UCID- 17267

~ . Lawrence Livermore Laboratory

PROGRAMS NAES AND SS: USER-ORIENTED PROGRAMS FOR SOLVING NONLINEAR
ALGEBRAIC EQUATIONS AND ORDINARY DIFFERENTIAL EQUATIONS

Howard K. McCue

August 11, 1976

This is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

MASTER k0

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

oL
5a

1 ¢ 2\/‘ | I i I:g;g
1 s ‘ m

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

<

CONTENTS

Abstract . .+ ¢ o .« v e 4 e e e e e e e e e 1
introdpction e 1
Example of Usage . .+ .+ + v v v v e v e e e 2
Appendix A, Program NAES . . . + v « « « e 4 e e W . 21
Introduction o . . L .0 0. 21
Examples of Usage+ .+« + +« + « < « v 4 e . . 21
Comments on USage « « « « o o « o« e e e e e W 23
Brief Description of Method.+« =« + .+ « « « « . 27
Fortran IV Listing of Program NAES« « « =+ . 29
Appendix B. Program SS (State Space) . + « « « o+ o« o« . . 38
Introduction 38
Example of Usage . . . + « + v « 4 4 4 e e e 38

. Standardized Input Deck v + « « v v v 4 e e e e 42
Standardized Subroutine USER+ =« « « o « « .+ . 47
Additional Features . . + +« + 4+ 6 4 e e e e e e 47
Discussion of the Integration Method e e e e e e e e 50
Fortran IV Listing of Program SS . .« +« « ¢ + « « « o 55

Appendix C. Writing Transfer Functions as First-Order

i 81
Differential Equations e e e e e e e e e e e e e s

NOTICE

This reporl was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
R and Devel, Admini ion, nor any of
their employces, nor any of their contractors,
subcontractors, or their employees, makes any
warrenty, express or implied, or assumes any legal
linbility or ibility for the Y. 1

or ful of any inl i , product or
process disclosed, or represents that its use would not
infringe privately owned rights.

~it- DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PROGRAMS NAES AND SS: USER-ORIENTED PROGRAMS FOR SOLVING
NONLINEAR ALGEBRAIC EQUATIONS AND ORDINARY DIFFERENTIAL EQUATIONS

ABSTRACT

Program NAES (Nonlinear Algebraic Equation Solver) is a Fortran IV
program used to solve the vector equation £(X) = 0 for X. Two areas where
Program NAES has proved to be useful are the solution for initial conditions
and/or set points of complex systems of differential equations and the
identification of system parameters from steady-state equations and steady-
state data. Program SS (State Space) is a Fortran IV program used to solve
a system of first-order, ordinary differential equations with a minimum of
specialized coding. Program SS automatically provides a tabular listing and
line-printer plots of the outputs. In addition, provisions are made to:
perform one-time preintegration calculations, read specialized input data,
establish specialized output labels, handle piecewise continuous f[x(t),t],
make x-y plots of output variables, and record the minimumé/maximums of
specified variables. Subroutines have been written to provide delay, -level

detection with hysteresis, and solutions to implicit equations.
INTRODUCTION

Programs NAES and SS were written to provide user-oriented, computer
aids for solving nonlinear algebraic equations and ordihary differential
equations of the initial—valuevtype. For each program, only the Fortran
coding describing the problem need be supplied by the user. This feature
allows the user to concentrate his attention on that portion of the coding
which describes his problem; and not on the details of the numerical method
used to obtain the solution. This minimizes the time and effort required to
obtain computer solutions. Program NAES (Nonlinear Algebraic Equation Solver)
has proved useful in solving for the initial conditions and/or set points of
complex systems of differential equations, and in solving for the model
‘parametérs from gsteady-state equations and data. Program SS (State Space)

has been successfully used to provide numerical solutions for a wide variety

of physical systems: helicopter flight control, gas~transfer systems with
béng—bang control, synchronous generators and turbines with associated. speed
and voltage controls, process-control analysis for liquid-level control,
temperature control of a laser optical room, etc. The main body of this
report'illustrates how Programs NAES and SS are used to solve a physical
problem. Particular attention is directed to the thought process involved
in the problem setup; this description should prove useful to people
unfamiliar with the problem setup used in obtaining numerical solutions.
This section should also allow a potential user to size_up the effort
required to obtain numerical solutions via NAES and SS. In Appendices A and
B are the detailed write-ups for computer Programs NAES and SS; Appendix C

describes how transfer functions are handled in Program SS.
EXAMPLES OF USAGE

To understand how one would use Programs NAES and SS, consider the sys-
tem shown in Fig. 1. This system consists of two masses, two dashpots, and
two nonlinear springs; the masses are acted on by a gravitational field.
Prior to time t = 0, the system is in steady state with two forces, Force 1
and Force 2, acting on the two masses. The effect of these forces is to
displace the masses from the normal position (where Force 1 = Force 2 = 0).
At t = 0, Force 1 and Force 2 are released (i.e., they are set equal to zero
for t > 0). Starting at t = 0, we wish to compute the displacements and
velocitiés of the two masses plus the kinetic energy, the potential energy,
and the total energy in the system. The displacements (d) are taken to be
zero when Force 1 and Force 2 are zero and no gra&itational force acts on the
masses.

In this physical system are six mechanisms for storing energy: 'kinetic
energy in the two masses, potential energy of the two masses in the gravita-
tional field, and potential energy in the two nonlinear springs. The two
dashpots provide the only means of dissipating energy in this system. At
t = 0, the velocities of the masses are zero; thus, the initial value of the
kinetic energy is zero. Since neither displacement is zero at t = 0, neither
the potential energy stored in the springs nor the potential energy of the
masses (both taken to be zero when dl = d2 = 0) is zero.

Nue to the initial displacement of the masses, the system will go

through some coupled oscillations for t > 0. Since there are no energy

-2~

W/

Z

%

_

% | Force 1 —M
é T orce N
_

o

%

o

%

o

I - | Force 2 — M29

e

Fig. 1. Two-mass system with nonlinear
Springs in a gravitational field.
- For t < 0, Force 1 = Force 2
= 1000 and d =d2=0. For t > 0,
Force 1 = Force 27= 0.

N

NN

inputs to the system for t > 0 and since the dashpots will remove energy
during these oscillations, we know the coupled oscillations will eventuaily
decay to zero. During these oscillations, energy will be exchanged between
the kinetic and potential modes. For t > 0, the total energy, the sum of the
kinetic and potential energies, will slowly decay because of the energy dis-
sipated by the dashpots. The dynamics of the physical system in Fig. 1 is

governed by the following coupled, ordinary differential equations:

Force 1 - Mlg

Mldl + Dldl + kl(dl) + kz(dl" dz) s

Myd, + D,d, + k?_(d2 -d

2 272)

Force 2 - M2g 1

where D, and D, are the dashpot coefficients and the nonlinear springs are

1 2
defined by:
K (d) A cod + e dd
10dp) 4 epdy +eydy s
ko(d, - d) A e (d, -d) +c, (d -d)°
2ldy 7 dp) 4 egldy = dy) e ldy —dy) .

The kinetic energy of this system at any instant of time is given by:

=Ly g4?
KE = 5 M d;

1 32
+ > M2d2 .

The potential energy of the masses in the gravitational field is taken to be

zero for dl = d2 = 0. Therefore, the potential energy of the tWwo masses
equals

PEM = Mlgdl + Mzgd2 .
Because of this selection of dl = d2 = U as the point of zero potential

PNPTEY, PEM can take on positive and negative values.
The potential energy stored in a spring is obtained by integrating the

force term over the displacement:

X

} 2 4
Stored energy = [(an + bn3)dn = 3121_ + bZ_ .
o

—4—-

The potential energy stored in the two springs of our example is given by:

@ - d2)2 (d. - d)*
R Bl UG Nl
3 P 4 4

The total potential energy of the system is:

= P .
PE EM + PES

The total energy of the system then is given by:

Total energy é KE + PEM + PES .

. In this simulation, we wish to numerically solve for and plot: dl’ él’
d2, d2, KE, PE, and KE + PE. Later, it will be shown that the displacements
and velocities are state variables while the energy terms are nonlinear
functions of the state variables. Program SS allows for the computation and
plotting of both types of outputs. The differential equations that govern
the system dynamics are given above. Before one can solve these differential
equations, one must know the initial conditions. From the problem state-
ment, é = é =0 for.all t < 0; this specifies two of the four initial con-

1 2 .
ditions. Since d, =d, = 0 for all t < 0, d, = d2 = 0 for all t < 0 too.

1 2 ‘ 1
‘Plugging,these values into our differential equation yields the steady state

equations for t < O:

3 : 3
cpdy Foepdy +oeg(dy - dy) + e () - d)T,

F 1-M
orce 18

)3 .

Force 2 - Mzg c3(_d2 - dl) + 04(d2 - dl

Note that our differential equations have been reduced to nonlinear
algebraic equations. In order to determine the last two initial conditioms
(dl and d2) £9: our dynamics problem, we must first solve the above two
coupled, nonlinear, algebraic equations. This is where Program NAES enters
the problem. The nonlinear algebraic equations that determine the initial
displacements afe programmed in NAES; this coding appears in Fig. 2. The

exact meaning of variables and where data should appear is covered in detail

.

C
C THE USER PLACES ALL OF HIS CODING BETWEEN THE TWO +-LINES.

C .

C ++++tt+tttttrttbsttbtttttttsttttrtttitttrtttrtrtrttttrtetbbdspttittssts
C

C-

100 CONTINUE

C DEFINE PROGRAM CONSTANTS N, GAIN, EPSC, EPSJ, MAX, [JAC, lAUTO,

C AND ISKIP HERE. '
N=2 '
GAIN=1.0
EPSC=1.0E-08
EPSJ=1.0£-08
MAX=200
[JAC=GC
TAUTO=0
1SKIP=0

C DEFINE THE INITIAL X-VECTOR HERE.
X(1)=0.0
X(2)=0.0
C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE.

REAL MASS1, MASSZ
MASS1=1.0
MASSe=1.0
G=32.1!1740
WRITE(NOUT, 110}
110 FORMAT (20H--FORCE | --++FORCE2++)
) READ(NIN,120)FORCE1 ,FORCER
120 FORMAT(2E10. 3)
FOR1=FORCE1-MASS1+G
FOR2=FORCE2-MASS2*0
C1=75.0
Ce=1.5
C3=150.0
C4=3.0

GO TO 999
200 CONTINUE
C THE USER SPECIFIES THE N-DIMENSIONAL VECTCR-FUNCTION F.
FOI)=Cl*X(1)+C*X (1) *#*#3+CI* (X (1) -X(2))+CU*(X(]1)=-X(2))**3-FOR]I
F(2)=C3* (X(2)-X{(1)+CH4*(X(2)-X(1))*+3-FORP
6O TO 999
300 CONTINUE
C IF 1JAC.NE.O, THE USER SPECIFIES THE JACOBIAN HERE.

GO TO 939
400 CONTINUE ,
C SPECIFY CONSTRAINTS ON THE ELEMENTS OF THE X-VECTOR HERE.

IF(X(1).LT.-2.00X(1)=-2.00
Ir(X(2).LT.-2.9)X(2)=-2.00
GO TO 9399

500 CONT INUE
C THIS SECTION PROFIDES A PLACE TO CALCULATE WITH THE SOLUTION VECTOR.

PE=C1*X(1)*#2/2.0+C2*X (1) **4/4 0+C3*(X(1)~-X(2))*+2/2.0+
$ CHe{X(1)-X(2))**4/4 D+MASSI*G*X(1)+MASS2*G*X(2)
WRITE (NOUT,510)PE
510 FORMAT (2/, I9HPOTENTIAL ENERGY = ,E10.3)

GO TO 998
c

C 444+ +++++++++++4+++++ttt+++4+++++4++4++4++4++44444+++4++++4+4 +4+++++++4

C.

Fig. 2. Fortran coding (in boxecs) supplied by user for Program NAES.

-6~

in the NAES write-up of Appendix A. It is the purpose of this section to
indicate the effort required to obtain a solution to the above equations.

In Fig. 2, the user supplied only the boxed-in information. In the
100 section, one defines the following data: convergence parameters, initial
estimate of dl and d2, and problem constraints. For a large class of prob-
lems, the convergence parameters are fixed, and one only changes n. For

solution by NAES, the d, and d2 variables are renamed x(1) and x(2). The

initial estimates of x(i) and x(2) are zero. For this solution in NAES, it
was decided to request the Force 1 and Force 2 data at execution time from
the teletype*; this will allow one to rerun the problem'for different values
of forces without having to recompile NAES.

In the 200 section, we have written the nonlinear algebraic equations.
The force terms have been moved to the other side of the equation. When
F(l) = F(2) = 0, x(1) and x(2) are a solution to the nonlinear, algebraic
equations. Program NAES will manipulate x(1) and x(2), driving F(1) and F(2)
to‘essentially zero using the Newton-Raphson iterative technique. In
section 400, interval constraints of -2 < x(1) and -2 < x(2) are specified.
Finally, in section 500, we compute the potential energy based on values of
dl and d2 that satisfy our nonlinear, algebraic equations. Shown in Fig., 3
is the teletype dialogue for this problem. Again, only the boxed-in lines

were typed by the user. For our problem, the answer is:'

o
]

9.368,

13.93 .

(=N
I

Also shown in this dialogue are the values of F(l) and F(2):

11

F(1) = -4.729 x 10 ~~ -

F(2) = 7.276 x 10712 .

Therefore, the stated values for d1 and d2 are essentially solutions

for the nonlinear equations. That is, the nonlinear equations are unbalanced

*
Registered trademark of Teletype Corp.

-7-

INAES / o1 o1}

~=FORCEl=~++FORCE2++

{1000.0 1000. 0]

DO YOU WISH TO MODIFY CONVERGENCE VARIABLES-=-YES OR NO.
NO] :

DO YOU WISH TO MODIFY THE INITIAL X-VECTOR-~=YES OR NO.

PROCESS CONVERGED IN 33 ITERATIONS.
THE CURRENT VALUE OF THE X-VECTOR IS...
9.368E+00 1.393E+01
THE CURRENT VALUE OF THE VECTOR-FUNCTION F AT X ISes.
=4.729E-11 7.276E-12
THE PROGRAM CONSTANTS USED ARE...
THE CONVERGENCE EPSILON = 1.000E-08
THE MAXIMUM ITERATIONS ALLOVED = 200
GAIN ADJUSTED BY THE PROGRAM; FINAL GAIN = 1.000E+00
THE JACOBIAN WAS APPROXIMATED BY THE PROGRAM, WITH EPSJ = 1.000E-08

POTENTIAL ENERGY = 8.810E+03

ALL DONE

Fig. 3. Teletype dialogue for NAES solution.

by the small amounts indicated by F(1) and F(2). Stated another way, the d1

and d2 terms are solutions to:

11

Force 1 - M.g - 4.729 x 10~

1 ky(d)) + ky(dy = dy)

d, - d,

ky(dy - dy)

Force 2 - M,g + 7.276 x 10 12

Since Force 1 = Force 2 = 1000, Ml = M2 =1, and g = 32.174, one can ignore
the slight perturbation that F(1) and F(2) will make to the solution of d1

and d2. 4

X Now th?t the initial conditions for our differential equations (dl’

dl’ d2, and d2) are known, we can solve for the dynamic responses of interest.
For most (if not all) numerical integration schemes, the differential.
equations must be placed in normal form (a set of first-order differential
-equations). To do this, first rearrange each equation Such_thag the h}ghest—

order time derivative is isolated. For our example, solve for d1 and d2:

=1 - - _ - _
4, = m [Force 1 - Mg - Djd; -k (d)) - ky(d, dzi] ,
d. =L |§ 2 - Mg - Dd. - k. (d. - d.)
2N, orce A A VAL B R

Note that lower-order time derivatives (dl, dl,'d2 and d2) cah be obtained by’

integrating dl and d2:

t

c.il(t) =f al(n)dn s .
0

éz(t) = az(n)dn s

c§‘-5ﬁ

a (o) = 'él(n)dn :

c}‘-\ﬁ

t

a5(®) 5[éz(n)dn .
0

In block-diagram form, the above process appears as in Fig. 4(a). The dif-
ferential equations are also shown in block-diagram form in Fig. 4(b). The
IC signal entering each integrator indicates that each integrator has asso-
ciated with it some initial condition. By assigning new variable names to
the outputs of the integrators, we can transform our original differential
equations into a set of first-order differential equations (normal form).

Select the new variable as follows.

Let Xl = dl s
X2 7 c'11 ’
x3 = d2 ,
x =y

Then, the normal form equations are:

xl = di = x, A (i.e., dl = /dldt) s
% =4d. = i [Force 1-Mg-Dx, -k (x;) -k, (x; -~ x)]

2 1 M 1 172 117 - T2l 37]
T A

L1 i _
X, = d2 v [Force 2 - Mzg - D2x4 k2(x3 Xl)] .

This is the form required for numerical solution by Program SS. Using the
same new variable names, one can likewise transform the initial conditions.

For our example, these are:

x,(0) = 4d,(0) ,

x,(0) =4d (0) ,

-

. =10-

(EIC . ?IC

.. d, (t)
d,(t) O— sat 1 rdt —e0 dy(t)
i)IC (f IC
. dy(t) [
dz(t) O—{ rdt - fdt ——O dz(t)
(a)
ky(dy)

sdt sdt 4,
(d;-d,)
1792
* kp(dy-dp)
i)xc Cf Ic
+ .
Force 2 d2
sdt sdt d,
_Mzg

(b)

Fig. 4. Block diagrams of differential equations.

-11-

x,(0) = 4,(0) ,

x,(0) = d,(0)

With the differential equations in normal form and with the initial
conditions known, one is now prepared to numerically solve for the dynamic
responses. The amount of Fortran IV coding required from the user is shown
in Fig. 5, where the boxed-in lines were supplied by the user. In section
100, all specialized input-file data is read from SSIN (input file) into SS
and echoed out to SSOUT (output file)., SSIN contains information concerning
tstart’ tend’ stepsize, initial conditions, etc. The Fortran IV coding
required to input and output this information is already part of Program SS.

Section 100 provides a place for the user to read specialized infor-
mation from the input deck. For our example, Program SS will read the dash-

pot coefficients, Dl and D,. By placing D, and D

2 1
rerun the problem with different values of D

2 in the input deck, one can

1 and D2 without having to
recompile Program SS. 1In section 200, one defines constants, performs
initialization calculations, and defines output labels (used in plots and
tabular listing). In this section, one can use the full power of Fortran IV
coding to define the problem constants. .

In our example, the forces FORl and FOR2 were computed. The terms will
remain constant for the simulation unless modified in section 300 or 400,

In sectiop 300, the set of first-order differentia; equations are specified.
Again, one can define Fortran variables to simplify the differential equations.
In our example, Spring 1 and Spring 2 were defined to simplify the nonlinear
force terms in the differential equations. Note that X, becomes x(i) and

that ii becomes XDOT(i) in the Fortran coding.

In section 400, one defines the output variables. Any variable that
one wishes to output must be equated to an.element of the Y vector. For our
example, the third output will be x(2) or dl; note that LABEL(3) (Velocity 1)
corresponds to this output. Also note that the kinetic and potential energy
terms were computed in the output section. These terms were not needed to
solve the differential equations and can be computed directly from the
X vector. This illustrates that Fortran can be used in the output section.

After Y(7), two calls to subroutine XYPLOT are made. These calls plot

elements of the output vector against each other, with time as the parametric

~-12~

[R AR TR R R R R R R R T R RS

o
100 CONT INUE
C

C THE USER INSERTS USER DEF INED INPUT READ/WRITE STATEMENTS HERE.
C THE INPUT TAPE UNIT NUMBER MUST BE NIN AND THE OUTPUT TAPE UNIT

€ NUMBER MUST BE NOUT,

READ(NIN,101)01,D2 Read special data from input fi]e:

101 FORMAT(2E10.3)
WRITE (NOUT,101101,D2

GO TO 999
200 CONT INUE
C

C ONE CAN DO ONE-TIME PRECALCULATIONS AND OUTPUT LABELLING IN

C THIS SECTION.
c

REAL MASS1,MASS2 Problem constants
MASSI=1.n

MASS2=1.u
6=32.1740
C1=75.0
ce=1.5
C3=150.0
C4=3.0
FOR1=-MASS1+G
FOR2=-MASS2+6

C OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAMPLE IS...

c LABEL (1)=10HOUTPUT 1
LABEL (1) =10HMASS1 DISP
LABEL (2)=10HMASS2 DISP Output Tabels
LABEL (3)=10HVELOCITY 1
LABEL (4)=10HVELOCITY 2
LABEL (5)=i{0H KINETIC
LABEL (6)=10HPOTENT [AL
LABEL (7) =10HKE PLUS PE
60 10 993
300 CONTINUE
c

C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T, AND THE X-VECTOR.

C

C CALCULATE ANY INTERMEDIATE VARIABLES WHICH ARE FUNCTIONS OF THE STATES.

SPRING1=Cl#X(1)+C2*X(1)ee3
SPRING2=C3* (X(1}-X{3})+CH4*(X(1)-X(3))*+3
C CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES.
XDOT (1)=X(2)
XDOT (2)=(FOR1-D1*X(2)~SPRING1-SPRING2) /MASS1
XDOT (3)=X(Y4)
XDOT (4)=(FQR2-D2+X (4) +SPRING2) /MASSR

GO 70 989
400 CONTINUE

DECK SSIN.

OoOOO0O00

Differential equations

THE USER SPECIFIES THE VARIABLES THAT WILL BE OUTPUTTED IN THIS
SECTION----THE OUTPUT VARIABLES ARE PLACED IN THE Y-VECTOR; THE
Y VECTOR IS OF LENGTH M, WHERE M |S SPECIFIED IN THE INPUT

KE=X(2)’X(E)'HASSI/B.O**(H)'X(H)’HASSE/E.U

$ Che (X(1)-X(3))**4/4 0+MASS1*¢G*X (1) +MASS2¢G*X(3)
Y(1)=X(1)

Y(2)=X(3)

Y(3)=x(2)

Y(4)=X(4)

Y (5)=KE

Y(B)=PE

Y (7)=KE+PE

CALL XYPLOT(1,1,3)

CALL XYPLOT(2,2.4)

PE=C1eX(1)#22/2.0+C2*X(1)**4/4 0+C3*(X(1)-X(3))*e2/2, 0+

Output

, GO T0 999
500 CONTINUE
c

c
. GO TO 999
C

C THIS SECTION 1S PROVIDED FOR POST PROCESSING OF THE FINAL TIME DATA.

(o e R b R R A A e R R e R)

Fig. 5. Fortran coding (in boxes) supplied by user for Program SS.

-13-

parameter. That is, CALL XYPLOT(1l, 1, 3) plots Y(1) (X-AXIS) against

Y(3) (Y-AXIS). Since Y(1) = d1

MASS 1. 1In addition to XYPLOT, there are many other features already pro-

and Y(3) = dl’ this is a phase plane plot of

grammed in SS. Shown in Fig. 6 is the input deck SSIN for this problem. In

this input deck are specified t stepsize, initial conditions,

start’ tend’
specialized user-defined input, plot titles, etc. See Appendix B for details
on inputting problems in Program SS.

