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A NEW CONCEPT FOR D£E3M>ENETRATION TRANSPORT CALCULATIONS

AND TWO NEJ'7 FORMS OF THE NEUTRON TRANSPOW EQUATION

ffin**F>it tmil ZtfLtUrQtitBttf. t.irrtmm-^'-i<i7 urn t » j
by

S. A. W. Gerst l

ABSTRACT

A new concept to solve rad ia t ion t ranspor t problems i s developed
bypassing the so lu t ion of the Boltzmann equat ion. A d i s t r i b u t i o n func-
t ion ^ i s defined as the product of the conventional neutron flux and
adjoint d i s t r i b u t i o n s . Two equations, one conplex and l inea r , the
other r ea l and nonlinear a re derived for y. A conservation law for v
i s es tab l i shed and a physical i n t e rp re t a t i on given for v as a flux d i s -
t r i b u t i o n for a l imited nuntoer of source n a r t i c l e s which w i l l necessar-
i ly contribute to the integral response of in te res t . The linear but
complex form of the transport equation i s solved analytically for a
sample case of a pure absorber in slab geometry.

I . rNTreDDOCTION

I t i s well known1 that neutron transport problems, as described by the

linear Boltzmann aquation, can be formulated in a "forward" or an "adjoint"

iTDde; both formulations beiing equivalent. Usinn the nomenclature of Ref. 1 we

have

with

! = <*,?>, tUIAVII-if <2)

as t he forward formulation. L denotes the l i n e a r t ime-independent Boltzmann

t r a n s o o r t ope ra to r , $> = M r , H, E) i s the angular flux d i s t r i b u t i o n , Q r. Q(r, H, E)
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is a given neutron source distribution, R = R(r, £, E) is a given response

function, and I is an integral effect of interest (response), where the

symbol <,> indicates integrations over the carmen domains of all independent

variables r (position), ft (direction), and E (energy). *The sole objective in

rcost practical radiation transport applications is the calculation of I when

Q and R are given. Fully equivalent is the adjoint fornulation

t-V" = R, (3)

with

I = <Q,*+>, (4)

where the adjoint source-term is chosen to be the response function R, and

i '•• -ti (r, n_, E) is the adjoint angular flux. The adjoint transport operator

L is defined by1

<•»• , 14> = •'!» i ,•>>, ( 4 a )

and ,\t is assumed that the boundary conditions on $ and •:• are such that Eq.

(4a) is satisfied.

It is clear from the above formulations, that in order to calculate I one

nust know either * or $ , hence, solve either Bq. (1) or Bq. (3). In particular,

in deep penetration or shielding type calculations, the spatial distance be-

tween the neutron source (Q) and the detector (R) nay be very large in terms

of mean-free paths of the source neutrons. Since the neutron flux at the

detector position is needed to evaluate I from Eq. (2), the usual procedure in

solving Eq. (1) is to calculate the entire flux distributions Mr, Q, E) at all

locations £ in the system although it is needed only at the detector location.

The calculation of 4> at locations r between the source and detector locations

seems to be an intrinsic requirement to obtain the needed <5> at positions where

R / 0. However, the calculation of # at all locations except the detector

location could be considered a waste of effort if it were not intrinsically

required. It is intriguing that so much wasted information must be generated

in order to calculate the one number of interest, I. The sane, of oouvse, is



true for the adjoint formulation where the actual confutation of <j> at the

source location must proceed step by step starting at the detector location.

In sensitivity calculations using variational methods, e.g., Ref. 2, the

product of } • o is used which seems to be an even larger waste of information

and effort since o and <t> must both be calculated although each one of them

separately contains all the information ever needed for most radiation transport

analyses. It is admitted, however, that such variational methods produce more

useful information than just the value of I. Nevertheless, the question arises:

why not calculate the product ;J = •+>$ directly? Additional incentive to cal-

culate • directly is obtained by a very interesting analytic property of ^

which will also provide the connection with our original problem of calculating

I.

II. A CONSERVATION LAW FOR ; = 0£ +

Let us rewrite Eqs. (1) and (3) for a purely absorb--.,- medium (I is the

macroscopic absorption cross section):

n-Vc- + I> = Q, (5)

- ^.7f+ + T.S = R. (6)

Multiplying Eq. (5) with $ (from left) and Eq. (6) with ;>(froin left), and

subtracting the second from the first equation gives

?+(n-7«) + M : > ! £ + ) = Of* - **. (7)

Since Q-70 = V_-n$>, the two terms on the left side of Eq. (7) can be combined to

V-SlOC) = v_«n^ which is the "divergence operator" (V^div) acting on the vector

field m:

d i v ( W •= Q$ + - R$. (8)

Now we consider three different volume integrals of Eq. (8), keeping in mind

that each volume integral can be translated into an equivalent surface integral



by Gauss's theorem

/div(n-ii/)dV = * (n- (9)

where dF is a surface element on the volume V and n is a normal vector on F

pointing outward from the volume V.

