0’1 ) SR
2
7 LA 6628 MS

Informal Report UC-32 and lﬂC34

fReporting Date: September 1976
tssued: December 1976

A New Concept for Deep-Penetration Transport Calculations

and Two New Forms of the Neutron Transport Equation

by

S. A. W. Gers

los alamos
scientific laboratory

of the University of Caiifornia
LOS ALAMOS, NEW MEXICO 87545

An Affirmdtive Action/Equal Opportunity Employer MASTm

UNITED STATES
ENERGY RESEAHCH AND DEVELOPMENT ADMINISTRATION
CONTRACT W-7408-ENG. 38



Printed in the Unwed States of Amenwca. Avaslable from
National Technical {afornaton Service
LS. Departmient of Commeroe
5245 Port Royal Road
Spnagficld, VA 223
Price  Prnsed Copy $3.50 Microfiche $3,00

This copuri war pregtend #y an teovwnt of work sponsaret
B s @irg Neles avernmenl Neithoe e L aita Kimtes
Ay (Av | orted <daiee Eaerts Hosrar b 2ad 1roslops
missatratoen ot am 3 theit emplavrvs.
Startors s -lmontensters. or Iheir e,
areunts cageore ar :mphid oF ssumn

e

Liad
reprevants thal 1ts wre would Ant inninge privatels owned
righile



A NEW CONCEPT FOR DEEP-PENETRATION TRANSPURT CALCULATIONS
AND TVWD NEW FORMS QF THE NEUTRON TRAMSPORT EQUATTON

Liali< ]

bv -
fhrwas 3 oud t@isagmenr Linens:
Pus emgingmn me

S. A. ¥W. Gerstl waeteey eagrew s ompiled e

TR ar sERpening g o
B L of aay fasy
Preower Zpvfamld o o6
Dt piarats wnwd

A new ooncept to solve radiation transport problems is developed
bypassing the solution of the Boltzmann equation. A distribution func-
tion v is defined as the product of the conventicnal neutron flux and
adjoint discributions. Two ecuations, one complex and linear, the
other real and nonlinear are derived for . A conservation law for .
is established and a physical interpretation given for . as a flux dis-
tribution for a limited nuder of source particles which will nevessar-
ily contribute to the integral response of interest. The linear but
camplex form of the transport equation is solved analytically for a
sample case of a pure absorber in slab gecmetry.

I. INTRODUCTION

It is well known® that neutron transport problems, as described by the
linear Boltzmann ecuation, can be formulated in a "forward" or an “adjoint"
mode; both formulations being equivalent. Usino the nomenclature of Ref. 1 we
have

Ly =Q ()

with

I= <R,o>, MASW (2)

as the forward forrmlation. L derotes the linear time-independent Boltzmann
transport operator, ¢ = #{r, 2, E) is the angular flux distribution, Q = Q{xr, 2, E)

'
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is a given neutron source distribution, R = R(r, 1, E) is a given response
function, amd I is an integral effect of interest (response), where the
symbol  <,> indicates integrations over the common domains of all independent
variables r (position), 2 (directian), and E {erergy). The sole objective in
rost practical radiation transport applications is the calculation of I when
Q and R are given. Fully eguivalent is the adjoint formulation

L'st = g, (3)
with
I=<Qe>, (4)

where the adjoint source-term is chosen to be the response function R, and
¢+ : :ﬁ+(£, 2, E) is the adjoint ancular flux. The adjoint transport operator
L' is defined byt

b, L=t (4a)
and it is assumed that the boundarvy conditions on 4 and r:‘+ are such that Eqj.
(4a) is satisfied.

