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FOREWORD

This is an account of research work in advanced programmable
digital filter network technology performed during the latter part of
FY76 and FY76T by the Special Studies Group of the LLL Physics Department
for the Office of Naval Research, under ONR Order #N00014-76-F-0023, along
the lines specified in LLL Phys. Prop. 76-101, which was submitted to ONR
in March 1976. This document reports satisfactory completion of all the

items of this proposal's Work Statement, and the successful accomplishment

wof additional, related tasks which position this research project to

.maintain a very aggressive pace in FY77, given adequate funding.

The work reported herein was performed by Harlan Lau, Richard
McWilliams, Thomas McWilliams, Joseph Simpson, Lawrence C. Widdoes, Jr.,
and Lowell Wood, of the Special Studies Group, with research sub-contact
assistance from Paul Levine and Kottapphram Mohiuddin of Stanford
University's Electrical Engineering and Computer Science Departments,
supervised by Professor Forest Baskett.

"This document is an account of work sponsored by the U. S. Government.
Neither the United States, nor the United States Energy Research and '
Development Administration nor the Uﬁited States Navy, nor any of their
employees, nor any of their contractors, subcontractors, or their
employees, makes any warranty, express or implied, or assumes.any liability
or responsibility for the accuracy, completeness or usefulness of any

information, apparatus, product or process disclosed, or represents that

its use would not infringe privately owned rights.

"This report is unclassified, and its distribution is unlimited.
Its reproduction or other use for any purpdse of the U. S. Government is

authorized."
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1. Introduction

This report describes the desngn of an extremely high performance programmable digital filter of
novel architecture, the LLL Programmable Digital Filter (LLL Filter).

Essentially all of the perceived Navy requirements for advanced digital processing systems may be
effectively addressed with parallel processing systems, in which relatively independent processing
units work in parallel on portions or sub-divisions of the entire problem, exchanging information
with each other during the course of processing. This is the case whether- one is concerned

\\ ,/primarily with fleet defense (in which various processors might provide local control and

//” monitoring of sensors or weapons systems while sharing information with each other on the time-

varying aspects of attack and defense parameter spaces, both within single ships and between
them), with SOSUS (in which each hydrophone array might have its own powerful processing
unit exchanging filtered information with essentially identical units in all other stations
monitoring a common region of the ocean, for coherent processing techniques such as aperture
synthesis, or for accuracy enhancement or reliability purposes), or weather prediction (in which
each processor might handle meteorological data acquisition and time-advanced extrapolation for
its own, relatively small section of the simulated air-ocean envelope, exchanging interface
condition information with those of its fellow processors responsible for ad jacent sections).

Moreover, the enormous demands on. digital processing power which Navy requirements, of which
the foregoing are only examples, impose on modern digital processing technology appear to be
most fully satisfied in the foreseeable future only by extensive use of parallel processing techniques
and hardware. The doubling time for raw processing power from single processing unit
superprocessors (for example, the CDC 6600/ 7600 series) has been incredsing steadily over the last
decade, and presently appears to be more than 4 years, a sharp contrast to the 1.5 year figure
characteristic of the late 50s and early 60s. Parallel processing systems, on the other hand, are
capable of indefinitely great extension in raw processing power with essentially zero technological
risk and time lag, and moreover, with advance knowledge of system performance and thus cost-
effectiveness

We have therefore undertaken to' determine the optimal structure of a parallel processing system
for addressing the specific Navy application centering on the advanced digital filtering of passive
acoustic ASW data of the type obtained from the SOSUS net.



2 Introduction , 1.1

1.1 Advantages of Parallel Processors -

For problems which involve algorithms amenable to parallel processing ([Amdahl 1967],
[(Ball 1962], [Carroll 1967]), [Flynn 1966], [Katz 1970]), parallel architectures can offer
certain major advantages over sequential architectures. The advantages result from the
modularity inherent in parallel architectures. These advantages can be categorized as advantages .
of reliability, economy, and size. :

The advantage of reliability has been discussed extensively (for example, see [Barker 1975] or
[(Hamer-Hodges 1973]); failure of a single module may not entail failure of the entire system if
the module failure can be detected and the module replaced by a duplicate under program control. -

Of primary importance among the advantages of economy are the economies of scale in the
construction phase; by repeating the construction of a single processing element many times, the
total cost per processing element may be greatly reduced.

A second economy of scale comes in the design phase. Theoretically, the design cost per processing
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real
paralle! processor must include some desigh costs per processing element which grow as the
number of processing elements is increased, but these costs may be negligible.

A third important economy has been overlooked in previous parallel processor design efforts; it is
the potentially reduced time lag between the freezing of the system design and the delivery of the
first operational system. Although this time lag may include both hardware and software
contributions, the software contribution will be neglected in this analysis. Essentially, by
replicating a relatively simple processing element many times and using a regular interconnection
network, the lag time mentioned can be made very small; it is virtually independent of the
processing power of the total system. As a result, the semiconductor technology used in a properly
designed paraliel processor can be nearly state-of-the-art, whereas the technology used in a more .
complex processing structure must be considerably more out of date. This time-lag phenomenon
will continue to seriously degrade the cost-effectiveness of delivered complex systems as long as
advancing semiconductor technology continues to provide exponentially more cost-effective
components, but may be essentially eliminated in advanced parallel processing systems.

One additional economy has also been overlooked in the past; this economy results from the
freedom of the parallel processor designer to choose the most cost-effective processing element
structure independent of the processing power of the element. Cost-effectiveness of sequential
processor structures is not constant over all levels of processing power. Although the specific
shape of the cost-effectiveness curve depends upon the technology available and upon the
characteristics of the target problem domain, for any specific technology and problem domain the
cost-effectiveness curve has a finite number of broad maxima. Because the design of a digital
processing system must be aimed not only toward maximum cost-effectiveness, but toward some
minimum processing power, designers of single processor sequential systems have not been able to
utilize structures with possibly higher cost effectiveness but lower processing power. On the other
hand, the designer of a parallel processor may be able to achieve a total cost-effectiveness which
is nearly the same as the cost-effectiveness of the processing element, and since the processing
element may not be constrained to have a large minimum processing power, to achieve higher
total cost-effectiveness.

Independent of these economic advantages is the advantage of size; regardless of whether it is
economically feasible to build increasingly powerful sequential systems, at some point it becomes
physically impossible (with state-of-the-art technology) to build these machines. It can be argued -
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that sequenual systems of almost arbitrary speed can be built given enough resources, and so the
advantage of size reduces to the advantage of economy. However, from a practical viewpoint, at
some point the cost of a sequential system increases so rapidly with speed that this argument is
moot, and in addition, there are theoretical limits both in physics and mathematics to the speed of
sequential machines, and these limits do not apply to parallel processors working in appropriate -
_ problem domains. This advantage of parallel processor structures is important because for the
forseeable future it will be desirable to build systems with more total processmg power; numerical
weather prediction with its real-time constraints is an obvious example.

These arguments about the advantages of parallel processors are applicable without modification
only if the target problem domain can utilize with high efficiency each processor in a parallel
processor system of arbitrary size. The suitability of various problems for parallel processing has
been the subject of much academic contention ([Amdahl 1967), [Flynn 1966],
[(Minsky 1971)). Unfortunately, only "a few parallel architectures have proven economically
viable, so there has been little impetus to develop new algorithms for exotic parallel machine
architectures. We believe that the computational simulations of many large physical problems, for
example, the optimal SOSUS digital filtering. problem, are so well-suited for parallel processor -
architectures and so important, that any one such simulation alone is sufficient justification for
the intensive development of such digital processing technology. :



2. System Overview.

The LLL Programmable Digital Filter consists of high-performance processors that execute
independent instruction streams and access a common main memory via a crossbar interconnection
network (crossbar). All of main memory is uniformly accessible by every processor.

The crossbar arbitrates access by all processors to 16 block storage modules (BSMs) which are
interleaved on either the most significant or the least significant address bits (manually selectable).
Ignoring conflicts, approximately. 1 micro-second is required to accomplish a memory read of four
36-bit words.

The crossbar contains facilities for logically disconnecting (amputating) any processor. |
. Amputation of processor P; can be invoked by any other processor P. In order to prevent

processors, errant due to erther hardware or software reasons, from performing spurious
amputations, an amputator must, by convention, pass elaborate software correctness tests (which
will involve confirmation by other processors)

-The programmable digital filter has been optimized to include 16 processors. Each processor

contains a novel dual cache, which buffers the interconnection network against processor accesses.

to instructions and local variables. Processors do not have Iocal memory. No connections exist
between processors except through the crossbar.

Interprocessor communication takes place in main memory; memory management hardware allows
protection of interprocessor communication. Interprocessor synchronization is accomplished by a
combination of primitive mechanisms including interrupts, which can be sent from any processor
to any one other processor over the crossbar, special mutual exclusion hardware, which is
addressed as memory, read-modify-write capability in the crossbar, and special memory access
modes (specified in the virtual-to-real map) which force some memory accesses to bypass the
caches.

An extremely high-level instruction set 1mproves the individual processor performance by
reducing the number of instructions which need to be executed. Furthermore, natural addressing
modes are complex, and therefore the processor implementation separates addressing and
execution into three parallel micro-processors. The instruction set is horizontally micro-
programmed in writeable control store, and can therefore be extensively modified to reduce
execution time and code size for specific applications.

A large virtual memoty space is provided in order to allow the architecture and software to
remain fixed while memory costs decline and real memory size increases.

2.1 System Configuration

Figure 2.1-1 shows an overview of the LLL Prograrnmable Digital Filter.

Main memory is divided into a number of block storage modules (BSMs) that can be
simultaneously and independently accessed by any of the processors. When two or more
processors demand access to any one BSM, memory contention logic establishes a queue. The
queueing discipline is such that no processor can access a given memory BSM twice before a

processor desiring to access that BSM is allowed to access it once.

Each processor communicates with the crossbar over two unidirectional 25-bit cables. The

o,



2.1 ' System Overview ' S5

crossbar communicates with memory over two umd:rectnonal 50- bit cables. Internally, the crossbar
switch is 25 bits serial in each dlrectlon

Main memory provides a path for interprocessor communication. Interprocessor synchronization
is accomplished by means of munch registers, which appear as memory locations, hardware
queues, which are accessed as memory locations, read-modify-write capability in the crossbar, and
inter-processor interrupts. Interrupt requests are sent through the crossbar and are handled by
the interrupt controllers. Whenever a processor is interrupted by its associated mterrupt
controller, it performs memory accesses to determine the nature of the interrupt.

Input/output is accomplished in two ways. For low speed l/O devices such as terminals, data is
transferred by the writing and reading of the 1/O control words, which are addressed as memory,
and are located in the various memory controllers. Each low-speed 1/O device is attached to some
specific interrupt controller, and thus can interrupt one processor. The interrupted processor may
then forward the interrupt. High-speed 1/O devices (for example, disks) are handled by a direct

. memory access (DMA) port which communicates with main memory in the same way as all the

processors do.
We summarize the the major characteristics of the system architecture as follows:
- Muitiple (16) identical processors execute independent instruction streams.

- Every processmg element can uniformly address all system memory through a (25-
bit. serial) crossbar switch.

- Each processing element has dual private caches to reduce contention for main
memory, to reduce average memory access time, and to insure that system
performance does not seriously degrade as more processing elements (and
therefore a bigger and slower interconnection network) are added.

- Each processing element can direct an interrupt to any other processing element.

-~ Munch registers, hardware queues, and read-modify-write memory capability are
available for synchronization.

" - . The virtual-to-real memory maps include access mode bits which allow efficient
sharing of data and instructions.
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2.2 Processor Organization

The processors shown in Figure 2.1-1 are complete high-performance computing elements which
could be used in either a uniprocessor or multiprocessor configuration; they are extremely cost
effective in either environment.

The processor 'aychitecture and design are described in Section 3 and  Section
4. The basic processor organization is shown in Figure 2.2-1.

Each processor has dual high-speed caches; one contains only instructions, and the other contains
data. Writes ordinarily do not update main memory, but affect only the caches (see Section
* 3.1 and Section 3.3 for full detail). :

A virtual-to-real address map in each processor translates addresses generated by instructions into
addresses used by the hardware, and also defines access modes for memory pages. A page can be
tagged as not cacheable, in which case it is never placed in the cache, and all writes to the page
then write through to main memory.

The Instruction Box (IBOX) contains a general-purpose micro-programmed sequencer, which
executes out of writeable control store. The IBOX performs all operations required to decode
instructions and fetch operands. In particular, the IBOX performs the virtual to physical address
translation, implements the various memory access modes, handles communication with the
crossbar, and fields interprocessor interrupts.

The IBOX also controls the Execution Box (EBOX). The EBOX performs all arithmetic and
logical operations except those involved in addressing. The organization of the EBOX is similar
to that of the IBOX; it contains a micro-programmed controller and internal registers. The
EBOX is designed for high-speed floating point arithmetic; its floating point algorithms allow
three rounding modes; true stable rounding, ceiling rounding, -and floor rounding.
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3. Processor Architecture-

We summarize the processor's ma jor architectural features as follows:

A very large (222 word) virtual address space to allow each processor to uniformly

address any system memory of feasible size in the forseeable future.

- Efficient mechanisms for allowmg the executive to communicate with user
processes.

- A high-level instruction set ideally suited for compilers.

- An instruction set specifically tailored to reduce the frequency of pipeline
interlocks in a high-performance implementation.

- The capablhty to perform three operand instructions through the use of a unique
"T-field" descriptor.

- Comprehensive floating-point capability, including three rounding modes and the
option to trap on excess pre- or post-normalization.

- The capability to. directly pérform operations on operands of 4 precisions:
quarter-word, half-word, single-word, and double-word.

- Special instructions for dealing with the multiprocessor environment.

Certain processor implementation details are included in this section for clarity; processor
implementation-is fully described in Section 4.

3.1 Caches

Each processor has a private cache; this cache reduces memory contention and reduces access time
for areas of locality, thereby lowering the performance requirements for the switching network
and main memory.

The cache is implemented in two parts; the instruction cacke, and the data cacke. Both caches can
be read simultaneously, allowing instructions representable in one word, requiring only one
execution cycle, and having at most one memory operand to be executed continuously at a rate of
one instruction per cache cycle (approximately 100 nano-seconds), the instruction set has been
optimized so that instructions of this type predominate dynamically. Each cache is set-associative,
with a set size of 4 and a capacity of 4K words (1K lines of 4 words each).

The instruction cache retains only locations accessed as instructions, and the data cache retains
locations accessed as operands of an instruction. (Note that instruction words may be accessed as
data.) The hardware insures that no memory word is contained in both caches as follows:
Instructions are always fetched from the instruction cache. If a necessary instruction is not
resident in the instruction cache, then a 4-word line is fetched from the data cache or memory, in
that priority, and is evicted from the data cache. If the line was marked as having been altered in
the data cache, then it is written out to memory. The instriction cache contains no mark bit;
writes and data reads always access the data cache. If a necessary data line is not resident in the

data cache, then it is fetched from the instruction cache or memory, in that



10 Processor Architecture 31

priority, and is evicted from the instruction cache. This discipline insures that no.memory word is
contained in both caches simultaneously, with the disadvantage that it forces slow transitions
between writing and executing or executing and writing any block of instructions.

The cache uses physical addresses to tag entries, allowing the software to switch virtual address
spaces without sweeping the cache, and eliminating the problem of clogging the cache with

multiple copies of shared read-only data.

For communication or synchronization reasons, it will be necessary at times to insure that certain
variables are not present in the cache of a specific processor. Access modes may serve this
purpose, as described in Section 33, but in addition two special instructions are
provided: The instruction "KILL DATA V,L" sweeps the data cache, writing to memory (if
marked) and invalidating every entry which has a virtual address U such that V<U<V+L-1 (L is
assumed to be a count of quarter-words). The instruction "KILL INSTR V.L" performs an
identical function for the instruction cache (in which no entry is ever marked). The instruction
"KILL DATA INSTR" performs both sweeps.

For reasons of efficiency, it may be convenient to aveoid invalidating the cache residents swept by
the KILL instructions. A special instruction is provided for this purpose: The instruction
"UPDATE DATA V,L" sweeps the data cache, writing to memory (if marked) every entry which
has a virtual address U such that V<U<V+L-1 (L is assumed to be a count of quarter-words).
No analogous instruction is provided for the instruction cache, since instruction cache entries
cannot be marked.

" Depending upon the magnitude of L. in these KILL and UPDATE instructions, the hardware

may sweep the entire cache instead of individually sweeping each location in the specified range.
Y P ¥ ping P g

‘No instructions are provided which, when executed on processor P; cause the cache of processor

P; (i=j) to be swept. This necessary function will be accomplished by dlrectmg a special interrupt
from P; to P; which causes P; to sweep its own cache.

3.2 Virtual Memory

The LLL Filter uses paging to map 30-bit virtual addresses to 30-bit real addresses (although the
particular implementation of the LLL Filter described in Section 4 uses only 28-bit
real addresses). '

‘I'he virtual-to-real address map is shown in Figure 32-1. A virtual address space is
uniquely identified by the contents of the segment base register, which is the main memory address
of the segment pointer table for the address space, or is a pointer to the disk address of same. The
segment pointer table is a contiguous list of segment table pointers. Each segment table pointer is
either the main memory address of a segment table, or the disk address of same, or is null,
indicating that the segment table does not exist. Each segment table is a contiguous list of page
table pointers. Each page table pointer is either the main memory address of a page table, or the
disk address of same, or is null, indicating that the page table does not exist. Each page table
contains a list of page table entries. Each page table entry contains either the main memory
address of a page, or the disk address of same, or is null, indicating that the page does not exist.

An address translation in general involves three memory references, one to the segment pointer
table, one to the segment table and one to a page table; the segment base register is a hardware

© register inside the processor. A page map in each processor contains (for the most recently used

pages) the complete translation from virtual page address to real page address.
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The processor contains two hardwate page maps; one translates addresses of locations accessed as
instructions, and one translates addresses of locations accessed as data. Each page map is
implemented as a set-associative memory with a set size of four and a capacity of 64 entries,
therefore 128 address translations can be stored simultaneously in the processor. An entry may be
stored in both page maps. A

The processor hardware actually contains two segment base registers, EXEC_SEG_BASE_REG,
and USER_SEG_BASE_REG; an instruction may conveniently specify that either be used in
mapping each memory operand of an instruction (see the discussion of the M bit in Section
3.7.3.1.2). Each page map entry contains a bit called the base bit, which identifies which of
the two segment base registers the entry is associated with. The address space specified by
EXEC._SEG_BASE_REG will be called the executive address space, and the address space
specified by USER_SEG_BASE_REG will be called the user address space.

‘Whenever a segment base register is altered, all page map entries associated with that segment
base register must be invalidated: The instruction "WRITE EXEC JUMP X,J" loads
EXEC_SEG_BASE_REG with X, invalidates all page map entries associated with
EXEC_SEG_BASE_REG, and jumps to location J. The instruction "WRITE USER JUMP X,]J"
loads USER_SEG_BASE_REG with X, invalidates ail page map entries associated with
USER SEG_BASE_REG, and jumps to location }.