1. Integrating Bq. (8) over a volume V which includes the detector

location but not the source location (see Fig. 1) yields for the left side of

Bq. (8)

V = VQ + VR

Fig. 1. Subdivision of the systems volume V.



•i
(9a)

R Rwhere n. = - n is the inward normal vector on F_. The integral over the first
""•XXI •"— z\

term on the right side of Eg. (8) vanishes since the volume VD was chosen so

that Q = 0 in V ^ e integral over the second term on the right side of Bq.

(8) reserrfoies Eq. (2) if we also integrate over all angles n and all energies E.

Therefore, integrating Bq. (8) over the volute V_, all angles and energies,

yields

E) dF d2n dE. (10)

Hence, the effect of interest (response) I can be calculated from ty = $$

directly by integrating the net inward current of the vector flux n*ty over any

surface Fo enclosing the detector and also ii>*«grating over all angles and

energies.

2.

neutron source but not the detector, we obtain
2. Similarly, integrating Eq. (8) over any volume V_ which includes the

/

/ * (nQ.Q) <M£, H, E) dF d2Q dE, (11)

where n is the outward normal vector on the surface F_ enclosing the volume

VQ.
3. Integration over the entire system V, including both source and

detector, gives



dV = 0. {12)

If v1 is interpreted as a particle flux, namely an importance weighted

neutron flux $ 0, then Eqs. (1<J) through (12) allow very tneani- -*ful conclusions:

a. From Bq. (12) follcws that the system never loses any v~
particles; a conservation law for •'.-.

b. From Eqs. (10) and (11) follows that the intearal response I
is given by summing up the net current of all ^-particles
which either enter any closed surface F R around the detector
or leave any closed surface F Q around the source.

The above technique was derived from Ref. 4; the results are, therefore,

probably not new. But tne above interpretations are intriguing enough to

formulate a new concept for the solution of deep-penetration transport problems

with fixed sources. The idea is to establish an equation for •; and then cal-

culate I either from Eq. (10) or Eq. (II). From these equations follows that

the distribution function y(r, ̂ 1, E) contains the necessary and sufficient

information to calculate I. The neutron distribution ; (r, ":, E) at any given

point r outside the detector region gives information on all neutrons which

traveled from the source to r, disregarding whether these neutrons will, ever

reach the detector position or not; this is too much information if one

only wants to calculate I. The distribution (̂r_, r:\, E), however, gives at

any point r information only on those "'^-particles" which will certainly con-

tribute to the response I. Intuitively this interpretation for ^ may be obvious

from its definition as an importance weighted neutron flux distribution '• •.

To calculate I from Bq. (10) or Bq. (11) it is sufficient to know ,>(r, ̂ , E)

only at any closed surface encompassing either R or Q. A graphical display of

the multidimensional function 'M£# ft» E) can immediately identify radiation

streaming effects of significance for the special problem under consideration:

peaks in the spatial distribution of <i> will point to spatial streaming paths

(heterogeneity effects), peaks in the energy distribution of v identify spectral

streaming (e.g., due to cross-section minima), and peaks in the anqular distri-

bution will occur in directions which are of greatest importance to the orobleni.



III. DERIVATION OF THE '^EQUATIONS

In the followinq we restrict ourselves to the monoenergetic transport

equation and for algebraic sijrplicity we consider only slab geometry with

isotropic scattering. Equations (1) and (3) take then the form

If,
+1

<•) d'V + Q, (13)

I $*'(x,v') du' + R. (14)

Since we want to derr>e an equation for X' we define a conplex flux distribution

r ! x , ; 0 - -Ax,.') + i ; + ( x , ; . ) , (15)

t 4.

v/ith i = v'-l, then our unknown product v = X can be derived frum V as one-

half of the imaginary part of '•' :

•Mx,u) •: r i + = \ I"' 1-2. (16)

By surmdng and subtracting Eq. (13) and i-times Eq. (14) we obtain a coupled

set of two equations for r' and i t s conjugate carolex, '•¥ :

+1

i dp1 + (Q + iR), (17)

7)'v * c f *— + ZV = ~ I * du1

3x 2]_^
*

1 + (Q - iR) . (18)

