
• 

' 

UCID- 17267 

Lawrence Livermore Laboratory 
PROGRAMS NAES AND SS: USER-ORIENTED PROGRAMS FOR SOLVING NONLINEAR 

ALGEBRAIC EQUATIONS AND ORDINARY DIFFERENTIAL EQUATIONS 

Howard K. McCue 

August 11, 1976 

MASTER 

'O\S\R\8UT\ON 

This is an informal report intended 
primarily for internal or limited 
external distribution. The opinions 
and conclusions stated are those of 
the author and may or may not be 
those of the laboratory. 

Prepared for U.S. Energy Research & 
Development Administration under 
contract No. W-7405-Eng-48. 

M-~1 \5 UNUM\IEO 
Or T\-1\S OOCU t:. 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 





Abstract 

Introduction 

Example of Usage 

Appendix A. Program NAES 

Introduction 

Examples of Usage 

C9nnnents on Usage 

CONTENTS 

Brief Description of Method. 

Fortran IV Listing of Program NAES 

Appendix B. Program SS (State Space) 

Introduction 

Example of Usage 

Standardized Input Deck , 

Standardized Subroutine USER 

Additional Features . , 
Discussion of the Integration Method 

Fortran IV Listing of Program SS 

Appendix C. Writing Transfer Functions as First-Order 

Differential Equations 

,-------NOTICE-------. 
TI1D rcyu1l was prepared as an account ol work 
sponsor~ by the United States Government. Neither 
the United States nor the United States Energy 
R~arch and Development Adminislration, nor any or 
thcu employees, nor any of their contractors 
subcontractors, or their employees, makes anY 
~r~nty, express or implied, or assumes any legal 
liability or rcrpon&ibility for the ooourocy, complctcncM 
or useful~ess of any information, apparatus, product or 
~ro~ d~osed, or represents that its use would not 
anfnnge pnvatc:ly owned rights. 

·, 1 

1 

2 

21 

21 

21 

23 

27 

29 

38 

38 

38 

42 

47 

47 

50 

55 

81 

-11-
0ISTRIBUTION OF THIS DOCUMENT IS UNLIMITED 

·~\ 



.. 

PROGRAMS NAES AND SS: USER-ORIENTED PROGRAMS FOR SOLVING 

NONLINEAR ALGEBRAIC EQUATIONS AND ORDINARY DIFFERENTIAL EQUATIONS 

ABSTRACT 

Program NAES (Nonlinear Algebraic Equation Solver) is a Fortran IV 

program used to solve the vector equation f (_R) = 0 for x. Two areas where 

Program NAES has proved to be useful are the solution for initial conditions 

and/or set points of complex systems of differential equations and the 

identification of system parameters from steady-state equations and steady­

state data. Program SS (State Space) is a Fortran IV program used to solve 

a system of first-order, ordinary differential equations with a minimum of 

specialized coding. Program SS automatically provides a·tabular listing and 

line-printer plots of the outputs. In addition, provisions are made to: 

perform one-time preintegration calculations, read specialized input data, 

establish specialized output labels, handle piecewise continuous f[~(t),t], 

make x-y plots of output variables, and record the minimums/maximums of 

specified variables. Subroutines have been written to pro~ide delay, ·level 

detection with hysteresis, and solutions to implicit equations. 

INTRODUCTION 

Programs NAES and SS were written to provide user-oriented, computer 

aids for solving nonlinear algebraic equations and ordinary differential 

equations of the initial-value type. For each program, only the Fortran 

coding describing the problem need be supplied by the user. This feature 

allows the user to concentrate his attention on that portion of the coding 

which describes. his problem, and not on the details of the numerical method 

used to obtain the solution. This minimizes the time and effort required to 

obtain computer solutions. Program NAES (Nonlinear Algebraic Equation Solver) 

has proved useful in solving for the initial conditions and/or set points of 

complex systems of differential equations, and in solving for the model 

parameters from steady-state equations and data.. Program SS (State Space) 

has been successfully used to provide numerical solutions for a wide variety 

-1-



'"' 

of physical systems: helicopter flight control, gas-transfer systems with 

bang-bang control, synchronous generators and turbines with associated. speed 

and voltage controls, process-control analysis for liquid-level control, 

temperature control of a laser optical room, etc. The main body of this 

report illustrates how Programs NAES and SS are used to solve a physical 

problem. Particular attention is directed to the thought process involved 

in the problem setup; this description should prove useful to people 

unfamiliar with the problem setup used in obtaining numerical solutions. 

This section should also allow a potential user to size up the effort 

required to obtain numerical solutions via NAES and SS. In Appendices A and 

B are the detailed write-ups for computer Programs NAES and SS; Appendix C 

describes how transfer functions are handled in Program SS. 

EXAMPLES OF USAGE 

To.understand how one would use Programs NAES. and SS, consider the sys­

tem shown in Fig. 1. This system consists of two masses, two dashpots, and 

two nonlinear springs; the masses are acted on by a gravitational field. 

Prior to time t = O, the system is in steady state with two forces, Force 1 

and Force 2, acting on the two masses. The effect of these forces is to 

displace the masses from the normal position (where Force 1 =Force 2 0). 

At t = O, Force 1 and Force 2 are released (i.e., they are set equal to zero 

fort 2:_ 0). Starting at t = O, we wish to compute the displacements and 

velocities of the two masses plus the kinetic energy, the potential energy, 

and the total energy in the system. The displacements (d) are taken to be 

zero when Force 1 and Force 2 are zero and no gravitational force acts on the 

masses. 

In this physical system are six mechanisms for storing energy: kinetic 

energy in the two masses, putential energy of the two masses in.the gravita~ 

tional field, and potential energy in the two nonlinear springs. The two 

dashpots provide the only means of dissipating energy in this system. At 

t = o~ the velocities of the masses are zero; thus, the initial value of the 

kinetic energy is zero. Since neither displacement is zero at t = O, neither 

the potential energy stored in the springs nor the potential energy of the 

masses (both taken to be zero when d1 = d 2 
O) is zero. 

Due to the initial displacement of the masses, the system will go 

through some coupled oscillations for t > 0. Since there are no energy 

-2-



" 

' 

'f 

Mass 1 
• 

~ Force 1 - M
1
g 

Mass 2 

Fig. 1. Two-mass system with nonlinear 
Springs in a gravitational field. 
For t < 0, Force 1 = Force 2 
= 1000 and <l

1 
= <l 2 = 0. For t > 0, 

Force 1 = Force 2 = O. 

-3-



.. 

'r• 

inputs to the system for t > 0 and since the dashpots will remove energy 

during these oscillations, we know the coupled oscillations will eventually 

decay to zero. During these oscillations, energy will be exchanged between 

the kinetic and potential modes. For t > 0, the total energy, the sum of the 

kinetic and potential energies, will slowly decay because of the energy dis­

sipated by the dashpots. The dynamics of the physical system in Fig. 1 is 

governed by the following coupled, ordinary differential equations: 

Force 1 - M
1

g 

where n
1 

and D
2 

are the dashpot coefficients and the nonlinear springs are 

defined by: 

The kinetic energy of this system at any instant of time is given by: 

KE 

The potential energy of the masses in the gravitational field is taken to be 

zero for d
1 

= d 2 = 0. Therefore, the potential energy of the two masses 

eq.uals 

Because of this selection ot d
1 

= d 2 = U as. the point of zero potential 

PnPrr;y, -PF.M r.an take on positive and negative values. 

The potential energy stored in a spring is obtained by integrating the 

force term over the displacement: 

x 

Stored energy 1 3 (an + hn )cin 

-4-

2 4 
a.!!_ + ~ 

2 4 



The potential energy stored in the two springs of our example is given by: 

(d - d )
2 

1 2 
2 4 

The total ·potential energy of the system is: 

The total energy of the system then is given by: 

Total energy ~ KE + PEM + PES • 

In this simulation, we wish to numerically solve for and plot: d
1

, d
1

, 

d
2

, dz, KE, PE, and KE + PE. Later, it will be shown that the displacements 

and velocities are state variables while the energy terms are nonlinear 

functions of the state variables. Program SS allows for the computation and 

plotting of both types of outputs. The differential equations that govern 

the system dynamics are given above. Before one can solve these differential 

equations, one must know the initial conditions. From the pro~lem state­

ment, d
1 

dz=? for.all t < O; this specifies two of the four initial con­

ditions. Since d1 = d2 = 0 for all t < O, d
1 

= d2 = 0 for all t < 0 too. 

Plugging _these values into our differential equation yields the steady state 

equations for t < 0: 

Note that our differential equations have been reduced to nonlinear 

algebraic equations. In order to determine the last two initial conditions 

(d
1 

and d
2

) f~r our dynamics proplem, we m~st first solve the above two 

coupled, nonlinear, algepraic equations. This is where Program NAES enters 

the problem. The nonlinear algebrai~ equations that determine the initial 

displacements are programmed in NAES; this coding appears in Fig. 2. The 

exact meaning of variables and where data should appear is covered in detail 

-5-



c 
C THE USER PLACES ALL OF HIS CODING BETWEEN THE TWO +-LINES. 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c 
100 CONTINUE 
C DEFINE PROGRAM CONSTANTS N, GAIN, EPSC, EPSJ, MAX. lJAC. !AUTO, 
C AND !SKIP HERE. 

N=2 
GAIN=l.0 
EPSC=l.OE-08 
EPSJ=l.OE-08 
MAX=200 
IJAC=O 
IAUTO=O 
iSKIP=O 

C DEFINE THE INITIAL X-VECTOR HERE. 
XC!l=O.O 
XC2l=O.O 

C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE. 
REAL MASSI, MASS2 
MASSl=l.O 
:-1ASS2= I. 0 
G=32. 1740 
WRITECNOUT, I !OJ 

110 FORMATC20H--FORCEl--++FORCE2++l 
READCNIN,l20lFORCEl.FORCE2 

120 FORMATC2El0.3l 
FORl=FORCEl-MASSl*G 
FOR2=FORCE2-MASS2*G 
Cl=75.0 
C2= 1. 5 
C3=150.0 
C4=3.0 
GO TO 999 

200 CONTINUE 
C THE USER SPECIFIES THE N-DIMENSIONAL VECTOR-FUNCTION F. 

F c 1 l =C 1 * X C 1 l +C2* X C 1 l * * 3+C3* c X C 1 l -X c 2 l l +C4 * C X c 1 l -X C 2 l l ** 3-FOR I 
F c 2 l =C3* C X c 2 l -X c l l l +C4 * C X C 2 l -X C I l l * * 3-FOR2 

,· GO TO 999 
300 CONTINUE 
C IF IJAC.NE.O, THE USER SPECIFIES THE JACOBIAN HERE. 

GO TO 999 
400 CONTINUE 
C SPECIFY CONSTRAINTS ON. THE ELEMENTS Or THE X-VECTOR HERE. 

IFCXCll.LT.-2.0lXCll=-2.00 
lrCXC2l.LT.-2.QlXC2l=-2.00 
GO TO 999 

500 CONTINUE 
C THIS SECTION PROFIDES A PLACE TO CALCULATE WITH THE SOLUTION VECTOR. 

PE=Cl*XCll**2/2.0+C2*XCll**414.0+C3*CXCll-XC2l l**2/2.0+ 
$ C4*CXCI l-XC2l l**4/4.0+MASSl*G*XCI l+MASS2*G*XC2l . 

WRITECNOUT,510lPE 
510 FORMATC2/,l9HPOTENTIAL ENERGY= ,E!0.3> 

GO TO 999 
c 
c +++++++++++++++++++++++++++++++++++i+++++++++++++++++++++++ ++++++++++ 
c 

Fig. 2. Fortran coding (in boxes) supplied by user for Program NAES. 

-6-



in the NAES write-up of Appendix A. It is the purpose of this section to 

indicate the effort required to obtain a solution to the above equations~ 

In Fig. 2, the user supplied only the boxed-in information. In the 

100 section, one defines the following· data: convergence parameters, initial 

estimate of d
1 

and d2, and problem constraints. For a large class of prob­

lems, the convergence parameters are fixed, and one only changes n. For 

solution by NAES, ·the d1 and d2 variables are renamed x(l) and x(2). The 

initial estimates of x(l) and x(2) are zero. For this solution in NAES, it 

was decided to request the Force 1 and Force 2 data at execution time from 

* the teletype ; this will allow one to rerun the problem for different values 

of forcP-s without having to recompile NAES. 

In the 200 section, we have written the nonlinear algebraic equations. 

The force terms have been moved to the other side of the equation. When 

F(l) = F(2) = O, x(l) and x(2) are a solution to the nonlinear, algebraic 

equations. Program NAES will manipulate x(l) and x(2), drivin~ F(l) and F(2) 

to essentially zero using the Newton-Raphson iterative technique. In 

section 400, interval constraints of -2 2_ x(l) and -2 2_ x(2) are specified. 

Finally, in section 500, we compute the potential energy based on values of 

dl and d
2 

that satisfy our nonlinear, algebraic equations. Shown in Fig. 3 

is the teletype dialogue for this problem. Again, only the boxed-in lines 

were typed by the user. For our problem, the answer is: 

dl = 9.368, 

d2 13.93 • 

Also shown in this dialogue are the values of F(l) and F(2): 

F(l) -4.729 x 10-ll 

F(2) 
-12 

7.276 x 10 . 

Therefore, the stated values for d
1 

and d 2 are essentially solutions 

for the nonlinear equations. That is, the nonlinear equations are unbalanced 

* . Registered trademark of Teletype Corp. 

-7-



, 

lNAES I • 1 • 11 
--FORCE1--++FORCE2++ 
11000.0 1000.ol 
DO YOU WISH TO MODIFY CONVERGENCE VARIABL.ES--YES OR NO. 
l.N]] 
DO YOU WISH TO MODIFY THE INITIAL X-VECTOR---YES OR NO. 
f[Q] 
PROCESS CONVERGED IN 33 ITERATIONS. 
THE CURRENT VALUE OF THE X-VECTOR IS••• 

9.368E+OO 1.393E+Ol 
THE CURRF.NT VAL.UE OF THE VECTOR-FUNCTION F AT X IS••• 

- 4 • 7 29 E- 11 7 • 27 6E- 1 2 
THE PROGRAM CONSTANTS USED AREe•• 
THE CONVERGENCE EPSILON = 1.oooE-08 
THE MAXIMUM ITERATIONS AL.LOWED = 200 
GAIN ADJUSTED EY THE PROGR.AMJ FINAL. GAIN= leOOOE+OO 
THE JACOBIAN WAS APPROXIMATED BY THE PROGR.AM1 WITH EPSJ :s l eOOOE-08 

POTENTIAL ENERGY = a.a10E+03 

ALL DONE 

Fig. 3. Teletype dialogue for NAES solution. 

-8-



by the small amounts indicated by F(l) and F(Z). Stated another way, the d
1 

and dz terms are solutions to: 

Force 1 - M g 
J. 

4.7Z9Xl0-ll 

Since Force 1 =Force Z = 1000, M
1 

= M2 = l,.and g = 3Z.174, one can ignore 

the slight perturbation that F(l) and F(2) will make to the solution of d1 
and dz. 

Now that the initial conditions for our differential equations (d
1

, 

dl' dz, and dz) are known, we can solve for the dynamic responses of interest. 

For m~st (if not all) numerical integration schemes, the differential 

equations must be placed in normal form (a set of first-order differential 

. equations). To do this, first rearrange each equation such that the highest-.. .. 
order time derivative is isolated. For our example, solve for d

1 
and dz: 

dl 
1 

[Force 1 - M g - Dldl - kl(dl) - kz (d1 - dz)] 
Ml 1 ' 

dz 
1 

[Force Z - M g - Dzdz kz(dz - d1)] 
Mz z . 

Note that lower-order time derivatives (dl' dl' d2 and dz) can be obtained by· 

integrating d1 and dz: 

-9-



In block-diagram form, the above process appears as in Fig. 4(a). The dif­

ferential equations are also shown in block-diagram form in Fig. 4(b). The 

IC signal entering each integrator indicates that each integrator has asso­

ciated with it some initial condition. By assigning new variable names to 

the outputs of the integrators, we can transform our original differential 

equations into a set of first-order differential equations (normal form). 

Select the new variable as follows: 

Let xl dl 

x2 dl 

x3 d2 

X4 d2 

Then, the normal form equations are: 

*1 d. x2 (i.e., d
1 = Ja1dt) ' ]. 

*2 dl 
1 

[Force 1 - Mlg - Dlx2 - kl(xl) - k2(xl - X3)] = ' Ml 

*3 tl 2 -" x4 

*4 d2 
1 

[Force 2 - M2g - n2x4 - k2(x3 - xl)J M2 

This is the form required for numerical solution by Program SS. Using the 

~a111P nP.w variable names, one can likewise transform the initial conditions. 

For our example, these are: 

-10-



IC IC 

Jdt Jdt 

·I Jdt I 
l IC 

f d t lt-----1 .. -0 dz ( t) 

(a) 

IC IC 

dl dl 
Jdt Jdt dl 

+ 

kz(d1-dz} 
(di-dz) 

IC IC 
+ . 

dz dz 
Jdt Jdt d z 

(b) 

Fig .. 4. Block diagrams of differential equations. 

-11-



With the differential equations in normal form and with the initial 

conditions known, one is now prepared to numerically solve for the dynamic 

responses. The amount of Fortran IV coding required from the user is shown 

in Fig. 5, where the boxed-in lines were supplied by the user. In section 

100, all specialized input-file data is read from SSIN (input file) into SS 

and echoed out to SSOUT (output file). SSIN contains information concerning 

t , t d' stepsize, initial conditions, etc. The Fortran IV coding 
start en 

required to input and output this information is already part of Program SS. 

Section 100 provides a place for the user to read specialized infor­

mation from the input deck. For our example, Program SS will read the dash­

pot coefficients, n
1 

and D2 . By placing n
1 

and n
2 

in the input deck, one can 

rerun the problem with different values of n
1 

and n2 without having to 

recompile Program SS. In section 200, one defines constants, performs 

initialization calculations, and defines output labels (used in plots and 

tabular listing). In this section, one can use the full power of Fortran IV 

coding to define the problem constants. 

In our example, the forces FORl and FOR2 were computed. The terms will 

remain constant for the simulation unless modified in section 300 or 400. 

In section 300, the set of first-order differential equations are specified. 

Again, one can define Fortran variables to simplify the differential equations. 

In our example, Spring 1 and Spring 2 were defined to simplify the nonlinear 

force terms in the differential equations. Note that x. becomes x(i) and 
1 

that x. becomes XDOT(i) in the Fortran coding. 
1 . 

In section 400, one defines the output variables. Any variable that 

one wishes to output must be equated to an element of the Y vector. For our 

example, the third output will be x(2) or d
1

; note that LABEL(3) (Velocity 1) 

corresponds to this output. Also note that the kinetic and potential energy 

terms were computed in the output section. These terms were not needed to 

solve the differential equations and can be computed directly from the 

X vector. This iflustrates that Fortran can be used in the output section. 

After Y(7), two calls to subroutine XYPLOT are made. These calls plot 

elements of the output vector against each other, with time as the parametric 

-12-



c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
100 
c 

CONTINUE 

C THE USER INSERTS USER DEFINED INPUT READ/WRITE STATEMENTS HERE. 
C THE INPUT TAPE UNIT NUMBER MUST BE NIN AND THE OUTPUT TAPE UNIT 
C NUMBER MUST BE NOUT. 

101 
READ<NIN,IOllDl.D2 
tORMAT<2EI0.3l 
WRITE<NOUT,IOl>Dl,D2 

Read special data from input file 

200 
c 

GO TO 999 
CutHINUE 

C ONE CAN DO ONE-TIME PRECALCULATIONS AND OUTPUT LABELLING IN 
C THIS SECTION. 
c 

REAL MASS I , MASS2 
MASSI=! .r• 
MASS2=1. u 

Problem constants 

G=32. 17'+0 
C1=75.0 
C2=1 .5 
C3=150.0 
C'+=3.0 
FORl=-MASSt•G 
FOR.2=-MASt;::>•G 

C OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAMPLE IS ... 
C LABEL<ll=IOHOUTPUT I 

300 
c 

LABEL<ll=!OHMASSI DISP 
LABEL<2l=IOHMASS2 DISP 
LABEL13l=IOHVELOCITY I 
LABEL!'+l=IOHVELOCITY 2 
LABELf5l=iOH KINETIC 
LABELC61=10HPOTENTIAL 
LABELC71=10HKE PLUS PE 
GO TO 999 
CONTINUE 

Output labels 

C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T, AND THE X-VECTOR. 
c 
c CALCULATE ANY INTERMEDIATE VARIABLES WHICH ARE FUNCTIONS OF THE STATES. 

SPRINGl=Cl•XCll+C2*Xfll**3 
SPRING2=C3•CXCll-XC3ll+C'+•CX<ll-X<3ll**3 

C CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES. 
Differential equations 

'+00 
c 

XDOTC l l=X<21 
XDOT<21=<FORl-Dl•X<2>-SPRINGl-SPRING21/MASSI 
XDOTC31=X<'+l 
XOOT<41=<FOR2-D2•X<'+l+SPRING2l/MASS2 
GO IU 999 
CONTINUE 

c 
c 
c 

THE USER SPECIFIES THE VARIABLES THAT WILL BE -OUTPUTTED IN THIS 
SECTION----THE OUTPUT VARIABLES ARE PLACED IN THE Y-VECTOR; THE 
Y VECTOR IS OF LENGTH M, WHERE M IS SPECIFIED IN THE INPUT 

c DECK SSIN. 
c 

500 
c 

KE=X<2l*X<2l*MASSl/2.0+X<'+l*Xl'+l*MASS2/2.0 
PE=Cl•X(JJ••212.o+c2•x11>••4/4.0+C3•CXfll-X(31J••212.o+ 

$ C'+•<X<ll-X<3ll**'+l'+.O+MASSl*G•X<l l+MASS2•G•X!3l 
Y< I l=XC I l 
Y<2J=X<3l 
Y<3l=X<2l 
y < '+ l =X < '+ l 
Y<51=KE 
Y<6>=PE 
Y<7l=KE+PE 
CALL XYPLOT<l,l,31 
CALL XYPLOT<2,2.'+l 
GO TO 999 
CONTINUE 

Output 

C THIS SECTION IS PROVIDED FOR POST PROCESSING OF lHE FINAL TIME DATA. 
c 

GO TO 999 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Fig. 5. Fortran coding (in boxes) supplied by user for Program SS. 

-13-



parameter. That is, CALL XYPLOT(l, 1, 3) plots Y(l) (X-AXIS) against . 
Y(3) (Y-AXIS). Since Y(l) = d

1 
and Y(3) = d

1
, this is a phase plane plot of 

MASS 1. In addition to XYPLOT, there are many other features already pro­

grammed in SS. Shown in Fig. 6 is the input deck SSIN for this problem. In 

this input deck are specified t t t' t d' stepsize, initial conditions, s ar en 
specialized user-defined input, plot titles, etc. See Appendix B for details 

on inputting problems in Program SS. 

Shown in Figs. 7 through 11 are selected portions of the output file, 

SSOUT. Figure 7 is the displacement of MASS 2 vs time. This output cor­

responds to setting Y(2) = x(3) in section 400. Figure 8 is the velocity of 

MASS 2 vs time. An X-Y plot of d
2 

vs d2 was requested via the CALL 

XYPLOT(2, 2, 4); this plot is shown in Fig. 9. The total energy plot is 

shown in Fig. 10. Note that energy decreases as time progresses; this agrees 

with our reasoning in the problem description. Also note that the total 

energy at t = 0 from the SS run agrees with the energy calculation of the 

NAES run. 

Finally, the first page of the tabular listing is shown. Note that the 

labels defined in SS are automatically incorporated in the plots and 

tabular listing. The last column is an estimate of the absolute value of the 

truncation error of the integration process. This error estimate is. auto­

matically outputted; see Appendix B for the details. 

-14-



BOX R61 
THIS IS 
0.00 
9.368 
2.00 

SS EXAMPLE 
AN EXAMPLE 

2.00 
0.00 
2.00 

1 1 001 0 0 15000 000 
OF TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD. 

0.020 04 07 
13.93 0.00 

Fig. 6. SSIN input file. 

-15-



I 
...... 

°' I 

1.5000E+Ol 

9.BOOOE+OO 

4.6000E+OO 

-6.0000E-01 

-5.BOOOE+OO 

-1. IOOOE+Ol. 

MASSC' DISP 
THIS IS AN ~XAMPLE or TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY rtELO. 

