Ny,  aygNy
Ns asgN5 ag7Ns  as5gNs
Ng og7Ng  wgsNe
N7 a7gN7
Ng
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Now the measured Ti and Si may be expressed in terms of the
unknown quantities in Table IX and the measured AND efficiencies 25
In order to make the equations tractable it is necessary to make the

following assumptions:

@z I @}y T ap3 = ¢ c T ajyg
a3 o o@)3 F apy T ot = agg
ay = ayg

Then oy, a3, *°+, ug are the probabilities that a pion will not be

absorbed in passing through 1, 2, <<+, or 7 transmission counters.

The equations for Ty, S;, T, and S, are given below:

Ty = egNy (32a)
T, = ep (N2 +apNy) 32b)
S$r=T , (33a)
Sp = €3N} + 5Ny + (1-€1)ep3N; (33b)

where (I -¢j)epay is the probability that a charged particle will not
be absorbed or detected in the first counter but will be detected in
the second counter. The equations for T3 through Tg and S; through
Sg are given in Appendix A. Altogether, there are 15 equations and
15 unknowns, so that the a's and N's can be solved for.

Before calculating the a's and N's, each Ti and Si was corrected

for accidentals using equation (25). Using the corrected Ti's and
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Si's, the Ni's and ui's were calculated using the results of Appendix
A. By knowing the Ni's, the number of particles that should have

been detected by each counter were ecasily calculated. These numbers
were then used in equation (8) to calculate the partial cross sections.

The values of ai's were found to be all about equal. A typical
value of @, was -.99 cven at 51 MeV,

This procedure for correcting the data for counter inefficiencies
and pion absorption in the counters has not bheen used in previous
measurements of total cross sections which utilized a transmission
stack.”+8 It is relatively important to the prescnt mcasurements
because low cnergies are involved. For very low energy (c.g., 20
MeV), this correction could become quite important.

Table VIII gives the raw scalar readings S for 51 MeV 7" on “He.
It also gives the scalar readings Sc which were corrected for only
the counter inefficiency, and the scalar readings SC which were cor-
rected for counter inefficiency, pion absorption and accidental
counts. The Se were obtained by ignoring accidentals and sctting all
the ai's cqual to unity. The Sc are less than the raw data because
of the uccidental correction.

Knockout protons. Another effect which needs to be considered

deals with the knockout of protons from the target and TOF2. This
could affect the data in two ways. First, protons from the target
can be detected by the transmission stack. If they are, a pion which
did interact in the target and missed the transmission stack could

be counted as a pion that did not interact. Secondly, protons from

TOF2 will be detected by the transmission stack in the case of a
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blank run but will not in a target run. This is because they are of
low energy and will probably stop in the target.

The source of knockout protons is inelastic pion interactions in
the target and TOF2. For this rcason, it is not necessary to correct
the data for any effects due to these protons. This can be seen hy
considering either cquations (16) or (18) in Chapter II. Both of
these cquations contain a correction term for inelastic events which
. . . do do . . .
is given by | ial. ,d2, where 5o is defined to be the differen-

o°\©“Jinel ~Jinel
tial cross section for all inelastic interactions. Because this cor-
rection goes to zero as { goes to zero, it does net affect the extra-

polated cross section o(Q=0). Consequentiy, it is unneccessary to

correct the data for knockout protons.

Statistical Analysis and Extrapolation Procedure

The calculation of the statistical errors or the partial cross
sections and the extrapolation procedure used to cbtain the total cross
sections are the subjects of this section. The statistical correlations
between the partial cross sections are included in the extrapolation
procedure, This is done using a generalized least squares fit with a
polynomial in t, the square of the momentum transfer. This is a tech-
nique which has not been emploved in previous measurements of the

total cross section.”»8

Error analysis. In this experiment the following question is

asked: What fraction of the pions incident on the target will be



tound within the solid angle Qi subtended by the i-th transmission
counter at the center of the target? The probability distribution
which is appropriate for this situation is the binomial distribution.
This distribution gives the probability of finding exactly r suc-
cesses in N independent trials, when the probability of success in
each trial is a constant P, In this experiment, the number of
independent trials Y and the number of successes Si are both measured
(the effects of accidental counts, pion absorption, and inefficien-
cies cf the counters on S{ are being ignored for the moment). The
probability of there being Si successes is!2=Si/Y.

The variance 0?2, where o is the standard deviation, for the

binomial distribution is
o2 = NP(1-P) . (34)
If P is unknown, an unbiased estimat2 of the variance is given by
2 - N Inizlf_r
= [ [
afz)fi-x (35)
“IN l N

for large N. In terms of the notation used to describe the present

experimental data, equation (35) becomes

(85;) Y(R)(1-R;) (36)
or

2
(a5.)

Si
[T] (¥-s) (37)

20



where ASi, instead of o, denotes the standard deviation (o has begn
used to represent cross sections). Writing equation (36} in terms

of AK., one obtains
t

R.(1-R;)
2 - 1 1
(AR, ) B
or
{AR{ 2 1- Ri ~
li“) S RY - (38)

It should be noted that equation (37) is not the error that is some-
times quoted in total cross section pupers. In these zases the

error is given by

“Si)2 =Y-s, (39)

which is appropriate for the normal or Gaussian distribution. Equa-
tion (39) approaches equalion (37) in the limit that Ri gors to
unity.

The partial cross sections o Ea(Qi) are given by, according to

equatior (8),

R .
g, = L ln[jg}i

1

The statistical error Ao{ in oi is then

- - 2 1
Ao, = -1—[[%0.‘—]2 + {%}] } 2 (40)
1} 1

With the use of equation (38), Aci is then given by

91



1-R. 1-1{]}1/2

1 0 i
Ao, = — - l (31)
i nt Roi\o R Y ;
The next matter to be considered is the ¢ ct of the statisti-

cal errors of the measured efficicncies on the Ao.'s. The statisti-
1

cal errors of the AND efficiencies are given by the binomial

distribution. Using the definition €, -l /( ., one obtains the error

Asi is given by

(as) = ! : 2 (42)
or

;f.le_. 2 1-¢.

e * {13)

Fe. ¢.F

{ Tt i
With £ *.995, (Aei/ei)g is negligible compared to (."\.Ri/Ri)2

If e is the OR efficiency, the Aei is also given by the

binomial distribution as

[Aci 2 - e,

e. S Te.E ’ ()

L 1
The ci's are unknown, except for ¢) =¢y, but they arc given
approximately by

e, = 1-(1 —e) (1 -g;3) cee (1 -€) . (15)

For the counters four through eight the approximation e, =1 is quite
geod, as was discussed carlier. Because s =1, (Aoi/ci)2 is aiso
negligible compared to (ARi/Ri)z' Consequently, it has a negligible

effect on Aoi.



The cffect of the statistical errors of the accidentals count

on &ci will be considered next. First, it was shown in equation (24}

that

{2 (&R - }e -t )2
I et O G
LRy ((R-RJJ  L(1-R)
o
far ) R{1-R)+R (1-R) R
LA 3,-{ a_ . ‘f} , (16)
Ry J \ (R-R)7 1-R,

where equation (38) has been used in deriving equation (45). With

this result, Aci can be calculated from

C o ) )
Ag. = 1 _L_ROi(l “0i)¢ ROai(l ROai) . poai ]
T ntgy (Ry; - R T-R, )
( - - i72
. 1 Ri(l Ri) + Rai(l Rui) . R“i__ 47)
' (R, -R_,}% 1 - R, : -
1 A ait

Finally, it should be noted that this expression reduces to equation

(41) in the timit of no accidentals.

Fitting the data. The data consists of partial cross sections

o (with statistical errors Ao{) which were measured at different

values of t, the square of the momentum transfer. This is illus-

trated in Figure 18, whkere the partial cross sections are plotted

o)
i
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Figure 18. Partial cross sections for = on “le at 85 Mel.
The partial cross sections contain all the experimental corrections.
The curve is a least-squares quadratic fit to the last five partial
cross sections with a reduced x,2 ~f 1.8. The intercept at -t =0
gives the total cross scction opgr=173.3%6.4 mb.
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versus t for 85 MeV n~ on “He. The data points contain all the
cxperimental corrections.

The total cross section ot z g{t=0) was found from the partial
¢ross sections by fitting an appropriate function to the data and
then extrapolating this function to t=8. The curve in Figure 18 was
obtained by fitting a second-order polynomial in t to the five points
with the largest values of t. Alsc shown in the figure are the t=0
intercept (i.e., GTOT) and the reduced Xﬁ- The purpose of this
section is to imlicate how the data were fit.

In Chapter 11, two possible ritting funcfions were given. These

were

o(t) = A+ Bt + Ct2 + «+» ' (48)

and

In oft) = A' + B't + C't'2 (49)

In either case, the fitting functicen is a polynomial in t so that
the following formalism will apply to both.

Consider the polynomial fitting function c(ti,aj) Eoi(aj),
where

N .
o.(a;) = ) a.t) . (50)
it joo J i

The ai's are a set of parameters which define a polynomial of order
N. [Initially, each a. is unknown, but it can be found, along with

its associated statistical error Aaj, by the method of least squares.

o
wn
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If the partial cross sections o, are statistically uncorrelated, then
the aj's are found by minimizing the function M, defined by
p (ai—ai(a.))z _
" i1 (07 e
with respect to each aj. In equation (51) P is the number of data
points and ci(aj) is given by equation (50). The minimizing of M

with respect to each aj, which is
Moo, (52)

gives N+1 equations which can be solved for the aj's. The minimum
value of M is designated by x2, the chi-squared function. The good-
ness of the fit is determined by the value of x2 or the reduced Xf

{(i.e., the chi-squared per degree of freedom) defined by

2 ).(.12._ (53)

R T P-N

where P-N gives the degrees of freedom in the fit, Here, P and N
are the number of points and the order of the polynomial, respectively.
A useful criterion for a good fit is that x§l=1. However, the
usual procedure is to look up the x? probability in a table of the
x2 distribution. Note that the condition (P-N) 21 must be fulfilled
to allow for a statistical error analysis.

The variance [Aaj)2 of the aj obtained from equation (52) is

given by
(Aaj)2 = HJ. J.'l (54)

where H is a matrix whose elements are given by
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1 3a2M
2 aaiBéT ' (55)

H,. =
1)
J
The above treatment of M to find the aj's is standard and can be
found in many texts on statistical analysis.31,33,3%4
What has just hkeen described, however, is not appropriate for
fitting the o, because they are statistically correlated. Therefore,

it is necessary to use the covariance form of the method of least

squares,®! where M is now defined by

M=Dlv1p , (56)

where D is a column matrix {(or vector) with elements Dl.:=oi =o{(aj)

and V is the covariance matrix for the errors Aoi with elements

Vij <(01_ - <Uf>) (UJ - <Oj>)>

fi

2
(Aoij] (57)

{note that V is symmetric with diagonal elements Vii =(Ao{)2).
Assuming V is known, then the aj's are found by minimizing M as

before and solving the equations

M

2a.
J

=0

The variance (Aaj)2 of each aj is again determined by equations (54)
and (55) with M given by equation (56). To measure the goodness of
fit, M was treated as a generalized x2, so that the criterion for a
good fit was still XR2= 1.

The dirficulty in applying the covariance form of the method of

least squares to the o, is in finding the covariance matrix V. The
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first step is to determine the covariance (ASiJ.)2 of Si and Sj’

which is shown in Appendix B, The result is
2 = -
(Asij) YRi(l Rj) s (58)
where j 2i. Using this result, it is shown in Appendix C that

- 2
V.. (Aoij)

(MJ-)2 s (59)

where j =1. Since V is symmetric, Vj{= (Aoj)2 also.

The details of how the aj's are found from equations (56) and
{(59) are given in Appendix D.

It was found that whether equation (48) or (49) was to fit the
partial cross sections, the total cross sections Sror {and its
statistical error) were essentially the same in the two cases. How-
ever, equation (48) was preferred because in general it gave a
slightly better xﬁﬁ Hence, all of the results presented in Chapter
V have been obtained by using equation (48). Furthermore, it was
found that in most cases a quadratic fit in t gave the best xﬁz, S0
that all of the final results were obtained from a quadratic fit in

t.

Finally, the use of the smoothing function fg[g%J d@ discussed
at the end of Chapter II was tried. It was foundoto ha:z no effect
on the order of polynomial used in the fit. Also, as expected, SToT
(i.e , o(t=0) was found to be unaffected by the smoothing function.

Consequently all of the final results do not include the use of this

smoothing function.
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Single and Multiple Coulomb Scattering

In addition to the corrections for accidental counts, counter
inefficiency, and pion absorption in the counter, each measured par-
tial cress sectior o(Q) was alsv corrected for those pions which were
scattered outside the solid angle & by multiple and single Coulomb
scattering. If om(Q) and UC(Q) are the cross sections for a pion to
undergo multiple scattering and single Coulomb scattering outside the
solid angle &, respectively, then the corrected partial cross section
o' (%) is given by

a'(Q) = a(f) -Um(Q)-oc(Q) . (60)

Two approaches have been adopted in making single and multiple
Coulomb scattering corrections. The first was to ignore all finite
geormetrical effects of the beam. For this assumption the corrections
could be done analytically. The second approach foldzd in the beam
geometry to see what effect it had on the corrections. This was
handled through the use of a Monte Carlo computer program. Both
approaches will be explained in detail.

Multiple Coulomb scattering. Multiple Coulomb scattering arises

from the many successive Coulomb scatterings of the pion as it passes
through the target. Because of the very large cross section for
Coulomb scattering at small angles and the high velocity for even a
51 MeV pion (51 MeV was the lowest energy at which the total cross
sections were measured), the probability for pions to scatter at

small angles is large. Furthermore, a pion undergoing very small
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angle scatterings will generally emerge from the target at a small
angle relative to its original trajectory. This small angle is the
cumulative statistical superposition of a large number of deflections.
Because of its statistical nature, it is useful to treat multiple
scattering in terms of probability. If dP is the probability for a

pion incident on a target to be scattered between 6 and (6 +d6) (see

Figure 19), it is given by
dP = £(8) dR
= 27 £(9) sin9 do
= 2n f(6) 6de (61)
where d is the solid angle subtended by the angular ring shown in
Figure 19 at the target. The function f(8) is the multiple scatter-

ing angular distribution, and the approximation sin€ =6 is adequate

for small-angle scattering.

The standard representation of f(8) is due to Moliere3® and is

given by

£(6) = 75 (fo(e) clee) s g s ] L )
C L

where usually only the first three terms are used. The fk(e) are

defined by

o us uz ) fu? . fu?))k
fk(e) = k.g UJO(W] eXP{T][Tln[T]] (63)

with k=0,1,2 and where fg(8) is the well-known Gaussian

-92
fq(6) = 2exp [X ZB] . (64)
c
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Y/
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Figure 19 The effect of multiple Coulomb scattering on the
incident beam. lere, 6 is the multiple Coulomb scattering angle.
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There are slight variations in the definitions of Xe and B; those of
Marion and Zimmerman3® were adopted, so that xg is given by

21(zy + 1)z,2 t)
A pvz} °’

Xc2 = 0.1569 (65)

where z; is the atomic number of the target, z; is the atomic number
of the pion (z,=%1), A (in g) is the atomic weight of the target,

t (in g/cm?) is the target thickness, and p (in MeV/¢) and v are the
momentum and velocity of the pion in the center of mass frame,

respectively. The quantity B is defined by

B-lnB=b s (66)
where

b = - 0.1544 . (67)

(2730(zy + 1)2{1/32,2¢t
1“{ AB2

For small & the Gaussian term f,(€) is the dominant term in the
serie<, For large 6 the dominant term is f;(8), and f,(8) is signi-
ficant only for a small range of intermediate values of 6.