To sirplify further analysis we define a conplex source term



S = Q + iR, (19)

and assume for the following that the given functions 0 and R are constants

with respect to x and u; also, T. and c are assumed constants. Now we differ-

entiate Sq. (18) with respect to x and obtain

(20)

*
Eliminating $' /3x frorr. Sq. (20) by using Bq. (17), gives the desired equation
for r:

•c
- r ? < x , u t > - — V

.+1

I
Th<-' left side of this equation, for the real part of f, Re V :>}, has been

derived earlier by other authors, e.q., Ref. 5, and is identified as the self-

adjoint second-order derivative part of the nonself-adioint first-order de-

rivative portion of the original transport operator. It is interesting to rote

that Eq. (21) is valid for the complex function ¥ containing information on <£
+as well as $ .

Now, since '•'•/ = $ + i$ does net give the desired product i> = ̂<J> directly,

Bq. (16) must be applied to calculate it. Then the response I can be calcu-

lated via Eq. (10) or Bq, (11) which in slab geometry reduce to

I = / / u'ii(xru) S (x - x ) dudx, (22)



where x is anv space point separating source and detector. Location x can be

thought of as an infinite plane between source and detector which closes to a

full surface at infinity.

Sinoe the new transport equation, Eq. (21), is an equation for the complex

variable Y = $ + iij> , it actually represents two equations, one for the real

part of '•¥, Re ¥ = $, and one for the inaginary part, of Y, ln>. ¥ = <t> . In

principle it must be possible, therefore, to derive from these two equations

(through elimination processes) one equation for the product ij; = <j>$ , which

was our original goal. Rather than starting from Eq. (21), we may also start

with the original Boltzmann Bqs. (13) and (14) to derive an equation for
*

ii = H . For simplicity we chose c = 0, the case of a purely sbsorbing medium
and follow the latter approach. The equation we obtain for ty [a real function,

not to be confused with the carplex function f of Bq. (21)] is nonlinear and

takes the form

;j
4 (£&) 2 + 4p

2QR It - U
2T2 (&) 2 - 4E2QR^ + 4Q2R2 = 0. (23)

Kdx2/ ax2 v a x /

The fact that this equation is nonlinear follows from the process of elimination

and substitution whan Bq. (23) is derived from Eqs. (13) and (14). In this

process, it. was necessary to once differentiate and square the entire equation.

Intuitively, the process in deriving Eq. (21) and Bq. (23) from the

Boltzmann Bqs. (13) and (14) can be viewed as a process of continuously

reducing the information content of the equations. To obtain Bq. (21) a

differentiation with respect to x was required which is always a loss of in-

formation. As Panraning and Clark" point out, the second-order form of the

transport equation is not consistent anymore with the continuity equation of

classical diffusion theory since this information is lost by differentiation.

Hence, Bq. (21) contains less information than Eqs. (13) and (14). Similarly,

the additional "squaring-process" required to derive Bq. (23) indicates that

this equation contains even less information than Bq. (21). However, such an

information reduction process was exactly what we had originally intended.

Since Bq. (23) describes the behavior of "'.(/-particles" rither than neutrons,

it is not surprising that neutron continuity conditions and neutron conservation

conditions may be lost. We gained, however, the very simple and basic conser-

vation law for i|> described in the previous section.



IV. A SAMPLE CALCULATION

To demonstrate the new concept and the applicability of the ^-equations to

deep-penetration fixed-source transport problems we chose a simple example for

which the Boltzmann equation can be solved analytically exact: a point source

at x = 0 with a point detector at x = a in an infinite, purely absorbing

medium, IT. slab geometry. To further sinplify the example, we allow neutrons

to travel only in one direction, y = 1. Then the forward and adjoint formula-

tions of the Boltzmann equation describe the problem as follows (source and

detector are normalized to 1.0; ccnpare Fig. 2).

Forward formulation:

with the boundary condition <f>(0) = 1. The solution is: <j>(x) =

I = <R,<j», with R = 6 (x - a ) ,

•[•
e" Z x & (x - a) dx, = e" E a

(24)

x=c
Fig. 2. Flux, adjoint, and ^^-distribution for sanple problem with O = 5 (x) and

R - 6 (x-a).
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Mjoint formulatiai;
4.

— — j — — + £<£• (x) = S (x — a ) ,

with the boundary condition $ (a) = 1. The solution is: <|> (x) =

I = <Q,<J>+>, with Q = 5 (x),

= a"Za .