I ........ . 
I 
:<x 
I X 
I 
I X 
~ 
~ 
l 
1 
1 
1 
1 
l 
I 
I 
I 

x 

.x. 

x 

I x 
I ox 
I XXX XX 
I • • • • • • . . . • . .X. X 
I X XX 
I x 
I x 
I x 

)( 

x 

I X X X 
I X XXXXXXX 
I X X XXX X. 
---------x---------------------x------------------------------------------------------xxx------------
1 x xxx . 
I • X • X ....••.•••••• XX .•••.... 
I X 0 
I X X X 
I X XX. X 
I XX XX 
I X X XX X 
I XX X 
I XXX XXX 
I X X X 
I 
I . . . . . . :<. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.OE+OO 

x 

x 
x 

>: 
xxxxx 

x 
x 

4.000E-01 

x 

x 

8.000E-01 1.~00E+OO 
TIME IN SECONDS 

Fig. 7. Displacement of Y.tASS 2 vs time. 

l .600E+OO 2.000E+OO 



I ...... 
-....J 
I 

7.5000E+OI 

4.0000E+OI 

5.0000E+OO 

-3.0000E+-01 

-6.5000E+Ol 

-1 . OOOOE +02 

VELOCITY 2 
THIS IS AN EXAMPLE OF TWO MASS SYSTEM WITH NONLINEAR SPRcNGS IN A GRAVITY FIELD. 

I 
I 
I 
I 
I 
I 
I ........ . 
1 
1 

x 

.x. 

x 
x x 

x x 
x 

x 

x 

x 

1 x 
I X X XX 
1 x x xx 
1 xxx. .x x. 
I XX X XX 
I . X .. X X . XX XXXX 
I X XXXX XX 
I • • • • • • • • • . • • • •. • • • . • . • • • . X . • •••..• X 
x-------------------x-----------------------x------------------------x-------------------------x-----
1 x 
I X X XX . 
I :::. XX X. 
I X XXX:XXXX 
I X 
IX X X X 
I X 
I X X X 
I . . • • • • • • • • • • • • X 
I X X X 
I X XXX 
I X 
I 
I 
I 
I X 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

x 

.OE+OO 

x 

x x 
xx 
x 

x 

x 

x 

x 

x 

4.000E-01 8.000E-01 l.200E+OO 
TIME IN SECONDS 

Fig. 8. Velocity of MASS 2 vs time. 

I .600E+OO 2.000E+OO 



l 
~ 
00 
I 

7.5COOE+Ol 

4.0000E+Ol 

5.0000E+OO 

-3.0000E+Ol 

-6.5000E+OI 

-l.OOOOE+02 

x 

x 

VELOCITY 2 <Y-AX!Sl VERSUS MASS2 DlSP <X-AXISl 
THIS IS AN EXAMPLE OF TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD. 

x 
x 

x 

. x .. 

x 

x 
x 

x 

x 

xx 
x 

x 
x 

I ....... . 
I 
I 
I 
I 
l 
I 
x 
I 
I x 
I 
l 
I 

x 

I x 
I x 

x x I '( 
x l xxx 

xx I xx 
XX IXXX .X 

.xx x . x 
. . . . . . . . x . . .. l .. x. . . . . . . . . . . . . . . ....... . 

--x--------------------x-----------------------x--------------x--------------------------------x-----

x 

x 

x 

x 

x 

x 

x 

x 
xx 

xxxxxxx 
x 

.x .. 

x 

x 
x 

x 

l 
I 
I 
I 
I 
l 

x. l 
.XI 

I X 
l 
I 
l 
l 
I 
I 
I 
l 
l 
I 
l 
I 
I 
l 
I 
x 
l 
I 
I 

)( 

x 

x 

x 

x 

x 

x 

x 
x 

x 

. )( 

.x 

x x 

x 

x 

x 

x 

x 
x 

-1. IOOE+Ol -.5.SOOE+OO -6.000E-01 4.600E+OO 9.SOOE+OO I . 5",0E+O l 

Fig. 9. Phase plane plot for MASS 2. 



I 
I-' 
\0 
I 

9.0000E+03 

7.2200E+03 

5.4400E+03 

3.6600E+03 

I .8800E+03 

I .OOOOE+02 

KE PLUS PE 
THIS IS AN EXAMPLE OF TWO MASS SYSTEM WITH NONLINEAR SPRINGS IN A GRAVITY FIELD. 

. I ........ . 
xxx 
I X. 
I X 
I 
I 
I 
l 
I 
I 
l 
I 
I 
l 
l 
l 
I 
I 
l 
I 
l 
I 
I 
l 
I 
I 
I 
I 
I 
I 

x 

x 

.x. 

x 

x 

x 

x 

x 

x 
x 

I ..... . 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ........ . 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.OE+OO '+.OOOE-01 

x 
x 

xx 
x 
.x. 

xx 
xxxx. 

xxxxxxxxx 
xxx 

xxx 
X>:X 

xxxxxxx 

8.000E-01 l.200E+OO 
TIME IN SECONDS 

xxxxxxxxxxxxxxx. . 
xxxxxxxxxxxxxxxxxxxx. 

I .600E+OO 2.000E+OO 

Fig. 10. Total energy of the system vs time. 



TIME MASSI DISP MASS2 DISP VELOCITY I VELOCITY 2 K!NETIC POTENTIAL KE PLUS PE EST. ERROR 

.OE+OO 9.368E+OO l .393E+Ol .OE+OO .OE+OO .OE+OO 8.814E+03 8.814E+03 .OE+OO 
2.00E-02 9.174E+OO I. 373E+O I -1 .898E+O I -1 .963E+Ol 3.720E+02 8.432E+03 8.804E+03 -1.000E+OO 
4.00E-02 8.635E+OO I . 3 l 5E +O I -3.406E+Ol -3.837E+Ol l.31GE+03 7.423E+03 8.739E+03 -1 .OOOE+OO 
6.00E-02 7.848E+OO I .2::!1E+O I -4.381E+Ol -5.576E+Ol 2.514E+03 6.073E+03 8.587E::+03 -1.000E+OO 
8.00E-02 6.915E+OO I .094E+Ol -4.878E+Ol -7.092E+Ol 3.704E+03 4.633E+03 8.337E+03 -2.000E+OO 
1.00E-01 5.916E+OO 9.391E+OO -5.056E+Ol -8.297E+Ol 4.720E+03 3.279E+03 7.999E+03 6.751E-04 
I .20E-Ol 4.899E+OO 7.642E+OO -5.086E+Ol -9.133E+Ol 5.464E+03 2.126E+03 7.590E+03 2.IOIE-02 
l.40E-Ol 3.881E+OO 5.764F.+OO -5.088E+Ol -9.596E+Ol 5.898E+03 l.235E+03 7. l 33E+03 2.469E-04 
l.60E-Ol 2.860E+OO 3.826E+OO -5. l24E+Ol -9.721E+Ol 6.037E+03 6. l 77E+02 6.655E+03 5.828E-03 
l.80E-Ol l.828E+OO l.894E+OO -5.218E+Ol -9.554E+Ol 5.925E+03 2.495E+C'? 6. l 75E+03 -2.000E+OO 
2.00E-01 7.694E-Ol 2.059E-02 -5 . .579E +O 1 -9.138E+Ol 5.622E+03 9.003E+Ol 5.712E+03 I. 044E-04 
2.20E-Ol -3.276E-Ol -l.747E+OO -5.596E+Ol -8.51 IE+Ol 5. 187E+03 9.150E+Ol 5.278E+03 2.343E-03 
2.40E-Ol -1 .471E+OO -3.372E+OO -5.826E+Ol -7.718E+Ol 4.675E+03 2.081E+02 4.883E+03 I .607E-05 
2.60E-Ol -2.654E+OO -4.827E+OO -5.985E+Ol -6.823E+Ol 4. l 18E+03 4. l 31E+02 4.531E+03 I. 053E-03 
2.80E-Ol -3.852E+OO -6. IOOE+OO -5.949E+Ol -5.899E+Ol 3.509E+03 7.169E+02 ,_..226E+03 -2.000E+OO 
3.00E-01 -5.0IOE+OO -7.190E+OO -5.582E+Ol -5.013E+Ol 2.814E+03 I. 159E+03 3.973E+03 I. l 79E-04 
3.20E-Ol -6.053E+OO -8.lllE+OO -4.783E+Ol -4.200E+Ol 2.026E+03 I. 753E+03 3.779E+03 I .293E-02 
3.40E-Ol -6.891E+OO -8.876E+OO -3.535E+Ol -3.458E+Ol I .222E+03 2.426E+03 3.648E+03 I .829E-04 
3.60E-Ol -7.4't3E+OO -9.496E+OO -1 .944E+Ol -2.748E+Ol 5.660E+02 3.013E+03 3.579E+03 9.980E-04 
3.80E-01 -7.660E+OO -9.973E+OO -2.350E+OO -2.004E+Ol 2.030E+02 3.347E+03 3.550E+03 -2.000E+OO 
4.00E-01 -7.550E+OO -l.029E+Ol l.304E+Ol -l.153E+Ol l.510E+02 3.387F.+03 3.538E+03 4.386E-04 
4.20E-Ol -7.171E+OO -l .042E+Ol 2.416E+Ol -l .31 IE+OO 2.920E+02 3.230E+03 3.522E+03 2.493E-02 
4.40E-Ol -6.625E+OO -l.033E+Ol 2.969E+Ol 1.086E+Ol 4.990E+02 2.992E+03 3.491E+03 l.252E-U4 
4.60E-Ol -6.022E+OO -9.976E+OO 2.998E+Ol 2.447E+Ol 7.480E+02 2.694E+03 3.442E+03 9.908E-03 
4.80E-Ol -5.448E+OO -9.348E+OO 2.691[+01 3.812E+Ol 1.088E+03 2.282E+03 3. 370E+o-, -2.000E+OO 
5.00E-01 -4.948E+OO -8.464E+OO 2.295E+Ol 5.003E+Ol l .514E+03 I. 753E+03 3.267£+03 't.833E-04 
5.20E-Ol -4.518E+OO -7.371E+OO 2.012E+Ol 5.880E+Ol I .931E+03 l.199E+03 3.130E+03 2.378E-02 
5.40E-Ol -4. 126E+OO -6.138E+OO I. 937E+O 1 6.392E+Ol 2.230E+03 7.329E+02 2.963£+03 3.970E-04 
5.60E-Ol -3.730E+OO -4.837E+OO 2.071E+Ol 6.562E+Ol 2.367£+03 4.117E+02 2.779E+03 8.169E-03 
5.BOE-01 -3.289E+OO -3.532E+OO 2.371E+Ol 6.440E+Ol 2.355E+03 2.344E+02 2.589£+03 -2.000E+OO 
6.00E-01 -2.775E+OO -2.275E+OO 2.787E+Ol 6.083E+Ol 2.238E+03 I .672E+02 2.405E+03 8.541E-05 
6.20E-Ol -2. 170E+OO -1.llOE+OO 3.262E+Ol 5.543E+Ol 2.068E+03 I .647E+02 2.233E+03 3.042E-04 
6.40E-Ol -1 .470[+00 -6.657£-02 3.73BE+Ol 4.883E+Ol I .890E.+03 I .839E+02 2.074E+03 2.325E-05 
6.60E-Ol -6.797E-Ol B.393E-Ol 4.146E+Ol 4. l 74E+O I I. 730E+03 I .996E+02 1.930E+03 5.768E-04 
6.BOE-01 1.790E-01 l .605E+OO 4.414E+OI 3.490E+OI I .583E+03 2.142[+02 I .797E+03 -2.000E+OO 
7.00E-01 l.072E+OO 2.242E+OO 4.483E+Ol 2.892E+O\ l .422E+03 2.542E+02 I .676E+03 2.635E-05 
7.20E-Ol 1 .955E+OO 2.77\E+OO 4.309E+Ol 2.417E+Ol I .220E+03 3.51 IE.+02 I .57\E+03 l .91 IE-03 
7.40E-Ol 2.77BE+OO 3.217E+OO 3.872E+Ol 2.073E+Ol 9.640E+02 5. 191E+02 I .483E+03 I. 30BE-04 
7.60E-Ol 3.487E+OO 3.608E+OO 3.182E+Ol l .849E+Ol 6.770E+02 7.408E.+02 I .418E+03 7.816E-04 
7.80E-01 4.036E+OO 3.962E+OO 2.283E+Ol 1.710E+Ol 4.060£+02 9.682E+02 l.374E+03 -2.000E+OO 
8.00E-01 4.391E+OO 4.294E+OO I .255E+OI 1 .609E+Ol 2.0BOE+02 1. 143E+03 1 .351E+03 1 .857E-04 
8.20E-Ol 4.538E+OO 4.605E+OO 2.105E+OO I .491E+Ol I. l 30E+02 I .226E+03 I . 339E+'03 3.500E-03 
8.40E-Ol 4.483E+OO 4.886E+OO -7.331E+OO I. 304E+O I l.llOE.+02 I .219E+03 I .330E+03 5.654E-06 
8.60E-Ol 4.259E+OO 5.118E+OO -l .474E+Ol l.004E+Ol I .590E+02 I. 161E+03 l.320E+03 I. 792E-03 
8.80E-Ol 3.912E+OO 5.278E+OO -l .94BE+Ol 5.664E+OO 2.050E+02 I. I OOE+03 I . 305E. +03 -2.000E+OO 
9.00E-01 3.500E+OO 5.335E+OO -2.133E+Ol -l.636E-Ol 2.270E+02 l .061E+03 I .2BBE+03 2.062E-04 
9.20E-Ol 3.077E+OO 5.263E+OO -2.056E+Ol -7.228E+OO 2.370E+02 I. 032E+03 I .269E+03 7.907E-04 
9.40E-Ol 2.690E+OO 5.041E+OO -l.790E+Ol -l.500E+Ol 2.720E+02 9.771E+02 I .249E+03 I. 526E-04 
9.60E-Ol 2.366E+OO 4.663E+OO -1 .437E+Ol -2.268E+Ol 3.600E+02 8.645E+02 I .225E+03 3.042£-03 
9.80E-Ol 2.113E+OO 4.141E+OO -l. l04E+Ol -2.944E+Ol 4.940E+02 6.971E+02 I .191E+03 -2.000E+OO 
l.OOE+OO 1.917E+OO 3.497E+OO -8.734E+OO -3.461E+Ol 6.370E+02 5.091E+02 l.146E+03 7.266E-05 
1. 02E+OO 1. 753E+OO 2.770E+OO -7.925E+OO -3.786E+Ol 7.470E+02 3.426E+02 l.090E+03 1. 799E-03 
l .04E+OO I .589E+OO I .997E+OO -8.719E+OO -3.912E+Ol B.030E+02 ·2. 249E+02 l.028E+03 I. 524£-04 
1 .06E+OO 1. 394E+OO 1.217E+OO -1.098E+Ol -3.854E+Ol 8.030E+02 1. 607E+02 9.637E+02 2. 133£-03 
1. 08E+OO L 142E+OO 4.652E-01 -1.441E+Ol -3.C37E+Ol 7.650E 02 1.358E+02 9.008E+02 -2.000E+OO 
1. lOE+OO 8. 135E-Ol -2.298E-01 -1.856E+O1 -3.296E+Ol 7.150E+02 1.263E+02 8.413E+02 6.818E-05 
1 .12E+OO 3.990E-Ol -8.482E-01 -2.287E+Ol -2.880E+Ol 6.760E+02 1. IOOE+02 7-.860E+02 4.953E-04 

Fig. 11. Tabular output data. 

-20-



APPENDIX A. PROGRAM NAES 

Introduction 

Program NAES (Nonlinear Algebraic Equation Solver) is a Fortran IV 

program used to solve the vector equation !_(.i_) = Q for g. Two areas where 

Program NAES has proved to be useful are the solution for initial conditions 

and/or set. points of complex systems of differential equations and system 

parameter identification based on steady-state equations· and steady-state 

data. The method of solution is a modified Newton-Raphson iterative process. 

All information relating to a particular problem is placed in a standardized 

subroutine named USER. In this subroutine, one specifies program constants, 

vector function!_~}, and an approximate value of x. Optional inputs for 

subroutine USER are interval constraints placed on the candidates for the 

solution vector i and an analytical Jacobian. If an analytical Jacobian is 

not specified, the program will generate a numerical Jacobian. Program 

input/output is via TTY. 

Examples of Usage 

The following examples illustrate how one sets up a problem and converts 

it to Fortran coding. All user-supplied coding appears between the two + 
lines in the standardized subroutine USER. 

Example One - Suppose one wishes to solve the following set of equations: 

3 
0 = x - 27 

1 

0 

subject to the limitations 

over the field of real numbers. The user-supplied Fortran coding to do thi8 

is shown in Fig. A-1. The boxed-in terms are user-supplied. The section 

-21-

--· 



c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c 
c 
100 CONTINUE 
C DEFINE PROGRAM CONSTANTS N, GAIN, EPSC, EPSJ, MAX, IJAC, !AUTO, 
C ANO !SKIP HERE. 

N=2 
GAIN=l.O 
EPSC=l .OE-08 
EPSJ=l.OE-08 A 
MAX'-'200 
IJAC=O 
I AUTO=O 
ISKIP=O 

C DEFINE THE INITIAL X-VECTOR HERE. 

IX(ll=IO.O I B 
. X<2>=-l .O . 

C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE .. 
GO TO 999 

200 CONTINUE 
C THE USER SPECIFIES THEN-DIMENSIONAL VECTOR-FUNCTION F. 

FCll=XC >••3-27.0 
FC2l=XCll+XC2l**5-35.0 C. 
GO TO 999 

300 CONTINUE 
C IF IJAC.NE.O, THE USER SPECIFIES THE JACOBIAN HERE. 

GO TO 999 0 
i+OO CONTINUE 
C SPECIFY CONSTRAINTS ON THE ELEMENTS OF THE X-VECTOR HERE. 

IFCX!ll.LT.O.OlX!ll=O.O 
IFCX<2> .LT .-1.0lXC2l=-l .O 
IFCXCll.GT.+10.0>XCll=+lO.O E 
1FCX<2l.GT.+10.0lXC2l=+IO.O 
GO TO 999 

500 CONTINUE 
C THIS SECTION PROFIDES A PLACE TO CALCULATE WITH THE SOLUTION VECTOR. 

. GO TO 999 
c F 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c 

Fig. A-1. Specialized Fortran coding for Example One. 

-22-



marked A specifies convergence control variables (see section entitled 

"Brief Description of Method" in this appendix) and N (number of equations 

and number of elements in the x vector). Section B specifies the initial x 

vector; the user has specified x
1 

= 10 and x
2 

= -1 for this problem. 

Section C specifies the nonlinear algebraic equations. Section D provides a 

place for the Fortran coding of the Jacobian when an analytical Jacobian is 

used; for this example, a numerical (program-generated) Jacobian is used 

(IJAC = 0). Section E provides a place for the Fortran coding that constrains 

the x vector. Section F provides a place to calculate with the solution 

vector. The TTY dialogue for Example One is shown in Fig. A-2. 

Example Two - Suppose one wishes to solve the problem of· Example One 

using an analytical Jacobian. That is, solve 

0 27 

5 
0 = x + x - 35 1 2 

subject to the limitations 

where the Jacobian J is 

1 

0 

The user-s~ppli~d coding to solve this problem ,is shown in Fig. A-3; the TTY 

dialogue ts shnwn :i.n Fig, A-4, 

Comments on Usage 

• Since th~ algebraic equations that Program NAES solves are generally 

nonlinear, the vector equation !_(~) = Q may hav.e many solutions (i.e., 

-23-



lNAES I • 2 • 2 l 
DO YOU WISH TO MODIFY CONVERGENCE VARIABLES--YES OR NO. 

INOI . 
DO·YOU WISH TO MODIFY THE INITIAL X-VECTOR--~YES OR NO. 

INOI 
PROCESS CONVERGED IN 57 ITERATIONS. 
THE CURRENT VALUE OF THE x-VECTOR is ••• 

3.000E+OO 2.000E+OO 
THE CURRENT VALUE OF THE VECTOR-FUNCTION FAT X Is ••• 
-S.684E-13 -1.364E-12 

THE PROGRAM CONSTANTS USED ARE••• 
THE CONVERGENCE EPSILON = l·OOOE-08 
THE MAXIMUM ITERATIONS ALLOWED = 200 
GAIN ADJUSTED BY THE PROGRAM.I FINAL GAIN = 1 • OOOE+OO . 
THE JACOBIAN WAS APPROXIMATED BY THE PROGRAM# WITH EPSJ • leOOOE-08 

ALL DONE 

Fig. A-2. TTY dialogue for Example One. 

-24-



c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

.C 
c 
c 
100 CONTINUE 
C DEFINE PROGRAM CONSTANTS N, GAIN, EPSC, EPSJ, MAX, IJAC, !AUTO, 
C AND !SKIP HERE. 

N=2 
GAIN=l.O 
EPSC= I. OE-08 
EPSJ= I . OE-08 
MAX~200 

IJAC=I 
IAUTO=O 
ISKIP=O 

C DEFINE THE INITIAL X-VECTOR HERE. 
XC 1l=10.0 
XC2l=-l.O 

C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE. 
GO TO 999 

200 CONTINUE 
C THE USER SPECIFIES THEN-DIMENSIONAL VECTOR-FUNCTION F. 

F c I l =X c 1 l • • 3-27. 0 
FC2l=XCll+XC2J••5-35.0 
GO TO 999 

300 CONTINUE 
C IF IJAC.NE.O, THE USER SPECIFIES THE JACOBIAN HERE. 

JACCl,ll=3.0•XCll••2 
JACC 1,21=0.00 
JAC C 2 , 1 l =I . 0 0 
JACC2,2J=5.0•XC2l••4 
GO TO 999 

400 CONTINUE 
C SPECIFY CONSTRAINTS ON THE ELEMENTS OF THE X-VECTOR HERE. 

IFCXCll.LT.0.0lXCll=O.O 
IFCXC2l .LT .-I .OlXC2l=-l .O 
IFCXCll.GT.+[0.0lX!ll=+IO.O 
IF<XC2l .GT.+IO.OlX!2l=+I0.0 
GO TO 999 

500 CONTINUE 
C THIS SECTION PROFIDES A PLACE TO CALCULA~E WITH THE SOLUTION VECTOR. 

c 
c 

GO TO 999 

c +++++++++++++++++++++i·+++++++++++++++++++++++++++++++++~++++++++++++++ 
c 
c 

Fig. A-3. Specialized Fortran coding for .Example Two. 

-25-



!NAES / • 2 • 21 
DO YOU WI SH TO MODI FY CONVERGENCE VARIABI..ES--YES OR NO• 

IN:Q] 
DO YOU WISH TO MODIFY THE INITIAL X-VECTOR---YES OR NO. 
[@] 
PROCESS CONVERGED IN 61 ITERATIONS. 
THE CURRENT VALUE OF THE X-VECTOR IS••• 

J.OOOE+OO 2.000E+OO 
THE CURRENT VALUE OF THE VECTOR-FUNCTION FAT X Is ••• 

• OE+OO .OE+OO 
THE PROGRAM CONSTANTS USED ARE••• 
T.HE CONVERGENCE EPSII..ON • le OOOE-08 
THE MAXIMUM ITERATIONS ALLOWED = 200 
GAIN ADJUSTED BY THE PROGRAM.I FINAL GAIN = 1. 000.J::+OO 
THE JACOBIAN WAS SUPPLIED BY THE USER. 

ALL DONE 

Fig. A-4. TTY dialogue for Example Two. 

-26-



2 
f(x) = x - 1 = 0). On the other hand, it may have no solution (over the 

field of real numbers) (i.e., f(x) = x 2 + 1 = O). In addition, it may happen 

that a solution exists, but that Program NAES is not capable of solving for 

it. 

• When Program NAES does not converge on a solution, try a different 

initial x vector, EPSJ, GAIN, etc. These are adjustable at the TTY. 

• When the program estimates the Jacobian, there is an additional 

noise level added to the Jacobian. Since this Jacobian is used in an 

iterative process, this error typically does not affect the result, if con­

vergence is obtained. If the error does affect the calculation, one.must 

use an analytical Jacobian rather than a numerical Jacobian. 

• The numerical Jacobian is only approximate but for large N saves the 

user from coding the Jacobian. This usually means a savings in debugging 

time. 

• One can improve the accuracy of the numerical Jacobian by making 

EPSJ smaller up to the point of machine noise and number representation. For 

the CDC 6600 and CDC 7600 machines, one can represent 14.4 significant 

figures. If EPSJ is so small that changes in F occur in the fifteenth or 

higher significant figures, this information is lost. In addition, the cal­

culations performed on the machines add noise. Based on the above and 
-8 

experimental running, EPSJ 1.0 x 10 appears to be a reasonable starting 

value. 