Using the expression for f(6), one can correct the measured
partial cross sections a(Q) for multiple Coulomb scattering. If
om(ﬂ) is the cross section for a pion to multiple scatter outside

22, then the probability P(Q) for the pion to be found within Q is
P(R) = exp(-nto (?)) , (68)

where n is the number of nuclei/cm?® and t is the target thickness

in cm. This gives

102



I
om(Q) el In P(Q) (69)

as the correction for multiple Coulomb scattering. To make the
correction the om(Q) arc subtracted from each partial cross section
(), as shown in equation (60). The probability P(%) is, with the
usc of cquation (61),

6

P(R) = 2nf f(8) 6d6 (70)
0

or

1 - Zﬂfmf(e) 86do . (71)
3]

P(Q)

The last step follows from the normalization of f(6), which is

{”f(e) 216d6 = 1 (72)

Finally, om(ﬂ) is given by
o (@) = - In(l - ’nfmf(e) 6 de) (73)
m nt - Je . /
In using equation (73), £(6) is approximated by the first
term in equation (62), which is a good approximation for small
angles, where f,(6) is the dominant term (the validity of this
approximation for larger 6 will be discussed later). By using the

approximation

£0) = g f0(0)
(o4

one can write equation (72) as

nt X

hed g2
8_() = -1 ln[l - —;42%.[ exp[—e_g'—]e'de']
T XeT o c



= -l - 2nf exp(utydut) (74)
u

82 . . . . .
where u = 128 The integral in equation (74) is the incomplete

gamma function, For the energy range spanned by the “lic data (i.c.,
S1 to 105 MeV), the correction given by equation (74} to the
measured partial cross sections o(Q) was large for counter number
one, very small for counter number two, and zero for counters threc
through cight. Since only counters four through eight were used in
obtaining the total cross section (the reason for this will be
explained later), the multiple scattering correction given by
equation (74) had no etfect on the total cross section.

Equation (74) does not include the multiple scattering of pions
by the atomic electrons. This effect may be taken into account by
changing the parameter B as shown by Fano.37 However, in the casc
of the “He data, this had no effect on the total cross scctions.

So far, the finite beam si:ic and beam divergence have not been
considered. To do so, one needs to consider the effect on the beam
of multiple scattering 1n TOF2. Note that because the MWPC were
positioned upstream of TOF2, they only gave information on the beam
size and divergence at TOF2.

It is not possible to handle the beam size and divergence
analytically, but they can be handled by Monte Carlo methods with a
computer. This is a technique which uses random numbers to simulate
statistical processes such as multiple scattering. The process of
simulation involves setting up a computer model of the physical

effect by performing operations which represent the motions and
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interactions of the real particles. The physical effects must be
directly represented by probability distributions so that the use
of random numbers allows sampling from these distributions in order
to simulate the physical effect,

The details of the multiple scattering Monte Carlo program are
discussed in Appendix E. The program starts with an individual pion
at the upstream face of TOF2 and follows its history until it hits
or misses the transmission stack. It repeats this process thousands
of times for both the target “in" and target “out'" situations. The
program then gives r(2) (rg()) the fraction of pions starting at

TOF2 and hitting the i-th transmission counter when the target is

"in" ("out'). For nt nuclei/ecm?, the correction o (2) is
Q IR i 75
om( ) - E In r(ﬂ) ( )

and it i1s subtracted from each o(Q).

It was found that om(Q) as obtained from equation (75) was
insensitive to the finite beam size but was quite sensitive to the
beam divergence. Because there were uncertainties in the tails of
the pion angular distribution in the xz and yz planes, a check was
made to see what effect the tails had on om(ﬂ). For 51 MeV pions,
where the multiple scattering correction was the largest, the
corrections om(n) for counters one through three were found to vary
considerably, depending upon what assumptions were made on the form
of the tails. For counter four, om(ﬂ) was always very small or
zero, and for counters five through cight om(ﬂ) was always zero.

Consequently, conly counters four through eight were used to obtain
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the total cross section, The price paid for this is a larger
statistical error on the total cross section. This is necessary in
view of the difficulties in correcting the small angle counters.
This problem will reappear in the discussions of single Coulomb
scattering and pion decay. Its effect is shown rather dramatically
in Figure 17, where o(2) is plotted versus -t {only counters two
through eight were plotted). The data points have been corrected
for all effects, yet o(f2) for counter two is considerably larger
than the other partial cross sections.

Because of the expense in running Monte Carlo computer programs,
equation (74) was used to correct for multiple Coulomb scattering.
In the case of “He, this makes no difference in the final total
cross sections. However, it could make a difference for targets
such as Sn and Pb. It was felt that so long as equation (74) gave
a small correction for counters two and three, the corrections for
counters four through eight were negligible.

Single Coulomb scattering. The measured partial cross scctions

o) are corrected for single Coulomb scattering by subtracting
s () = [ [9—3] s (76)
Q C

from each o(R), as in equations (17) or (60).
For nonrelativistic pions, {g%} is given by the celebrated
“Je

Rutherford scattering formula, given in cgs units, by

2 -
8. g
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where m_ is the pion's rest mass, z is the atomic number of the tar-
get, ¢ is the unit of charge, and v and 0 are the pion velocity and
scattering angle in the center of mass, respectively. Equation (77)
is valid for both the classical calculation of or the quantum
mechanical trecatment of Coulomb scattering (for spinless particles).
The relativistic generalization of equation (77) for spinless

particles is the Mott scattering formula,38 given in cgs units, by

d 1 ze? . e
{‘Tg_]c = T mve - 82] s1in EJ (78)
T

where B =v/c, Using the kinematic reclations E =n%c2(l -82)‘1/2 and

B =pc/E, where E and p are the total energy and momentum of the pion

in the conter of mass, one can write cquation (78) as

da) L f{ze E)2[ . e)-u

dej . 4 c?p?y {
or

]

do) _ ,{ze?E)2(1 .

R N )
where

t = Ap?- sinz-g-

= -2p2(1 - cos &)
1
= - T—T-pzﬂ .
since 2=25(1 -cos8). With the use of

. -

onc can write

99_] de
dQf. dt °
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or
dc] [za}z[ﬁc]z
5 = A0mp=— 1= , (80)
[dt c B t

where h is Plank's constant and a is the fine structure constant.
If in equation (80), Rc=197.33 MeV fm and t is in (MeV/c)?, {g%Jc
will have units of mb/(MeV/c)?.

In equation (80) it is assumed that both the pion and the “He
nucleus are point charges. If the finite charge distributions of

the pion and the “He nucleus are taken into account, equation (80)

becomes

do| _ za)?(hc)? . 2
{E}c = —401r(—8-J {—t-] (I“(t)FHe(t)] , (81)

where Fn(tJ and FHe(t) are the charge form factors for the pion and

Y“He nucleus, respectively. The form factors were assumed to be

Gaussian, so that

[-Rf'ti 2
F (t) = explf—?ﬁ;;" (82)

and

(83)

-Rgltl}

Fre(t) = e"p(_éﬁ?—

where ltl is the absolute value of t in (MeV/c)2, hc =197.33 MeV
fm, and Rﬂ:=0.8 fm and Rc =1.63 fm are the charge radii of the

pion®:3% and the “He nucleus*9. Combining equations (81), (82),

and (83), one obtains
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do) _ za)? (Rc]? -(R*'Rc)lt!
&), - o[ (5] el =

{n terms of {%%} , the Coulomb correction given by equation
c

(76) becomes

o (t) = [ x——J dat' (85)

where toax is the maximum t that is kinematically possible. For ease

of computation, toax Was assumed to be infinite. This introduces a

dt
(84) is substituted in equation (85), the result is

negligible error, since [QEJ is very small for large t. If equation
c

(86)

2 w -(RZ+R2) !t

- . E 22 _1_ ™ C
ac(t) = 40“[8] (hey { T exp[ The Jdt‘
Integrating by parts, one obtains the following expression for c(t)

(in mb):
-(RZ2+R2]|t|
_ zg)? he (R7+RS
Uc(t) = -40“[——8—] T exp e

(R‘"2+ Rg')ltl El[(R“2+ Rc)lt”

3he J (87)

3hc

where Ej(z) is the exponential integral

B () = [ S—dx
2z

i

The inclusion of the finite charge distributions of the pion and "“He
nucleus in equation (87) is a small correction to the result
obtained with point charges. The point charge limit is reached as

the quantity in square brackets in equation (87) goes to unity.
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Equation (87) does not include any effects due to the finite
size or beam divergence. To find their effedts on UC(Q), a Monte
Carlo computer program was used. The details of this calculation
are given in Appendix E. This program calculates the probability
PC(Q) for a pion to singie Coulomb scatter within the solid angle Q.

Then GC(Q) is given by
1
0 () = - =1InP_(2) (88)

For 51 MeV pions, where the single Coulomb scattering correction was
the largest, equation (88) was found to be insensitive to the beam
size, but sensitive to the beam divergence. The corvections cc(Q) as
calculated from equation (88) and (87) were different for counters
one through three but essentially the same for counters four through
eight. Furthermore, it was found that the corrections for counters
one through three depended on the assumptions made about the form of
the tails of the angular distribution of the pions. Consequently,
the Coulomb corrections were made using equation (87), since only
counters four through eight were used to obtain the total cross
section. The size of the Coulomb effect on the total cross section
monatomically decreased from a ~10% correction at 51 MeV to ~1.5%

correction at 105 MeV,

Pion Decay

For Y beam particles, the i-th transmission counter measures

S{ counts. BRecause of pion decay, S, contains a certain
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number of muons designated by Sgﬂ These muons give effects that
mist be corrected for. For example, muons from the decay of pions
upstream of the target give some apparent additional scattering from
the target. For muons from the decay of pions downstream of the
target the problem is somewhat different. If the decay muon always
hit the same transmission counter that the parent pion would have
hit if it had not decayed, then there would be no need for a cor-
rection. However, this does not always happen, so the partial cross
sections ci need to be corrected for this effect.

The effect of muons from the decay of pions upstream of the
target will be considered first. If it were not for the presence
of the target, the distribution of muons hitting the transmission
stack would, in principle, be the same for target '"in" and '"out."
Conseguently, these muons would form a background common to both the
target "in" and "out” runs and would cancel out according to
equations (6), (7), and (8). However, the distributions of muons
at the transmission stack will be different depending on whether the
target is '"in" or 'out" because the muons undergo multiple and
single Coulomb scattering in the target.

It is difficult to make this correction because the angular
distribution of the beam is not known very well. Nevertheless, the
correction is believed to be small, if not zero, for the partial
corrections o, through og, which are the only ones used to obtain
the total cross section. In the first place, the number of muons
relative to the number of pions is small, and secondly, because the

muon mass mu =105.66 MeV is comparable to the pion mass mﬂ==139.57,

111



the multiple and (to a lesser degree) single Coulomb scattering
corrections are appreciable only for the partial cross sections oy,
05, and o3, However, these three U{'S are not used to obtain OToT*

The number of muons is small because of the effect of using the
DISC and the time-of-flight counters. The principal source of muons
is pions decaying slightly upstream of TOF2 and betwszen TOF2 and the
rarget. For 51 MeV pions, where the number of decaying pions is the
largest, all muons from pion decays within 4 cm of the upstream face
of TOF2Z could be identified as pions. Furthermore, there is another
5.08 cm between TOFZ and the target where pions could decay. The
probability of a 51 MeV pion decaying in this 9.08 cm is approximately
1%, which decreases a2t higher energies.

As a result of these considerations, no corrections were made
to the a; for upstream pion decays.

Next, consider the effect of muons from pions decaying down-
stream of the target. They do not always hit the same transmission
counter that their parent pion would have hit had it not decayed.
This makes the measured partial cross section for that counter tou
large. This effect would cancel in the comparison between target
“in" and "out" runs if there were no energy loss of scattering nf
pions in the target. The effect of energy loss on the angular
distribution of the decay muons may be seen from the expression for
the maximum decay angle emax (as measured from the pion's trajectory)

in the laboratory frame



e f T
tan © ax Bf , (89)
[32] -1
u

where Bﬂ and Bu are the pion velocity (as measured in the laboratory)
and muon velocity (as measured in the pion's rest frame), respectively.

If 8

(B“) and GOm (emax) are for a blank (target) run then

Ow ax

BOﬂ > By and GOmax <6max'

The formalism used to treat the pion decay correction was due to
and developed by G. Burleson."! It starts by considering the i-th
transmission counter, which measures Si counts of which S;J counts
are due to muons. [If S;J can be calculated or measured then the num-
ber of pions detected is S;r=Si-S;. This number must be corrected
for the number of pions that decayved before reaching the i-th counter.
To do this, consider a single pion which travels a distance x before
reaching the transmission stack. The probability that it did not
decay is exp(-x/1), where A is the decay length. For the j-th pion
traveling a distance xij before reaching the i-th transmission
counter, the probability that it will not decay is exp(-x{j/A). To
correct S;T for those pions that decayed, it should be divided by
<exp(-xij/A)z the average probability that a pion will not decay
before reaching the i-th counter. The average is taken over the
xij/A for the sample of pions S;ﬂ

If S{J was known, then the partial cross section 9, would be

Y](‘“Pfl’l”F |

o L | P
i nt u v [YO =X, . g
[ s,-sF-s; ] ‘<exPl .1)> J

given by (

(90)



v X .
where Si is the number of muons from pions decaying upstrecam of

. v \ ) )
the target. Since Si <<S:, equation (90) may be written as

5) i)

i0 i
= = — 0 — 9
O T i® 5, e ln S.¥ X LD
) -] el
: .

The first term in equation (91) is the partial cross section calcu-
lated from the measured Si and SiD and the second term is the

currection for decay GDi

[ st -X. .Y

io i)

1 - — {|<exp|—=j>

S; [ %o )
op: = == 1In L0 (92)
D1 nt Si¥ Xy : o

R e

A Monte Carlo computer program was used to calculate S;B, Sr,

<exp[:;%i]>, and <exp[::éi}>. The calculation is discussed in
Appendix E. However, it should be noted that the effects of the
finite beam size and divergence are included in this calculation.
Furthermore, the downstream decays come from both scattered and
unscattered pions when the target is "in" or "out" (when the tar-
get is "out' pions still scatter in TOF2). Since the distribution
of scattered pions was not known, the observed distribution (which
included both pions and muons} was used to approximate it.

The downstream pion decay correction varied from -12% correction
at 51 and 61 MeV to -4% correction at 105 MeV. This correction
could vary by as much as *3% at 51 and 61 MeV and by *1% at 105 MeV,

depending upon the assumed form of the tails of the angular
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distribution at the target. In addition, an estimate of the statisti-
cal ecrror in the calculation was made with the use of the binomial and
rormal distributions. This error was added in quadrature to the
statistical errors Aci of the o before extrapolating to t=0. The
statistical errer in the decay corrections GDi was between 1/4 and

1/3 of the statistical error in ;.

Coulomb-Nuclear Interference

The next correction to be considered is the interference of the
Coulomb and nuclear elastic amplitudes. The o(Q) are corrected for

An
this cffect by subtracting f [ég} d2 from o(Q) as shown in equation
cn

dQ
194
(17), where {Qg] is given by equation (14) to be
4% ¢n
d9) . 2[Ref Ref + Imf Imf ] (93)
da en - n c ’ n c '

Because it contains the nuclear amplitude fn, this correction
is model -dependent. It could be made model-independent by measuring
the Coulomb-nuclcar interference directly. This has been done for
12C by Binon et al."? and Scott et al.“3 and for 180 by Mutchler
et al."% at a few energies, but no data exist for "He. To measure
the interference effect, the elastic differential cross section needs
to be measured at small angles, where the two amplitudes fn and fc
become comparable in magnitude.

An alternate approach for self-conjiigate nuclei is to calculate

. o= 1. - + .
the average cross section °"§{UT0T"°TOT) and the cross section
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. + . . .
difference AO"(UTOT‘FUTOT) without making the interference correc-

+
TOT

sections, respectively. To first order, g is independent of

tion, where Obe and o are the o~ and o° total nuclear cross
the Coulomb-nuclear interference correction and can give a
reasonable estimate of the strong total cross section. The
difference Ao is independent of the pure Coulomb correction and
shows the combined effects of Coulomb distortion and Coulomb-nuclear
interference. Finally, if some reasonable estimate of the inter-
ference correction could be made to &be and of%T, then the ratio
Ao/o could yield information concerning the Coulomb distortion
effects.

To see why 0 is nearly independent of the interference correc-
tion for low-Z self-conjugate nuclei, consider equation (93). The

Coulomb amplitude fc is mostly real (i.e., Refc:»In|fc), so that

do N
[aﬁ]cn = 2Re fC Re fn .

The sign of Refc is negative (positive) for o (r7) and Refn has
the same sign for both 7' and 7, being positive (negative) for
energies below (above) the (3,3) resonance. This means that the
interference corrections for n  and n  are nearly equal in magnitude
and of opposite sign.