Shown in Figs. 7 through 11 are selected portions of the output file,
SSOUT. Figure 7 is the displacement of MASS 2 vs time. This output cor-
responds to setting Y(2) = x(3) in section 400. Figure 8 is the velocity of
MASS 2 vs time. An X-Y plot of d2 vs éz was fequested via the CALL
XYPLOT(2, 2, 4); this plot is shown in Fig. 9. The total energy plot is
shown in Fig. 10. Note that energy decreases as time progresses; this agrees
with our reasoning in the problem description. Also note that the total
energy at t = 0 from the SS run agrees with the energy calculation of the
NAES run.

Finally, the first page of the tabular listing is shown. Note that ;he
labels defined in SS are aufomatically incorporated in the plots and
tabular listing. The last column is an estimate of the absolute value of the

truncation error of the integration process. This error estimate is auto-

matically outputted; see Appendix B for the details.

=14-

BOX R61 SS EXAMPLE | t 001 O O 15000 000
THIS IS AN EXAMPLE OF TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD.

0.00 2.00 0.020 o4 07
9.368 0.00 13.93 0.00
2.00 2.00 :

Fig. 6. SSIN input file.

~]15-

._9'[—

1.5000€+01

9.8000E+00

4.6000€E+00

-6.0000E-01

-5.8000£+00

-1.1000E+01

MASSEZ DISP

THIS 1S AN tXAMPLE OF THO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD.

x
x

x

x

. XXX
XXX XX

RO UG PN U)y g e e e e

%X X
. . XXX XXX
X . X o . . X

.0E+00 4.000E-01 8.000€E-01 " 1.200€+00 1.600E+00

TIME [N SECONDS

Fig. 7. Displacement of MASS 2 vs time.

XXXXXXX
XXX TOX.

2.000E+00

L‘[

.5000E+01

.0000E+01L

.0000E+00

.D000E+O!

.5000€+01

.0000E+02

e e e et b pt et b e Bt bt ot ot bt St b h ot bt et ot ot ot D b bt ot ot pd ok o ot et et o S -

.0E+00

VELOCITY 2

~THIS 1S AN EXAMPLE OF TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD.

131

XX

4.000E-01 8.000E-01 1 .200E+00 1.600E+00
TIME IN SECONDS

Fig. 8. Velocity of MASS 2 vs time.

2.000E+00

8T

7.5C00E+01

4.0000E+01
X
X
5.0000E+00 .
__X____
X
X
~3.0000E+G!
-6.5000E+0!
-1.0000E+92
-1.100E+01

: VELOCITY 2 (Y-AXIS) VERSUS MASS2 DISP (X-AXIS)
THIS 1S AN EXAMPLE OF TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD.

Fig. 9. Phase plane plot for MASS 2.

S0
o
X 1
X . X O
X X Sl
x .1
S
X . X
o
I
A
o1 X
o
S X
XX .1 X
X XX ol X
X X .1 XXX .
X XX .1 XX
X XX 1XXX .X
XX X X
. X 1. .X.
---------------- T S
L1 X
X C1x x
Xx 1oX .
XXXXXXX 1 .X
X o1 .
X S X
X .1 .
x. 1 ¥
XD .
L1X X
R T T
X S
ol
X S
o
_ ol x
X o
.1
X, 1 .
ol X
o1
X ol
ol
X o1 X
ol
. X A X
o1 X X
.1 X
. 1. ..
~5.800E+00 -6.000E-01 4.B500E+00 9.800E+00

1.5%0E+01

...6'[_

.0000E+D3

.2200E+03

-4400€+03

.6600E+03

.8800E+03

.0000E+02

x
x -

~

ettt vt ot o ot bt b et ot Gt Pt et ot et Pt b b P o b o ot St bt s o ot et o ot bt ot bt nt ottt 3K e

.0E+0D

x

x

x

THIS 1S AN EXAMPLE OF TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD.

. XXXXXX .
. XX

4.000E-0!

Fig. 10.

KE PLUS PE

XX .
XXXX .
XXXXXXXXX
. XXX
XXX
XxX .
XXAAXXXK .
XURXXXAAXXXAXKXX

XXXXXXXXXXXXXXXXXXXX:

8.000E-01 1.200E+00 1.600€+00
TIME IN SECONDS

Total energy of the system vs time.

2.000E+00

e e e = = POUOOOODOODONNNNNOOONNNANVNONEFLFLELTTWWNWOWWNUNNNOUOND —~——~——O0FN

TIME

.0E+00

.00E-02

.00E-02
.00E-02
.00E-02
.00E-01
.20E-01
.40E-0!
.60E-01
.80E-01
.00E-01
.20E-01!
.40E-01
.60E-01
.8B0E-01
.00E-01
.20E-D1
.40E-D1
.60E-01
.80E-01
.00E-01
.20E-01
.40E-01
.60E-01
.80E-01
.00E-O1
.20€-01
.40E-01
.60E-01
.80E-01
.00E-01
.20E-01
-40E-C1
.60E-01
.80E-01
.00E-O1
.20E-01
.40E-D1
.60E-01
.80E-01
.00E-01
.20E-01
.40E-0!
.60E-01
.80E-01
.00E-D1
.20E-01
.40E-01
.60E-01
.BOE-C1
.00E+0D
.02E+00
.O4E+00
.06E+00
.08E+00
.10E+00
.12E+00

MASS! DISP MASS2 DISP VELOCITY 1|
9.36BE+00 1.393E+01 .0E+00
9.174E+00 1.373E+01 -1.898E+01
8.635E+00 1.315E+01 -3.406E+01
7.848E+00 1.221E+01 -4.381E+01
6.915E+00 1.094E+01 -4.878E+01
5.916E+00 9.391E+00 -5.056E+01
4.899E+00 7.B42E+00 -5.086E+01
3.881E+00 5.764F+00 -5.088E+01
2.880E+00 3.826E+00 -5.124E+01
1.828E+00 1.894E+00 -5.21BE+01
7.6Q4E-01 2.059E-02 -5.379E+01

-3.276E-01 -1.747E€+00 -5.596E+01

-1.471E+00 -3.372E+00 -5.826E+01

-2.654E+00 -4.827E+00 -5.985E+01

-3.852E+00 -6.100£+00 -5.949E+01

-5.010E+00 -7.190E+00 -5.582E+01

-6.053E+00 -8.111E+00 -4.783E+01

-6.891E+00 -B8.876E+00 -3.535E+01

~7.443E+00 -9.496E+00 -1.944E+01

-7.660E+00 -9.973E+00 -2.350E+00

-7.550E+06 -1.029E+01 1.304E+01

-7.171E+00 -1.042E+01 2.416E+01

-6.625E+00 -1.033E+01 2.969E+01

-6.022E+00 ~-9.976E+00 2.998E+01

-5.448E+00 -9.348E+00 2.691E+01

-4.Q4BE+00 -B.464E+00 2.295E+01

-4.518E+00 -7.371E+00 2.012E+01

-4.126E+00 -6.138E+00 1.937E+01

-3.730E+00 -4.837E+00 2.071E+01

-3.289E+00 -3.532E+00 2.371E+0)

-2.775E+00 -2.275E+00 2.787E+01

-2.170E+00 -1.110E+00 3.262E+01

-1.470E+00 -6.657E-02 3.73BE+01

-6.797E-01 8.393E-01 4.146E+D!
1.790E-01 1.605E+00 4.414E+01
1.072E+00 2.242E+00 4.483E+01
1.955£+00 2.771E+00 4.309E+01
2.778E+00 3.217E+00 3.872E+01
3.487E+00 3.60BE+00 3.182E+01
4.036E+00 3.962E+00 2.283E+01
4.391E+00 4.294E+00 1.255E+01
4.538E+00 4.B605E+00 2.105E+00
4.483E+00 4.B86E+00 -7.331E+00
4.259E+00 5.118E+00 -1.474E+01
3.912E+00 5.278E+00 -1.94BE+01
3.500E+00 5.335E+00 -2.133E+01
3.077€+00 5.263E+00 -2.056E+01
2.690E+00 5.041E+00 -1.790E+01
2.36EE+00 4.BB3E+00 -1.437E+01
2.113E+00 4.141E+00 -i.104E+01
1.917€+00 3.497€+00 -8.734E+00
1.753E+00 2.770E+00 -7.925E+00
1.589€+00 1.897E+00 -8.719E+00
1.394E+00 1.217€+00 -1.098E+01
L.142E+400 4.B652E-01 -1.441E+01
8.135€-01 -2.298E-01 -1.856E+01
3.990E-01 -8.482E-01 -2.287E+01

Fig. 11.

VELOCITY 2

-1.
-3.
-5.
-7.
-8.
-9.
-9.
-9.
-9.
-g.
-8.
-7.
-6.
-5.
-5.
-y
-3.
-2.
-2.
-1.
-1

Nl e = = YRV W E LD WMN —

L L L A A A UL N e]
MUWWWWNWWDY —

.0E+00
963E+01
837E+01
576E+01
092E+01
297€+01
133£+01
S86E+01
721E+01
S554E+01
138E+01
S11E+O1
718E+01
823E+01
8938E+01
013E+01

.200E+01

458E+01
T48E+01
004E+0O1
153E+01

.311E+00
.086E+0!
44 TE+D)
.812E+0!
.003E+0!
.880E+01
.392E+01
.562E+01
. 440E+01
.083E+01
LS543E+01
.883E+01
LATHE+ADL
.480E+01
.892€+01
L41T7E+01
.073E+0!
.B49E+0!
.710E+01
.609E+0!
L481E+01
.304E+01
.004E+0!
.BB4E+00
.63BE-01
.228E+00
.S500€£+01
.268E+0!
LO44E+DL
461E+01
.786E£+01
L912E+01
.B54E+Q!
L.E37E+01
.296E+01
.B80E+01

K?

OJ-JODDIRFWNNURN ==~ N EFOO~ e = UNVUNRN— == QLFV—~NVA=NVNWFFAANONN T WU — W

NETIC
.0E+00

.720£+02
.31GE+03
.514E+03
.TOYE+D3
.720E+03
4B4E+03
.898E+03
.037£+03
.925€+03
.B622E+03
.187E+03
.B75E+03
.118E+03
.S08E+03
.BI4E+03
.026E+03
.222E+03
.660E+02
.030E+02
.510E+02
.920E+02
.990£+02
.480E+02
.088E+03
.514E+03
.931E+03
.230E+03
.367E+03
.355£+03
.238E+03
.068E+03
.890E+03
.730E+03
.583E+03
.422E+03
.220£+03
.640E+02
.770E+02
.060E+02
.080E+02
.130E+02
.110E+02
.530E+02
.090E+02
.270E+02
.370E+02
.T20E+0e2
.600E+02
.940E+02
.370E+02
.470E+02
.030E+02
.03DE+D2
.BSDE 02
. 150E+02
.160E+02

POTENTIAL KE

—,_, e, e, WO~ === O JUNUVU——r ==L~ —~ NNV WNNNNV~—JFVOOUVD—~wWF 0 -JOO

Tabular output data.

=20~

.B14E+03
L432E+03
423E+03
.073€+03
.B33E+03
.279e+03
.12B6E+03
.235e+03
L177E+02
L485E+02
.003E+01
.150E+01
.081E+02
.131E+02
. 169E+02
L 159E+03
.753E+03
.42B6E+03
.013E+03
.347E+03
.387F+03
.230E+03
.892E+03
.BS4E+03
.282E+03
.753€+03
.199E+03
.329E+02
L11T7E+02
L 344E+02
.672E+02
.B47E+02
.833E+02
.986E+02
. 142E+02
.B42E+02
.S11E+02
.181E+02
.408E+0R
.682€+02
. 143E+03
.2e6E+03
.218E+03
.1B1E+03
.100E+03
.061E+03
.032E+03
.771E+02
.BYSE+D2
.971E+02
.081E+02
.42B6E+02
.e49E+02
.BOTE+02
.358E+02
.e63E+02
. 100E+02

N WP — = o e et e e e e e = = YTV WW W W H W WWWLWW EFF SO0 IJODODOOD

PLUS PE

.B14E+03
.804E+03
.738E+03
.587E+03
.337€+03
.998E+03
.590E+03
L 133E+03
.B655E+03
.175E€+03
.712E+03
.278E+03
.883E+03
.531E£+03
.226E+03
.G73E+03
.779E+03
.B4BE+03
.579E+03
.550€E+03
.53BE+03
.522E+03
L49LE+03
4428403
.370E+0"
.267E+03
.130E+03
.963E+03
.T79E+03
.588E+03
.405E+D3
.@33E+03
.074E+03
.930E+03
.797E+03
.B76E+03
.571E+03
.483E+03
.418E+03
.3T4E+D3
.351E+03
.3389E+03
.330E+03
.320E+03
.305E+03
.2B8E+03
.26SE+03
.@49E+03
.2e5E+03
.191E+03
. 14BE+03
.080E+03
.028E+03
.637€+02
.00BE+D2
L413E+02
~860E+02

EST.

-1
-1
-1

t 3 [} |] |] \] 1
FONNV——~ JRNW— VNV~ W~NNJ—— UV WEUVOWNNFVO—~NVFNVNO—~——N—=—N—=NMNVODMN

ERROR
.0E+00

.000E+00
.000E+00
.000E+00
.000E+00
LIS1E-04
.101E-02
.4B68E-0Y4
.828E£-03
.000E+00
.O44E-0u4
.343E-03
.607€E-05
.053E-03
.00CE+00
. 179E-0Y4
.293e-02
.829E-04
.9BOE-0Y4
.000E+00
. 386E-04
.493E-02
.252E-U4
.808E-03
.000E+D0
.833E-04
.378E-02
.S70E-04

169E-03

.000E+0O
.S41E-05
.042E-04
.325E-05
.768E-04
.000E+0DD
.635e-05
.911E-03
.308E-04
.816E-04
.000E+00
.897E-04
.S500E-03
.654E~06
.782E-03
.000E+00
.062E-04
.807€-04
.526E-04
.042E-03
.000E+00
.266E-05
.799E-03
.524E-04
.133E-03
.000E+00
.81BE-05
.953E-04

APPENDIX A. PROGRAM NAES

Introduction

Program NAES (Nonlineér Algebraic Equation Solver) is a Fortran v
program used to solve the vector equation £(x) = 0 for X. Two areas where
Program NAES has proved to be useful are the solution for initial conditions
and/or set points of complex systems of differential equations and system
parameter identification based on steady-state equations and steady-state
data. The method of solution is a modified Newton-Raphson iterative process. '
All information relatiﬂg to-a particular problem is placed in a standardized
subroutine named USER. In this subroutine, one specifies program constants,
vector function f(x), and an approximate value of X. Optional inputs for
subroutine USER are interval constraints placed on the candidates for the
solution vector giand an analytical Jacobian. If an analytical Jacobian is
not specified, the program will generate a numerical Jacobian. Program

input/output is via TTY.

Examples of Usage

The following examples illustrate how one sets up a problem and converts
it to Fortran coding. All user-supplied coding appears between the two + .

lines in the standardized subroutine USER.

Example One — Suppose one wishes to solve the following set of equations:

- 5
0= X + X, 35,

subject to the limitations

over the field of realvnumberé. The user-supplied Fortran coding to do this

is shown in Fig. A-1. The boxed-in terms are user-supplied. The section

-21-

R R R Y R R LR R R R R R R R T R

—_—OO0O0O00

00 CONTINUE ,
C DEFINE PROGRAM CONSTANTS N. GAIN. EPSC., EPSJ. MAX. IJAC.. 1AUTO.
C AND ISKIP HERE.
N=2
GAIN=1.0
EPSC=1.0E-08
EPSJ=1.0E-08] p
MAX=200
1JAC=0
1AUTO=0
ISK1P=0
C DEFINE THE INITTAL X-VECTOR HERE.
X(11=10.0
X(2)=-1.0 B
C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE.

GO TO 999
200 CONTINUE -
C THE USER SPECIF[ES THE N-DIMENSIONAL VECTOR- -FUNCTION F.

F(1)=X(1)*e3-27.0 C
F(2)=X(1)+X(2)*+5-35.0 :
GO TO 999

300 CONT INUE
C IF IJAC.NE.O, THE USER SPECIFIES THE JACOBIAN HERE.

GO TO 999 D
400 CONT INUE
C SPECIFY CONSTRAINTS ON THE ELEMENTS OF THE X-VECTOR HERE.
IF(X(1).LT.0.0)0X(1)=0.0
[F(X(2).LT.-1.00X(2)=-1.0 E
IF(X(1).GT.+10.03X(1)=+10.0
IF(X(2).6T.+10.0)X(2)=+10.0
GO 170 999
500 CONTINUE
C THIS SECTION PRCF IDES A PLACE TO CALCULATE WITH THE SOLUTION VECTOR.

GO TO 999
C F
C
C 44444444+ 4 444414444443+ 4 4444 P44 444444444442 P21 1444444444444 444444
c
c

Fig. A-1. Specialized Fortran coding for Example One.

-22-

marked A specifies convergence control variables (see section entitled

"Brief Description of Method" in this appendix) and N (number of equations

and number of elements in the x vector). Section B specifies the initial x
vector; the user has specified Xy = 10 and X, = -1 for this problem.

Section C specifies the nonlinear algebraic equations. Section D provides a
place for the Fortran coding of the Jacobian when an analytical Jacobian is
used; for this example, a numerical (program-generated) Jacobian is used

(IJAC = 0). Section E provides a‘place for the Fortran codihg thét constrains

the x vector. Section F provides a place to calculate with the solution

vector. The TTY dialogue for Example One is shown in Fig. A-2.

Example Two — Suppose one wishes to solve the problem of Example One

using an. analytical Jacobian. That is, solve

where the Jacobian J is

3x12 0

The user—é&pﬁliéd coding to solve this problem is shown in Fig. A-3; the TTY

dialogue is shown in Fig. A-4,

Comments on Usage

@ Since the algebrai¢ equations that Program NAES solves are generally

nonlinear, the vector equation f(x) = 0 may have many solutions (i.e.,

[NAES 7/ .2 .2]|
DO YOU WISH TO MODIFY CONVERGENCE VARIABLES-=-YES OR NO.
DO -YOU WISH TO MODIFY THE INITIAL X-VECTOR---YES OR NO.
PROCESS CONVERGED IN S7 ITERATIONS.
THE CURRENT VALUE OF THE X-VECTOR IS...
3.000E+00 2.000E+00
THE CURRENT VALUE OF THE VECTOR-FUNCTION F AT X 1Sees
~5.684E-13 =1.364E-12
THE PROGRAM CONSTANTS USED ARE...
THE CONVERGENCE EPSILON = 1.000E-08
THE MAXIMUM ITERATIONS ALLOWED = 200 _
GAIN ADJUSTED BY THE PROGRAM; FINAL GAIN = 1.000E+00 -
THE JACOBIAN WAS APPROXIMATED BY THE PROGRAM, WITH EPSJ s 1.000E-08

ALL DONE

Fig. A-2. TTY dialogue for Example One.

-24-

D R R R R R R R R R R R R R

OO0 0O0O

100 CONTINUE
C DEFINE PROGRAM CONSTANTS N, GAIN, EPSC, EPSJ. MAX, 1JAC, lAUTO,
C AND ISKIP HERE. ’
N=2
GAIN=1.0
EPSC=1.0E-08
EPSJU=1.0E-08
MAX-200
1JAC=1
1AUTO=0
1SKIP=0
C DEFINE THE INITIAL X-VECTOR HERE.
X(1)=10.0
X(2)=~1.0 .
C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE.
GO 70 999
200 CONTINUE
C THE USER SPECIFIES THE N-DIMENSIONAL VECTOR-FUNCTION F.
F(1)=X(11**3-27.0 ’
Fi21=X(1)+X(2)*+5-35,0
GO 10 999
300 CONTINUE .
C IF TJAC.NE.O, THE USER SPECIFIES THE JACOB!AN HERE.
JAC(T,1)=3.0*X(1)**2
JAC(1,21=0.00
JAC(2,13=1.00
JAC(2,2)=5.0*X(2)**Yy
GO 10 999
400 CONT INUE
C SPECIFY CONSTRAINTS ON THE ELEMENTS OF THE X~-VECTOR HERE.
IFIX(1Y.LT.0.0)X(1)=0.0
IF(X(2).LT.-1.0)X(2)=-1.0
IF(X(1).GT.+10.0)X(11=+10.0
IF(X(2) .GT.+10.0)X(2)=+10.0
GO 70 999 .
500 CONTINUE
C THIS SECTION PROFIDES A PLACE TO CALCULATE WITH THE SOLUTION VECTOR.
GO T0O 999

L e N R e R R R R R A R

OoOO0O0O0

- Fig. A-3. Specialized Fortran coding for Example Two.

—-25-

[NAES / «2 2]

DO YOU WISH TO MODIFY CONVERGENCE VARIABLES~--YES OR NO.
,
DO YOU WISH TO MODIFY THE INITIAL X-VECTOR---YES OR NO.

PROCESS CONVERGED IN 61 ITERATIONS.
THE CURRENT VALUE OF THE X-VECTOR ISes.
3.000E+00 2.000E+0Q0
THE CURRENT VALUE OF THE VECTOR-FUNCTION F AT X IS..s
+«OE+00 + 0E+00
THE PROGRAM CONSTANTS USED ARE«..
THE CONVERGENCE EPSILON = 1.000E~-08
THE MAXIMUM ITERATIONS ALLOWED = 200
GAIN ADJUSTED BY THE PROGRAMJ FINAL GAIN = 1.000E+00
THE JACOBIAN WAS SUPPLIED BY THE USER.

ALL DONE

- Fig. A-4. TTY dialogue for Example Two.

-26-

f(x) = x2 - 1= 0)., On the other hand, it may have no solution (over the
field of real numbers) (i.e., f(x) = x2 + 1 = 0). In addition, it may happen
that a solution exists, but that Program NAES is not capable of solving for
it.
' e When Program NAES does not converge on a solution, try a different

initial x vector, EPSJ, GAIN, etc. These are adjustable at the TTY.

® When the program estimates the Jacobian, there is an additional
noise level added to the Jacobian. Since this Jacobian is used in an
iterative process, this error typically does not affect the result, if con-
vergence is obtained. If the error does affect the calculation, dhe'must
use an analytlcal Jacobian rather than a numerical Jacoblan

® The numerical Jacobian is only approximate but for large N saves the
user from coding the Jacobian. This usually means a savings in debugging
time.

® One can improve the accuracy of the numerical Jacobian by making
EPSJ smaller up to the point of machine noise and number representation. For
the CDC 6600 and CDC 7600 machines, one can represent 14.4 significant
figures. 1If EPSJ is so small that changes in F occur in the fifteenth or
higher significant figures, this information is lost. In addition, the cal-
culations performed on the machines add noise. Based on the above and
experimental running, EPSJ = 1,0 X 10-8 appears to be a reasonable starting
value.

® As presently dimensioned, N must satisfy 1 < N < 20.

Brief Description of Method

Suppose one has a vector function f such that

N
f : H{N-——E{ R

that is differentiable, and can be written in Fortran. For this function one

. seeks an X vector in]RN_(not nécessarily unique) such that
@ = 0.