In user mode, any reference to the executive address space causes a trap to the executive trap
vector at address REF_EXEC. The executive may refer to the user address space without

trapping.

Whenever a necessary translation is not resident in a page map, the necessary entry is fetched
from memory and placed in the page map. A page map resident may be evicted in this process,
but page map residents need not be written to memory when evicted. Whenever an entry is
fetched from memory, the reference bit is set in the page table entry in memory; thls reference bit
is used by the operating system in the page replacement algorithm.

The data cache page map contains a mark bit for each entry. When a write occurs, if the page
written is unmarked in the data cache page map, then the mark bit is set in the appropriate page
table entry in memory and in the data cache page map. If the page written is marked in the data
cache page map, then the page table entry in memory is not modified. Mark bits are not
necessary in the instruction cache page map since all writes are done to the data cache.

Whenever the executive needs to modify page table entries to reflect the changing configuration
of real memory, a protocol must be invoked which removes invalidated page table entries from
the two page maps of each processor. The hardware refills the page maps directly from main
memory, bypassing the caches, therefore invalidated page table entries need not be removed from
the caches. Special instructions are provided for removing entries from both page maps
simultaneously: For example, the instruction "KILL USER MAP V" will remove any entry in the -
instruction cache page map or the data cache page map which maps virtual address V in the user
address space to any real address. The protocol mentioned above then requires that the processor
_P, executing the operating system, interrupt each processor P; which may have in its page maps
the entzy to be modified, and cause each such P, to execute a KILL USER MAP instruction.
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3.3 Memory Access Modes

Each page table entry includes bits which specnfy the access modes of the page. The names and |
meanings of these bits are as follows:

Instructions. If this bit is .false, then a hard ‘trap to the executive at trap vector

‘NOT_INSTRUCTION will occur when a location from this page is accessed as an instruction.

4

Data. If this bit is false then a hard trap to the executive at trap vector NOT_DATA will occur

‘when a location from this page is accessed as an operand of an instruction.

Read-through. If this bit is true, then any read of a location on thls page will cause a2 memory
access to occur; the resulting data wnl be placed in the cache if and only if the location is already
a cache resident. _ :

Write-only. If this bit is true, any read from a location on thls page will cause a hard trap to the
executive at trap vector WRITE_ONLY.

Write-allocate. If this bit is true, then any write miss will allocate a cache entry and the data will
be written into the allocated entry. Write hits will simply update the cache entry. If this bit is
false, then a write miss will not allocate a cache entry.

Write-through. If this bit is true, then any write will update memory. If the write is a write hit, -
then cache will be updated as well. If the write is a write miss, then if and only if the write-
allocate bit is true, a cache entry will be allocated and written.

The combination in which both write-allocate and write-through are false is reserved to mean

"read-only”. A write to a read-only page will cause a hard trap to the executive at trap vector

READ_ONLY.

Combinations of these bits allow us to obtain many useful access modes, of which the following
are examples:

Local-data (data A write-allocate) A cache miss caused by reading an operand from a local-data
page causes the four-word block containing the missed word to be read over the switching
network and placed in the data cache. Writes to locai-data pages do not write through to main
memory. Whenever it is important that the memory shadow of a local-data page be made
identical to the cache, the "UPDATE DATA" or "KILL DATA" instruction must be executed to
update main memory. It is intended that the private variables of a process be identified as local-
data pages; cache sweeping will be necessary if the process ever moves to another processor.

Cached-read-data (data) A cache miss in a cached-read-data page causes the missed word to be
read over the switching network and placed in the cache. No writes are allowed to a cached-
read-data page; such a page is created by writing it as a local-data page, executing the instruction
"UPDATE DATA" or "KILL DATA", and finally changing the appropriate page table entries to
convert the page into a cached-read-data page. A cached-read-data page is destroyed by
destroying the access route to the page, that is, by destroying all information about it in page
tables in memory, and removing it from all page maps. Although locations from a cached-read-
page may be resident in the cache, they will be replaced by new cache residents. Since locations
from a cached-read page can not be marked in any cache, no cache sweep is necessary to destroy
such a page.
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Static-code (instructions). A static-code page is similar to a cached-read-data page, that is, it is
cached, created, and destroyed in the same way as a cached-read-data page. However, locations
on a static-code page can be accessed only as instructions. It is intended that shared routines will

be identified as static-code.

Dynamic-code (instructions A data A write-allocate). In order to avoid the large overhead of
cache sweeping and page-table modification, some programs may write dynamic-code pages and
execute them immediately. Dynamic-code pages are the same as local-data pages, except that
locations from these pages may be accessed both as instructions and as data.

Shared-data (data A read through A write-through). Words from shared-data pages are never
placed in the cache. A write to a shared-data page writes through to main memory without
writing in cache (write-allocate is false), and a read from a shared page reads directly from main
memory. 1/O registers and munch registers (see Section 3.4) are on shared-data pages.
In addition, locations which are heavily shared by multiple processors are on shared Fages,
ehmmatlng the necessity to perform repeated cache sweeps when passing small amounts of data
between processors. . '

3.4 Sy nchronization .

Several mechanisms are provided to allow efficient process synchronization: interrupts, read-
modify-write memory capability, munch registers, and hardware task queues.

3.4.1 Interrupts

Each BSM; contains one interrupt controller, which is directly attached to processor P; by four
interrupt hnes INT_LINE<0:3>, as shown in Figure 2.1-1. The function of the interrupt
controller is to receive interrupts from 1/O devices (both low- and high-speed), which are directly
connected to the interrupt controller, and from processors, which send interrupts through the
crossbar, and to assert the interrupt lines accordingly.

The interrupt. controller contains four 36-bit registers, INT_REG[0:3)<0:35>, which can be
accessed over the crossbar as memory locations. . The sole function of the interrupt controller is to
set INT_LINE<i> if and only if INT_REG[ilJ<j>=1 for some j. Each I/O device is connected to

~one bit of one INT_REG; the I/O device interrupts by setting that bit. No I/O device is

connectéd to INT_REG[0). Any processor P; may interrupt any other processor P, by setting some
bit in Pjs INT_REG[0). Specifically, "SET INTERRUPT },I" executed by any processor sets

location j to(Jorl) usmg a read-modify-write memory access. By convention, when P; interrupts.

P;, P, will set bit i in P;'s INT_REG([0).

Whenever INT_LINE<k> to processor P; is asserted, P; compa}es its current priority (PRIO) to k,
which is the priority of the interrupt. If and only if PRIO is less than k, P; will acknowledge the

interrupt by resetting a bit in its interrupt register INT_REG(k]} under micro-code control. If
more than one INT_LINE is asserted, then the INT_LINE with the higher priority will be
acknowledged first.

After acknowledging the interrupt, P; interrupts to the executive at a specific interrupt vector, the .

address of which depends upon the identity of the /O device or processor which caused the
interrupt; that identity is fully determined by the index of the bit in INT_REG(k] which caused
the interrupt and which P; reset in acknowledgement. Section 3.7.4.10 contains a complete

description of flow of control during an interrupt after interrupt acknowledgement.
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3.4.2 Read-Modify-Write

. The crossbar network has the capability to perform read-modify-write memory cycles. This
capability- is used to implement special instructions such as "TEST AND SET", and
“INTERRUPT", and to implement hardware queues. Normal instructions which access a memory
location as both a source and the destination do not use read-modify-write memory access
capability.

To perform a read-modify-write memory access, processor P;, under micro-code control, sends a
read-modify-write request to the crossbar. The crossbar causes the addressed memory module to
read and returns the data to P, The crossbar prevents any other processor from accessing the
selected memory module until-P; returns a write.

3.4.3 Munch Registers

We borrow the concept of munch registers from Steele ([Steele 1975)). Associated with each
processor is at least one munch register. Munch registers are identified by their page table entries
as being shared-data. The instruction "MUNCH SKIP NOT FULL ADR M,V" executed by
processor P; translates V into a real address R and writes R into the munch register at address M.
The munch register controller allows R to be written into M if and only if no other munch register
contains R, otherwise the controller writes zero into M. After writing to M, P, reads M and skips
if and only if the result is non-zero, that is, if and only if there was no conflict.

Munch registers can also be read and written with normal memory-reference instructions, in
particular, a munch register M is returned to the free state by writing zero into it. Note that the
" munch register controller always checks conflicts on writes to munch reglsters even in the case in
which zero is being written to the munch register.

Munch registers are designed primarily to allow processors to enqueue on very small data elements
without wasting storage by having a separate flag for each element. Munch registers are
implemented as an associative memory with special control logic connected to a memory port. Any
munch register is accessible by any processor, but munch registers will be allocated by software to
processors, and that allocation will be enforced by the memory mapping hardware.. There are
enough munch registers to allocate several to each processor.

Note that the executive will update the munch registers when evicting or re-loading munched
pages.

3.4.4 Hardware Queues

There exist several hardware queues which are addressed -as memory locations. Special
instructions such as "QUEUE" and "DEQUEUE" manipulate the hardware queues by using read-
modify-write memory accesses. For example, when processor P; performs a "QUEUE SKIP NOT
FULL ADR Q,X" instruction, in a read-modify-write cycle, it reads the state of the hardware
queue at address Q, and if the queue is not full, places X on the queue and skips to ADR. 'If the
queue is full, then P; places nothing on the queue (writing to a dummy location in the queue
controller in order to satisfy the crossbar that the read-modify-write cycle has been completed)

and does not skip. '

Hardware queues allow the rapid dispatching of tasks without the necessity of using munch
registers or TEST AND SET instructions. Both FIFO and LIFO queues are being provided.
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3.5 Status

The hardware register STATUS:REG<0:35> contains both processor and user status. The
processor status can be accessed only in executive mode, whereas the user status can be accessed in
either executive or user mode. |

3.5.1 .Processor Status

The processor ‘status portion of STATUS_REG is accessible only by means of the instructions
"READ FULL STATUS", and "WRITE FULL STATUS JUMP" these instructions read or
write the entire STATUS_REG, including both processor and user status. The processor identity
(PROCESSOR _ID<0:35>) is a unique number for each physical processor; it is considered part of
the processor status and is read with the instruction "READ PROC ID". The execution of any of
these instructions in user mode causes a hard trap to the executive at trap vector address’
STATUS_ACCESS.

The fields included in the processor status are as follows:

SP.ID<0:4>

Stack pointer identity. This field is the address of the register used as the stack pointer in some
instructions. The stack limit is always the next contiguous register. SP refers to the stack pointer
register, and SL refers to the stack limit register.

EXEC_FILE<O:1> .
Executive register file. This field is the index of the register file used for operands and
addressing in the executive address space. (See Section 3.7.2 for reserved file indices.) :

USER_FILE<0:1> .

User register file. This field is the index of the register file used for operands and addressmg in
the user address space. Furthermore, when executing in the executive address space, the lowest 32
single-words of the address space refer to these registers. not to real memory locations. (See
Section 3.7.2 for reserved file indices.)

USE. SHADOW

Use shadow registers. If this bit is set, then memory addresses 0 to 127 (the first 32 single-words
of the virtual address space), when mapped in the user address space, actually access memary
locations; otherwise, these memory addresses access the user register file.

PRIO<0:2>
Processor priority. Interrupts with pnomy less than or equal to this number will not interrupt the
processor.

EXEC.MODE _
Executive mode. The executive is currently in execution if and only if this bit is set; privileged
instructions may be executed without trapping.

TRACE_TRAP

Trace trap. After any instruction, perform a hard trap to the executive at trap vector address
TRACE. The effects of changing this bit do not appear until after the instruction following the
instruction which changes the status word.
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3.5.2 User Status

The user status portion of STATUS_REG is accesslble in either user mode or executive mode,
only by means of the instructions "READ USER STATUS", and "WRITE USER STATUS
JUMP”. This portion of the STATUS_REG will also be called USER_STATUS_REG. :

The fields included in USER_STATUS_REG aré as follows:

COND«<0:4> :
Arithmetic condition codes negative, zero, overﬂow carry-out, and underflow. Every ﬂoatmg—
point and integer operation may set these condmon codes. Only floating-point operations set -
underflow.

INT_TRAP , :
Allow integer overflow traps lnteger overflow will soft trap to the trap vector at address

INT_OVFL.

—

FLOAT_TRAP
Allow floating-point underflow and overflow user traps. Floatmg point underflow will soft trap

to the trap vector at address FLOAT_UNDFL. Floating-point overﬂow will soft trap to the trap

vector at address FLOAT OVFL.

"PRE_LIMIT<0:5>

Prenormalization limit. If a floating-point number is prenormalized more than this amount and
PRE_TRAP is true, then a soft trap will occur to the trap vector at address PRE_OVFL. The
value PRE_LIMIT <0:5>=63 is reserved by the hardware to mean "never trap”.

POST_LIMIT<0:5>.

Postnormalization limit. If a floating-point number is postnormallzed more than this amount and
POST_TRAP is true, then a soft trap will occur to the trap vector at address POST_OVFL.
The value POST_LIMIT<0:5>=63 is reserved by the hardware to mean "never trap”.

- 3.6 Input/Output

The processor performs 1/O by manipulating 1/0 reglsters which are logically located in the main
memory address space and physically located in the 1/O controllers. :

Each 1/O device (both low- and high-speed) has a direct connection to its 1/O registers (which ‘
are located in one 1/O controller). Protection of I/O devices from access by unauthorized
processes is accomplished by using the memory protection facilities (Section 3.3). 1/O registers
must be marked in each page map as shared-data so that they will not be placed in the cache.

As explained in Section 3.4.1, each 1/O controller can interrupt only one processor, and therefore
each 1/O device can directly interrupt only one processor. However, any processor receiving an
interrupt may forward that interrupt to any other processor by means of the interprocessor
interrupt faciiity.
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3.7 Instruction Set Definition

The processor executes instructions which are from one to three 36-bit words in length. With
certain restrictions on the addressing modes, many instruction types can operate on 9, 18, 36, or 72
bit operands, called quarter-word (qw), half-word (hw), single-word (sw), and double-word (dw),
respectively.

We first consider the justifications for a 36-bit word (as opposed to a 32-bit word). First, without
devastating changes, the LLL Filter instruction format would not fit into 32-bits. Furthermore, it
is important for an entire address to fit in a single word, and for there to be room left in the word
to specify an index register and an indirect bit (as in the PDP-10). Finally, a 36-bit word allows
reasonably large addresses to be packed in a half-word; a 32-bit word does not.

The disadvantages of a 36-bit word are (1) that it is incompatible with a number of machines,
and (2) that it makes addressing standard 8-bit bytes difficult. In answer to the second problem,
the LLL Filter allows quarter-word addressing (a quarter-word is a 9-bits); considering the
exponentially decreasing cost of memory, it seems reasonable to waste the extra bit in those
"applications which cannot find a use for it. '

In order to allow more efficient utilization of memory, the LLL Filter includes the PDP-11 feature
which allows most instructions to operate on multiple operand sizes; in this case the sizes are
quarter-word (9-bits), half-word (18-bits), single-word (36-bits), and double-word (72-bits). One
major problem with multiple operand types is the necessity to shift addresses; the IBM-370 and
PDP-11 can spend a large fraction of their time shifting array indices. To overcome this
problem, the LLL Filter includes addressing modes which automatically allow an index to be
shifted left 0, 1, 2, or 3 places; this feature makes it convenient for a compiler-to work with arrays
composed of any of the basic operand types.

Another desngn goal was to simplify the task of writing a compiler that produces compact and
efficient code. All operand addressing in the LLL Filter is completely symmetrical, that is, every
operand uses the same address computation procedure. The LLL Filter also provides the reverse
form of all non-commutative operations, and allows indexing off of local variables on the stack.
Because of the operand addressing symmetry, a compiler can perform code generation almost
independently of deciding which variables are to be on the stack and which are to be in high-
speed registers.

The most important single design goal was to allow convenient access to a very large address
space; such an address space may allow a new architecture to survive for a long period even in
face of exponentially decreasing memory costs, thus amortizing the expensive software
development effort.

The LLL Filter architecture includes multiple-word instruction formats (one to three 36-bit
words) in order to allow sufficiently powerful instructions that the code density lost in specifying
_ large addresses is not important. Using the LLL Filter instruction format, the total number of bits

needed to represent a program is in general less than the number needed to represent the same -
program on the IBM-370, and approximately equal to the number needed on the PDP-10.
Section 3.7.5.gives a number of examples to substantiate this claim.

The instruction set is horizontally micro-coded in writeable control store. The instruction set
definition which follows is fixed in some respects, for example, in the operand addressing modes,
" but the data paths in the implementation are sufficiently general and the control store is large
enough that the instruction set can be extensively modified, either by the inclusion of new special
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purpose instructions, or by the replacement of existing instructions; such modification simply
involves writing new micro-code.

3.7.1 Notation and Convéntions

- Bits in a word, quarter-words, and half-words are numbered from left to right (most significant
to least significant). The bits in a word are numbered from 0 to 35, and subfields in a word are
referenced by the notation X«<i:j>, where i is the bit number of the high-order bit in the field,
and j is the bit number of the low-order bit of the field. Using this notation, the quarter words
in'a word X are X<0:8>, X<9:17>, X<18:26>, and X<27:35>; these quarter-words are numbered 0,
1,2, and 3, respectively.

In a number of places in the description, a field is used as a signed two's complement number. If
F is such a field, then the notation SIGNED_F (or simply S_F) refers to F considered as a two's
complement number.

Some instructions operate on a pair of data ob jects, such as two quarter words, or two single
words. If X is the first object of such a pair, then second one is refered to as NEXT_X. X and
NEXT_X are contiguous, that is, if X and NEXT_X are addresses of ob jects of length L quarter
words, then NEXT_X = X + L.

3.7.2 Registers and Memory
The processor hardware includes 4 stacks of 32 registers each, REG_FILE[0:3){0:31]<0:35>.

REG_FILE{USER_FILE<0:1>]{0:31] and REG_FILE[EXEC_FILE<0:1>){0:31] will sometimes be
called USER_R[0:31] and EXEC_R[0:31), respectively. R{0:31] will mean USER_R[0:31] if
EXEC. MODE-=0, and will mean EXEC_R(0:31] if EXEC_MODE-=1.

Certain instructions make use of a stack pointer and stack limit register, called SP and SL,
respectively. SP will mean R[SP_ID), and SL will mean R[SP_ID+1], where SP_ID is the stack
pointer identity field in the STATUS_REG.

Registers can be addressed as memory; the lowest 32 single-word addresses of the executive
address space refer to EXEC_R[0:31], and the lowest 32 single-word addresses of the user address
space refer to USER_R[0:2]].

REG_FILE[O0] is dedicated for use by the hardware and micro-code. REG_FILE[0]{0:31] will also
be called TEMP{[0:31], since it contains many hardware temporary locations. In the following
sections we will refer to some registers in REG_FILE[0] by name as follows:
EXEC_SEG_BASE_REG Executive segment base register.
. USER_SEG_BASE_REG User segment base register.