Models may be invoked to calculate the Coulomb-nuclear inter-
ference correction. Those that were used in this work belong to

the class of complex optical potentials. In this type of model,
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the many-body problem of the pion-nucleus interaction is turned into
a two-body problem of the pion interacting with a potential. The
various interactions between the pion and the nucleons in the
nucleus are replaced by a potential V, between the pion and the
nucleus, which has both a real and an imaginary part to account for
both elastic and inelastic processes.

The calculations were made using a computer program called
PIRK, which is documentcd in papers by Eisenstein and Miller*> and by
Cooper and Cisenstein."®  PIRK solves the problem of a relativistic
spinless particle interacting with a complex potential. It numeri-

cally integrates the Klein-Gordorn equation

2f2
[-(hev )2 + S35+ (mge?)?]y = [E -2V2 - 2EVQJy ,  (94)

2
c
where Vr is the radial part of the gradient operator, L2 is the
operator for the square of the orbital angular momentum, mg is the
rest mass of the pion, ¥ is the pion wave function, E is the total
energy, Vc is the Coulomb potential energy, and VN is the complex
optical nuclear potential. The Klein-Gordon equation is numerically
integrated for each partial wave from the origin outwards to a
predetermined match point where the "internal" logarithmic deriva-
tive is compared to the "external' or asymptotic Coulomb wave
function for that particular partial wave. The phase shifts are
obtained for each partial wave and are used to calculate the
scattering amplitude, the differential elastic cross section, the
interference between fc and fn’ and the total cross section. The

equations used are
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L=l @+ £ @2, (95)

£.(0) = n[2psin g]-lez”"o -nln(sin 6/2)) (96)
. zﬂzNaE ’

P
W ELR— 22(2“ DS (1 -5y, iPy(cos®) (97)
SCQ . eZiOg , o8)
sy, - o , o)

and

- Z_z.z(vul)ne(l-s (100)
g

N

where 6, E, p, and k are the center-of-mass scattering angle, total
energy, momentum, and wave number of the pion, 61 is the nuclear
phase shift for the 2£-th partial wave in the presence of the
Coulomb field, o, is the point charge Coulomb phase shift of the
2-th partial wave, and o is the fine structure constant.

Using equations (96) through (99), the interference correction
was found by numerically integrating equation (14) from Qi to 4w,

where Qi is the solid angle subtended by the i-th transmission

counter.

The optical potentials used in the Klein-Gordorn equation were

the Kisslinger and Laplacian potentials, which are given by
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-A[bgk?py - by 7+ (p¥y)] (101)

L
=4
<
[H

and

-Al(bg + by)kZok + 3by (V20)¥] (102)

!
V¥

respectively. In equations (101) and (102), A is the nuclear mass,
k is the pion wave number in the w-nucleus center-of-mass frame,

o is the nuclear density, and by, and b; are complex parameters.

The models are discussed in the papers by I(isslinger“7 and in the
papers by Lee and McNanus , %8 Faldt,*? and Kock and S*ernheim.50

Both of these models are attempts to describe the (3,3) reso-
nance with essentially only the S- and P-waves contributing to the
interaction. The parameters by and b; give the strength of the S-
and P-wave contributions to the interaction, respectively. One
major difference between the two potentials is that the Laplacian
potential is local (i.e., it is a function of only the position
operator), whereas the Kisslinger potential is nonlocal. This
difference arises from the assumed form of the off-shell pion-
nucleon scattering matrix, which is not unique.

In solving the Klein-Gordorn equation, a Gaussian charge dis-
tribution was used to calculate the Coulomb potential. It was given
by

2¢2  ~(r/R¢)? (103)

for r <RC, where Rc is the charge radius of the nucleus divided by

Al/3 The corresponding potential at some point R>RC is
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Ry = 202 f(- 2) 3
¢ (R) =ger f§~1 . (104}
c

The nuclear matter distribution used in equations (101} and

(102) was also Gaussian and was given by

2 -(r/w)? .
py(r) = Tem7T © , (105)
where z is the charge of the nucleus and w is the width paramecter
for the nuclear matter density.

It is desired to apply these models to the total cross section
data for ot - “He in an encrgy range where they are not cxpected to
work especially well., This was demonstrated by Cooper and Eisen-
stein3! when they used the Kisslinger and Laplacian models to analy:ze
data from 7 elastic scattering on !2C and both n° and ©~ elastic
scattering on “He at 50 MeV. They allowed the complex parameters b,
and b; to vary in both the Kisslinger and Laplacian potentials to
obtain good fits to the data. The fits they obtained were found to
be unsatisfactory because the resulting potentials either violated
unitarity (by causing one or more scattering matrix elcments to
have magnitude greater than unity) or produced pions in an unphysical
way in some regions of the nucleus. However, there are few options,
since at present there do not exist any modeis which have been shown
to be applicable in this energy regime,

As a limited check of the sensitivity of the models to the para-
maters by and by, they were chosen in two different ways. In one
case they were an interpolation or extrapolation of the values

obtained by Crowe et al.%2 which were obtained by treating them
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as free parameters to obtain the best fit of the Kisslinger potential
to the clastic differential cross sections for " and 7" on “He (at 51,
60, 68, and 75 MeV). In the other case, the values of by and by were
obtained from a fit to the free pion-nucleon phasz shifts by Saloman.>3
Both sets of by and by are given in Table X as a function of the pion
kinetic energy Tn.
As can be seen from Table X, there is a considerable difference
in the two sets of parameters. Also, as was expected, the Coulomb-
nuclear interference correction and, consequently, the total cross
section are dependent both on the model used and on the parameters by
and b;. The variation in the size of the correction at 51 MeV and 105

MeV is shown in Table XI. The total cross sections obtained from the

two models and two sets of parameters will be given in Chapter V.

Table X. The parameters by and b;, as a function of the pion
kinetic energy T,, from the fits by Crowe et al. (Ref. 52) and
Saloman (Ref. 53).

Crowe et al. Saloman
T“(MeV) Reby Imbg Rebd; Imb, Reby Imbg Reby Imb,
51 -2.8739 0.0788 5.8342 0.0443 -1.1303 0.6007 7.5302 0.9448
71 -2.5558 0.2054 6.0012 0.2808 -1.0704 0.5467 7.7425 1.3156
75 -2.1296 0.5864 6.2250 0.5979 -1.6094 0.4946 8.0334 1.9516
85 -1.80830.8736 6.3936 0.8368 -0.9721 0.4657 8.2329 2.5611
95 -1.4861 1.1616 6.5628 1.0765 -0.9395 0.4430 8.3811 3.3075
105 -1.1584 1.4544 6.7348 1.3202 -0.9095 0.4247 8.4267 4.2216
144 -0.0890 2.5692 7.3897 2.2479  -0.8091 0.3815 6.1695 8.5663
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Table XI. The size of the Coulomb-nuclear interference correc-
tion for 51 and 105 MeV pions. The abbreviations KC and LC refer to
the Kisslinger and Laplacian potentials using the parameters by and
by as obtained from the work of Crowe et al.(Ref. 52) and KS and 1S
refer to the same two models using values of by and by obtained from
the work of Saloman (Ref. 53).

T =51 MeV T =105 MeV
Model
% Correction % Correction
KC 7.1 6.2
LC 7.9 7.2
XS 9.5 1.9
LS 14.1 6.5

Energy of the Pion Beam

The pion kinetic energies quoted in this work are the mean
kinetic energies of the pion beam at the center of the target.
They were determined by calculating the mean energy loss of the
pion beam along its path from the exit of the LEP channel to the

center of the target.

The mechanism for energy loss is the excitation and io~ization
of the atoms and molecules in the different materials along the
flight path of the pions. The energy loss per unit length (or
stopping power) %—g;-for each material was calculated from the rela-

tivistic Bethe formulaS"

2.4 ?Ci
1dr _ 2mNgzret Zpg f ome W ) oo i |4
p dX mc2g2 A I;%j(l-ﬁz) zp
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where W is the maximum kinetic energy which can be transferred to an

electron (initially at rest) and is given by

2a2 -1
v [zlmf ;’2}{1 * ot [%” (107)

In equations (106) and (107), the meanings of the symbols are as

follows:
p = mass density of the stopping material,
T = pion kinetic energy,
X = th?ckness of the stopping material in mass per
unit area,
z1 = charge of the pion,
¢ = velocity of light in vacuum,
e = electronic charge in esu,
m = electron rest mass,
A = atomic weight of the stopping material,
Ng = Avogadro's number,
z, = charge of the stopping material,
Iadj = adjusted ionization of the stopping material,
B = velocity of the incident pion,
?Ci = sum of the effects of shell corrections on the
1 stopping power,
A = polarization effect correction term,
and
M = pion rest mass.

The polarization effect A is the perturbation of the field of the

passing pion, which is caused by the electric polarization of the
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surrounding atoms. This results in a reductior of the energy loss
by the pion. This was assumed to be small, and A was set equal to
zero. The %Ci contains the effects of nonparticipating inner shell
electrons. It was also assumed to be small and was set equal to
zero.

The principal uncertainty in the kinetic encrgy of the pion was

due to the momentum bite AP/P of the LEP channel. This was typically

o°

1% or *2%.

Summary of Data Corrections

Table XII lists all of the major data corrections, with the
approximate size of each. The remaining corrections to the data
were estimated to be less than 1%. These include multiple Coulomb

scattering, pion decay (upstream), effects due to the geometry of

Table XII. The major corrections to the data with the size of
each.

Correction Size of Correction
Accidentals 0.1 to 3.0%
Efficiencies and Absorption 0.1 to 0.5%
Single Coulomb 1.5 to 10.0%
Pion Decay (Downstream) 4.0 to 12.0%
Coulomb-Nuciear Interference 6.2 to 14.1%

124



the detection system (i.e , positioning of the transmission stack,
TOF2, and the halo counters), effects due to the target thickness,
effects due to the finite beam size and divergence, knock-out pro-

tons, and effects due to the incorrect identification of pions by

the DISC and time-of-flight system.
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V. RESULTS AND DISCUSSION

The ﬂi-“He total cross sections measured in this experiment will
be presented in this chapter, along with previous measurements made
in the same cnergy region. A discussion of how the measured total
cross section is related to the imaginary part of the forward elastic
scattering amplitude through a modified optical theorem will also be
given. The real part of the forward scattering amplitude is obtained
with the use of a phenomenological model and is compared to forward
dispersion relation calculations. The measured total cross sections
are compared to the predictions of several optical model calculations.
Lastly, the chapter is concluded by a summary of what has been found

and what could be done in the future to extend this work.

Pion-"lle Total Cross Section

In measuring the strong interaction total cross section for
pion-“He scattering, the emphasis was on low-energy data with small
statistical errors for both positively-and negatively-charged pions.
Here, low energy means pion labcratory kinetic energies below 100
MeV. It is desirable to have both 7' and 7~ data in order to have a
better means of studying the Coulomb problems discussed in Chapter 1Iv.

There is a scarcity of low-energy data for the w-nucleus total
and elastic differencial cross sections. This scarcity of data is
attributable to the low-intensity pion beams that have been available

at low energies. The data which does exist is for the nuclei !2C and
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“He. The choice of these low Z targets is due to the Coulomb prob-
lems which are increasing as the energy is decreasing. Only the “He
data will be considered in the present work.

The ﬂi-“He elastic differential cross section do/dQ comes from
three experiments. Crowe et al.52 measured do/d2 for both " at
energies of 51, 60, 68, and 75 MeV. Nordberg and Kinsey5® measured
do/dQ for both 7t at 24 MeV. These two experiments were counter
experiments. The third measurement was a bubole chambher experiment
by Bloch et 2l.%% who also measured the total cross section. They
obtained data for both n at 50, 58, and 65 MeV. Their quoted ener-
gies are the mean values of the three energy intervals into which
their experiment was divided. These three energy regions were:

(a) 45 to 55 MeV, (b) 55 to 62 MeV, and (¢} 62 to 69 MeV. Conse-
quently their energy resolution was not particularly good. The total
cross section data of Bloch et al.3® is presented in Table XIII.

The table gives the Tr+-"‘He total cross section 0;0T’ the w -“He total

Table XIII. The 7 -YHe total cross section data of Bloch et al.
(Ref. 56}.

+ - — Ao

T"(MeV) 10T (mb) SroT {mk) Ao (mb) o (mb) =
51 79.2+3.4 91.1*4.7 11.9+5.8 85.2+2.9 0.14%0.07
58 80.1+3.0 109.2+4.5 29.1+5.4 94.7+2.7 0.3120.06
65 106.8+4.4 127.6*5.8 20.8+7.3 117.2+3,6 0.18+0.06
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average cross section E}:%(OTOT"OTOT)’ and the ratio Ao/o as a
function of the pion laboratorv kinetic energy T -

Finally, Fowler ct al.>? measured the average total cross section
o at 60 and 105 MeV in a “He diffusion cloud-chamber experiment. At
60 and 105 MeV ¢ was 89 *+18 mb and 207 27 mb, respectively. The 60
MeV data was an average of data taken at 53 and 68 MeV.

These experiments were all atterpts to measure the rms electro-
magnetic radius of the pion. The results on the magnitude of this
radius were all greater than those obtained from experiments involv-
ing the scattering of pions from atomic electrons.3? The analysis
of the n-“le data was based upon the use¢ of n-nucieus optical poten-
tials to fit the data. As will be seen later, there is very poor
agreement between the different optical potentials and both their
experimental data and the results of this experiment. Consequently,
until such time as there is an improved agreement between theory and
experiment, ﬂi—“He scattering experiments are unlikely to yield
reasonable values for the rms electromr.gnetic radius of the pion.

Recently, Alexandrov et al.>® mecasured the elastic differential
cross section for - on “He and 3He at nine energies with the lowest
two being 68 and 98 MeV. In addition, Binon et al.%% in a counter
experiment measured the m -"He total cross section at eleven energies
and the 7 -“He total cross section at one energy. Only three of these
energies (67, 85, and 110 MeV) are in the energy region of interest
here. Lastly, Wilkin et al.® measured the average wi—"He total cross

section ¢ at five energies, with the lowest being 110 MeV,
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The rotivation for this experiment was a desire to improve on
the earlier = -“lie total cross section data and to examine the poor
agreement in m-nucleus scattering between theory and experiment in
the low-energy region. A discussion of the discrepancy between
theory and experiment will be given later, along with a survey of
the growing literature on the problem. The present experiment
measured nt-“He total cross sections in the energy range 50 to 105
MeV, in steps of approximately 10 MeV.

This experiment is an improvement over the earlier SroT experi-
ments of Bioch et al.5® and Fowler et al.,>7 in that it has better
energy or momentum resolution (i.e., AP/P, where P is the momentum,
was typically +1% or +2%). The final statistical errors were between
3 and 6%, which are comparable to those of Bloch et al.>® and con-
siderably smaller than those of Fowler et al.>? Furthermore, this

experiment covered a wider energy range than the two previous

measurements of o.. ...
10T

ty -k : + -
The = He and = He total cross sections (GTOT and oroT?

respectively) measured in this experiment are presented with their
statistical errors in Table XIV as a function of the mean pion
laboratory kinetic energy T1T at the center of the target. These

total cross sections were obtained, as discussed earlier, by the
following procedure: (1) The measured partial cross sections o(Q)
were corrected for those effects discussed in Chapter IV (i.e., pion
decay, single Coulomb scattering, Coulomb-nuclear interference, etc.);

(2) The corrected partial cross sections were then fitted with a



Table X1V. The ni—“He total cross sections of this experiment
as a function of T,, the p1on laboratory kinetic cnergy. The reduced
chi-squared XR? is also given. The cross sections are in mb and T.
is in MeV. The crrors are the statistical errors. Fitted parameters
and free parameters refer to the values of hg and by obtained from
the fits of Crowe ct al. (Ref. 52) and Salomuan (Ref, 53) (see Table X).