• As presently dimensioned, N must satisfy 1 < N < 20. 

Brief Description of Method 

Suppose one has a vector function f such that 

that is differentiable, and can be written in Fortran. For this function one 

seeks an ~ vector in JR. N (not necessarily unique) such that 

f(){) = 0. 
-~. 

One ·approach to solving for. x is the Newton-Raphson iteration. The 

basic idea is as.follo.ws. Assume Taylor's theorem applies, one can then 

expand f about a point !.• where x + x. The result is: 

-27-



()f 
0 = !.(~) = !.(~) + ax (~) [R - ~] + H.O.T. 

where H.O.T. denotes higher-order terms. Ignoring the H.O.T., one can solve 

for~ as follows: 

~ 

x x -

Since, in general, the H.O.T. contribute some information, R only 

approximates the true solution, _R. Assuming the process converges, one can 

improve on this approximate ~ by using an iterative procedure ba~ed on the 

above approximate equation. Program NAES uses 

[
af J -1 · 

~+l = ~ - (GAIN) ax (~) . f (~) 

GAIN is a user-specified convergence control term. For GAIN equal to one, 

this is the standard Newton-Raphson method. For efficiency, the computation 

of the inverse matrix is not performed, but rather the whole term 

[ 
af J -1 
ax (~) f (~) 

is computed via Gauss Elimination. Thus, given~ (the initial x vector 

specified by the user), one can solve for ~1 ; given ~l' one can solve for 

~2 , etc. ·There are two ways that this process can be halted. One, the 

maximum number of iterations specified by the user (MAX) is exceeded. Two, 

the process is judged to have converged. For this program, the process is 

said to have converged when each element of f and x satisfies: 

. I f i (~) I < ESPC i 1, .•• , N 

and 

I x~(i) - xN-1: (i) I < ESPC i 1, ••• , N 

where EPSC is a user-specified convergence variable. Whenever the process 

is halted, Program NAES prints out the current state of the iteration. 

-28-



If IJAC equals zero, the program will approximate the Jacobian term via 

sequential perturbation of the~ vector; EPSJ controls the amount of the 

perturbation. If IAUTO equals zero, the program will automatically adjust 

the value of GAIN; otherwise the value of GAIN is fixed. If ISKIP is less 

than or equal to zero, no intermediate printout occurs; otherwise, ISKIP is 

the ratio of iteration points to printout points. 

Fortran IV Listing of Program NAES 

c 
c 

A listing of the Fortran coding for Program NAES follows. 

_PROGRAM NAES 

C FOR A WRITEUP ON THE USAGE OF THIS PROGRAM, SEE UCRL-51657. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PROGRAM NAES !NONLINEAR ALGEBRAIC EQUATION SOLVER> ATTEMPTS TO 
ITERATIVELY SOLVE <VIA NEWTON-RAPHSON METHOD> FOR THE N-DIMENSIONAL 
SOLUTION VECTOR X SUCH THAT THE N-DIMENSIONAL VECTOR-FUNCTION F 
EQUALS ZERO, T~AT IS ... 

FiR••N---IR••N, DIFFERENTIABLE, CAN BE WRITTEN IN FORTRAN 
AND ONE SEEKS AN X-VECTOR IN R••N <NOT NECESSARILY UNIQUE> SUCH THAT 

F <XI = 0 

PROVISIONS ARE MADE TO PLACE INTERVAL CONSTRAINTS ON THE ELEMENTS OF 
THE X-VECTOR. THE JACOBIAN REQUIRED BY T:1E PROGRAM CAN BE SUPPLIED 
VIA FORTRAN STATEMENTS IANALYTICI OR ESTIMATED FROM FUNCTION F BY THE 
PROGRAM INUMERICALI. THE USER MUST SUPPLY AN INITIAL X-VECTOR. AS 
PRESENTLY DIMENSIONED. PROGRAM NAES CAN SOLVE PROBLEMS WITH 
UNKNOWNS RANGING FROM 1 TO 20. ALL USER CODING GOES IN SUB-
ROUTINE USER. 

THIS PROGRAM WAS WRITTEN BY HOWARD MCCUE AS PART OF EECS 299 ITHESISl 
AT THE UNIVERSITY OF CALIFORNIA AT BERKELEY UNDER PROF. OTTO SMITH. 

IMPORTANT 
N 
x 
F 

JAC 
GAIN 
EPSC 
EPSJ 
MAX 
IJAC 

!AUTO 

!SKIP 

VARIABLES OF THIS PROGRAM ARE ... 
THE DIMENSIONAL OF THE PARTICULAR PROBLEM 11.E. l TO 20> 
THE N-DIMENSIONAL ITERATION-VECTOR 
THE N-1) I MFN<; tnNAI. VfCTOR-FUNCT I ON OF THE PART I CUL AR 
PROBLEM 
THE N-BY-N JACOBIAN OF F 
THE NEWTON-RAPHSON ITERATION GAIN 
EPSILON USED TO JUDGE CONVERGENCE OF X-VECTOR 
EPSILON USED TO APPROXIMATE THE JACOBIAN 
MAXIMUM NUMBER OF NEWTON-RAPHSON ITERATIONS ALLOWED 
=O MEANS JACOBIAN APPROXIMATED FROM F BY PROGRAM: OTHERWISE. 
THE USER MUST PROVIDE FORTRAN CODING. 
=O MEANS THE GAIN TERM IS AUTOMATICALLY ADJUSTED: OTHER-
WISE, THE GAIN IS FIXED AT THE USER SPECIFIED VALUE. 
.LE.O MEANS NO INTF.RMF.DIATE PRINTOUT. OTHERHISE. THE 
POSITIVE NUMBER IS THE RATIO OF THE CALCULATED ITERATIONS 
TO PRINTOUT ITERATIONS. 

CALL CHANGE<5H+NAE5l 
REAL X<201,F<201,JAC<20.20>.Z<20l ,ERROR<20l,XOLD120l,E120l 
DIMENSION LABEL1201,FOLD120l 
DAT A <LABEL! I l . I= I . 20 l I l OH 1111111111 , l OH2222222222, l OH3333333333, 

-29-



210H4444444444,10H5555555555,10H6666666666,l0H7777777777, 
310H8888888888,10H9999999999,10H1010101010,10Hll1111llll, 
410H1212121212,tOH1313131313,10Hl4l4141414,10Hl515151515, 
510H1616161616,10H1717171717,IOH1818181818,10H1919191919, 
610H2020202020 I 

NTTY=59 
NIN=NTTY 
NOUT=NTTY 
COMMON/10/NIN,NOUT 

C GET INITIAL X-VECTOR AND OTHER PROGRAM CONSTANTS. 
CALL USER<l,N,X,F,JAC,G~IN,EPSC,EPSJ,MAX,IJAC,IAUTO,ISKIPl 

C CHECK FOR N IN THE PROPER RANGE. 
NMAX=20 
IF<<N.GT.Ol.AND.<N.LE.NMAXllGO TO 6 
WRITE<NOUT,7l 

7 FORMAT<27HN IS .LE.O OR GREATER THAN ,13,2H .l 
GO TO 999 

6 CONTINUE 
C CHECK TO SEE IF MODIFICATIONS REQUESTED. 

WR I TE< NOUT, 1 l 
FORMATC55HDO YOU WISH TO MODIFY CONVERGENCE VARIABLES--YES OR NO.l 
READ<NIN,2lANS 

2 FORMATCA3l 
IFCANS.NE.3HYES>GO TO 5 
WRITE< NOUT, 3 l 

3 FORMAT<50H+++GAIN+++-CONV-EPS-+JAC-EPS+~~MAX-ITS--SKIP RATIO, 
210H-GAIN MODE> 

READ<NIN,4lA,8,C,D.SKIP,AUTO 
4 FORMATt6E10.3l 

ID=D+O. 1 
lSKIP=SKIP+O.l 
IF<AUTO.GT.O.OllAUTO=l 
IF<AUTO.LT.O.Ol!AUTO=O 
IF< 10.LE.O> 10=0 
IFCA.NE.O.O>GAIN=A 
IF<B.NE.0.0lEPSC=B 
lF<C.NE.O.OlEPSJ=C 
IF<ID.NE.OlMAX=ID 

5 CONTINUE 
C MODIFY GAIN, EPSC, EPSJ, AND MAX AS REQUIRED. 

EPSC;=ABS<EPSCl 
EPSJ=ABS<EPSJl 
IF<GAIN.EQ.O.OlGAIN=l.O 
IF<EPSC.EQ.O.O>EPSC=l.OE-06 
IF<EPSJ.EQ.O.OlEPSJ=l.OE-06 
IF<MAX.LE.OlMAX=l 
WRITE<NOUT ,41 l 

41 FORMAT<55HDO YOU WISH TO MODIFY THE INITIAL X-VECTOR---YES OR NO.l 
READ<NIN,2lANS 
IF<ANS.NE.3HYES>GO TO 45 
ID=N 
IF<N.GT. 7l 10=7 
WRITE<NOUT ,42l <LABEL< I l, 1=1, ID> 

42 FORMAT<7A10l 
READ<NIN,43> <X< I l, l=l ,71 

43 FORMAT17E10.3l 
IF<N.LE.7>GO TO 45 
ID=N 
IF< N. GT. 14 l ID= 14 _ 
WRITE<NOUT,42llLABEL<I> ,1=8,IDl 
READCNIN,43> !XI I l, 1=8, 14l 
IFCN.LE.14lGO TO 45 
ID=t-J 
IFCN.GT.20llD=20 
WRITECNOUT,42lCLABELll>.1=15.IDl 
READCNIN,43l<X<ll,l;l5,20l 

-30-



45 CONTINUE 

c 
c 

IPRINT=-ISKIP 

C THIS LOOP DOES THE NEWTON-RAPHSON ITERATION. 

c 
c 
C INITIALIZE F FOR THE FIRST PASS THROUGH DO LOOP 100. 

CALL USERl2,N,X,F,JAC,GA!N,EPSC,EPSJ,MAX,lJAC,JAUTO,lSKJPl 
DO 100 !=I.MAX 

C STORE THE PREVIOUS VALUE OF X AND F. 
DO I 0 J= I ,N 
XOLD CJ l =X LJl 
FOLD C..) l =Ft J l 

10 CONTINUE 
C GET THE VALUE OF F<Xl 

CALL USER<2,N,X,F,JAC,GAIN,EPSC,EPSJ,MAX,_!JAC,IAUTO,ISKIPI 
!Ft,JAC.NE.OlOO TO 15 

C GET A NUMERICAL APPROXIMATION TO THE JACr.dJAN. 
DO 16 K= I ,N 
X!Kl=X!Kl+EPSJ 
CALL USER12,N,X,Z,JAC,GA!N,EPSC,EPSJ,MAX,JJAC,IAUTO,ISK!PI 
DO 17 J= I ,N 
JACIJ,Kl=<Z<Jl-FIJlltEPSJ 

17 CONTINUE 
X!Kl=XCKl-EPSJ 

16 CONTINUE 
GO TO 18 

15 CONTINUE 
C EVALUATE AN ANALYTIC EXPRESSION FOR THE JACOBIAN. 

CALL USER<3,N,X,F,JAC.GAIN,EPSC,EPSJ,MAX,IJAC,IAUTO,ISKIPl 
18 CONTINUE 
C SOLVE FOR THE CORRECTION TERM OF THE NEWTON-RAPHSON ITERATION. 

CALL GAUSS<N.JAC,F,ERROR,NOUT,IFLAGl 
IF<JFLAG.NE.OlGO TO 120 

C VALID CORRECTION TERM CALCULATED; UPDATE THE ITERATION VECTOR. 
DO 20 J= I ,N 
X!Jl=X!Jl-GAIN*ERRORlJl 

20 CONTINUE 
C IMPOSE CONSTRAINTS ON THE ELEMENTS OF THE ITERATION VECTOR. 

CALL USERC4,N,X,F,JAC,GAIN,EPSC,EPSJ,MAX,IJAC,IAUTO,ISKIPl 
C UPDAT[ VALUE OF VECTOR FUNCTION F BASED ON CONSTRAINTED X VECTOR. 

CALL USER<2.N,X,F,JAC,GAIN,EPSC,EPSJ,MAX,IJAC,IAUTO,ISK1Pl 
C TEST FOR CONVERGENCE. 

DO 30 J= I, N 
C CHECK THE RATE THAT X IS CHANGING. 

XX=ABSIXCJl-XOLDtJll 
IFCXX.GT.EPSClGO TO 50 

C CHECK THE CLOSENESS OF F<Xl TO ZERO---THIS IS NEEDED WHEN 
C X SATURATES ON THE CONSTRAINTS. 

XX=ABS<FIJll 
IFCXX.GT.EPSClGO.TO 50 

30 CONTINUE 
C l~~RATJVE PROCESS IS JUDGED TO HAVE CONVERGED 

GO TO 130 
LOOP=O 

50 CONTINUE 
IF<IAUTO.NE.OlGO TO 60 

C CHECK FOR THE PROPER VALUE OF GAIN---ADJUST AS REQUIRED. 
DO 51 J=l ,N 
XX=ABS!FOLDCJll-ABSlr!Jl J 
1r1xX.LT.O.OlGO TO 55 

51 CONTINUE 
C NO ELEMENT OF F INCREASED IN MAGNITUDE SINCE THE LAST ITERATION---
C GAIN VALUE JUDGED NOT TOO LARGE. CHECK IF GAIN SHOULD BE INCREASED. 

-31-



DO 52 J=l ,N 
IFtFIJl.EQ.O.OlGO TO 52 
XX=ABSIFOLDCJl/FtJll 
IFtXX.GT.2.00lGO TO 60 

52 CONTINUE 
C GAIN IS JUDGED TO BE TOO SMALL. 

GAIN=2.0•GAIN 
IFCGAIN.GT.1000.0lGAIN=IOOO.O 
GO TO 60 

55 CONTINUE 
C THE GAIN IS JUDGED TO BE TOO LARGE. 

GAIN=GAIN/2.0 
IF<UAIN.LT.O.OOOOllGAIN=0.00001 

56 CONTINUE 
LOOP=LOOP t- I 
DO 57 J=l ,N 
XCJl=XOLDCJl-GAIN•ERROR<Jl 

57 CONTINUE 
C IMPOSE CONSTRAINTS ON THE ELEMENTS OF THE ITERATION VECTOR. 

CALL USERC4,N,X,F,JAC,GAIN,EPSC,EPSJ,MAX,IJAC,IAUTO,ISKIPl 
C UPDATE VALUE OF VECTOR FUNCTION F BASED ON CONSTRAINTED X VECTOR. 

CALL USERC2,N,X,F,JAC,GAIN,EPSC.EPSJ,MAX,IJAC,IAUTO,ISKIPl 
IFtLOOP.GT.30lGO TO 60 
GO TO 50 

60 CONTINUE 
l~CISKIP.LE.OlGO TO 100 
IPRINT=IPRINT+l 
IFCIPRINT.LT.OlGO TO 100 

C WRITE OUT THE CURRENT N, GAIN, X-VECTOR, AND FCXl-VECTOR. 
WRITE<NOUT,61ll,GAIN 

61 FORMATC2Hl=,l4,3X,5HGAIN=,EI0.3l 
WR I TE C NOUT, I 4 I l ! X CJ l , J= I . N l 
WRITECNOUT, 141 l !FIJI ,J=l ,Nl 
IPRINT=-ISKIP 

100 CONTINUE 
c 
c 

WRITECNOUT,lllll 
111 FORMATC32HTHE PROCESS DID NOT CONVERGE IN ,l4,12H ITERATIONS.> 

GO TO 200 
120 CONTINUE 

WRITECNOUT,12lll 
121 FORMAT!45HCAN NOT SOLVE FOR ERROR VIA SUBROUTINE GAUSS.,!, 

225HTHE NUMBER OF ITERATIONS=.14l 
GO TO 200 

130 CONTINUE 
WRITE!NOUT,13111 

131 FORMATC21HPROCESS CONVERGED IN ,l4,12H ITERATIONS.> 
ICONV=l 
GO TO 200 

200 CONTINUE 
C WRITE OUT THE RESULTS. 

WRITECNOUT, 1401 
140 FORMAT!39HTHE CURRENT VALUE OF THE X-VECTOR IS ... l 

WRITECNOUT,1411CXCl1,l=l,Nl 
14 I FORMAT C 6 ! IX, E I 0 . 3 l l 

WRITE!NOUT,142l 
142 FORMAT!53HTHE CURRENT VALUE OF THE VECTOR-FUNCTION FAT X IS ... l 

WRITE C NOUT, 141 l CFC I l • I= I , N l 
WRITE!NOUT, 1431 

-J2-



143 FORMAT!33HTHE PROGRAM CONSTANTS USED ARE ... l 
WRITE<NOUT,144lEPSC,MAX 

144 FORMAT<26HTHE CONVERGENCE EPSILON ,El0.3,/, 
233HTHE MAXIMUM ITERATIONS ALLOWED= ,141 
IF!IAUTO.EQ.OIWRITE<NOUT~t47lGAIN 
IF!IAUTO.NE.OlWRITE<NOUT,1481GAIN 

147 FORMATl43HGAIN ADJUSTED BY THE PROGRAM; FINAL GAIN = ,El0.3l 
148 FORMAT!l4HGAIN FIXED AT ,El0.31 

IF!IJAC.EQ.OIWRITEINOUT,1451EPSJ 
lFllJAC.NE.OIWRITE!NOUT,1461 

145 FORMAT!45HTHE JACOBIAN WAS APPROXIMATED BY THE PROGRAM, 
212H WITH EPSJ = .EI0.31 

146 FORMATl38HTHE JACOBIAN WAS SUPPLIED av THE USER.I 
IF<ICONV.EO.llGO TO 300 
WRITE!NOU7,l491 

149 FORMAT!31,38HOO YOU WISH TO CONTINUE •---YES OR NO.I 
REAO!NIN,21ANS 
IF!ANS.EQ.3HYESIGO TO 6 

300 CALL USER<5.N,X,F,JAC,GAIN,EPSC,EPSJ,MAX,IJAC.IAUTO,ISKIPI 
999 CONTINUE 

CALL EXIT 
ENO 

SUBROUTINE GAUSS!N,A,9,X,NOUT,lFLAGI 
c 
C SUBROUTINE GAUSS SOLVES THE VECTOR EQUATION A•X=B FOR THE X VECTOR 
C GIVEN THAT THE A MATRIX ANO B VECTOR ARE KNOWNS ANO THAT THE 
C A MATRIX HAS FULL RANK. PROBLEMS MAY OCCUR FOR NEAR-SINGULAR A 
C MATRICES; IF SO, ERROR MESSAGES ARE PRINTED ANO !FLAG IS 
c MADE NONZERO. A.B. ANO x ARE DEFINED OVER THE FIELD or REAL 
C NUMBERS. INPUT/OUTPUT IS AS FOLLOWS ... 
C N IS THE SYST~M ORDER 
C A IS SYSTEM MATRIX 
C B IS INPUT VECTOR 
C X IS SOLUTION VECTOR 
C NOUT IS THE LOGICAL TAPE UNIT NUMBER 
C IFLAG=O GAUSS ELIMINATION PERFORMED 
C IFLAG=l GAUSS ELIMINATION CAN NOT BE PERFORMED 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THIS SUBROUTINE IS TAKEN FROM COMPUTER SOLUTION or LINEAR ALGEBRAIC 
SYSTEMS BY G. FORSYTHE AND C. B. MOLER, PRENTICE-HALL 1967, PP 68-70 .. 
MODIFICATIONS WERE MADE TO THIS SUBROUTINE .TO CHANGE THE MANNER 
IN WHICH ERROR MESSAGES ARE HANDLED. 

TO CHANGE THE MAXIMUM SIZE MATRIX THAT ONE CAN HANDLE, 
THE VALUE or NMAX IN THIS SUBROUTINE AND ALL DIMENSION 
IN THIS SUBROUTINE PLUS SUBROUTINES OECOMP, SOLVE; ANO 

NMAX=20 
DIMENSION A120,201,UL120.201,B<201,X1201 
IrLAG=O 

CHANGE 
STATEMENTS 
IMPRUV. 

C CHECK THE VALUE OF N 
IFl!N.GT.01.AND.<N.LE.NMAXllGO TO 40 
!FLAG=! 

14 

40 

WRITECNOUT,141 
FORMAT138HIN A CALL TO GAUSS, N IS OUT or RANGE.I 
GO TO 999 
CONTINUE 

-33-



IF<N.NE.llGO TO 41 
X=B C I l I AC I , I l 
GO TO 999 

41 CONTINUE 
C DECOMPOSE MATRIX A INTO UPPER ANO LOWER TRIANGLE MATRICES. STORE IN UL 

CALL DECOMPCN,A.UL.IFLAGJ 
IFCIFLAG.NE.O>GO TO 10 

C SOLVE SYSTEM OF EQUATIONS USING U AND L MATRICES. 
CALL SOLVECN,UL,B,Xl 

C USE IMPROVEMENT TO CONVERGE ON TRUE ANSWER. 
CALL IMPRUVCN,A,UL,8,X,OIGITS,IFLAGl 

10 CONTINUE 
IFL;.G=IFLAG+l 
GO TO<l.2,3,4l,IFLAG 

2 WRITECNOUT,lll 
11 FORMATC54HOMATR1X WITH ZERO ROW IN DECOMPOSE. 

GO TO 1 
3 WR1TECNOUT,12l 

12 FORMATC54HOSINGULAR MATRIX IN DECOMPOSE. ZERO DIVIDE IN SOLVE. 
GO TO 1 

4 WRITECNOUT,131 
13 FORMATC54HONO CONVERGENCE IN IMPRUV. MATRIX IS NEARLY SINGULAR. 

CONTINUE 
IFLAG=lFLAG-1 

999 CONTINUE 
RETURN 

c 

END 

SUBROUTINE DECOMP CNN, A, UL, !FLAG> 
DIMENSION AC20,20l, ULC20,20J, SCALESC20l, 1PS<20J 
COMMON I AA I !PS 
N = NN 

C INITIALIZE IPS, UL AND SCALES 

c 

DO 5 I = 1 ,N 
IPS c I l = I 
ROWNRM = 0.0 
DO 2 J = 1 ,N 

ULCl,Jl = ACl,Jl 
IFCROWNRM-ABSCULCl,Jlll l,2,2 

l ROWNRM = ABSCULCl,Jll 
2 CONTINUE 

IF CROWNRMJ 3,4,3 
3 SCALESllJ = 1.0/ROWNRM 

GO TO 5 
4 !FLAG= 1 

GO TO 19 
:5 CONTINUE 

C GAUSSIAN ELlMlNATlON WITH PARTIAL PIVOTING 
NMl = N-1 
DO 1 7 K = 1 , NM I 

BIG = 0.0 
DO I I I = K ,N 

IP = I PS I I l 
SIZE= ABSCULllP,Kll•SCALESCIPl 
IF CSIZE-BIGJ 11,11,10 

10 BIG = SIZE 
IDXPI V = I · 

-34-



II CONTINUE 
IF !BIG> 13, 12, 13 

12 IFLAG=2 
GO TO 19 

13 IF C IDXPIV-Kl 14, 15, 14 
14 J = IPS!Kl 

i PS c K l = I PS I I DXP I V l 
I PS c IDXP IV I = J 

15 KP = IPS<Kl 
PIVOT = UL<KP.Kl 
KP! = K+I 
DO 16 I = KP I , N 

IP = IPSC I l 
EM= -UL< IP.Kl/PIVOT 
UL! !P,Kl = -EM 
DO 16 J = KP I , N 

ULllP,Jl = UL!IP,Jl + EM•UL<KP~Jl 
C· INNER LOOP. USE MACHINE LANGUAGE CODING IF COMPILER 
C DOES NOT PRODUCE EFFICIENT CODE. 