REG_FILE[O] can be accessed by the executive by setting USER_FILE<0: l> 0 and referencing
the registers as memory locations in the user address space.

- REG_FILE[!: 3] are not dedicated; it is intended that they will contain executive and user
registers.
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The instruction set gives hardwired functions to some registers, as shown below:

R[0] A no short indexing allowed

R[1] ~ noshort indexing allowed

R(2] no short indexing allowed

R([3] program counter (PC)

R[4]) " low-order word of temporary register RTA (RTA[0])
R(5) ° high-order word of temporary register RTA (RTA[1))
R[6] low-order word of temporary register RTB (RTB[0])
R[7] high-order word of temporary register RTB (RTB[1))
R[9] general purpose register

R[30] general purpose register (receives first parameter of trap)
R(31) general purpose register (receives second parameter of trap)

The reg;sters RTA and RTB can be used as a third address in some instructions, as explained in
Section 3.7.3.

The instruction set can' manipulate the R registers as easily as memory locations, and special
instructions are provided for saving and restoring R ‘registers during interrupts traps, and
subroutine calls. '

Unless otherwise specified, all addresses in this description are quarter-word addresses. Directly

addressable main memory consists of 23° quarter-words which can also be accessed as half-words,
single-words, or double-words.

In order to facilitate computing with data of multiple precisions (qw, hw, sw, and dw), instructions
are included for each precision. Some instruction types operate on only a subset of the possible
precisions, for example, floating point instructions operate only on single-word and double-word
operands. Most instructions assume that both source operands and the destination are of the
same precision, although some instructions are provided for converting from one precision to
another.

Half-word operands must lie on half-word boundaries, single-word operands on single-word
boundaries, and double-word operands on double-word boundaries. Any violation of this
boundary tule will c¢ause a bhard trap to the executive trap vector at address
BOUNDARY_ERROR. The registers in the register file are considered to lie on contiguous
single-word boundaries. Instructions must lie on single-word boundaries.

Note that a quarter-word add, for example specifying R[16] and R[17) as source operands and -
R[18] as the destination operand, will add the high-order quarter-word of R[16] to the high-
order quarter-word of R[17), and store the quarter-word resuit in the high-order quarter word of
R[18].

3.7.3 Instruction Formats

 Every instruction is either one, two, or three 36-bit words in length. The first instruction word
includes the opcode, and specifies part or all of the address computation for the operands. The
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second and -third instruction words are used for long |mmed|ate constants and for extended
addressing.

Four basic instruction formats apply to the first word of an instruction, as follows:

Three-Address Instruction

TOP T | o ~ on2

8 - 9181112 23 24 - 35

Two-Address Instruction

Xop 001 0D2

e 1112 232 35

" Skip Instruction

SoP SKP . o1 002

8 78 1112 23 24 35

Jump Instruction

JOP PR 001 J

8 181112 . 232 '35

TOP, XOP, SOP, and JOP are opcodes. ODI1 and OD?2 are general Operand Descriptors; they
_specify general operands which can be memory locations, registers, or constants. (It should be
noted that the address computation algorithm is identical for the OD1 and OD2 fields) The T
field specifies how to use the registers RTA and RTB as a third operand in the instruction. SKP
.and J specify a skip distance and a jump distance or jump address, respectively. PR specifies -
whether to use ] as an offset to the PC or as the descriptor of a memory address (as are OD1 and

OD2).

The three-address instruction format allows two general memory addresses to be specified, along
with a third operand, either RTA or RTB. This instruction format provndes most of the
advantages of a true three-address format (that is, the elimination of "move” instructions to make
copies of operands at the beginning of an expressnon) but costs only two bits in the instruction

word.
[

The two-address instruction format allows two general memory addresses to be specified, and is
primarily used in data transmission instructions (which have one source and one destination
operand).

The skip instruction format allows a forward skip of from 0 to 7 words, or a backward sklp of 1
to 8 words (from the location of the current instruction); it is useful for implementing small
conditional loops and IF-THEN-ELSE statements.
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A jump instruction having PR=1 can jump anywhere in the range of PC+2047 to PC-2048 words
(where PC is the address of the next instruction), and in that case requires no additional word to
specify the jump address. If PR=0, ] may specify any memory address, at the possible expense of
requiring an additional instruction word.

3.7.3.1 General Operand Address Specification
We first consider some notation and conventions. If X is the address of a memory location, then
M[X] will mean the contents of that location. The length of M[X] will be clear from context, it

may be either quarter-word, half-word, single-word, or double-word.

Indefinite-level indirect addressing is denoted using the character "e", and is defined as follows:
Let IAP (Indirect Address Pointer) be the contents of a register. or memory location:

IAP: Format tor Indirect Address Pointer

I | REG A

8 1 56 35

Then @lAP is an address, defined as 'folnlows:

IAP

bt
ko)
52}
@

0 = A
1 0 eMI[A)

0 %0  A+RIREG)
] »0 eM[A+R[REG]]

‘The evaluation of all operands (including the jump or skip destination) loglcally occurs before the
execution of the instruction (and before the PC is updated)

The evaluation of a general operand proceeds in two steps, which are discussed in the following
sections. ‘

3.7.3.1.1 Short-Operand Address Calculation

A short operand can be one of the 32 registers R[0:31], a memory location which is addressed as a
short offset from a register, a short immediate constant, or several other entities. The name "short
operand” derives from the fact that such operands require only a short descrlptor in the
instruction. An exact definition follows.
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The 12-bit operand descriptor fields (OD1 and OD2) specify short operands, and may also
specify extended indexing. They have the following format, where the bit numbers are relative to
the origin of the field:

OD: Format for OD1 and OD2

x| 1| F |res

8 1 2 67 11

These fields specify extended indexing (X), indirection (1), a short offset (F), and a register name
(REG). A short operand (SO) is defined as the location specified by the fields I, F, and REG; it
is evaluated as follows:

1 F REG.' Short Operand (SO) Mode Name

0 0-31 0 R[F] " register-direct

1 0-31 0 MIieR(F]) register-indirect

0 0-31 1 S_F short-constant (-16 to +15)
0-31 1 0 short-zero

0 0-31 2 0-31 . . (reserved)

I 0-31 - 2 0-31 (reserved)

0 0-31 3-31 M[R[REG}S_Fx4) short-indexed

1 0-31 3-31 MI[eMI[R[REGJ]}+S_Fx4) short-indexed-indirect

IF X=0, then the value of the operand described by OD is simply SO, as above. Addressing
modes in which X=1 are described in the next section.

All memory address mapping is done in the own address space when calculating short operands.

Short-zero mode is provided only as an escape to allow absolute memory addressing; short-zero
mode with X=1 addresses memory absolutely, as explained in the next section.

It is intended that all of the simple variables (i.e. local variables on the stack and own variables)
be accessed directly in short-indexed mode. Short-indexed mode is of such utility that we call
locations accessed using this mode pseudo-registers (or P registers).

The only variables that can not be conveniently addressed using the short-operand addressing
modes are arrays and variables which are allocated at absolute addresses in memory. Such
locations are accessed by using extended addressing modes, as described in the next section.
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3.7.3.12 Extended‘Addressing

Extended addressing is specified by setting the X bit in the operand descriptor (OD1 or OD?2).
In extended addressing mode, the next word in the instruction stream is used .in the operand
calculation. This word is either the second or third word of the instruction, and has one of these
formats: ' '

E: Format for fixed-base extended addressing

18D M]|] S. ADDRESS

8 1 2 3 4 656 - 35

V: Format for variable-base extended addressing

1 11 |o|m] s | ReG | . DISPLACEMENT
8 1 2 3 4 56 18 35
. | C: Format for long constant

36-BIT IMMEDIATE CONSTANT

2 . .35

Given that the X bit is set in the operand descriptor (OD1 or OD?2), then, with one exception, the.
"additional word in the instruction is used to calculate an extended address, and is interpreted
either as fixed-base format (E), or variable-base format (V), depending upon the value of the V
bit (bit 1) of the word itself. The exception noted is that if the operand descriptor specifies short-
constant mode, then the additional word is interpreted as a long constant (C), and provides a 36-
bit immediate constant which is used as the operand. This addressing mode is called long-
constant mode. In the following discussion we will ignore long-constant mode.

The first step in the extended address calculation is to calculate the base address BASE to be

used in the indexing operation. If the the additional word in the instruction "has fixed-base

format (E), then BASE is given by C
BASE :» ADDRESS

If the additional word in the instruction has variable-base format (V), then the register R.[REG]
contains the base address, and DISPLACEMENT is an additional offset as foilow;:

RASF e R[RFG] + SIGNED NDISPLACEMENT.

Let SO be the short operand specified by the operand descriptor. If the indirect bit (I) in the
extended word is zero, then the value of the operand addressed by using extended addressing is

MIBASE + 50%25)
If the indirect bit is one, then the value o.f the operand is

M[eM(BASE + SO%2%]]
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It should be noted that the extended addressing mode always includes an indexing operation, but
that if short-zero is the short-operand addressing mode, then SO=0, and the address computed
using extended addressing is just BASE. Note also that automatic address shifting occurs in
extended addressing mode, that is, the value SO is shifted left by S bits (where S is a field in the
extended word) before being added to BASE.

The M bit facilitates communication between the executive and the user, which operate in
different address spaces, by allowing instructions executed by the executive to have either operand
mapped in either the user or the executive address space. Only the final address mapping in the
operand calculation procedure is affected by the M bit, as follows:

M. EXEC MODE Final Mapping Space

o . 0 User address space.

0 1 Executive address space.

! 0 (Hard trap to REF_EXEC)
1 1 User address space.

Table 3.7.3.1.2-1
M Bit Interpretation

The duplicate bit (D) specifies that the two operands of the instruction use the same extended
instruction word; it simply inhibits the program counter from being.incremented after the first
operand is evaluated. This feature is useful when both operands are elements of the same array,
but are accessed using different index registers.

3.7.3.2 Three-Address Instructions

Three-address instructions have the format:

o |1 o0l 002

8 9 10 11 12 23 24 35

The TOP field includes the opcode and specmes the precision (Qw, hw, sw, or dw) of the
operation.

~ Fields OD1 and OD2 are general operand descriptors, as described in Section 3.7.3.1; they may
denote R registers, P registers, general memory locations, or immediate constants.

The two-bit T field specifies whether RTA or RTB is used as the third address of the -
_instruction, where ODI and OD2 specify the other two addresses. Specifically, the operation .
evoked by a three-address instruction is descnbed using the names DEST, S, and S2, for
example, DEST«S1eS2, or DEST«S2eS1, where "¢" means the operation evoked by the TOP
field, and S2, S1, and DEST have meanings as shown in the following table. In this table, OP1
means the operand described by field OD1, and OP2 means the operand described by field OD2:
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T DEST st $2
00 6P| OP! | 6P2
01 OPI RTA OP2
o RTA OPI OP2
L 1 . RTB OPI ' OP2

Table 3.7.32-1
T Field Meaning

These addressmg modes are sufficient to allow any FORTRAN assignment statement except those
of the form "A«B+C" or "A«B(I+ )xC(K+L)+D(M+N)XE(L+P)" to be evaluated with no move
instructions to make copies of operands or to store away the result of the expression. The first
exception clearly needs a full three address instruction if it is to be evaluated in one instruction,
and the second requires a third RT register. Because of the binary nature of arithmetic operators,
all other types of expressions require only two RT registers. For example, if two of the subscripts
of the second example were the same, or if one the subscripts were a simple local variable, or were
of the form "I+ J+K", then two RT registers would be sufficient to evaluate the expression with no
move instructions. In Section 3.7.52 some examples are given which show code using the
RT registers. ‘ :

Preliminary evidence suggests that for typical FORTRAN assignment statements, LLL Filter code
using the RTA and RTB registers contains .5 to .7 times the instructions necessary for the PDP-
- 10. .

3.7.3.3 Two-Address Instructions

‘I'wo-address instructions have the format:

XOP 001 002

P 1] 12 23 24 B
The XOP field includes the 6p-code and specifies the precision A(qw, hw, sw, or dw) of the

operation.

Fields OD1 and OD?2 are general operand descriptors, as described in Section 3.7.3.1; they may
denote R registers, P reglsters general memory locations, or immediate constants.
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3.7.3.4 Skip Instructions

Skip instructions have the format:

soP SKP 001 002

8 78 1112 23 24 35

The SOP field includes the op-code, specifies the precision (qw, hw, sw, or dw) of the operation,
and specifies the condition on whlch a skip will be taken.

Fields ODI and OD?2 are general operand descriptors, as descnbed in Section 3.7.3.1; they may.
denote R registers, P registers, general memory locations, or immediate constants.

The SKP field contains a skip distance in words. If the skip condition is false at the end of the
current instruction, then the next instruction to be executed is the next sequential instruction. If

the*skip condition is true, then the quarter-word address of the next instruction to be executed is
PC+4*SIGNED _SKP, where PC is the address of the current instruction.

3.7.3.5 Jump Instructions

Jump instructions have the following format:

JoP PR 001 J

8 18 11 12. - 23 24 35

- The JOP field includes the op-code, specifies the precision (qw, hw, sw, or dw) of the operation,
and specifies the condition on which a jump will be taken.

Field ODI1 is a general operand descriptor, as described in Section 3.7.3.1; it may denote an R
regnster. P register, general memory location, or immediate constant.

The ] field spemﬁesa jump destination _]UMPDEST. It is interpreted differently depending
upon the value of the PC-relative (PR) bit. If the PR bit is one, then JUMPDEST is
PC+4xSIGNED_] where PC is the address of the current instruction. If the PR bit is zero, then
J is taken to be a general operand descriptor. (OD2), and JUMPDEST is the address of the
operand described by that operand descriptor.

Jumps to the user address space performed in executive mode hard trap to the executive at trap
vector address JUMP_USER; all control transfers to the user address space must be performed bY.
means of "TRAP EXEC", "RETURN FULL STATUS", and "WRITE FULL STATUS JUMP

- (which may change the mode to user, then jump).
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3.7.4 Instruction Descriptions .

This section describes the instruction set which is currently being micro-coded for the LLL Filter.
_For the sake of clarity, we have not used a formal descriptive system, but have developed our own
set of largely intuitive descriptive mechanisms and conventions.

Each instruction is defined by showing the opcode string of the instruction and the operation of
the instruction. The opcode string contains terms which are separated from each other by one or
more spaces and together uniquely define the instruction.

This section also describes sequences of operations which are not instructions (for example, the
interrupt procedure). The opcode string column for such sequences shows a function name (in
italics), and the function’s formal parameters. A function defmed in this way may be called from
the definition of any instruction.

Curly brackets are sometimes used in writing terms of the opcode. Several strings (sub- terms)
may be grouped in curly brackets and separated by commas, for example {Q,H,S,D}; this notation
_means that any one of the bracketted strings may be substltuted in place of the brackets and
everything enclosed in the brackets.

The curly-bracket notation may also be used in the operation column. Let X and Y represent any
two curly-bracketted strings such that the number of sub-terms X; of X is equal to the number of
sub-terms Y, of Y. Then if X appears in the opcode column, Y may appear in the operation
column, with the following meaning: If an opcode is constructed by choosing X; in place of the
term X, then the operation of that opcode is formed by replacing Y by Y, In some cases, more
than one curly-bracketted term is used in the opcode column; let W and X be two such terms. In
this case, if curly-bracketted term Y appears in the operation column, Y corresponds to only one
of W and X; that correspondence will not be formally specified, but will be obvious.

Undefined but intuitive functions appear in italics in the operation column.

‘I'he names OPI (OPerand 1), OP2 (OPerand 2), $1 (Source 1), 52 (Source 2), and DEST
(DESTination), have the meanings described in Section 3.7.3.2.

Let X represent any of the strings OPI, OP2, §1, §2, or DEST. Then ADDRESS_X means the
memory address of X. Note that reglsters have memory addresses.

During the execution of one mstrucnon "PC" will mean the address of the instruction currently in
execution, "PC_NEXT_INSTR" will mean the address of the next instruction in the execution
-sequence, and "PC_LAST_INSTR" will mean the address of the prevnous instruction in the
execution sequence.

The LLL Filter instruction set includes "reverse operations” for all non-commutative instructions
with two source operands and a destination operand, that is, instructions of the form
"DEST«OPI e OP2" where "" is a non-commutative operator. A reverse operation is indicated
by the inclusion -of the term "V" in the opcode string. Reverse operations reverse the order of
their source operands before performing the operation. For example, "SUB V OP1,OP2" means

"OP1<OP2-OPI" whereas "SUB OP1,0P2" means "OP1<OP1-OP2".

Reverse operations are provided in order to allow evaluating "A«B ¢ A" and "A«B @ RTA" in
one instruction, where A and B here represerit memory addresses, RTA is a special temporary
register (see Section 3.7.3.2), and "e" is a non- -commutative operator.
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Note that the opcode strings shown in the following sections are not necessarily assembler
mnemonics; they .are simply unique names for the hardware operations. An assembler will allow
omission of some terms and simplification of others; an intelligent assembler, for example, would
infer the "V" term of the opcode string from the order of the three operands of the instruction,

3.7.4.1 Integer ln'structions

Integers are represented in two’s complement notation. All integer instructions operate on data of
any integer precision, that is, quarter-word (Q), half-word (H), single-word (S), or double-word
(D). The precision of the operation is indicated by including the appropriate term (Q, H, S, or D)
after the opcode. For operations which take two operands, both operands must be of the same
precision.

Integer operations are done in the precision of the source operands, except for extended precision
operations (eg. "MULT L {Q,H.S,D}"), which are done in double precision.

3.7.4.1.1 Integer Arithmetic

TOP T ool 002

8 910 11 12 23 24 35

Reverse operatlons are provnded for the non-commutative operations SUB, QUO, REM, and
DIV.

Extended precision operations (eg. long multlply and long lelde) are indicated by including the
term “"L" (Long) in the opcode string. : :
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Opcode String ' : ’Operation :
ADD ° . {QHSD) | DESTS 1452
SUB ~ {QHsD} DEST«S1-52
SUB vV  {QHSD} DEST«S2-S1
MULT {Q,H,s,b} : DEST«S 1%S2
 MULT L {QH,S.D} (DEST,NEXT_DEST)«S 152
QuUoO {QH,S,D} DEST«S1/S2
QUO vV  {QHSD} 3 DEST«S2/S1
QuUO L {QH,S.D} DEST(SLNEXT_S1)/s2
QUO L V {QHSD} DEST«(S2NEXT_S2)/S1
REM ) {QH.S,D} 'DEST«S1 mod $2
REM vV {QHSD} ' DEST«S2 mod S|
REM L {QH.S,D} | | DEST«(SI,NEXT_S1) mod S2
REM L V {QHSD} DEST(S2,NEXT_S$2) mod S1
DIV {QH.S.D} DEST<S1/52

NEXT_DEST«S1 mod S2

DIV ~  V  {QHSD} DEST«52/S1
NEXT_DEST«S2 mod S|

DIV L {QHSD} - DEST«(SI,NEXT_S1)/S2 - ?
: NEXT_DEST(SINEXT.S1) mod $2

DIV L V {QHSD} ‘ DEST«(S2NEXT_S2)/S1
NEXT_DEST«(S2NEXT_S2) mod S|
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o

3.7,4.].2 Increment and Decrement

- XOP - oot ‘ '002

) : 1 12 23 24 35

The increment (INC) and decrement (DEC) instructions provide the capability to perform either
of the operations OP 1OP2+1 or OP1<OP2-1 in one instruction.