One approach to solving for x is the Newton-Raphson iteration. The
basic 1dea is as. follows Assume Taylor's theorem applies, one can then

expand f about a point x, where x # g. The result is:

-27~

= E®) = £ +oE @ (& - x] + HO.T.

where H.0.T. denotes higher-order terms. Ignoring the H.O.T., one can solve

for X as follows:

1%

Slnce, 1n general the H 0. T. contrlbute some 1nformatlon, X only
approx1mates the true solutlon x. Assumlng the process converges, one can
improve on this approximate X by using an iterative procedure based on the

above approximate equation. Program NAES uses

-1
= GA _— .
rey = % - @ [E o] T rw
GAiN is a user—speeified convergence control term. For GAIN equal to one,
this is the standard Newton-Raphson method. For efficiency, the computation

of the inverse matrix is not performed, but rather the whole term
-1
af
[w] fw

is computed via Gauss Elimination. Thus, given 50 (the initial x vector

specified by the user), one can solve for x.; given_gl, one can solve for

1
Xy etc. There are two ways that this process can be halted. One, the

maximum number of iterations specified by the user (MAX) is exceeded. Two,
the process is judged to have converged. For this program, the process is

said to have converged when each element of f and x satisfies:

‘fi(zN) < ESPC i=1,...,N
and
xN(l) - XN—I(l) < ESPC i=1,...,N

where EPSC is a user-specified convergence variable. Whenever the process

is halted, Program NAES prints out the current state of the iteration.

-28-

If IJAC equals zero, the program will approximate the Jacobian term via

sequential perturbation of the x vector; EPSJ controls the amount of the

perturbation. If IAUTO equals zero, the program will automatically adjust

the value of GAIN; otherwise the value of GAIN is fixed. If ISKIP is less

than or equal to zero, no intermediate printout occurs; otherwise, ISKIP is

the ratio of iteration points to printout points.

Fortran IV Listing of Program NAES

[sielisielsinieXoNsNoNoleNeRaleNeNnNaRoloNeloloeNeReXeRaXeXe ks ke ke Xake e e Xa e ko Xe ke o Xe)

A listing of the Fortran coding for Program NAES follows.

PROGRAM NAES
FOR A WRITEUP ON THE USAGE OF THIS PROGRAM, SEE UCRL-51657.

PROGRAM NAES (NONLINEAR ALGEBRAIC EQUATION SOLVER) ATTEMPTS TO
ITERATIVELY SOLVE (VIA NEWTON-RAPHSON METHOD) FOR THE N-DIMENS!ONAL
SOLUTION VECTOR X SUCH THAT THE N-DIMENSIONAL VECTOR-FUNCTION F
EQUALS ZERO, THAT 1IS...
FtRe**N---1R*+N, DIFFERENTIABLE, CAN BE WRITTEN [N FORTRAN
AND ONE SEEKS AN X-VECTOR IN Re*N (NOT NECESSARILY UNIQUE) SUCH THAT
F{X:, = 0

PROVISIONS ARE MADE TO PLACE INTERVAL CONSTRAINTS ON THE ELEMENTS OF
THE X-VECTOR. THE JACOBIAN REQUIRED BY T.{E PROGRAM CAN BE SUPPLIED
VIA FORTRAN STATEMENTS (ANALYTIC) OR ESTIMATED FROM FUNCTION F BY THE
PROGRAM (NUMERICAL). THE USER MUST SUPPLY AN INITIAL X-VECTOR. AS
PRESENTLY DIMENSIONED, PROGRAM NAES CAN SOLVE PROBLEMS WITH

UNKNOWNS RANGING FROM 1 TO 20. ALL USER CODING GOES IN SUB-

ROUTINE USER. '

THIS PROGRAM WAS WRITTEN BY HOWARD MCCUE AS PART OF EECS 289 (THESIS)
AT THE UNIVERSITY OF CALIFORNIA AT BERKELEY UNDER PROF. OTTO SMITH.

IMPORTANT VARIABLES OF THIS PROGRAM ARE...

N THE DIMENSIONAL OF THE PARTICULAR PROBLEM (l.E. 1 TO 20}

X THE N-DIMENSIONAL ITERATION-VECTOR

F THE N-NIMFNSINNAL VECTOR-FUNCTION OF THE PARTICULAR
PROBLEM

JAC THE N-BY-N JACOBIAN OF F

GAIN THE NEWTON-RAPHSON ITERATION GAIN

EPSC EPSILON USED TO JUDGE CONVERGENCE OF X-VECTOR

EPSJ EPSILON USED TO APPROXIMATE THE JACOBIAN

MAX MAXIMUM NUMBER OF NEWTON-RAPHSON ITERATIONS ALLOWED »

1JAC =0 MEANS JUACOBIAN APPROXIMATED FROM F BY PROGRAM; OTHERWISE,
THE USER MUST PROVIDE FORTRAN CODING.

T1AUTO =0 MEANS THE GAIN TERM IS AUTOMATICALLY ADJUSTED: OTHER-
"WISE, THE GAIN S FIXED AT THE USER SPECIFIED VALUE.

1SKIP .LE. 0 MEANS NN INTERMFDIATE PRINTOUT, OTHERWISE. THE
POSITIVE NUMBER IS THE RATIO OF THE CALCULATED ITERATIONS
TO PRINTOUT ITERATIONS.

CALL CHANGE (SH+NAES) ’

REAL X(20) ,F(20) ,JAC(20,20),2(20) ,ERROR(20),X0LD(20) ,E(20)
DIMENSION LABEL(20) ,FOLD(20)

DATA (LABEL(I),[=1,20)/ 10HI111111111,10H2222222222,10H3333333333,

-29-

21 0HY4HH4L 444, | | HE555555555 , 1 OHB666666666 , 10H7777777777,
310H8888888888, 10H3999999939, 10H1010101010, 1OHI1T1LEL1LIT,
410HI212121212,10H1313131313,10HI414141414,10HI515151515,
510H1616161616,10H1717171717,1041818181818,10H1919191819,
610H2020202020 / ’
NTTY=59

NIN=NTTY

NOUT=NTTY

COMMON/ TO/NIN,NOUT

C GET INITIAL X-VECTOR AND OTHER PROGRAM CONSTANTS.
CALL USER(1,N,X,F,JAC,GAIN,EPSC,EPSJ,MAX, 1JAC,1AUTO, ISKIP)

C CHECK FOR N IN THE PROPER RANGE.
NMAX=20
IF({N.GT.0).AND. (N.LE.NMAX))IGO TO 6
WRITE(NOUT ., 7}

7 FORMAT(27HN IS .LE.O OR GREATER THAN ,I13.,2H .)
GO TO 999 .

6 CONTINUE

C CHECK TO SEE IF MODIFICATIONS REQUESTED.
WRITE (NOUT, 1}

—

FORMAT (55HDO YOU WISH TO MODIFY CONVERGENCE VARIABLES--YES OR NO.)
READ(NIN,2)ANS
e FORMAT (A3)
IF CANS . NE . 3HYES)GO T0 S
WRITE(NOUT,3)
3 FORMAT (S0H+++GAIN+++-CONV-EPS-+JAC-EPS++-MAX-1TS--SKIP RATIO,
210H-GAIN MODE)}
READ(NIN,4)A,B,C,D,SKIP,AUTO
4 FORMAT(BE!D. 3)
ID=D+0.1
1SK1P=SKIP+G.1
IF (AUTO.GT.0.0)1AUTO=1
{F(AUTO.LT.0.0)1AUTO=0
IFCID.LE.0)YID=0
IFCA.NE.O.0)GAIN=A
IF(B.NE.O.D)EPSC=B
IF(C.NE.O.0)1EPSJY=C
IFC(ID.NE.OIMAX=1D
5 CONT INUE
C MODIFY GAIN, EPSC, EPSJ, AND MAX AS REQUIRED.
EPSC=ABS (EPSC}
EPSJ=ABS (EPSJ)
IF(GAIN.EQ.0.0)GAIN=1.0
IF(EPSC.EQG.0.0)EPSC=1.0E-06
IF(EPSJ.EQ.0.0)EPSJU=1.0E-06
IF (MAX.LE .D)IMAX=]
WRITE (NOUT ,41)
41 FORMAT (55HDO YOU WISH TO MODIFY THE INITIAL X- VECTOR---YES OR NO.)
READ(NIN,2)ANS
IF (ANS.NE.3HYES)GO TO 45
I1D=N
IFI(N.GT.7)1D=7
WRITE(NOUT ,42) (LABEL (1) ,1=1,1D)
42 FORMAT (7A10)
READI(NIN, 43) (X(]),1=1,T7)
43 FORMAT(T7E10.3)
IFI(N.LE.7)G0 TO u4S
ID=N
IF(N.GT. lH)lD 14 .
WRITE (NOUT ,42) (LABEL (]),1=8,1D)
READ(NIN,43) (X(1),1=8,14) .
IF(N.LE.14)GO TO 45
I1D=N
IF(N.GT.20})1D=20
WRITE (NOUT ,42) (LABEL (] =15,1D)
READ(NIN, 43) (X(]1),1=15

~—

~30-

45 CONT INUE
IPRINT=-{SKIP

c
c
C ‘THI1S LOOP DOES THE NEWTON-RAPHSON 1TERATION.
c
c
C INITIALIZE F FOR THE FIRST PASS THROUGH DO LOOP 100.
CALL USER(2,N,X.F,JAC,GAIN,EPSC,EPSJ,MAX, 1JAC, IAUTO, ISKIP)
DO 100 I=1,MAX ‘
¢ STORE THE PREVIOUS VALUE OF X AND F.
DO 10 J=1,N
XOLD(J)=XJ)
FOLD (J)=F (J)

- 10 CONTINUE
C GET THE VALUE OF F (X)
CALL USER(2,N,X,F,JAC,GAIN,EPSC,EPSJ, MAX, 1JAC,TAUTO,ISKIP) |
IF(,JAC.NE.DIGO TO 15
C GET A NUMER!CAL APPROXIMATION TO THE JACCZIAN.
DO 16 K=t,
X(K) = X(K)*EPSJ
CALL USER(2,N,X,Z,JAC.GAIN,EPSC,EPSJ,MAX,1JAC,TAUTO,ISKIP]
DO 17 JU=1.,N
JAC(J.K)=(Z(J)-F(J))/EPSJ
17 CONT INUE
X (K)=X(K)-EPSJ
16 CONTINUE
GO TO 18
15 CONT INUE
C EVALUATE AN ANALYTIC EXPRESSION FOR THE JACOBIAN.
CALL USER(3,N,X.F,JAC,.GAIN,EPSC,EPSJ.MAX,1JAC,1AUTO,ISKIP)
18 CONTINUE
C SOLVE FOR THE CORRECTION TERM OF THE NEWTON-RAPHSON [TERATION.
CALL GAUSSI(N,JAC,F ,ERROR,NOUT, IFLAG)
IFCIFLAG.NE.D)GO TO 120
C VALID CORRECTION TERM CALCULATED: UPDATE THE [TERATION VECTOR.
DO 20 J=I,N
X(Jd)r=xXtJ)-~ GAIN‘ERROR(J)
20 CONT INUE
C IMPOSE CONSTRAINTS ON THE ELEMENTS OF THE ITERATION VECTOR.
CALL USER(4,N,X.F,JAC,GAIN,EPSC,.EPSJ.MAX,|JAC, [AUTO,ISKIP)

(@]

UPDATE VALUE OF VECTOR FUNCTION F BASED ON CONSTRAINTED X VECTOR.

CALL USER(2,N,X,F,JAC,GAIN,EPSC, EPSJ HAX IJAC, 1AUTO, ISKIP)

C TEST FOR CONVERGENCE.
DO 30 J=1,N

C CHECK THE RATE THAT X IS CHANGING.
XX=ABS (X (J)-XOLD(J})
IF(XX.GT.EPSCIGO TO 50

C CHECK THE CLOSENESS OF F(X) TO ZERO---THIS IS NEEDED WHEN

C X SATURATES ON THE CONSTRAINTS.

XX=ABS(F (J))
IF(XX.GT.EPSCIGO TO S50
30 CONTINUE
C 17cRATIVE PROCESS 1S JUDGED TO HAVE CONVERGED
GO TO 130
LOOP=0
50 CONT INUE
IF(1AUTO.NE.D0)GO TO 60
C CHECK FOR THE PROPER VALUE OF GAIN---ADJUST AS REQUIRED.
DO 51 J=1,N
XX=ABS(FOLD(J))-ABS(F(J))
IF(XX.LT.N.0)G0 TO S5)
51 CONT INUE : .
C NO ELEMENT OF F INCREASED IN MAGNITUDE SINCE THE LAST ITERATION---
C GAIN VALUE JUDGED NOT T00 LARGE. CHECK IF GAIN SHOULD BE INCREASED.

‘ -31-

DO 52 J=1,N
IF(F(JY).EQ.0.0)G0 TO 52
XX=ABS(FOLD(J)/F (J))
IF(XX.GT7.2.00)G0 10 60
Se CONT INUE
C GAIN IS JUDGED TO BE TOO SMALL.
GAIN=2.0¢GAIN
IF (GAIN.GT.1000.0)GAIN=1000.0
GO T0 60
55 CONTINUE
C THE GAIN 1S JUDGED TO BE TOO LARGE.
GAIN=GAIN/2.0
IF(GAIN.LT.0.00001)GAIN=0.00001!
56 CONT INUE
LOOP=LOOP+1
00 57 J=1,N
X(J)y= XOLD(J) -GAIN*ERROR (J)
57 CONT INUE
€ IMPOSE CONSTRAINTS ON THE ELEMENTS OF THE ITERATIQON VECTOR.
CALL USER(4,N,X,F,JAC,GAIN,EPSC,.EPSJU,MAX,1JAC,1AUTO,ISKIP)
C UPDATE VALUE OF VECTOR FUNCTION F BASED ON CONSTRAINTED X VECTOR.
CALL USER(2,N,X,F,JAC,GAIN,EPSC,.EPSJ,MAX,1JUAC, IAUTO, lSKlP)
IF(LOOP.GT.30)GO TO 60
GO TO 50
60 CONTINUE :
IFUISKIP.LE.0)GO TO 100
IPRINT=IPRINT+!
IF(IPRINT.LT.0)GO TO 100
C WRITE OUT THE CURRENT N, GAIN, X-VECTOR, AND F (X}-VECTOR.
WRITE(NOUT,61)1,.GAIN
61 FORMAT (2H1=,14,3X,5HGAIN=,E£10.3)
HRITE(NOUT.IHI)(X(J),J=1.N)
HWRITE (NOUT (141X (F(J) ,J=1,N)
IPRINT=-1SKIP
100 CONT INUE

WRITE (NOUT,111)1 4
111 FORMAT(32HTHE PROCESS DID NOT CONVERGE IN ,14,12H ITERATIONS.)
GO TO 200 . :
120 CONTINUE
WRITE (NOUT, 121) 1 ‘
121 FORMAT(45HCAN NOT SOLVE FOR ERROR V1A SUBROUTINE GAUSS.,/
225HTHE NUMBER OF ITERATIONS=,14)
GO TO 200
130 CONTINUE
WRITE (NOUT, 1311 :
131 FORMAT (21HPROCESS CONVERGED IN ,I14,12H ITERATIONS.)
ICONV=1
GO TO 200
200 CONTINUE
C WRITE OUT THE RESULTS.
WRITE (NOUT, 140)
140 FORMAT (39HTHE CURRENT VALUE OF THE X-VECTOR IS.
WRITE (NOUT, 141) (X(1),1=1,N)
141 FORMAT(6(1X,E10.3))
WRITE (NOUT, 142)

142 FORMAT(S53HTHE CURRENT VALUE OF THE VECTOR-FUNCTION F AT X 1S...)

WRITE(NOUT, 141 (F(1),1=1,N)
HRITE (NOUT, 143) .

143 FORMAT (33HTHE PROGRAM CONSTANTS USED ARE...)
WRITE (NOUT, 144)EPSC ,MAX
144 FORMAT (26HTHE CONVERGENCE EPSILON
233HTHE MAXIMUM [TERATIONS ALLOWED
IFCTAUTO.EQ.OJWRITE(NOUT, 147)1GAIN
IF(TAUTO.NE.Q)WRITE(NOUT, 148)1GAIN
147 FORMAT (43HGAIN ADJUSTED BY THE PROGRAM; FINAL GAIN = ,E10.3)
148 FORMAT (14HGAIN FIXED AT ,E10.3) .
IFCIJAC.EQ.0)HRITE(NOUT , I4SI1EPSY
IF CTJAC .NE.O)YWRITE (NOUT, 146)
T 145 FORMAT (4SHTHE JACOBIAN WAS APPROXIMATED BY THE PROGRAM,
2l2H WITH EPSJ = ,E10.3)
146 FORMAT(38HTHE JACOBIAN WAS SUPPLIED BY THE USER.)
IFCICONV.EQ.1)GO TO 300
WRITE(NOUT, 149)
149 FORMAT(3/,38HDO YOU WISH TO CONTINUE =---YES OR NO.
READ(NIN, E)ANS
IF (ANS.EQ.3HYES)GO TO 6
300 CALL USER(5,N,X,.F,JAC,GAIN EPSC,.EPSJ, MAX lJAC.lAUTO.lSKlP)
9399 CONT INUE
CALL EXIT
END

JE10.3.7,
L 14)

SUBROUT INE GAUSSI(N,A,B,X,NOUT,IFLAG)

SUBROUTINE GAUSS SOLVES THE VECTOR EQUATION A*X=B FOR THE X VECTOR
GIVEN THAT THE A MATRIX AND B VECTOR ARE KNOWNS AND THAT THE
A MATRIX HAS FULL RANK. PROBLEMS MAY OCCUR FOR NEAR-SINGULAR A
MATRICES: IF SO, ERROR MESSAGES ARE PRINTED AND IFLAG IS
MADE NONZERO. A,B, AND X ARE DEFINED OVER THE FIELD OF REAL
NUMBERS. INPUT/QOUTPUT 1S AS FOLLOWS.

N 1S THE SYSTZIM ORDER

A IS SYSTEM MATRIX

B IS INPUT VECTOR

X 1S SOLUTION VECTOR

NOUT [S THE LOGICAL TAPE UNIT NUMBER

IFLAG=0 GAUSS ELIMINATION PERFORMED

IFLAG=1 GAUSS ELIMINATION CAN NOT BE PERFORMED

THIS SUBROUTINE IS TAKEN FROM COMPUTER SOLUTION OF LINEAR ALGEBRAIC
SYSTEMS BY G. FORSYTHE AND C. B. MOLER, PRENTICE-HALL 1967, PP 68-70.
MODIFICATIONS WERE MADE TO THIS SUBROUTINE .TO CHANGE THE MANNER

IN WHICH ERROR MESSAGES ARE HANDLED.

TO CHANGE THE MAXIMUM SIZE MATRIX THAT ONE CAN HANDLE, CHANGE
THE VALUE OF NMAX IN THIS SUBROUTINE AND ALL DIMENSION STATEMENTS
IN THIS SUBROUTINE PLUS SUBROUTINES DECOMP, SOLVE, AND IMPRUV.
NMAX=20
DIMENSION A(20,20),UL(20,20),B(20),X(20)
IFLAG=0 ’
C CHECK THE VALUE OF N
IFC(N.GT.0).AND. (N.LE.NMAX))IGO TO 40
IFLAG=1"
WRITE (NOUT, 14)
1y FORMAT(38HIN A CALL TO GAUSS, N IS OUT OF RANGE.)
GO 70 999
40 CONT INUE

OO0 OO0O0O0O0O000ONOOOOO0

=33~

IF(N.NE.1)GO TO 41
X=B(1)/ACL, 1)
GO 1O 999
41 CONT INUE
C DECOMPOSE MATRIX A INTO UPPER AND LOWER TRIANGLE MATRICES, STORE IN UL
CALL DECOMP(N,A.UL,IFLAG)
IF (IFLAG.NE.0)GO TO 10
C SOLVE SYSTEM OF EQUATIONS USING U AND L MATRICES.
CALL SOLVE (N,UL,B,X)
C USE IMPROVEMENT TO CONVERGE ON TRUE ANSHWER.
CALL IMPRUV(N,A,UL.B,X.DIGITS,IFLAG)
10 CONTINUE
IFLAG=IFLAG+1
GO T0(1,2,3,4),IFLAG
2 WRITE(NOUT,11)
11 FORMAT(S4HOMATRIX WITH ZERO ROW [N DECOMPOSE. . :)
GO TO 1
3 WRITE (NOUT, 12)
12 FORMAT (S4HOSINGULAR MATRIX [N DECOMPOSE. ZERO DIVIDE: IN SOLVE.)
GO TO 1
Y WRITE (NOUT,13) : .
13 FORMAT (S4HONO CONVERGENCE IN IMPRUV. MATRIX 1S NEARLY SINGULAR.)
1 CONT INUE
IFLAG=1FLAG-1
999 CONTINUE
RETURN
END

SUBROUTINE DECOMP (NN, A, UL, IFLAG)

DIMENSION A(20,20), UL(20,20), SCALES(20), 1PS{(20)
COMMON s AA 7/ IPS .

N = NN

c INITIALIZE IPS, UL AND SCALES
0051 = 1,N
IPSCI)
ROWNRM
DO 2 J .
UL(i,Jy = A(l,J)
IF (ROWNRM-ABS (UL (1,J})) 1,2.,2
ROWNRM = ABS(UL(1,J})
CONT INUE
IF (ROWNRM) 3,4,3
SCALES(1) = 1.0/ROWNRM
GO 10 5
4 [FLAG=!
GO T0 19
S CONTINUE

Howou
—) s
| Z O

W U~

c GAUSSIAN ELIMINATION NiTH PARTIAL PIVOTING
NMiI = N-1i

IP = IPS(D)
SIZE = ABS(UL(IP,K))*¢SCALES(IP)
IF (SI1ZE-BIG) 11,11,10
10 BIG = SI1ZE
7 IDXPIV = | -

-34—

11 CONT INUE
IF (BIG) 13,12,13

12 IFLAG=2

GO TO 19
13 IF CIDXPIV-K) 14,15,14
14 J = IPS(K)

[PS(K) = |PS(IDXPIV)

IPSCIDXPIV)Y = U
15 KP = IPS(K)
PIVOT = UL (KP.K)

KP! = K+l

0O 16 I = KPI1,N
IP = IPS(I)
EM = -UL(IP K)/PIVOT
UL(IP,K) = -EM

DO 16 J = KPI1,N
ULCIP,J) = ULCIP,J) + EMSULIKP,J)
INNER LOOP. USE MACHINE LANGUAGE CODING [F COMPILER
DOES NOT PRODUCE EFFICIENT CODE.
16 CONTINUE :
17 CONTINUE
KP = IPS(N)
IF (UL(KP.,N)) 19,18,19
18 IFLAG=2
CONTINUE
RETURN
END

SUBROUTINE SOLVE (NN, UL,.B, X}

DIMENSION UL(20,20), B(20), X(20), IPS(20)
COMMON / AA / IPS

N = NN

DO 1 J = 1,1IML

1 SUM = SUM + UL (IP,J)*X(J)
2 X(1) = B(]P} - SUM
IP = IPS(N)

X(N) = X(NY/UL(IP ,N)
D0 4 IBACK = 2,N
I = NPI-IBACK
I GOES (N-1),...,1
IP = 1IPS(D)
IP1 = 1+1
SUM = 0.0
DO 3 U = IPI N
3 SUM = SUM + ULCUIP,J)*X()
Y X(I1) = (X(I)=-SUM)/UL(IP,1)
RETURN
END

-35-

OCOODOOOOOOOO00

SUBROUTINE IMPRUV (NN, A, UL, B, X, DIGITS, IFLAG)
OIMENSION A(20,20), UL(20,20), B(20), X{(20), R(20), DX(20)

USES ABS(), AMAX1(), ALOGID()
DOUBLE PRECISION SUM
N = NN

EPS = 2.¢%(=47)
ITMAX = 29
+++ EPS AND I1TMAX ARE MACHINE DEPENDENT. +++

XNORM = 0.0
DO 11 =1,N

! ANORM = AMAXI1 (XNORM,ABS(X(1)))
IF (XNORM) 3.,2,3

c DIGITS = -ALOGIO(EPS)

GO TO 10
2 D0 9 ITER = 1,1TMAX
DO S5 1 = I,N
SUM = 0.0
DO 4 J = I,N
4 SUM = SUM + A(l,J)*X(J)
SUM = B(1) - SUM
5 R(I) = SUM

+++ 1T IS ESSENTIAL THAT A(],J)*X(J) YIELD A DOUBLE PRECISION
RESULT AND THAT THE ABOVE + AND - BE DOUBLE PRECISION. +e+

CALL SOLVE (N,UL,R.DX)

DXNORM = 0.0

DO 6 I = I.N
T = X(1)
X(I)y = X(1) + DX(I)
DXNORM = AMAX] (DXKNORM,ABS(X(1)-T))
6 CONTINUE
IF (1TER-1) 8,7.8 ,
7 DIGITS = -ALOG!D(AMAX 1! (DXNORM/XNORM,EPS))
8 IF (DXNORM-EPS*XNORM) 10,10,9
9 CONT INUE }
ITERATION DID NOT CONVERGE
IFLAG=3
CONT INUE
RE TURN
END

SUBROUT INE USER(MODE.N.X.F.JAC.GAIN.EPSC.EPSJ.MAX.IJAC.IAUTO.
clSKIP)

IM THIS SUBROUTINE, THE USER SPECIFIES THE PARTICULAR PROBLEM. THE
INPUT/0OUTPUT 1S AS FOLLOKS. ..
MODE THIS BRANCHES PROGRAM TO VARIOUS PARTS OF THE SUBROUTINE.