It is clear from the above forrulations, that in order to calculate I cne
must know either ¢ or ‘;+, hence, solve either £q. (1) or Eq. (3). In particular,
in deep penetration or shielding type calculations, the spatial distance be-
tween the neutron source (Q) and the detector (R) may be very large in terms
of mean-free paths of the scurce neutrons. Since the neutron flux at the
detector position is needed toevaluate I from Eq. (2), the usual procedure in
solving Eq. (1) is to calculate the entire flux distributions ¢(r, 2, E) at all
locations r in the system although it is needed anly at the detector leocation.
The calculation of ¢ at locations r between the source and detector locations
seems to be an intrinsis requirement to obtain the needed ¢ at positions where
R # 0. However, the calculation of 4 at all locations except the detector
location could be considered a waste of effort if it were not intrinsically
raquired. It is intriquing that so much wasted information must be genarated
in order to calculate the one number of interest, I. The same, of course, is



true for the adjoint formulation where the actual computation of ¢+ at the
source location must proceed step by step starting at the detector location.

In sensitivity calculations using variational methods, e.g., Ref. 2, the
product of % - o+ is used which seems to be an even larger waste of information
and effort since ¢ and ¢+ must both be calculated although each one of them
separately contains all the information ever needed for most radiation transport
analyses. It is admitted, however, that such variational methods produce more
useful information than just the value of I. Nevertheless, the question arjises:
why not calculate the product v = ¢¢+ directly? Additional incentive to cal-
culate , directly is obtained by a very interesting analytic property of U
which will also provide the connection with our original problem of calculating
I.

+

II. A CONSERVATICN LAW FOR ., = ¢

let us rewrite Bgs. (1) and (3) for a purely absorb.~; medium (I is the

macroscopic absorpticn Cross section):
200+ I = Q (5)
- .Ua 4+ T2 =R, (6)

Multiplying Eq. (5) with »* (from left) and Eq. (6) with 2(from left), and
subtracting the secornd frum the first egquation gives

sYoemey + a2y = ot - me. (7)
Since 2-Y¢ = V-0¢, the two terms on the left side of BEg. (7) can be combined to
?_-goo+ = V-0 which is the "divergence operator" (V=div) actinag on the vector
field (w:

divioy) = @ - Rs. (8)

Now w consider three different wolume integrals of Eq. (8), keeping in mind
that each volume integral can be translated into an equivalent surface integral



by Gauss's t:heorem3

/div(g-w)dv z {(g-g)wdr. 9)

where dF is a surface element on the volume V and n is a normal vector on F
pointing outward from the volume V.

1. Integrating Eq. (8) over a volume Vo which includes the detector
location but not the source location (see Fig. 1) yields for the left side of

Eq. (B)

Fig. 1. Sukdivision of the systems volume V.,



/div(gw)dv /(_QR-Q_)wdF
Y F,

R R

- Jg (ng, Q¥ aF, (9a)

R

where ﬂzn = - QR is the inward normal vector on FR' The inteqral over the first

term on the right side of Eq. (8) vanishes since the volure Vg was chosen so
that Q = 0 in VR' The integral over the second term on the right side of Eg.
(8) resembles Eq. (2) if we also inteqrate over all angles( and all energies E.
Therefore, integrating Eq. (8) over the volume Vo all angles and enerdies,

yields

1= ’ ([ f (El;n-g) w(x, Q, E) dF dzg dE. (10)
—C0 T R

Hence, the effect of interest (response) I can be calculated from ¥ = ¢¢"
directly by integrating the net imward current of the vector flux Q-y over any
surface FR enclosing the detector and also in*egrating over all angles and
energies.

2. Similarlv. integrating Eg. (B) over any volume VQ which includes the

neutran source but not the detector, we obtain

1 =f '[ f Q) v(r, 9, B) dF a0 GE, (11)
<o ) 0

where nQ is the outward normal vector cn the surface FQ enclosing the volume
Yo
3. Integration over the entire system V, including both source and

detector, gives



/div(gw) @ = 0. (12)
v

If ¢ is interpreted as a particle flux, namely an importance weighted
neutron flux ¢+o, then Eqs. (1J) through (12) allow very meani- *ful conclusions:

a. Fram Eq. (12) follows that the system never loses any -
particles; a conservation law for .

b. From Egs. {10) and (11) follows that the inteagral respcnse I
is giver by summing up the net current of all .-particles
which either enter any closed surface Fr around the detector
or leave any closed surface Fg around the source.