Opcode String . . Operation
INC {Q,H,S,D}. , - ‘ . OP1<OP2+1

DEC.  {QH.SD} © - OPI<OP2-I
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3.7.4.2 Floating Point Instructions

t
Floating point precisions are single-word (S), and double-word (D), whereas integer precisions are
quarter-word (Q), half-word (H), single-word (S), and double-word (D). The floating point
arithmetic instructions require one floating point precision to be specified, and the floating point
translation instructions require either a floating point precision and an integer precision or two
floating point precisions to be specified.

Single-precision floating point numbers have the following format:

Single-Precision Floating Point Number

S| EXP MANTISSA<0: 26>

61 89 35

where S is the sign, EXP is an excess-128 exponent of 2, and MANTISSA is a normalized binary

If X is a positive floating point number (single or double precision), then the floating point
number -X is represented by the two's complement of X, so that integer comparison operatlons

yield the correct results for floating point operands. .

Double-precision floating point numbers have the following format:

Double-Precision Floating Point Number

S| EXP MANTISSA<0: 26>. ' MANT1SSA<27:62>

81 839 35 8 | 35.

where. S, EXP, and MANTISSA represent the sign, exponent, and mantissa of the double-
precmon floating point number, as above.

Any ﬂoatmg point operation may be either floor rounded (FR), ceiling rounded (CR), or stable
rounded (SR) (see [Kahan 1973]) these modes are indicated by including the appropriate
characters as a term in the opcode string. Floor rounding yields the closest floating point number
less than the true result (equivalent to truncation since the number system is two’s-complement),
ceiling rounding yields the closest floating point number greater than the true result, and stable
rounding ylelds the closest fioating point number if that number is unique, otherwise it yields the
closest floating point number with a "0" as the least=significant bit.
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3.7.4.2.1 Floating Point Arithmetic

TOP T 001 002

) 918 11 12 2324 35

Most floating point arithmetic instructions combine two operands of one floating pomt precnslon
and store into a destination of the same floating point precision. The operation precision is
indicated by including the appropriate character in the opcode string.

Long floating multiply (FMULT L) takes two single-word floating point numbers and multiplies
them to form a double-word floating point number. Long floating divide (FDIV L) dnwdes a
double-word by a single-word and produces a smgle-word

Reverse operations are provided for the non-commutative operations FSUB and FDIV. .
As explained above, the terms "FR", "CR", and "SR" in the opcode string imply floor rounding

(truncation), ceiling rounding, and stable rounding, respectively. For example, "FMULT FR S"
means "multiply single-precision floating point numbers with truncation.”

AOpcode String ' | , ‘ Operation

FADD . '{FR,CR,SR} {S.D} . -DESTe-SI+S2

FSUB {FRCRSR}  {5,D} | DEST«S1-82 .

FSUB vV {FRCRSR} {SD} "DEST«S2-S1

FMULT {FRCRSR} {S.D} _ DEST«S1%xS2

fMULT L~ {FR,CR,SR} - " (DEST ,NEXT_DEST)eS 1%xS2
FEDIV | {FR,CR,SR} {S,D} 4 DEST«S1/S2

FDIV vV {FRCRSR} (5D}’ DESTS2/S | |

FDiV L {fR,CR,SR} ' DEST«(SI,NEXT_S1)/S2

FDIV L V  {FRCRSR} DEST(S2NEXT_S2)/S1



34 Processor A rchitectu.re 3.7.4.22

3.7.4.2.2 Floating Point Translation

-X0P 001 002

) 11 12 23 24 35

.

The floating point translation instructions translate floating point to integer, integer to floating
point, and floating point to floating point, in each case performing floor rounding, ceiling

. rounding, or stable rounding.

Floating point numbers may be of any floating point precision, that is, single-word (S), or double-
word (D), and integer numbers may be of any -integer precision, that is, quarter-word (Q), half-.

‘word (H), single-word (S), or double-word (D). In addition to the floor-rounding (FR), ceiling-

rounding (CR), and stable-rounding (SR) terms, each floating point translation opcode string
includes a two character precision term; the first character specifies the destination precision, and
the second character specifies the source precision. For example, "FLOAT SR SD" means
“translate with stable rounding a double-word integer to a single-word floating point number.”
For symmetry reasons, all translate instructions include rounding modes.

Opcode String- ' Operation

FIX {FR.CR,SR} {QH,5,D}{S.D} OP l«fix(OP2)
FLOAT {FRCRSR} {S,D}{QH.S.D} OP I«float(OP2)
TRANS {FR,CRSR} SD OP l«float_trans(OP2)

TRANS {FRCRSR}. DS OP lfloat_trans(OP2)
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3.7.4.3 Arithmetic Compare Instructions

The arithmetic compare instructions compare two operands, possibly incrementing, decrementing,
or adding to the destination operand, and skip (-8 to +7 words from the location of the current
instruction), jump (anywhere), or trap (to a fixed virtual address) conditionally on the outcome of
the comparison. Throughout these sections, PC refers to the address of the current instruction.

With two exceptions, the arithmetic compare instructions assume that both operands are of single-
word length. These exceptions are "SKIP {COND} {QHSD}, and "JUMP {COND} 0
- {QH,S;D};" each allows specification of the length of the operands (Q, H, S, or D). Both operands
must be of the same length. .

Every arithmetic compare instruction performs integer comparison. The format of floating point
numbers guarantees that integer comparison produces the correct results for floating point
operands. On the other hand, some arithmetic compare instructions add to the destination
operand, and this addition is integer addition; those particular instructions are not intended to be
used with floating point operands.

In the instruction definitions which follow we have used "{COND}" in the opcode strmgs to
represent "{N,G,E,GE,LNE,LE,A}", abbreviations for the eight conditions on which an arithmetic
compare instruction can skip or jump; these abbreviations mean never, greater, equal, greater or
equal, less, not equal, less or equal, and always, respectively. "{COND}" is also used as a funcnon

symbol (with obvious meaning) in the description column of these opcodes. ‘

The opcode strings in these instructions may include the terms in the following table, and these
_ terms uniformly have the meanings shown:

Opcode Term Meaning
| INC ‘ Add one before comparison.
‘'DEC Subtract one before comparison.

0o  The comparison is with 0.
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3.7.4.3.1 Arithmetic Compare and Skip

SoP Skp 001 . 0pb2

2 78 1112 23 24 35

The field SKP in these instructions specifies a 4-bit (signed) skip distance (in words). Depending
upon the result of the compare instruction, the next instruction to be executed is either at PC, or
at PC+4xSIGNED_SKP.

These instructions are important in that they allow two general operands to be specmed in a

compare instruction. The SKP field of 4 bits in many cases ehmmates the need for including a
jump instruction after the compare.

Opcode String . Operation

INC SKIP  {COND} ' OP1<OP1 + I

if OP1'{COND} OP2
then PCePC+4*SIGNED_SKP

DEC SKIP  {COND} - OP1<OPI - 1
if OP1 {COND} OP2 .
then PC-PC+4xSIGNED_SKP

SKIP  ~ {COND} {QH.S.D} - . if OPI {COND} OP2 .
o then PC+PC+4xSIGNED_SKP
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3.7.4.?;.2 Arithmetic Compare and Jump |

JOP PR 001 J

8 - 181112 = 232 35

In the following instruction definitions, JUMPDEST refers to the jump destination. As described

"in'Section 3.7.3.5, JUMPDEST is computed in one of two ways, depending upon the value of the
PC-relative flag (PR). If PR is true, then J is taken to be a signed 12-bit PC offset, and
JUMPDEST is PC+4xSIGNED_J. If PR is false, then ] is taken to be a general operand
descriptor (see Section 3.7.3.1), and jUMPDEST is the result- of evaluating that operand
descriptor. In either case, jUMPDEST is computed before the execution of the arithmetic- -compare-
and Jump instruction.

Note that the 12-bit PC relative jump (PR true) is included only to increase code density. Afll
instructions in this section can be written with PR true or PR false; this symmetry makes the jump
Iength decision relauvely orthogonal to other decisions in code generation. :

, These instructions allow only one general operand address (OD1), since the field of the instruction
~ normally reserved for a second operand descriptor (OD?) instead contains the jump address.

Opcode String . - o Operation
INC JUMP {COND} " OPl«OPI1 + 1

_if OP] {COND} NEXT_OPI
then PCe« JUMPDEST

DEC JUMP {COND} . OP1<OPI - |
' if OP1 {COND} NEXT_OP1
then PC« JUMPDEST -

INC JUMP {COND} 0 OP1<OP1 + |
. , : if OP1 {COND} 0
then PC« JUMPDEST

DEC JUMP {COND} U - OP1<OP1 - |
L : : if OP1 {COND} 0
then PC JUMPDEST

JUMP {COND} 0 {QHS.D} if OP1 {COND} 0
. : : then PCe JUMPDEST

JUMP E ' PCeJUMPDEST

(note: this is the same instruction
as "JUMP A 0")
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3.7.4.3.3 Arithmetic Compare and Set Flag

TOP T o0t 002

] 918 11 12 23 24 3

These instructions perform an arithmetic comparison and set the destination to all zeroes or all
. ones depending upon the resul; zeroes indicate false and ones indicate true.

The source operands may be of any mteger Iength (Q, H, S, or D). The destination operand is
‘always a single word. .

Opcode String : Operation

SET FLAG {COND} {QHsSD} DEST«S1 {COND} §2
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3.7.4.4 Logical Operations

- 3.7.4.4.1 Logical Testing

SOP SKP 001 - 002

8 78 1112 23 24 35

The logical test instructions test a group of flags (OP1) under a mask (OP2) and conditionally
skip (-8 to +7 words from the location of the current instruction) depending upon the result. The
operands can be any integer length (Q, H, S, or D), but the flags and mask must be of the same

length.

The opcode strings in the following instruction definitions contain the. terms in the following -
table, and these terms have the meanings shown:

Opcode Term Meaning
cT . - Complement OP| before anding
(ie. use Complement with True).
y4 : Skip if the result is Zero.
Nz Skip if the result is Non-Zero. |

If OP1 is a word of flags, and OP2 is a mask which selects a subset of the flags, then these
instructions can be used to test various combinations of the flags, as follows:

. Ogcod Meaning
AND SKIP Z Skip if no selected flag is set.
AND SKIP NZ Skip if any selected flag is set.

AND CT SKIP Z Skip if all selected flags are set.
AND CT SKIP NZ  Skip if not all selected flags are set.

Opcode String : ~ Operation
"AND SKIP  {ZNZ} {QH.S.D} if (OPIAOP) {=} 0

then PC«PC+4xSIGNED_SKP

AND CT ' SKIP {ZNZ} {QHSD} if (not(OP1)AOP2) {==} 0
, .then PC«PC+4xSIGNED_SKP
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 3.7.4.4.2 Logical Assignment

ToP T 001 002

(%] 910 1112 23 24 ‘ 35

The logical assignment instructions perform a logical operation on S| and $2 and assign the result
to DEST. The operands of logical assignment operations may be any integer length (Q, H, S, or
D), but both operands must be of the same length.

The terms CT and TC are used with the following meaning: CT impﬁes that Sl is

complemented before the logical operation (use Complement and True), and TC implies that S2 is
complemented before the logical operation (use True and Complement). ‘

Opcode String . : Operation

AND {QH.S,D} | DEST«S1AS2
AND TC {Q,H,S,D}‘ . DESTeSlanot(S2)
AND CT {QH,S.D} | DEST enot(S 1)AS2
'NOR : {QHSD} DEST «not(S 1)Anot(S2)
OR {QH$.D) . DEST«S$1vS2
'OR  TC {QHS.D} DEST«S lvnor(S2)
OR CT {QHSD} | DEST not(S 1)vS2
NAND {QH.5.D} .' DESTenot(S I)vnot(S2)
XOR {Q,H.S.D] DESTeS| xor S2

EQV {QH.S.D} DESTenot(S1 xor S2)
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3.7.4.4.3 Shift and Rotate

. (I 001 002

8 9181112 23 24 35

The shift and rotate instructions take operands which are any integer length (Q, H, S, or D). The
shift count is always a single-word.

Al shift and rotate instructions are non-commutative, therefore each instruction is provided in
reverse form.

The term "A" (Arithmetic) in the opcode string implies that the operation is arithmetic, otherwise
the operation is logical.

Ogcode String . QOperation

SHIFT {LEFT RIGHT} ‘ {QH,S,D} DEST«S|1 logical {LEFT,RIGHT}

shifted by S2

SHIFT  {LEFT,RIGHT} VvV {QHS,D} DEST«S2 logical {LEFT RIGHT}
: : shifted by S|

SHIFT {LEFT,RIGHT} A {QHS,D} DEST«S| arithmetic {LEFT,RIGHT}
. shifted by S2

SHIFT {LEFTRIGHT} A V {QHSD}  DEST«S2 arithmetic {LEFT,RIGHT}
shifted by S|

ROT  {LEFT,RIGHT} {QHSD}  DESTeSI rotated {LEFT,RIGHT} by S2

ROT  {LEFTRIGHT}  V {QHSD}  DEST«S2 rotated {LEFT,RIGHT} by Si
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3.7.4.4.4 BIT REVERSE

XOP ' 0D1 0D2

8. 1112~ 23 24 - 35

BIT REVERSE reverses the bits in a quarter-word, haif-word, single-Word, or double-word. .

Opcode String ' : Operation
BIT REVERSE {QH;S,D} OoP lebit_reqerse(OP?)

3.7.4.4.5 Bit Counting

<

XOP oo 002

B8 ~ 11 12 22 - 35

BIT COUNT counts the number of one bits in an operand; it is useful for counting the number

.of ‘elements in a set, where bits in a word represent elements in a set, as in common

implementations of PASCAL.

BIT FIRST finds the bit number of the first one bit of an operand; it is useful for computing the
index of: the first element of a set.

Opcode String O Operation
Bl1' COUNT {Q,H,5.D} , OP i<(number of one bits in OP2)
BIT FIRST {Q,H,S,D} ~ OPle(index of the first one bit in OP2)

(The search is from the left to the right.)
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3.7.4.4.6 BIT EXTRACT

e | Tl om 002

B sle1112 . 232% 35
BIT EXTRACT was suggested by Professor John McCarthy; it is pamcularly useful for

extracting a set of flags from a word in order to do an N-way branch on them. S1, $2, and °
DEST are assumed to be of the same length. : :

BIT EXTRACT is non-commutative, and is therefore provided in reverse form.

Opcode String ‘ Operation

BIT'EXTRACT {QHSD} . DEST is set to the value

obtained by extracting the bits
in S1 that correspond to the
ones in S2, then squeezing
them to the right in DEST.

"BIT EXTRACT V {QHS,Dj} DEST is set to the value

' obtained by extracting the bits
in S2 that correspond to the
ones in S1, then squeezing
_them to the right in DEST.
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3.7.4.5 Byte Pointer

XOP - 001 002

i

0 11 12 23 24 35

The byte pomter instructions operate on bit-strings of arbitrary size (less than or equal to 36 bits),
which are called bytes. These instructions all use a two word BYTE POINTER, which has the
format: '

BYTE POINTER

LENGTH | POSITION

1 | REG A

8 1 56 18 26 27 35

LENGTH is the size of the byte, and POSITION is the bit-number of the first bit in the byte.
The second word of the BYTE POINTER is a standard Indirect Address Pointer (see Section
3.7.3.1), which evaluates to the address of the word which contains the byte.

The LENGTH and POSITION fields are each 9 bits long, therefore quarter-word instructions
can be used to manipulate them. The LENGTH and POSITION fields must specify a byte
contained entirely within a word. When incrementing a BYTE POINTER, the hardware adds
LENGTH to POSITION, then, if the result is greater than 35, sets POSITION to 0 and
increments A. Byte-ad justment is similar.

The function byte takes an argument which is the address of a byte pointer. The value of dyte(X)
is the bit string described by the byte pointer X.

Opcode String ' : Operation
"~ LBYTE ' Load BYTE
OP 1byte(OP2)
DBYTE | | | * Deposit BYTE,
: ' BYTE(OP1)-OP2
'ADJ BYTEP ADJust BYTE Pointer
: : OP1+~OP| byte-ad justed by OP2
LBYTE INC Load BYTE and INCrement
OP1<BYTE(OP?)
OP2+~OP2 byte-incremented
DBYTE INC Deposit BYTE and INCrement
: BYTE(OP1)}<OP2

OP1«OP| byte-incremented
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3.7.4.6 List Manipulation

The list manipulation instructions operate on lists which have two-word list headers, where the
first word points to the first element of the list, and the second word points to the last element of
-the list. An empty list is represented by zero in the first word of the list header. These lists are
assumed to be linked together by the first word of each element; the last element contains a zero
Imk : .

3.7.4.6.1 Skipping List Instructions

:

S0P | SKP o1 002
8 78 1112 23 24 35
Opcode String . Operation
'LIST POP SKIP EMPTY ~ "Remove an element from the head. |

(OP2NEXT_OP?2) is the list header.

OP1 gets the address of the first element *
of the list. If the list is empty, then

the instruction skips.

if OP2=0 ,
then PC~PC+4xSIGNED_SKP
else begin

OP1<OP2
OP2«M[OP2]
end

LIST POP SKIP NOT EMPTY Remove an element from the head.

) © (OP2NEXT_OP2) is the list header.
OP/1 gets the address of the first element
of the list. If the list is not empty, then
the instruction sKips.

if OP2=0
then begin
PCePC+4xSIGNED_SKP
OPl<OP2
OP2«M(OP2]
end
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3.7.4.6.2 Non-Skipping List Instructions

xop | om 0D2
B 112 2326 35
Opcode String Operation
LIST PUSH . Add an element to the head.

(OPINEXT_OPI) is the list header.
OP2 points to the element to be
added to the head of the list.

MIOP2J-OP!I -
if OP1 = 0 then NEXT_OP1<OP2 -
OP1<OP2

LIST APPEND : : Add an element to the tail.
o (OPILLNEXT_OPI1) is the list header.
OP2 points to the element to be
added to the tail of the list.

M[OP2}-0 |
if OP1 = 0 then OP1<OP2
' NEXT_OP1-OP2

LIST POP TRAP - Remove an element from the head.
: T ' (OP2NEXT_QP2) is the list header.
QP gets the address of the first element
of the list. If the list is empty, then the
instruction soft traps to the trap vector
at address LIST_UNDFIL..