N THE DIMENSIONAL OF THE PARTICULAR PROBLEM t(1.E. 1| TO 20)

X THE N-DIMENSIONAL ITERATION-VECTOR ,

F THE N-DIMENSIONAL VECTOR-FUNCTION OF THE PARTICULAR
PROBLEM

JAC THE N-BY-N JACOBIAN OF F

GAIN THE NEWTON-RAPHSON ITERATION GAIN

EPSC EPSILON USED TO JUDGE CONVERGENCE OF X-VECTOR

EPSJU EPSILON USED TO APPROXIMATE THE JALUBIAN

MAX MAXIMUM NUMBER OF NEWTON-RAPHSON ITERATIONS ALLOWED

1JAC =0 MEANS JUACOBIAN APPROXIMATED FROM F BY PROGRAM: OTHERWISE,

C THE USER MUST PROVIDE FORTRAN CODING.
c [AUTO =0 MEANS THE GAIN TERM 1S AUTOMATICALLY ADJUSTED: OTHER~
C "WISE, THE GAIN IS FIXED AT THE USER SPECIFIED VALUE.
C - IsKiP .LE.0 MEANS NO INTERMEDIATE PRINTOUT. OTHERKWISE, THE
c POSITIVE NUMBER IS THE RATIO OF THE CALCULATED ITERATIONS
C TO PRINTOUT ITERATIONS.
C
C SECTIONS 100 AND 200 ARE REQUIRED WHILE SECTIONS 300, 400, AND
C ARE OPTIONAL.
C
C
COMMON/ I0/NIN ,NOUT
REAL X(20),F(20),JAC(20,20)
GO T0(100,200,300,400,500) ,MODE
C .
C THE USER PLACES ALL OF HIS CODING BETWEEN THE TWO +-LINES.
¢ .
C IR R R R A R R R R R A A R A LA L R R R A RS R R A R AR A RS A A ALl S
c
C
c

100 CONTINUE
C DEFINE PROGRAM CONSTANTS N, GAIN, EPSC, EPSJ, MAX, [JAC, l1AUTO,
C AND ISKIP HERE.
N=2
GAIN=1.0
EPSC=1.0E-08
EPSJ=1.0E-08
MAX=200
1JAC=0
© 1AUTO=0
ISK1P=0
C DEFINE THE INITIAL X-VECTOR HERE.
X(1)=10.0
: X(2)=-1.0
C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE.
GO TO 999
200 CONTINUE
C THE USER SPECIFIES THE N-DIMENSIONAL VECTOR-FUNCTION F.
F(1)=X(1)%+3-27.0
F(2)=X(1)+X(2)**5-35.0
GO TO 993 :
300 CONTINUE
C IF IJAC.NE.G, THE USER SPECIFIES THE JACOBLAN HERE. L=
GO TO 999 ,
400 CONTINUE
C SPECIFY CONSTRAINTS ON THE ELEMENTS OF THE X-VECTOR HERE.
IF(X(I).LT.N.00X(1)=0.0
IF(X(2).LT.-1.0)X(2)==1.0
IF(X(1).GT.+10.0)X(1)=+10.0
IF(X(2).GT.+10.0)X(2)=+10.0
GO TO 999
500 CONTINUE
C THIS SECTION PROFIDES A PLACE TO CALCULATE WITH THE SOLUTION VECTOR.
GO TO 999
c
c
C AR AR R AR R R A R R R R A R R A R R A R R R A R A R AR R R AR R RSS2 20 S R R S22 2 2 2 R X 2 R 4
c :
c

999 CONT INUE
' RETURN
END

=37=

APPENDIX B. PROGRAM SS (STATE SPACE)

Introduction

In controls and systems engineering, the process under study is often
described by a system of first-order, ordinary differential equations of the
initig}fvalue type.l.Problems of this type can be characterized by vector

differential equations of the form:

x =f [g(t),c; z(to),to] t>t (B-1)

0 °

Program SS was written with the intent of providing a siﬁple method of
obtaining numerical sglutions for problems of this type with a minimum of
specialized programming. For restrictions on the form of f£[x(t),t; gﬂto),to],
see the section in this appendix entitled "Discussion of the Integration
Method." Used in its simplest form, Program SS only requires the user to
provide Fortran coding for the vector function f[x(t),t; §(t0,t0], specify
the outputs, and supply a standardized input deck. Program SS will then
generate a tabular listing of the outputs and make line-printer plots of the
outputs vs time. In addition, provisions are also made to:. perform ope—time
preintegration calcuiations, perform one-time postintegration calculations,
read specialized input data, establish specialized output labels, handle
piecewise continuous f[x(t),t], make x-y plots of output variables, and
record the minimums and maximums of specified variables. ' Subroutines have
been written to provide delay, level detection with hysteresis, and solu;ions
to implicit equations. Program SS is written totally in Fortran IV; the

output is in line-printer format.

Example of Usage

The following example illustrates how one can use Program SS to obtain
the numerical solution to a set of nonlinear differential equations. Suppose
the system under study can be described by the following three differential

equations:

YN
[}

—0.5xl s : (B-2)

WMo
Il
1

V)

Hd

H (B"'3)

-38—

e
w
]

—CXg4 + x2 - xz -d, (B-4)

where

Observe that for the first differential equation the constant -0.5 is
fixed, while for the second ‘and third equations the coefficients are written
as variables. Because the coefficient in Eq. (B;Q) is fixed, it can be
explicitly written in the Fortran coding. Assume that because of the nature
of the problem, one wisheé to observe the solution of a set of differential
equations for different values of constants a, b, and ¢. The approach uged
is to compile Program SS with the differential equations but have the
. constants a, b, and ¢ specified by thc input deck. This techniqﬁe alléws
one to use the same binary file (resulté of compilation) with different input
decks ‘to generate solutions for the different sets of éonstants. For this

example, specify the constants as follows:

a=1,

b = 0.5,
c = 0.25.
The solution starts at t. = 0 s; specify the final time as t = 20 s

0 .) final
and the stepsize (constant over the run) as 0.1 s. If the stepsize is too

Aiarge, the numerical solution will go unstable. This will cause Program SS
to halt the solution and'Output all data up to that time.
The user-written inpuf deck SSIN for this program is shown in Fig. B-1.
A detailed description of the inbut—deck format is given in the following
section of this appendix. The specialized Fortran coding for this problem
is shown in Fig. B-2, where the boxed-in portions are written by the user.
Later in this appendix, a detailed deétription of the subroutine USER is

giveh'in which all specialized Fortran coding relating to this problem‘appears.

-39-

e Q 6 8(1)124 6 8(2)2 4 6 8(3)2 4 6 B(4)2 4 6 81512 4 B B8(BI2 4 6 B(T7)

BOX RGB! SS EXAMPLE 2 | 001 O O 15000 0O4
THIS IS AN EXAMPLE OF A SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS.

THE FIRST TWO D.E.S ARE LINEAR WHILE THE THIRD IS NONLINEAR

0.00 20.0 0.10 03 o4

1.00 1.00 1.00

1.000 0.500 0.250

THE VALUES OF A, B, AND C FOR THIS RUN ARE...
A=1.000. '
B=0.560
C=0.250

Fig. B-1. Input deck SSIN for example given in text.

-40-

c
o R R R R R A R R R R R R
c
100 CONTINUE
C .
C THE USER INSERTS USER DEF INED INPUT READ/WRITE STATEMENTS HERE.
C THE INPUT TAPE UNIT NUMBER MUST BE NIN AND THE OUTPUT TAPE UNIT
C NUMBER MUST BE NOUT.
READ(NIN,101)A,B,C
101 FORMAT(3E10.3)
WRITE (NOUT,1011A,8B,C

[nX3] g NoNeN;V)

GO YO 999
00 CON/INUE
ONE CAN DO ONC-TIME PRECALCULATIONS AND JUTPUT LABELLING IN
THIS SECTION.
, D=SQRT (A+B8)
OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAMPLE 1S...
LABEL (1)=10HOUTPUT 1

LABEL (1)=10HSTATE NO 1
LABEL (2)=10HSTATE NO 2
LABEL (3)=10HSTATE NO 3 v

LABEL (4)=10H XDOT(3)
GO TO 9389
300 CONT INUE
c .
C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T, AND THE X~VECTOR.
c

C CALCULATE AN INTERMEDIATE VARIABLE WHICH IS A FUNCTION OF THE STATES.
© T Z=-CHX(3) X (1) *e2-X(2)%*2-D :
CALL MINMAX(1,10H XDOT(3) ,2)
IF(T.GT.15.0)CALL STOP
C CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES.
XDOT (1)=-0.54X(1)
XDOT (2)=-A*X(2)
XDOT(3)=2
GO 10 999
400 CONTINUE
c
C THE USER SPECIFIES THE VARIABLES THAT WILL BE OUTPUTTED IN THIS
C SECTION----THE OUTPUT VARIABLES ARE PILACED IN THE Y-VECTOR: THE
C Y VECTOR IS OF LENGTH M, WHERE M 1S SPECIFIED IN THE INPUT
C DECK SSIN. ‘
YD =X(D)
Y(2)=X(2)
Y(3)1=X(3)
Y(4)=Z
CALL XYPLOT(1,4.2)
GO 10 999
500 CONTINUE
c
C THIS SECTION 1S PROVIDED FOR POST PROCESSING OF THE FINAL TIME DATA.
C .
C CALCULATE THE SUM OF THE THREE STATES AT THE FINAL TIME
SUM=X (1) +X (2) +X(3)
WR1TE (NOUT,501)SUM ,
501 FORMAT(1H1,5/,6HSUM = ,E10.3)
GO 10 999

C

C + 4444+ 444444444444 44444+ 44 044444444+ 4+ 4+ 4444444444445 4444444044424+ 4+ 4+

Fig. B-2. Specialized Fortran coding required for example given in text.

Figures B-3 through B-5 show portions of the output for this problem.
Figure B-3 shows the echoing of the input-deck data. Figure B-4 illustrates
a typical line-printer plot, and Fig. B-5 shows the initial portion of the

tabular listing.

Standardized Input Deck

The standardized input is that portion of the input deck for which the
Fortran coding has already been written. The standardized input includes
the following type of information: starting time, final time, stepsize,
initial conditions, plot title cards, etc. The user must write additional

" Fortran coding (in subroutine USER) for any specialized data he wishes to
read-in via the input deck. In the above example, tﬁe specialized input is
the values of constants a, b, and c¢c. The input deck is named SSIN and cards

in it have the following formats:

Control Card

Columns
1-20 Not used for this version of Program SS.
21 The number of plot title cards that appear on each line-
printer plot. The minimum is zero and the maximum is four.
23 Not used for this version of Program SS.
25-27 This is the ratio of output stepsize to integration stepsize.
‘ Data is written in I3 format. If left blank, the default
value of one is assigned by the program. The minimum value
is one and the maximum value is 999.
29 This switch controls the selection of output modes:
= 0 means plots and tabular listing,
= 1 means tabular listing only,
= 2 means plots only,
= 3 means no plots or tabular listing.
31 . This switch controls the line-printer plot-size:
= 0 means full-size plots; otherwise, reduced size plots.
33-37 These locations specify the output-file size (I5 format).

-49—

THE DATA IN THE INPUT FILE IS.

BOX RB! SS EXAMPLE 2 | 1 0 0 15000 Y
THIS IS AN EXAMPLE OF A SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS.

THE FIRST TWO D.E.S ARE LINEAR WHILE THE THIRD !S NONLINEAR

.0E+00 2.000E+01! 1.000E-01 3 4
1 .000E+00 1.000E+00 1.000E+0CO
1.000E£+00 5.000E~01 2.500E-01

THE VALUES OF A, B, AND C FOR THIS RUN ARE..

A=1.000
B=0.500
C=0.250

Fig. B-3. The echoing of the input deck into the output deck.

-43~

STATE NO 1
THIS 1S AN EXAMPLE OF A SYSTEM OF NONL INEAR DIFFERENTIAL EQUATIONS.
THE FIRST TWO D.E.S ARE LINEAR WHILE THE THIRD 1S NONL INEAR

1.0000€+00 X e .
. 1 . .
1% . .
1 . . .
'S . .
1 .
1 x . . .
1 . .
1 . .
1 X . .
8.0000E-01 1 R . .
1 X . . .
1 x . . .
1 . . .
1 X . . .
1 . . .
1 X . . .
1 . . .
1 X . . .
1 X . .
6.0000€E-01 1
1 X . .
1 X . .
1 x .
1 .
1 X .
1 X .
1 X .
1 X .
1 x .
4.0000E-01 | . Lx .
1 X.
1 x .
i X
1 . xx
1 .x
1 . X
1 . XX . 14
i . Txx
1 . xx
2.0000E-01 1 . L oXx. .
1 . XX .
1 . XXX .
1 . XXX
! . . XXXX
1 . X
1 . XXXXXX .
1 XXXXXXXX
1 L OXXXXXXXXXXXXXX . .
1 . . . AXXXXXAXXKXXXXXXXXXXXX .
T 1 T
.0E+00 2.000£+00 4.000E+00 6.000E+00 8.000E+00 1.000E+0}

TIME IN SECONDS

Fig. B-4. Typical line-printer plot.

4l

.mmmmmmmx::::.rJ:.c.c:wwwwwwwwwwmm‘mmmmmmmm—-——-——-——-—-—~t0(nqmm:um-—

TIME
1

.0E+00 1.000E+00
.00E-01 9.512E-01
.00E-01 S.048E-01
.00E-01 8.607€-01
.00E-01 8.187£-01
.00E-01 7.788£-01
.00E-01 7.408E-01
.00E-01 7.047£-01
.00E-01 B6.703E-01
.00E-01 6.376E£-01
.00E+00 6.065E-01
.10E+00 5.769E-01
.20E+00 5.486£-01
.30E+00 5.220£-01
.40E+00 4.966E-0!
.50E+00 4.724£-01
.60E+00 4.493E-01
.70E+00 4.274£-01
.B0E+00 u4.066E-01
.90E+00 3.867£-01
.00E+00 3.B79E-01
.10E+00 3.499£-01
.20e+00 3.329E-0!
.30E+00 3.166E-0!
L40E+00 3.012E-0t
.50E+00 2.865E-01
.60E+D0 2.725%E-~-01
.70E+00 2.592£-01
.80E+00 @2.466E£-01
.80E+00 2.346E-01
.00E+00 @2.231E-01
.10E+00 2.122E-0i
.20E+00 2.019E-01
.30E+00 1.920£-0!
.40E+00 1.827£-0!
.50E+00 1.738E-01
.60E+00 1.653£-0!
.JOE+00 1.972E-01
.B80E+00 1.496E-01
.90E+00 1.423E£-01
.00E+00 1.353E-01
.10E+00C 1.287€-0!}
.20E+00 1.225E-01
.33E+00 1.1B65E-01
.40E+00 1.10BE-OI
.50E+00 1.054E-01
.6NE+00 1.003E-01
.70E+00 9.537e-02 .
.80E£+00 9.072e-02
.90E+00 8.629£-02
.00E+00 8.208E-02
.10E+00 7.808BE-02
.POF+00 7.427€-02
.30E+00 7.065E-02
.40E+00 6.721€-02
.30E+00 b.3Y3E-02
.60€E+00 €.081£-02

Fig. B-5.

STATE NO | STATE NO 2 STATE NO 3

WNEF LT LN JOW—r— et e = UMV NWNWNEF LD JOW— e e — et UMV WNWWE F TN JDO O —

.000E+00 I
.048E-01 B
.187E-01 7
.408E-01 6
.703E-01 4.
.065e-01 3
.488E-01 2
.966€E-01 |
.493e-01 7
.066E-01 -2.
.B79E-01 -1
.329E-01 -2.
.012E-01 -3.
.785E-01 -4
.466E-01 -Y4
.231E-01 -5.
.019E-01 -6
.827€-01 -7.
.653E-01 -8.
.496E-01 -9.
.353E-01 -1
.2e5e~-01 -1.
.108E-01 -1.
.003E-01 -1.
.072E-02 -1
.eose-0e -1
.427e-02 -1
JI121E-02 -1
.081E-02 -1
.50ct-02 -1
.979E-02 -1
.505E-0e -1
.076E~-02 -1
.688E-02 -2.
.337E-02 -2.
.020E-02 -2.
.732E-02 -2.
.472E-02 -2.
.237e-02 -2.
.024£-02 -2.
.832E-02 -2.
.657E-0G2 -2.
.500E-02 -2.
.357e-02 -2.
.2e8E-02 -2.
.111E-02 -2.
.005€-02 -2.
.095&-03 -2.
.230E-03 -2.
LAM44T7E-03 -2,
.738E-03 -3.
.087e-03 -3.
.517C-03 -3.
.992e-03 -3.
.517£-03 -3.
.087£-03 -3.
.698£-03 -3,

—45-

.000E+00
.588E-01
.284E-01
.065E-01

910£-01

.807e-01
.T45E-01
.713E-01
.076E-02

779E-02

.e46E-01

201E-01
l42E-01

.072E-01
.992€-01

SD1E-01

.800E-0!

688E-01
566€-01
433t-01

.029E+00

113£+00
197E+00
279E+00

.360£+00
.439E+00
.518E+00
.595E+00
.670E+00
.T45E+00
.818E+00
.88SE+00
.S59E+00

028E+00
0S6E+00
162€+00
227e+00
290E+00
352 +00
413E+00
473£+00
S31€£+00
588E+00
644t +00
698t +00
751E+00
803E+00
854E+00
Qo4E+00
952e+00
000E+00
o46E+00
091E+0D
135E+00
178E+00
220E+00
261£+00

XDOT(3)

-1.
-1,
-1.
-1,
=-1.
-1.
-1
-1
-9.
-9.
-9,
-9.
-9.
-9.
-9.
-9,
-8.
-8.
-8.
-8.
-8.
-8.
-8.
-8.
-8.
-7.
-7.
-7.
-7.
-7.

475£+00
353E£+00
258E+00
184E+00
127£+00
081E+00

.O46E+00
.018E+00

950e-01
765€-~01
610E-01
477€-01
357e-01
247e-01
142k -01
039E-0!
936E-01
832E-01

726E-01 -

617€-01
S05E-01
389t -01
270E-01
148E-01
023E-01
896E-01
766 ~01
634E-01
501E-01

366E-01.
.230E-01
.094E-01
.958E-01
.821E-01
.685€-01
.548E-01
L414E-01
.280E-01
. 148E-01
.016E-01
.886E-01
.757E-01
.630E-01
.5NSE-01
.381E-01
.259€-01
. 140E-01
.022E-01
.907E-01
.793E-01
.682E-01
.572E-01
4BbE-01
.360E-01
PRTE-N1
. 156E-01
.057€-01

£ST.

-1
-1
-1

-a.
6.

.7028-07

.4B82E-06

i
1

-2.
.S00E-09
. 144E-07
.222E-07
.000E+00
.503£-09
.669€ -08
.S04E-07
.000E+00
.687E-09
. 140E£-08
.310E-08
.000E+00
.019E-08
.44BE-08
.895€-08
.000E+00
.471E-09
.310E-08
. 484E-09
.G0DE+00
.023£-09
.548E-08
.597E-09
.000E +00
.657€-09
.03BE-08
.286E-09
.000E+00
.356E-09
.957€-09
.752E -09
.000E+00
.111E-09
.663E-09
.653£-09
.000E+00
.082E-10
. 126E£-09
.591E-08
.000E+00
JHYHE-10
. 09SE -09
.739E-09
.000E+00
.095€-10
.406E-00
.110E-09
.000E+00

i 1 t i] t ' § ’ 1 t
N—— NV~ JdUVNVWOUWE =NV EIN—=VN—=—= WU IRV WWNNNOTNWDD I T

Initial portion of the tabular output.

ERROR
.DE+00

.000E+00
.000E+0C
.000E+00

000E+00O
728E-09

000e+00

- 39-41 - The number of problem-comment cards (I3 format). These com-
ment cards will appear only once at the beginning of the

output. The minimum number is 0 and the maximum is 999.

Plot Title Cards '
The plot title cards are reproduced at the top of each plot. One may
have from zero to a maximum of four plot title cards, and each card can
have up to 80 characters.

Problem Information Card

Columns
1-10 Initial time in seconds (E10.3 format).

11-20 Final time in seconds (E10.3 format).

21-30 Integration stepsize in seconds (E10.3 format). The stepsize
is fixed for the numerical solution of the differential
equations.

31-32 The number of integrator state variables N (I2 formaf).

34-35 The number of outputs M (I2 format). If M = 0, then the

program aséigns a default value of M = N,

As presently dimensioned; N and M must satisfy:

0< N
0<M

20 ,
30 .

|/'\ l/\

Initial Condition Cards
The N initial values of the N integrators are read in 8E10.3 format.
The first position corresponds to xo(l), the next to x0(2), etc.

~ User Defined Input ‘

o The fbrmats uséd here are user specified in subroutine USER,
section 100. ‘ |

Problem Comment Cards
The problem comment cards appear only once at the beginning of the
output. One may have 0 to 999 cards; each card may have up to 80

characters.