The above technique was derived from Ref. 4; the results are, therefore,
probably not new. But tne above interpretations are intrigquing enough to
formulate a new concept for the solution of deep-penetration transport problems
with fixed sources. The idea is to establish an equation for , and then cal-
culate I either fram Eq. {10) or Eg. (ll). From these equations follows that
the distribution function y(r, 2, E) contains the necessary and sufficient
information to calculate I. The neutron distribution :{r, 7, E) at any given
point r outside the detector region gives information on all neutrons which
traveled fram the source to r, disregarding whether these neutrons will ever
reach the detector position or not; this is too much information if orne
cnly wants to calculate I. The distribution %(r, !, E), hawever, gives at
any point r information only on those "u-particles” which will certainly con-
tribute to the response I. Intuitively this interpretation for ¢ may be obvious
fram its definition as an importance weighted neutron flux distribution '3'+"

T calculate I fram Bg. (10) or BEg. (11) it is sufficient to know {(r, .., E)
only at any closed surface encompassing either R or (. A graphical display of
the multidimensional function 4(r, &, E} can immediately identifv radiation
streaming effects of significance for the special nroblem under consideration:
peaks in the spatial distribution of iy will point to spatial streaming paths
{heterogeneity effects), peaks in the energy distribiviion of v identify spectral
streaming (e.g., due to cross-sectiuvn minima), and peaks in the angular distri-
bution will occur in directions which are of greatest importance to the nroblem.



III. DERIVATION OF THE y~BEQUATICNS

In the following we restrict curselves to the monoenergetic transport

equation and for algebraic simplicity we consider only slab geametry with

isotropic scattering. Fruations (1) and (3) take then the fozml

+1
32 fx, ) .
M —’—'%;'%‘-ﬂ- + Lolx,u) = %/ dlx,u") du' + Q, {13)
-1
+1
3 i ¥ - +
- 2B s =S o) @t 4R (14)
-1

Since we want to deri'e an equation for -:u::+ we define a corplex flux distribution
. L+
) = or(x,u) + 1t (X0, (15)

. . — + . .
with 1 = y=1, then cur unknown product . = 3¢ can be derived from Y as ane-

half of the umnaginary part of '-:’2:
wix, ) :~:-+ = % Tm '%2. (16)

By sumning arkl subtracting Eq. (13) and i-times Eq. (14) we obtain a ocoupled
*
set of two equations for ¥ and its conjugate camwlex, ¥ :

* +l
LA - ¥ du' + (Q + iR) 7
" ¥ 2 b 3 4 r
-1
+1
) * *
u%*ﬂi‘é‘ =%/ ¥ du' + (Q - iR). (18)
-1

To simplify further analysis we define a complex source term



S =Q + iR, {19)
and assume for the following that the given functions @ and R are oconstants
with respect to x and u; also, ! and c are assumed constants. Now we differ-
entiate Eg. (18} with respect to x and optain
+1 0,

*
. 3@(2 T X 2
-1

*
Eliminating * /i from Bq. (20} by using Eq. {(17), gives the desired equation

for ¥:

.

ggl:a

du'. (20)

S+l

f;.— Y, ut) - z—c—.-j Y(x,u”) du®ldu'. (2D
-1

u

Th~ left side of this equation, for the real part of ¥, Re ¥ Z ¢, has been
derived earlier by other authors, e.qg., Ref. 5, and is identified as the self-
adjoint second-order derivative part of the nonself-adioint first-order de~
rivative portion of the original transpcrt operator. It is interesting to rote
that Egq. (21) is valid for the camplex function ¥ containing information on ¢
as well as rp+.

Now, since ¥ = 7 + i«$+ does nct give the desired eroduct y = q\d;+ directly,
Eg. (16) must be applied to calculate it. Then the response 1 can be calcu-
lated via Eq. (10) or Eg. (11) which in slab geometry reduce to

o]

1 =/ wp(x,u) §(x ~ %) dudx, (22)

¥



where X is any space point separating source and detector. Location X, can be
thought of as an infinite plane between source and detector which closes to a
full surface at infinity.