Now, to exercise the new concept in calculating I we must either solve 3q. (23)

for y = 1 and then perform integral (22):

(25)

" ) 2 + 4S (x)S (x-a)ifi11 - Z*W)2 - 4E26(x)5 (x-a)i|» + 462(x) 62(x-a) = 0,

•f
J—co

I = / iji(x) 5 (x - xg) dx = t(»(xs); 0 < x s < a,

or solve Eq. (21) for c = 0, y = 1, and exercise Bq. (16) and Bq. (22):

- ?•• + z2y = zs

= E6 (x) + iZS (x - a ) ,

= i- Im *r,

(26)

•f

(27)

1 = 1 <Mx) 5 (x - x )dx = I|J(X ) ? 0 < x < a
E> S 5

For this sample case it appears that the equations in formulation (27) are

solved easier than those in the nonlinear formulation (26). The general solu-

tion for 4*(x) is easily obtained as the sum of the general solution of the

homogeneous equation (complementary solution) and a known or guessed particular

11



integral for the inhomogeneous equation, since the equation for ¥ is an

ordinary linear differential equation. It is easily verified that the general

solution is

<F(x) = C2e "
Ex (28)

where C, and C~ are two complex integration constants to be determined from

boundarv conditions. The necessary boundary conditions for V are derived from

those for 0 and <{> given in Bqs. (24) and (25):

(29)

Since C, and C 2 are complex, it is required to have four conditions, and there-

fore the original by two boundary conditions for <£>(Q) and <J> (a) must be aug-

mented, by flux and adjoint boundary conditions at x ->• ± °° as shown in Bqs. (29).

Introducing C, = a + ib and C~ = c + id, the values for a through d are
—Eadetermined from Eqs. (29)as a = d = 0, c = l, and b = e , which transform

the general solution (28) into the full particular solution of our sample case:

1.
2.

3.

4.

Re V(0

Re Y(+

Im ¥ (a

Im V ! -

) - 4>(0)
°o) = 0 ,

) = <|>+(a)
») = 0.

= 1,

= 1,

(30)

Calculating the square of Eq. (30) yields

(31)

fran which only the imaginary part is needed to calculate I according to Eqs.

(27):

I = i Im Y2(xs),

-Ea ,.= e , for any x .s (32)

12



Of course, this result [Eq. (32)] is verified immediately b</ comparison with

Egs. (24) or (25). the fact that 4/(x) = j lm 41 (x) is a constant in this case,

is an immediate consequence of the conservation law discussed previously.

Equation (12) reduces in our special case to

= 0, for 0 < x < a, (33)

and, that ~<\> therefore nust be constant is obvious. However, to identify from

first principles a boundary condition for l'(x) in Eg. (33) — which would
-~Ea

determine the value of the integration constant to be e — is not trivial.

V. OPEN QUESTIONS

Since the foregoing analysis is just a first attempt to find

solutions to shielding-type problems without the need to solve the "almighty"

Boltzmann equation, it appears as if more mathematical problems might be

generated in the new approach than solved. Obviously, many questions need

to be addressed before any conclusions about the usefulness of such a new

approach may be drawn. The reader is invited to ask and answer any relevant

questions, in particular those pertaining to the practicability of the new

concept. Here is a list of such questions:

1. How can boundary conditions for ij; or ¥ be formulated in general?

2. Can Eg. (23) be generalized to include scattering media?

3. Can Eqs. (21) and (23) be generalized to other than slab geometries?

4. Can energy-dependence be treated?

5. What are the computational ramifications in solving conplex or
nonlinear equations of the form of Eqs. (21) and (23)?

6. Is it possible to derive from Eq. (23) or Eq. (21) an equation
directly for I, by partial integration, e.g.?

7. What are the analytic properties of the new "transport operators"
acting on ?|> and V?

VT. CONCLUSION

In an attempt to solve shielding-type problems through equations which

have only the minimum necessary information content, two new forms of the

13
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neutron transport -aquation have been established, The equations are for a

function ty = $ <p which obeys a conservation law and allows the direct calcula-

tion of the integral response I = <R,i{» = <Q,<j> >. The physical interpretation

of i< as the restricted number of source particles which will necessarily con-

tribute to the integral response gives insight and understanding of the radia-

tion transport process from a new perspective. The fact that these two new

forms of the transport equation manifest themselves as either linear and complex,

or nonlinear but real, is very interesting but can intuitively be understood

because of the reduced information oontent of these equations. Boundary condi-

tions for the new ̂ -equations have been treated only superficially but are felt

to be extremely important in. any general formulation. The fact that even the

linear Boltzmann equation must be solvsd numerically for almost any problem of

practical interest gives hope that there may be some practical problem existing

for which the numerical solution of the new equations may prove advantageous.
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