16 CONTINUE 
17 CONTINUE 

KP = IPSCNl 
IF CUL! KP. N l I I 9. 18. I 9 

18 IFLAG=2 
I 9 CO.NT I NUE 

RETURN 
END 

SUBROUTINE SOLVE <NN, UL, B. Xl 
DIMENSION ULC20.20l, BC20l, X<20l, !PS<201 
COMMON I AA I !PS 

c 

c 

N = NN 
NP! = N+ I 

IP = JPS< I l 
XC I l = BC !Pl 
DO 2 I = 2.N 

IP = !PS< I l 
!Ml = 1-1 
SUM = 0.0 
DO I J = I, !Ml 

I SUM= SUM+ ULCIP,Jl*XCJl 
2 X c I l = B I I P l - SUM 

IP = IPS<Nl 
X < N l = X < N l I UL C IP , N l 
DO 4 !BACK = 2,N 

= NPl-IBACK 
C · I GOES <N-ll, ... ,I 

IP = !PS< I l 
IPI = I+ I 
SUM= 0.0 
DO 3 J = IP! ,N 

3 SUM= SUM+ ULCIP,Jl*X!Jl 
.4 Xlll = <Xlll-SUMl/ULCIP.ll 

RETURN 
END 

-35-



SUBROUTINE lMPRUV <NN, A, UL, B, X, DIGITS, lFLAGl 
DIMENSION A<20,20l, ULC20,20l, BC20), X<20l, RC20l, 0XC20l 

C USES ABS<>. AMAXICl, ALOGIO<l 
DOUBLE PRECISION SUM 

c 
N = NN 

EPS "' 2.uc~47l 
ITMAX = 29 

C +++ EPS ANO lTMAX ARE MACHINE DEPENDENT. +++ 
c 

c 

XNORM = 0.0 
DO 1 I = I , N 

XNORM = AMAXICXNORM,ABSCX!llll 
IF <XNORMl 3,2,3 

2 DIGITS = -ALOGIOCEPSl 
GO TO 10 

3 DO 9 ITER = l,ITMAX 
DO 5 I = I ,N 

SUM = 0.0 
DO 4 J = I ,N 

4 SUH= SUM+ ACl,Jl•X<Jl 
SUH= Bill - SUM 

5 R c I l = SUH 
C +++ IT IS ESSENTIAL THAT A<l,Jl•X<Jl YIELD A DOUBLE PRECISION 
C RESULT AND THAT THE ABOVE + AND - BE DOUBLE PREC~SION. +++ 

CALL SOLVE CN,UL,R.DXl 
OXNORH = 0.0 
DO 6 I ::; 1.N 

T = X< I l 
XCll = X!ll + DX!ll 
OXNORM::; AHAXl<DX~~RM,ABS<X<ll-Tll 

6 CONTINUE 
IF CITER-ll 8,7,8 

7 DIGITS= -ALOGIO<AMAXl<DXNORM/XNORM,EPSll 
8 IF <DXNORM-EPS•XNORMl 10,10,9 
9.CONTINUE 

C ITERATION DID NOT CONVERGE 
IFLAG=3 

10 CONTINUE 
RETURN 
ENO 

SUBROUTINE USER<MOOE,N,X,F,JAC,GAIN.EPSC.EPSJ,MAX,IJAC,IAUTO, 
21SKIPl 

c 
C I~ THIS SUBROUTINE, THE USER SPECIFIES THE PARTICULAR PROBLEM. THE 
C INPUT/OUTPUT IS AS FOLLOWS ... 
C MOOE THIS BRANCHES PROGRAM TO VARIOUS PARTS OF THE SUBROUTINE. 
·c N THE DIMENSIONAL OF THE PARTICULAR PROBLEM !I.E. I TO 20> 
C X THE N-OIMENSIONAL ITERATION-VECTOR 
C F THE N-OIHENSIONAL VECTOR-FUNCTION OF THE PARTICULAR 
C PROBLEM 
C JAC THE N-BY-N JACOOIAN OF F 
C GAIN THE NEWTON-RAPHSON ITERATION GAIN 
C EPSC EPS!~ON USED TO JUDGE CONVERGENCE OF X-VECTOR 
C EPSJ EPSILON USED TO APPRO~IHATE THE JACOBIAN 
C MAX MAXIMUM NUMBER OF NEWTON-RAPHSON ITERATIONS ALLOWED 
C IJAC =O MEANS JACOBIAN APPROXIMATED FROM F BY PROGRAM: OTHERWISE, 

-J6·· 



c 
c 
c 
c 
c 
c 
c 

THE USER MUST PROVIDE roRTRAN COOING. 
!AUTO =O MEANS THE GAIN TERM IS AUTOMATICALLY ADJUSTED: OTHER-

·!SKIP 
. WISE, THE GAIN IS rlXED AT THE USER SPECIFIED VALUE. 

.LE.O MEANS NO INTERMEDIATE PRINTOUT. OTHERWISE, THE 
POSITIVE NUMBER IS THE RATIO or THE CALCULATED ITERATIONS 
TO PRINTOUT ITERATIONS. 

C SECTIONS 100 ANO 200 ARE REQUIRED WHILE SECTIONS 300, 40-0, AND 
C ARE OPTIONAL. 
c 
c 

COMMON/JO/NJN,NOUT 
REAL Xt20>,rt20>,JAC120,~0l 
GO TOll00,200,300,400,500>,MODE 

c 
c THE USER PLACES ALL or HIS CODING BETWEEN THE TWO +-LINES. 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c 
c 
100 CONTINUE 
C OErINE PROGRAM CONSTANTS N, GAIN, EPSC, EPSJ, MAX, IJAC, !AUTO, 
C ANO !SKIP HERE. 

N=2 
GAJN=l.O 
EPSC= 1. OE-08 
EPSJ=l .OE-08 
MAX=200 
IJAC=O 
IAUTO=O 
ISKIP=O 

C DErJNE THE INITIAL X-VECTOR HERE. 
Xlll=lO.O 
Xt2l=-1.0 

C DEFINE ANY ADDITIONAL PROBLEM CONSTANTS HERE. 
GO TO 999 

200 CONTINUE 
C THE USER SPECIFIES THEN-DIMENSIONAL VECTOR-FUNCTION r. 

r< 1>=xi1 >••3-27.o 
Ft2l=X<l>+Xl2>••5-35.0 
GO TO 999 

300 CONTINUE 
C IF IJAC.NE.O, THE USER SPECIFIES THE JACOBIAN HERE. 

GO TO 999 
400 CONTINUE 
C SPECiFY CONSTRAINTS ON THE ELEMENTS OF THE X-VECTOR HERE. 

IF!Xl[l.LT.O.OlXl!l=O.O 
JF<Xt2l .LT .-l .OlXt2l"'--l .O 
JFIXl!l.GT.+10.0lXl!l=+lO.O 
JFIXl2l .GT.+10.0lXt2l=+lO.O 
GO TO 999 . 

500 CONTINUE 
C THIS SECTION PROFIDES A PLACE TO CALCULATE WITH THE SOLUTION VECTOR. 

c 
c 

GO TO 999 

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
c 

999 CONTINUE 
RETURN 
E:ND 

=37~ 



APPENDIX B. PROGRAM SS (STATE SPACE) 

Introduction 

In controls and systems engineering, the process under study is often 

described by a system of first-order, ordinary differential equations of the 

initial-value type. Problems of this type can be characterized by vector 

differential equations of the form: 

(B-1) 

Program SS was written with the intent of providing a simple method of 

obtaining numerical solutions for problems of this type with a minimum of 

specialized programming. For restrictions on the form of f[~(t),.t; ~(t 0 ),t 0 ], 
see the section in this appendix entitled "Discussion of the Integration 

Method." Used in its simplest form,.Program SS only requires the user to 

provide Fortran coding for the vector function f[.~(t) ,t; ~(t 0 ,t 0 ], specify 

the outputs, and supply a standardized input deck. Program SS will then 

generate a tabular listing of the outputs and make line-printer plots of the 

outputs vs time. In addition, provisions are also made to:. perform one-time 

preintegration calculations, perform one-time postintegration calculations, 

read specialized input data, establish specialized output labels, handie 

piecewise continuous f[~(t),t], make x-y plots of output variables, and 

record the minimull\S and maximums of specified varjahles, · Subroutines have 

been written to provide delay, level detection with hysteresis, and solutions 

to implicit equations. Program SS is written totally in Fortran IV; the 

output is in line-printer format. 

Example of Usage 

The following example illustrates how one can use Program SS to obtain 

the numerical solution to a set of 'nonlinear differential equations. Suppose 

the system under study can be described by the following three differential 

equations: 

x = 
1 

-ax 2 , 

(B-2) 

(B-3) 

-38-



(B-4) 

where 

1 ' 

d ./a + b • 

Observe that for the first differential equation the constant -0.5 is 

fixed, while for the second ·and third equations the coefficients are written 

as variables. Because the coefficient in Eq. (B-2) is fixed, it can be 

explicitly written in the Fortran coding. Assume that because of the nature 

of the problem, one wishes to observe the solution of a set of differential 

equations for different values of constants a, b, and c. The approach used 

is to compile Program SS with the differential equations but have the 

constants a, b, and c specified by the input deck. This technique allows 

one to use the same bin:ary file (results of compilation) with different input 

decks to generate solutions for the different sets of constants. For this 

example, specify the constants as follows: . 

a = 1, 

b 0.5, 

c 0.25. 

The solution starts at t
0 

= 0 s; specify the final time as tf. 
1 

= 20 s 
. ina 

and the stepsize (constant over the run) as 0.1 s. If the stepsize is too 

. large, the numerical.solution will go unstable. This will cause Program.SS 

to halt the solution and output all data up to that time·. 

The user-writ.ten input deck SSIN for this program is shown in Fig. B-1. 

A detailed description of the input-deck format is given in the following 

section of this appendix. The specialized Fortran coding for this problem 

is shown in Fig. B-2, where the boxed-in portions are written by the user. 

Later. in this appendix, a detailed description: of the subroutine USER is 

given in which all specialized Fortran coding relating to this problem appears. 

-39-



l2 4 6 8<ll2 4 6 8<2>2 4 6 8<3l2 4 6 8<4l2 4 6 8<5>2 4 6 8<6l2 4 6 8!7l 
BOX RSI SS EXAMPLE 2 I 001 0 0 15000 004 
THIS IS AN EXAMPLE OF A SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS. 
THE FIRST TWO D.E.S ARE LINEAR WHILE THE THIRD IS NONLINEAR 
0.00 20.0 0.10 03 04 
1.00 l.00 l.00 
1.000 0.500 0.250 
THE VALUES OF A. 8, AND C FOR THIS RUN ARE ... 

A= I. 000 
B=0.500 
C=0.250 

Fig. B-1. Input deck SSIN for example given in text. 

-40-



c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
100 
c 

CONTINUE 

C THE USER INSERTS USER DEFINED INPUT READ/WRITE STATEMENTS HERE. 
C THE INPUT TAPE UNIT NUMBER MUST BE NIN AND THE OUTPUT TAPE UNIT 
C NUMBER MU~T BE NOUT. 

I 0 I 

200 
c 

READININ,IOllA,B,C 
FORMATC3E!0.31 
WRITECNOUT,!OllA,B,C 
l.JO TO 999 
CON: INUE 

c 
c 

ONE CAN DO ONE-TIME PRECALCULATIONS AND JUTPUT LABELLING IN 
THIS SECTION. 

D=SQRTIA+Bl 
C OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAMPLE IS ... 
C LABEL Cl l=!OHOUTPUT I 

LABELl!l=!OHSTATE NO I 
LABELC21=!0HSTATE NO 2 
LABELC31=10HSTATE NO 3 
LABEL<41=10H XDOT<31 

300 
c 

GO TO 999 
CONTINUE 

C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T, AND THE X-VECTOR. 
c 
c CALCULATE AN INTERMEDIATE VARIABLE 

· Z=-c•xc31··xc11••2-xc21••2-D 
CALL MINMAXCl,IOH XDOT<31 ,ZI 
IF<T.GT.15.0ICALL STOP 

WHICH IS A FUNCTION OF THE STATES. 

C .CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES. 

400 
c 

XDOTC!l=-0.5•XCll 
XDOTC21=-A•X<2l 
XDOT<31=Z 
GO TO 999 
CONTINUE 

C THE USER SPECIFIES THE VARIABLES THAT WILL BE OUTPUTTED IN THIS 
C SECTION----THE OUTPUT VARIABLES ARE PLACED IN THE Y-VECTOR; THE 
C Y VECTOR IS OF LENGTH M, WHERE M IS SPECIFIED IN THE INPUT 
C DECK SSIN. 

500 
c 

YC I l=X< 11 
YC21=XC21 
YC31=Xl31 
YC41=Z 
CALL ~YPLOTl!,4,21 
GO TO 999 
CONTINUE 

C THIS SECTION IS PROVIDED FOR POST PROCESSING OF THE FINAL TIME DATA. 
c 
c CALCULATE THE SUM OF THE THREE STATES AT THE FINAL TIME 

501 

SUM~Xlll+Xl21+XC31 

WRITE<NOUT,50!1SUM 
FORMATC!Hl,5/,6HSUM = ,E!0.31 
GO TO 999 -···-

c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Fig. B-2 •. Specialized Fortran coding require~ for example given in text. 

-41· 



Figures B-3 through B-5 show portions of the output for this problem. 

Figure B-3 shows the echoing of the input-deck data. Figure B-4 illustrates 

a typical line-printer plot, and Fig. B-5 shows the initial portion of the 

tabular.listing. 

Standardized Input Deck 

The standardized input is that portion of the input deck for which the 

Fortran coding has already been written. The standardized input includes 

the following type of information: starting time, final time, stepsize, 

initial conditions, plot title cards, etc. The user must write additional 

' Fortran coding (in subroutine USER) for any specialized data he wishes to 

read-in via the input deck. In the above example, the specialized input is 

the values of constants a, b, and c. The input deck is named SSIN and cards 

in it have the following formats: 

Control Gard 

Columns 

1-20 

21 

23 

25-27 

29 

31 

33-37 

Not used for this version of Program SS. 

The number of plot title cards that appear on each line­

printer plot. The minimum is zero and the maximum is four. 

Not used for this version of Program SS. 

This is the ratio of output stepsize to integration stepsiz~. 

Data is written in I3 format. If left blank, the default 

val4e of one is assigned by the program. The minimum value 

is one and the maximum value is 999. 

This switch controls the selection of output modes: 

= 0 means plots and tabular listing, 

1 mea·ns tabular listing only, 

= 2 means plots only, 

3 means no plots or tabular lfsting. 

This switch controls the line-printer plot size: 

0 means full-size plots; otherwise, reduced size plots. 

These locations specify the output-file size (I5 format). 

-42-



THE DATA IN THE INPUT FILE IS ... 

BOX R61 SS EXAMPLE 2 I I 0 0 15000 4 
THIS IS AN EXAMPLE OF A SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS. 
THE FIRST TWO D.E.S ARE LINEAR WHILE THE THIRD IS NONLINEAR 

.OE+OO 2.000E+OI l.OOOE-01 3 4 
I .OOOE+OO 1.000E+OO l.OOOE+OO 
l.OOOE+OO 5.000E-01 2.500E-OI 

THE VALUES OF A, 8, AND C FOR THIS RUN ARE ... 
A=l.000 
B=0.500 
C=0.250 

Fig. B-3. The echoing. of the input deck into the output deck. 

-43-



1 . OOOOE +00 

8.0000E-01 

6.0000E-01 

lf.OOOOE-01 

2.0000E-01 

. OE+OO 

STATE NO 1 
THIS IS AN EXAMPLE or A SYSTEM or NONLINEAR 01rrERENTIAL EQUATIONS. 
THE rlRST TWO O.E.S ARE LINEAR WHILE THE THIRD IS NONLINEAR 

x . 
I 
IX 
I 
I X 
I 
I X 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 

x 

x 
x 

x 

x 

x 
x 
x 
x 
x 

x 
x 

I ...... . 
'I 
I 
I. 
I 
I 
I 
I 
I 
I 

x 
x 
x 
x 

I ........ . 
I 
I 
I 
I 
I 
I 
I 
I 
I 

x. 
x 
.x 

xx 
x 
x 

xx 
. xx 

xx 
xx. 

xx 
xxx 

xxx 
xx xx 

xx xx 
xxxxxx 

xxxxxxxx 
xxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxx . 

.OE+OO 2.000E+OO lf.OOOE+OO 6.000E+OO 8.000E+OO l .OOOE+Ol 
TIME IN SECONDS 

Fig. B-4. Typical line-printer plot. 

-44-



TIME STATE NO 1 STATE NO 2 STATE NO 3 XDOTC3l EST. ERROR 

.OE+OO 1.000E+OO 1.000E+OO 1.000E+OO -1.475E+OO .OE+OO 
1.00E-01 9.512E-Ol 9.048E-Ol 8.588E-Ol -1 .353E+OO -1.000E+OO 
2.00E-01 9.048E-Ol 8. 187E-Ol 7.284E-Ol - I. 258£+00 -1.000E+OO 
3.00E-01 8.607E-01 7.408E-Ol 6.065E-Ol -1. 184E+OO -1. OOOE+OO 
4.00E-01 8.187E-Ol 6.703E-Ol 4.910£-01 -1. 127E+OO -2.000E+OO 
5.00E-01 7.788£-01 6.065E-01 3.807E-Ol -1.081[+00 6.728£-09 
6.00E-01 7.408E-Ol 5.488[-01 2.745E-Ol -1 .046E+OO 1.702[-07' 
7.00E-01 7.047[-01 4.966E-Ol 1. 713E-O 1 -1.018E+OO 1 .482E-06 
8.00E-01 6.703E-Ol 4.493E-01 7.076E-02 -9.950£-01 -2.000E+OO 
9.00E-()1 6.376E-Ol 4.066E-Ol -2.779E-02 -9.765E-Ol 5.500E-09 
1. OOE+OO 6.065E-Ol 3.679E-Ol - 1 . 246E - 0 1 -9.610E-Ol 1.144E-07 
1.lOE+OO 5.769[-01 3.329[-01 -2.201E-Ol -9.477E-O 1 6.222E-07 
1 .20E+OO 5.488E-Ol 3.012E-Ol -3. 142E-01 -9.357E-Ol -2.000E+OO 
1. 30E+OO 5.220E-Ol 2.725E-Ol -4.072E-Ol -9.247E-Ol 4.503E-09 
1. 40E+OO 4.966E-Ol 2.466E-Ol -4.992E-Ol -9.142E-OI 7.669E-08 
1 .50E+OO 4.724E-Ol 2.231E-Ol -5. 90 1E-'o1 -9.039E-Ol 2.504[-07 
1.60E+OO 4.493E-01 2.019[-01 -6.800E-Ol -8.936£-01 -2.000E+OO 
1. 70[+00 4.274E-Ol 1.827E-Ol -7.688E-Ol -8.832E-Ol 3.687E-09 
1 .SOE+OO 4.066[-01 1.653E-O1 -8.566E-Ol -8.726E-Ol· 5. 140£-08 
I. 90[+00 3.867[-01 l .496E-Ol -9.433E-Ol -8.617E-Ol 9.310£-08 
2.00E+OO 3.679E-01 l.353E-Ol -l.029E+OO -8.505E-Ol -2.000E+OO 
2.lOE+OO 3.499E-Ol 1 .225E-OI -1. 113E+OO -8.389E-Ol 3.019E-09 
2.20E+OO 3.329E-Ol 1.108E-Ol -1.197E+OO -8.270E-Ol 3.446£-08 
2.30E+OO 3. 166E-O 1 1. 003E-O 1 -1.279E+OO -8. 148E-O 1 2.895E-08 
2.40E+OO 3.012E-Ol 9.072E-02 -1.360E+OO -8.023E-Ol -2.000E+OO 
2.50E+OO 2.865E-Ol 8.208E-02 -1 .439E+OO -7.896£-01 2.471E-09 
2.60E+OO 2.725E-Ol 7.427E-02 -1. 518E+OO -7.766E-Ol 2.310E-08 

.2. 70E+OO 2.592E-Ol 6.721E-02 -1. 595[+00 -7.634E-Ol 4.484E-09 
2.80E+OO 2.466E-Ol 6.081E-02 -1 .670E+OO -7.501E-Ol -2.000E+OO 
2.90E+OO 2.346E-01 5.502E-02 -1. 745E+OO - 7 . 366E - 0 I. 2.023£-09 
3.00E+OO 2.231E-Ol 4 .9.79E-02 -1.818£+00 -7.230E-Ot 1 .548[-08 
3. 1 OE+OO 2.122E-Oi 4.505E-02 -1 .889E+OO -7.094£-01 3.597£-09 
3.20E+OO 2.019£-01 4.076E-02 -1.959E+OO -6.958E-Ol -2.000E+OO 
3.30E+OO 1. 920E-O I 3.688E-02 -2.028E+OO -6.821E-OI I .657E-09 
3.40E+OO I. 827E-O I 3.337E-02 -2.096E+OO -6.685E-Ol I .038E-08 
3.50E+OO 1. 738E-O 1 3.020E-02 -2.162[+00 -6.549E-Ol 5.286E-09 
3.GOE+OO 1.653E-O1 2.732E-02 -2.227E+OO -6.414E-Ol -2.000E+OO 
3.7iJE+OO I .572E-OI 2.472£-02 -2.290E+OO -6.280[-01 1.356E-09 
3.80E+OO ! .496E-Ol 2.237E-02 -2.352E+OO -6. !48E-Ol 6.957£-09 
3.90E+OO 1.423E-O1 2.024£-02 -2.413E+OO -6.0!6E-01 4.752E-09 
4.00E+OO I. 353E-O I 1 .832E-02 -2.473E+OO -5.886E-01 -2.000E+OO 
4.lOE+OO I .287E-O I 1 .657E-02 -2.531[+00 -5.757E-01 I. 1 l lE-09 
4.20E+OO I .225E-Ol 1 .500E-02 -2.588£+00 -5.630E-OI 4.663E-09 
4.30E+OO I. 165E-O I l.357E-02 -2.644£:+00 -5.5n5E-OI 3.653£-09 
l.f.40E+OO 1 .108E-Ol l.228E-02 -2.698[+00 -5.381E-Ol -2.000E+OO 
4.50E+OO I .054E-01 1.lllE-02 -2.751E+OO -5.259E-Ol 9.092E-10 
4. f.~E +00 1. 003E-O 1 l.005E-02 -2.803E+OO -5.140E-Ol 3.126E-09 
4.70E+OO 9.537E-02 .9.095E-03 -2.854E+OO -5.022E-Ol 2.591E-09 
4.80E+OO 9.072E-02 8.230E-03 -2.904E+OO -4.907E-Ol -2.000E+OO 
4.90E+OO 8.629E-02 7.447E-03 -2.952E+OO -4.793E-Ol 7.444E-IO 
5.00E+OO 8.208E-02 6.738E-03 -3.000E+OO -4.682E-Ol 2.095E-09 
5. IOE+OO 7.808E-02 6.097E-03 -3.046E+OO -4.572E-O! 1.739E-09 
5.?nF+OO 7.1+27E-02 5.517[-03 -3.091E+OO -'+.'+ti~E-01 -2.000E+OO 
5.30E+OO 7.065E-02 4.992E-03 -3. t 35E+OO -4.360E-Ol 6. 095[-10 
5.40E+OO 6.72tE-02 4 .5!7[-03 -3. I 76E+OO -4.?s:;7E-OI I .i+05E-OQ 
5.~0E+OO b . .S~:5E-02 4.087E-03 -3.220E+OO -4. 156E-Ot 1.llOE-09 
5.GOE+OO 6.081£-02 3.698E-03 -3.261E+OO -4.057E-01 -2.000E+OO 

Fig• R-5. Initial portion of the tabular output. 
'· 

-45-



39-41 The number of problem-comment cards (I3 format). These com­

ment cards will appear only once at the beginning of the 

output. The minimum number is 0 and the maximum is 999. 

Plot Title Cards 

The plot title cards are reproduced at the top of each plot. One may 

have from zero to a maximum of four plot title cards, and each card can 

have up to 80 characters. 

Problem Information Card 

Columns 

1-10 

11-20 

21-30 

31-32 

34-35 

Initial time in seconds (El0.3' format). 

Final time in seconds (El0.3 format). 

Integration stepsize in seconds (El0.3 format). The stepsize 

is fixed for the numerical solution of the differential 

equations. 

The number of integrator state variables N (I2 format). 

The number of outputs M (I2 format). If M = O, then the 

program assigns a default value of M = N. 

As presently dimensioned~ N and M must satisfy: 

0 < N < 20 , 

0 < M < 30 • 

Initial Condition Cards 

The N initial values of the N integrators are read in 8El0.3 format. 

The first position corresponds to x
0

(1), the next to x
0

(2), etc. 

User Defined Input 

The formats used here are user specified in subroutine USER, 

section 100. 

Problem Comment Cards 

The probiem comment cards appear only once at the beginning of the 

output. One may have 0 to 999 cards; each card may have up to 80 

characters. 