No Coulomb-Nuclear Interference Correction

Tn Svor X STor X
51 95.6%5.9 1.0 125.5%6.1 1.8
61 86.0%6.0 2.0 127.6%6.3 0.3
75 124.2¢7.5 1.4 162.2¢7.0 1.8
85 127.16.4 0.7 185.4%6.4 1.9
95 161.326.4 0.1 210.2#6.4 3.1
105 187.1#5.7 0.3 223.94#6.1 1.1
144 295.324.0 9.2

Interference Correction Using Kisslinger Model

Fitted Parameters Free Parameters

+ 2 - 2 + 2 - 2
T oot XR Stor  XR SToT X Stor  XR
51 105.1x5,9 1.1 114.8%6.1 1.7 109.2+5.9 1.1 112.4#6.1 1.6
61 95.8+#6.0 2.0 117.1%#6.3 0.2 98.0:6.0 2.1 116.4%6.3 0.2
75 135.1+7.5 1.4 150.9x7.0 1.9 133.8+7.5 1.4 153.5¥7.0 1.9
85 138.9+6.4 0.8 173.3%6.4 1.8 134.946.4 0.8 178.4%6.4 1.9
95 173.9+6.4 0.1 197.4+6.4 2.9 157.3+6.4 0.1 204.9%6.4 3.0
105 200.3+5.7 0.3 210.8%#6.1 1.0 191.545.7 0.3 220.2%#6.1 1.1
144 305.0x4.0 0.2 293.9#4.0 0.2

Interference Correction Using Laplacian Model
Fitted Parameters Free Parameters

T o X2 O X2 o X2 g X

TOT R TOT R TOT R TOT R
51 106.8+t5.9 1.1 114.4%#6.1 1.7 115.7¢5.,9 1.2 105.7%6.1 1.6
61 97.5#6.0 2.1 116.1%6.3 0.2 105.2+6.0 2.1 108.74¢6.3 0.2
75 136.5+7.5 1.4 150.0+7.0 1.9 142.2+7.5 1.5 144.6%x7.0 1.9
85 140.1+6.4 0.8 172.1%6.4 1.4 144.0+#6.4 0.8 168.8:t6.4 1.8
95 175.3%6.4 0.1 196.0+6.4 2.9 176.8t6.4 0.1 194.9%6.4 2.9
105 292,3%#5.7 0.3 208.4#6.1 1.0 201.0+5.7 0.3 210.1%#6.1 1.0
144 316.4+x4.0 0.3 300.1¥4.0 0.2
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quadratic polynomial in t (i.e., the square of the momentum transfer}
using the correlated least-squares method; and (3) The fitted quad-
ratic polynomial was then extrapolated to t=0 to obtain the total
cross section. Only data from the five largest transmission counters
were used in the fitting procedure. Jata from the three smaller
counters were omitted because of the uncertainties in correcting them
for pion decay and single and multiple Coulomb scattering., For the
fitting, the second-order polynomial in t (as opposed polynomials of
the other order) in general had the smallest value of the reduced
chi-squared xf (i.e., the value of chi-squared per degree of freedom).
For this reason the total cross sections were obtained using a quad-
ratic polynomial in t as the fitting function. The xﬁg of the fit
used to find each cross section is also given in Table IV. In Table
XV, the cross section difference Ac, the average cross section o,

and the ratio Ac/o are given as a function of the mean pion laboratory
kinetic energy T1T at the center of the target.

It should be noted that in Tables XIV and XV there appear five
sets of cross sections These contain all of the corrections to the
data described in Chapter IV, with the exception of the first set
which gives the results without the Coulomb-nuclear interference
correction. The remaining four sets contain an interference correc-
tion, which was calculated with the use of both the Kisslinger and
the Laplacian optical potentials. These were both discussed in some
detail in Chapter IV along with the procedure used to calculate the
Coulomb-nuclear interference. In both of these models, there are

two parameters bg and b; which give the strengths of the S- and
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Table XV.

function of Ty, the plon laboratory kinetic
The errors are
Fitted parameters and free parameters refer
(Ref.

are inp mb and Ty is in MeV.

obtained from the fits of Crowe et al.

energy.

The difference Ao in and average O of UTOT and °TOT as
The cross sections

the statistical errors.
to the values of bp and by

52) and Saloman (Ref. 53).

No Coulomb-Nuclear Interference Correction

T Ao o Ao/o
n

51 30.0*t 8.5 110.5*4.3 0.27%0.08
61 41.6% 8.7 106.8*4.3 0.390.08
75 38.0%10.3 143.2%5.2 0.27%0.07
85 58.3+ 9.1 156.2%4.5 0.37%0.06
95 49.0% 9.1 185.7+4.5 0.26%0.05
105 36.8+ 8.3 205.5#4.2 0.1820.04

Interference Correction Using Kisslinger Model

Fitted Parameters

Free Parameters

T Ao g Ac/a X 3 Ac/G

51 9.7+ 8.5 110.0%4.3 0.09+0.08 3.2+ 8.5 110.8+4.3 0.03+0.08
61 21.3% 8.7 106.5%¥4.3 0.20+0.08 18.4% 8.7 107.2:4.3 0.17£0.08
75 15.8%10.3 143.0%5.2 0.1120.07 19.7+10.3 143.7%#5.2 0.14:0.07
85 34.4+ 9.1 156.1*4.5 0.22+0.06 43.5* 9.1 156.7+4.5 0.28+0.06
95 23.5%* 9.1 185.7#4.5 0.13%#0.05 37.6x 9.1 186.124.5 0.2020.05
105 10.5+ 8.3 205.6*4.2 0.06¥0.04 28.7+ 8.3 205.8%#4.2 0.14+0.04

Interference Correction Using Laplacian Model
Fitted Parameters Free Parameters

T %} g Ao /o Ao o 80/G

51 7.6 8.5 110.6*4.3 0.07+t0.08 -10.0+ 8.5 110.7+4.3 -0.0920.08
61 18.7+ 8.7 106.8%4.3 0.18%0.08 3.6+ 8.7 107.0+4.3 0.03:0.08
75 13.5%10.3 143.2%5.2 0.09%0.07 2.5%10.3 143.34%#5.2 0.02+0.07
85 31.9+ 9.1 156.1%¥4.5 0.21+0.06 24.9% 9.1 156.4%¥4.5 0.16+0.06
95 20.7+ 9.1 185.6#4.5 0.11#0.05 18.1+ 9.1 185.9#4.5 0,10£0.05
105 6.1+ 8.3 205.3#+4.2 0.03+0.04 9.1+ 8.3 205.6#4.2 0.05+0.04
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P-wave contributions to the pion-nucleus interaction. As a limited
check of the sensitivity of these two optical potentials to by and by
two sets of by and b; were used in calculating the interference cor-
rection. As described in the discussion of the interference correc-
tion in Chapter IV, the first set used was the parameters obtained
from the fits of Crowe et al.”? and the second set was the free para-
meters derived from a fit to the free m-nucleon phase shifts made by
Saloman.>3 Both sets of parameters were given in Table X. Of the
four sets of cross sections in Tables XIV and XV with the inter-
ference correction, the first (second) two correspond to the use of
the Kisslinger (Laplacian) optical potential with the fitted and free
parameters.

To compare the results of this experiment to those of Bloch
et al.,56 Binon et al.,%? and Wilkin et al.,8 o, ci%T, and obe are
plotted as a function of T, in Figure 20, 21, and 22. The smooth
curve in Figure 20 through the data from this experiment (i.e., the
LAMPF data) is drawn to guide the eye.

The agreement among the data of the four experiments is not as
good as one would like. In the case of o, there seems to be poor
agreement among the 110 MeV data of Wilkin et al.,® and the 110 MeV
and 105 MeV data of Binon et al.,®? and the data of the present
experiment, as well as between the 51 MeV data of Bloch et a1.%6 and
that of the present experiment (i.e., the systematic errors appear
larger than the statistical errors). Although the data of Fowler
et al.>’ was not included in Figure 20 because of its large statisti-

cal errors, it nevertheless agrees well with the data of this
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Figure 20. The average 7-"He total cross section O versus the
pion laboratory kinetic energy Tq. The data are from this experi-
ment (LAMPF}, Wilkin et al. (Ref. 8), Bloch et al. (Ref. 56), and
Binon et al. (Ref. 59).
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Figure 21. The 7' -%He total cross section oror versus the
pion laboratory kinetic energy T;. The data are from this experi-
ment (LAMPF), Bloch et al. (Ref. 56), and Binon et al. (Ref. 59).
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Figure 22. The n -“He total cross section obe versus the pion
laboratory kinetic energy Ty. The data are from this experiment
(LAMPF), Bloch et al. {Ref. 56), and Binon et al. {Ref. 59).
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experiment. In the case of °£BT and obe the discrepancy in the data
at low energies appear worse. This is indicative of the difficulty
in measuring total cross sections at lcw energies. Many of the cor-
rections to the data increase rapidly at these low energies.

It is preferable to compare the values of o obtained from dif-
ferent experiments rather than the values of U;BT and Ube because to
first order o is independent of the Coulomb-nuclear interference cor-
rection (this was discussed in Chapter IV.) This is important since
the four experiments whose data are presented in Figures 21 and 22
have handled the interference correction in four different ways. The

values of o of this experiment shown in Figures 21 and 22 were

TOT
corrected for Coulomb-nuclear interference by using the Kisslinger
potential with the parameters by and b; obtained from the work of
Crowe et al.3? This was felt to be the best combination of model and
parameters to be used in the interference correction (at least in the
energy region spanned by this experiment) since Crowe et al.%2 used
the Kisslinger potential to fit their elastic differential cross
sections in order to find by and b,.

The previous statement that o is nearly independent of the
Coulomb-nuclear interference correction is verified by the results of
Table XV. In fact, 7 is essentially the same whether or not the
interference correction is made. When it is made, o is independent
of which optical potential is used or which set of by and b; para-
meters is used. This is a stringent test of this independence from

the interference correction since the Kisslinger and Laplacian are

quite different, as are the two sets of parameters bg and by. In

137
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. +
comparison, the values of %ot and Opor Vary by a few percent,

depending upon the choice of parameters and model used for the inter-

. - + -
ference correction, as may be seen in Table XIV. Thus OTOT and OTOT

are much more model-dependent than o,

. + .
The total cross section g was measured at 144 Me\ to compare

TOT
with the data from total cross section measurements at higher energies.
To make this comparison, a Coulomb-nuclear interference correction
must be made. because this energy is sv much greater than those in

the experiment of Crowe et al.,>2 the values of by and b; extrapolated
from their work are probably not too reliable. The value of G;GT
obtained using the Kisslinger model with the free parameters to calcu-
late the interference correction was felt to be the best. The

Laplacian model with the free parameters was considered less reliable

than the Kisslinger model since it led to G;LT being greater than

obe at 51 MeV. Aside from disagreeing with the data of Bloch

et al.,>® this was contrary to what is expected. According to an
argument due to Faldt and Pilkuhn®?,81 one should have 0%51.<o¥bT.
This is because a ' (77) will be repelled (attracted) by the Coulomb
ficld of the nucleus. Hence a @ wilil have a greater probability
than a 7" of strongly interacting with the nucleus because of its
smalier impact parameter and higher energy, and therefore will have

a larger cross section. This effect will be discussed later in

+
greater detail. At any rate, the 144 MeV result of O30T = 293.9+4.0
mbh is consistent with 'be results of Binon et al.%? at 130 and 150
MeV, which arce 292 and 320 mb, respectively. However, it agrees

poorly with o =336%1 mb at 146 MeV from the work of Wilken et al.®



The data from Bloch et al.,>® Binon et al.5? (at 110 MeV), and
the present experiment all show abe >°fBT for “He. This result has
also been seen for the self-conjugate nucleus 12C both in this experi-
ment and in the experiments of Clough et al.®2 and of Carroll et al.3
The data for 12C were taken principally at energies greater than
100 MeV.

The data from this experiment wiil be compared to the predic-

tions of several models in a later section in this chapter.

Discussion of the Optical Theorem

. ' 3 . o
The nuclear total cross section SroT and the imaginary part of

the forward nuclear elastic scattering amplitude Im f'(0°) are related
through the optical theorem. This relationship is given by

o = g 0%) (108)
TOT = X '

where k is the pion wave number. The optical theorem is independent
of any assumptions about the particular model used to describe the
strong interaction.®3:% This makes it useful because through it
the measured total cross section provides a constraint on the analysis
of elastic scattering data.

If, in pion-nucleus scattering experiments, one could use =0
rather than = or #~, then the Coulomb interaction would be absent

1
and o, .. would be directly measurabie as would the nuclear elastic

T0T
differential cross section do'/d= |£'(8)]|2. With the assumption

that the nuclear interaction can be represented by a spherically
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symmetric potential, the nuclear elastic scattering amplitude f'(8)

has the following partial wave expansion

L 2151'
£1(0) = 53¢ Ego(zw 1)]e - 1|P,(cos 8) (109)
1 ¢ '
= 5T 120(2“ 1) (S, - Dp,(cos8) (110)

where GQ' are the complex nuclear phase shifts, PQ are the Legendre
polynomials of order %, ard S;-=exp(2i6£) are the matrix elements of
the scattering matrix. Without invoking the optical theorem, one can

write the total cross section UTbW as

N
8

! - 2m
T k2
TOT 2

(29,+1)(1—ReSE') . (111)
0

[t

o

Equations (110) and (111) satisfy the »ptical theorem.

If the pion-nucleus total cross section and elastic differential
cross section are measured using charged pions, then one does not
obtain o.... and do’ Instead, one obtains o and do which are
TOT e - ’ TOT d2jeq

determined by both the Coulomb and nuclear interactions. The full

elastic scattering amplitude is not f'(6), but rather f(6), where
f(e) = fc(e) + fn(e) . (112)

Here, fc(s) is the pure Coulomb elastic scattering amplitude and the
residual amplitude fn(e) is the Coulomb distorted nuclear elastic
. . do
. ] dag
scattering amplitude. In equations (13) and (15), [dﬂ]ne and %ot

were defined to be

do) _
[mne = |f (0)]2
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and

G,

4n
o1 = % * ({ |fn(e)| dse ’

where . was the total nuclear reaction cross section.

Unlike oTbT and f'(6), which are related by the optical theorem,
SroT and fn(e) are not related by an optical theorem, as will be shown

below. The purpose of this section is to find the appropriate elastic
scattering amplitude which will be related to %roT through an optical
theorem., The formalism was originated and developed by M. Cooper.

If the nuclear interaction is assumed to be represented by a
spherically-symmetric potential, then a partial wave expansion of

£(8) can be made,46,65

L 2i(o, + 8))
f(8) = 5% ) (22+1)[1-e }Pg(cos 9) (113)
% =0
cr
] © Zio2 2ioR 2i62
£(8) = 5¢ ) (22+1)[[l-e ] + e [l—e JPR(cos e)],
2=0

(114)

where g, are the real Coulomb phase shifts and 62 are the complex
nuclear phase shifts in the presence of the Coulomb field. It is
important to note that the 62 are not equal to the 6£ phase shifts
that would be obtained in the absence of the Coulomb field. The

Coulomb amplitude f_(f) may also be expanded in terms of partial

waves:

2ic2
(20 +1) [l -e ]PR (cos 8) (115)

~18

i
f® =5

2=0
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From equations (115) and (113), the partial wave expansion of fn(e)

is

. 2102[ 216Z
£ (8) 27‘"22 (2¢+ 1)e [1-e ]Pz(cose)

© 2i0
T (22+1)e Q(I-SQ)PQ(cos 8 (116)
2=0

where SR= exp(Zidg). With equations (115) and (116), Gpor ©an be

written as

N~ 8

Opor = Op * RIT?_. (2a+1)[1-5.]2 . (117)
2=0

It can be shown by using the conservation of the probability current

density that o is given by©%

8

o, =1z L (-5, 12, (118)
2=0
so that
T o
°tor ~ k2 120(2“ DA-[s 2+ ]1-5,1%
- [2-)
= 5z ) (2¢+1)(1-ReS;) . (119)
2=0

From an examination of equations (116) and (119) one can see that

4'"' )
OroT # TF'I"‘fn(O ) (120)

If a new amplitude ?n(e) is defined by

i o 2162
£(0) = 5 Z(2£+1)[1-e ]Pz(cose)
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or
F0) =5 I (20+1)(1-5)P,(c0s0) , (121)
2=0 ‘

then it can be seen from this definition and equation (119) that UTOT

and %n(e) satisfy an optical theorem

du =
Sror © j;-Inlfn(e) . (122)

Also, since o, is real, then

L
4 4

J I () 2d2 = [ |f _(6)]|2de (123)
0 n 0 n

so that

g ]En(e)lzdn . (124)

f4n
=g +
TOT T 0
+
The 7 -nucleus total cross section SroT does not satisfy an
optical theorem with fn(e) but it does with the new amplitude fn(e).
Unlike fn(B) which contributes to the measured pion-nucleus elastic

differential cross section

do
[d_ﬂ)el ) Ifc(e) ¥ fn(e)|2 ’

%n(e) does not. However, the amplitude fn(e) should be calculable
from any model of the nuclear interaction so that equation (122) pro-

vides a 1ink between the models and OroT"
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Real Part of the Forward Nuclear Elastic Scattering Amplitude

In the last few years several attempts have been made to verify
experimentally the forward dispersion relation calculations of the
real part of the forward nuclear elastic scattering amplitude for
pion-nucleon and pion-nucleus scattering. For pion-nucleon scatter-
ing. this work has been done principally by Foley et al.%6 and, for
pion-nucleus scattering, the work has been done by Scott et al.,t3
Mutchler et al.,“*" and Binon et al.%2:5% To date the nuclei investi-
gated include !2C, 160, and *He (in the case of “He only #~ data has
been used). In this work, the real part of the forward scattering
amplitude for ni-“He scattering at 51, 60, 68, and 75 MeV is deter-
mined from experimental data using a phenomenological model. The
results are compared to the predictions of two forward dispersion
relation calculations.