.

if OP2 =0
then suft_error{(LIST_POP,PC)
else begin
OP1<OP2
QP2-M[OP2]
end



3.7.4.7 Processor Architecture 47
3.7.4.7 Data Transfer

3.7.4.7.1 Block Transfer

xop | oot 002

é., | 1112 23 24 35

The block transfer (BLT) instruction transfers a block of data from one location in memory to
another. ’ :

(OP2NEXT_OP?) is the'descriptor of the source block. This descriptor has double-word length;
the first word is the address of the block, and the second word is the length of the block in
quarter words. OPl is the address of the destination block

The operands of a BLT are continuously updated so that if an interrupt occurs during a BLT, |
the BLT can be restarted. It is therefore important that the values of the operands not be used to
calculate their own addresses.

Opcode String: Operation

BLT . {QHSD} . BLock Transfer.

for 10 step {1,2,3,4}
until NEXT_OP2-{1,2,3,4} do
M[OPI+l]«-M[0P2+I]

OP2-OP2+NEXT_OP2
OP1-OP I+NEXT_OP2
"NEXT_OP2:-0
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3.7.4.7.2 Move and Exchange

XoP - 001 002

8 1112 23 24 35

The "MOV" instructions move an operand of any integer length (Q, H, S, or D) to another .
operand of any integer length. The source and destination lengths are specified by including the
appropriate characters together in the opcode string, with the destination length preceding the
source length. '

In addition, the "MOYV" opcode strings may include special terms which specify the move type as
shown in the opcode descriptions below. For example, "MOV N DS" means “negate a single
precision integer and move it to a double precision integer.”

EXCH assumes that the both operands are of the same precision.

Opcode String ’ Operation

MOV ' {QHSD}QHSD] ~ OPI-OP2
MOV S {QH.S.D}{QH.SD} OPlesign_extend(OP2)
MOV {12 . 8} ‘ for Te1 step 1 until {12, ... 8}

do MI[ADDRESS_OP I+1-13-
MIADDRESS_OP2+1-1)

(Note that MOV ‘i and MOV 2 are
the same as MOV S S and MOV D D))

MOV C {QHSD} OP l«not(OP2)

MOV N {O ),H.S.D} ‘ OP ltwos_negative(QPQ)
MOV M {QHS,D} - OP leabs(OP2)

MOV A OPl<ADDRESS_OP?2

MOV A OPI | OPl(address specified by OD1

in the instruction at OP2)

MOV A OI'? Ol l+(address specified by OD2
: in the instruction at OP2)

MOV A REAL QP l«real_addresstcADDRESS_OP2)

- EXCH  {QHSD} OP16OP2



3.7.4,8 Stack Manipulation
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© XOP

001

002

(%]

11 12

23 24

35

The stack manipulation instructions conditionally hard error trap on the result of the comparison
of the stack pointer with the stack limit register. The trap location is a fixed location in virtual -

space, STACK_MANIP.

The "PUSH {UP,DOWN} TRAP" instructions push an operand of integer length (Q, H, S, or D)
onto a stack and trap conditionally dependmg upon the outcome of a comparison. Stacks may
"PUSH UP" pushes onto an upward-growing stack and .
“PUSH DOWN" pushes onto a downward-growing stack. One operand, call it OP, is assumed to
be a single-word stack pointer, and the stack limit is NEXT OP The length of the stack entry is
specified by a term in the opcode string.

grow either upward or downward;
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Opcode String

ADD
- SUB

PUSH

PUSH

POP

POP

TRAP

. TRAP

up TRAP

DOWN TRAP

UP

DOWN

Processor Architecture ‘ 3.74.8

{QH.S,D}

{

{QH.S,D}

{QH.5.D)

{QHS.D}

Operation -

if (OP1+OP2) > NEXT_OPI

then hard_error(
STACK_ADJUST,ADDRESS_OPI)"

else OPl<OPI + OP2

if (OP1-OP2) < NEXT_OPI
then hard_error(

STACK _ADJUST,ADDRESS_OP1)
else OP1«QP1 - OP2

PUSH UP and TRAP if overflow

if (OP1+{1,2,34}) > NEXT_OPI
then hard _error(
STACK_ADJUST,ADDRESS_OP1I)
else begin '
M[OP1])-OP2 .
OP1OP1+{1,2,3,4}
end _ , ’

PUSH DOWN and TRAP if overflow

if (OP1-{1,2,34}) < NEXT_OPI1
then hard_error( .
STACK_ADJUST,ADDRESS_OP1)
else begin '
M[OPI1)OQOP2
QPI«OPI1-{1,2,3,4}
end

POP an UPward stack.

OP2-QP2-{1,2,34)
OP1+M[OP2]

POP a DOWNward stack.

© OP2-OP2+{12,34}

OPI<M[OP2]
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3.7.4.9 Subroutine Linkage

The subroutine linkage mechanism is designed to allow the efficient implementation of high-level
block structured languages such as PASCAL; it explicitly implements call-by-value and call-by-
reference.

In a block structured language, a display is often used to implement references to upper levels in
the stack. The active display is maintained in the R registers; it consists of a pointer to the stack
frame of each procedure which is at a lower lexical level than the currently active procedure.
When a procedure at a lower lexical level returns, the display registers above the level of the
called procedure must be restored to their state at the time of the call. For example, consider a
procedure CALLER on lexical level 3 which calls a procedure CALLED on lexical level 1.
CALLER first saves the old display register, DISPLAY[1], allocates a new frame on the stack,
then sets DISPLAY([l] to point to the new frame. During the execution of CALLED,
DISPLAYI[2] and- above are not needed, and therefore can be used for any other purpose,
providing they are restored before CALLED exits. The per-procedure-call overhead in
maintaining the display is then one memory write to save the old display register, one register
write to set up the new display register, and one memory read to restore the old display register.
During the execution of a procedure on lexical level I, I registers are required to hold its display;
all registers above the level of the current display register can be used for local variables,
providing they are restored on return.

In the LLL Filter, an efficient mechanism is provided for passing parameters to subroutines
through the registers, rather than on the stack. The parameter instruction (PAR) is used to save
a register on the stack, and to place a parameter in that register. This operation represents
essentially the same overhead as pushing parameters on the stack, but has the advantage that it
leaves the parameters in the registers for efficiency.

To understand the (PAR) instruction, it is first necessary to understand the format of the current
stack frame. Before a procedure can be called, storage on the current stack frame must be
allocated for the callee’s parameters, the old stack frame pointer, and the return program counter,
as shown in Figure 3.74.9-1." It will be convenient for the caller to allocate this extra
space on its stack frame when it is first invoked, allowing enough room for the largest routine call
which it will make. The allocation will thus be made far enough in advance so that pipeline
interlocks normally will not occur (indexing off of a recently altered register will cause the pipeline
to interlock). Furthermore, allocation in advance will save the expense of performing mulnple
allocations and deallocations, one pair for each call.

Figure 3.7.4.9-2 shows an example procedure call which -passes three parameters A, B,
and C, where A and C are call by value, and B is call by reference. Figure 3.7.4.9-3
shows the called procedure (CALLED), which uses two local registers and allocates 10 words on its
stack. NEW_SF is the stack frame register for CALLED. The operations preformed by the
subroutine linkage instructions are shown as comments in the example The exact definition of
the instructions is given in the sections which follow.

If the contents of a register used to pass a parameter are known to useless after the subroutine
call, then the parameter can be MOVed to the register, and the register need not be restored,
- saving the overhead of one save and one restore.

This parameter passing method requires a register for each parameter passed to a procedure.
One possible code-generation technique is to assign 8 registers to be used for passing parameters;
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~if a procedure has more than 8 parameters, it will push the rest of the parameters onto the stack.
Furthermore, it will be efficient to have two types of temporary registers for use in procedures; the
first type will be used to hold local variables, which are saved and restored when a procedure is
entered and exited, and the other type will never be saved, but will be used for holding temporary

results and calling bottom-level procedures (which call no other procedures). '



3.74.9

SF:

SP-28:
SP-16:
éP-lZ:
85—8:

. - SP-4:

Processor Architecture.

CURRENT FRAME VARIABLES

SAVE PARAMETER N REGISTER

SAVE PARAMETER 3 REGISTER

SAVE PARAMETER 2 REGISTER

SAVE PARAMETER 1 REGISTER

OLD STACK FRAME POINTER(SF)

RETURN PROGRAM COUNTER (PC)

FIRST FREE WORD ON STACK

Figure 3.74.9-1 -
Current Stack Frame

53
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PAR 1
PAR A 2
‘PAR 3

JUMP SUB

Mov 3

CALLED: ALLOC 2

Processor Architecture

P_REG,A
P_REG-1,B
P_REG-2,C

NEW_SF, CALLED
P_REG-2,-20(SP)

Figure 3.7.4.9-2

Example Procedure Call

NEW_SF+1,#40

! "ROUTINE BODY"

RETURN SUB 2

NEW_SF+1,NEW_SF

Figure 3.7.4.9-3

Example of Called Procedure

3.7.4.9

!M[SP-IZ]*R[P_REG]
'R[P_REG]+M[A]

'M[SP-16 J-R[P_REG-1]
'R[P_REG-1]}~B

IM[ SP-20 J-R[ P_REG-2]
IR[P_REG-2J«N[C]

IM[ SP-8 J~R[ NEW_SF ]
IM[SP-4]-PC+4
'R[NEW_SF J«SP
{PC~CALLED

IR[P_REG-2]+M[R[ SP]-20]
'R[P_REG-1)}~M[R[SP]-16]
'REP_REG J«M[R[ SP }-12]

'M[ SP)-R[ NEW_SF+1]
IM[ SP+4 J-R[NEW_SF+2]

1 SP+SP+40

'RENEW_SF+1 J-M[ R[NEW_SF ]]
lR[NEW_SF*Z]-H[R[NEW_SF]+4]

I PCeM[ R[NEW_SF J-4]
| SP+R[ NEW_SF ]
| R[ NEW_SF J-[ R[ NEW_SF ]-8
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3.7.4.9.1 Jump to Subroutine

JOP PR 001 J

9 18 11 12 23 24 35

OP1 is the stack frame register. The JUMP SUB instruction: saves on the stack the return
program counter and the old stack frame register (OP1), and sets the new stack frame reglster
(OP1) equal to the stack pomter

Ogcode String | Opera_ition

JUMP SUB. | | JUMP to SUBroutine

M([SP-81-OPI

MI(SP- 4]4—PC_NEXT_INSTR
OPl«SP

PC«-_]UMPDEST

3.7.4.9.2 Subroutine Context Switching

XOP 10} 002

8 11 12 23 24 35

PAR saves the value of a register (OP1) in one of eight parameter-save areas on the current
stack frame, and loads OPI with a value parameter OP2. PAR A is identical except it loads
OP1 with the address of OP2.

ALLOCATE is used by the called pfo_cedure to allocate OP2 words on the stack, and to save | to
8 registers (sequentially, starting with OP1) at the beginning of the new stack frame.

RETURN SUB restores | to 8 registers (sequentially, starting with OP1) from the beginning of
the current stack frame, restores the PC from the previous stack frame, sets the SP to the value. of
the current stack frame pointer (OP2), and restores the previous stack frame pointer from the
previous stack frame.
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Opcode String

PAR (1.2, .. 8)
PAR A 12,8
ALLOCATE (12, .. 8)

RETURN SUB {0,1,2, .. 8}

Processor Architecture S 37492

. Operation '

subroutine PARameter

MISP-8-{1,2, ... 8}x4)-OP1
OP1-OP2

subroutine PARameter Address

MISP-8-{12, .. 8}x4)<OPI
OP 1<ADDRESS_OP2

ALLOCATE stack and save registers

if SP > (SL+OP2x4)
then hard _error(
STACK._ADJUST,SP_IDx4)
else begin
for I«1 step 1 until {1,2, ... ,8}
do M[SP+Ix4-4])«
MIADDRESS_OP l+Ix4-4]

SP<SP+OP2
end :

RETURN from SUBroutine an
restore registers. :

for Te1 step 1 until {0,1,2, .. 8]
do M{ADDRESS_OP l+Ix4=4]e
MIOP2+Ix4-4]

PCeM[OP2-4)
SP«OP2
OP2¢M[OP2-8)
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3.7.4.10 Traps and Interrupts

This section describes trap instructions, soft-error traps, hard-error traps, and interrupts.

Traps and interrupts use trap vectors. A trap vector includes a new PC and possibly a status
word; those values are loaded into the processor during a trap after the previous state of the
machine has been saved.

The trap instructions allow trapping within the current mod= (TRAP SELF), or trapping to-the
executive (TRAP EXEC). TRAP SELF does not save the status register, but places the addresses
of OF| and OP2 into R[30] and R[31] (after saving them); it is intended to be used as a two-
parameter subroutine call. TRAP EXEC saves the status register and gets a new status register
from the trap vector; it also places the addresses of OP] and OP2 in R[30] and RI31], but
without saving those registers. TRAP EXEC is intended to be used to implement monitor calls;
the executive will reserve R{30] and R{31) to receive parameters. The TRAP opcodes define the
trap vector addresses; each instruction type has 64 different opcodes, each of which traps to a
unique trap vector. The TRAP SELF trap vectors are contiguous in both the user and executive
virtual address spaces, starting at address TRAP_SELF_ADR, and the TRAP EXEC trap vectors
are contiguous in the executive address space starting at address TRAP_EXEC_ADR (they dc
not exist in the user address space). Both TRAP USER and TRAP EXEC save the PC of the
next instruction (some types of traps save the PC of the current instruction); a return will thus not
re-execute the trap instruction.

Some types of instruction execution errors (for example, integer overflow) will cause a soft error
trap. A soft error traps to a fixed trap vector address (which depends upon the identity of the
error) in the current address space. A soft error trap saves the USER_STATUS_REGISTER
(and sets a new USER_STATUS_REGISTER from the trap vector), if the trap occurs in user
mode, but saves the STATUS. REGISTER (and sets a new STATUS_REGISTER from the trap
vector), if the trap occurs in executive mode. The soft error trap routine also saves on the stack
the PC of the next instruction and one or mare parameters, the nature of which is specific to the
type of error. Retusns from soft error traps will usually be to-the next instruction, since most
instructions with soft errors complete execution before trapping. Cases in which the trapping
instruction needs to be re-executed are handled by passing the PC of the trapping instruction as a
parameter.

Other types of instruction execution errors (for example, writing a read-only page) will cause a
- hard error trap. A hard error traps to a fixed trap vector address (which depends upon the
identity of the error) in the executive address space. Hard errors occurring in the executive trap
to different locations than hard errors occurring in the user. A hard error trap saves one or more
parameters, the PC of the trapping instruction, and the STATUS_REG; the save area is simply
the stack defined by the new STATUS_REG, which is obtained from the trap vector. The
STATUS_REG value in the trap vector will also set the processor into executive mode. As with
-soft errors, the nature and number of the parameters saved is specific to the type of error. Most
hard errors cause abortion of an instruction before any results are written; those mctructnons can
be re-executed.

Two special hard errors may occur during traps or interrupts: page fault, and stack overflow.
These errors trap again to special hard error trap vectors, passing parameters which allow the
proper execution and return of trap which encountered the error. The special hard error handler
PAGE. FAULT_IN_TRAP must not encounter a page fault error, and the hard error handler
SP_OVFL must not encounter a stack overflow error.
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An interrupt is similar to a hard ervor, but no parameter is saved. An interrupt is initiated when
one of the four interrupt lines is asserted; if the priority of the interrupt is higher than PRIO,
then the driterrupt is accepted and the processer, under micro-code control, finds an interrupt
vector address (INT. VECTOR) in main memory (where it was stored by the interrupting device).
The processor at the samn time resets the c:ierrupt bit which caused the interrupt line to be
asserted.  Interrupts ave testzd immediately before execution of an instruction; at that time PC is
the acdress of the next instruction to be execuied.

Three return instructions handle all returns from traps or interrupts; RETURN REGS,
RETURN USER STATUS, and RETURN FULL STATUS restore only registers, only the user
status, and the full status, respectively. RETURN REGS handles returns from TRAY SELF,
"RETURN USER STATUS handles returns from soft error trap:. and RETURN FULL
STATUS handles returins from hard error traps, TRAP EXEC, and interrupts. Both RETURN |
USER STATUS and RETURN FULL STATUS allow OPI to specify the number of locations
to be popped off «f the stack. '
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USER SPACE

i

ADDRESS 132

VECTORS FOR

. SOFT ERRORS

FROM USER

TRAP_SELF_ADR:

VECTORS FOR
"TRAP SELF"-
FROM USER

Processor Architecture

Figure 3.7.4.10-1

EXEC SPACE

ADDRESS " 132:

VECTORS FOR
SOFT ERRORS
FROM EXEC

TRAP_SELF_ADR:

VECTORS FOR
"TRAP SELF"
FROM EXEC

TRAP_EXEC_ADR:

VECTORS FOR

"TRAP EXEC"
FROM USER

(OR EXEC)

VECTORS FOR
HARD ERRORS
FROM
| USER/EXEC

INTERRUPT
VECTORS

User and Executive Address Spaces

59
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Vector for TRAP SELF from user:

HANBLER ADDRESS

Vector' for TRAP SELF from executive:

ki

" HANDLER ADDRESS

Vector for soft error from user:

HANDLER ADDRESS

NEW USER_STATUS_REG

Vector for soft-error from executive :

HANDLER ADDRESS

NEW STATUS_REG

Yector for hard error from user or executive:

HANDLER ADDRESS FOR USER HARD ERROR

NEW STATUS_REG FOR USER HARD ERROR

HANDLER ADDRESS FOR EXEC HARD ERROR

NEW STATUS_REG FOR EXEC 'HARD ERROR

Vector for interrupts

HANDLER ADORESS

NEW STATUS_REG

Figure 3.7.4.10-2
Trap Vector Formats .
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TRAP TYPE

TRAP SELF

- TRAP EXEC

'USER SOFT ERROR

 EXEC SOFT ERROR

HARD ERROR

INTERRUPT

Processor Architecture

SAVE AREA.FORMAT

PC_NEXT_INSTR

R(308]

RI31]

PC_NEXT_INSTR

* STATUS_REG

PARAMETER(S)

PC_NEXT_INSTR

USER_STATUS_REG

PARAMETER (S)

PC_NEXT_INSTR

STATUS_REG

PARAMETER (S)

PC

STATUS_REG

pC

STATUS_REG

Figure 3.7.4.10-3 .
. Save Area Formats
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RETURN TYPE

RETURN REGS

RETURN FULL STATUS

RETURN USER STATUS

RETURN FULL STATUS

RETURN FULL STATUS

RETURN FULL STATUS



Trap Address

INT_OVFL
ZERO_DIVIDE
LIST_UNDFL

_FLOAT_UNDFL
FLOAT_OVFL
POST_OVFL
PRE_OVFL

Soft

Trap Address

. TRACE
PAGE_FAULT_IN_TRAP

' SP_OVFL
PAGE_FAULT
STACK_ADJUST
EXECUTE_USER
JUMP_USER
REF.EXEC
STATUS AGCESS
ILLLGAL_INSTR
NOT_INSTRUCTION
NOT_DATA
WRITE_ONLY .
READ_ONLY
BOUNDARY_ERROR
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Error Condition .

integer overflow

divide by zero

list underflow

floating underflow

floating overflow
postnormalization overflow
prenormalization overflow

Figure 3,7.4.10-4
Error Trap Addresses

Error Condition

trace trap
page fault during trap

SP overflow in trap
page fault
stack overflow

execute to user space from exec
jump to user space from exec
reference to exec space from user
accessing pracessor status by user

illegal instructioi

page at PC is not instruction type
operand page is not data type

reading a write-only page
writing a read-only page

data/instruction houndary errar

Figure 3.7.4.10-5

Hard Error Trap Addresses

3.7.4.10

Parameters
PC

PC

PC

PC

PC -

PC

PC

Parameters

PC

page address
trap address
trap parameter
trap address
page address

- -stack register adr

PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
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3.7.4.10.1 Trap Instructions
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. XOP

001

002

~ Opcode String

TRAP SELF {0,1,2, ... 63}

TRAP EXEC

{012, 83}

11 12

23 24

Operation

35

M[SP}-PC_NEXT_INSTR

MSP+4)-R[30)
“M[SP+8)-R[31]

R[30)-ADDRESS_OPI
R[31}-ADDRESS_OP2.