46—

Standardized Subroutine USER

All user-written Fortran IV coding, which specifies the particular
problem, appears in a standardized subroutine USER. Subroutine USER is
called fivé different ways by Program SS. The manner in which subroutine
USER is used is determined by the value of mode (set by Program SS). For
mode = 1, subroutine USER branches to section 100, for mode = 2, to
section 200, etc. The basic form of thé standardized subroutine USER is
shown in Fig. B-6.

In section 100, Program SS reads user—defined input data. The input-
tape unit number is NIN and the output tape unit number is NOUT. All read
statements accept data contained in the input file SSIN; all write statements
place data in the output file SSOUT. 1In section 200, one can do precalcu-
lations based on data read in section 100 and constants defined in section
200, Typically, the results of the precalculations will be consténts used
in the integration portion. One can also overwrite the standardized output
labels in this section. In section 300, one specifies the first-order, »
ordinary differential equation. Given N, T, and X (where N is>the number of
first-order differential equations, T is the current time, and X is the cur-
rent value of the state vector at time T), the user must provide Fortran IV
coding that determines XDOT, the current value of the time-derivative of X
at time T.

In section 400, the output vector Y is specified. One can place any
desired variable in any order in the Y vector. The first element of Y is-
plotted first, the second element is plotted secdﬁd, etc. In section 500,
one can do postintegration calculation. The value of X will be that of the
last calculated time. Any input or output must observe the tape unit numbers
discussed in section 100. Observe that no user-written common statements are
required to exchange information between Program SS and subroutine USER or

between sections in subroutine USER.

Additional Features

This sectlon discusses features of Program SS not illustrated in the
four prev1ous sections of this appendlx. ’

® For efficiency in core utilization, the output vector Y is dimensioned
to hold 101 output points (not integration points) per element. To provide

adjustment between integration stepsize and output stepsize, a countdown ratio

47~

SUBROUT INE USER (MODE ,N,T,X,XDOT)

C

C .

C THE VARIABLES USED BY PROGRAM SS ARE AS FOLLOWS...

c MODE SWITCH USED BY PROGRAM SS TO SELECT VARIOUS PARTS

C OF SUBROUTINE USER.

c NIN TAPE UNIT NUMBER FOR READING USER -DEFINED INPUT

c NOUT TAPE UNIT NUMBER FOR ECHOING USER DEFINED INPUT

C N DIMENSION OF THE STATE VECTOR X

c - M NUMBER OF VARIABLES TO BE OUTPUTTED

C T CURRENT VALUE OF TIME

C X STATE VECTOR---THESE VARIABLES ARE THE RESULT OF THE
c DIGITAL INTEGRATION.

c XDOT CURRENT VALUE OF THE TIME DERIVATIVE OF X EVALUATED
C AT THE CURRENT TIME T.

c Y OUTPUT VECTOR---THESE VARIABLES WILL BE OUTPUTTED.
c :

C NOTEt EVERYTHING IN SECTIONS -300 AND 400 1S REQUIRED. EVERY-

c THING IN SECTIONS 100, 200, AND S00 IS OPTIONAL.

c

DIMENSION X(20) ,XDOT(20),Y(31),LABEL (80}
COMMON/TIEL1/NIN,NOUT M AL INE
COMMON/TIE3/Y

COMMON/TIE4/LABEL

GO T0(100,200,300,400, SOO)MODE

THE USER PLACES ALL OF HIS CODING BETWEEN THE TWO + LINES.

R R R R R s S R R X

00 CONTINUE

O—0O00O0OO0OO0O000

C THE USER INSERTS USER DEFINED INPUT READ/HRITE STATEMENTS HERE.
C THE INPUT TAPE UNIT NUMBER MUST BE NIN AND THE GUTPUT TAPE UNIT
C NUMBER MUST BE NOUT.

GO TO 999
200 CONT INUE

c
C ONE CAN DO ONE-TIME PRECALCULATIONS AND OUTPUT LABELLING IN
C THIS SECTION.

| C OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAM#LE 1S...

C LABEL (1)=10HOUTPUT 1
GO TO 989

300 CONTINUE

c

C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T, AND THE X-VECTOR.
c
C CA .CULATE INTERMEDIATE VARIABLES WHICH ARE FUNCTIONS OF THE STATE. -
C
C CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES.

GO TO 999

400 CONT INUE
C
C THE USER SPECIFIES THE VARIABLES THAT WILL BE OUTPUTTED IN THIS
C SECTION----THE OUTPUT VARIABLES ARE PLACED IN THE Y-VECTOR: THE
C Y VECTOR IS OF LENGTH M, WHERE M 1S SPECIFIED IN THE INPUT
C DECK SSIN.
(o! . :
GO TO 9938
500 CONTINUE
Cc
C THIS SECTION IS PROVIDED FOR POST PROCESSING OF THE FINAL TIME DATA.
(o}
GO TC 999
Cc
c P R R R L AR R R R R R P R R R R R P R R R R R SRR R R R R A A SR RS R RN
C
998 CONTINUE Fig., B-6. Basic form of subroutine USER.

RETURN
END -48~-

is provided in the first card of the input deck. If one sets this ratio to
two, every other calculated value of the Y vector will be outputted. " If one
specifies the initial time, final time, and countdown ratio such that more
than 101 time points are outputted, Program SS will first compute the outputs
for the initial 101 time ﬁoints, then output this data in the normal manner.
Next, the outputs associated with the 10lst time point of Y are copied into
the storage locations of the first time point of Y, and Program SS continues
the numerical solution by refilling the Y vector. If the Y vector is filled
again, Program SS will output the data and then proceed on again. This
technique allows the storage area in Program SS to remain small; .a small
object file is a useful goal when running in a time-sharing computer
environment. -

e It has beeh observed that for realistic simulation problems (that
is, problems where the number of integrations and outputs are approximately
equal, the ratio of output stepsize to integration stepsize is not'over four,
and plots are requested), the IO time (time to output data) is larger than
the CPU time (time used for digital integration). The IO-to-CPU charge times

will be dependent on the computer center used.

Table B-1. Useful subroutines in Program SS.

Subroutine ' - Function
STOP Terminates Program SS and outputs data up to that point.
RESTART Initiates the Runge-Kutta integration method. This
subroutine is used when discontinuities occur in
flx(t),t].
MINMAX- ‘ Records the minimum and maximum of specified variables

and the times at which these occur. This subroutine is
useful for checking equilibrium points.

XYPLOT ' Performs X-Y plots for variables that appear in the
" output vector Y. . S

LD Simulates a level detector with hystersis.

IMPEQS Solves implicit equations. The nonlinear algebraic
equations appear in subroutine NAE.

DELAY : Delays any variable by an integral number of integration
) steps. '

49

® Additional useful subroutines that are curréntly in Program SS are
given in Table B-1. These subroutines can be called from subroutine USER.
For more information on these subroutines, read the instructions that appear
in each subroutine listing. (The complete program listing appears at the

end of Ehis appendix.)

Discussion of the Integration Method

Program SS uses an Adams-Bashforth-Moulton predictor-corrector (fourth-

order) to carry out the integration. The predictor equation is:

X = x o [San - 59 L +37F_ - 9fn_3] .

and the corrector equation is:

~ h *
= + = f + f - 5f +
*n4b1 T *n T 24 [9 L . fn—z] ’
where h is the stepsize and fn denotes the time-derivative of x at time tn.
Program SS uses one correction per integration step. One can estimate the

local truncation error (TR), assuming a constant fifth time-derivative of x,

to be:

- %
TR = (-19/270) (Xn+l - xn+l> .

Program SS uses this value of TR to update §n+l’as follows:

~

= + .
xn+1 Xn+l TR

The above three equations are the basis of subroutine ESODEQ. To start the
fourth-order predictor/corrector, subroutine ESODEQ uses the standard fourth-
order Runge-Kutta integration. The equations for the Runge-Kutta section

are:

-
X g =Xt [ko + 2k, + 2k, + k3] ,

-50-

where

—

k0 = f X(tn)’tn] R

-

i hk]
_ . _0 h
kl = f }x(tn) + Py tn + 2 ’
2 i
hk]
_ 1 h
ky = £ |x(c) + ==, t +351,
k3 = f [x(tn)’ + hkz, t + h]

The Runge-Kutta method is accurate over a few steps, but note that four
function evaluations of f[x(t),t] per step are required. The fourth-order
predictor/corrector for one correction requires only two evaluations of
f[x(t),t] per step. 1In addition, the predictor/corrector prdvides a simple
estimate of the TR, which is used to determine a stepsize consistent with a
maximum value uvf TR. Both the Runge-Kutta and predictor/corrector methods
used in Program SS require that up to and including the fifth time-derivative
of x(t) exist. For the case where f[x(t),t] is piecewise continuous (e.g.,»
in digital switching), one can solve each continuous section by these methods
and restart at the discontinuity. That is, suppose f[x(t),t] has a discon-
tinuity at tn; One can solve for x(t;) by the predictor/corrector and use
x(t;) as the initial conditions for a solution starting at t: (i.e., restart
the solution at tn with the Runge-Kutta method).- One can accomplish this in
subroutine USER by call to RESTART. . ' _ '

The basié concepts of how the predictor/corrector performs the
integration follows. Suppose one wishes to solve an ordinary differential:

- equation of the ipitial-value type; that is, one wishes to solve:.

t

x(t) =j f[x(n),n] dn,
to .
subject to x(to) = Xge .The numerical solution to this problem consists of

solving a sequence of single-step problems such as:

: tn+1
x(tp+1) = x(tn) + f f[x(n),n] dn,

t
n

with x(tn) = X If one can solve the single-step problem, one can then

sequentially solve for x 29 etc., The basic idea of the predictor/corrector

1
method is to approximate f{x(t),t] by a polynomial and then integrate the
polynomial over the single step. This is performed in two stages: predicting
and correcting. For Program SS the polynomial used (Newton Backward Inter-
polating Polynomial) can be shown to be equivalent to:
_ 3 2

p(t) = a3t + a2t + alt + ag

(i.e., a third-order polynomial curve-fit of f{x(t),t]).

Assume one knows some past values of f[x(t),t]; one can use a third-

order, polynomial curve-fit to predict the value of f[x(t),t] at t o4 This
is shown in Fig. B-7.
The predicted value of x(tn+l) is:
e) =x(t) +4A
x (tn+1 X tn) p’
where A is the area under the polynomial in Fig. B-7 from tn to tn+l' Thus,
%
x (t) is a reasonable estimate of the true solution at t . The cor-
n+l n+l

rector takes this initial guess and improves upon it. The corrector for
Program SS curve-fits the f[x(t),t] function using the predicted value of

* : :
X (tn+l)' This is shown in Fig. B-8. The corrected value of x(tn+l) is:

.) .
X (tn'l'l) = X(tn) + AC ’

where Ac is the area under the polynomial in Fig. B-8 from tn to tn+l

Notice that the predictor extrapolates the f function while the cor-

rector interpolates the f function from tn to tn One can reapply the

) +1°
corrector formula as many times as desired, but Program SS uses only one

correction. The TR is defined as the difference between the true solution

.at tn and the corrector output at t for infinitely precise-calculations,

+1 n+l
an exact differential equation, and an exact value of X - Thus, TR ignores

-52-

flx(t),t]

Previous values of

fix(t),t]

Predicted value of
fx(t),t]
. over interval

£ ¢
p D)
tn-3 th-2 tha : tn tn+1
Time
Fig. B-7. Predicting process.

-53-

fIx(t),t]

f[x*(tn+]),tn+11_\\\
Previous values of
fx(t),t] ‘

L\

. N\\A

-54-

propagation errors, machine roundoff errors, and modeling errors; it is simply
the. error introduced b? the polyﬁomial—curve fit for a single step. An
estimate of the TR is automatically printed out in the tabular listing. This
estimate assumes a constant fifth time-derivative of x over the interval h.

To decode the estimated TR printout, read the comments in subroutine ODE,

Fortran IV Listing of Program SS

A Fortran IV listing of Program SS (which compiles under the Control
Data Corporation's PUTT compiler as implemented at the Lawrence Livermore

Laboratory) follows:

PROGRAM SS (SSIN,TAPE1=SSIN,SSOUT, TAPE2=SS0UT)

PROGRAM SS (STATE SPACE) 1S A GENERAL PURPOSE ORDINARY, FIRST-~ORDER
DIFFERENTIAL-EQUATION (OF THE INITIAL VALUE TYPE} SOLVER.

PROGRAM SS WAS WRITTEN BY HOWARD MCCUE AT LAWRENCE LIVERMORE LABS.,
LIVERMORE, CALIFORNIA AS PART OF EECS 299 (THESIS) AT THE
UNIVERSITY OF CALIFORNIA, BERKELEY UNDER PROF. OTTO SMITH., FOR A
WRITEUP OF PROGRAM USAGE, SEE UCRL-51657, STABILIZATION OF DISTANT
AND LOCAL POWER SYSTEM DISTURBANCES BY OPTIMIZED FIELD CONTROL,
APPENDIX M. THIS PROGRAM WAS LAST MODIFIED ON NOVEMBER 9TH, 1973,

AS PRESLNTLY DIMENSIONED, PROGRAM SS CAN HANDLE 20 (NMAX)

INTEGRATIONS AND 30 (MMAX) OUTPUTS. ONE CAN CHANGE THESE

NUMBERS AS FOLLOWSt TO CHANGE THE MAXIMUM NUMBER OF INTEGRATIONS

FROM 20 TO 50, CHANGE ALL VARIABLES PRESENTLY DIMENSIONED 20

10 50; SET NMAX IN THE MAIN PROGRAM TO S0. TO CHANGE THE MAXIMUM

NUMBER OF OUTPUTS TO 60. THANGE ALL VARIABLES PRESENTLY

DIMENSIONED 31 TO 61 (1.E. B60+1, THE EXTRA ONE IS FOR THE

TRUNCATION ERRCR OQUTPUT); SET MMAX IN THE MAIN PROGRAM TO 60.

TO INCREASE MMAX BEYOND 79, ONE MUST INCREASE THE DIMENSION OF LABEL.

THE FOLLOWING NUMBER OF DIMENSION STATEMENTS MUST BE MODIFIED FOR

THE ABOVE. MENTIONED CHANGESt INTEGRATORS--%5, OUTPUTS--4, LABELS--2.
NMAX=20 ‘
MMAX=30

OO0 OOO00O0

CREATE THE + BINARY FILE.
CALL CHANGE (3H+55)

(eXp) (e X gl

SPECIFY THE INPUT/OUTPUT TAPE UNITS.
NIN=1 ' '
NOUT=2 . _
COMMON/ INPUT1/IFLAG, IKEEP, ISKIP, IS1ZE ,NMAX ,MMAX
COMMON/TIEL/NIN,NOUT M AL INE
DIMENSION TITLES(4,8),X0(20)

C INPUT ANY USER SPECIFIED PARAMETERS.
CALL INPUT(TQ,TFINAL ,H,XC.N.M TITLES)
IFCIFLAG.EQ.1)GO TO 999
TFINAL=0.999339999* TF INAL
C SOLVE THE ORDINARY DIFFERENTIAL EQUATIONS.
CALL ODE(TO,TFINAL ,H,XO ,N,M,NOUT,TITLES.ISIZE.ISKIP)

c

c :

8999 CONT INUE

: CALL EXIT
RETURN
END

-55—

SUBROUTINE INPUT(TO,TFINAL,H. X0 ,N.M,TITLES)

c
C THIS SUBROUTINE READS THE STANDARIZED INPUT DATA AND USER
C DEFINED INPUT DATA FROM INPUT FILE ASSINA. IN ADDITION, THIS
C SUBROUTINE CALLS UP SECTION 200 IN SUBROUTINE USER. :
C
c
DIMENSION NAME(2) ,TITLES(4,8),X0(20) ,COMMENT(8),XDOT(20)
COMMON/ INPUT1/1FLAG, IKEEP, ISKIP,1SI1ZE ,NMAX ,MMAX
COMMON/TIEI/NIN,NOUT ,M,ALINE
COMMON/ INPUTZ2/ IDEL
C .
c
C READ IN REQUIRED DATA.

IFLAG=0
READ(NIN, 1)NAME (1) ,NAME (2) , ITITLES, IKEEP, ISKIP, IDEL,ISIZE LLL,1COM
FORMAT (2A10, 11, 1X, [1,1X, 13, 1X, 111X, 11,1X,15,1X,13)
IF(LLL.LE.0)LLL=10000
C CREATE A DISK FILE FOR THE OUTPUT,

CALL CREATE (SHSSOUT,LLL ,]ERROR)

IF (1ERROR.LT.0) IFLAG=1 :

IFCCITITLES.LT.0).0OR. (ITITLES.GT.4)) IFLAG=1

IF (,SKIP.LE.D)ISKIP=1 -

IF(CIDEL.LT.0).OR. (1DEL.GT.3)) IFLAG=1

IF (1COM.LE.0)1COM=0 .

IF (IFLAG.EQ.1)GO TO 999

WRITE (NOUT,7)

—

7 FORMAT(5/,32HTHE DATA IN THE INPUT FILE 1S...,3/)
HRITE (NOUT, 1 INAME (1) NAME (2) , ITITLES, IKEEP,ISKIP,IDEL,ISIZE,LLL,
ciCoM

IFCITITLES.EQ.0)GO TO S
DO 3 I=1,ITITLES
READI(NIN W (TITLESC(] ,J),J=1,8)

4 FORMAT(8A10)
WRITE (NOUT %) (TITLES(I,J),J=1,8B)
3 CONT INUE
5 CONTINUE
READ(NIN,2)TO,TFINAL ,H,N M
2 FORMAT(3E10.3,2(12,1X))

WRITE(NOUT ,2)TO,TFINAL ,H,N M
IF(TO.GY.TFINAL) IFLAG=1 : *
IF(H.EQ.0.0) IFLAG=I
IFC(N.LE.O).OR. (N.GT.NMAX)) IFLAG=1
IFC(M.LT.0).0R. (M.GT.MMAX)) IFLAG=1
[F(M.EQ.0)M=N
READ(NIN.B)Y (X0(I),I=1,N)

A FORMATI(RELID .
WRITE(NOUT B (X0 (1) ,1=1,N)

C GET ANY USER WRITTEN INPUT DATA.
CALL USER(1,N,T0,X0,.XDOT)
WRITE (NOUT ,9)

9 FORMAT (5/)
IF(ICOM.EQ.0)G0O -TO 10
DO 11 1=1,I1COM
READ(NIN,4) (COMMENT (1) ,1=1,8)
WRITE (NOUT,12) (COMMENT (1) ,1=1,8)

1e FORMAT (5X,BA10)

11 CONT INUE

10 CONTINUE -

C DO ANY PRECALCULATIONS THAT ARE REQUIRED.
CALL USER(2,N,T0,X0,XDOT)

993 CONT INUE

. RETURN

END

SUBROUTINE ODE(TO,TFINAL ,H,XO ,N,M,NOUT,TITLES,ISIZE,ISKIP)

~56—

eXeloleliolaNolaleloloNeloNoNoNaloNelaNoNaNe oo RoNaeRelaNeXeloNsXekaleXeXeiaksXeXe ks XeRo ke o ke leie Naie R e

SUBROUTINE ODE (ORDINARY DIFFERENTIAL EQUATIONS) IS A DRIVER FOR

SUBROUTINE ESODEQ. SUBROUTINE ESODEQ COMES FROM THE UNIVERSITY OF
CALIFORNIA AT DAVIS COMPUTING CENTER. ESODEQ USES A FOUR POINT
ADAMS-BASHFORTH-MOULTON PREDICTOR-CORRECTOR METHOD TO CARRY OUT 1TS
INTEGRATION. THIS IS A CONSTANT STEP~SIZE INTEGRATION SUBROUTINE.

THE INPUTS TO ODE ARE AS FOLLOWS....

T0 INITIAL TIME

TFINAL FINAL TIME OF SOLUTION

H STEP SIZE

X0 INITIAL VALUE OF THE STATE VECTOR

N NUMBER OF FIRST-ORDER ODE

M TOTAL NUMBER OF VARIABLES TO BE OUTPUTTED.
HOUT TAPE UNIT NUMBER FOR OUTPUT

TITLES AN ARRAY-OF TITLE CARDS USED FOR PLOTTING

I1S1Z€E CONTROLS THE SIZE OF THE LINE PRINTER PLOTS;
=0 MEANS FULLSIZED PLOTS, OTHERWISE, ONE GETS
REDUCED-SI1ZED PLOTS.

ISKIP RATIO OF CALCULATED TO OUTPUTTED. POINTS

TR 1S AN ESTIMATE OF THE LOCAL TRUNCATION ERRQOR IN THE COMPUTED
SOLUTION AT TIME T. SUPPOSE TR IS THE ASSOCIATED ERROR FOR THE ITH
ELEMENT OF THE STATE VECTOR X AT TIME T, THEN THE COMPUTED STATE
ELEMENT X(1) DIFFERS FROM THE TRUE SOLUTION AT TIME T BY AN ESTIMATED
ERROR BOUND OF + OR - TR. SEE ESODEQ WRITEUP FOR MORE DETAILS,

THE VALUE OF TR 1S INTERPRETED IN THE FOLLOWING WAY...

TR=-1.0 STARTING PREDICTOR-CORRECTOR VIA RUNGA-KUTTA---NO
ESTIMATE OF THE LOCAL TRUNCATION ERROR IS AVAILABLE.

TR=-2.0 MARKER FOR LOCAL TRUNCATION ERROR PRINTOUT---THE NEXT
VALUE OF TR IS FOR X(1)

TR=-3.0 A DISCONTINUITY IN FIX(T),T) HAS OCCURRED WHILE

IN THE PREDICTOR MODE---THE PROGRAM HAS INITIATED A
CHANGE TO THE RUNGA-KUTTA INTEGRATION METHOD FOR
THREE INTEGRATION STEPS (SUBROUTINE RESTART).

TR.GE.0.0. ABSOLUTE VALUE OF ESTIMATE OF LOCAL TRUNCATION ERROR
----SEE DECODING BELOW.

ONE DECODES THE PRINTOUT AS FOLLOWSt SUPPOSE ONE HAS N STATES AND
TR=-2.0 AT TIME T=TT. THEN THE LOCAL TRUNCATION ERROR ASSOCIATED WITH
X€I) OCCURS AT TIME T=TT+l*H FOR 1.LE.N. FOR T=TT+He(N+1), TR=-2.0
AND THE PROCESS REPEATS. THUS, ONE GETS AN UPDATE OF THE STATE VECTOR
ERROR EVERY N+! PRINTOUTS. FOR THE PURPOSE OF HALTING THE NUMERICAL
SOLUTION, THE PROGRAM EXAMINES THE ESTIMATES OF THE LOCAL TRUNCATION
ERRORS OF ALL INTEGRATIONS AT EACH CORRECTION.