These experiments are usually performed by measuring the elastic
differential cross section [g%Jel in the angular region where the
Coulomb-nuclear interference is appreciable. The ratio cf the real
to imaginary parts of the forward nuclear elastic scattering ampli-
tude o is obtained by fitting the data with a phenomenological model
of the strong amplitude fs‘ This model contains two adjustable para-
meters o and Rs’ where a is the above ratio and Rs is the radius of
the strong interaction (it is believed that Rs is not too different
from the charge radius Rc’ which is known from electron scattering).
The imaginary part of the forward scattering amplitude Inlfs(O°J is

obtained from the measured total cross section %ot As shown in the
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last section this is not strictly true for charged pions; however
the discrepancy should be small for a low-Z nucleus like “He. Hence,

by knowing o and Im fs(0°), one can calculate Re fs(0°).

The data are analyzed by assuming that the elastic differential

(
cross section l%%] ) is given by equation (10),
e

dol  _ 2
[dQJel =g g

Next, the Coulomb distorted nuclear amplitude fn is assumed to be

given by
fn = fs exp(-2i¢) s (125)
where fs is the strong amplitude and 2¢ is a phase which includes the

pure Coulomb phase and the relative phase between the two scattering

amplitudes £ and € . The pure Coulomb amplitude may be written as
c s

- K
fc(t) = —2n|tl G(t) ’ {126)
with
Z_nZ(I
n-= B 3 (127)

where k is the pion wave number (in fm -1y, t is the square of the
momentum transfer (in fm~2), n is the effective Coulomb coupling
constant, z_ is the charge of the pion, z is the charge of the target
nucleus, o is the fine structure constant, and B8 =v/c is the velocity
of the pion. Here, k and B are center-of-mass quantities. The charge

form factor G(t) is assumed to be Gaussian and is given by
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G(t) = exp[-~16—(R§+Rn2)|t|] s (128)

where R =0.8 fm8-39 and R =1.63 fm*0 are the charge radii of the
pion and the *He nucleus, respectively. The standard approach is tn
represent the strong amplitude fs (t) by a phenomenological

kc,s 1
e ({+a(0°))exp[-—6—R52[t|J (i29)

H
fl

Im£_(t) (i +a(0%))

where 9 is the total cross section for the strong interaction, RS is

the strong interaction radius, and

Re £, (0°)

a(0°) = m (130)

Some time ago, an estimate for the phase 2¢ was made by Bethe.®7

This was later improved upon by West and Yennie®® to be

0 ' £.(t")
2¢ = -2n ln(sing-) - n{4k21t('it~ti[l - fss(t)] , (131)

where © is the center-of-mass scattering angle. Equation (131) may

be expanded as a power series in t. as done by Binon et al.:>?

eod
- . _ﬁ_ .2 (p,thz
2¢ = n{z 1n(sm2) + ¢ + In(4k4p) - nzl——————n(n!)-} , (132)
where ¢ =0.5772 (Euler's constant) and p is given by
Y p2,p2,R2
P=3z (RS +RTT +Rc) . (133)
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The phase 2¢ is small, being -1° for the “He data analyzed in the

present work. With equations (10}, (125), (126), and (129}, one can

write
[g%}:l = ilﬂl%—G(t) . .]\4_01Ti(i+a) exp(- 1R 2[t]) exp(-216™) z
(134)
+
where (g%}e refers to the n -nucleus elastic differential cross
section.

Equation (134) is the basic equation which Scott et al.“3 used
in fitting their = -12C data, which Binon et al.%2,5% used in fitting
their m -“He and © -12C data, and which Mutchler et al.“* used in
fitting their 77-016 data (they also used the cross section difference

[g%];l- E%3;1 to fit their data). If one has both 7' and 7~
data that, rather than use equation (134} to fit the nt and 7 data
separately, it is preferable to fit the ratio D/A where D is the
cross section difference defined above and A==%{{%%J;l-r[g%);lJ is
the average cross section. The advantages of doing this are that,
first of all, D/A as calculated from the data will be independent of
those experimental correctiens that are common to both n and .
Secondly, D/A, as calculated from eguation (134), will be sensitive

to a{0°) and at the same time insensitive to RS. To see this, con-

sider the expression for D and A obtained from equation (134)

Zainikzcs cos 2¢

1
D = e exp(-¢ R2+R2+R)|¢]) , (135)
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or

D= 4fC cos 2¢ Re fs (136)
and
2
A - 2Inlk2 lm2er2)e)) O ) L 2)e))
-] expl-3 RS+ “)It +—2—;—(1+a)exp(—3~Rs lt]
(137)
or
A= Ifc|2 + |fS|2 . (138)
Using equations (135) and (136), one can write
2a|n|k20_ cos 2¢
1
i e - E @z erZ 2 1)
AT 0, ko
1 1
—‘ﬂ—']'ﬁ-- exp -g(RC2+Rﬂ2)|t|] + 21+ o?) exp(- 1R 2[t])
(139)
or
D 4fcc052<1>RefS . L40
NN AL o
c s

From equations (137) and (135) it can be seen that D is directly

proportional to « while D/A is not. However, because RS and RC are
not very different, D/A has a very weak dependence on Rs' This is
desirable, since the fitting function D/A has essentially only the
one adjustable parameter o which is the only parameter of intercst

in this work. For small |t!, D/A goes like 1/a. Lastly, it should
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be noted that D/A is also sensitive to o_ so that the quality of the
fit is dependent on how well the total cross section is measured.
In the analysis presented here for “He, the ratio D/A was used
+
to fit the = -*lc clastic differential cross sections instead of the
+
expressions for [g%}' given in equation (134). Unlike the previous
el
work on “He, data for both m and n~ will be included in the analysis.
The differential cross section data were taken from the work of
52 do + do |-
Crowe et al., who measured both {—— and |+= at laboratory
de el dff ey
kinetic energies of 51, 60, 68, and 75 MeV. The total cross sections
(which are needed for equation (139) and to calculate In1f5(0°)) for

these energies were interpolated from the results of the present

experiment.

It is known that the expression for (g%Jel in equation (134)

does not account for everything. The evidence for this comes from
this and previous experiment59’62 oni self-conjugate nuclei., It has

z s . - - - +
been found that the ratio Ac/oc (where Ao-—oTOT OTOT and
- + G +
°ror * °1O
nucleus is cf the order of several percent (about 15% in the case

5¥=%( T)) which was expected to be zero for a self-conjugate

of the “He data of this experiment), for the reasons discussed above.
The standard assumption that is usually made is that the foxrce

experienced by the pion is of sufficiently short range that to a

good approximation the pion has a straight-line trajectory.

However, this becomes doubtful in the presence of the Coulomb field

of the nucleus. Consider a pion incident on a nucleus with an

impact parameter b close to the nuclear radius RS. A n” will bhe



dragged in and may disappear, assuming strong absorption. A " will
be repelled, miss the nucleus and, consequently, give little contri-
bution to the absorption cross section. Thus the measured o%bT will
be greater than the measured O{BT due to this Coulomb distortion of
the pion trajectory.

These two effects, the distortion and energy shift. have been
estimated by Fildt and Pilkuhn®0,8! using a semiclassical model in
which the pion trajectories are taken to be hyperbolic trajectories
rather than straight line trajectories. In their first paper,60
the nucleus was treated as a completely-absorbing sphere of radius
R. This was later generalized in their second paper,®! to describe
scattering by gray nuclei. This model was used by Mutcher et al.“*
in the analysis of their !€0 data.

Before showing how this model mocdifies equation (134}, it is
necessary to introduce some notations. If k, E, and t are the
asymptotic values of the pion wave number (in fm'l), the total
energy, and the square of the momentum transfer in the center-of-

mass frame, and kR’ EE, and tR are the same quantities evaluated at

the nuclear surface, they are related by

A (141)

(142)

t, = —% (143)




and
ZHZB
§ = —— (144)

kR
s

where ZW(Z) is the pion (nuclear) charge, B is the pion velocity,
and Rs is defined by 9 =2nR;ﬂ which is only meaningful if Rs=
nuclear radius. This definition of Rs is reasonable for energies
around the (3,3) resonance where the nucleus is essentially black
for pions. At lower energies the nucleus becomes more transparent
to pions and the definition is less adequate.

The model relates the measured total cross section to the
strong interaction total cross section evaluated at the energy of
the pion at the nuclear surface, but corrected by a flux factor.

The flux factor arises from the attraction (repulsion) of o~ (o+)

+
and, consequently, the nucleus appears to have a radius R™ given

by
R s 145
S ENH (145)
If ot and o, are the measured and strong interaction total cross

sections, respectively, then according to the model

[0}
_ S
Stor = W+ 382 (146)

As a result of this, the strong amplitude fs is modified to give a

new amplitude %s’ where
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p: 1
fS = {i—;—g)fs . (147)

The differential cross scction evaluated at the naclear surface

is now
do} -2i¢)2
(dﬂlez potg) ¢ {1+5}f (kg tple (148)
or
1,21
- 7k k,o -=R2Me | .
ga) : R°s .. 6 s 'R -2i¢]2
(x| Tl 6 * Tepm (oo c
(149)
In terms of the asymtotic values of k and t,
-FRZ+R2)
do _ | 2k(1+8) (1+6)2
dg ltl
kcs(i +n) GRSZ————Z-UIfIS) -2i¢!
mﬂ e e ! (150)

By using eauation (150) to calculate D/A, one can compare the
result to equations (139) or (140) to see the effect of the Fildt
and Pilkuhn®9:6! model. First, equation (148) is expanded to
first order in §. That this is reasonable may be seen from Table
XVI, where §<<1. In the exponentials, the & is dropped completely,
since the exponential nearly cancels out in the ratio D/A as shown

earlier. Now QSJ becomes
dQ el

2 .12
do - o 1 . o =210
[aﬁlel = '(1+ o)fc(k,t) + [1+ 6] fs(x,t)e (151)
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Table XVI. The values of ¢ as a function of the pion kinetic
energy Ty. Two values of & arc given which correspond to Rg=1.63
fm, both of which are rcascanable values for Rg.

T"(MeV) 6(Rs =1.63 fm) G(RS =1.42 fm)
51 0.0200 0.0229
60 0.0173 0.0199
68 0.1155 0.0178
75 G.0143 0.0164

+ 2 2, .._.1_..] 2 2 ’2i¢’
(1+86) lfcl [l*ﬂlfst + [l*a]fcRe(fse ) (152)

n

n

-2
(L+s8)F |2+ (1-38)[£,{% + 201 - 8)f Re(f " ?
(153)

Using the fact that

and

one can write the cross section difference D and the average cross

section A as
D= (1-206PIES1Z + e alshIEI2 v 20+ [SDETRe(Fe )
- a+2{sPIEr]2 - G-4fs]f |2

- 201 - [8])EF Re(£e721% (154)

153



N

- 2 2 .
4|8} [fcl + 8|s] Ifsl + 4f _cos 26 Re f_

- sin 2
4]6|fc>ln-¢ Imf_ (155)
= ch cos 2¢ Re fs + 4 s (156)
where
= -4i 2 2 _ i
a1 4|6chl + Sléllfsl 4|s|fcsmz¢- Im f_ (157)
and
A= Sla-2leDes]2 + aealehf |2
- 2i{¢ +]2
+ 2(1+ [8])f " Re(f " ") + (1+2]8])|f*]
C S C
-21
+ (L-al8D €12 + 2010 - [6DE} Re(£ ™)) (158)
= lfclz + lf5[2 + 4[5[fc cos 2¢ Re f_ - 4f sin2¢ Imf_
(159)
= £ 12+ [£,1% + 82 (160)
where
by = 4,a|fc cos 29 Re f - 4f sin2¢ Imf_ . (161)
The rativ of the difference to the average is then
D 4fc cos 2¢ Re fs + M
e - > R (162)
[£. 12+ 16 ]2+ o

which is much like equation (140) except for the smali corrections
Ay and 45 in the numerator and denominator. As with equation (140),
the RS dependence is small because of cancellation of the exponen-

tial factors. However, some R_ dependence has reappeared via [8], but
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it is small for the energies being considered here, since |6| is
small as shown in Table XVI, Consequently, the ratio of the differ-
ence to average differential cross section is still essentially only
sensitive to «a.

In making the actual fit to the data, it was found that equation
(162) gave a better fit than equation (140). Furthermore, the approxi-
mations made in deriving equation (162) were not used, aund the complete

do

expression for L;a] 1 (equation (150)) was used in a computer code to
e

calculate D/A.

To find «, the elastic ni—“He differential cross sections from
Crowe et al.%?were used. This data covered the center of mass
angular region from 31° to 152°. However, only scattering angles
before the first minimum in [ggJel were used since the phenomenologi-
cal model is valid only in this angular interval. The [gglel data
are given in Table XVII as a function of TTr and the center-of-mass
scattering angle, BCM. The total cross sections o at 51, 60, 68,
and 75 MeV were interpolated from Figure 20 where o is plotted as
a function of the laboratory kinetic energy T". They are given in
Table XVIII., That it is reasonable to set oS==3'follows from the
previous arguments that the average of the measured total cross
sections O;BT and obe is independent of the Coulomb-nuclear
interference correction. Also, o is independent to first order of
the flux correction of Faldt and Pilkuhn. This can be seen from

1 - +
o = 5{9or * %ror)
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from Crowe et al. (Ref. 52).

Table X

. + . . .
The elastic n~ - “He differential cross sections
All cross sections are inmb, T is inMeV,

and eCM is in degrees. The errors are the statistical errors.
+ -

T Ocm - g?"z A

51 31.5 1.516 +0.140 5.192 +0.254 1.096 + 0.098
36.7 1.611 £0.136 3.969 £0.166 0.845 +0.083
41.9 1.223 +0.093 2.978 £ 0.145 0.835+0.088
47.1 1.131 £0.093 2.033£0.107 0.570 + 0.092
62.5 0.434 £0.024 0.560 +1.025 0.254 +0.069
67.6 0.266 +0.023 0.371 £0.020 0.329 £ 0,095

6u 31.5 2.661 £0.075 6.712 0.146 0.864 +0.038
36.7 2.634 £0.071 5.033:0.106 0.626 +0.035
41.9 2.327 £0.052 3.854 +0.,076 0.494 + 0.031
47.1 1.663 +0.046 2.835 +0.062 0.521 £ 0.035
62.6 0.534 £ 0.010 0.747 £0.013 0.332+0.025
67.7 0.366 +0.009 0.436 +0.009 0.175+0.033

68 31.6 4.031 £0.190 7.299 +0.273 0.577 £ 0.061
36.8 3.612£0.176 5.312+0.361 0.381 £+0.092
42.0 3.247 £0.135 4.494 £ 0.164 0.322+0.055
47.2 2.651 +0.126 3.082+0.223 0.150 £ 0.089
62.7 0.722+0.025 0.925 +£0.034 0.246 £ 0.051
67.8 0.437 £0.020 0.512+0.026 0.158+0.070

75 31.6 5.940 £0.205 9.394 +0.236 0.451 £+ 0.042
36.9 5.252 £0.167 7.080+0.215 0.296 £ 0.045
42.1 4.268 +0.141 5.858 £0.132 0.314 + 0,039
47.3 3.006 £0.104 3.979+0.127 0.279-0.047
62.8 0.960 +0.025 1.119+£0.023 0.153+0.033
67.9 0.623 +0.019 0.667 £0.017 0.068 £+ 0.030
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Table XVIII. Total cross section o, as a function of the pion
laboratory kinetic energy T".