SP«SP+12

PC-M(TRAP_SELF_ADR+{0,1.2, .. 63}x4]

if SP > SL

then SP_ovfi{(SP_IDx4)

TEMP[1}-STATUS_REG

EXEC_MODE-|
STATUS REGe

MITRAP_EXEC_ADR+{0,1,2, ..

MISP)-PC_NEXT_INSTR
MISP+4)-TEMP[1]

R[30}-ADDRESS_OPI
R[31}-ADDRESS_OP?2
PC+M[TRAP_EXEC_ADR+{0,1,2, ... 63}8)

SP«SP+8
if SP > SL

then SP_ovfl(SP_IDx%4)

. 63}x8+4)

63
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3.7.4.10.2 Soft-Error Trap

Opcode String

sojt_grror(TRA P_ADR,PAR)

Processor Architecture 3.74.10.2

Operation

if page fault

in (M[SP]M{SP+4]M[SP+8))
then page_fault_in_trap(

TRAP_ADR,PAR)

M[SP]-PAR
M{SP+4)-PC_NEXT_INSTR
if EXEC_MODE
then M[SP+8}«STATUS_REG
else M[SP+8)-USER_STATUS_REG
PC-M[TRAP_ADR]
SP«SP+12 '
if SP > SL ~
then SP_ovfI(SP_IDx4)
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3.7.4.10.3 Hard-Error Traps

Opcode String

havd_error(TRAP_ADR,PAR)

page_fault_in_trap(TRAP_ADR,PAR)

Processor Architecture

Og' eration

TEMP[1J-STATUS_REG
if EXEC_.MODE
then begin
STATUS_REG«M[TRAP_ADR+12]
M[SP+4)-PC
PC<M[TRAP_ADR+8]
end
else begin
EXEC_MODE-~I :
"STATUS_REG«M[TRAP_ADR+4)
M[SP+4)-PC -
PC-MITRAP_ADR]
end
MI[SP}-PAR
M([SP+8J«TEMPI[I]
SP«SP+12
if SP > SL :
then SP_ovfi(SP_IDx4)

TEMP(1J-STATUS_REG
if EXEC_MODE
then begin -
STATUS_REGMI[
SOFT_ERROR_PAGE_FAULT+12]
M[SP+8)-PC_NEXT_INSTR -
PC-M(
PAGE_FAULT_IN_TRAP+8)
end '
else begin
EXEC_MODEe~I
STATUS_REG«MI
SOFT_ERROR_PAGE_FAULT+4)
‘M[SP+8J«PC_NEXT_INSTR
PCeM[
PAGE_FAULT_IN_TRAP]
end
M[SPJ-TRAP_ADR
M[SP+4]<PAR
MI[SP+12)-TEMP[I]
SP«SP+16
if SP > SL
then SP_ovfl(SP_IDx%4) .

‘65
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. Opcode String

SP_oufl(PAR)

Processor Architecture 3.74.10.3

Operation

TEMP[1)}-STATUS_REG
if EXEC_MODE
then begin
STATUS REG«-M[STACK _OVFL+12)
M[SP+4}<PC
PCM[STACK OVFL+8]
end
else begin .
EXEC_MODEe«I
STATUS_REG«MISTACK 0VFL+4]
M{SP+4}<PC
PC«MISTACK _OVFI1.]
end
M[SPJ-PAR
M(SP+8)«TEMP[I1]
SP«SP+12
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3.7.4.10.4 Interrupt

Opcode String

vinterrupt( INT_V ECTOR )

Processor Architecture

Operation

TEMP[I]-STATUS_REG
EXEC_MODEe1
STATUS_REG«MI[INT_VECTOR+4)
MISP)-PC

M([SP+4)«TEMP(I1)

SP«SP+8

PCMIINT_VECTOR])

if SP > SL

then SP_ovfi(SP_IDx4)

67
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3..7.4.10.5<Triap and Interrupt Returns

XOP 001 - oo2
8 11 12 23 26 35 .
Opcode String o Operation y
RETURN REGS Return and restore registers.

(Return from TRAP SOFT.)

PCM[SP-12]
. . R[30)eMISP-8)
: R(31)-M([SP-4]
SP«SP-12

RETURN FULL STATUS ' Return and restore full status.
- . . (Return from interrupt, hard
error, or TRAP EXEC))

PC-M(SP-8]
STATUS_REG«M[SP-4]
SP«SP-OP1

'RETURN USER STATUS Return and restore user status.
: (Return from soft error.)

PCMI[SP- 8)

USER_STATUS REG«—M[SP 4]
SP«SP-OPI

.i
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3.7.4.11 Cache Control
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X0P

001

002

0

11 12

23 24 35

The cache control instructions have been described in Section 3.1. If a very large sweep range is
specified in a cache control instruction, the processor will choose to sweep the entire cache instead
~ of sweeping each location in the range.

For efficiency reasons, a special mstructlon is provnded to sweep both the instruction cache and
the data cache sxmultaneously

Opcode String
UPDATE DATA

'KILL DATA

KILL INSTR

KILL DATA INSTR

- Operation

Sweep through the data cache (for OP2
quarter-words), starting at virtual address
OPI, and writing back changed locations.

Same as UPDATE DATA, except that
the words in the cache in the given

" range are also invalidated, so that

future references to them will be made
to memory.

" Sweep through the instruction cache

(for OP2 quarter-words), invalidating each

“location starting at virtual address OP 1.

Same as KILL DATA followed
by KILL INSTR.



70 : Processor Architecture ‘ . 3.74.12
3.7.4.12 Page Map Control

"3,7.4.12.1 KILL MAP

Xop 001 002

e 1112 23 24 35

The page map control instructions have been described ‘in Section 3.2. KILL MAP deletes a
specific entry from both page maps. KILL MAP EXEC deletes all executive address space entries
in the page map, and KILL MAP USER deletes all user address space entries in the page map.

Cipcode Suring . Operalivu
KILL EXEC MAP Invalidate the entry in the associative

map that corresponds to the executive
virtual address M[OP1].

KILL USER MAP ‘ - Invalidate the entry in the associative
map that corresponds to the user
virtual address M{OP1].

"KILL ALL EXEC MAP Invalidate all executive address
space entries in the page map.

KILL ALL USER MAP . Invalidate all user address.
' space entries in the page map.
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3.7.4.12.2 Writing Segment Base Registers’

Jop 9., PR .00 : J

'] 18 11 12 23 2 35

These instructions allow writing either segment base register. A jump is included to allow writing
the executive to write its own segment base register (which affects the instruction address space for
the executive). Execution of WRITE EXEC JUMP will cause all executive address space entries

~ to be deleted from the page map. Execution of WRITE USER _]UMP will cause all user address

space entiies to be deleted from the page map.

QOpcode String Operation

WRITE EXEC JUMP R : EXEC_SEG_BASE_REG<OPI
PC«JUMPDEST

WRITE USER JUMP : USER_SEG_BASE_REC;«-OPAI

PCeJUMPDEST
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3.7.4.13 Status Register Control

3.7.4.13.1 Read Status

Processor Architeciure ' 3.74.13

XOP

10}

002

8

11 12

23 24 35 )

The full processor status and the processor ID are accessible only in executive mode.

Q@pcode String

READ FULL STATUS
READ USER STATUS

READ PROC ID

3.7.4.13.2 Write Status

Operation
OPISTATUS_REG

OPI<USER_STATUS_REG

OP1<PROCESSOR_ID

~JoP

PR

001

8

18 11 12

23 24 35

The processor status register is accessible only in executive mode. A jump is provided after the
load so that the executive can load a user’s status register and jump to the user in one instruction.
The M bit cannot be set in the jump destination of these or any other jump instructions.

" Opcode String

WRITE FULL STATUS JUMP

'WRITE USER STATUS JUMP

Operation

STATUS_REG«OPI
PC«JUMPDEST

USER_STATUS_REG+«OP}
PC+JUMPDEST
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3.7.4.14 Synchronization

'3.7.4.14.1 SET INTERRUPT .

XoP 001 002

8 112 2326 - 35

Interrupts have been described in Section 34.1. A processor P; may direct an interrupt to
processor P; by. setting bit i in Pjs interprocessor interrupt word using a read-modify-write
memory cycle. OP1 and OP2 are assumed to be single-word operands.-

'Opcode String | . ' ' Operation
- SET INTERRUPT ' ' (using read-modify-write cycle)
: : .OP1<OPIVvOP2 .
RESET INTERRUPT (using read-modify-write cycle)
: o - OP<OPIanot(OP2)

3.7.4.1'4.2 Test and Set/Reset

XOP 001 0D2

e 1112 232 35

TEST AND SET and TEST AND RESET allow the setting and resetting of single-word flags
using a read-modify-write memory cycle.

Opcode String - Operation '
TEST AND SET v ' | (using read-modify-write cycle)
: OP1<OP2 : .
OP2-1"
TEST AND RESET (using read-modify-write cycle)
: ' OP1<OP2

OP2<0
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3.7.4.14.3 Munch Registers

sop | skP | ool ooz

B 78 1112 2326 35

Munch registers have been descrlbed in Section 3.4.3. These instructions allow a munch register
to be set if and only if there is no conflict (that is, no other' munch register equals OP2). If a
conflict exists, the munch register controller writes a zero into the munch reglster The instruction
deﬁnmons assume that OP1 is a munch register.

Opcode String ‘ . Operation

MUNCH SKIP OK S . if no_conflict
: v then begin :
OP1<OP?2
PC«PC+SIGNED_SKP
end
else OP1«0

MUNCH SKIP NOT OK if no_conflict
then OP1<OP2
else begin
PC«PC+SIGNED_SKP
OPI1«0
end
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3.7.4.14.4 Hardware Queues

sop | skp | om o2

8 78 1112 : 23 26 ‘ 35

This instructions have been described in Section 3.4.4. The definitions assume that QUEUE.X is
a hardware queue at location ADDRESS_X. The processor uses a read-modify-write memory
cycle to both determine whether the queue is full (empty) and to enqueue (dequeue) an entry if
and only if such enqueueing (dequeueing) is possible. Both LIFO and FIFO queues are
provided; they are distinguished by their addresses.

Opcode String » Operation
QUEUE SKIP FULL S ~ (using read-modify-write cycle)
: : : if not_full

then QUEUE.OP1<OP?2
else PC-PC+SIGNED_SKP

QUEUE SKIP NOT FULL - - (using read-modify-write cycle)
if not_full
then begin :
QUEUE.OP1<OP2
PC«PC+SIGNED_SKP
end

DEQUEUE SKIP EMPTY . (using read-modify-write cycle)
' I : - if not_empty’ .
then OP1«QUEUE.OP2
else PC<PC+SIGNED_SKP

- DEQUEUE SKIP NOT EMPTY ‘ (using read-modify-write cycle)

if not_empty
then begin '
OP1<QUEUE.OP2
PC«PC+SIGNED_SKP
" end
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'3.7.4.15 Control Store -

X0P 001 ‘ 002

(% 11 12 23 24 A 35

When the processor is powered-up, an LSI-11 console machine initializes the control memories in
the processor. The following instructions allow the operating system to alter the control memories.

Opcode String Operation

WRITE ISEQ Word OP1 in the ISEQ control
gets OP2.

WRITE PSEQ | Word OP1 in the PSEQ control
gets OP2.

WRITE ESEQ : Word OP1 in the ESEQ control
gets OP2. -

WRITE DECODE RAM Word OP1 in the DECODE RAM
gets OP2. :

WRITE DATA CACHE LRU Word OPI in the DATA CACHE

. , LRU DECODE RAM gets OP2.

WRITE INSTR CACHE LRU ' Word OP1 in the INSTR CACHE
LRU DECODE RAM gets OP2.

WRITE DATA ADR TRN LRU Word OP1 in the DATA ADDRESS
TRANSLATION LRU DECODE RAM
gets OP2.

WRITE INSTR ADR TRN LRU _ Word OP1 in the INSTR ADDRESS

TRANSLATION I.RU DECODE RAM
gets OP2. -

Y
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3.7.4.16 Miscellaneous

XOP 1) S 002
0 11 12 23 24 35

| Opcode String : : - Operation

WAIT | - | Wait for interrupt.
"HALT . | . o St‘op pr;:)cessor OPI.

START o . | ~* Start processor OP1, if

' . ‘ . halted, else qoes nothing.

RESEI: ‘ _ Reset 1/O devices and switch. -
‘EX ECUTE S o Execute OP1 in the address sp#e

' : of OPL.

AMPUTATE - : ' Lock processor OP1 out of the switch. -

77
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3.7.5 Sample Programs

This section presents sample programs which for comparison are coded in several assembly
languages, including assembly language for the LLL Filter.

The purpose of this section is to indicate the density of compiled code for the LLL Filter, to
suggest the relative execution speed of the LLL Filter compared with existing machines, and to
clarify the LLL Filter instruction set.

3.7.5.1 Assembly Language Specification

This section presents a brief, informal description of the assembly language which is used for the

‘sample programs included in this report.

An assemibly language statement may have five main fields, as follows:

LABEL OPCODE GOTO  OPERANDS  COMMENTS

The LABEL and COMMENTS fields are self-explanatory. The remaining fields are described
in the following sections. ‘

3.7.5.1.1 OPCODE Field

The OPCODE field contains an opcode string, as described in Section 3.7.4, or an abbreviated
form of the opcode string. An opcode string may be abbreviated by the deletion of certain terms;
the assembler fills in default values for these terms. The following list shows the assembler
defaults for opcode string terms:

Term - ' Assembler Default
{s.D} ' s
{FR,CR,SR} SR

For example, the assembler expands the opcode string "FDIV® mto "FDIV SR 8", meaning
smgle -word floating d|V|de with stable rounding.”

3.7.5.1.2 GOTO Field

The GOTO field is used for any instruction which includes a skip or a jump destination. The
GOTO field contains the name of the destination instruction.”

3.7.5.1.3 OPERANDS: Field

The OPERANDS field specifies the operands of the instruction. The operand names RTA,

RTB, PC, SP, and SL are reserved words which indicate specnal R registers, as shown in Section
3.7.2. The notation RX means R[X].
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Operands are written in the order shown in Table 3.7.3.2-1. In instructions having two operands,
the order of the operands is OP1, OP2. In instructions having three operands, the operands are

written "DEST,OP1,0P2° ‘
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3.7.5.2 Use of the T Field

The main use of the T format instructions is in the evaluation of expressions. The following |
examples compare LLL Filter code and PDP-10 code in the evaluation of expressions.

Expression ' LLL Filter © # Words PDP-lOA # Words
CA-A+B ] o 2
ADD A,B - , MOVE RO,B
' 5 | ~ ADDM  RO,A
‘AB+C | S 2 3
ADD RTA,B,C ' MOVE RO,B
MOV A,RTA ) ) ADD RO,C
MOVEM RO,A
AeB+C-D S o 2 ' 4
ADD RTA,B,C ‘ MOVE RO,B
SUB A,RTA,D . ADD RO,C
SUB  RO,D
MOVEM RO,A
AcA*B+C#D : 3 6
MULT RTA,A,B . MOVE RO,A
MULT RTB,C,D _ MULT RO,B
ADD A,RTA,RTB MOVE R1,C
MULT RI,D
ADD RO,R1
| HOVEM RO,A
A-Bx(C(J)-D(K)) 4 ' 6
SUB RTA,C(J),D(K) MOVE RO,J
MULT A,RTA,B MOVLE R1,K
. MOVE R2,C{(RO)
SUB R2,D(R1)
MULT RZ,B
. MOVEM R2,A
A-B(I+J)*C(K+L)+D(M+N)2E(L+P) 12 _ 14
ADD RTA,I,J MOVE RO, I
¢ ADD RTB,K,L: ADD RO,J
MULT RTA,B(RTA),C(RTB) MOVE R1,K
MOV 'R1,RTA ' ADD R1,L
ADD RTA,M,N MOVE R2,B(RO)
ADD RTR,I.,P MULT  RZ,C(R1)
MULT .RTA,D(RTA),E(RTB) MOVE RO, M
ADD A,RTA,R1 ADD RO,N
MOVE Rl1,L
ADD R1,P

MOVE  R3,D(R0O)
MULT R3,E(R1)
ADD RZ,R3
MOVEM RZ,A
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This last example might séem-a little unlikely, but it was given because except for the statement
"A«B+C", it is the only expression that can not be evaluated with no "MOV" instructions,
because each of the four subscripts need the RT registers, and each of the products need the RT .
registers for their results. If even one of the four subscripts takes one more or one less operation,
then the expression can be evaluated with no "MOV" instructions. :

. 3.7.5.3 Compiled Treesort Comparisons

This section compares compilations of the Treesort algorithm. The first compilation shown is the
output of a hypothetical simple compiler compiling BLISS for the LLL- Filter. The second
compilation is the output of the BLISS-10 compiler compiling BLISS for the PDP-10. The third
compilation is the output of the BLISS-11 compiler compiling BLISS for the PDP-11. Each of
the first three compilations is shown for two cases, called case NO REGS and case REGS, which-
correspond to the cases in which the variables T, ], K, and N are declared to be OWN variables
and REGISTER variables, respectively. The last compilation is the output of the FORTRAN-H

. compiler compiling a FORTRAN version of the same algorithm for the IBM-370/168. This

compllatlon was performed using the full optimization capability of FORTRAN-H (OPT=2).

The following table summarizes the important static parameters of the compilations.

# INSTRUCTIONS # BITS DATA CACHE CYCLES
LLL Filter (NO REGS) | 3 1584 81
LLL Filter (REGS) 33 1584 19
BLISS-10 (NO REGS) 63 2268 e
BLISS-10 (REGS) - a2 1512 | 19-
'BLISS-11 (NO REGS) 63 Rt 63 .
'BLISS-11- (REGS) 58 1216 31

- FORTRAN-H 370/168 84 - 2432 - 51
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3.7.5.3.1 BLISS Treesort Algorithm

This section presents the Treesort algorithm which is compiled for several machines in ‘the
following sections. The listing shown declares T, ], K, and N to be registers.