DIMENSION TITLES(4.8).X0(20),X(20),XDOT(20),Y(31)
COMMON/TIE3/Y

COMMON/TIER2/1

COMMON /1STOPS/ [ISTOP

1STOP=0 -
T=T0

INITIALIZE THE OUTPUT VECTOR Y FOR T=TO.
CALL USER(3.N,T0,X0,XDOT)
CALL USER(4,N,TN,X0,XDOT)

-57-

MP1=M+1
Y{MP1)=0.0
IF((TO.GE.TFINAL).OR. LISTOP.NE.O0))GO TO 2
CALL OUTPUT(MP] ,T0,Y NOUT, TITLES,ISI2E,0,ISKIP)
C START-UP THE INTEGRATION PROCESS. g '
CALL ESODEQ(1 N, TO,X0.T,.X, TR, H,ISTOP,ISKIP)
CALL USER(4 ,N,T,.X,.XDOT)
Y(MP11)=TR
IF((T.GE.TFINAL) .OR. (ISTOP.NE.0))GO 10 2-
CALL OUTPUT(MP! ,T,Y ,NOUT TITLES,ISIZE,D,ISKIP)
1 CONT INUE ’
C PERFORM A SINGLE INTEGRATION STEP.
CALL ESODEQ(3,N,T0,.X0.T7T,X.TR,H,ISTOP,ISKIP)
CALL USER(4,N,T,.X,XDOT)
Y(MP1)=TR .
IF((T.GE.TFINAL).OR. (ISTOP.NE.011)GO TO ?
CALL OUTPUT(MPI ,T,Y . NOUT,TITLES,IS12E,0,15KIP)
GO 10 1
4 CONT INUE '
CALL OUTPUTI(MPI ,T,Y NOUT,TITLES,ISIZE,1,ISKIP)
IFCISTOP.EQ.0)GO TO S
WRITE (NOUT ,9)
9 FORMAT (1H1,257)
IFCISTOP.LT.0IGO TO 6
o

C PROGRAM TERMINATED BECAUSE INTEGRATION ERROR WAS JUDGED T0O
C LARGE. PRINT-0OUT WHICH ELEMENT OF THE STATE VECTOR BLEW-UP.
c -
WRITE (NOUT,10)ISTOP .
10 FORMAT (28HPROGRAM TERMINATED----STATE ,12,09H BLEW UP.)}
GO 10 S ’
6 CONT INUE
C
C PROGRAM TERMINATED BECAUSE OF A CALL TO SUBROUTINE STOP.
c
WRITE (NOUT,7)
7 FORMAT (47HPROGRAM TERMINATED BY A CALL TO SUBROUTINE STOP)
5 . CONTINUE
999 CONTINUE
C POST PROCESS THE FINAL TIME DATA.,
CALL MINMAX(-1,10H DUMP NOW ,0.0)
IF(T.EQ.TO)CALL USER(5,N,T0,X0,XDOT)
IF(T.NE.TOJICALL USER(5,N,T,X,XDOT)
RETURN
END

SUBROUT INE ESODEQ(KODE.N.XI.YI.X.Y.TR.H.ISTOP;!SKIP) ‘
ESODEQ IS FROM THE UNIVERSITY OF CALIFORNIA AT DAVIS COMPUTING CENTER.

FOR DETAILS ON THE METHOD SEE...
ISAACSON AND KELLER, ANALYSIS OF NUMERICAL METHODS,PP384--388 .
MCCRACKEN AND DORN, NUMERICAL METHODS AND FORTRAN PROGRAMMING P334

KSTP=1 MEANS ESODEQ WILL USE THE CORRECTOR AFTER EACH PREDICTION-----
SEE ESODEQ WRITEUP FOR MORE DETAILS.
KSTP=1
THIS COMMON GOES BETWEEN SUBROUTINE ESODEQ AND DELAY.
COMMON/F INAL/ IF INAL
COMMON/NODER/ INODER

(@] OO0O0OO0O00O0O0

-58-

1F INAL=0

DIMENSION Y!11(20),Y(20),DY(20),YC(20),DYP(4,201,5(20
DATA HOs0s ,DYP/80%0.7/

DATA MSTP, NSTP, "INl, IN2. IN3, IN4/ O, O, 1|, 2, 3., 4/
1S1=151+1

GO TO (1000, 2000, 3000). KCODE

C INITIALIZE PROCESS TO START WITH RUNGE-KUTTA
C INTCGRATION ON INITIAL VALUES
1000 DO 100i I=1,N
1001 Y(l)y = Yitly .
CALL USER(3 ,N.XI1.Y1.DY! .
X = X{
IN1 = 1
INg = 2
IN3 = 3
INY = 4
C INITIALIZE THE TR FRINTCUT SELECTOR.
NP 1=N+1|
[TR=NP]
[S1=-1SKIP+]
1050 MSTP = KSTP
NSTP = 0
HO = H
GO TO 4000
C START R-K INTEGRATION WITH CURRENT X,Y VALUES

2000 GO TO 1050
3000 IF (HO.NE.H) GO TO 1050
C CHECK FOR A PROBLEM SPECIFIED RESTART BASED ON THE CORRECTER OUTPUT.
IF (INODER.NE.0)GO TO 1050

GO TO 4000 .
_C INTEGRATE 1| STEP
C SAVE CURRENT DERIVATIVE VALUES
4000 DO 4001 = 1 ,N~ . '
‘400! DYPUINI, 1) = DY(1])
C CHECK- FOR R-K CONTINUATION
I[F (NSTP.LE.2) GO TO 4500 v)
c ' USE ABM FORMULAE
c PREDICTOR
DO 4002 I1=1.N
4002 YCt1) = Y(I) + H*{(55.0*DYPUINI,[)-59.0DYP(IN2,11+37.0¢DYPCIN3, 1)

1 -G.0*DYP(INY,1))/24.0
C CHECK 1F CORRECTOR STEP 1S DESIRED
MSTP = MSTP-|
IF (MSTP.LE.Q) GO TO 4100
DO 4003 1=1,N
4063 Y(1) = YC(1)
X = X 1 il
. GO TO 4800
C CORRECTOR
4100 X = X + H
CALL USER(3,N.X,YC,DY)

C CHECK FOR A PROBLEM SPECIFIED RESTART BASED ON THE PREDICTOR OUTPUT.
C IF A RESTART 1S REQUESTED, USE ONLY THE PREDICTOR FOR THIS
C STEP (THIS WILL YIELD THE T-MINUS VALUE OF THE STATE VECTOR. ONE CAN
C THEN USE THIS VALUE AS THE INITIAL CONDITION FOR THE RESTART.).

IF CLINODER.EQ.0)GO TO 120 .

po 12! I=1.,N

Y(l)y=YC(D)

12l CONT INUE
IFCIS1.LT.0)60 TO 125

~59-

0003210

0003240
0003250
0003260
0003270

0003300
0003310
0003320
0003330
0003340

0003350
0003360
0003370
0003380
0003390
0003%00
0003410

0003420
0003440
0003450
0003460
0003470
0003480
00034380
0003500
goo3s10
0003520
0003530
0003540 .
0003550
0003560
0003570
0003580
0003580
0003600
0003610
0003620
0003630

1S1=-1SK1P

TR=-3.0
125 CONTINUE
GO TO 4890
120 CONT INUE
"DO 4102 I=1,N 0N03660
4102 Y1) = Y(l) + He(Q.0*DY([)+19.0*DYP(INI,.1)-5.0*DYP{IN2, 1) 0003670
1 +DYP(IN3,1))/24.0 } 0003680
MSTP = KSTP 0003690
C .
C CALCULATE AN ESTIMATE OF THE LOCAL TRUNCATION ERROR FOR THE PURPOSE
C OF TERMINATING THE PROGRAM IF TR IS TOO LARGE----THIS SECTION
C CHECKS EACH STATE ELEMENT AT EVERY CORRECTION TIME.
C
DO 101 I=i,N '
TR=-0.07037037¢(Y(1)-YC(I))
C UPDATE THE CORRECTOR OQUTPUT---SEE PAGE 341 OF MCCRACKEN AND DORN.

Y(I)=Y([)+TR
IF(Y(1) . NE.O.0)FRAC=ABS(TR/Y (1))
ABSYY=ABS(Y(]))
IF((FRAC.GE .0.25).AND. (ABSYY.GT.1.00:)15TOP=1
101 CONT INUE
c
C CALCULATE AN ESTIiMATE OF THE LOCAL TRUNCATION ERROR WHICH 1S
C SYNCHRONIZED WITH THE OUTPUT.
C
. IFCISI.LT.0)G0 7O 110
C CALCULATE TR FOR THIS TIME.
1S1=-1SKIP .
IF(ITR.NE.NP])GO 70 105
TR=-2.0
ITR=1
GO 1O 110
105 CONTINUE
TR=ABS(-0.07037037+(Y(ITR)I-YCULITR))

ITR=1TR+]
110 CONTINUE . :
GO TO 4800 0003750
C USE R-K STEP 0003760
c NOTATION - Y(J+1) = Y(J) + (KO+2K1+2K2+K3)/b 0003770
C COMPUTE SUM = KO) : 0003780
4500 DO 4501 1=1,N _ 0003790
S(I) = H*DY(]) . ' 0003800
4501 YC(I) = YUI) + S(I)/2.0 . . 0003810
XC = X + H/2.0 0003820
C ADD 2+K1 TO SuM 0003830
CALL USER(3,N,XC,YC,DY}
DO 4502 I=1,N 0003840
S(1) = S(I) + 2.0*H+*DY(]) : 0003860
4502 YC(I) = Y(1) + (H+DY(]1)/2.0 0003870
C ’ ADD 2*K2 TO SUM 0003880
CALL USER(3,N,XC,YC,DY)
DO 4503 1=1,N 0003890
S(I) = S(I) + 2.0+H+*DY (1) 0003310
4503 YC(I) = Y(I1) + He*DY(D) 0003820
XC = X + H 0003930
c ADD K3 TO SUM AND GET NEW Y VALUE 0003940
CALL USER(3,N,XC,YC,DY)
DO 4504 I=1.,N 0003950
S(1) = S(1) + H*DY(]) 0003970

-60-

4504 YUl) = Y(l) + S(])/6.0

c

X = XC
NSTP = NSTP + |
UPDATE THE RUNGA-KUTTA FLAG IN TR AS REQUIRED.
IFLISH.LT.0060 TO 130
IS1=-1SKIP
_TR=-=1.0

130 CONTINUE

c
C

RESET THE NO DERIVATIVE SKWITCH
INODER=0
COMPUTE CURRENT DY VALUES

4800 CONTINUE

O OO0O0 OOO0O0OODOO0OO0O

O0OOO00

IF 1AL =]
CALL USER(3,N,X.,Y.DY}

ROTATE INDICES OF DYP ARRAY

I = IN4

INy = [IN3

IN3 = [N2

INe = INI

IN1 = 1

GO 10 3001
3001 RETURN

END

SUBROUTINE RESTART
SUBROUTINE RESTART IS CALLED IN SUBROUTINE USER (OR ANY OTHER
LOCATION REQUIRED) WHEN A DISCONTINUITY IN A PIECEWISE CONTINUOUS
FUX(T),T) 'OCCURS. SUBROUTINE RESTART SETS A SWITCH IN SUBROUTINE
ESODEQ WHICH CHANGES THE INTEGRATION METHOD FROM PREDICTOR/CORRECTOR
TO RUNGA-KUTTA; THIS CHANGE REMAINS FOR THREE INTEGRATION STEPS.

COMMON/NODER/ INODER
INODER=1

RETURN

END

.

SUBROUTINE STOP

THE PURPOSE OF SUBROUTINE STOP 1S TO PROVIDE A MEANS OF

TERMINATING THE PROBLEM SOLUTION (AND GETTING THE REQUESTED PLOTS:

AND/OR TABULAR DATA) VIA FORTRAN CODING IN SUBROUTINE USER.

COMMON /1STOPS/ 1STOP

SET A SWITCH WHICH WILL TERMINATE THE SOLUTION IN SUBROUTINE ODE.
ISTOP=-1
RETURN
END

éUBROUTlNE OUTPUT(M,T,Y ,NOUT,TITLES,ISIZE, IDUMP,ISKIP)

THIS SUBROUTINE STORES THE OUTPUTS AND CALLS UP THE OUTPUTTING OF
RESULTS WHEN THE STORAGE. ARRAYS ARE FULL.

THE INPUT VARIABLES ARE...
M NUMBER OF ELEMENTS IN THE OUTPUT VECTOR Y.

61—

00033880
0003930

- 0004000

0004010

0004040
0004050
00c4060
0004070
0004080
0004090
0004100
0003430

OOOOOOOO0OO0

T CURRENT TIME
Y VECTOR TO BE OUTPUTTED

NOUT OUTPUT TAPE UNIT NUMBER

TITLES ARRAY OF TITLE CARDS FOR PLOTS

I1SIZE SHITCH WHICH DETERMINES PLOT SIZE

IDUMP =] FORCES ALL STORED DATA TO BE OUTPUTTED)
ISKIP RATIO OF CALCULATED POINTS TO OUTPUTTED POINTS
1DEL SWITCH THAN DETERMINES OUTPUT MODES

COMMON/ INPUT2/ IDEL

COMMON/XY1/1IX(10),

Iycio

COMION/XY2/ 1SPEC ,LABELX,LABELY

DIMENSION TTC(101),YY(101,31)
DIMENSION Y(31) , TITLES(4,8)
DIMENSION TTT(101),YYYCL101)

C THESE LABELS APPEAR ON BOTH THE TABULAR AND PLOTTED DATA.
COMMON/TIEY/LABEL
DIMENSION LABEL (80)

DATA (LABEL([),1=1,32) /10H OQUTPUT | ,10H OUTPUT 2 ,
210H OUTPUT 3 ,10H OUTPUT 4 ,10H OUTPUT 5 ,10H OUTPUT 6 .
310H OUTPUT 7 ,10H OUTPUT 8 ,10H OUTPUT 9 ,10H OUTPUT 10,
410H OUTPUT 11,10H QUTPUT 12,10H CUTPUT 13,104 OUTPUT 14,
5104 OQUTPUT 15,10H OUTPUT 16,10H OUTPUY 17,104 OUTPUT 18,
610H OUTPUT 19,10H OUTPUT 20,10H OUTPUT 21,104 OUTPUT 22,
710H OQUTPUT 23,10H OUTPUT 24,10H OUTPUT 25,104 OUTPUT 26,
810H OUTPUT 27,10H OUTPUT 28,10H OQUTPUT 29,10H OUTPUT 30,
910H OUTPUT 31,10H OUTPUT 32/ :

DATA (LABEL(]),1=33,64) /10H OUTPUT 33,10H OUTPUT 34,
210H OUTPUT 35,10H OUTPUT 36, 110H OUTPUT 37,10H OUTPUT 38,
310H OUTPUT 39,10H OUTPUT 40,10H OUTPUT 41,10H OUTPUT 42,
410K OUTPUT 43,10H OUTPUT 44 ,10H OUTPUT -uS,10H OUTPUT 48,
S10H OUTPUT 47,10H OUTPUT 48,10H OUTPUT 49,10H OUTPUT 50,
610H QUTPUT S51,10H OUTPUT 52,10H OUTPUT 53,104 OUTPUT Su,
710H OUTPUT 55,104 OUTPUT 56,10H OUTPUT 57,10H OUTPUT 58,
810H OUTPUT 59,104 OUTPUT 60.,10H OUTPUT 61,10H QUTPUT &2,
910H OUTPUT 63,104 OUTPUT 64/ i

DATA (LABEL(11.,1=65,80) /10H QUTPUT 65,10H OUTPUT 66,

210H OUTPUT B67,10H OUTPUT 68,10H OUTPUT 69,104 OUTPUT 70,
310H OUTPUT 71,104 OUTPUT 72,10H OUTPUT 73,10H OUTPUT 74,
410H OUTPUT 75,10H OUTPUT 76,10H OUTPUT 77,10H OUTPUT 78,
S10H OUTPUT 79,10HEST. ERROR/ ;
DATA 1S1/-1/
IFMM.LE.1)1GO TO 999
IS1=1S1+1
C CHECK IF THIS CALCULATED POINT SHOULD BE STORED.
[F(IS1.GE.BIGO TO 11 .
C CHECK FOR PROBLEM TERMINATION WHEN USING 1SKIP GREATER THAN ONE.
IF(IDUMP.EQ.1)G0O TO 1}
GO TO 999
! CONTINUE
IS1=-1SKIP
C STORE THE OUTPUT FOR TIME=T
ICOUNT=1COUNT+!
TTCICOUNT =T
Do 1 I=t,M.
1 YY(ICOUNT, 1)=Y(])
C CHECK IF THE STORAGE ARRAYS ARE FULL.
IF (ICOUNT.GT.100)GO T0 100
C CHECK IF THE LAST POINT -HAS BEEN CALCULATED---1F SO TERMINATE PROGRAM.

-62-

IF (IDUMP.EQ.1)GO TO 100
GO TO 999
100 CONTINUE

C .
C THE PLOTTING ARRAYS ARE FULL---OUTPUT THE DATA IN ARRAYS.

c .
C FIRST, DO THE PLOTTING OF THE DATA POINTS.

MM1=M-1 .
IFCCIDEL.EQ.1).OR. (IDEL.EQ.3))G0 TO 150
DO 1!0 I=1,MM]

DO 111 J=1,1COUNT

TTT (L) =TT (D)

1 YYY. Ji=YY(Jd,.)
C CAUTIONt ARRAYS TTT AND YYY WILL BE MODIFIED BY SUBROUTINE PLOTS.
110 CALL PLOTS(TTT,YYY TITLES,ICOUNT LABEL (1) ,NOUT,ISIZE)
C PERFORM THE X-Y. PLOTS AS REQUESTED VIA SUBROUT[NE XYPLOT.
DO 200 I=1,
IFeIXel) ., EO O)GO TO 200
KX=1Xt1)
KY=1LYcls
LABELX=LABEL (KX}
LABELY=LABEL (KY)
ISPEC=1
DO 201 J=1,I1COUNT
TTT(JI=YY (J,KX)
YYY(J)=YY(J, KY)

20! CONT INUE
CALL PLOTS(TTT,YYY, TITLES ICOUNT ,LABEL (1) ,NOUT,ISIZE)
ISPEC=0
200 CONTINUE
150 CONTINUE
C NEXT, DO THE TABULAR LISTING OF DATA POINTS.
IFCCIDEL.EQ.2).0R. (IDEL.EQ.3))GO TO 998
WRITE(NOUT,112)

1ie FORMAT(1HI)

C WRITE OUT THE LABELS
WRITE(NOUT,119) (LABEL (1) ,1=1,MMI) ,LABEL (80}

119 FORMAT(1X,8H TIME JOCIX,ALID) /10X, 100IX,ALD),/
210X,1001X,A10),/,10X,1001X,A10),/,10X,1001X,A10),/
310X,1001X,A10),/,10X,1001X,A10),/,10X,10C1X,A10)

WRITE(NOUT,!118) . '
118 FORMAT(IH)
DO 120 1=1,1COUNT

C WRITE THE DATA.

NR(TE(NOUT.XEI)TT(L) yvirn, J) J=1 ., M) N

121 FORMAT (1X,£9.2,1001X,E10. 3) L 10X, IO(lX £10.3),

’ 210X.10(1X.ElO.3)./,lOX.lO(lX EIO 3),/,10X, lO(lX E10.3),/
310X.10(1X.E10.31./.10X.10(IX.E10.3),/.lOX.JO(lX.E10.3))

120 CONTINUE

998 CONTINUE

C COPY THE LAST POINT INTO THE FIRST POSITION .FOR THE CONTINUATION PLOT.
CTTC)=TTOICOUNT) :

DO 130 1=1,M
130 YY(1,1)=YY(ICOUNT, 1)
C RESET THE ICOUNT FLAG.
ICOUNT=1
999 CONT INUE
RETURN
END

-63-

DIMENSION X(101),Y(101),TITLES(4,8)
DIMENSION POINTS(101),POINT(41) XLABEL (6}
COMMON/XY2/ 1SPEC,LABELX,LABELY
MAXPTS=101

C CHECK TO SEE If NUMPTS 1S OUT OF RANGE.
IF (NUMPTS.GT .MAXPTS)IGO TO 999
IF(NUMPTS . LT.2)6G0 TO 999

C WRITE THE HEADING FOR THE PLOT.

IFCCISPEC.NE. 1) . AND. (ISIZE.EQ.0) IWRITE (NOUT ,6)NAME

6 FORMAT(1H] ,59X,A10}

IFCCISPEC.NE. 1) .AND. (ISIZE.NE.D0)IWRITE (NOUT ,61)NAME

cl FORMAT(1H!,30X,A10!

IF(.ISPEC.EQ.1).AND. (ISIZE.EQ.0))WRITE (NOUT ,62)LABELY ,LABELX

62 FORMAT (1H1 ,37X,A10,17H (Y-AXIS) VERSUS .A10,9H

(X-AX1S))

IFCCISPEC.EQ.1).AND. (1SIZE.NE.D) JWRITE (NOUT ,63)L.ABELY ,LABELX

63 FORMAT (1H1,12X,A10,17H (Y-AXIS) VERSUS ,A10,9H
C DETERMINE THE PLOT SIZE :
IF(ISIZE.NE.0)GO . TO 301
C THESE CONSTANTS ARE USED FOR THE FULL-SIZE PLOT.
LX=100
LY=50
LXL=6
GO TO 302
C THESE CONSTANTS ARE USED FOR THE REDUCED-SIZE PLOT.
301 CONTINUE
LX=40
LY=30
LXL=3
302 CONTINUE
XLX=LX
YLY=LY
LXP1=LX+1
LYPI=LY+1
C WRITE OUT THE TITLE CARDS
DO 3 I=1.4
IF(ISIZE.EQ.0)WRITE (NOUT ,4) (TITLES(1,J).J=1,8)
4 FORMAT(25X,BA10)
IF(ISIZE.NE.O)WRITE (NOUT 4 1) (TITLES(1,J),J=1,8)

41 FORMAT(1X,BAlC)
3 CONT INUE
WRITE (NOUT,5)
S FORMAT(IH)
c

C ORDER THE (X,Y) PAIRS BY DECREASING VALUES OF Y
c
C SOLVE FOR MAX
[=1
20 CONT INUE
JJ=1
YMAX=Y (]}
DO 10 J=1,NUMPTS
IF(Y(J).LE.YMAX)GO TO 10
YMAX=Y {J)
JJ=J
10 CONT INUE
C INTERCHANGE
YUPPER=Y (1)
XX=X(1)
YD) =Y (JJ)
X1)=X14J)

64—

(X-AX1IS))

30

Y (JJ)=YUPPER

X(JJ) =XX

I=1+1

IF(1.EQ.NUMPTSIGO TO 30
GO TO 20

CONTINUE

C SOLVE FOR MIN/MAX OF X ANO Y.

=4

XMIN=X(1)
XMAX=X(1)
YMIN=Y (1)
YMAX=Y (1)

-. DO 2 I=1,NUMPTS

IFCRCTY LT OXMINIXMIN=X (1)

IF(XCI) . GT . XMAX) XMAX=X (1)

IFCYCD) LT YMINYYMEN=Y (1)
IF(Y (1) .GT,YMAX) YMAX=Y(])

CONT INUE

C IF THE PLOT DATA IS CONSTANT, DO NOT PLOT---THIS WILL SAVE ON
C WRITING FORMATTED 10O.

32e-

32t
320

330

IFCCYMIN.NE . YMAX) .OR. (]SPEC.EQ.1)1G0 "0 320

WRITE (NOUT, 322)
FORMAT(10/)
WRITE (NOUT,321)NAME,YMIN

FORMAT(10X,A10.24H 1S A CONSTANT OF VALUE ,E20.13./)

GO TO 998
CONTINUE

lF((ISPEC.NE.l).OR.(XMlN.NE.XMAX).OR.(YHIN.NE.YMAXi)GO T0 330

WRITE (NOUT, 322)
WRITE(NOUT,321)LABELX,XMIN
WRITE (NOUT,321)LABELY,YMIN
GO TO 993 :
CONTINUE :

C RESET THE END POINTS,

CALL ENDPTS(XMIN, XMAX) .
CALL ENDPTS(YMIN,YMAX)

C CALCULATE DELX AND DELY.