-46-



Standardized Subroutine USER 

All user-written Fortran IV coding, which specifies the particular 

problem, appears in a standardized subroutine USER. Subroutine USER is 

called five different ways by Program SS. The manner in which subroutine 

USER is used is determined by the value of mode (set by Program SS). For 

mode = 1, subroutine USER branches to section 100, for mode = 2, to 

section 200, etc. The basic form of the standardized subroutine USER is 

shown in Fig. B-6. 

In section 100, Program SS reads user-defined input data. The input­

tape unit number is NIN and the output tape unit number is NOUT. All read 

statements accept data contained in the input file SSIN; all write statements 

place data in the output file .SSOUT. In section 200, one can do precalcu­

lations based on data read in section 100 and constants defined in section 

200. Typically, the results of the precalculations will be constants used 

in .the integration portion. One can also overwrite the standardized output 

labels in this section. In section 300, one specifies the first-order, 

ordinary differential equation. Given N, T, and X (where N is the number of 

first-order differential equations, T is the current time, and X is the cur­

rent value o.f the state vector at time T), the user must provide Fortran IV 

coding that determines XDOT, the current value of the time-derivative of X 

at time T. 

In section 400, the output vector Y is specified. One can place any 

desired variable in any order in the Y vector. The first element of Y is 

plotted first, the second element is plotted second, etc. In section 500, 

one can do postintegration calculation. The value of X will be that of the 

last calculated time. Any input or output must observe the tape unit numbers 

discussed in section 100. Observe that no user-written common statements are 

required to exchange information between Program SS and subroutine USER or 

between sections in subroutine USER. 

Additional Features 

This section discusses features of Program SS not illustrated in the 

four previous sections of. this appendix. 

• For efficiency in core utilization, the output vector Y is dimensioned 

to hold 101 output points (not integration points) per element. To provide 

adjustment befween integration stepsize and output stepsize, a countdown ratio 

-47-



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE 

SUBROUTINE USERIMODE,N,T,X,XOOTl 

VARIABLES USED BY PROGRAM SS ARE AS FOLLOWS ... 
MOOE SWITCH USED BY PROGRAM SS TO SELECT VARIOUS PARTS 

OF SUBROUTINE USER. 
NIN TAPE UNIT NUMBER FOR READING USER DEFINED INPUT 
NOUT TAPE UNIT NUMBER FOR ECHOING USER DEFINED INPUT 
N DIMENSION OF THE STATE VECTOR X 
H NUMBER OF VARIABLES TO BE OUTPUTTED 
T CURRENT VALUE OF TIME 
x STATE VECTOR---THESE VARIABLES ARE THE RESULT OF THE 

DIGITAL INTEGRATION. 
XOOT CURRENT VALUE OF THE TIME DERIVATIVE OF X EVALUATED 

AT THE CURRENT TIME T. 
y OUTPUT VECTOR---THESE VARl~BLES Will BE OUTPUTTED. 

C NOTE• EVERYTHING IN SECTIONS 300 ANO 400 IS REQUIRED. EVERY-
C THING IN SECTIONS 100, 200, AND 500 IS OPTIONAL. 
c 

DIMENSION XC20l,XOOTl20l,Yl3ll,LABEL180l 
COMMON!TIEl!NIN,NOUT,M,ALINE 

c 
c 

COMMON IT I E3/ Y 
COHMON!TIE4/LABEL 
GO TOl!00,200,300,400,500lMODE 

C THE USER PLACES All OF HIS CODING BETWEEN THE TWO + LINES. 
c 
c ·~···································································· c 
c 
100 
c 

CONTINUE 

C THE USER INSERTS USER OErtNEO INPUT READ/WRITE STATEMENTS HERE. 
C THE INPUT TAPE UNIT NUMBER MUST BE NIN ANO THE OUTPUT TAPE UNIT 
C NUMBER MUST BE NOUT. 

200 
c 

GO TO 999 
CONTINUE 

C ONE CAN 00 ONE-TIME PRECALCULATIONS ANO OUTPUT LABELLING IN 
C THIS SECTION. 
c 
c 
c 

OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAHPL[ IS ... 

300 
c 

LABEL<ll=IOHOUTPUT 1 
GO TO 999 
CONTINUE 

C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T, ANO THE X-VECTOR. 
c 
C C''CULATE INTERMEDIATE VARIABLES WHICH ARE FUNCTIONS OF THE STATE. 
c 
c CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES. 

400 
c 

GO TO 999 
CONTINUE 

c 
c 
c 

THE USER SPECIFIES THE VARIABLES THAT WILL BE OUTPUTTED IN THIS 
SECTION----THE OUTPUT VARIABLES ARE PLACED IN THE Y-VECTOR; THE 
Y VECTOR IS OF LENGTH M, WHERE M IS SPECIFIED IN THE INPUT 

c DECK SSIN. 
c 

GO TO 999 
500 CONTINUE 
c 
C THIS SECTION IS PROVIDED FOR POST PROCESSING OF THE FINAL TIME DATA. 
c 

GO TO 999 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

c 
999 CONTINUE 

RETURN 
END 

Fig •. B-6. Basic form of subroutine USER. 

-48-



is provided in the first card of the input deck. If one sets this ratio to 

two, every other calculated value of the Y vector will be outputted. ·If one 

specifies the initial time,·final time, and countdown ratio such that more 

than 101 time points are outputted, Program SS will first compute the outputs 

for the initial 101 time points, then output this data in the normal manner. 

Next, the outputs associated with the lOlst time point of Y are copied into 

the storage locations of the first time point of Y, and Program SS continues 

the numerical solution by refilling the Y vector. If the Y vector is filled 

again, Program SS will output the data and then proceed on again. This 

technique allows the storage area in Program S.S to remain small; a small 

object file is a useful goal when running in a time-sharing computer 

environment. 

e It has been observed that for realistic simulation problems (that 

is, problems where the number of integrations and outputs are approximately 

equal, the ratio of output step size to integration stepsize ·is not over four, 

and plots are requested), the IO time (time to output data) is larger than 

the CPU time (time used for digital integration). The IO-to-CPU charge times 

will be dependent on the computer center used. 

Table B-1. Useful subroutines in Program ·ss. 

Subroutine Function 

STOP 

RESTART 

MINMAX· 

XYPLOT 

LD 

IMPEQS 

DELAY 

Terminates Program SS and O?tputs data up to that point. 

Initiates the Runge-Kutta integration method. This 
subroutine is used when discontinuities occur in 
f[~(t),t]. 

Records the minimum and maximum of specified variables 
and the times at which these occur. This subroutine is 
useful for checking equilibrium points. 

Performs X-Y plots for variables that appear in the 
output vector Y. 

Simulates a level detector with hystersis. 

Solves implicit equations. The nonlinear algebraic 
equations appear in subroutine NAE. 

Delays any variable by an integral number of integration 
steps. 

-49-



• Additional useful subroutines that are currently in Program SS are 

given in Table B-1. These subroutines can be called from subroutine USER. 

For more information on these subroutines, read the instructions that appear 

in each subroutine listing. (The complete program listing appears at the 

end of this appendix.) 

Discussion of the Integration Method 

Program SS uses an Adams-Bashforth-Moulton predictor-corrector (fourth­

order) to carry out the integration. The predictor equation is: 

and the corrector equation is: 

where h is the stepsize and f denotes the time-derivative of x at time t • 
n n 

Program SS uses one correction per integration step. One can estimate the 

local truncation error (TR), assuming a constant fifth time-derivative of x, 

to be: 

Program SS uses this value of TR to update xn+l 'as follows: 

xn+l + TR. 

The above three equations are the basis of subroutine ESODEQ. To start the 

fourth-order predictor/corrector, subroutine ESODEQ uses the standard fourth­

order Runge-Kutta integration. The equations for the Runge-Kutta section 

are: 

-50-



where 

ko = f [x(tn)'tn]' 

kl f G(tn) 
hk

0 
+ ~] = +-- t 

2 n 

k2 f G(tn) 
hkl 

+ ~] +-- t 2 n 

k3 f [x(tn) + hk2 , tn + h] 

The Runge-Kutta method is accurate over a few steps, but note that four 

function evaluations of f[x(t),.t] per step are required. The fourth-order 

predictor/corrector for one correction requires only two evaluations of 

f[x(t),t] per step. In addition, the predictor/corrector provides a simple 

estimate of the TR, which is used to determine a stepsize consistent with a 

maximum value uf TR. Both the Runge-Kutta and predictor/corrector methods 

used in Program SS require that up to and including the fifth time-derivative 

of x(t) exist. For the case where f[x(t),t] is piecewise continuous (e.g., 

in digital switching), one can solve each continuous section by these methods 

and restart at the discontinuity. That is, suppose f[x(t),t] has a discon­

tinuity at t . One can solve for x(t-) by the predictor/corrector and use 
n n 

x(t-) as the initial conditions for a solution starting at t+ (i.e., restart 
n . + n 

the solution at t with the Runge-Kutta method).· One can accomplish this in 
n 

subroutine USER by call to RESTART. 

The basic concepts of how the predictor/corrector 'performs the 

integration follows. Suppose one wishes to solve an ordinary differential 

·equation of the initial-value type; that is, one wishes to solve: 

x(t) = ~t f[x(n),n] dn, 

to 

subject to x(t
0
) = x

0
. The numerical solution to this problem consists of 

solving a sequence of single-step problems such as: 

-.'.il-



x(t ) + 
n 

t 

J
n+l 

t 
n 

f[x(n),n] dn, 

with x(t ) = 
n 

x • 
n 

If one can solve the single-step problem, one can then 

sequentially solve for x
1

, x 2 , etc. The basic idea of the predictor/corrector 

method is to approximate f[x(t),t] by a polynomial and then integrate the 

polynomial over the single step. This is performed in two stages: predicting 

and correcting. For Program SS the polynomial used (Newton Backward Inter­

polating Polynomial) can be shown to be equivalent to: 

p (t) 

(i.e., a third-order polynomial curve-fit of f[x(t),t]). 

Assume one knows some past values of f[x(t),t]; one can use a third­

order, polynomial curve-fit to predict the value of f[x(t),t] at tn+l" This 

is shown in Fig. B-7. 

The predicted value of x(tn+l) is: 

x(t ) + A 
n p 

w~ere AP is the area under the polynomial in Fig. B-7 from tn to tn+l· Thus, 

x (tn+l) is a reasonable estimate of the true solution at tn+l· The cor­

rector takes this initial guess and improves upon it. The corrector for 

Program SS curve-fits the f[x(t),t] function using the predicted value of 

* x (tn+l). This is shown in Fig. B-8. The corrected value of x(tn+l) is: 

where Ac is the area under the polynomial in Fig. B-8 from tn to tn+l· 

Notice that the predictor extrapolates the f function while the cor­

rector interpolates the f function from tn to tn+l· One can reapply the 

corrector formula as many times as desired, but Pro.gram SS uses only one 

correction. The TR is defined as the difference between the true solution 

.at t 
1 

and the corrector output at t 
1 

for infinitely precise.calculations, 
n+ n+ 

an exact differential equation, and an exact value of x • 
n 

Thus, TR ignores 

-52-



Previous 

t n-3 t n-2 

Predicted value of 
f[x(t),t] 

. over interval 

Time 

Fig. B-7. Predicting process. 

-53-

Area 

t . n+l 



. alues of Previous ~[x(t),t] 

Time 

. Fig. B-8. , . process. Correcting . 

-54-



propagation errors, machine roundoff errors, and modeling errors; it is simply 

the. error introduced by the polynomial-curve fit for a single step. An 

estimate of the TR is automatically printed out in the tabular listing. This 

estimate assumes a constant fifth time-derivative of x over the interval h • • 
To decode the estimated TR printout, read the comments in subroutine ODE. 

Fortran IV Listing of Program SS 

A Fortran IV listing of Program SS (which compiles under the Control 

Data Corporation's PUTT compiler as implemented at the Lawrence Livermore 

Laboratory) follows: 

PROGRAM SS !SSIN,TAPEl=SSIN,SSOUT,TAPE2=SSOUT> 
c 
C PROGRAM SS !STATE SPACE> IS A GENERAL PURPOSE ORDINARY, FIRST-ORDER 
C DIFFERENTIAL-EQUATION !OF THE INITIAL VALUE TYPE> SOLVER. 

C PROGRAM SS WAS WRITTEN BY HOWARD MCCUE AT LAWRENCE LIVERMORE LABS., 
C LIVERMORE, CALIFORNIA AS PART OF EECS 299 !THESIS> AT THE 
c UNIVERSITY or CALIFORNIA. BERKELEY UNDER PROF. OTTO SMITH. FOR A 
c WRITEUP or PROGRAM USAGE; SEE UCRL-51657, STABILIZATION OF DISTANT 
C AND LOCAL POWER SYSTEM DISTURBANCES BY OPTIMIZED FIELD CONTROL, 
C APPENDIX M. THIS PROGRAM WAS LAS.T MODIFIED ON NOVEMBER 9TH, 1973. 
c 
C AS PRESlNTLY DIMENSIONED, PROGRAM SS CAN HANDLE 20 INMAXl 
C INTEGRATIONS.AND 30 IMMAXl OUTPUTS. ONE CAN CHANGE THESE 
c NUMBERS AS FOLLOWS• TO CHANGE THE MAXIMUM NUMBER or INTEGRATIONS 
C FROM 20 TO 50. CHANGE ALL VARIABLES PRESENTLY DIMENSIONED 20 
C TO 50; SET NMAX IN THE HAIN PROGRAM TO 50. TO CHANGE THE MAXIMUM 
c NUMBER or OUTPUTS TO 60. CHANGE ALL VARIABLES PRESENTLY 
C DIMENSIONED 31 TO 61 11.E. 60+1, THE EXTRA ONE IS FOR THE 
C TRUNCATION ERROR OUTPUT>; SET HHAX IN THE HAIN PROGRAM TO 60. 
C TO INCREASE HHAX BEYOND 79, ONE HUST INCREASE THE DIMENSION OF LABEL. 
c THE FOLLOWING NUMBER or OIHENSION STATEMENTS MUST BE MODIFIED FOR 
C THE ABOVE. MENTIONED CHANGES• INTEGRATORS-· 5, OUTPUTS--~. LABELS--2. 

c 

NMAX=20 
HMAX=30 

C CREATE TM[ • BINARY FILE. 
CALL CHANGEC3H+SS> 

c 
C SPECIFY THE INPUT/OUTPUT TAPE UNITS. 

c 

NIN=! . 
NOUT=2 
COHHON/INPUTl/IFLAG,IKEEP.ISKIP,ISIZE,NMAX,MHAX 
COMHON!TIEl/Nl~.NOUT,H,ALINE 
DIMENSION TITLES!4,8l,XOC20l 

C INPUT ANY USER SPECIFIED PARAMETERS. 
CALL INPUTCTO,TFINAL,H.XO.N.H.TITLESl 
IFllFLAG.EQ.llGO TO 999 
TFINAL=0.99999999•TFINAL 

C SOLVE THE ORDINARY DIFFERENTIAL EQUATIONS. 
CALL ODE!TO,TFINAL,H,XO,N,M,NOUT,TITLES.ISIZE.ISKIPl 

c 
c 
999 CONTINUE 

CALL EXIT 
RETURN 
END 

-55-



SUBROUTINE INPUT<TO,TFINAL,H,XO,N,H,TITLESl 
c 
C THIS SUBROUTINE READS THE STANDARIZED INPUT DATA AND USER 
C DEFINED INPUT DATA FROM INPUT FILE 6SSIN6. IN ADDITION, THIS 
C SUBROUTINE CALLS UP SECTION 200 IN SUBROUTINE USER. 
c 
c 

c 
c 

DIMENSION NAME<2l ,TITLESl4,8l,X0<20l,COMMENTIBl ,XDOTl20l 
COMMON!INPUTl/IFLAG,IKEEP,ISKIP,ISIZE,NMAX,MMAX. 
COMMONtTiEl/NIN,NOUT,M,ALINE 
COHM0Nt!NPUT211DEL 

C READ IN REQUIRED DATA. 
IFLAG=O 
READINJN,llNAMEl!l,NAMEl2l,ITITLES.IKEEP,ISKIP,IDEL,ISIZE,LLL,ICOM 
FORMAT12AIO,ll,IX,ll,IX,l3,IX,ll,IX,ll,IX,15,IX,l3> 
IFILLL.LE.OlLLL=IOOOO 

C CREATE A DISK FILE FOR THE OUTPUT. 
CALL CREATEl5HSSOUT,LLL,IERRORl 
IFllERROR.LT.OllFLAG=I 
IF<< !TITLES.LT .Ol .OR. I I TITLES.GT .4l l IFLAG=l 
IFl,SKIP.LE.OllSKIP=l 
IF< < I DEL.LT. 0 l . OR. I JOEL.GT. 3 l l I FLAG= I 
IF<ICOM.L[.OllCOM=O 
IFllFLAG.EQ.llGO TO 999 
WRITEINOUT,7l 

7 FORMATl51,32HTHE DATA IN THE INPUT FILE IS ... ,311 
WRITElNOUT.llNAME<ll ,NAME12l ,ITITLES,IKEEP.ISKIP,IDEL.ISJZE.LLL, 

2ICOM 
IF<ITITLES.EQ.OIGO TO 5 
DO 3 I= I , IT I TLES 
READ C NIN. 4 l <TITLES< I • J l , J= I , 8 l 

4 FORMAT<BAIOl 
WR I TE l NOUT. 4 l l TITLES< I • J l , J= I , 8 l 

3 CONilNUE 
5 CONTINUE 

READ<NIN,2lTO,TFINAL,H,N,M 
2 FORMAT<3EI0.3.2112,1Xll 

WRITElNOUT.2lTO,TFINAL,H,N,M 
IFlTO.GT.TFINALllFLAG=l 
IF<H.EO.O.OlJFLAG=I 
IF<<N.LE.01.0R. IN.GT.NMAXlllFLAG=I 
IFlCM.LT.Ol .OR. CM.GT.MMAXlllFLAG=l 
IF<M.EO.OlM=N 
READCNIN.6l <XO< I l. l=l ,Nl 

R FORM6Tf8EI0.3l 
WR I TE I NOUT. 6 l <XO< I I. I= I , N l 

C GET ANY USER WRITTEN INPUT DATA. 
CALL USERll,N,TO,XO.XDOTI 
WR !TE I NOUT ;9 l 

9 FORMAT<Sll 
IFllCOM.EQ.OIGO TO 10 
DO I I I = I , I COM 
READ<NIN,411COMMENT<l1,l=l,81 
WRITEINOUT,12l<COMMENT<l1,l=l,81 

12 FORMAT<5X,BAl0l 
11 CONTINUE 
10 CONTINUE· 
C DO ANY PRECALCULATIONS THAT ARE REQUIRED. 

CALL USERl2,N,TO,XO,XDOTl 
999 CONTINUE 

RETURN 
END 

SUBROUTINE ODE!TO,TFINAL,H,XO,N,M,NOUT,TITLES,ISIZE.ISKIPl 

-56-



c 
c 
C SUBROUTINE ODE !ORDINARY DIFFERENTIAL EQUATIONS! IS A DRIVER FOR 

. C SUBROUTINE ESODEQ. SUBROUTINE ESODEQ COMES FROM THE UNIVERSITY OF 
C CALIFORNIA AT DAVIS COMPUTING CENTER. ESODEQ USES A FOUR POINT 
C ADAMS-BASHFORTH-MOULTON PREDICTOR-CORRECTOR METHOD TO CARRY OUT ITS 
C INTEGRATION. THIS IS A CONSTANT STEP-SIZE INTEGRATION SUBROUTINE. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

THE INPUTS TO 
TO 
Tr I NAL 
H 
XO 
N 
M 
llOUT 
TITLES 
ISIZE 

ISKIP 

ODE ARE AS FOLLOWS .... 
INITIAL TIME 
FINAL TIME OF SOLUTION 
STEP SIZE 
INITIAL VALUE OF THE STATE VECTOR 
NUMBER OF FIRST-ORDER ODE 
TOTAL NUMBER OF VARIABLES TO BE OUTPUTTED. 
TAPE UNIT NUMBER FOR OUTPUT . 
AN ARRAY-OF TITLE CARDS USED FOR PLOTTING 
CONTROLS THE SIZE OF THE LINE PRINTER PLOTS; 
=O MEANS FULLSIZED PLOTS, OTHERWISE. ONE GETS 
REDUCED-SIZED PLOTS. 
RATIO OF CALCULATED TO OUTPUTTED· POINTS 

TR IS AN ESTIMATE OF THE LOCAL TRUNCATION ERROR IN THE COMPUTED 
SOLUTION AT TIME T. SUPPOSE TR IS THE ASSOCIATED ERROR FOR THE ITH 
ELEMENT OF THE STATE VECTOR X AT TIME T; THEN THE COMPUTED STATE 
ELEMENT X<ll DIFFERS FROM THE TRUE SOLUTION AT TIME T ~y AN ESTIMATED 
ERROR BOUND OF + OR - TR. SEE ESOOEQ WRITEUP FOR MORE DETAILS. 
THE VALUE or TR IS INTERPRETED IN THE FOLLOWING WAY ... 

TR=-J.0 

TR=-2.0 

TR=-3.0 

TR .GE. 0. 0 

STARTING PREDICTOR-CORRECTOR VIA RUNGA-KUTTA~--NO 
ESTIMATE OF THE LOCAL TRUNCATION ERROR IS AVAILABLE. 
MARKER FOR LOCAL TRUNCATION ERROR PRINTOUT---THE NEXT 
VALUE OF TR JS FOR XII l 
A DISCONTINUITY IN F<XCTl,Tl HAS OCCURRED WHILE 
IN THE PREDICTOR MODE---THE PROGRAM HAS INITIATED A 
CHANGE TO THE RUNGA-KUTTA INTEGRATION METHOD FOR 
THREE INTEGRATION STEPS <SUBROUTINE RESTART!. 
ABSOLUTE VALUE OF ESTIMATE OF LOCAL TRUNCATION ERROR 
----SEE DECODING BELOW. 

ONE DECODES THE PRINTOUT AS FOLLOWSJ SUPPOSE ONE HAS N STATES AND 
TR=-2.0 AT TIME T=TT. THEN THE LOCAL TRUNCATION ERROR ASSOCIATED WITH 
X!ll OCCURS AT TIME T=TT+J•H FOR l.LE.N. FOR T=TT+H•tN+ll, TR=-2.0 
AND THE PROCESS REPEATS. THUS. ONE GETS AN UPDATE OF THE STATE VECTOR 
ERROR EVERY N+I PRINTOUTS. FOR THE PURPOSE OF HALTING THE NUMERICAL 
SOLUTION, THE PROGRAM EXAMINES THE ESTIMATES OF THE LOCAL TRUNCATION 
ERRORS OF ALL INTEGRATIONS AT EACH CORRECTION. 