MODULE=
BEGIN

REGISTER T,J,K,N;
LABEL L1, LZ
OWN A[6l],

INCR I FROM 2 TO .N DO BEGIN

Ke.1;

Je.1;

Te.A[.I];

I.1: DO BEGIN

S JdeJ/2; ’

IF .T LEQ .A[ .J] THEN LEAVE L1;
Al .K]«.A[.J]; .
Ke.J;

END UNTIL .J EQL 1;

Al .K]-.T;

~END;

DECR I FROM .N-1 TO 1 DO BEGIN
Te . A[ . I+1];
A[.I+1])-.A[1];
Kel;
Je2;
LZ: WHILE .J LEQ .1 DO BEGIN
IF .J LSS .I THEN BEGIN o
IF (.A[.J+1] GTR .A[.J]) THEN Je.J+l1;
END;
IF .A[.J] GTR .T THEN BEGIN
AL .KJ+.A[ .J7;
Ke. J
Jio2a.J;
END' ELSE LEAVE L2;
END;
AL .KJ-.T
END;

END ELUDOM;
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3.7. 5 3. 2 LLL Filter Compllauon '

83

This section presents the output of a hypotheucal nori-optimizing compller compiling the -above
BLISS program for the LLL Filter. Along with each assembly language instruction is. shown the
number of data cache cycles required for the instruction for each of case NO REGS and case
REGS, and the length of the instruction in words.

The assembly Ianguage output is identical for case NO REGS and case REGS, therefore only one
listing is shown.

L1

L2
L3

L4
LS
L6
L7

L8

L10
L11

“ MoV _
SKIP LE L1

JUMP - L4

- MOV

MOV

Mov .

SHIFT RIGHT A
SKIP LE L3
MOV

MoV :
SKIP NE. L2
MoV

INC SKIP G L4
JUNP L1

DEC
JUNP LE 0 LIl
MOV

MOV

MOV

MOV

SKIP LE L7
Junp L10
SKIP GE L8 .
SKIP LE L8
ADD ,
SKIP LE L10
MOV

MOV

SHIFT LEFT A
SKIP G L10
JUNP L7

Mov

INC JUNP G O LS

B ]
- w .

' TZ W
N A b N
. Co et
o - TN -

(9) .

— > G PN =] - G PN
bmtiiand
-

v e v e e e .
Z7<§=C-7':>*>.-n-'-_

I,N

I

T,A+1(1)
A+1(1),A+]
K,#1

J,#e

J, 1

J,1
A+1(J) A(J)
J,#l

A(J) T
A(K),A(J)
J,#l

J,I.

A(K), T
I B

NO REGS

. # DATA

CACHE
CYCLES

TOTAL: 81

REGS
#DATA
CACHE
CYCLES

—
o

# 36-BIT
INSTR
WORDS

Dt st (N\) bt bt (NI () Pt [\) bt et ot Pt ot

Pt N bt bt et et N OND Pt LD et st bt et bt N DN et

o>
Y
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Following is the code generated by the BLISS-10 compiler compiling the above BLISS program
for the PDP-10 for the case in which T, ], K, and N are not declared to be registers..

- MOVEI
 MOVEM
L1 CAMLE
JRST
MOVEM
MOVEM
MOVE
MOVEM

L2 MOVE

_ASH
MOVEM
MOVE
CAMLE
JRST
MOVE
MOVE
MOVE

“MOVEM -
MOVEM

CAIE
A JRST
L3 MOVE
MOVE
MOVEM
AOJA

17,2
17,1
17,N

L4

L5

L6

L7

L8 °

L9

MOVE
S0J
MOVE
JUMPLE
MOVE
MOVEM
MOVE
MOVEM
MOVEI
MOVEM
MOVE1
MOVEM
CAMGE
JRGT
CAMG
JRST
MOVE
MOVE
MOVE
CAML
JRST
AOJ
MOVEM
MOVE
MOVE
CAML
JRST
MNOVE
MOVE
MOVEM
MOVEM
ASH
MOVEM
JRST
MOVE
MOVE
MOVEM
S0JG

+1
+1(17)

NI —
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Following is the code genei'ated by the BLISS-10 compiler compiling the above BLISS program
~ for the PDP-10 for the case in which T, J, K, and N are declared to be registers.

.-MOVEI 13,2 L2 MOVE 13,14

L1 CAMLE 13,14 soJ . 13,0
JRST - L2 JUMPLE 13,LS
MOVE 15,13 : L6 MOVE 17,A+1(13)
MOVE 16,13 . MOVE 6,A+1 :
_ MOVE 17,A(13) ' MOVEM 6,A+1(13)
L3  ASH 16,-1 : MOVEI 15,1 o
CAMG 17,A(16) : . MOVEI 16,2
JRST L4 A L7 .CAMLE 16,13
MOVE 4,A(16) . JRST . L10 :
MOVEM  4,A(15) CAML 16,13
MOVE 15,16 : _ JRST L1l
CAIE 16,1 : : MOVE 11,A(16)
JRST L3 - CAMGE  11,A+1(16)
L4 MOVEM 17,A(15) AOJ 16,0
AOJA 13,L1 A _ © L1l CAML 17,A(16)
‘ : JRST L10

MOVE 12,A(16)
MOVEM  12,A(15)

" MOVE 15,16
MOVE 1,16
ASH 1,1

" MOVE 16,1
JRST L7

- Co : “L10 MOVEM 17,A(15)
: S0JG 13,L6
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3.7.5.3.4 BLISS-11 Compilation for PDP-11
Following is the code generated by the BLISS-11 compiler compiling the above BLISS program

for the PDP-11 for the case in which T, J, K, and N are not declared to be registers.

MoV #T,R30 ' : MoV @#N,R85

MOV #J,R33 ' . DEC R$5
MOV #K,RS$1 . MOV  -R$5,RS$2
MOV #2,-(SP) BR L$13
BR L$6 ' L$12: MOV R$2,R$5
.L$5: MOV @SP,@R$1 ASL R$5
MOV @SP,@R$3 MOV A+2(R$5),@R80
MoV @SP,R$5 MOV @FA+2,A+2(R$5)
ASL R$5 MOV #1,0RS]
- MoV A(R$5), @R$0 MOV #2,@R$3
L$7: ASR @R$3 : LSi4: MoV @R$3,R$5
MOV @R$3,R$2 _ _ CMP R$5,R$2
MOV R$2,R$5 o BGT L2
ASL RS$5 BGE L$18
CMP A(R$5), @R$0 MOV R$5,R$4
BGE L1 ' ASL R$4
MOV @R$1,R$4 ASL R$5
ASL ~ R$4 CMP A+2(R84),A(RSS5)
MOV A(RS5),A(RS4) BLE  L$18
MOV RS2, @RS1 - INC  @RS$3
CMP RS2, #1 L$18: MOV @R33,R$5
- BNE L$7 ASL R$5
Ll MoV GR$1,R$4 - CMP A(R$5), RS0
ASL R34 _ BLE L2
MOV @RS0,A(RS4) MOV -  @RS1,R$4 .
INC @sp ‘ ASL  R$4
L$S6: CMP ~ @SP,@#N : - MOV A(R$5),A(RS4)
BLE L$5 ' MOV BR$3; @RS 1
: MOV R$5,0R$3
BR- L5814
‘L2: MOV ORS1,RS4
ASL R$4
MOV PRS0, A(RS4)
DEC RS2

L$13: BGT  L812
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Following is-the code generated bvy the BLISS-11 compiler compiling the above BLISS program
for the PDP-11 for the case in. which T, J, K, and N are declared to be registers.

MOV #2,-(SP) - T DEC RS2

BR  L%6 ; MOV RS2, eSP
L$5: - MOV @SP,R33 : : BR L313
MoV R$3,R$4 Co L$12: MoV @sSP,R$2
MoV R$3,R31 _ S ASL RS2
ASL R$1 : . MoV A+2(R$2),R$5
MOV - A(RS1),R$5 Mov @FA+2,A+2(R32)
L$7: ASR R34 ' Mov #1,R$3
MOV - R3$4,R$1 : . MOV #2,R34°
ASL . R$1 L$14: CMP R34,0SP
CMP . R35,A(RS1) : BGT L2
- BLE L1 : ' - BGE - L518
. Mov R$3,R$0 ‘ MOV R$4,R$1 -
ASL R0 . ‘ ASL R$1
MOV A(RS$1),A(RS0) MoV R$4,R$2
MOV R$4,R33 ' ASL R$2
CMP R34,#1 : CMP A+2(R31),A(RS2)
BNE L$7 . © BLE = L$18
Ll: MOV R$3,R$1 - INC - R34
ASL - R$l o Ls18: MoV R$4,R$2
MOV R$5,A(RS1) ASL R$2
INC esP o CcMpP A(R$2),R$5
L$6: CMP @sP,R$2 BLE L2
: BLE = L35 Mov R$3,R31
. ASL - RSl

MOV . A(R$2),A(RS1)
Mov R$4,R33
Mov R$2Z2,R$4

BR L$14

L2: MOV R$3,R$0
ASL R$0
MOV - R35,A(R30)
DEC esp

L$13: BGT Ls12
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3.7.5.3.5 FORTRAN-H Compilation for IBM-370/168
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3.7.5.3.5

Following is the code generated by the FORTRAN-H compiler compllmg a FORTRAN version
of the above BLISS program for the IBM-370/168 with full optimization enabled.

Cl
Cc2
Cc4
cs8

L1

L20

L2

L30

DC
DC
DC
DC

USING

XL4'1!
XLq'2'
XL4'4'
XL4'8’'

R13

7,C1
0,C8

| o OO~ O N
Lod - 0N o (=]
S .

—

L3

L4

L5
L6

L7

L70

L8

L40

L80

LR
LS50

SR
BC

LR -

SLL

ST
LR
ST

CR
BC
ST
BC

. CR-

BC
LR
SLL

BC
AR

SLL -

(R
BC
ST
BC
LR
SLL

ST -

LR
SLL
BC

SLL
ST

- SR

BC
DC
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3.7.5.4 Hand-Coded Quicksort Comparisons

This section compares hand- coded versions of a particular rendition of the Quicksort algorithm.
This version of the Quicksort algonthm comes from [Sedgewick 1975] pg. 329.

The followmg table summarizes the results of these’ compansons

# INSTRUCTIONS # BITS
LLL Filter =~ ‘ 53 ' 2916

PDP-10 - 63 2268

It is mstructnve to compare the inner loops of the various qucksort programs, and these are
marked. : -

It should be noted that the LLL Filter code has not been highly optimized; by using absolute
addresses for arrays, most multiple-word instructions can be reduced to single-word instructions,
and furthermore, constants can be shared, eliminating duplicate versions in hne
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3.7.5.4.1 ALGOL-W Quicksort Algorithm

This section presents in ALGOL-W the Quicksort algorithm which is hand-coded in'the
following sections. ,

Certain liberties have been taken with the ALGOL—W language. Specifically, "INFINITY" is
assumed to be a reserved word, the operator "=:" is the exchange operator, and.a macro facility is
assumed (eg. "DEFINE N=400;"). ‘

BEGIN DEFINE N=400; DEFINE M=9;

BEGIN INTEGER ARRAY A(0::N+1);
INTEGER ARRAY STACK(O::2#(ENTIER(LN((N+1)/(M+2))))+1);
INTEGER P,L,R,I1,J,V,T;

A(0):=-INFINITY;
A(N+1):=INFINITY;

P:=0; L:=1; R:=N;
PART: 1:=L; J:=R+1; V:=A(L);
WHILE I<J DO BEGIN

I:=1+1; WHILE A(I)XV DO I:=1+1:
J:=J-1; WHILE A(J)>V DO J:=J-1;
A(J):= A(I).
END;
A(I):=:A(J);
A(J):=:A(L);
IF R-J>J-L THEN GO TO RBIG;
IF J-L<{=M THEN GO TO POP;
IF R-J<{=M THEN GO TO LEFT
P:=P+2;
STACK(P) =L; - ' .
STACK(P+1):=J-1;
RIGHT: L:=J+1;
i ‘ GO TO PART;
RBIG: IF R-J{=M THEN GO TO POP;
’ IF J-L<{=M THEN GO TO RIGHT;
P:=P+2;
STACK(P):=J+];
STACK{P+1):=R;
LEFT: R:=J-1;
. GO TO PART;
POP: L:=STACK(P);
: R:=STACK(P+1);
P:=P-2;
IF P>=0 THEN GO TO PART; ' 4
INSERT:FOR I:=2 UNTIL N DO . .
BEGIN ‘ )

V:=A(I); J:=I-1;

WHILE A(J)>V DO BEGIN A(J#1):2A(d); J:=d=-1; END:
A(J+1):=V; .
END;

END;
END.
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'3.7.5.4.3 LLL Filter Hand-Coding |
“This section presents a version of the above ALGOL-W program hand coded in LLL Filter -

assembly language. We assume that P, L, R, 1, J, and V are stored in R registers.

MOV A, #-INFIN L9 MoV

) STACK+2(P),L .
MOV -~ A+N+]1,fINFIN DEC | STACK+3(P),J
MoV P,#0 " ADD p,#2
MOV L,#1 : ‘RT ~ INC L,J
MOV R,#N ) JuMp PT
PT MOV I,L RB SKIP G L10 RTA,#M
* INC J,R : JUMP PP
MoV CVLA(L) L10 SKIP LE RT RTB,#M .
. o INC STACK+2(P),J
sr2 JNNER LOOP FOLLOWS #as# ' - MoV STACK+3(P),R
: . ADD P,#2 :
L1 ADD ' 1,#1 : A -LF DEC R,J
- SKIP L L1 A(I),V JUMP . PT -
L2 SuB A J, 8l PP Mov L,STACK(P)
SKIP G L2 A{J),V MoV R,STACK+1(P)
EXCH A(J),A(T) ' SUB P,#2
SKIP L L1 I,J , JUWPGEO PT P
: ' , IN MOV : - 1,#2
. «x« END OF INNER LOOP ##x - SKIP LE L6 I,#N
- JUMP L3
EXCH A(J),A(I) L6 DEC J, 1
-EXCH A(J),A(L) MoV V,A(I)
SuB RTA,R,J SKIP LE LS A(J),V
SUB RTB,J,L . L4 MoV A+1(J),A(J)
SKIP LE L11 RTA,RTB SuB J,#1
JUMP - RB SKIP G L4 A(J),V
L1l SKIP G L7 RTB,#M LS MoV A+1(J),V
. Jump PP : : INC SKIP G L3 I,#N
L7 SKIP G L9 RTA,#M 3 JUMP L6
- LF L .

Jump
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3.7.5.4.3 PDP-10 Hand-Coding
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3.7.5.4.3

This section presents a version of the above ALGOL-W program hand coded by John Reiser in
PDP-10 assembly language. We assume that P, L, R, I, J, and V are stored in registers, and we
call those registers RP, RL, RR, R], R}, and RV. In addition, we use the names RT1, RT?2, and

RT3 to refer to distinct temporary registers.

NINF = -2##35

MOVE
MOVEM
MOVMM
MOVEI
MOVEI]
MOVEI
PART MOVEI
- MOVEI
MOVE

RT1,NINF
RTI1,A’
RT1,A+N+1
RP, STACK-1
RL,1

RR,N

RI, (RL)
RJ, 1(RR)
RV,A(RL)

2% INNER LOOP FOLLOWS 2%

Ll CAMLE
AOJA

L2 CAMGE
SOJA
MOVE
EXCH
MOVEM
CAILE
JRST

st END OF

-MOVE
EXCH
EXCH
MOVEM
MOVEI
SUBI
MOVEI
SUBIT
CATGE
JRST
CAlG
JRST
CAIG
JRST

RV,A+1(RI)
RI,L1
RV,A-1(RJ)
RJ,L2
RT1,A-1(RJ)
RT1,A+1(RI)
RT1,A-1(RJ)
RJ,2(RI)

L1

INNER LOOP %«

RT1,A-1(RJ)
RT1,A+1(RI)
RT1,A(RL) -
RT1,A-1(RJ)
RTZ,(RR)
RTZ, (RJ)
RT3, (RJ)
RT3, (RL)
RT3,2(RT2)
RRING
RT3, M

- POP
RTZ,M
LEFT

RIGHT
RBIG

LEFT
POP

-~ INSERT

TOP

BOT
OuT

PUSH
MOVEI
HRLM
MOVEI
JRST
CAIG
JRST
CAIG
JRST
PUSH
HRLM
MOVEI
JRST
TLNN
JRST
HLRZ
JRST
MOVEI
SOJLE
MOVE
CAMG
JRST
MOVEI
CAMLE
AOJA
MOVSI
HRR1
BLT
MOVEM
S0JG

RP,RL
RT1,-2(RJ)

- RT1,(RP)

RL, (RJ)
PART
RT2,M

-POP

RT3,M
RIGHT
RP,RJ
RR, (RP)
RR, (RJ)
PART

RP, -1
INSERT
RR,RL
PART
RI,RN
RI,OUT
RV,A(RI)
RV,A+1(RI)

- BOT

RJ, 1(RI)
RV A+{(RJ)
RTI ,A+1(R1)

" RT1,A(RI)
RTI,A~1(RJ)

RV,A(RJ)
RI, TOP
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4. Implementation

[}

4.1 Processing Element
The ma jor features of the processing element implementation are as follows:
- State-of-the-art high-speed ECL logic.

- Triple micro-controllers, two for fetching instructions and operands and one for:
executing instructions.

- An instruction set defined in a writeable control store which can be dynamically
modified to accomodate the special requirements of some codes.

- Special data paths for the rapid execution of floating-point instfuctions.

- Hammmg-coded main memory to allow the use of cost-effective 4K -bit and 16K~
bit RAM chips. :

The processing element is shown in Figure 2.2-1. The entire processing element, including control
store, requires approximately 4000 ECL 10K ICs. The processing element cycles in 100 nano-
seconds, with register-to-register and register-to-memory integer adds proceeding in pipeline
mode at 100 nano-seconds per instruction. With stable rounding, floating addition takes 6 cycles,
and floating multiply takes 11 cycles. With truncation, floating addition takes 5 cycles, and floating
multiply takes 10 cycles.

~ The processing element contains three independent micro-programmed processors, which are
designated the P-sequencer, the I-sequencer, and the E-sequencer. The P-sequencer does the
basic instruction decode which takes care of the different operand types, and register operands.
The I-sequencer calculates memory, indexed, and indirect operands, in addition to controlling
things like cache misses and the interaction with the switch. The E-sequencer executes all of the
basic instructions, once the P and 1 sequencers have fetch the operands, and scheduled the write(s)
for the result(s). All three of the sequencer’s have writeable control stores, which can be
dynamically changed.

In this discussion "macro-instruction” ("macro-operation”) will mean the sequence of micro-
instructions executed by the three sequencers to emtulate a user-level instruction.

Drawings in general will be referenced by an abbreviation which is given in all capital letters.
For example the drawing for the instruction box has the abbreviation IBOX.