T"(MeV) os(mb)
51 , 102
60 115
68 127
75 139

o o

Q|

- 1 s + S
2((1-18)2  (+]shH?

= 2o (1+2]8]) + o (1-2]6]))

by using equation (146).

Given the experimental data for o do* and do}” and the
s? dQ el, dQ el
theoretical expression for D/A, the next problem was to find a(0°).

This was accomplished by choosing at a fixed energy a pair of values

for o and RS and then by calculating the quantity

>l

F(a,R,6,) = (163)

(where equation (150) was used to calculate D/A) for each of the six
center of mass scattering angles ei. The next step was to calculate
the experimental ratio
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D(6.)

- 1
o(ei) z A, (164)

for each ei' This was then compared to F by calculating the value

of chi-squared,

s(8,) - F(a,Rs,Bi)]Z

6
x> = 1
1=

1
where Ao(ei) is the error in o(ei). The calculation was repeated for
many pairs of o and Rs' The pair which gave the minimum value of x2 gave
the best fit of F(a,Rs, ) to the data o(8) and the best values of a and
RS. The wholc procedure was handled by a computer code.

As was expected, the goodness of fit of F(a,Rs,e) to ¢(6) was
insensitive to Rs’ Consequently, Rs was set equal to the charge
radius Rc =1.63 fm and « was allowed to vary. Since only one para-
meter was determined from the six data points at each energy, there
were five degrees of freedom.

The best fit values of o are given in Table XIX, along with

Im fs (0°) calculated from the optical theorem o =4T“Im fs 0°),

Re fs(0°), and the chi-squared per degree of freedom, sz .

Table XIX. The best values of a, Imfg(0°), and Re £5(0°).

T,» Im fs(0°), and Re fs(0°) are in units of MeV, fm, and fm.

o o 2
Tﬁ o Im £(0°) Re £(0%) Xp
51 1.10+ .25 0.534 0.587+0.133 2.7
50 1.05 .15 0.662 0.728 £ 0.099 7.8
68 1.05 % .43 0.787 0.826+0.338 0.9
75 1.03+ .30 0.914 0.941 £+ 0.274 1.7
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The error Aa on o was obtained by keeping RS==Rc and allowing
to vary until the chi-squared x2==SxR2 increased by one unit. The new
a' was then one standard deviation from the best fit value of «, so
that Ac= |a' - al. This is a standard procedure for obtaining the error
on a fitted parameter ani is described in detail by Bevington.33

The large errors on the a are probably due to the fact that the

Crowe et al.52 differential cross sections are not in the small-angle

[
(3

interference region. Consequently, D is small with large errors, 10
or greater except at 60 MeV (see Table XVII). Data in the small-angle
region with small statistical errors would be very desirable in try-
ing to extract Re fs(0°). The large value of sz for the 60 MeV data
is due to the small statistical errors.

Having obtained the experimental values of Re f(0°), the aim of
this work was to compare these results to the forward dispersion
relation calculations of Re f(0°) by Wilkin et al.® and by Batty,
Squier, and Turner.* Some basic features of forward dispersion rela-
tions will he discussed in Appendix F. A more detailed account may
be found in the paper by Ericson and Locker3 and in the text by
Taylor.©3

In Figure 23, the Refs(0°) is plotted versus T . The data
points from 110 to 260 MeV are from Binon et al.52 and the curves
are dispersion relation calculations by Wilkin et al.8 (dashed curve)
and by Batty, Squier, and Turner" (solid curve). The data points
labeled by LAMPF refer to the results of this experiment.

The values of Refs(0°) at 51, 60, 68, and 75 MeV are consistent

with both theoretical curves, Even without the large error
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Figure 23 The real part of the forvard m-“He nuclear scatter-
ing amplitude Re fg(0°)} versus the pion laboratory kinetic energy Ty.
The data are from Binon et al. (Ref, 59) and Crowe et al. (Ref. 52j
and this experiment (LAMPF). The curves are forward dispersion rela-
tion calculations. The solid curve is from Ref. 4 and the dashed

curve is from Ref. 8.
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bars the data are not in the right energy range to allow for a dis-
crimination between the two calculations. The data are also slightly
larger than the values obtained by Binon et al.>2% when they analyzed
the data of Crowe et al.%2 using their measured obe, However, they
do not quote any errors for their results, so that it is not clear how
consistent the two analyses are. Furthermore, their analysis differed
from the present one in several respects. They chose to {it %§ﬂ;l
rather than D/A, only n total cross section data were used and they
did not include the flux correction of Faldt and Pilkuhn,b0,61 Lastly,
the phenomenologicai model they used for fS contains a modification
for the dips in E%ﬂel which introduced another complex parameter to

be determined by the data.

Optical Model Calculations

In this section, the measured ni—“He total cross sections will
be compared to different optical model calculations.

The optical model reduces the complex many-body problem of
m-nucleus scattering to an effective two-body problem, One method of
calculating the optical potential utilizes a multiple-scattering
series.11,13,69,70 ysing this approach (the details of the calcula-
tion are given in the references), the lowest-oider optical potential

in momentum space is given by

n

<k'|V[k> = Ao(k-Kk")<k'[tfk> . (166)

In equation {166), k and k' are the initial and final pion momentum
in the w-nucleus center-of-mass frame, A is the nuclear mass,

p(k-k') is the Fourier *ransform or form factor of the nuclear
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matter density p(R), <5'[t|§> is the off-shell n-nucleon scattering
matrix, and <k'|V[k> is the lowest-order optical potential. By
taking the Fourier transform of equation (166), one obtains the

optical potential in coordinate space,

<ot [V]r> = Aff d*ka%ke KT ok <kt [t fRoe BT

{167)
Equations (166) and {167) are the starting poimts for the comparison
of the optical potential to the data.
The different optical potentials that were compared to the data
come about from different assumptions as to the form of <k'|t|k>.

In order to account for the dominance or the (3,3) resonance,

Kisslingeru7 assumed that
<k'|t|k> = by + b1k k (168)

where bg and b; give the strengths of the S- and P-wave amplitudes.

This led to the Kisslinger potential in coordinate space
Ve = -Abgk?py + Ab Ve (pVy) . (169)

It is nonlocal since it contains momentum operators, and it has a

strong sensitivity to 7 scattering in the nuclear surface because of

the Vp term.

Another possible form of the off-shell w-nucleon scattering

matrix“850 is given by

<k'|t{k> = by + by (k2 - %qz) (170)
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where g=k' -k and kg = |k'| = |k{ (for on-shell). This comes from

(k2 +k'?y - %qz. Equation (170} icads to the Laplacian

N R

k'+k=

potential in coordinate space
Vb = -A(bg +byk%py - %Abl(vzp)w . (171)

It is local since it is a function of only the position operator
and, through the V2p term, it is sensitive to w scattering in the
nuclei surface.

A simple optical model without the derivatives of the nuclear
density can also accommodate the P-wave wm-nucleon interaction through
an energy-dependent effective radius. Such a model was derived by

Silbar and Steinheim.’! They assumed

<k'{t]|k> = by (k? - q?) (172)
and derived

= . 2

VERw = -Abjk pR*(r)w . (173}
If the nuclear charge density p(r) is characterized by R*, where

R*2 = B2 + > (174)

k2

and R is the nuclear radius, their model is called the "effective

radius' model. If R is used in place of R* in equation (174), then

VER hecomes the '"matter-radius' model, given by

Vyg¥ = —Ablksz(r)w . (175)
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The "effective-radius'" model can also be generalized. If the t-th

partial wave dominates, then R* is modified to become

pe2 o p2 4 3%2(+1) (176)
2k2

The off-shell w-nucleon scattering matrix used in equation (166)
is a function of momenta and energies which are evaluated in the
m-nucleus center-of-mass systems. However, the wm-nucieon scattering
amplitude is usually determined in the w-nucleon center-of-mass sys-
tem. The necessary transformation of the w-nucleon scattering matrix
from the m-nucleon to the m-nucleus center-of-mass system leads to
ambiguities., One choice among them leads to a "modified' Kisslinger
potential,’2-7% given by

E +m
c 1l

Vi = -Abok20(r)¥ + Ab707h - 1A by (V2p) 9

(177)
in equation (177), m_ is the pion mass, m is the nucleon mass, and
EC is the kinetic energy of the m in the m-nucleus center-of-mass
system.

The last optical model that was considered was based on a
separable m-nucleon scattering matrix given for each eigenchannel
n={&,I,j) by
<kglt, Iko>g, (k')g (K)

<k [tlk> = (178)
gn(ko)z

where <k0{tn[ko> is the on-shell matrix element (kg=|k'|=[k]|)}

which, along with the gn(k) functions, is constructed from the

164



complex m-nucleon phase shifts,’5:76 Equations (178) and (166) then
give a separable optical potential in momentum space.’9%,77
Landau’®:7? has used this separable potentia! to calculate the
average total cross section ¢ for wi-“He scattering. His results,
along with the calculations of ¢ using the other optical potentials
discussed above, are given in Figures 24 and 25. (The average cross
section o was compared to the models, rather than U%BT or o{BT,because
it is less model-dependent, in that it is independent of the Coulomb-
nuclear interference.) With the exception of Landau's calculation,
all of the curves in these figures were calculated with the computer
code PIRK*5-%6 which was also used to calculate the Coulomb-nuclear
interference correction. The data in the two figures are from
Wilkin et al1.® and the present experiment (LAMPF). Together they
span the energy range 50 to 250 MeV. In Figure 24, curve 1 is the
calculation of Landau, curve 2 is the prediction of the Laplacian
model, and curve 3 is the prediction of the Kisslinger model. In
Figure 25, curves 1, 2, and 2 are the predictions of the "effective
radius,"” the "matter radius," and the modified Kisslinger potential,
respectively., Except for Landau's calculation, all of the models
were used with a Gaussian nuclear matter distribution p given by
equation (105), with the nuclear radius R equal to the charge radius
Rc==1.63 fm. Landau used a nuclear form factor equal to the nuclear

charge form factor Pe with the finite proton size removed:

p(q) = ———— (179)
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Figure 24. Comparison between the measured n-%He average total
cross sections and the predictions of the separable (Refs. 78 and
79) Laplacian, and Kisslinger optical potentizls. The predictions
of these three potentials are given by curves 1, 2, and 3, respec-
tively. The data are from this experiment (LAMPF) and Wilkin et
al. (Ref. 8).
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Figure 25. Comparison between the measured m-“He average total
cross sections and the predictions of the "effective-radius,"
"matter-radius,” and modified Kisslinger optical potentials. The
predictions of these three potentials are given by curves 1, 2, 3,
respectively. The data are from this experiment (LAMPF) and Wilkin

et al. (Ref. 8).
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where q is the momentum transfer and fgkq) is the proton form factor.
The nuclear charge form factor P Was given by the experimental charge

form factor3?
h2a2
(@) = [1 - (@%qN°]e b%a® |

with a=0.316 fm and b=0.681 fm.

It should be noted that the by and b, parameters used in these
calculations were derived from the fit to the free s-nucleon phase
shifts, made by Saloman.53 For the "effective-radius" and ‘matter-
radius' models a correction by was added to the parameter b; in
equations (173) and (175) to account for the small S-wave w-nucleon
amplitude.?!

Unlike the other optical potentials, the separable potential of
Landau does not contain any adjustable parameters. In the Kisslinger
and Laplacian models, however, the bg and b, parameters can be
allowed to vary to obtain the best fit to the data. Crowe et al.>?
did this to obtain the best fit of the Kisslinger model to their
elastic n -%He differential cross section data. By interpolating
between and extrapolating from their parameters, o was calculated
both with these parameters and with the free parameters in the
energy range 50 to 105 MeV. The results are given in Figure 26,
where curves 1 and 2 are the Kisslinger and Laplacian calculations
with the free parameters. Curves 3 and 4 are the Kisslinger
and Laplacian calculations with the fitted parameters. The data
are from the present experiment (LAMPF)}. It is clear that the

two models are quite sensitive to by and b;. Furthermore, for
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Figure 26. The effect of different values of by and b; on the
predictions of g by the Kisslinger and Laplacian optical potentials.
Curves 1 and 2 (3 and 4) are the Kisslinger and Laplacian predictions
using the free (fitted) parameters,



the Kisslinger model with by and b; obtained from fitting the

elastic scattering data, the agreement with the total cross section

data is not very good. Also as mentioned carlier, Cooper and

Eisenstein®! found that when they allowed by and by to vary to fit
\

[g%}:l for 12C and both [gg}:l and [Q%J;l for “He, the resulting

Kisslinger and Laplacian models violated unitarity. The “He data

they used was from Crowe et al.%? and, by fitting [35}21 and
{%%};1 separately, they obtained four sets of by and by. They
found that the fits of Crowe et al.>? also violated unitarity.

From ¥igures 24, 25, and 26, it can be seen that none of the
different models fit the data very well. At the higher energies the
separable potential fits the best and at the lower energies the
Laplacian potential is the best. However, the Laplacian potential
is not successful in fitting the elastic differential cross section
as shown by Cooper and Eisenstein.®! Landau and Thomas8! found that
the separable potential did not fit the low-energy pion-nucleus
elastic scattering (s -!2C and a1 -YHe). This Failure they attri-
buted to a lack of good low-energy m-nucleon phase shifts which are
essential for their model. Amann ect al.82 using frec m-nucleon
phase shift information, found that the Kisslinger and Laplacian
potentials, along with the separable potential of Londergan, McVoy,
and Moniz,”6 gave poor fits to their 51 MeV ' - 12C eclastic differen-
tial cross section data.

As mentioned at the beginning of this chapter, the experiments
of Crowe et al.,52 Nordberg and Kinsey,55 and Ploch ¢t al.5®

+ . . . . .
mezsured w -“He elastic differential c¢ross section at low energies
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in an attempt to measure the rms electromagnetic radius of the pion.
In their analyses, they used the Kisslinger potential. However, in
view of the poor agreement between experiment and the different
optical models at low energy, it appears that such analyses are
unlikely to yield a reliable rms electromagnetic radius for the
pion.
For the Kisslinger and Laplacian potentials, there are two other
adjustable parameters, thc nuclear charge radius RC (RC =1.63 fm"0
as measured from clectron scattering) and the nuclear mass radius
R. With the frec values of by and by, RC and R were varied in
order to check, in a limited way, the sensitivity of the optical
potentials to these paramecters. [t is a standard practice to define
a new charge radius R ' = (Rc2 +Rn2)1/2where R =0.8 fm%»3? is the
charge radius of the pion so that R; =1.82 fm. Both Rc and Rg were
used in the Gaussian charge distribution given by equation (103) to
see what effect, if any, they had on the calculated 0. There was
found to be a negligible difference (less than 0.5%) between the two.
As for R, there are two common practices. The first is simply
to set R= R.. The other is to calculate the R from R= (Rf -123)1/2,
where Rp==0.8 fm*? is the proton charge radius. In the first case,
R=1.63 fm and in the second R=1.42 fm. Figure 27 shows the results
of using R=1.63 fm and R=1.42 fm in the Kisslinger and Laplacian
potentials. Curves 1 and 3 (2 and 4) are for the Laplacian and
Kisslinger potentials,with R=1.63 fm (R=1.42 fm). The smaller
value of R gives a worse fit to & ihan the larger value of R. For

R=1.42 fm, the peak is lower, and at low energies R=1.42 fm leads to
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Figure 27. The effect of varying Rg on the predictions of o
by the Kisslinger and Laplacian optical potentials Curves 1 and 3

(2 and 4) are the Laplacian and Kisslinger predictions with
Rg=1.63 fm (R=1.42 fm).
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larger cross sections than R=1.63 fm (this is reversed at high
energies). This same behavior was exhibited by both the "matter-
radius'" and the modified Kisslinger models. The "effective'radius"
model behaved differently, Up to about 110 MeV there was negligible
difference between the two cases. Above ~110 MeV, R=1.42 fm gave
larger cross sections than R=1.63 fm. The discrepancy was a maxi-
mum at ~170 MeV,where it was ~6% and then remained essentially con-
stant as the energy increased. However, using R=1.42 fm did not
substantially improve the fit of the "effective-radius" model to the
data.