DIMENSION TITLES14,8l.X0120J,Xl20J,XDOTt20l,Yl31l 
COMMON IT I E3t Y 
COMMONIT IE2/T 
COMMON /!STOPS/ ISTOP 

ISTOP=O. 
T=TO 

C INITIALIZE THE OUTPUT VECTOR Y FOR T=TO. 
CALL USER13,N,TO,XO,XDOTl 
CALL. USER I t1, N, TO, XO, XDOT J 

-57-



MP I =M+ 1 
YI MPl l =O. 0 
IF<<TO.GE.TFINALl .OR. !ISTOP.NE.OllGO TO 2 
CALL OUTPUT<MPl ,TQ,Y,NOUT,TITLES. ISIZE.O,ISKIPl 

C START-UP THE INTEGRATION PROCESS. . 
CALL ESODEQ!l,N,TO,XO,T,X,TR,H,ISTOP,ISKIPl 
CALL USER!4,N,T,X,XD0Tl 
Y<MP 1 l =TR 
IF!!T.GE.TFINALl .OR. <ISTOP.NE.Ol lGO TO 2· 
CALL OUTPUTIMPl ,T,Y,NOUT,TITLES,lSIZE.O,ISKIPl 

1 CONTINUE 
C PERFORM A SINGLE INTEGRATION STEP. 

CALL ESODEQ!3,N,TO,XO,T,X,TR,H,lSTOP,ISKIPl 
CALL USER14,N,T,X,XDOTl 
YIMPll=TR . 
IF!IT.GE.TFINALl .OR. !ISTOP.NE.OllGO TO 2 
CALL OUTPUTIMPl ,T,Y.NOUT,TITLES,ISIZE,0,ISKIPl 
GO TO 1 

2 CONTINUE 
CALL OUTPUT!MPl,T,Y,NOUT,TITLES,ISIZE,l ,ISKIPl 
IF<ISTOP.EQ.O>GO TO 5 
WRITEINOUT,9l 

9 FORMAT! IHI ,251 l 
lr<ISTOP.LT.OlGO TO 6 

c 
C PROGRAM TERMINATED BECAUSE INTEGRATION ERROR WAS JUDGED TOO 
c LARGE. PRINT-OUT WHICH ELEMENT or THE STATE VECTOR BLEW-UP. 
c 

I 0 

6 
c 

WRITE<NOUT,lOllSTOP 
FORMATl28HPROGRAM TERMINATED----STATE ,l2,09H BLEW UP. l 
GO TO 5 
CONTINUE 

c PROGRAM TERMINATED BECAUS~ or A CALL TO SUBROUTINE STOP. 
c 

WRITE<NOUT,71 
7 FORMATC47HPROGRAM TERHINATtD BY A CALL TO SUBROUTINE STOP! 
5 CONTINUE 
999 CONTINUE 
C POST PROCESS THE FINAL Tl~E DATA., 

CALL MINMAXC-1,lOH DUMP NOW .O.Ol 
IFIT.EQ.TOlCALL USER15,N,TO,XO,XDOTl 
IFCT.NE.TOlCALL USER15,N,T.x,xpOTl 
RETURN 
END 

SUBROUTINE ESODEQIKOOE,N,XI ,Yl,X,Y.TR,H,ISTOP,ISKIPl 
C ESODEQ IS FROM THE UNIVERSITY OF CALIFORNIA AT DAVIS COMPUTING CENTER. 
c 
c 
c 
c 
c 
c 
c 

FOR DETAILS ON THE METHOD SEE ... 
ISAACSON ANO KELLER, ANALYSIS OF NUMERICAL METHODS,PP384-~388 
MCCRACKEN AND DORN, NUMERICAL METHODS AND FORTRAN PROGRAMMING P334 

KSTP=I MEANS ESODEQ WILL USE THE CORRECTOR AFTER EACH PREDICTION----­
SEE ESODEQ WRITEUP FOR MORE DETAILS. 

KSTP=I 
C THIS COMMON GOES BETWEEN SUBROUTINE ESOOEQ AND DELAY. 

COMMONIFINAL/IFINAL 
COMMON/NODER/INODER 

-58-



c 

lf INAL=O 
DIMENSION YI t20l .Y<20l ,DY!20l ,YCl20l ,DYP1Lt,20l ,S120l 
DATA H0t0t,DYPl80•0.t 
DATA MSTP, NSTP, !NI, IN2, IN3, IN"i/ 0, 0, I, 2, 3. "ii 
IS I= IS I+ l 
GO TO < 1000, :?000, 3000 l . KODE 

c 
1000 

I 00 I 
DO I 00 i I= I , N 
Y l I l = YI t Ii 

INITIALIZE PROCESS TO START WITH RUNGE-V.UTTA 
INTCGRATION ON INITIAL VALUES 

CALL USER<3,N,XI .YI .DYl 
X = XI 
IN! 1 
IN2 = 2 
IN3 = 3 
IN"i = i.; 

C !NITIALIZE THE TR PRINTOUT SELECTOR. 
NPl=N+l 
I TR=NP l 
ISl=-ISKIP+l 

1050 HSTP = KSTP 
NSTP = 0 
HO = H 
Go TO i.;ooo 

C START R-K INTEGRATION WITH CURRENT X,Y VALUES 
2000 GO TO 1050 
3000 IF IHO.NE.Hl GO TO (050 

C CHECK FOR A PROBLEM SPECIFIED RESTART BASED ON THE CORRECTER OUTPUT. 

c 

IFCINODER.NE.OlGO TO 1050 
Go TO i.;ooo 

INTEGRATE 1 STEP 
c 

4000 
4001 

c 

DO 4 0 0 1 I = 1 , N · 
DYP I IN 1 , I l = DY C I l 

SAVE CURRENT DERIVATIVE VALUES 

CHECK FOR R-K CONTINUATION 

c 
c 

IF <NSTP.LE.2l GO TO 4500 . 

DO 4002 1=1.N 

USE ASH FORMULAE 
PREDICTOR 

4002 YC<ll = Y<ll + H•l55.0•DYPCIN1.ll-59.0•DYPllN2,ll+37.0•0YPllN3,ll 
1 -9.0•DYPC IN4, l l l/24.0 

C CHECK IF CORRECTOR STEP IS DESIRED 
MSTP = MSTP-1 
IF CMSTP.LE.Ol GO TO 4100 
DO "i003 1=1.N 

4 0 0 3 YI I l = YC I I l 
x .. x I II 
GO TO 4800 

C CORRECTOR 
4100 X = X + H 

CA~L USERC3,N,X,YC,DYl 
C CHECK FOR A PROBLEM ~PECIFIED RESTART BASED ON THf PREDICTOR OUTPUT. 
~ IF A RESTART IS REQUESTED. USE ONLY THE PREDICTOR FOR THIS 
c STEP ITHIS WILL YIELD THE T-MINUS VALUE or· THE STATE VECTOR. ONE CAN 
C THEN USE THIS VALUE AS THE INITIAL CONDITION FOR THE RESTART. l. 

IFCJNOOER.EO.OlGO TO 120 
DO 121 I= 1 ,N 
Y CI l =YC <I l 

121 CONTINUE 
IF C IS I.LT. 0 l GO TO l ~5 

0003210 

0003240 
0003250 
0003260 
0003270 

0003300 
0003310 
0003320 
0003330 
00(13340 

0003350 
0003360 
0003370 
0003380 
0003390 
0003400 
000341 0 

0003420 
0003440 
0003450 
0003460 
0003470 
0003480 
0003"i90 
0003500 
0003510 
0003520 
0003530 
0003540 
0003550 
0003560 
0003570 
0003580 
0003590 
0003600 
0003610 
0003620 
0003630 



ISl=-ISKIP 
TR=-3.0 

125 ·CON"r I NUE 
GO TO 4800 

120 CONTINUE 
. DO 4102 I= I , N 

4102 YI! I = Ylll + H•l9.0•DYll1+19.0•DYPCINI. ll-5.0•DYP<IN2,ll 
I +DYP <I N3, 11 It 24. 0 
MSTP = KSTP 

c 
c CALCULATE AN ESTIMATE or THE LOCAL TRUNCATION ERROR FOR THE PURPOSE 
C OF TERMINATING THE PROGRAM IF TR IS TOO LARGE----THIS SECTION 
C CHECKS LACH STATE ELEMENT AT EVERY CORRECTION TIME. 
c 

DO 101 I==; ,N 
TR=-0.07037037•1Y<ll-YClll1 

C UPDATE THE CORRECTOR OUTPUT---SEE PAGE 341 OF MCCRACKEN AND DORN. 
Y<ll=Ylll+TR 
IF!YCll .NE.O.OIFRAC=ABSITRtY<lli 
ABSYY=ABS<Yt Ill . 
IF<<FRAC.GE.0.25l.AND.<A8SYY.GT.1 .OOillSTOP=l 

IOI CONTINUE 
c 
C CALCULATE AN ESTiMATE OF THE LOCAL TRUNCATION ERROR WHICH IS 
C SYNCHRONIZED WITH THf. OUTPUT. 
c 

IF l IS I . LT . 0 I GO ·10 I 1 0 
C CALCULATE TR FOR THIS TIME. 

ISl=-ISKIP 
IF<ITR.NE.NPI IGO TO 105 
TR=-2.0 
JTR=I 
GO TO 110 

105 CONTINUE 
TR=A8S<-0.07037037•<Y<ITRl-YC<ITRlll 
ITR= ITR+ I 

110 CONTINUE 

c 
c 
c 

GO TO 4800 
USE R-K STEP 

NOTATION - YIJ+ll = YIJl + IK0+2K1+2K2+K3lt6 
COMPUTE SUH = KO 

4500 DO 4501 l;J,N 
Sill = H•DYlll 

450 I YC I 11 = YI I J + 
XC = X + H/2.0 

SI I l 12 .0 

C ADD 2•KI TO SUM 
CALL USER13,N,XC,YC,DYI 
DO 4502 l=l,N 
Siii =Sill + 2.0•H•DYlll 

4502 YClll = Ylll + <H•DY!lll/2.0 
C ADD 2•K2 TO SUH 

CALL USER13,N,XC,YC,DYI 
DO 4503 l=!,N 
Sill =Sill + 2.0•H•OYlll 

450~ YC <I l = Y <I l + H•DY < I I 
XC = X + H 

C ADD K3 TO SUM ANO GET NEW Y VALUE 
CALL USER<3.N,XC,YC,DYI 
DO 4504 l=!,N 
Siii =Sill + H•OYlll 

-60-

0003660 
0003670 
0003680 
0003690 

0003750 
0003760 
0003770 
0003780 
0003790 
0003800 
0003810 
0003820 
0003830 

0003840 
0003860 
0003870 
0003880 

0003890 
0003910 
00039~0 
0003930 
0003940 

0003950 
0003970 



4504 Ylll:.: Yell+ Slll/6.0 
x : xc 
NSTP = NSTP + I 

C UPDATE THE RUNGA-KUTTA FLAG IN TR AS REQUIRED. 
IFI ISi.LT .O'JGO TO 130 
ISi -=-I SK IP 
TR=- I. 0 

130 CONTINUE 
C RESET THE NO DERIVATIVE SWITCH 

INODER=O 
C COMPUTE CURRENT DY VALUES 
4800 CONTINUE 

IF !UAL= I 
CALL USER13,N,X,Y,DYJ 

c ROTATE INDICES or OYP ARRAY 

c 

I = IN4 
IN4 IN3 
IN3 IN2 
IN2 = INI 
INI = I 
GO TO 3001 

3001 RETURN 
ENO 

SUBROUTINE RESTART 

C SUBROU!INE RESTART IS CALLED IN SUBROUTINE USER <OR ANY OTHER 
C LOCATION REQUIREDl WHEN A DISCONTINUITY IN A PIECEWISE CONTINUOUS 
C F{XCTJ,Tl OCCURS. SUBROUTINE RESTART SETS A SWITCH IN SUBROUTINE 
C ESOOEQ WHICH CHANGES THE INTEGRATION METHOD FROM PREDICTOR/CORRECTOR 
C TO RUNGA-KUTTA; THIS CHANGE REMAINS FOR THREE INTEGRATION STEPS. 
c 
c 

c 

COMMON/NOOER/INOOER 
INODER=I 
RETURN 
END 

SUBROUTINE STOP 

C THE PURPOSE OF SUBROUTINE STOP IS TO PROVIDE A MEANS OF 
C TERMINATING THE PROBLEM SOLUTION IAND GETTI~G THE REQUESTED PLOTS 
C ANO/OR TABULAR DATAl VIA FORTRAN CODING IN SUBROUTINE USER. 
c 

COMMON !!STOPS/ !STOP 
C SET A SWITCH WHICH WILL TERMINATE THE SOLUTION IN SUBROUTINE ODE. 

ISTOP=::-1 
RETURN 
END 

SUBROUTINE OUTPUTIM,T,Y,NOUT,TITLES.ISIZE.IDUMP,ISKIPJ 
c 
C THIS SUBROUTINE STORES THE OUTPUTS AND CALLS UP THE OUTPUTTING OF 
C RESULTS WHEN THE STORAGE ARRAYS ARE FULL. 
c 
C THt INPUT VARIABLES ARE.,, 
C H NUMBER OF ELEMENTS IN THE OUTPUT VECTOR Y . 

. -61-

0003980 
0003990 

. 0004000 

0004010 

0004040 
0004050 
0004060 
0004070 
000'+080 
0004090 
0004100 
0003430 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

T 
y 
NOUT 
·r I TLES 
!SIZE 
!DUMP 
!SKIP 
!DEL 

CURRENT TIME 
VECTOR TO BE OUTPUTTED 
OUTPUT TAPE ~NIT NUMBER 
ARRAY OF TITLE CARDS FOR PLOTS 
SWITCH WHICH DETERMINES PLOT SIZE 
=I FORCES ALL STORED DATA TO BE OUTPUTTED 
RATIO OF CALCULATED POINTS TO OUTPUTTED POINTS 
SWITCH THAN DETERMINES OUTPUT HODES 

COHHON!INPUT211DEL 
COHHON I XY I / IX I I 0 I , I Y C I 0 I 
COMHON/XY21ISPEC.LABELX,LABELY 
DI MENS I ON TT I I 0 I I , YY I I 0 I , 31 I 
DIMENSION Yl311,TITLES14,81 
DIMENSION TTTllOI l,YYYCIOll 

C THESE LABELS APPEAR ON BOTH THE TABULAR AND PLOTTED DATA. 
COMHONITIE41LABEL 
DIMENSION LABEL1801 
DATA ILABELCIJ,l=l,32 I /IOH OUTPUT ; ,!OH OUTPUT 2 , 

210H OUTPUT 3 ,IOH OUTPUT 4 ,!OH OUTPUT 5 ,!OH OUTPUT 6 , 
310H OUTPUT 7 .IOH OUTPUT 8 ,!OH OUTPUT 9 ,!OH OUTPUT 10, 
410H OUTPUT 11,IOH OUTPUT 12,IOH OUTPUT 13,IOH OUTPUT 14, 
510H OUTPUT 15.IOH OUTPUT 16,IOH OUTPUT 17,IOH OUTPUT 18, 
610H OUTPUT 19.IOH OUTPUT 20.IOH OUTPUT 21.IOH OUTPU! 22, 
710H OUTPUT 23,IOH OUTPUT 24,IOH OUTPUT 25,IOH OUTPUT 26, 
BIOH OUTPUT 27,IOH OUTPUT 28,iOH OUTPUT 29,IOH OUTPUT 30, 
910H OUTPUT 31,IOH OUTPUT 321 

DATA <LABEL!ll,1=33,641 /IOH OUTPUT 33,tOH OUTPUT 34, 
210H OUTPUT 35,IOH OUTPUT 36,IOH OUTPUT 37,IOH OUTPUT 38, 
310H OUTPUT 39,IOH OUTPUT 40,IOH OUTPUT 41,IOH OUTPUT 42, 
410H OUTPUT 43,IOH OUTPUT 44,IOH OUTPUT 45,lOH OUTPUT 46, 
510H OUTPUT 47,IOH OUTPUT 48,IOH OUTPUT 49,IOH OUTPUT 50; 
610H OUTPUT 51,IOH OUTPUT 52,IOH OUTPUT 53,IOH OUTPUT 54, 
710H OUTPUT 55,IOH OUTPUT 56,IOH OUTPUT 57,IOH OUTPUT 58, 
810H OUTPUT 59,IOH OUTPUT 60,IOH OUTPUT 61,IOH OUTPUT 62, 
910H OUTPUT 63,IOH OUTPUT 641 

DATA ILABELCll,1=65,801 /IOH OUTPUT 65,IOH OUTPUT 66, 
210H OUTPUT 67,IOH OUTPUT 68,IOH OUTPUT 69,IOH OUTPUT 70, 
310H OUTPUT 71,IOH OUTPUT 72,IOH OUTPUT 73,IOH OUTPUT 74, 
410H OUTPUT 75,lOH OUTPUT 76,IOH OUTPUT 77,lOH OUTPUT 78, 
510H OUTPUT 79,lOHEST. ERROR/ 

DAT A IS I / - 11 
IFIM.LE.llGO TO 999 
ISi =ISi +I 

C CHECK IF THIS CALCuLATED POINT SHOULD BE STORED. 
I F I I S I . GE . 0 l GO TO l I 

t CHECK FOR PROBLEM TERMINATION WHEN USING !SKIP dREA~ER THAN ONE. 
IF!IDUHP.EQ.llGO TO ll 
GO TO 999 

.11 CONTINUE 
!Sl=-ISKIP 

C STORE THE OUTPUT FOR TIHE=T 
ICOUNT=ICOUNT+I 
TT I I COUNT I =:T 
DO I l=l ,M. 

I YYCICOUNT,ll=YCIJ 
C CHECK IF THE STORAGE ARR~YS ARE FULL. 

IF!ICOUNT.GT.IOO>GO TO 100 
C CHECK IF THE LAST POINT ·HAS BEEN CALCULATED--- IF SO TERMINATE PROGRAM. 

-62-



100 
c 

IFCIDUMP.EQ.llGO TO 100 
GO TO 999 
CONTINUE 

C THE PLOTTING ARRAYS ARE FULL---OUTPUT THE DATA IN ARRAYS. 
c 
c FIRST, DO THE PLOTTING OF THE DATA POINTS. 

MMl=M-1 
IFCCIOEL.EO.ll.OR.CIOEL.EQ.3llGO TO 150 
DO I ! 0 I = I • MM I 
DO 11 I J=l ,!COUNT 
TTTCJl=TTCJl 

Ill YYY.Jl=YYCJ,ll 
C CAUTIONi ARRAYS TTT ANO YYY WILL BE MODIFIED BY SUBROUTINE PLOTS. 
110 CALL PLOTSCTTT,YYY.TITLES.ICOUNT,LABELC!l ,NOUT,ISIZE> 
C PERFORM THE X-Y PLOTS AS REQUESTED VIA SUBROUTINE XYPLOT. 

201 

DO 200 I= 1 , I 0 
IFCIXCll.EO.OlGO TO 200 
KX= IXC I l 
KY= IYC I l 
LABELX=LABELCKXl 
LABELY=LABELCKYl 
!SPEC=! 
DO 201 J=l,ICOUNT 
TTTCJl=YYCJ.KXl 
YYYCJl=YYlJ,KYl 
CONTINUE 
CALL PLOTS!TTT,YYY,TITLES,ICOUNT,LABEL!ll,NOUT,ISIZE> 
ISPEC=O 

200· CONT I NlJE 
150 CONTINUE 
C NEXT, DO THE TABULAR LISTING OF DATA POINTS. 

IF!CIDEL.E0.2l.OR.!IDEL.E0.3llGO TO 99~ 
WRITECNOUT.112l 

112 FORMAT! IHI l 
C WRITE OUT THE LABELS. 

WRITECNOUT,119lCLABELCll,l=l,MMll,LABELCBOl 
1 19 FORMAT C 1X,9H TI ME , 10 C 1 X. A I 0 I , I, I OX, I 0C1X,A10 I , I • 

21ox.1011x.A1oi ,1,1ox.1011x,A101 ,1,1ox.1oc1x,Aioi,1. 
31 OX, I 0 ( 1X.A10 l , / , 1OX,1 0 C 1 X, A I 0 l , / • 1 OX, I 0 C 1X,A1 0 I I 

WRITECNOUT,1181 . 
118 FORMATCIH I 

DO 120 l=l,ICOUNT 
C WRITE THE DATA. 

WR I TE c NOUT, 121 l TT C I l , C YY CI , JI , J= 1, MI 
121 FORMAT C IX. E9. 2, 10CJ°X,EI0. 3 l , I, 1OX,t0CIX,E10. 3 I , /, 

21 OX, 1 0 ! IX, E 1 0. 3 l , I, 1 OX, 1 0 C 1X,E1 0. 3 I , I, 1 OX, I 0 C 1 X, El 0. 3 l , I , 
31 OX, 1 0 ! IX, EI 0. 3 I . I , 1 OX, 10 C l X, E 10. 3 l , I, I OX, 10 C 1 X, EI 0. 3 I I 

120 CONTINUE 
998 CONTINUE 
C COPY THE LAST POINT INTO THE FIRST POSITION.FOR THE CONTINUATION PLOT. 

TT C I l =TT! I COUNT l 
DO 130 I= I, M 

130 YYCl ,ll=YY!ICOUNT.11 
C RESET THE !COUNT FLAG. 

!COUNT=! 
999 CONTINUE 

RETURN 
END 

-63-



DI ME NS I ON X < I 0 I l , Y < I 0 I l , T I TL ES< 4 , 8 l 
DIMENSION POINTS< IOI l ,POINT<4ll,XLABEL<6l 
COMMONIXY2/ISPEC,LABELX.LABELY 
MAXPTS=IOI 

C CHECK TO SEE IF NUMPTS IS OUT OF RANGE. 
IF<NUMPTS.GT.MAXPTS>GO TO 999 
IF<NUMPTS.LT.2lGO TO 999 

C WRITE .THE HEADING FOR THE PLOT. 

6 

01 

62 

IF!CISPEC.NE.ll.AND.CISIZE.EQ.OllWRITEINOUT,6lNAME 
FORMATllHl,59X,Al0l 
IFlllSPEC.NE.ll .AND.llSIZE.NE.OllWRITECNOUT,6!lNAME 
FORMATllHl,30X,Al0l 
IFC, ISPEC.EQ.ll .AND.<ISIZE.EQ.OllWRITEINOUT,62lLABELY,LABELX 
FORMATllH1,37X,AI0,17H CY-AXISl VERSUS .AI0,9H CX-AXISl l 
IFl<ISPEC.EQ.ll .AND.llSIZE.NE.OllWRITEINOUT,63lLABELY,LABELX 

63 FORMATllHl,12X,Al0,17H IY-AXISl VERSUS ,Al0,9H IX-AXIS>> 
C DETERMINE THE PLOT SIZE 

IFllSIZE.NE.O>GO TO 301 
C THESE CONSTANTS ARE USED FOR THE FULL-SIZf PLOT. 

LX=IOO 
LY=50 
LXL=6 
GO TO 302 

C THESE CONSTANTS ARE USED FOR THE REDUCED-SIZE PLOT. 
301 CONTINUE 

302 

LX=40 
LY=30 
LXL=3 
CONTINUE 
XLX=LX 
YL Y=L Y 
LXPl=LX+I 
LYPl=LY+l 

C WRITE OUT THE TITLE CARDS 
DO 3 I= I ,4 

4 
IFllSIZE.EQ.OlWRITEINOUT,4llTITLESCl,Jl,J=l,8l 
FORHATC25X,8Al0l 

41 
3 

IF! ISIZE.NE.OlWRITEl~WUT ,41 l !TITLES! I ,JI ,J=l ,81 
F'ORHATllX,BA!Cl 

5 
c 

CONTINUE 
WRITEINOUT,51 
FORMAT I IH l 

C ORDER THE IX,Yl PAIRS BY DECREASING VALUES OF Y 
c 
c 

20 

SOLVE FOR MAX 
1=1 
CONTINUE 
JJ=I 
YMAX=Ylll 
DO 10 J=l,NUMPTS 
!FIYCJl.LE.YMAXlGO 
YMAX=YIJl 
JJ=J 

10 CONTINUE 
C INTERCHANGE 

YUPPER=YCll 
XX=XC I l 
YI I l=YIJJ) 
X <I l =X c JJl 

TO 10 

-64-



Y!JJl=YUPPER 
X!JJl=XX 
I= I+ I 
IFll.EQ.NUMPTSlGO TO 30 
GO TO 20 

30 CONTINUE 
C SOLVE FOR MINIMAX OF X ANDY. 

XMIN=Xl 1 l 
XMAX=X!ll 
YMIN=Ylll 
YMAX=Ylll 
DO 2 l=l.NUMPTS 
IF!X!ll.LT.XMINlXMIN=X!Jl 
IF !XI I l .GT .XMAXlXMAX=Xl I l 
IF!Ylll.L7.YMINlYMIN=Yl ll. 
IF!Yl I l .GT. YMAXlYMAX=Y< I l 

2 CONTINUE 
C IF THE PLOT DATA IS CONSTANT. DO NOT PLOT---THIS WILL SAVE ON 
C WRITING FORMATTED 10. 

IF! !YMIN.NE.YMAXl .OR. !JSPEC.EQ.lllGO ~O 320 
WRITE!NOUT,3221 

322 FORMAT!IO/l 
WRITE!NOUT,32llNAME,YMIN 

321 FORMATC!OX,Al0,2~H IS A CONSTANT OF VALUE ,£20.13,/l 
GO TO 999 

320 CONTINUE 
IF!<ISPEC.NE.1 l.OR.IXMIN.NE.XMAXl.OR.!YMIN.NE.YMAXllGO TO 330 
WRITE!NOUT,3221 
WRITE!NOUT,32llLABELX,XMIN 
WRITECNOUT,321 lLABELY,YMIN 
GO TO 999 

330 CONTINUE 
C RESET THE END POINTS. 

CALL ENDPTS!XMIN,XMAXl 
CALL ENDPTS!YMIN,YMAXl 

C CALCULATE DELX AND DELY. 
DELX=!XMAX-XMINl/XLX 
DELY=CYMAX-YMINl/YLY 

C XTHRES AND YTHRES ARE USED AS NOISE THRESHOLDS IN LABELLING THE AXES. 

c 

XTHRES=ABS!XMAXl 
IF<ABSCXMINl .GT.ABS!XMAXllXTHRES=~BS<XMINl 
XTHRES=O.OO!*XTHRES 
YTHRES=ABSIYMAXI . 
IF!ABS!YMINl.GT.ABS!YMAXllYTHRES=ABS<YMjNl 
YTHRES=O.OOl•YTHRES · 

C GENERATE THE PLOT 
c 
C CALCULATE THE POSITION <IF ANYl OF THE X-AXIS 

KX=ABSCXMIN!DELXl+l .0 
l~!XMIN.EQ.0.0IKX=l 

fF!XMAX.E0.0.0lKX=LXPI 
IF!KX.GT.LXF!IKX=LXPI 
IZERO=O 
IF!IXMIN.LE.O.Ol .AND.CXMAX.GE.O.OlllZERO=l 

C CALCULATE THE LINE !IF ANYl OF THE Y-AXIS 
KY=ABSCYMAX/OELYl+l.O 
IF! CYMAX.LT .O.Ol .OR. <YMIN.GT .O.Ol lKY=O 
IF!YMAX.EQ.O.O>KY=l 
IFCYMIN.EQ.O.OlKY=LYPI 

-65-



ICOUNT=lO 
LI ST= I 
YLOWER=YMAX 
DO I 00 I= I , L YP I 
YUPPER=YLOWER 
YLOWER=YMAX-l•DELY 

C ZERO THE POINTS ~RRAY ISTART A NEW LINE OF THE PLOTJ 
DO 101 J=l ,LXPI 

IOI POINTSIJl=lH 
IF<ICOUNT.NE.IOlGO TO 105 
DO 106 J=l,LXPl,2 

106 · POINTS<Jl=IH. 
1 05 CON ,· I NUE 
C WRITE OUT COORDINATE MARKERS 

POINTS< l l=IH. 
POINTS< ?.I l=IH. 
PO I NTS I 4 I l =I H. 
POINTS< 61l=IH. 
POINTS! 81 l=IH. 
POINTS! 101 l=lH. 