Since the new transport equation, Egq. (21), is an eguation for the complex
variable ¥ = ¢ + i®+, it actually represents two equations, one for the real
part of ¥, Re ¥ = ¢, and one for the imaginary part of Y, 1n'=‘¥=d>+. In
principle it must be possible, therefore, to derive fram these two equations
(through elimination processes) one equation for the product y = ¢¢+, which
was our original goal. Rather than starting from Eg. (21), we may also start
with the original Boltzmamn BEgs. (13) and (14) to derive an equation for
Y= @.z-*. For simplicity we chose ¢ = 0, the case of a purely sbsorbing nedium
and follow the latter approach. The equation we cbtain for y [a real function,
not to be confused with the camplex function Y of Eg. (21)] is nonlinear and

takes the form

2,2 2 2
3y 2
A (—-%) + 4:%0R i% T (—;{1) - 45%0Ry + 40°R% = 0. (23)
o x

The fact that this equation is nonlinear follows from the process of elimination
and substitution when BEq. (23) is derived from Egs. (13) and (14). In this
process, it was necessary to once differentiate and square the entire equation.
Intuitively, the process in deriving Eg. (21) and Eg. (23) from the
Boltzmann Egs. (13) and (14) can be viewed as a process of continuously
reducing the information content of the equations. To obtain Eg. (21) a
differentiation with respect to x was required which is always a loss of in-
formation. As Pamraning and Clarks point out, the second-order form of the
transport equation is not consistent anymore with the continuity equation of
classical diffusicn theory since this information is lost by differentiation.
Hence, Bj. (21) contains less information than Egs. (13) and (14). Similarly,
the additicnal "squaring-process" required to derive Eq. (23) indicates that
this equation contains even less information than Bg. (21). However, such an
infocrmation reduction process was exactly what we had originally intended.
Since Eq. (23) describes the behavior of "y=-particles" rather than neutrons,
it is not surprising that neutron continuity conditions and neutron conservation
conditions may be lost. We gained, however, the very simple and basic conser-
vation law for Y described in the previous section.



IV. A SAMPLE CALCULATION

To demonstrate the new concept and the applicability of the y-equations to
deep-penetration fixed-source transport problems we chose a simple example for
which the Boltzmann equation can be sclved analytically exact: 2 point source
at x = 0 with a point detector at x = a in an infinite, purely absorbing
medium, in slab geometry. To further simplify the example, we allow neutrons
to travel only in one direction, u = 1. Then the forward and adjoint formula-
tions of the Boltzmann equation descrike the problem as follows (source and
detector are normalized to 1.0; compare Fig. 2).

Forward formuletion:

do () -
s Io(x) =68 (%), b

with the boundary condition ¢(0) = 1. The solution is: ¢(x) = e %,

I = <R,$>, with R=8 (x — a), (24)

o

=Le’zx6(x—a) dx, = e 22 ,
J

\

-
X
X=0 R=Q
Fig. 2. Flux, adjoint, and y-distribution for sample problem with Q =8 (x) and
R = § (x-a).
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Adjoint formulaticn:

+
__di)d%c_)”F Z¢+(x) =8 (x — a), ].
with the boundary condition ¢+(a) = 1, The solution is: cb+(x) = el (x - a) ,
>(25)
I=<0,¢%, with Q=5 (x),
= 8-Za
' )

Now, to exercise the new concept in calculating I we must either solve Eq. (23)
for y = 1 and then perform integral (22):

W2 + 85 (08 (x=a)p" - 5 (1") 2 - 4225 ()6 (x-a) Y + 45° (%) 82 (x=a) = O,
(26)
400
I=/ (xS (x-x) dx= blxg)s 0 < x5 < a,
or solve Eq. (21) for c = 0, u = 1, and exercise Eg. (16) and Eg. (22):
-+ 2%y =58 )
=I5 (x) + il (x - a),
\ (27)

Vix = 3 Im ¥,

—
i

4o
[ w(x)d(x—xs)dx=tp(xs);0<xs<a

1 2
—2- Im y (xs).