DELX=(XMAX~-XMIN) /7 XLX
DELY=(YMAX-YMIN)/YLY

C XTHRES AND YTHRES ARE USED AS NOISE THRESHOLDS

o000

XTHRES=ABS (XMAX)

[F (ABS(XMIN) .GT.ABS (XMAX)) XTHRES=ABS (XMIN)
XTHRES=0.001*XTHRES

YTHRES=ABS (YMAX)

IF(ABS(YMIN) .GT.ABS(YMAX)) YTHRES=ABS(YMiN)

YTHRES=0.001*YTHRES -

GENERATE THE PLOT

CALCULATE THE POSITION (1F ‘ANY) OF THE X-AXIS

KX=ABS(XMIN/DELX)+1.0

[F(XMIN.EQ.0.0)KX=1

TF (XMAX.EQ.0.0)KX=LXP|
IF(KX.GT.LXFIIKX=LXP]

1ZERO=0 ‘
[FC(XMIN.LE.0.0) .AND. (XMAX.GE.O0.0)) IZERO=1

C CALCULATE THE LINE (IF ANY) OF THE Y-AXIS

KY=ABS{YMAX/DELY}+1.0
IFC(YMAX.LT.0.0).0R.(YMIN.GT.0.0))KY=0
IF(YMAX.EQ.0.0)KY=1
IF(YMIN.EQ.D.D)KY=LYP!

—-65-

IN LABELLING THE AXES.

ICOUNT=10
LIST=1
YLOWER=YMAX
DO 100 I=1,LYP!
YUPPER=YLOWER
YLOWER=YMAX~-1*DELY
C ZERO THE POINTS ARRAY (START A NEW LINE OF THE PLOT)H
DO 10! JU=1,LXPI1 -
101 POINTS(J}=
IFCICOUNT . NE.10)GO TO 105
DO 106 J=1.,LXP! .2
106 - POINTS(J)=1H.
10% CON'/ INUE
C WRITE OUT COORDINATE MARKERS
POINTS({)=1H.
POINTS(21)=1H.
POINTS(“41)=1H.
POINTS(Bl)=1H.
POINTS(81)=1H.
POINTS(101)=1H.
C WRITE OUT THE ZERO-MARKER FOR X=0
[FUIZERO.EQ.1)POINTS(KX)=1H]
C WRITE QUT THE ZERO-MARKER FOR Y=0
IF(I.NE.KY)GO TO 137
DO 136 J=1,LxPI
136 POINTS (W) =1H-
137 CONT INUE
C LOOPING AROUND LOOP 102 PLACES THE SYMBOL X ON THE X-AX1S FOR EACH
C (X,Y) PAIR THAT SATISFIES,
C (Y.GT.YLOWER) .AND. (Y_.LE. YUPPER)
102 CONTINUE
IF(LIST.GT.NUMPTS)IGO TO 110
IF(Y(LIST).LE.YLOWERIGO TO 110
K= (X(LIST)-XMIN)/DELX+1.0
IF(K.GT.LXP1IK=LXP1
POINTS(K)=1HX
LIST=LIST+1
GO 1O 102
110 CONT INUE]
C WRITE OUT A SINGLE LINE OF THE. PLOT. DETERMINE WHICH OF FOUR
C POSSIBLE WRITE STATEMENTS 10O USE.
IF¢<ICOUNT.EQ.10)G0 TO 112
ICOUNT=1COUNT+1
C FOR PROGRAM EFFICIENCY, OUTPUT ARRAYS POINTS AND POINT AS FOLLOHS
IFC(ISIZE.NE.D)GO TO 210
C WRITE STATEMENT FOR LARGE PLOTS.
WRITE(NOUT, 11 1)POINTS,
1 FORMAT(1SX,101A1)
GO TO 220
210 CONT INUE
C WRITE STATEMENT FOR SMALL PLOTS.
DO 211 J=1,LXP1
POINT (S = POINTS(J)
ell CONT INUE
WRITE(NOUT ,219)POINT
215 FORMAT (15X ,41A1)
220 CONT INUE
GO TO 100
112 CONT INUE -
ICOUNT=1

-66-

IF (L (YUPPER.GT.-YTHRES) .AND. (Y
C FOR PROGRAM EFFICIENCY, QUTPUT AR
IFCISIZE.NE.O)GO TO 230
C WRITE STATEMENT FOR LARGE PLOTS.

WRITE (NOUT, 113) YUPPER,POINTS
113 FORMAT(2X.E11.4,2X,101A1)
GO TO 240
230 CONT INUE
C WRITE STATEMENT FOR SMALL PLOTS.
DO 231 J=1,LXPI
POINT (J)=POINTS(J}
e3l CONTINUE
WRIVE(NOUT ,235) YUPPER ,POINT
235 FORMAT (X ,E11.4,2X ,414A1)
240 CONT INUE
100 CONTINUE
DO 121 I=1,6
Xl=1-1
XLABEL (1)=XMIN+20.0* DELX'XI
IFCOXLABEL (1) .LT.XTHRES) . AND.
12l CONTINUE
WRITE (NOUT 122} (XLABEL (U} ,J=1
122 FORMAT(/,10X,B8(E10.3,10X))
IF(ISPEC.EQ.1)GO TO 999
IFCISIZE .EQ.0)WRITE(NOUT 202}
20e FORMAT (58X, ISHTIME [N SECONDS
: [FCISIZE .NE.OIWRITE (NOUT ,203)
203 FORMAT (28X, I1SHTIME IN SECONDS
999 CONTINUE :
RETURN
END

SUBROUT INE ENDPTS(XMIN,XMAX)
THIS SUBROUTINE RESETS THE END' PO
INSURES EVEN NUMBERS ON THE PLOTS.

DIMENSION A(38)

DATA (A(1),1=1,38)/0.0.0.1,0.
22.00.2.50.3.00.3.50,4.00,4.50,
315..17.5,20..25.,30..35.,40.

CHECK FOR EQUAL ENDPOINTS (1.E.

IF (XMIN.NE .XMAX)GO TO 1

IF (XMIN.NE.0.0)GO TO 3

XMIN=XMIN-5.0E -39 :

XMAX=XMAX +5 . 0E-99

GO TO 999

CONT INUE ‘

XMIN=XMIN* (0 .998999)

XMAX=XMAX* (1.000001)

GO TO 999

CONT INUE
CHECK FOR CORRECT ALGEBRAIC ORDER
DEL=XMAX-XMIN
IF (DEL.GT.0.01G0 TO 2
XX=XMAX
XMAX=XMIN
XMIN=XX
DEL=-DEL
CONT INUE
IS POSITIVE AT THIS POINT.

oo

A

O ~—

DEL

UPPER.LT.YTHRES)) YUPPER=0.0
RAYS POINTS AND POINT AS FOLLOWS.

(XLABEL (1) .GT.-XTHRES))IXLABEL(1)=0.0

LX0)

)

}

INTS FOR SUBROUT INE XYPLOT. THIS

as 0.50,0.75,1.0,1.1,1.25,1.50,1.75,
$.0,6.0,7.0,8.0,9.0,10.0,11..12.5,
.45.,50.,60.,70..80..96.,100./

CONSTANT)

lNG

-6 7-

VALUE=1.0 :
IF(DEL.LE.1.0)GO TO 10
5 CONT INUE
IF(DEL.LT.VALUE)GO TO 20
VALUE=VALUE*10.0
60 T0 5
10 CONTINUE
IF (DEL .GE .VALUE)GO TO 11
VALUE=VALUE*0. |
GO TO 10
Il VALUE=VALUE*10.0
20 CONTINUE
C AT THIS POINT, ONE HAS SELECTED VALUE SUCH THAT...
c O.1VALUE.LE.DEL AND DEL.LT.VALUE
XX=XMIN/VALUE
1XX=XX
XX=1XX
: XX=XX*10.0 .
C XX REPRESENTS THOSE DIGITS COMMON TO BOTH XMIN AND XMAX
XXMIN=XMIN®10.0/VALUE-XX
XXMAX=XMAX *10.0/VALUE -XX
IF (XXMIN.EQ.0.0)GO TO 30
IF (XXMIN.LT.0.0)GO TO 35
C XXMIN IS POSITIVE.
D0 32 1=2,38
AAA=A(T)
. IF(XXMIN.LT.AAAIGO TO 33
32 CONTINUE
33 =1-1
XXMIN=A(1).
GO TO 30
35 CONTINUE
C XXMIN IS NEGATIVE.
XXMIN=-XXMIN
DO 36 1=2,38
AAA=A(T)
IF (XXMIN.LT.AAAIGO TO 37
36 CONTINUE ‘
37 XXMIN=-AC1)
30 CONTINUE
IF (XXMAX.EQ.0.0)G0 TO 40
IF (XXMAX.LT.0.0)G0 TO 45
C XXMAX 1S POSITIVE
DO u2 1=2,38
AAA=ACT) .
IF (XXMAX.LE.AAAIGO TO 43
42 CONTINUE
43 XXMAX=A(])
"~ 60 TO u0
45 CONTINUE
C XX¥MAX 1S NEGATIVE.
XXMAX=~-XXMAX
DO 46 1=2,38
AAA=A(])
IF (XXMAX .LE.AAAIGO TO 47
46 CONTINUE '
47 1=1-1
XXMAX==A (1)
40 CONTINUE
C SOLVE FOR NEW END POINTS.

-68~

99

OOOOOOOOOO0O0

o O 0 0

10
c

20
c

c
=3

22

XMIN=(XX+XXMIN) *VALUE/10.0

XMAX=(XX+XXMAX) *VALUE/10.0
9 CONTINUE

RETURN

END

SUBROUTINE MINMAX (1D,.NAME,VALUE)

SUBROUTINE MINMAX 1S USED IN PROGRAM SS TO FIND THE MINIMUM AND
MAXIMUM OF THE SPECIFIED VARIABLE AND THE TIME AT WHICH THESE OCCUR:
THIS SUBROUTINE 1S TYPICALLY USED WHEN THE NUMBER OF CALCULATED POINTS
TO OUTPUTTED POINTS (1.E. ISKIP) 1S LARGE. THE INPUT VARIABLES HAVE
THE FOLLOWING MEANING. ..

ID IDENTIFICATION NUMBER (I C. 1,2,... }

NAME A 10H NAME USED ON THE OUTPUT

VALUE CURRENT VALUE OF VARIABLE FOR WHICH THE MIN/MAX IS
DESIRED

DIMENSION NAMES(IO).ISTART(IO).THIN(!O).TMAX(IO).VMIN(!O).VMAX(IO)
IMAX=10
COMMON /F INAL/ IF INAL
COMMON/TIE1/NIN,NOUT M, AL INE
COMMON/TIE2/TIME
DATA IUSED / O /
DATA ISTART/79+0/
CHECK FOR END OF THE PROBLEM: (1.E. OUTPUT THE MIN/MAX DATA)
IF(ID.LE.D)GO TO 20
CHECK FOR THE START OF THE PROBLEM
_ IFUISTART(ID).EQ.0)GO TO 10
CHECK FOR FINAL VALUE OF THE STEP
IF (IFINAL.NE.1)GO TO 999
THIS IS THE NORMAL FLOW PATH.
IF (VALUE.GT.VMIN(ID)IGO TO 5
VMIN(1D)=VALUE
TMINCID) =TIME
CONT INUE
IF (VALUE .LT.VMAX(1D))GO TO 999
VMAX (1D) =VALUE
TMAX(1D) =TIME
GO 1O 999
CONT INUE
INITIALIZE THE ARRAYS.
NAMES (1D) =NAME
ISTART(1D)=1
VMIN(ID)=VALUE
VMAX (1D)=VALUE
TMINCID)=TIME
TMAX (1D) =TIME
[USED=1
GO TO 999
CONT INUE _
CHECK TO SEE IF THE MINMAX OPTION USED FOR THIS PROBLEM.
IF(IUSED.NE.1)GO TO 999
OUTPUT THE MIN/MAX INFORMATION.
WRITE (NOUT,21)

/ FORMAT (1H1,5/,26HMINIMUM/MAXIMUM DATA 1S...,3/)
WR1TE (NOUT ,22)
FORMAT (48H VARIABLE = -------- MINTMUM ---oomn .5X,
232H----~--- MAXIMUM ------- .5X,20H--~~ DIFFERENCE ----)

-69-

a3
24

25

99

OO0OO0aO0O0O00O0OO000ON0n

5
c

c

10
C

c0
- C

WRITE (NOUT,23)

FORMAT (4X ,4HNAME , 15X, SHVALUE , 1 3X ,4HTIME , 15X ,SHVALUE , 13X ,4HTIME , /)
1=0
CONT INUE
I=1+1 .
IF(1.GT.IMAXIGO TO 999
IFCISTART(I) .NE.1)GO 10 24
DIFF=VMAX(1)-VMINCI)
WRITE (NOUT ,25INAMES (1) ,VMIN{1) , TMIN(]) ,VMAX (1) ,TMAX(!) ,DIFF
FORMAT(IX,A10,.5X,E20.13,2X,E10.3,5X,£20.13,2X.,E10.3,5X,.E20.13)
GO TO 24 . .
GO TO 9399
9 CON/ INUE
RETURN
END
SUBROUTINE DELAY(ID,IUNITS,XIN,XOUT)
SUBROUTINE DELAY STORES AND RECALLS DATA 10 PROVIDE A DELAY OPERATION
FOR PROGRAM SS. AS PRESENTLY DIMENSIONED, UP TO S DISTINCT DELAY
TIMES ARE ALLOWED. THE RANGE OF POSSIBLE FINAL IS 2 TO 100 STEP
SIZES; THE MINIMUM OF 2 1S SET BY THE RUNGA-KUTTA STARTER AND
THE MAXIMUM [S SET BY DIMENSION STATEMENTS. THE NUMBER OF DELAY
OPERATORS 1S LIMITED BY PROGRAM DIMENSION STATEMENTS.
1D IDENTIFICATION NUMBER (1,2,3.4, AND/OR 5}
IUNITS THE NUMBER OF INTEGRATION STEPS (UNITYS) OF DELAY
XIN INPUT TO DELAY OPERATION ’
X0OUT OUTPUT OF DELAY OPERATION

DIMENSION STORAGE (5,101), NEXT(S) IFIRST (5)
DATA IMAX /101/

- DATA (IFIRST(D),{=1,% /0,0,0,0,0/
COMMON/FINAL/IFINAL .
IFCIFIRST(ID).NE.D)GO TO S

INITIALIZE THE 1D PORT!ION OF STORAGE.
DO 2 I=1,IMAX
STORAGE (ID,.1)=XIN
CONT INUE
NEXTL(ID) =1
IFIRST(ID)=1
XOUT=XIN
GO 70 999
CONT INUE
CHECK THE RANGE Of THE REQUESTED DELAY.
IFCCIUNITS.GT. 1) .AND. (IUNITS.LT.IMAX))GO TO 10
FOR NEGATIVE, ZERO, OR ONE DELAY UNITS, OUTPUT THE INPUT.
X0UT=XIN
GO TO 999
CONT INUE
GET XOUT FROM STORAGE.
[=NEXT(ID)
XOUT=STORAGE (1D, I
IF (1F INAL)999,993,20
CONT INUE
STORE THE CURRENT VALUE OF XIN AND UPDATE NEXT(ID).
I=1+IUNITS .
IF(1.GT. IMAX).I=1-1MAX

-70-

39

¢XeleNeleleXelaNoNeloNeNoNaeNeNeeNgNeNeNaNoNeoNeXeXeRe e ke ke Xe Xa X Xe)

e NaNe!

c

11

c

12
c

STORAGE (1D, 1) =XIN

NEXTC(ID)=NEXT{ID)+]

IFINEXT(ID) .GT. IMAXINEXT(ID}=1
9 CONT INUE

RETURN

END

SUBROUTINE LD(XIN,XON,XOFF ,MODE .LEVEL)

HAS HYS ERSI!S.

XIN ANALOG [1IPUT SIGNAL

XON THE ANALOG LEVEL AT WHICH
XOF F THE ANALOG LEVEL AT WHICH
MODE =0 NORMAL LEVEL DETECTOR; =1
LEVEL DIGITAL OUTPUT SIGNAL (I].E.

THE NORMAL LEVEL DETECTOR LOOKS LIKE...

- Y - -]..-

! LEVEL

0 LEVEL

THE INVERTED LEVEL DETECTOR LOOKS LIKE...

I LEVEL --v--}------ 1---

[I

[1

] v

i I

1 1
0 LEVEL i atabaiated Sebeld R

XON XOFF

LOLD=LEVEL

IF(MODE.NE.C)GO TO 20
THIS IS THE NORMAL LEVEL DETECTOR.

IF(XIN.LT.XONIGO TO 11
LEVEL HAS VALUE |

LEVEL=t

GO. TO 999

CONTINUE

IF(XIN.GT.XOFF1)GO TO 12
LEVEL HAS VALUE 0O

LEVEL=0

GO TO 999

CONT INUE

THE VALUE OF LEVEL 1S UNCHANGED.

-71-

THE. QUTPUT GOES TO THE |
THE OUTPUT GOES TO THE 0 STATE

THIS SUBROUTINE SIMULATES THE ACTIONS OfF A LEVEL DETECTOR THAT
INPUT/0OUTPUT TO THIS SUBROUTINE

IS AS FOLLOWS. ..
STATE

INVERTED LEVEL DETECTOR
1 OR O}

=0
c
C
C

C

=3
C
a2
c

99
c

(@] OOO0OO0O0O0OOO0O0O0OO000OO0ON0O0

GO TO 999
CONTINUE

THIS IS THE INVERTED LEVEL DETECTOR.

IF(XIN.GT.XON)GO TO 21
LEVEL HAS VALUE 1
LEVEL=1
GO TO 999
CONTINUE
IF(XIN.LT.XOFF)GO TO 22
LEVEL HAS VALUE O
LEVEL=0
GO TO 999
CONTINUE
THE VALUE OF LEVEL IS UNCHANGED.
GO TO 999
9 CONT INUE .
IF A LEVEL DETECTOR CHANGE OCCURS, CHANGE THE INTEGRATION METHOD.
IF(LOLD.NE.LEVEL)CALL RESTART
RETURN
END

SUBROUTINE IMPEQS(1D0,Z,1TERS,EPSC ,EPSJ.GAIN,IFLAG)

THE PURPOSE OF THIS SUBROUTINE IS TO PROVIDE A MEANS FOR SOLVING
IMPLICIT EQUATIONS IN PROGRAM SS. THE USER SUPPLIES THE NONL INEAR
ALGEBRAIC EQUATIONS VIA SUBROUTINE NAE: SUBROUTINE IMPEQS [S CALLED

IN SUBROUTINE USER AT THE POINT WHERE ONE WISHES TO SOLVE THE IMPLICIT
NONL INEAR ALGEBRAIC EQS. THE INPUT PARAMETERS TO THIS SUBROUTINE ARE
AS FOLLOWS. ...

ID INTEGER IDENTIFICATION (1,2,3.4.5) THAT TELLS THE PROGRAM
WHICH SET OF NONLINEAR ALGEBRAIC EQUATIONS TO SOLVE.

Z ARRAY WHICH CONTAINS THE VAR!ABLES OF THE NONL INEAR
EQUATIONS. : .

ITERS MAXIMUM NUMBER OF ITERATIONS THAT THE NEWTON-RAPHSON
PROCESS 1S ALLOWED TO ITERATE

EPSC EPSILON USED TO JUDGE CONVERGENCE

EPSJY EPSILON USED TO ESTIMATE JACOBIAN

IFLAG - =0 IF OK: OTHERWISE, A PROBLEM HAS OCCURED

GAIN GAIN OF CORRECTION TERM; TYPICALLY. GAIN=] N

DIMENSION.Z(3) ,ERROR(3) ,A(3,3) ,F(3),CORR(3),ABSERR(3) .
CHECK FOR OUT OF RANGE CONDITIONS.
IFCCID.LT.1).0R.(ID.GT.51)G0 TO 998
IFC(ITERS.LE.D)GO TO 998
IF((EPSJ.EQ.0.0).0R.(EPSC.LF.0.0))G0O TO 998
IF(GAIN.EQ.0.0)GO TO 998
SOLVE FOR THE Z VECTOR SUCH THAT FtZ)=0
CALL NAE(ID,N,Z,ERROR)
CHECK FOR OUT OF RANGE N.
IFCINLLT.1).0R.(N.GT.3)3)G0 TO 998
DO 1 K=1,ITERS
GENERATE A NUMERICAL APPROXIMATION TO THE JACOBIAN OF F AT 2Z
00 10 I=1,N
STORE=Z (1)
Z(1)=Z(1)+EPSY

-72-

c

11

10

c

C

31
C

3

~CALL NAEC(ID,N,Z.,F)
ESTIMATE THE JACOBI!AN
DO 1! J=1,N
ACJ, 1) =(F (I -ERROR(J)) /EPSU
CONTINUE
Zt1)=STORE
CONTINUE :
SOLVE FOR THE NEWTON-RAPHSON CORRECTION TERM
CALL GAUSSI(N,A ERROR,CORR,IFLAG)
IFUIFLAG.NE.D)GO TO 998
UPDATE THE Z-ARRAY

DO 3! I=1,N
Z(1.=Z(1)}-CORR(1)*GAIN
CONT INUE

CALL NAE((D,N,Z,ERROR)
CHECK FOR CONVERGENCE

ERRMAX=0.0

DO 32 I=1.N :

ABSERR(1)=ABS(ERROR(]))

1F (ABSERR (1) .GT .ERRMAX)ERRMAX=ABSERR ()

CONT INUE

IF (ERRMAX .LE .EPSC)GC TO 999

CONT INUE

[FLAG=2

GO TO 999

9398 CONTINUE

99

OOO0O0O00ODO00O0000000000000

IFLAG=1

9 CONT INUE
RETURN |
END

SUBROUT INE GAUSS(N,A.B.X. IFLAG)

SUBROUT INE GAUSS SOLVES THE VECTOR EQUATION A*X=B FOR THE X VECTOR
GIVEN THAT THE A MATRIX AND B VECTOR ARE KNOWNS AND THAT THE
A MATRIX HAS FULL RANK. PROBLEMS MAY OCCUR FOR NEAR-SINGULAR A
MATRICES: IF SO, ERROR MESSAGES ARE PRINTED AND IFLAG IS
MADE NONZERO. A.B. AND X ARE DEFINED OVER THE FIELD OF REAL
NUMBERS. INPUT/OUTPUT IS AS FOLLOWS...

N IS THE SYSTEM ORDER :

A 15 SYSTEM MATRIX

B 1S INPUT VECTOR

X 1S SOLUTION VECTOR

NOUT IS THE LOGICAL TAPE UNIT NUMBER

IFLAG=0 - GAUSS ELIMINATION PERFORMED

IFLAG=1 GAUSS ELIMINATION CAN NOT BE PERFORMED

THIS SUBROUTINE IS TAKEN FROM COMPUTER SOLUTION OF LINEAR ALGEBRAIC

S 3TEMS BY G. FORSYTHE AND C. B. MOLER, PRENTICE-HALL 1967, PP 68-70.
MODIF ICATIONS WERE MADE TO THIS SUBROUTINE TO CHANGE THE MANNER

IN WHICH ERROR MESSAGES ARE HANDLED.