C WRITE OUT THE ZERO-MARKER FOR X=O 
IFllZERO.EQ.llPOINTS<KXl=IHI 

C WRITE OUT THE ZERO-MARKER FOR Y=O 
IF<l.NE.KY>GO TO 137 
DO 136 J=l .LXPI 

136 POINTSCJl=IH-
137 CONTINUE 
C LOOPING AROUND LOOP 102 PLACES THE SYMBOL X ON THE X-AXIS FOR EACH 
C <X,Yl PAIR THAT SATISFIES .... 
C IY.GT.YLOWERl.ANO. IY.LE.YUPPERI 
102 CONTINUE 

IFILIST.GT.NUMPTSIGO TO 110 
IF!YILISTl.LE.YLOWER>GO TO 110 
K=IXILISTl-XMINl/OELX+t.O 
IFIK.GT.LXP!lK=LXPI 
POINTS<Kl=IHX 
LIST=LIST+I 
GO TO I 02 

110 CONTINUE 
C WRITE OUT A SINGLE LINE OF THE PLOT. DETERMINE. WHICH OF FOUR 
C POSSIBLE WRITE STATEMENTS TO USE. 

IF'ICOUNT.EQ.IOlGO TO 112 
ICOUNT=ICOUNT+I 

C FOR PROGRAM EFFICIENCY, OUTPUT ARRAYS POINTS ANO POINT AS FOLLOWS. 
IF<ISIZE.NE.O>GO TO 210 

C WRITE STATEMENT FOR LARGE PLOTS. 
WRITE<NOUT,tlllPOINTS 

lit FORMATCl5X,IOIA!l • 
GO TO 220 

210 CONTINUE 
C WRITE STATEMENT FOR SMALL PLOTS. 

DO 211 J=t ,LXPI 
POINT<J>=POINTSCJJ 

211 CONTINUE 
WRITECNOUT,215lPOINT 

215 FORMATC15X,41All 
22G CONTINUE 

GO TO 100 
I 12 CONT I NUE · 

!COUNT=! 

-66-



IF<<YUPPER.GT.-YTHRESl .ANO.<YUPPER.LT.YTHRESllYUPPER=O.O 
C FOR PROGRAM EFFICIENCY, OUTPUT ARRAYS POINTS ANO POINT AS FOLLOWS. 

IF<ISIZE.NE.OlGO TO 230 
C WRITE STATEMENT FOR LARGE PLOTS. 

WRITE<NOUT,113>YUPPER,POINTS 
I 1 3 FORMAT < 2X . E 1 1 . 4 , 2X , I 0 I A 1 l 

GO TO 240 
230 CONTINUE 
C WRITE STATEMENT FOR SMALL PLOTS. 

DO 231 J=l ,LXPI 
POINT<Jl=POINTS<J> 

231 CONTINUE 
WRl;E<NOUT,235>YUPPER,POINT 

235 FORMAT<2X.El l.4,2X,41AI l 
240 CONTINUE 
100 CONTINUE 

DO 121 I= 1 .6 
XI= 1-1 
XLABELll l=XMIN+20.0•0ELX•XI 
IF<<XLABEL<l>.LT.XTHRESl .AND.IXLABEL<ll.GT.-XTHRESllXLABEL<ll=O.O 

121 CONTINUE 
WRITE<NOUT,122><XLABEL<Jl,J=l,LXL> 

122 FORMATll,10X,6<E10.3,10Xll 
IF<ISPEC.EQ.llGO TO 999 
IF<ISIZE.EO.O>WRITE<NOUT,202> 

202 FORMAT<58X,15HTIME IN SECONDS! 
IF<ISIZE.NE.O>WRITEINOUT,2031 

203 FORMAT<28X,15HTIME IN SECONDS> 
999 CONTINUE 

RETURN 
END 

SUBROUTINE ENOPTSIXMIN,XMAXl 
C THIS SUBROUTINE RESETS THE ENO· POINTS FOR SUBROUTINE XYPLOT. THIS 
C INSURES EVEN NUMBERS ON THE PLOTS. 

DIMENSION A<38l 
DAT A I A I I l , I= 1 , 38 l I 0. 0, 0. 1 , 0. 25, 0. 50, 0. 75, 1 . 0, l . l , l . 25, l . 50, 1 . 75, 

22.00.2.50.3.00,3.50.~.00,4.50,5.0,6.0,7.0,8.0,9.0,10.0,ll .• 12.5. 
315., 17 .5.20. ,25 .• 30., 35. ,40. ,45. ,50. ,60., 70. ,80. ,90., 100. I . 

C CHECK FOR EQUAL ENDPOINTS II .E. A CONSTANTl 
IFIXMIN.NE.XMAXJGO TO 1 
IFIXMIN.NE.O.OlGO TO 3 
XMIN=XMIN-5.0E-99 
XMAX=XMAX+5.0E-99 
GO TO 999 

3 CONTINUE . 
XMfN=XMIN•I0.9999991 
XMAX=XMAX•ll.000001 l 
GO TO 999 

I CONTINUE 
C CHECK FOR CORRECT ALGEBRAIC ORDERING 

DEL=XMAX-XMIN 
IFIDEL.GT.O.OlGO TO 2 
XX=XMAX 
XMAX=XMIN 
XMIN=XX 
DEL=-DEL 

2 CONTINUE 
C DEL IS POSITIVE AT THIS POINT. 

-67-



VALUE= I. 0 
IFCDEL.LE.l.OlGO TO 10 

5 CONTINUE 
IFCOEL.LT.VALUE>GO TO 20 
VALUE=VALUE•IO.O 
GO TO 5 

10 CONTINUE 
IF<DEL.GE.VALUE>GO TO II 
VALUE=VALUE*O. I 
GO TO I 0 

II VALUE=VALUE•IO.O 
20 CONTINUE 
CAT THIS POINT, ONE HAS SELECTED VALUE SUCH THAT ... 
C O.t•VALUE.LE.DEL AND DEL.LT.VALUE 

XX=XHIN/VALUE 
IXX=XX 
XX=IXX 
XX=XX•to.o 

C XX REPRESENTS THOSE DIGITS COMMON TO BOTH XMIN ANO XMAX 
XXMIN=XMIN•IO.OtVALUE-XX 
XXMAX=XMAX•IO.O/VALUE-XX 
IFCXXM)N.EQ.O.O>GO TO 30 
IF<XXMIN.LT.0.0JGO TO 35 

C XXMIN IS POSITIVE.' 
DO 32 1=2,38 
AAA=Ai I l 
IF<XXMIN.LT.AAAlGO TO 33 

32 CONTINUE 
33 1=1-1 

XXMIN=A CI l. 
GO TO 30 

35 CONTINUE 
C XXMIN IS NEGATIVE. 

XXMIN=-XXMIN 
DO 36 1=2,38 
AAA=A< I l 
IF<XXMIN.LT.AAAlGO TO 37 

36 CONTINUE 
37 XXMIN=-ACll 
30 CONTINUE 

IFCXXMAX.EO.O.O>GO TO 40 
IF<XXMAX.LT.O.OIGO TO 45 

C XXMAX IS POSITIVE 
DO 42 1=2,38 
AAA=A CI l . 
IF<XXMAX.LE.AAAlGO TO 43 

42 CONTINUE 
43 XXMAX=A (I l 

GO TO 40 
45 CONTINUE 
C X~~AX IS NEGATIVE. 

XXMAX;-XXMAX 
DO 46 1=2.38 
AAA=A< I l 
IF<XXMAX.LE.AAAJGO TO 47 

46 CONTINUE 
47 l=l-1 

XXMAX=-A <I J 
40 CONTINUE 
C SOLVE FOR NEW END POINTS. 

-,68-



XMIN=IXX+XXMJNl•VALUE/10.0 
,XMAX= I XX+XXMAX l •VALUE! I 0. 0 

999 CONTINUE 
RETURN 
END 

SUBROUTINE MINMAXllO.NAME,VALUEJ 
c 
C SUBROUTINE HJNHAX JS USED IN PROGRAM SS TO FIND THE MINIHUH AND 
C MAXIMUM OF THE SPECIFIED VARIABLE ANO THE TIME AT WHICH THESE OCCUR: 
C THIS SUBROUTINE IS TYPICALLY USED WHEN THE NUMBER OF CALCULATED POINTS 
C TO OUTPUTTED POINTS !J.E. lSKIPl IS LARGE. THE INPUT VARIABLES HAVE 
C THE FOLLOWING MEANING ... 
C I 0 I DENT IF I CAT I ON NUMBER I I ::: . I • 2 •... 
C NAME A IOH NAME USED ON THE UUTPUT 
C VALUE CURRENT VALUE OF VARIABLE FOR WHICH THE MINIMAX IS 
C DESIRED 
c 

DIMENSION NAMESllOJ,ISTARTl!Ol ,TMINCIOl,TMAX< IOI ,VMINC!Ol,VMAXllOl 
IHAX=IO 
COMMON /FINAL/IFINAL 
COMMON/TIEl!NIN.NOUT.M.ALINE 
COMMON!TIE21TIME 
DATA !USED I 0 I 
DATA JSTART/79•0/ 

C CHECK FOR END OF THE PROBLEM <J.E. OUTPUT THE HIN/MAX DATA> 
JFCIO.LE.OlGO TO 20 

C CHECK FOR THE START OF THE PROBLEM 
IF<JSTARTC!Ol.EQ.OJGO TO 10 

C CHECK FOR FINAL VALUE OF THE STEP 
IFCIFINAL.NE.llGO TO 999 

C THIS IS THE NORMAL FLOW PATH. 
JFIVALUE.GT.VMJNCJOJIGO TO 5 
VMINC JOJ=VALUE 
TMINCIOJ=TIME 

5 CONTINUE 
IFCVA~UE.LT.VMAX<!OllGO TO 999 
VMAXC lDJ =VALUE 
TMAX C ID l =TI ME 
GO TO 999 

10 CONTINUE 
C INITIALIZE THE ARRAYS. 

NAMESCIOJ=NAME 
IS TART c ID l = I 
VMINC IOJ=VALUE 
VMAXC!Ol=VALUE 
TMINC!Dl=TIME 
TMAXI !Dl=TIME 
!USED=! 
GO TO 999 

20 CONTINUE 
C CHECK TO SEE IF THE MINMAX OPTION USED FOR THIS PROBLEM. 

IFCIUSED.NE.llGO TO 999 
C OUTPUT THE MINIMAX INFORMATION. 

WR I TE I NOIJT. 21 I 
21 ; FORMATllHl,51,26HMINJMUM/MAXIHUH DATA IS ... ,3/l 

WRITEINOUT,221 
22 FORHATC48H VARIABLE -------- H I N I H U H -------.5X, 

232H-------- HA X I H.U M -------,5X.20H---- DIFFERENCE ----l 

-69-



WRITE<NOUT,23> 
23 FORMAT<4X,4HNAME,15X,5HVALUE,13X,4HTIME,t5X,5HVALUE,13X,4HTIME,/l 

l=O 
24 CONTINUE 

I= I+ I 
IF<l.GT.IMAXlGO TO 999 
IF<ISTART<ll.NE.llGO ~O 24 
DIFF=VMAX< I l-VM!N< I l 
WRITE<NOUT,25lNA~EStll,VMIN<ll,TMINCll,VMAXlll,TMAXlll,DIFF 

25 FORMAT<IX,AI0.5X.E20.t3,2X,EI0.3,5X,E20.13,2X.EI0.3,5X,E20.131 
GO TO 24 
GO TO 999 

999 CON;INUE 
RETURN 
END 

SUBROUTINE DELAYllD,IUNITS,XIN,XOUTI 
c 
c 
C SUBROUTINE DELAY STORES AND RECALLS DATA TO PROVIDE A DELAY OPERATION 
C FOR PROGRAM SS. AS PRESENTLY DIMENSIONED. UP TO 5 DISTINCT DELAY 
C TIMES ARE ALLOWED. THE RANGE OF POSSIBLE FINAL IS 2 TO 100 STEP 
C SIZES; iHE MINIMUM OF 2 IS SET BY THE RUNGA-KUTTA STARTER ANO 
C THE MAXIMUM IS SET BY DIMENSION STATEMENTS. THE NUMBER OF DELAY 
C OPERATORS IS LIMITED BY PROGRAM DIMENSION STATEMENTS. 
C ID IDENTIFICATION. NUMBER <1,2,3,4, ANO/OR 5l 
C !UNITS THE NUMBER OF INTEGRATION STEPS !UNITS> OF DELAY 
C XIN INPUT TO DELAY OPERATION 
C XOUT OUTPUT OF DELAY OPERATION 
c 
c 

DIMENSION STORAGEl5,IOll,NEXT<5>.lFIRSTt5l 
DAT A I MAX I I 0 I / 
DAT A < IF I RS T < I I , .I= I , 51 I 0, 0, 0, 0, 0 I 
COMMONIFINAL/IFINAL 
IF<IFIRSTtID>.NE.OiGO TO~ 

C fNITIALIZE THE ID PORTION OF STORAGE. 
DO 2 l=l, IMAX 
STORAGE<IO,ll=XlN 

2 CONTINUE 
NEXT.< IOl =I 
IF I RST < I 0 l =I 
XOUT=XIN 
GO TO 999 

5 CONTINUE 
C CHECK THE RANGE OF THE REQUESTED DELAY. 

IF<! I UN I TS. GT. 11 . AND. <I UN ITS.LT. I MAX I l GO TO I 0 
C FOR NEGATIVE, ZERO, OR ONE DELAY UNITS, OUTPUT THE INPUT. 

XOUT=XIN 
GO TO 999 

10 CONTINUE 
C GET XOUT FROM STORAGE. 

l=NEXT<IOI 
XOUT=STORAGE!I0,11 
IF<IFINALl999,999,20 

20 CONTINUE 
C STORE THE CURRENT VALUE OF XIN ANO UPDATE NEXTtlD>. 

I=l+IUNITS 
IF< I . GT. I MAX I I= I - I MAX 

-70-



STORAGECJD,ll=XJN 
NEXT! IDl=NEXTC IDl+I 
IFCNEXTCJDl .GT.JMAXlNEXTCIDl=I 

999 CONTINUE 
RETURN 
END 

SUBROUTINE LDIXIN,XON,XOFF,MODE.LEVELl 
c 
c 
C THIS SUBROUTINE SIMULATES THE ACTIONS OF A LEVEL DETECTOR THAT 
CHAS HYS:ERSIS. INPUT/OUTPUT TO THIS SUB~OUTINE IS AS FOLLOWS ... 
C XIN ANALOG JllPUT SIGNAL 
C XON ~HE ANALOG LEVEL AT WHICH TH~ OUTPUT GOES TO THE I STATE 
C XOFF THE ANALOG LEVEL AT WHICH T~E OUTPUT GOES TO THE 0 STATE 
C MODE =O NORMAL LEVEL DETECTOR; =I INVERTED LEVEL DETECTOR 
C LEVEL DIGITAL OUTPUT SIGNAL !I.E. I OR Ol 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE NORMAL LEVEL DETECTOR .LOOKS LIKE ... 

I LEVEL ---v-----v--]--

O·LEVEL 

c 

1 I 
I I 
v 
I 
I I. 

--v--)------1-~-

XOFF XON 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

THE INVERTED LEVEL DETECTOR LOOKS LIKE ... 

I LEVEL --v--)------1---
1 J. 
I I 

v 
I 
I 

0 LEVEL ---v-----v--]--

c 

XON XOFF 

LOLD=LEVEL 
IFCMODE.NE.OlGO TO 20 

C THIS JS THE NORMAL LEVEL DETECTOR. 
c 

JFCXJN.LT.XONlGO TO 11 
C L£VEL HAS VALUE I 

LEVEL= I 
GO TO 999 

II CONTINUE 
JFCXJN.GT.XOFFlGO TO 12 

C LEVEL HAS VALUE 0 
LEVEL=O 
GO TO 999 

12 CONTINUE 
C THE VALUE OF LEVEL JS UNCHANGED. 

-71-



GO TO 999 
20 CONTINUE 
c 
C THIS IS THE INVERTED LEVEL DETECTOR. 
c 

IF!XIN.GT.XONlGO TO 21 
C LEVEL HAS VALUE I 

LEVEL=! 
GO TO 999 

21 CONTINUE 
IF!XIN.LT.XOFF>GO TO 22 

C LEVEL HAS VALUE 0 
LEVlL=O 
GO .TO 999 

22 CONTINUE 
C THE VALUE OF LEVEL IS UNCHANGED. 

GO TO 999 
999 CONTINUE 
C IF A LEVEL DETECTOR CHANGE OCCURS, CHANGE THE INTEGRATION METHOD. 

IF!LOLD.NE.LEVEL>CALL RESTART 
RETURN 
END 

SUBROUTINE IMPEQS<ID,Z,ITERS,EPSC,EPSJ,GAIN,IFLAGl 
c 
C THE PURPOSE OF THIS SUBROUTINE IS TO PROVIDE A MEANS FOR SOLVING 
C IMPLICIT EQUATIONS IN PROGRAM SS. THE USER SUPPLIES THE NONLINEAR 
C ALGEBRAIC EQUATIONS VIA SUBROUTINE NAE: SUBROUTINE IMPEQS IS CALLEO 
C IN SUBROUTINE USER AT THE POINT WHERE ONE WISHES TO SOLVE THE IMPLICIT 
C NONLINEAR ALGEBRAIC EQS.' THE INPUT PARAMETERS TO THIS SUBROUTINE ARE 
C AS FOLLOWS .... 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ID 

z 
ITERS 

EPSC 
EPSJ 
!FLAG 
GAIN 

INTEGER IDENTIFICATION <l.2,3,4,5> THAT TELLS THE PROGRAM 
WHICH SET OF NONLINEAR ALGEBRAIC EQUATIONS TO SOLVE. 
ARRAY WHICH CONTAINS THE VARIABLES OF THE NONLINEAR 
EQUATIONS. 
MAXIMUM NUMBER OF ITERATIONS THAT THE NEWTON-RAPHSON 
PROCESS IS ALLOWED TO ITERATE 
EPSILON USED TO JUDGE CONVERGENCE 
EPSILON USED TO ESTIMATE JACOBIAN 
=O IF OK: OTHERWISE, A PROBLEM HAS OCCURED 
GAIN OF CORRECTION TERM: TYPICALLY, GAIN=! 

DIMENSION-Z<3l,ERRORC3l,AC3,3l ,F!3l,CORRC3l,ABSERR<3>. 
C CHECK FOR OUT OF RANGE CONDITIONS. 

I F < C I 0 . LT . I l . OR . r I D . GT . 5 I l GO T 0 998 
IFCITERS.LE.OlGO TO 998 
IF<<EPSJ.EQ.0.0l.OR.<EPSC.Lf .O.Ol >GO TO 998 
IF!GAIN.EQ.0.0lGO TO 998 

C SOLVE FOR THE Z VECTOR SUCH THAT FtZl=O 
CALL NAE<ID,N,Z,ERRORl 

C CHECK FOR OUT OF RANGE N. 
IFC!N.LT.!l.OR.lN.GT.3l>GO TO 998 
DO I K= 1 , I TERS 

C GENERATE A NUMERICAL APPROXIMATION TO THE JACOBIAN OF F AT Z 
DO I 0 I= I ,N 
STORE=Z c 11 
Z<I>=Z!ll+EPSJ 

-72-



CALL NAE<ID.N.Z,Fl 
C EStlMATE THE JACOBIAN 

DO 11 J=I ,N 
A< J, I > = < F C ,I> -ERROR CJ l l /EPSJ 

11 CONTINUE 
Z<ll=STORE 

10 CONTINUE 
C SOLVE FOR THE NEWTON-RAPHSON CORRECTION TERM 

CALL GAUSSCN,A,ERROR,CORR,IFLAG> 
IF<IFLAG.NE.OlGO TO 998 

C UPDATE THE Z-ARRAY 
DO 31 I= I ,N 
Z C I . =Z C I l -CORR c I l •GAIN 

31 CONTINUE 
CALL NAE<:D.N.Z,ERRORl 

C CHECK FOR CONVERGENCE 
ERRMAX=O.O 
DO 32 I= I .N 
ABSERRCl>=ABSIERROR<I>> 
IF<ABSERRll> .GT.ERRMAXlERRHAX=ABSERRC(l 

32 CONTINUE 
IFCERRMAX.LE.EPSC>GO TO 999 
CONTINUE 
IFLAG-=2 
GO TO 999 

998 CONTINUE 
!FLAG=! 

999 CONTINUE 
RETURN 
END 

SUBROUTINE GAUSSCN,A,8,X.IFLAGl 
c 
C SUBROUTINE GAUSS SOLVES THE VECTOR EQUATION A•X=B FOR THE X VECTOR 
C GIVEN THAT THE A MATRIX AND B VECTOR ARE KNOWNS AND THAT THE 
C A MATRIX HAS FULL RANK. PROBLEMS MAY OCCUR FOR NEAR-SINGULAR A 
C MATRICES; IF SO, ERROR MESSAGES AR.E PRINTED ANO !FLAG IS 
C MADE NONZERO. A.B. AND X ARE DEFINED OVER THE FIELD OF REAL 
C NUMBERS. INPUT/OUTPUT IS AS FOLLOWS ... 
C N IS THE SYSTEM ORDER 
C A IS SYSTEM MATRIX 
C B IS INPUT VECTOR 
C X IS SOLUTION VECTOR 
C NOUT IS THE LOGICAL TAPE UNIT NUMBER 
C IFLAG=O · GAUSS ELIMINATION PERFORMED 
C !FLAG=! GAUSS ELIMINATION CAN NOT BE PERFORMED 
c 
c 
C THIS SUBROUTINE IS TAKEN FROM COMPUTER SOLUTION OF LINEAR ALGEBRAIC 
C S~3TEMS BY G. FORSYTHE AND C. B. MOLER, PRENTICE-HALL 1967, PP 68-70. 
C MODIFICATIONS WERE MADE TO THIS SUBROUTINE TO CHANGE THE MANNER 
C IN WHICH ERROR MESSAGES ARE HANDLED. 
c 
c 
c TO CHANGE 1HE MAXIMUM SIZE MATRrx THAT ONE tAN HANDLE. CHANGE 
C THE VALUE OF NMAX IN THIS SUBROUTINE ANO ALL DIMENSION STATEMENTS 
C IN THIS SUBROUTINE PLUS SUBROUTINES DECOMP, SOLVE. ANn IMPRUV. 
c 
c 

-73-



NMAX=03 
DIMENSION AC03,03l,UL<03,03l,8103l ,XC03l 
IFLAG=O 

C CHECK THE VALUE OF N 
IFCCN.GT.01.AND.CN.LE.NMAXllGO TO 40 
IFLAG=l 

14 

40 

WR! TE CNOUT, 14 l 
FORMATC38HIN A CALL TO GAUSS, N IS OUT OF RANGE.> 
GO TO 999 
CONTINUE 
IFtN.NE.llGO TO 41 
X=B<ll/Atl,ll 
GO .-o 999 

41 CONTINUE 
C DECOMPOSE MATRIX A INTO UPPER ANO LOWER TRIANGLE MATRICES, STORE IN UL 

CALL DECOMP<N,A,UL.IFLAGI 
IFCIFLAG.NE.OIGO TO 10 

C SOLVE SYSTEM OF EQUATIONS USING U AND L MATRICES. 
CALL SOLVE<N,UL,8,XI 

C USE IMPROVEMENT TO CONVERGE ON TRUE ANSWER. 