For this sample case it appears that the equations in formulation (27) are
solved easier than those in the nonlinear formulation (26). The general solu-
tion for ¥(x) is easily obtained as the sum of the general solution of the
hamogeneous equation (complementary solution) and a known or guessed particular

11




integral for the inhomogeneous equation, since the equation for ¥ is an
ordinary linear differential equation. It is easily verified that the general
solution is

-ExX

W&)=%Jx+Ce (28)

™|t

where & and C, are two complex integration constants to be determined from
boundarv conditions. The necessary boundary ¢onditions for ¥ are derived fram
those for ¢ and ¢+ given in Egs. (24) and (25):

1. Re ¥{0) = ¢&{0
2. Re ¥ (4+») = 0,

Im ¥(a) = ¢+ a) =1,
4, Im Y (=) =

) =1,

(29)

Since C] and C2 are complex, it is required to have four condltlons, and there-
fore the original by two boundary conditions for ¢(0) and d) (a) must be aug-
mented by flux and adjoint boundary conditions at x + + = as shown in Egs. (29).
Introducing C,=at+t ib and C,=c+ id, the values for a through d are
determined fraom Egs. (29)as a=d =0, c=1, and b = e—Za, which transform

the general solution (28) into the full particular solution of our sample case:

¥(x) = oK 4 ja7IATX (30)

Calculating the square of Eg. (30) yields

W) = 2R L QPP Ay pie7RR (31)

from which only the imaginary part is needed to calculate I according to Egs.
(27):

o]
]

1 2
5 Imy (xs),

e 23, for any x_. (32)

i
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Of course,this result [Eq. (32)] is verified immediately bv comparison with
Egs. (24) or {25). ‘he fact that y(x) = 5 Im ¥*(x) is a constant in this case,
is an immediate consequence of the conservation law discussed previously.
Equation (12) reduces in our special case to

%3‘1=0, for 0 < x < &, (33)

and, that § therefore mist be constant is cbvious. However, to identify from
first principles a boundary condition for J(x) in Eg. (33) -- which would
determine the value of the integration constant to be e-—Za -~ is not trivial.

V.  OPEN QUESTIONS

Since the roregoing analysis is just a first attempt to find
solutions to shielding-type problems without the need to solve the "almighty"
Boltzmann equation, it appears as if more mathematical problems might be
generated in the new approach than solved. Obviously, many questions need
to be addressed before any conclusions about the usefulness of such a new
approach may be drawn. The reader is invited to ask and answer any relevant
questions, in particular those pertaining to the practicability of the new
concept. Here is a list of such questions:

1. dow can boundary conditions for ¢ or ¥ be formulated in general?
2. Can Eg. (23) be generalized to include scattering media?
3 Can Egs. (21) and (23) be generalized to other than slab geometries?
4. Can energy-dependence be treated?
5

What are the computational ramifications in solving conplex or
nonlinear equations of the form of Egs. (21) and {23)?

6. Is it possible to derive from Eq. (23) or Eq. (21) an equation
directly for I, by partial integration, e.g.?

7. What are the analytic properties of the new "transport operators"
acting on ¥ and ¥?

VI. CONCIUSION

In an attempt to solve shielding-type problems through equations which
have only the minimum necessary information content, two new forms of the

13




neutron transport equation have been established, The equations are for a
function ¢ = :b+q; which cbeys a conservation law and allows the direct calcula-
tion of the integral response I = <R,¢> = <Q,¢'>., The physical interpretation
of § as the restricted nuner of source particles which will necessarily con-
tribute to the integral response gives insight and understanding of the radia-
tion transport process from a new perspective. The fact that these two new
forms of the transport equation manifest themselves as either linear and complex,
or nonlinear but real, is very interesting but can intuitively be understood
because of the reduced information content of these eguations. Boundary condi-
tions for the new Y-equations have been treated only superficially but are felt
to be extremely important in any general formulation. The fact that even the
linear Boltzmann etuation must be solvad numerically for almost any prablem of
practical interest gives hope that there may be same practical problem existing
for which the numerical solution of the new equations may prove advantageous.
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