Finally, comparisons between the models and experiment were
made for the ratio %;;as shown in Figure 28. The data from this
experiment (LAMPF) presented in Figure 28 have been corrected for
Coulomb-nuclear interference with the Kisslinger potential using the
fitted parameters derived from the work of Crowe ct al.%? Curves
1, 2, and 3 were obtained from the semi-classical model of F#ldt and
Pilkuhn,®9-61 the Kisslinger potential and the Laplacian potential.
According to Fdldt and Pilkuhn,

~ §2§. 3
kRs , (180)

>
Ollq

where E is the total pion energy, k is the pion wave number, B is
the pion velocity, and Rs is the strong interaction radius

(RS =1.63 fm). Again, there does not appear to be any particularly
good agreement between theory and experiment. However, the errors

on the low-erergy points are quite large and need to be reduced to
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Figure 28. Comparison between the measured ratio Ac/0 and the
predictions of the semi-classical model of Faldt and Pilkuhn (Refs.
60 and 61) and the Kisslinger and Laplacian optical potentials. The
predictions of these three models are given by curves 1, 2, and 3,
respectively. The data are from this experiment (LAMPF) and Wilkin
et al. (Ref. 8},
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make any definitive comment on the different models. The results are
the same for the other values of Ao/o in Table XV. Also, the values
of Ac/o calculated from the data of Bloch et al.>® (see Table XIII)

are statistically consistent with the results of this experiment.

Concluding Remarks

The measured ni-”He total cross sections of this experiment were
compared to the previous measurements of Bloch et al.,>® Fowler,
et al., 57 Binon et al.,59 and Wilkin et al.8® Within the statistical
errors, the agreement was good, except for the 51 MeV data of this
experiment and of Bloch ct al.>%® (i.e., the systematic errors appear
to be much larger than the statistical errors). There is a similar
disagreement among the 110 MeV data of Wilkin et al.® and the 110
and 105 MeV data of Binon et al.”? and this experiment, respectively.
The average total cross section o was found to be independent
of the Coulomb-nuclear interference correction and therefore reason-
ably model-independent, since the variation in the measured values
of 0 due to the choice of the model used in the interference correc-
tion ranged from a 0.7% variation at 51 MeV to 0.2% variation at
105 MeV. This was not found to be true for the measured values of
U%BT and obe, which varied by as much as 5%, depending upon how the
interference correction was made. This suggests the desirability of
measuring the elastic differential cross section in the small-angle

interference region. This would allow the interference correction to be

made in a model-independent way. Finally, OT-OT was found to be greater than
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0;6T (at all energies) as was seen in the 12C data of this experi-
ment and in the previous “He data®¢,57 and 12C data.?:52 These
differences in the cross sections are presumably due to an incorrect
handling of the different Coulomb effects, such as distortion, inter-
ference, etc., by the different theoretical models.

The measured values of G;BT and cbe were shown not to be
related through the optical theorem to the imaginary part of the for-
ward nuclear scattering amplitude given by equation (110), due
to the Coulomb interaction. However, GfBT and obe were shown to
be related through the optical theorem to the imaginary part of the
forward scattering amplitude fn(0°],where ?n(e) is defined by equa-
tion (121). It should be noted that En(s) is not the scattering
amplitude which contributes to the measured w*-nucleus elastic
differential cross section (the scattering amplitude which does
contribute is fn(e) defined by equation (116)). Hewever, through the
optical theorem given by equation (122), En(0°) does put a constraint
on any model of the w-nucleus interaction.

An attempt was made to verify experimentally the forward dis-
persion relation calculations“:® of the real part of the forward
nuclear scattering amplitude in the energy region of 50 to 75 MeV,
using a phenomenological model for the nuclear amplitude fs. The
results were moderately successful in their agreement with the
forward dispersion relation calculations. However, it would be
desirable to measure the elastic differential cross sections in the

small-angle interference region in the hope that this would reduce the

large statistical errors on the experimental values of Re fs(0°).
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The measured values of G from this experiment and from Wilkin
ct al.8 were compared to several optical potential calculations.
The reason the experimental values of & were compared to the thecreti-
cal calculations rather than the experimental values of O;BT was
because they were not strongly dependent on the Coulomb-nuclear inter-
ference correction. The agreement between experiment and theory was
found to be very poor in the low-energy region. From this work and
the work of others,>1»81:82 jt was found that none of the optical
potentials could successfully describe both the total cross section
data and the elastic differential cross section data. These results
suggest the need for more work in the theory of low energy w-nucleus
scattering and for more low-eneryy data of high statistical accuracy.
There are future plans for this experiment to measure 7 - “He and,
possibly, 7t - 12C total cross sections, at energies as low as 20 MeV.
The poor agreement between theory and experiment also indicates that
attempts to measure the rms electromagnetic radius of the pion by
invoking optical models for the strong interaction are probably

unreliable and also probably unnecessary due to the results of the

rm-electron scattering experiments.
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APPENDIX A: EFFICIENCY AND ABSORPTION CALCULATION

The expressions for T and S in terms of N, «, B, and € are given

below.

LK

€1N)

€2 (N2 + axNy)

£3(N3+ BaasNy + azly)

€y (Ny + B3a2N3 + B22aaNg + ay X))

£5(Ns + BuayNy + 83%a3Ny + B2 %0, Ny + agh;)

€6 (Ng + BsazNg + Bu2aaNy + By a N3 + 82%agN; + aghy)

£a(Nog + BeapNg + 852‘13;\35 + By, 305,:\’“ + 63“-::5.\'3 + 535053'2

T

+aNy)

cg{Ng ¢ 8yasNqg + ‘3527!3.\'6 . ﬁsamg,NS + 8““0551‘.‘ + B;SGG.\':;

+ 82611732 + agNy)

€1N) + €2Nz + (3 - £1) el
Sy+egNg+ (1 -e1)(] -€)a3zeaNy + (1 - €5)epe382N,

Sy+ Ny + (1 -e33{(1 -€2)}() - e3)ayey,Nj
+(1-e2)(1 - €2)a364822N, + (1 - £3)az6,,B3N3
Sy ¢ 25N5’ Q- E‘l»‘(! = “:2)(l - E})(' - C!.)“stsﬂl

+(1- 52)(1 - 53)(1 - El.)ﬂyC3323N2

s (1-€3)() - £4)u3e5832N3 + (1 - €4)ayegB,N,
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Sg = S +egNg + (1
+(1-22)(1
+(1-e3)(1
+ (1-¢e4302

57 = S+ e7Ny
+(1-e)(1
+(1-e2)0
+(1-e3)(1
+(1-e4)(1
+(1-¢e5)(1
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+(1-)(1
+(1-¢e2)(1
+(1-e3)Q1
+(1-¢4)(1
+(1-e5)(1
o (1-

- C])(l - 62)(1 - 63)(1 - Cu)(l - 85)0685.\"
-e3)(1-£4)(1 - eg)asgegfa*Ny
-e4)(1 °55)0u65333x3

’ES)QSCGBHZNM’ (1 - eglagegBgNsg

-e2) (1 -€3) (1 -e4) (1 -€5)(1 - eglagesy
-e3) (1 -€u)(1-€5)(1 - eg)agesBy™Ny
-ey) (1 - eg)(1 - egluse7834N3

- £5) (1 - £5)ag €78, 3Ny

-26)06£7EGZN5* (1 -eglaseqB:Ng

-e2)(1-e3)(1 -€,)(1-€5)(1-¢€g)(]-e7)ageghy
~e3)(1-€,) (1 -€5) (1 -¢€g)(1-eq)aregBy®N,
-€y) (1 - €5) (1 - €6) (1 - £7)agegB35N3

-€5) {1 - €g) (1 - e7)asegBy Ny
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These cquations may be rewritten as

ClNl
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T2 = €Ny + £2a3N; + X2

T3 = €3N3 + e303N; + X3

ry
@®
n

egNg + egagNy + Xg
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and

Sz = €2N2 + Yz(lz + 22
S3 = e3N3 + Y3a3 + 23
58 = Est + Ysaa + Zg

So that solving for N and a gives

Ny = —

a. = I { i
i EINI - Y
T, -X, -e.0.Ny
N, = !
i €

where i >2. The quantities )\'i, Y., and I, are defined as follows

where only the first three will be given.

Na 20

X3 = €3(ByapK7)

Xy = €4(8,2a3Ny + B3asN3)

Yo = (1-g1)eaN

Ya = (1 -e1){1 -e,3)e3M)

Yo = (3 -e3)(1 -e3)(1 - e3)e,Ny

and
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= e1N)
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= £)N)] + €Ny +e3N3 # (1 -€2)(1 - 63)(1361,322.\'2
+ (1 - 63)01.?!21,?,3.‘-'3 + (1 - E])(l - 51)3353N1
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APPENDIX B: COVARIANCE OF Si AND Sj

2y 2efinition the covariance (Asij)'-’ of S; and Sj is

(88:5) = (S -<S;2){S; - <5;*)

SiSj - <Si><5j-‘-

where <Si> is the expectation value of Si'
The probability that S, =Xp in ¥V trials is
P(S. =Xg) = [39"0(1 -p,y Yo
rivg 00 l)( i i
where l’i is the probability of an cvent in Si and <Si> = \‘l’i.
Now consider the covariance (AS.; .ie!) which has the constraint

S =8, +2 Let P, ., and Qi be the probabilities of an cvent

a1 551" 5 is1' By
in S“l. Si' and :i’ respectively, where 2‘.i is the angular ring where
Si does not shadow Si”. Also let X, Xp, and k be the number of

events in Siol’ Si’ and Zi. Then the probability Qi for an cvent in

where X > Xg.

Then the conditional probability for Z; =k when S; = Xo is
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¥ - Xo| [P, ,, - P; k[ P, -P.)Y-Xp-k
» atle =X ie] 1 15,4 I
i’r(-‘.-klsi Xp) “ [1-

K i-P‘. I-P'
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o B (R (L il (L

V- Xo X-X Y-X Xg-Y
X-Xy -3 Xg-
. x-\'J (PP 00 P ) -
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PS;, =k IS =X0)

where k=0, 1, ..., Y-Xj;.

What is desired is the probability that si»l =X and Si = Xg

PL(S;,)=X) and S =Xg) = P (S, =X[S =Xq)P (S;=X)

[y xo[\'~xo] v o 2 XeNg Y-X
(xo)Ti {xoxg) Fiar ) 7O

X

]

———
P
[ ——

| P X | .
) i o X ¥-
xo}‘ {P_'_-I’_J (Piap PP (-Pgy))

remembering that X “Xa. That this is the correct probability distri-

bution is casily checked hy summing over X, from O to X.

n

¥ . P X
Y X Y-X ¢ (X i 0
{\]“’m'”i) (1-Py) 7 1 [xo”p“‘.;‘lfﬁ}

P_(S. ,=X)
T el X} Xg=0

. P, X
Y X Y-x i
{x] (PP (1-P5,y) {“'—“"p. -p.]

i+l 1

¥), X Y-X
[x]"m (1-p;,y)
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where the binomial theorem

n
Poq) = 1 (\}I"g" X
x=0Y
has beent used.

Now for amy j o1 and .‘:j ‘:.\‘i

P (S.=X. and S,=X.) ={ ){ i ~_-xi(r paNiaer)
p {35585 =Yg )}, X; [ U aaepy

This now permits -:x‘.xj.-’ to he calculated

y N
XX;> = F ] XN.P(S.=X. and S.=Xp)
'4ox=0x=0 YT '
J 1
, X Y .
Yo N X5 NUHERS I
xj=n P Ng=0 UG

X; "
j L B ) .
PNl b s xopp Xt pyN

X. =0 YIXi li-P‘. J Ui Jj o
; ]

so that «X,X.» is given by

)
Y .
X X,> = ] X2 ]PiP j 'fil’)Y'*J
Y= (N
P, ¥ v} .
. ): 2 { } -\j ‘Y-X'
=L ¥ X, PN -p 3N
Py x.z0 7 X4)7J J
j
P,
= =& [YP.(1-P,) + Y?p2?]
Pj j b ]
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= p. -P. Y2p,
PAY( PJ) + J]

Finally, the covariance (Asij)z’ j>1i, is

2
(Asij)

i

This reduces tc the

<S§.8.> - <§,><8.>

1) 1 )

IY(1 -P.) +Y2P.] - Y2P.P.
p.IY(1 J) J] ¥
YPi(l-Pj)

variance (ASi)z for i=j.



APPENDIX C: COVARIANCE MATRIX

FOR THE PARTIAL CROSS SECTIONS

The sample covariance3?3 (Acij) for the partial cross sections
o. and o, is
1 ]
(45,.)2 = lim 1

3 Nereo N-1 2

[ e -4

1(0{2 - <oi>) (°j2 - <o'j>]

where Uiz and ojg

The partial cross sections o, are given by

are the 2-th observed values of o, and oj and j=21i.

so that (ui —<oi>) can be expanded about <R0i> and <Ri>

30{ Boi
(Ui -<0i>) = (Roi —<R0i>)[aR0i] + (Ri-<Ri>)[5§EJ+ cee

where the partial derivatives are evaluated at <R0i> and <Ri>’
respectively. A good approximation to (oi —<ci>) is obtained by

keeping only the first two terms in the series since for large Y,

ROi =<R0i> and Ri =<Ri>.
Using this result, one obtains the following expression for
2.
(Aoij) :
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n

, (1 z aoi aoi

(4c..) lim ——-—] {(R .. -<R .>)[ ]+ (R, ,-<R.>) —-”
1j N-wtN-1) 7 0ie o0{ aRoi i i aRi
( 30.] 90, ]

" L(Rsz“Roj’3[aRoj, * (Rjz“Rj’)[aRj]J

1 Z ac, 90,
lim ————] [ co-<R .>) (R . -<R_.>) [——‘ ][_L]
I ote 0% 0j2  0j akoj anoj

N->wo'

aol 90,
+ (Ryg=<Ri>) (R -<R >){ Mﬁi—]

n

2

) o
¥ Rogp~Roq™) Ryp~<Ry >)[3R ][BRJ.]

) aal 30,
* R RPI Ry 50 Rp5) [5?] {3R0j”

where the last two terms are zero since there is no correlation

between RO' and R. or between R, and R, ., so that
i j i 0]

2 1 ). 30i~ 90 .
(Ac..)* = lim { ] [(R . -<R .>)(R.. -<R '>){——_il{_ J]
1) N1 ie ot 0j2 oj 73R, anoj

%9:) (2%
* ‘“iz"‘Ri>"“jz"“j’)[Eﬁ}J[aRj]]

If it is noted that the covariance (ARij)2 is

(&R ;)2 = N}imm[k—f-l—]%(nu-mi,\) (Ryp=<R;>),
then
(Aoi.)2 = (ARO..)Z[;:H ]&;;ij + (AR )2[30 ]{ES;J .
i ij 03] (Ro;) 3R,

The partial derivatives are given by
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-1
(nt<R0i>)

—_—
Q?
Q
]--.
— e’
]

R 1
= (ntROi)
and
[aci
——f = - ~1
E { (nt<Ri>)
= -(ntR)~!
so that

(po, )Y = {—— +
ij nt ROiROj R{Rj J

1]2{(13110{5)2 (Anij)z]

In Appendix B it was shown that

2 -
(ASiJ.) = YR;(1-R})
or
2 - 1 _
(8R; ) -[YJRi(l RS

so that

(a2t Rey 1ok
(Ag..)° = L—J +
at) |YR TR,
H 0 i)

(AUJ-)2

where j 21 and (ch)2 is the variance of o -

The covariance matrix V for the partial cross sections can now
be constructed using the expression for (Aoij)z' From equation (57),

V was defined by
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Vij = <(ci-<c{>)(0j-<gj>)>
= 2
(Aoij)
therefore
V.. - (80.)2
iy o (a0))

for j21i. Because V is symmetric, then Vji==vij‘
The above expression for V is appropriate when equation (48) is
used to fit the Ui. However, if equation (49) is used to fit the

ln(ci), then it is necessary to know the covariance matrix for the

ln(oi)'s and ln(oj)'s. To do this, let
Xi = ln(oi)

with a variance (Axi)2 given by
Ao,
(AX,)2 = [——1} .
1 O.
1
The covariance matrix for the Xi's and Xj's is

N
. 1

£X,.)2 = 1lim L——q X, -<X.>) (X, -<X.>).