I 0 
c 

CAL~ IMPRUVtN,A,UL,8,X,OIGITS,IFLAGJ 
CONTINUE 

C THE ERROR PRIN10UT HAVE BEEN SUPPRESSED FOR USE IN IMPEQS. 
c 

2 
c 

II 

3 
c 

12 

4 
c 

13 

999 

c 

IFLAG=IFLAG+l 
GO TOtl,2,3,41,IFLAG 
CONTINUE 
WRITEtNOUT,lll 
FORMATl54HOMATRIX WITH ZERO ROW IN DECOMPOSE. 
GO TO l 
CONTINUE 
WR !TE C NOUT, 12 l 
FORMAT<54HOSl~GULAR MATRIX IN DECOMPOSE. ZERO DIVIDE IN SOLVE. 
GO TO 1 
CONTINUE 
WRITE<NOUT,131 
FORMATC54HONO CONVERGENCE IN IMPRUV. MATRIX IS NEARLY SINGULAR. 
CONTINUE 
IFLAG=IFLAG-1 
CONTINUE 
RETURN 
END 

SUBROUTINE DECOMP INN, A, UL, IFLAGJ 
DIMENSION A<03,03l, UL<03,031, SCALES<03J, IPS<03l 
COMMON I AA I !PS 
N = NN 

C INITIALIZE !PS. UL AND SCALES 
DO 5 I = I .N 

!PS< 11 = I 
ROWNRM = 0.0 
DO 2 J = I ,N 

UL< I , J l = A t I , J l 
IF<ROWNRM-ABSCULCJ,Jlll l,2,2 

I ROWNRM = ABStULt!,JIJ 
2 CONTINUE 

IF tROWNRMl 3,4,3 

-74-



c 

3 SCALES< I l 
GO TO 5 

4 IFLAG=I 
GO TO 19 

5 CONT"INUE 

I .OIROWNRM 

C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING· 
NM I . = N-1 
DO 17 K = I.NM! 

BIG = 0.0 
DO 11 I = K .N 

IP = !PSC I l 
SIZE= ABSCULCIP.K>>•SCALEStlPl 
IF CSIZE-BIGI 11,ll,IO 

10 BIG = SIZE 
IDXPIV = I 

II CONTINUE 
IF CBIG> 13.12.13 

12 IFLAG=2 
GO TO 19 

1 3 IF l IDXP IV ,-Kl I Li, 15. 14 
14 J = IPSIKl 

IPSCKl = !PSI IDXPIV> 
I PS I I DXP IV l = -.I 

15 KP = IPSIKI 
PIVOT = ULIKP,Kl 
KP! = K+I 
DO 16 I = KP! ,N 

IP = !PSI I l 
EM= -ULllP,KltPIVOT 
UL< IP, Kl = ·-EM 
DO 16 J = KP I • N 

UL!IP,Jl = ULllP,Jl + EM•ULIKP,Jl 
C INNER LOOP. USE MACHINE LANGUAGE CODING IF COMPILER 
C DOES NOT PRODUCE EFFICIENT CODE. 

16 CONTINUE 
17 CONTINUE 

KP = IPSINl 
IF I UL I KP, N l l 19, 18, 19 

18 IFLAG=2 
19 CONTINUE 

c 

RETURN 
END 

SUBROUTINE SOLVE INN. UL, B, Xl 
DIMENSION ULl03,03l, BC03l, XC03l. IPSl03l 
COMMON I AA / !PS 
N = NN 
NP I = N+ I 

IP = !PSI I l 
XI I l = BC !Pl 
DO 2 I = 2,N 

IP = !PSI I l 
IHI = 1-1 
SUM = 0.0 
DO I J = I • I M I . 

I SUM= SUM+ ULllP,J>*XIJJ 
2 X C I l = 8 C I P l - SUM 

-75-



c 
IP = IPSINl 
XINI = XCNl/ULllP,NI 
DO 4 IBACK = 2,N 
I = NPl-IBACK 

C I GOES <N-!l, ... ,I 
IP = IPSI I l 
IPI = .1 +I 
SUM = 0.0 
DO 3 .J = I P I • N 

3 SUM= SUM+ ULCIP.Jl•XCJI 
4 XCll = IXCll-SUMl/ULIJP,11 

RETURN 
END 

SUBROUTINE IMPRUV CNN, A. UL, B. X. DIGITS, IFLAGI 
DIMENSION AC03,03l, ULC03,03l, BC031, XC031, Rl03l, 0XC03l 

C USES ABSCl. AMAX!Cl, ALOG!OI l 
DOUBLE PRECISION SUM 

c 
N = NN 

EPS = 2.••!-471 
ITMAX = 29 

C +++ EPS ANO ITMAX ARE MACHINE DEPENDENT. +++ 
c 

c 

XNORM = 0.0 
DO I I = I ,N 

XNORM = AMAXllXNORM,ABSIX!I Ill 
IF IXNORMI 3,2,3 

2 DIGITS = -ALOGIO<EPS> 
GO TO I 0 

3 DO 9 ITER = 1.ITMAX 
DO 5 I = I ,N 

SUM = 0.0 
DO 4 J = I ,N 

4 SUM= SUM+ All,Jl•XIJl 
SUM= B<ll - SUM 

5 R< I l = SUM 
C +++ IT IS ESSENTIAL THAT ACl,Jl•XCJl YIELD A DOUBLE PRECISION 
C RESULT ANO THAT THE ABOVE + ANO - BE DOUBLE PRECISION. +++ 

CALL SOLVE IN,UL,R,DXI 
DXNORM = 0.0 
DO 6 I = I ,N 

T = X CI l 
XCll = XCll + OXCJl 
OXNORM = AMAXICDXNORM,ABSCXCJJ-Tll 

6 CONTINUE 
IF CJTER-11 8,7,8 . 

7 DIGITS= -ALOGIOCAMAXICOXNORMIXNORM,EPSl l 
8 IF COXNORM-EPS•XNORMJ 10,!0,9 
9 CONTINUE 

C ITERATION DID NOT CONVERGE 
IFLAG=3 

10 CONTINUE 
RETURN 
END 

-76-



.. 

(' 
.. 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

SUBROUTINE NAE<ID.N,Z,Fl 

THE PURPOSE OF THIS SUBROUTINE IS TO PROVIDE A PLACE FOR THE NONLINEAR 
ALGEBRAIC EQUATIONS <NAEl TO BE INPUTTED TO IMPEQS: SUBROUTINE 
IMPEQS SOLVES THE IMPLICIT EQUATIONS. THE EQUATIONS TO BE SOLVED ARE 
ASSUMED TO BE IN THE FORM SUCH THAT A SOLUTION VECTOR Z MAKES F<Z> 
EQUAL TO' THE NULL VECTOR, THAT IS• F<Zl=O. WHERE F, z. AND 0 ARE 
VECTORS. AS PRESENTLY SETUP, UP TO FIVE SETS OF NONLINEAR EQUATIONS 
MAY BE SOLVED IN ONE SS PROBLEM; EACH SET OF EQUATIONS HAY HAVE I, 2. 
OR 3 EQUATIONS. THE INPUT VARIABLES HAVE THE FOLLOWING MEANING .... 

ID INTEGER IDENTIFICATION NUMBER <I THROUGH 51 THAT TELLS THE 
PROGRAM WHICH SET OF NONLINEAR ALGEBRAIC EQUATIONS TO SOLVE 

N NUMBER OF EQUATIONS IN SET 
Z ARRAY WHICH CONTAINS THE VARIABLES OF THE NONLINEAR EQS. 
F ARRAY F EVALUATED AT Z . 

WHEN USING THE IMPLICIT EQUATION OPTION, ONE "UST SUPPLY N 
AND THE VECTOR FUNCTION F FOR EACH SET OF EQUATIONS IN SUBROUTINE 
NAE. ·IN ADDITION, ONE MUST HAVE A CALL TO SUBROUTINE IMPEQS IN 
SUBROUTINE USER FOR EACH SET OF EQUATIONS IN SUBROUTINE NAE. 

DIMENSION ZC31,FC31 
I F I I I D . L T . I I . OR . C I D . GT . 5 I l GO T 0 999 
GO TOll00,200,300,400,500>,ID 

C SET OF EQUATIONS NUMBER ONE. 
100 CONTINUE 

N=O 
·FI I l =O. 0 
FC21=0.0 
F<31=0.0 
GO TO 999 

c 
C SET OF EQUATIONS NUMBER TWO. 
200 CONTINUE 

N=O 
F <I l =O. 0 
F<2l=0.0 
Fl31=0.0 
GO TO 999 

c 
C SET OF EQUATIONS NUMBER THREE. 
300 CONTINUE 

N=O 
FI I l =O. 0 
FC21=0.0 
F c 3l :.::0. 0 
GO TO 999 

.c 
C S ... T OF EQUATIONS NUMBER FOUR. 
400 CONTINUE 

N=O 
F CI l =O. 0 
FC21=0.0 
FC3l=O.O 
GO TO 999 

c 
c SET OF EQUATIONS NUMBER FIVE. 

-77-



• 

.. 

500 

999 

c 
c 

CONTINUE 
N=O 
flll=O.O 
fl2l=O.O 
Fl3l=O.O 
GO TO 999 
CONTINUE 
RETURN 
END 

SUBROUTINE USER<MODE,N,T,X,XDOTI 

C THE VARIABLES USED BY PROGRAM SS ARE AS FOLLOWS ... 
C MODE SWITCH USED BY PROGRAM SS TJ SELECT VARIOUS PARTS 

or SUBROUTINE USER. c 
c 
c 
c 
c 
c 
c 
c 

NIN 
NOUT 
N 
M 
T 
x 

XDOT 

y 

TAPE UNIT NUMBER FOR READING USER DEFINED INPUT 
TAPE UNIT NUMBER roR ECHOING USER DEFINED INPUT 
DIMENSION or THE STATE VECTOR x 
NUMBER or VARIABLES TO BE OUTPUTTED 
CURRENT VALUE or TIME 
STATE VECTOR---THESE VARIABLES ARE THE RESULT or 1HE 
DIGITAL INTEGRATION. 
CURRENT VALUE or THE TIME DERIVATIVE OF x EVALUATED 
AT THE CURRENT TIME T. 
OUTPUT VECTOR---THESE VARIABLES WILL BE OUTPUTTED. 

c 
c 
c 
c 
c 
c: 
c 

NOTES EVERYTHING IN SECTIONS 300 AND 400 IS REQUIRED. 
THING IN SECTIONS 100, 200, AND 500 IS OPTIONAL. 

EVERY-

c 
c 

DIMENSION X<20l ,XOOT<20l,YC31 l,LABELC80l 
COMMON!TIEl/NIN,NOUT,M,ALINE 

·coMMONITIE3/Y 
COMMONITIE41LABEL 
GO TO<I00,200,300,400 .. 500lMODE 

C THE USER PLACES ALL OF HIS CODING BETWEEN THE TWO+ LINES. 
c 
c ++++++++++++++++++++++++++++++++++++++++++++++++++++++•+++++++++++++++ 
c 
c 
100 
c 

CONTINUE 

C THE USER INSERTS USER DEFINED INPUT READ/WRITE STATEMENTS HERE. 
C THE INPUT TAPE UNIT NUMBER MUST BE NIN ANO THE OUTPUT TAPE UNIT 
C NUMBER MUST BE NOUT. 

I 0 I 

200 
c 

READCNIN,IOIJA,B.C 
FORMAT<3EI0.3l 
WRITECNOUT.IOllA,B.C 
GO TO 999 
CONTINUE 

C ONE CAN DO ONE-TIME PRECALCULATIONS AND OUTPUT LABELLING IN 
C THIS SECTION. 
c 

D=SQRTIA+Bl 
C OVERWRITE THE STANDARD OUTPUT LABEL HERE. AN EXAMPLE IS ... 
C LABEL I I l =I OHOUTPUT .I 

-78-



300 
c 

LABELll l=IOHSTATE NO I 
LABELC2l=IOHSTATE NO 2 
LABEL<3>=10HSTATE NO 3 
LABEL14l=IOH XD0Tl3l 
GO TO 999 
CONTINUE 

C THIS SECTION COMPUTES THE XDOT VECTOR GIVEN N, T. AND THE X-VECTOR. 
c 
c CALCULATE AN INTERMEDIATE VARIABLE 

Z=-C•X13l+X!IJ••2-x121••2-D 
CALL MI NMAX ! I . I OH XDOT ! 3 l . Z l 
IFC;.GT.15.0>CALL STOP 

WHICH 15 A FUNCTION OF THE STATES. 

C CALCULATE THE TIME DERIVATIVES OF THE STATE VARIABLES. 

400 
c 

XDOT!ll=-0.5•X<I l 
XDOT!2l=-A•X<2> 
XDOT!3l=Z 
GO TO 999 
CONTINUE 

c 
c 
c 

tHE USER SPECIFIES THE VAR1ABLES THAT WILL BE OUTPUTTED IN THIS 
SECTION----THE OUTPUT VARIABLES ARE PLACED IN THE Y-VECTOR; THE 
Y VECTOR IS OF LENGTH M, WHERE M IS SPECIFIED IN THE INPUT 

c DECK SSIN. 
c 

500 
c 

Y ! I l =XI I l 
Y!2l=X!2l 
Y!3l=X!3l 
Yl4l=Z 
CALL. XYPLOTll ,4,21 
GO TO 999 
CONTINUE 

C TH!S SECTION IS PROVIDED FOR POST PROCESSING OF THE FINAL TIME DATA. 
c 
c CALCULATE THE SUM OF THE THREE STATES AT THE FINAL TIME 

501 

c 

SUM=Xl\l+Xl2l+Xl3l 
WRITE!NOUT,501>SUM 
FORMAT!IHI ,5!,6HSUM = ,EI0.3> 
GO TO 999 

c ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
c 
999 CONTINUE 

RETURN 
END 

-79-



.. 

SUBROUTINE XYPLOT<ID,IXX,IYYl 
c 
C SUBROUTINE XYPLOT ALLOWS THE USER TO X-Y PLOT ANY DATA IN THE Y 
C OUTPUT ARRAY. AS PRESENTLY DIMENSIONED, UP TO 10 X-Y PLOTS 
CARE ALLOWED. THE INPUT VARIABLES HAVE THE FOLLOWING MEANING ... 
C ID IDENTIFICATION NUrlBER II TO IOl 
C ~AXIS NUMBER OF ELEMENT IN Y ARRAY ONE WISHES PLOTTED ON X AXIS 
C YAXIS NUMBER OF ELEMENT IN Y ARRAY ONE WISHES PLOTTED ON Y AXIS 
c 
C CAUTIONt THE TWO VARIABLES FOR WHICH ONE WISHES AN X-Y PLOT 
C HUST APPEAR IN THE Y OUTPUT ARRAY IN SUBROUTINE USER. 
c 

COMMONIXYI/ IX! IOI, IY< 101 
C MMAX IS THE MAXIMUM NUMBER OF OUTPUTS FOR WHICH PROGRAM SS IS DIMENSIONED. 

DATA MMAX I 30 I 
IF<<ID.LE.Ol .OR.<ID.GT.IOllGO TO 999 
IF!IX!IDl .NE.OlGO TO 999 
IF!llXX.LE.Ol.OR.!IYY.LE.OllGO TO 999 
IF<<IXX.GT.MMAXl .OR.llYY.GT.MMAXllGO TO 999 
IX! IDl=IXX 
!YI IDl=IYY 

999 CONTINUE· 
RETURN 
END 

SUBROUTINE PLOTS!X,Y,TITLES,NUMPTS.NAME,NOUT,ISIZEl 
c 
c THIS SUBROUTINE GENERATES THE LINE PRINTER PLOTS FOR PROGRAM ss~ 
c 
C DEFINITIONt A RELATIONSHIP IS A SET R OF ORDERED !X,Yl PA!RS. 
C DEFINITIONt A FUNCTION IS A SET F OF ORDERED IX,Yl PAIRS WITH 
C THE PROPERTY THAT IF IX,Yll ANO IX,Y2l ARE CONTAINED 
C INF, THEN Yl=Y2. 
C THUS. FUNCTIONS ARE A PROPER SUBSET OF RELATIONSHIP~.. PROGRAM SS 
C USES SUBROUTINE PLOTS TO PLOT BOTH FUNCTIONS 11.E. VARIABLE VERSUS 
C TIME> AND RELATIONSHIPS <I.E. X-Y PLOTS>. 
c 
C THE INPUT VARIABLES ARE ... 
c x X-AXIS ARRAY OF THE IX,Yl PAIRS 

Y-AXIS ARRAY OF THE IX,Yl PAIRS c y 
C TITLES ARRAY USED TO STORE THE TITLE CARDS WHICH ARE PRINTED 

AT THE TOP OF THE PLOT c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

NUMPTS 

NAME 
NOUT 
!SIZE 

CAUTION* 

NUMBER OF IX,Yl PAIRS. NUMPTS MUST BE GREATER THAN I 
AND LESS THAN OR EQUAL TO MAXPTS. 
PLOT LABEL---MUST BE AIO OR IOH FORMAT. 
LOGICAL NUMBER OF OUTPUT TAPE UNIT 
=O MEANS FULL SIZE PLOTS <50Xl00l; OTHERWISE, ONE 
GETS THE REDUCED-SIZED PLOTS 130X40l. 

T~E X AND Y ARRAYS WILL BE MODIFIED BY SUBROUTINE PLOTS. 

WHEN PLOTS ARE REQUESTED. THE PROGRAM RUNTIME WILL TYPICALLY 
BE DOMINATED BY THE TIME TO OUTPUT WRITE STATEMENTS lll,IJ3,215, 
AND 235. THEREFORE, IT IS IMPORTANT THAT THESE WRITE STATEMENTS 
BE AS EFFICIENT AS POSSIBLE; USE THE FORMS INDltATED BELOW <I.E. 
NOT AN IMPLIED DOI. 

-80-



..... 

APPENDIX C. WRITING TRANSFER FUNCTIONS AS 

FIRST-ORDER DIFFERENTIAL EQUATIONS 

When a system is modeled, a portion of the total system is often 

described by a transfer function. This appendix describes how a transfer 

function in the normalized form can be directly converted to a set of first­

order differential equations. In particular, the coefficients of the transfer 

function are used, without any algebraic manipulations, directly in the dif­

ferential equations. The normalized form of 'the transfer function is: 

G(s) 

m m-1 
ams + am-ls + . . . . . . + a 1 s · + a 

0 = n ~l · · 
s + b 

1
s + ...... + b1s + b 

n- o 

where m < n and b equals one. 
n 

For physically realizable systems, it is 

required that m 2_ n (i.e., no feed forward of derivatives of the input). 

Transfer functions with.m = n can be put in the normalized form by expanding 

the transfer function into two parts:· a feed-forward gain term and a trans­

fer function \olith m < n (see Example Two below for an illustration of this 

technique). The above normalized transfer function has the block diagram 

shown in Fig. C-1, where u is the input, y is the output, and it is assumed 

that m = n - 1. 

For a transfer function with denominator of order n, n integrators are 

required., This will result in a set of n first-order, ordinary differential 

equations. These n equations can be written directly from this block diagram 

in terms of the a and b coefficients. The differential ·equations are: 

. 
x 

n 

n 

i=l 

1, .•• , n - 1) , 

b. 1x. + u , 
].- ]. 

-81-



Fig. C-1. Block diagram of normalized transfer function with m = n - 1. 

-82-



.".\. 

where, by definition, the initial values of the state variables are zero for 

transfer functions. Note that the constants in this set of differential 

equations directly use the coefficients of the normalized transfer function. 

The output of the transfer function, y, is given by: 

n 

y = L ai-lxi · 
i=l 

The above realization of G(s) and other possib.le forms can be found in a book 
1 

by C. A. Desoer. 

Example One - Write the first-order ordinary differential equations for: 

G(s) 10s + 2 

3s
2 + 9s + 6 

Put this in the normalized form: 

G(s) = (~) 
2

· 10s + 2 . 
s + 3s + 2 

The 1/3-gain term is handled as a separate gain in series with the normalized 

transfer funct.ion, as shown in Fig. C-2. One writes the differential 

equations directly from the normalized. transfer function: 

. 
Xl X2 ' 

x2 ~2x1 - 3x2 + u , 

where x
1 

and x2 have initial values of zero. The output is: 

The forms are suitable for use in Program SS. 

1charles A. Desoer, Notes for a Second Course on Linear Systems (Van Nostrand 
Reinhold, New York, 1970)., pp. 99-104. 

-83-



• 

u I ios + 2 I a 
Ot--~~~---~~ __ s2 __ +_3_s_+......,2___.~~~--·~V:!.:J~~--~-~ 

Fig. C-2. Block diagram for normalized transfer function 
of Example One . 

-84-



Example Two - Write the differential equations for: 

G(s) = 12s
2 + 46s + 26 
2 

3s + 9s + 6 

·Note that m = n. One must expand G(s) so that m = n - 1. If one divides the 

numerator by the denominator, one gets: 

G(s) 
= 12 + els+ c2 

3 
3s

2 + 9s + 6 

where c
1 

and c2 must be determined. Observe that the second term is the 

remainder after one division, and that the first term is the.ratio of a and 
n 

b 
n 

coefficients. By placing the expanded G(s) over its common denominator 

and comparing the original numerator with this one, one can solve for c
1 

and 

Ci. In this case they are 10 and 2, respectively, and the equation becomes 

G(s) = 
!Os.+ 2 4 + ~~~~~~ 
2 

3s + 9s + 6 

Observe that this second term is the same transfer function as in Example One. 

The differential equations and output equations are: 

*1 x2 

x
2 

= -2x - 3x2 + u , 

where x
1 

and x
2 

have initial values of zero and 

The 4u term in y accounts for the direct feed-through of the input to the 

output. The block diagram for this transfer function is shown in Fig. C-3. 

-85-



• 

1 

+ 
u 10s + 2 

s2 + 3s + 2 y 

Fig. C-3. Block diagram for transfer function of Example Two. 

FW/11/vt/mla 

-86-



NOTICE 

111.is report was prepared as an account of work 
sponsored by the United States Government. Neither the 
United States nor the United States Energy Research 
& Development Administration, nor any of their 
employees, nor any of their contractors, subcontractors, 
or their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility 
for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or 
represents that its use would not infringe 
privately-owned rights. 

NOTICE 

Reference to a compapy or product name does not 
imply approval or recommendation of the product by 
the University of California or the U.S. Energy Research 
& Development Administration to the exclusion of 
others that may be suitable. 

Page Range 

001 - 025 
026- 050 
051-075 
076- 100 
101 - 125 
126-150 
151 - 175 
176- 200 
201 - 225 
226-250 
251 - 275 
276- 300 
301-325 

Printed in the United States of America 
Available from 

National Technical Information Service 
U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 
Price: Printed Copy $ ; Microfiche $2.25 

Domestic 
Price Page Range 

$ 3.50 326- 350 
4.00 351 - 375 
4.50 376- 400 
5.00 401-425 
5.50 426- 450 
6.00 451 - 475 
6.75 476- 500 
7.5C 501 - 525 
7.75 526- 550 
8.00 551 - 575 
9.00 576-600 
9.25 601 - up 
9.75 

Domestic 
Price 

10.00 
10.50 
10.75 
11.00 
11.75 
12.00 
12.50 
12.75 
13.00 
13.50 
13.75 
• 

•Add $2.SO for each additional 100 page increment from 601 to 1,000 pages: 
add $4.SO for each additional I 00 page increment over 1,000 pages. 



.;.. 

Technical Information Department 
LAWRENCE LIVERMORE LABORATORY 
University of California I Livermore, California I 94550 