TO CHANGE THE MAXIMUM SI1ZE MATRIX THAT ONE CAN HANDLE, CHANGE
THE VALUE OF NMAX IN THIS SUBROUTINE AND ALL DIMENSION STATEMENTS
IN THIS SUBROUTINE PLUS SUBROUTINES DECOMP, SOLYE. ANN IMPRUV.

-73-

NMAX=03
DIMENSION A(03,03),UL(03,03),B(03),X(03)
IFLAG=0
C CHECK THE VALUE OF N
IF ((N.GT.0) .AND. (N.LE.NMAX))GO TO 40
IFLAG=1
WR1TE (NOUT, 14) _
14 FORMAT(3BHIN A CALL TO GAUSS, N IS OUT OF RANGE.)
GO TG 999
40 CONTINUE
IF(N.NE.1)GO TO 41

X=B(1)/A(1,1)
GO [0 999
41 CONT INUE

C DECOMPOSE MATKIX A INTO UPPER AND LOWER TRIANGLE MATRICES, STORE IN UL
CALL DECOMP(N,A,UL,IFLAG)
IF(IFLAG.NE.0)GO TO 10
C SOLVE SYSTEM OF EQUATIONS USING U AND L MATRICES.
CALL SOLVE(N,UL,B.X)
C USE [IMPROVEMENT TO CONVERGE ON TRUE ANSHER.
CALL IMPRUV(N,A,UL.B,X, DIGITS IFLAG) '
10 CONT INUE
C
C THE ERROR PRINTOUT HAVE BEEN SUPPRESSED FOR USE IN IMPEQS.
c
IFLAG=1FLAG+!
. GO 10(1,2.3,4),1FLAG
e CONTINUE
c WRITE(NOUT, 11}
11 FORMAT(SH4HOMATRIX WITH ZERO ROW IN DECOMPOSE. E)
GO T0 1
3 CONTINUE
c HWRITE(NOUT,12)
12 FORMAT (54HOSINGULAR MATRIX [N DECOMPOSE. ZERO DIVIDE IN SOLVE.)
GO 10 1
Y CONT INUE
c HRITE (NOUT, 13)
13 FORMAT (S4HONO CONVERGENCE IN IMPRUV. MATRIX IS NEARLY SINGULAR,
1 CONT INUE ’
, IFLAG=1FLAG-1
999 CONTINUE
RETURN
END

SUBROUTINE DECOMP (NN, A, UL, IFLAG)
DIMENSION A(03,03), UL(D03,03), SCALES(03), 1PS(03)
COMMON / AA / IPS

N = NN
c
c INITIALIZE 1PS, UL AND SCALES
D051 =1,N
IPS(I) = 1
ROWNRM = 0.0
DO 2 J = 1I.N
uLir,d = ACL, I
lF(RONNRM-ABS(UL(I.J))) 1.2.2

1 ROWNRM = ABS(UL(1,J))
2 CONTINUE
IF (ROWNRM} 3.,4,3

- 74—

OO

19

£

84}

10

11

1e

13
14

16

17

18

SCALES(1) = |.0/ROWNRM
GO 10 5

IFLAG=1

GO 10 19

CONTINUE

GAUSSIAN ELlM!NAT!ON NITH PARTIAL PIVOTING®

NM1 .= N-1
Do 17 K =1
BIG = 0.

l

NM1
K.N
PS()

DO 11
P =
S12ZE
IF (SIZE-BIG) 11,11,10
BIG = SIZE
1IDXPIV = 1
CONTY INUE
IF (BIG) 13.12.13
IFLAG=2
GO TO 19
IF (IDXPIV-K)
J = IPS(K)
IPS(K) = IPSCIDXPIV)
IPSCIDXPIV) = J
KP = IPS(K)
PIVOT = UL (KP.K)
KP1 = K+
DO 16 | = KP!,N
IP = IPS(1])
EM = -UL(IP,K)/PIVOT
UL(IP,K) = -EM
DO 16 J = KP1,
ULtiP,u) =
INNER LOOP.
DOES NOT PRODUCE EFFICIENT CODE.
CONT INUE
CONT INUE
KP = IPS(N)
IF (UL (KP,N))
IFLAG=2
CONT INUE
RETURN
END

H— O

14,15, 14

"o

UL(IP Jl

19,18,19

uL, B, X1
B(03). Xt03),

SUBROUTINE SOLVE (NN,
DIMENSION UL(03,03).,
COMMON / AA s IPS

N = NN '
NP1 = N+1
IPS(1)
BUIP)
2.N
IPSC(1}
-1
0. 0.

P =
X(1) =
Do 21 =
P =

M1
SUM
DO 1 U =
SUM =
BCIP}

. M1
SUM + ULUIP DI *X (D)

X(l) = - SUM

ABS(UL (IP ,K)) *SCALESUIP)

+ EMeUL (KP,J)
USE MACHINE LANGUAGE CODING

IPS(03)

~75-

IF COMPILER

Lol O

IP = IPS(N)

X(N) = X(N}/UL(IP ,N)
DO 4 IBACK = 2,N

[= NP1-1BACK

I GOES (N-11,...,1

IP = IPSCD)

IPl1 = 1+1

SuM = 0.0

DO 3 U = IPI.N

SUM = SUM + ULC(IP,J)eX(J)

Xt = (Xeh-sumizuLcie,
RETURN
END

SUBROUTINE IMPRUV (NN, A, UL, B, X, DIGITS, IFLAG)
DIMENSION A(03,03), UL(03,03}), B(D3), X(03), R(03), DX(0O3)
USES ABS(), AMAX1 (), ALOGIO()

DOuBLE PRECISION Sum

N = NN

EPS = 2.+%(-47)
ITMAX = 29
+++ EPS AND ITMAX ARE MACHINE DEPENDENT. +++

XNORM = 0.0
DOt I = 1,N

XNORM = AMAXI1 (XNORM,ABS(X(1)))
IF (XNORM) 3.2.3

DIGITS = -ALOGIO(EPS)

GO TO {0
DO 9 ITER = 1,1TMAX

DOS5S 1 = 1,N
SUM = 0.0
DO 4 J = 1,N

SUM = SUM + A(L,J)*X (U}

SUM = B(]) - SUM

R(I) = SuUM

+++ T 1S ESSENTIAL THAT ACl,J)eX{J} YIELD A DOUBLE PRECISION
RESULT AND THAT THE ABOVE + AND - BE DOUBLE PRECISION. +++

CALL SOLVE (N,UL,R,DX) ‘

DXNORM = 0.0

DOB6 1 = 1I.N
T = X(1)
X(1)y = Xt1) + DX(1)
DXNORM = AMAXI1 (DXNORM,ABS(X(1)-T))

CONT INUE
IF (ITER-1) 8,7,.8 .
DIGITS = -ALOGI0(AMAX1 (DXNORM/XNORM, EPS))
IF (DXNORM-EPS*XNORM) 10,10,9
CONT INUE
ITERATION DID NOT CONVERGE
IFLAG=3
CONT INUE
RETURN
END

~76- .

OOO0O0O0OO0O0O0O0OO0OO0O0O0O000O0O0O0

C

SUBROUTINE NAE(ID,N,Z.F)

THE PURPOSE OF THIS SUBROUTINE IS TO PROVIDE A PLACE FOR THE NONLINEAR
ALGEBRAIC EQUATIONS (NAE) TG BE INPUTTED TO IMPEQS: SUBROUTINE

IMPEQS SOLVES THE IMPLICIT EQUATIONS. THE EQUATIONS TO BE SOLVED ARE
ASSUMED TO BE IN THE FORM SUCH THAT A SOLUTION VECTOR Z MAKES F (2)
EQUAL TO THE NULL VECTOR, THAT IS% F(Z)=0, WHERE F, Z, AND O ARE
VECTORS. AS PRESENTLY SETUP, UP TO FIVE SETS OF NONLINEAR EQUATIONS
MAY BE SOLVED IN ONE SS PROBLEM; EACH SET OF EQUATIONS MAY HAVE 1, 2,
OR 3 EQUATIONS. THE INPUT VARIABLETZ HAVE THE FOLLOWING MEANING....

1D INTEGER IDENTIFICATION NUMBER (1 THROUGH S) THAT TELLS THE
PROGRAM WHICH SET OF NONLINEAR ALGEBRAIC EQUATIONS TO SOLVE
NUMBER OF EQUATIONS IN SET

ARRAY WHICH CONTAINS THE VARIABLES OF THE NONLINEAR €QS.
ARRAY F EVALUATED AT Z '

mNZ

HWHEN USING THE IMPLICIT EQUATION OPTION, ONE MUST SUPPLY N

AND THE VECTOR FUNCTION F FOR EACH SET OF EQUATIONS I[N SUBROUTINE
NAE. -IN ADDITION, ONE MUST HAVE A CALL TO SUBROUTINE IMPEQS IN
SUBROUTINE USER FOR EACH SET OF EQUATIONS IN SUBROUTINE NAE.

DIMENSION Z(3) ,F(3)
IFCCID.LT. 1) .OR.(ID.GT.5))G0 TO 999
GO T0(100,200,300,400,500),1D

SET OF EQUATIONS NUMBER ONE.

100 CONT INUE

C

N=0
-Ft11y=0.0
F(2)y=0.0
F(3)=0.0
GO TO 999

SET OF EQUATIONS NUMBER TWO.

200 CONT INUE

C

N=0
F(1)=0.0
F(2)=0.0
F(3)=0.0
GO 10 999

SET OF EQUATIONS NUMBER THREE.

300 CONT [NUE

N=0
Ft1)=0.0 -
F(e)=0.0
Fit3)=0.0
GO TO 998

G.T OF EQUATIONS NUMBER FOUR.

400 CONTINUE

[eNel

N=0
F(11)=0.0
F(2)=0.0
F(3)=0.0
GO TO 999

SET OF EQUATIONS NUMBER FI1VE.

-77-

500 CONT INUE

N=0 4
Ft1)=0.0
Fter=0.0
F(3)=0.0
GO 70 999
999 CONTINUE
RETURN
END

SUBROUTINE USER(MODE ,N,T,X,XDOT)

C
C
C THE VARIABLES USED BY PROGRAM SS ARE AS FOLLOWS...
c MODE SWITCH USED BY PROGRAM SS T3 SELECT VARIOUS PARTS
c OF SUBROUTINE USER.
C NIN TAPE UNIT NUMBER FOR READING USER DEFINED INPUT
c NOUT TAPE UNIT NUMBER FOR ECHOING USER DEF INED [INPUT
C N DIMENSION OF THE STATE VECTOR X)
c M NUMBER OF VARIABLES TO BE OUTPUTTED
C T CURRENT VALUE OF TIME
c X STATE VECTOR---THESE VARIABLES ARE THE RESULT OF THE
c DIGITAL INTEGRATION.) :
c XDOT CURRENT VALUE OF THE TIME DERIVATIVE OF X EVALUATED
C AT THE CURRENT TIME T.
c Y OUTPUT VECTOR---THESE VARIABLES WILL BE OUTPUTTED.
C
C NOTE$¢ EVERYTHING IN SECTIONS 300 AND 400 1S REQUIRED. EVERY-
C THING IN SECTIONS 100, 200, AND 500 1S OPTIONAL.
c
DIMENSION X(20) ,XDOT(20).Y(31) LABEL (80)
COMMON/TIEI/NIN ,NOUT M, ALINE
"COMMON/TIE3/Y
COMMON/TIE4/LABEL
GO T10(100,200,300,400,500)M00E
c
C >
C THE USER PLACES ALL OF HIS CODING BETWEEN THE TWO + LINES.
C
C 4’+*0-++¢###4-4-###4-0'+§'+0-0*#004‘0'0"4'0'#-FOf*#b#*‘###400009#044”0‘##*0?0#‘4#0000‘#-4
C
C
100 CONTINUE
C

C THE USER INSERTS USER DEF INED INPUT READ/WRITE STATEMENTS HERE.
- C THE INPUT TAPE UNIT NUMBER MUST BE NIN AND THE OUTPUT TAPE UNIT
C NUMBER MUST BE NOUT.
READ(NIN,1013A,B,C
101 FORMAT(3E10.3)
WRITE(NOUT,!101)A,B,C
GO TO 999
200 CONTINUE
c .
C ONE CAN DO ONE-TIME PRECALCULATIONS AND OUTPUT LABELLING IN
C THIS SECTION.
c
D=SQRT (A+B}
C OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAMPLE 1S...
c LABEL (1)=10HOUTPUT .1

-78~

LABEL (1)=10HSTATE NO I
LABEL (2)=10HSTATE NO 2
LABEL (3)=10HSTATE NO 3
LABEL(4)=10H XDOT(3)
GO TO 999

200 CONT INUE

C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T, AND THE X-VECTOR.

C CALCULATE AN INTERMEDIATE VARJABLE WHICH 1S A FUNCTION OF THE STATES.
Z=-CeX(3)+X{l)ee2-X(2)*¢2-D
CALL MINMAX(],10H XDOT(3) 20
IF€,.GT.15.01CALL STOP
C CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES.
XDCT(1)==-0.5+X(1)
XDOT(2)=-A*X(2)
XDOT(3)=2
GO 70 999
CONTINUE

o
o

THE USER SPECIFIES THE VARIABLES THAT WILL BE QUTPUTTED IN THIS
SECTION----THE OUTPUT VARIABLES ARE PLACED IN THE Y-VECTOR: THE
Y VECTOR IS OF LENGTH M, NHERE M 1S SPECIFIED IN THE INPUT

DECK SSIN.,

OO0 £

Yil)=xX(1)
Y(el=X(2)
Y{(31=X(3)
Y(4)=2Z
CALL. XYPLOT (1 ,4,2)
GO 70 9399
500 CONTINUE
c
" C TH!S SECTION IS PROVIDED FOR POST PROCESSING OF THE FINAL TIME DATA,
o
C CALCULATE THE SUM OF THE THREE STATES AT THE FINAL TIME
SUM=X(1)1+X{(2)+X{3)
WRITE (NOUT,501)5UM
501 FORMAT(1IH] .5/ ,6HSUM = E£10.3)
GO TO 999
C .
C #4444 4434444414434 1404144443041+ 2 444444+ 444+ 4444443443444+ 4 20000040
C . . M
a89 CONTINUE
RETURN
END

-~79-

SUBROUTINE XYPLOT(ID,IXX,1YY}

C
C SUBROUTINE XYPLOT ALLOWS THE USER TO X-Y PLOT ANY DATA IN THE Y
C OUTPUT ARRAY. AS PRESENTLY DIMENSIONED, UP TO 10 X-Y PLOTS
C ARE ALLOWED. THE INPUT VARIABLES HAVE THE FOLLOWING MEANING...
C 1D IDENTIFICATION NUMBER (1 TO 1O
C XAX1S NUMBER CF ELEMENT IN Y ARRAY ONE WISHES PLOTTED ON X AXIS
C YAXIS NUMBER OF ELEMENT IN Y ARRAY ONE WISHES PLOTTED ON Y AXIS
C
C CAUTIONt THE TWO VARIABLES FOR WHICH ONE WISHES AN X-Y PLOT
C MUST APPEAR IN THE Y OUTPUT ARRAY IN SUBROUTINE USER.
o
COMMON/XY1/1IX(10),1Y(1O))
C MMAX 1S THE MAXIMUM NUMBER OF QUTPUTS FOR WHICH PROGRAM SS 1S DIMENSIONED.
DATA MMAX /7 30 /
IFCCID.LE.OY.OR.(ID.GT.10)1G0 TO 999
IFCIXUID) NE.OVYGO TO 999
IFCCIXX.LE.0).OR.(IYY.LE.0))IGO TO 999
IFCCIXX.GT . MMAX) .OR. (1YY .GT . MMAX)I1GO TO 999
IX(ID)=1XX
IYcilDi=1vYY
9389 CONT INUE -
RETURN
END

SUBROUTINE PLOTS(X,Y TITLES ,NUMPTS.NAME ,NOUT,IS1ZE)
THIS SUBROUTINE GENERATES THE LINE PRINTER PLOTS FOR PROGRAM SS.

DEFINITIONt A RELATIONSHIP IS A SET R OF ORDERED (X,Y) PAIRS.
DEFINITION: A FUNCTION 1S A SET F OF ORDERED (X,Y) PAIRS WITH
THE PROPERTY THAT IF (X.Yl) AND (X,Y2) ARE CONTAINED
IN F, THEN Yl=Y2, .
THUS, FUNCTIONS ARE A PROPER SUBSET OF RELATIONSHIPS. PROGRAM SS
USES SUBROUTINE PLOTS TO PLOT BOTH FUNCTIONS (1.E. VARIABLE VERSUS
TIME) AND RELATIONSHIPS (1.£. X-Y PLOYS).

THE [INPUT VARIABLES ARE...

X X~-AX1S ARRAY OF THE (X,Y} PAIRS

Y Y-AX1S ARRAY OF THE (X,Y) PAIRS

TITLES ARRAY USED TO STORE THE TITLE CARDS WHICH ARE PRINTED
AT THE TOP OF THE PLOT ’

NUMPTS NUMBER OF (X,Y) PAIRS. NUMPTS MUST BE GREATER THAN |
AND LESS THAN OR EQUAL TO MAXPTS.

NAME PLOT LABEL---MUST BE A10 OR 10H FORMAT.

NOUT LOGICAL NUMBER OF OUTPUT TAPE UNIT

1S1ZE =0 MEANS FULL SIZE PLOTS (90X100); OTHERWISE, ONE
GETS THE REDUCED-SIZED PLOTS (30X40).

CAUTIONt THE X AND Y ARRAYS WILL BE MODIFIED BY SUBROUTINE PLOTS.

WHEN PLOTS ARE REQUESTED, THE PROGRAM RUNTIME WILL TYPICALLY

BE DOMINATED BY THE TIME TO QUTPUT WRITE STATEMENTS 111,113,215,
AND 235, THEREFORE, IT IS IMPORTANT THAT THESE WRITE STATEMENTS
BE AS EFFICIENT AS POSSIBLE: USE THE FORMS INDICATED BELOW (1.E.
NOT AN IMPLIED DO).

OO0O0O00O0OO000O0OO0OO0OO0O0O0O0O0OO00OOO000OOO0

-80~

APPENDIX C. WRITING TRANSFER FUNCTIONS AS
FIRST-ORDER DIFFERENTIAL EQUATIONS

When a system is modeled, a portion of the total system is oftén
described by a transfer function. This appendix describes how a transfer
function in the normalized form can be directly converted to a set of first-
order differential equations. In particular, the coefficients of the transfer
function are used, without any algebraic manipulations, directly in the dif-

ferential equations. The normalized form of the transfer function is:

a sm + a sm—l + vee vu. +a.s + ao

G(S) = mn m"lt 1

s +b s + ¢t ¢o. + b,s + B
1 o

?

where m < n and bn equals one. For physically realizable systems, it is
required that m < n (i.e., no feed forward of derivatives of the input).
Transfer functions with.m = n can be put in the normalized form by expanding
the transfer function into two parts:’ a feedéforward gain term and a trans-
_ fer function with m < n (see Example Two below for an illustration of this
techniqué). The above normalized transfer function has the block diagram
shown in Fig. C-1, where u is the input, y'is the output, and it is assumed -
that m = n - ;. }

-For avtransfer function with denominator of order n, n integrators are
required. This will result in a set of n firsf—order, ordinary differential
equations. These n equations can be written directly from this block diagram

in terms of the a and b coefficients. The differential -equations are:

X, = X, ,

1 2

X, = X

2 3

}.{i=xi+l (i=l’ 'on'n—l) 'y
n

x = —'z bl_lx1+u ’
i=1

-8lj

™,

Fig. C-1.

Block diagram of normalized transfer function with m

-82-

n - 1.

where, by definition, the initial values of the state variables are zero for
transfer functions. Note that the constants in this set of differential
equations directly use the coefficients of the normalized transfer function.

The output of the transfer function, y, is given by:

n

=S

i=1

The above realization of G(s) and other possible forms can be found in a book

by C. A. Desoer.l

Example One — Write the first-order ordinary differential equations for:

G(s) = 108 + 2 .

382 + 9s + 6

Put this in the normalized form:

6(s) = (%) L0+ 2
+ 3s + 2
The 1/3-gain term is handled as a separate gain in series with the normalized

“‘transfer function, as shown in Fig. C~2. One writcs the differential

equations directly from the normalized transfer function:

X1=X2,

X, _—2xl - 3x2 +u,

where X1 and X, have initial values of zero. The output is:
(2xl‘+ 10x2)/3.

The forms are suitable for use in Program SS.

. lCharles A. Desoer, Notes for a Second Course on Linear Sustems (Van Nostrand
Reinhold, New York, 1970), pp. 99-104.

-83-

10s + 2

O 2

S

+ 35+ 2

<0

Fig. C-2. Block diagram for normalized transfer function
of Example One.

~84-

Example Two — Write the differential equations for:

252 + 46s + 26
332 + 95 + 6

G(s) =+

Note that m = n. One must expand G(s) so that m = n - 1. If one divides the

numerator by the denominator, one gets:

C,s +C
Gs) =24 —1 2

3 352 + 95 + 6

where Cl and C2 must be determined. Observe that the second term is the

remainder after one division, and that the first term is the ratio of a_ and
bn coefficients. By placing the expanded G(s) over its common denominator
and comparing the original numerator with this one, one can solve for C, and

A 1
Czu In this case they are 10 and 2, respectively, and the equation becomes

G(s) = 4 + —298:+ 2 .

352 + 9s + 6

Observe that this second term is the same transfer function as in Example One.

The differential equations and output equations are:

)
X, =X

1

X

2

-2x - 3x

g Tus

where xl and x2 have initial values of zero and

=1
y = 3(2xl + 10x2) + gu .

The 4u term in y accounts for the direct feed-through of the input to the

output. The block diagram for this transfef function is shown in Fig. C-3.

-85-

u ‘ 10s + 2
S+ 35+ 2

Fig. €-3. Block diagram for transfer function of Example Two.

FW/1l/vt/mla

~86—

L

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Energy Research
& Development Administration, nor any of their
employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its wuse would not infringe
privately-owned rights.

NOTICE

Reference to a company or product name does not
imply approval or recommendation of the product by
the University of California or the U.S. Energy Research
& Development Administration to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Price: Printed Copy $§ ; Microfiche $2.25

Domestic Domestic
Page Range Price Page Range Price
001-025 $ 3.50 326350 10.00
026-050 4.00 351-375 10.50
051-075 4.50 376-400 10.75
076—100 5.00 401-425 11.00
101-125 5.50 426—-450 11.75
126-150 6.00 451-475 12.00
151-175 6.75 ; 476500 12.50
176—200 7.5C 501-525 12.75
201-225 7.75 526—550 13.00
226-250 8.00 551-575 13.50
251-275 9.00 576—-600 13.75
276-300 9.25 601—up =
301-325 9.75

*Add $2.50 for each additional 100 page increment from 601 to 1,000 pages:
add $4.50 for each additional 100 page increment over 1,000 pages.

Technical Information Department
LAWRENCE LIVERMORE LABORATORY

University of California | Livermore, California | 94550

T