( 1] N> e (N-1 EZI( i2 i ) ik ) )

By expanding (Xi-<Xi>) about <Xi>, one obtains
axi
(xi-<xi>) = (o'i-<o'i>) -5-o—i

where

Then
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) [ N axi 2X.
(8X;5)° = lim l\?i"] L (0500 (05,7505 35, |30

.i.
|

for j 21i. The covariance matrix is then

(Ao .)?
Vi =75 é
J i%

and Vji =Vij' since V is symmetric.
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APFENDIX D: COVARIANCE FORM

OF THE METHOD OF LEAST SQUARES

In this appendix, it will bc shown how the best values of aj,
to be used in
Y. o
oi(aj) = ngajti »
arc determined by minimizing M for each aj.

From cquation (56), M is defined by

M= olv-1p

where V is the covariance matrix with elements vii =(Aaj)2 for j = {

. 1 ’ =\.. 3 K .3 ~g.-0. LY.
(with \ji \13) and D is a vector with components D{ o o‘(aJ,

Now M can also be written as
M= ) Znn . ,
k=1 j=1 K KIS
where R: V™1 and P is the number of data points to be fit.
In the casc of uncorrclated crrors, then Vij =) for { #j and
\'H=(Aui)2 so that M reduces to the standard x? given by
1y - a.1)<
2 . i (ci oi[1 1)
X . (Aui)

i=]
N n
Now using “i=‘3i' Z a_t, where N is the order of the polyvnomial
n=0

to be used in the fit, onc aobtains

ann
k=l j=i Ll k')
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£oR N n) N 2
gURRYCSRENYIFERARH
p P N . N 0 N . N .
= kzl jzlkkj{ckoj -okgéualtj -ojuzountk ‘nZOnnthZO“ztj .
To minimize M with respect to a. —}':J is calculated and sect equal to
Iero so "
0 - 59%
£ ¥ m m m ¥ 2 N n
= kgl JEIRKJ[-Oktj -cjtk *tk gggaltj +t’nzonntk
= Py m n : ot ¥ mon_ _mn
= kgl jglkkj{okt‘ *osty ]-kzl uglkk'.zaap(tkt £t

U = g g R [o t, +a.t ]
mo ks o KUK k
and
% §. fnm, nm
Him = kzl ngkkj[tl Y%t tj]
" aa_da_
This gives

?
U = aH
m Ly nonm

or, in matrix notation

U = all
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This leads to

a = Uy}

or
g
a_ = U (H 1) ,
n meo ™ mn
which is the desired result.

To find the variance (Ann)? of ﬂn. first expand (1i-“1iﬁ) in g

about <ni" to first order so that

N o,
0.-<0,> = Z l?ﬁyﬂ(a -<a )
=0
Then
S N A Ty
<{o.-<0.>)(0.-<0.>) = } L ‘l~:‘—1‘- laa J'<(d -<3 >) (-l --a >)>
n=0 m=0 n m
or
NN n
V.. = Z z tnt A *
1) n=0 m=0 t ] nm
where

>
]

<{a -<a >)(a _-<a_>}> .
nm ( non ) (ay,-<a,

Then, using R=V"!, one obtains

fl
M'U

11T
R t t A .
izl j=1 n=0 m=0 j nm

This implies that the matrix inverse of A has the elements



-

p

- m
Ay = T TR, tM!
nm i=1 j=1 13717

Using the definition of “nm and the fact that Anm is symmetric, one

obtains

Ho= :(a'l)ml
or

A= -;-(u“)nm

Finally, the variance (Aun)2==Ann is given by

s )? = -;-(n-l)m‘



APPENDIX E-  MONTE CARLO CALCULATIONS

In this appendix, the Monte Carlo computer programs used to
calculate the multiple and single Coulomb scattering corrections
om(ﬁ) and ac(Q), respectively, and the pion decay correction aD(n]
to the measured nartial cross sections will be discussed briefly.

A right-handed coordinate system was used in these programs.
The origin was located at the perpendicular intersection of the
beam axis, which was horizontal and passed through the center of
the target. The positive =z axis lay along the beam axis in the
downstrcam direction the positive v axis was in the upward direc-
tion from the beam axis; and the positive x axis was to the left cf
the beam axis (i.e., it was to the left if one was looking down-

stream).

Multiple Coulomh Scattering

The Monte Carlo computer program for calculating the aultiple
Coulomb scattering correction started with an individual pion at the
upstream face of TOF2. It then followed the pion's history until it
hit or missed the transmission stack. It repcated this process for
thousands of events for both target ‘in"” and target 'out" to obtain
the distribution of pions at the transmission stack for the two
situations. With this information, it was possible to calculate the
multiple Coulomb scattering covrrestion am[s’z} te the measured partial

cross sections,
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The calculation began with a random selection of both the pion’s
. . . . dx dy . _
X and y positions ard its divergencies i and af-ln the xz and yvzo
planes, respectively, at the upstream face of TOF2. From the MkPC
. . . . . . dx dy
data, the pion distributions in x, ¥, iz and a- were found to be
nearly Gaussian. Therefore, thesc quantities were chosen randomly

from the Caussian distribution f(x)

2
f(x) = exp{—tiéé%§l~J .
X

where f(x) is characterized by a central value xg, a standard devia-
tion Iy and a cutoff width Wy {it provided a cutoff point on the
tail of the distribution). Herce, xg, I and we were obtained from
the MWPC data. It should be ,oted that 9< f(x) < 1.

After the pion's position and divergcence were sclected, its
multiple Coulomb scattering in TOFl was simulated by the
randem selection of a multiple scattering angle chosen from the
distribution given in equations {62) and (63)

£(6) = —hp[Fo(®) +£F1(0) + b5 fa(0) + +o0]
Xe

and

o - fnlin] el ) (2]

which were modified as in the work of E.V. Hungerford et al.%3 to give
f(ﬁp) and fk(Bp). Herc, Gp is the projected angle of © onto some plane
(e.g., the xz and yz planes). This paramecer was used because it

was morc convenient to work with the projected angles than with the



spatial angle. As in the work of B.W. Mayes et al.3Y the fk(ep}
were written in terms of a set of functions Uk(a;b;:), defined by
a"' .
h'\(:l;b;:) = 5—}:."(3) 1Fi(a;b;z ,
a

where T(a) is the gamma function and (F; is Kummer's confluent
hyvergeometric function. The Dk functions are described and tabu-
lated as a function ofop/(XcBl/z) in the paper by W.T. Scott.®% [t
was found necessary to keep only f5 and f; in the expression for
f(ﬁp). With f cxpressed in terms of Dy and D;, a table of f(ﬁp)
VeTsus Bp was created, and ap wvas chosen randomly from it. The por-
tion of the computer code which handled the multiplie scattering was
originated and develoned by R. Heffner.86

After sclecting the multiple scattering angle of the pion in
TOF2, the program did one of two things. For a simulated target
“out' run, it translated the pion in a straipht linc to the trans-
mitsion stack to find which counter it hit. For a simulated target
"in" rum, it translated the pion in a straight line to the upstream
face of the target. Multiple scattering in the target was simulated
in the same way as it was in TOFZ. After selecting the multiple
scattering angle, the program translated the pion in a straight line
to the transmission stack to determine which counter it hit. The
encrgy foss of the pion in both TOF2 and the target was inciuded in
the random sclection of the multiple scattering angles.

After repeating the above procedure for several thousand events

for both target "in' and "out,™ ths program then calculated r (&) and

rp(), the fraction of pions starting at the upstream face of TOF2

A AR "t me . 4. .



and hitting the i-th transmission counter for target "in” and “out,”
respectively. For nt nuclei/cm? in the target, the multiple Coulomb
scattering correction cm(Q) for each partial cross section was

calculated from

L)
cm[Q) = Ft-ln ———-—r(Q)J

Single Coulomb Scattering

The calculation of multiple and single Coulomb scattering cor-
rections were similar. They differed in that in the latter there
was no target ''out" calculation.

To simulate single Coulomb scattering, it was necessary to
determine the appropriate probability distribution from which the
scattering angle could be randomly selected. To see how this was

done, consider the expression

P(R) = e-ntcc(Q) ,

where OC(Q) is the Coulomb cross section for a pion scattering out-
side the solid angle @, nt is the number of nuclei/cm?, and P(Q) is
the probability that a pion will not scatter outside 2. It should

be noted that P is uniformly distributed between 0 and 1 for 0<2Q<4n.
For convenience the pion and “He nucleus were assumed to be point

charges, so that
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"
=
—

2n 10
[@—] sin6'do' d¢
c

Oc(m dq

- Ze2E)2{1 + cos 8
" "{c?pZ) |T-cos® ’
where as given in equation (79),

do)
dej . -

Here, Z is the charge of the nucleus, e is the eiectron charge, c is

1 [ze2E) 1
4|

c2pZ) Sin% (872)

the velocity of light in vacuum, and E, p, and 6 are the pion total
energy, momentum, and scattering angle in the laboratory, respectively.
With the above result for . (), one can write the probability dis-

tribution P(8), from which 6 was randomly chosen as

@ - e (558 (18]

However, this is unwieldly at small angles because the Coulomb cross
section hecomes infinite as 6 goes to zero. Consequently a minimum
angle em was chosen such that for 6 < em the pion was considered not
to have scattered since it would hit the second transmission counter
anyway. {It should be remembered that in the experiment any pion
hitting the second transmission was considered to be an unscattered
pion.) The probability for not scattering at an angle greater than
em is given by Pm(em) >0. So in selecting an angle 6 from the
expression for P(6), the acceptable range for P(8) was PmsPsl
rather than 0<P<1,.

The program calculated the correction to the measured partial

cross section from the following expression:

205



1
OC(Q) = vy ln[l— Y J R

where m(Q) was the number of pions scattered outside of the i-th
transmission counter as determined from the program. Here, Y is the
total number of pions incident on the target and is related to Y',

the number of scattered events handled by the program for which

If Pc(Q) is the probability for a pion to single Coulomb scatter

within the solid angle R, then

- M)
PC(Q) =1 Y
and
o (®) = -L 1np (Q)
(o nt [

Pion Decay

As stated in Chapter IV, the calculation of the pion decay cor-
rection was concerned only with those pions which decayed after
leaving the target. Multiple scattering in the target was included
although for convenience only the gaussian term in the multiple
scattering distribution was considered. The finite size and diver-
gence of the beam were also included in the program, as well as the

large-angle tail of its distribution. The program started with an




individual pion at the upstream face of the target and followed
its history until it or its decay muon hit the transmission stack.
By repeating this process for thousands of events, the program
calculated the muon distribution at the transmission stack.

In following the pion from the target to the transmission stack,
the distance it traveled before decaying and the angle which the
decay muon made with the original pion trajectory were randomly
chosen. The distance 2 traveled by the pion before decaying was

chosen from the distribution

P(L) = e"L/A s

where A = 2(p) is the mean decay length and P(%) is the probability
that the pion will not decay in traveling a distance 2. The mean
decay length is a function of the pion momentum p and is different
for target ''in’ and "out" runs. In choosing %, P(2) was restricted
to the range e tm/ 2 2P(2) 21 rather than 0 2P(2) =1, where & was
the maximum distance the pion could travel before being detected in
the transmission stack.

The angle between the trajectories of the decay muon and the
parent pion was chosen in the pion rest frame, where the decay is
isotropic, and transformed to the laboratory frame. Because of the
energy difference between the target ''in' and "out' runs, the angular
distributions in the laboratory were different for the two cases.

After generating the muon distributions at the transmission

stack for both the target 'in'' and target "out' situations, the
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program calculated the decay corrections to the measured partial
cross sections using equation (192). The exact correction depends
very sensitively on the actual number of pions that decayed and the

number of decay muons that were detected, for both target "in" and

out."

.,




APPENDIX F. FORWARD DISPERSION RELATIONS

In this appendix, some of the basic features of forward disper-
sion relations will be discussed. A more detailed account may be
found in the papers by Ericson and Locher® and by Batty, Squier, and
Turner," and in the texts by Taylor®% and by Bransden and Moorhouse.87

The forward amplitude f(0°) is a function of the total laboratory
energy w= (k2 +m2)/2, yhere k is the momentum and m the rest mass,
and will be written as f(w) = f(w,0°). It is useful to allow w to be
complex. Then it is assumed that f(w) is an analytic function of the
complex energy w for all w, apart from certain cuts and poles. Also
it is assumed that there are no singularities in f(w) for Imw>0.

Now by assumption, the scattering amplitude f(w) is amalytic for

Imw>0 so that Cauchy's theorem can be applied

dz (181)

= 1 g _f(2)
f(w) = .g - w)

The path of integration is along the closed contour C comnsisting of a
segment along the real axis from z=-L to z=+L and closed by a semi-
circle of radius L in the upper half plane, where w lies within the
contour C. If the integrand is sufficiently small at infinity, so
that in the limit L »« the distant contribution to the integral is
negligible, then the only contribution to the integral will come from

the real axis

Flo) = = [202) 4, (182)

2mi - w)



By writing w>w+ ic, where w and ¢ arc real, € >0, and taking the

limit as e goes to zero, f(w) is given by

f(w) =-!; {., ) i (183)

where P denotes that a principal valuc integral is to be taken. By
separating the real and imaginary parts of f(w), the basic forward

dispersion rclations are given hy

Re fw) = -Pf '"‘f‘ 2) _ (184)
and
Inf(w) = Pj '(";‘ i) g (185)

In this work only cquation (181) is of interest. f{t ix characteristic
that this relation involves positive and negative energics,  To usce
this relation, Imf{w) for asll real o must be expressed in terms of
measurable or calculable physical quantitices.

Frequently equation (154) does not converge because the Jdistant
contribution docs not vanish. Anv function of f{w) that is snalytic
in the upper half plane could be used in this expression in place of
f{w), such as {w -ng‘zlf(m] - flugl). where wy is an arbitvary bot

fixed cnergy. If this is done, equation (1831) becomes

Re %ﬁm - f “Imlf(z2) - flw)) 4. (186)

(=~ wp)(=~w)
or

Re £(u) = Re flup) o 25200 (__":-—m&f)-((q-—_w;a- (187)
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Equation (187) could be obtained formally by subtracting f{u,) from
cquation (150), <o that Ke {1 is known as o subtraction term,  Further
convergenice may be vbhtained by repeated subtractions. The price paid
for vonvergence is that f{w.} is unknown.

Wnother rolation that is noecessary before applyving the general
relationship of cquation (I87) is the crossing relation.  This
relates the seattering asglitude () of the particle to the scatter-

ing amplitude (.} of its antiparticie according to
Flea) = T0pa, (188)

Alsa it should be noted that e €. = -Is ().
In the physical region, Imfi.: is measurable, From the total

Ccross sevtion gtul and the opticat theorens,

fm Fla) = %‘*'_‘_‘*%’

For the antiparticie of encrgy o - cm_ and somcentum k,

lafi.) = Mf;‘f"}

so rhat

i fle) s -’fi’»’-;{;}“-fl Coweem

The tast equation follons from the crossing relation,
The unpbysical region for s-puclous scatlering includes in
peneril many poles correspomting to auclear excited states, and pion

absorption extomls as n cut belos the threshold for acatrering.
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The amplitude to be used is f+(w) defined by
+ 1
Fr(w = 50f s+ f ()], (189)

. . . . + + .
which is symmetric under crossing £ (-w) = +f *(w), with the corres-

ponding total cross section
o' W) = Slo () * o (w)]. (190)

In cquation [187) it is convenient to do the subtraction at the
threshold for scattering with wp=m_. Collecting the above results
and using k7 = o’ -mﬂz. the forward dispersion relation for f* for

~-nucleus scattering becomes

2w, T 2 202 w! 1 +
Re €7 () - Re £ (m ) = § oty :_2 . Epy ukd?( lﬂf- (w l
: LNy '-“l
(191)

The summation term on the LHS of cquation (191) is the contribution
of the poles in the unphysical region, where Wi ki’ and ri are the
total cncrgy, the momentum, and the residuc of the i-th pole. Also,
wy is an cnergy closc to w=0 so that the unphysical region in
cquation (191) is 0 >wy <w<m.

It is argued by Ericson and Locher3 that the contribution of the

pole terms can be neglected, so that the final expression for the

dispersion relation becomes

2 e *
;5__”. w'dw' Im £ (w) (192)

Re £ (w) = Re £* (m ) + K 2(0'2 - w?)

taot ]
where Im f’[m') = '—‘—%{—M . 1t was this expression that Batty,

Squier, and Turner® used in their calculations.
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