The drawings are the output of an advanced computer aided design system; they are a
hierarchical representation of the machine. In general, a single page is the definition of a macro-
body included in a drawing at a higher level; the definition may use macro-bodies which are
defined at a lower level. The name of a macro-body appears inside the body at the call site; it is
also the title of the body definition. Most macro-bpdy definitions are one page, although
multiple-page definitions are allowed. Multiple-page definitions -are indicated by placing a page
number (for example, "1/2") in the title of each drawing of the definition.

Lines in the drawings represent bundles of signals. The notation X<i:j> means the bundle of
signals X<i>, X<i+l>, .., X<j>. The notation X:Y:Z means the bundle of signals (or vectors of

i
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signals) X, Y, and Z, in that order. Special "merger” bodies are also used to bundle separately
~named signals.

The parameter passing mechanism is similar to that of ALGOL; actual parameters may be passed
to a macro-body where it is used (paramters are bundles of signals) and the body definition may
‘refer to those parameters by their formal names. Global signals will be deciared, although no
declarations have yet been made on these drawings. Any macro—body can refer to global signals
which are delared at a higher level.

The definitions of most low-level bodies are not shown in this report, although an app8ndlx
contains some Iow level definitions.

4.1.1 IBOX/EBOX Cqmmunication

This section describes the signals which connect the IBOX and EBOX. In the Ibgic diagrams, all
signals connecting the IBOX an EBOX are prefixed with ithe character "X". Times in
parentheses indicate when the signal is available in the sender’s reference frame.

4.1.1.1 IBOX to EBOX Signals

START ADR<0:11> (T40)
Starting address in the EBOX of the sequence of micro-operations which emulate the current

instruction.

‘A OP<0:35> (ThO)
Operand to the EBOX. A OP is normally the operand described by ODI. .

B OP<0:35> (T50)
Operand to the EBOX. B OP is normally the operand described by 0D2

USE A OP (T50) ' .
This signal allows the IBOX to wrap the EBOX result around into the A input. If this signal is
mot set and the EBOX is reading an operand from the IBOX, then the operand read into the A
input is simply the result of the last EBOX cycle.

USE B OP (T50)

This signal allows the IBOX to wrap the EBOX result around into the B input. If this sngnal is
not set and the EBOX is reading an operand from the IBOX, then the aperand read into the B
input is simply the result of the last EBOX cycle.

BRANCH TAKEN (T50)
During conditional branch instructions, this signal mdlcates that the IBOX took the branch.

BRANCH COND<0:2> (T50)
During conditional branch instructions, these signals indicate the one of eight branch conditions
cuded in the instruction.

A OP LOW ADR<0:1> (T50)
The least-significant two bits of the A operand address. These bits are used in quarter -word and
half-word operations.
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B OP LOW ADR<0:1> (T50)
The least-significant two bits of the B operand address These bits are used in quarter- word and
half-word operations.

DEST LOW -ADR<0:1> (T50) . '
The least-significant two bits of the destination operand address. These bits are used in quarter-
word and half-word operations. :

KILL EBOX (T50)
Stop the EBOX unconditionally.

PAUSE EBOX (T50)
Thrs signal can be tested by the EBOX and if asserted, will cause a soft stop to occur.

4.1.1.2 EBOX to IBOX Signals

USING OPS (T4)
This signal indicates to the IBOX that if the input operands are not ready for the EBOX, then
the EBOX clock should be stopped until the input operands become ready.

OPS TAKEN (T10).
This signal indicates to the IBOX that the input operands have been loaded into the EBOX and
_therefore the IBOX operand registers can be reloaded.

RESULT DATA <0:35> (T20)
-The result of a sequence of micro-operations.

TRAP (T20)
T he instruction m executlon has trapped

RESULT (T20)
A result is available on RESULT DATA<0:35>,

DONE (T20) o
The EBOX is done with the current sequence of operations and is ready to accept a new starting
address. .

lNTERRUPT IROX (T20)
Interrupt the 1BOX. Several cycles are wasted in_cleaning up the IBOX to prepare for an
IBOX/EBOX dialogue.

WRONG BRANCH (T21)
The IBOX took the wrong direction on the conditional branch currently in execution.
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4.1.2 Instruction Box

The instruction box (IBOX) controls the fetching of instructions and operands, the intéract-ion
with the crossbar swijtch to read and write main memory, and all 1/O operations.

The IBOX has two caches, one for instructions and one for data, which each hold 4K words.
The main reasons for having two caches is that it doubles the cache bandwidth, and simplifies
the scheduling of cache operations, since the instruction prefetch logic has its own dedicated cache.
A given word of memory can only be in one of the two caches at a time. When ever a miss
occurs in one of the caches, the other cache is checked for that word. If it is found there, then it
is moved from the one cache to the other. In addition, the instruction cache does not have any
modify bits, so if a modified word is moved from the data cache to the instruction cache then it lS
also written back to main memory.

The main register stack is 128 words by 36-bits, which contains the three sets of registers for the
user, and a set of temporary registers for use by the IBOX. All of the registers are stored three
. times, which allows three different registers to be read out at the same time. During each micro-
cycle, one register write and three reads may be done.

One of the register stacks exists in the Index Register File macro, and is used for index
operations. The other two are in the Data Cache and Register File macro, which are used for
.reading register operands for instructions.

The JInstruction Address Arithmetic, Instruction Address Translation, Instruction Cache, and
Instruction Buffer and Decode macros all have to do with prefetching instructions. The Index
Register File, Data Address Arithmetic, Data Address Translation, and Data Cache and Register
File macros are used for the calculation of operands. Memory Interface allows memory read and
write operations to be done to the switch. One of its more interesting features is that it puts
hamming codes on the data before it goes to the switch, and checks and corrects it when it comes
back. That way, if there is an error introduced any place between the processor and the memory, -
it can be corrected if its a single error, and detected if its a double error. The EBOX Operand
Register macro holds the next pair of operands for the EBOX, and the EBOX" Interface macro
just specifies the interconnections between the IBOX and the EBOX
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4.1.2 Instruction Box Pipeline Timing

The IBOX Pipeline Timing.shows an example of the parallelism which results in the IBOX

- when a._series of contiguous instructions are executed, each of which requires a single EBOX

execution cycle Each box in the figure represents a 100ns event.

.The prefetch Ioglc fetches an instruction every cycle, as long as the pipeline can use the .

instructions. The prefetch logic looks at the instructions as they are decoded, and if it sees an
unconditional .branch, it takes it. If it sees a conditional short PC relative branch or. skip
backwards, then it assumes that it is a loop, and also jumps backwards. In all other cases, it

fetches the next instruction assuming the branch is false. When the conditional branch is

executed, if the prefetch logic went the wrong way, the pipeline if flushed, and the processor starts
fetching instructions the other direction.

Once the instruction is decoded, thé next step is to fetch the P-sequence micro-instruction for the
instruction. The P-sequence micro-instruction then specifies a starting address in the I-sequencer,
and calculates register addresses for the register operands. Depending on the operand formats for
the specific instruction, and the specific addressing modes used, a number of P-sequence and I-
sequence micro-instructions may be done.

After an I-sequencer micro-instruction is executed, there is a two stage pipe. The first stage of
the pipe calculates addresses and does a virtual to real address translation. " The virtual to real
address translation was not done in parallel with the cache read so that the page size could be
smaller than the size of the chips used to implement the cache, which are 1K bit ECL RAMs.
The second stage of thé pipe can then do two register reads, or a register read and a cache read.

. If a register is read as a memory location, then the. hardware automatically reads the correct

register.

I .
After the operands of the instruction are read, then a half cycle is allowed for the operands to get
to the EBOX. The EBUX then executes the instruction taking some number of cycles, and writes
the result(s) back. The addresses of the result(s) have already been scheduled at this time, and
hardware logic actually does the writes. If a write conflicts with what the IBOX wants to do

_during a given cycle (i.e. the IBOX wants to do a cache read, and the EBOX wants to do a cache

write), then the clock for the IBOX is stoped for a cycle, and the write occurs. For mast
addressing modes, the IBOX does not need to write into the cache or the general register file, so -
very few write conflicts should occur.

There is a set of comparators which take care of the cases where a result of one instruction is used
in one of the next two instructions, which causes the appropriate data to bypass the cache or
register file, with no loss in time. The only place wheré execution time is lost is where an
instruction tries to index off of a rescently generated result, in which case up to three cycles may
be lost. Because of this, it is 2 cycles faster to index off a local variable on your stack, than it is to
load it into a register and then index off of it once.
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4.1.2.1 Index Register File

" The index regiéter file is used for readingregisters which are used in address arithmetic, such as
in index operations and register indirection. The multiplexer is used to determine the source of
the register address, and the comparator is used to detect that the next cycle is writing into the
register being read, to allow the appropriate data to bypass the index register file, saving a cycle.

The IREGM d_‘rawihg shows how the 36B X 128W register file is implemented.
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4.1.2.2 Instruction Address Aritﬁmetic

The Instruction Address Arithmetic logic calculates the address of the next instruction to be
fetched if it PC+4 (next word), or the destination of a PC relative skip or short jump. In all
other cases, the Data Address Arithmetic logic is used to calculate the address of the next
instruction :

The 28B x 128W RAM Is used to remember the PC of all instructions in the pipe, in case one of
themgets an error, or the pipeline gets flushed for some reason.
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4123 Data Address Arithmetic

The Data Address Arithmetic logic does all of the non-register operand address calculations. It
contains a set of 16 36-bit temporary registers (see the T REGISTER FILE macro), which can be
used in the calculation of addresses.. The REG ADR Detection logic detects if the address
generated is a register, which causes the cache read to be automatically turned into a register read..
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4.1.23.1 Register Address Detection

The Register Address Detection logic checks to see of the memory address is in the range of Oto ’
127, in which case it is a register address.
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4.1.2.3.2 Data Address Arithmetic Control

The Data Address Arithmetic Control causes the write data (WDATA) bus to be selected in the
Data Address Arithmetic logic, if the word bemg read out of the Index Regnster File is being .

“written the next cycle.
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41233°T Register File

- The T Register File is a set of 16 registers for use in calculating addresses. They are written into -

from the output of the data address arithmetic adder, and can be read into the A or B leg of the
adder. The control of this register file is particularly complicated because results to be written

into it have to be delayed for two cycles, in case a mlcro—interrupt occurs, and the instruction. .

doing the write has to be canceled.
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4.1.2.4 Instruction an'd Data Address Translation

The Instruction Address Translation and Data Address Translation logic translates virtual
addresses for the instruction and data caches into physical addresses. The address translation is
done by a lookup in a small set associative cache, which has 64 words, and a set size of 4.
Because of the very large address space (30-bits), this method was prefered to the more
conventional method of using a direct mapping cache for the address translation. Since different
data is stored in the two address translation caches, up to- 128 different page translations can be
kept in the processor. '
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4.1.2.4.1 Address Translation Cache

The Address Translation Cache is a standard set associative cache with a set size of 4, and with
64 total entries. The input to the cache is the bus VA<0:35>, where YVA<6:35> contains' the
address to be translated. The way the cache operates is to look up four words based on
V A<22:255, and to compare the address stored there to VA<6:21>. If one of those words match,
then the physical address stored in that location is read out. Otherwise, the address translatlon
required is not stored in the cache, and a micro-interrupt occurs.
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»

-4.1.2.4.2 Address Translation LRU Control

The Address Translation LRU Control keeps track of the least rescently used word in each set in
the Address Translation Cache, so that when an element needs to be replaced in the cache, that
word can be the one. The way this is implemented is as follows. For each set in the cache, there
are five bits stored, two of which specify the most rescently used word, two which give the least
rescently used word, and one which tells the order of the other two words. In order to update
these five bits on a reference to the cache then, these five bits and two bits which tell which word
is currently being referenced are fed into the address lines of a RAM which is programmed to
give the new five bits for this set. It should be noted that the two bits which give the most
rescently referenced word are just the current word being referenced, so they do not need to be
generated by the RAM. - ' '
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| 4.1.2.5 Instruction Cache Memory

The Instruction Cache Memory and the Data Cache Memory are both basically the same, and are
conventional set associative cache organizations. They each hold 4K 36-bit words, and have a set
size of 4. The instruction cache does not have a modify bit, so writes to it must also go to
memory. The data cache has a modify bit for every four words, and words are always transfered
between the caches and main memory in groups of 4.
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4.1.2.5.1 Instruction Cache Memory Module

The Instruction Cache Memory Module implements one set of the instruction cache. Since words
are always transfered bétween the cache and memory four at a time (called a line), the high order
address bits only need be stored in the cache for every fourth word. The two 8B x 256W RAMs
are used to store the high order 16 bits of the physical address for a line. The 18B x 1K and
19B x 1K RAMs store the data words plus parlty The IB x 256W RAM stores the parity bit

~ for the physical addresses. - -
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4.1.2.5.2 Instruction Cache Control

The Instruction Cache Control asserts the signal HOLD INSTR C MISS if an lhstruction cache
miss occurs. It also selects which set is to be written into on a cache miss. '
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4.1.2.5.2.1 Cache LRU Control

i

"The Cache LRU Control is almost identical to the Address Translation LRU Control, with the

only mail difference being that it has to keep track of 1024 lines, instead of 64.

i
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4.1.2.6 Data Cache énd'Register File

The Data Cache and Register File contains a cache memory for data, plus two register files, which
both contain the four processor register sets. The cutputs OUT A and OUT B are perfectly
symmetrical, and both can read a cache location, a register, or an immediate constant. If a
register is addressed as memory, then if the word was being read out of OUT A, the one register
file will be used to read the register, otherwise the other register file will be used.

The EBOX has two operand registers, OP A and OP B. When the I-sequencer is calculating an
operand to be put in OP A, it normally uses OUT A, and if it is calculating an operand for OP
B, it used OUT B. The P-sequencer can then read a register operand on the other output,
allowing two operands to be read per micro-cycle, with no conflict in the data paths being used.
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4.1.2.6:1 Cache and kegister File Control

" There are two Cache and Register File Controls, one for OUT A and one for OUT B. They
control the output multiplexers to take care of when a register is read as a memory location, and
which write compares happen the result of one instruction is used by one of the following
instructions, which cause the W DATA bus to be selected on the output.
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4.1.2.6.2 Data Cache Memory

The Data Cache Memory is very similar to the instruction cache, with the main difference being
that a bit is stored for each line in the cache, indicating that it has been written into.
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4.1.2.7 Instruction Buffer and Decode

The Instruction Buffer and Decode buffers instructions so that they are around durlng later cycles
in the pipeline, and decodes them, to find out the starting address in the P-sequencer and the E-
sequencer. It also recognizes branch and skip instructions for the prefetch logic.
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4.1.2.7.1 Instruction Decode

The Instruction Decode logic decodes instructions mainly by looking the opcode up in a 28B x 2K

“word RAM. The top bit of the opcode is used to tell if the instruction is a skip instruction or not,

meaning that exactly half of all of the opcodes will always be skips. If it is a skip instruction,
then Zx4:IR BUF<L:7> is fed into the decode RAM, otherwise IR BUF<I:11> is put into it. This

‘also means that 128 of the non-skip opcodes are unusable, but this seemed a reasonable price to -

pay for being able to use a 2K decode RAM, rather than a 4K one.
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4.1.2.8 EBOX Operand Reglsters

The EBOX Operand Registers are used to hold the next set of operands for the EBOX. If’ the

JBOX gets further than two operands ahead of the EBOX in fetching instructions and operands,
then it stops and waits. If the EBOX is done with a given instruction, and the operands for the
next instruction are not ready, then it waits. The EBOX Operands Ready Control keeps track of
when operands are ready, and when the EBOX takes them.
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. 4.1.29 Memory Interface

- The Memory Interface controls communication between the processor and the switch, and takes
-care of generatmg hamming codes, and correcting errors. The format for the switch control words

is shown in drawing IOFORM. An 1/O operation is started by sending an /O control word to

. the switch, which specifies a memory address, whether it is a read, write, or both (a read-modify-

write operation), and whether | or 4 words are to be transfered. If it is a read operation, the
processor just sits and waits for the data to come back. On writes, the processor waits until the -
switch sends a control word back with its VALID bit set, which signals that the processor has a
direct path to memory opened, and to start sending data.
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4.1.2.10 1BOX Control -

The ma jor sections of the IBOX Control are shown in drawing IBOXC. The following sections
will go into detail about what each of these sections do. In addition to these sections, there is a
section which gives the flow of control of the prefetch logic.
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4.1.2.10.1 ln'struciion Prefetch Control

- In addition to the three micro-sequencers in the machine, there is.a hardware control unit called

the Instruction Prefetch Control, which keeps fetching instructions ahead of .the P-sequencer, in
order to keep the pipeline full. The basic flow of control is shown in drawing FLOWF1.

The sequencer goes from one.state to the next every micro-cycle, where states are represented by
octagons, with the state number shown inside. The rectangular boxes represent -actions to be
preformed, and the diamonds represent conditionals. The rectangular boxes with cut off corners
represent macro calls to the macros defined in drawings FLOWF2, FLOWF3, and FLOWF4.
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- 4.1.2.10.2 P-Sequencer Control Unit

The P-Sequencer Control Unit is started at address OP SEQ Start ADR<0:9>, which is generated
by the decode RAM. For a given instruction, it can only execute sequential micro-instructions.
~Its main function is to take care of the difference between the many different formats for the
operangs of instructions, and to fetch all register operands, which the I-Sequencer fetches memory
operands. ~ ~ .
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4.1.2.10.3 1-Sequencer Control Unit

The I-Sequencer Control Unit is the main work horse in the IBOX, and is a powerful micro-
programed controler. It can branch anywhere in its control store, can execute nested subroutines
up to 16 levels deep, and can preform micro-interrupts, which stack their return address. The
control store is divided into two parts, a fast and slow part. The only difference is the time at
which the control bits come out. The fast signals are designated FI21 since they come out around
time 21, and the slow signals are designated 130.
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4.1.2.10.4 EBOX Write Address Registers

The EBOX Write Address Registers are used to keep track of pending writes from the EBOX
into either the cache, the register file, or to memory. There are two write address registers, which
allow the IBOX to schedule up to two writes ahead of the EBOX. If the IBOX tries to schedule
a third write, then it is stoped until the EBOX does a write, freeing up one of the registers. It
has a set of four comparators for each of its two write address registers, which compare the
address of the words currently being read from the three register stacks and the cache, to the
addresses which- have pending writes. If one of the comparators compare, then signals are asserted
which cause the IBOX to either wait for the write to occur, or to take the data directly from the
output of the EBOX. For example, if the IBOX is reading an operand for one instruction, and it
finds out that it is the result of the previous instruction, rather than reading the operand from
memory or a register file, it sets a bit in the EBOX operand register saying for the EBOX to use
- the result of the: previous instruction, rather than the contents of the EBOX operand register.
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4.1.2.10.5 IBOX Write Control

The IBOX Write Control controls the writing into the cache and register files. The IBOX is
structured such that only one thing can be written into either the cache or the general register file
at one time. The T register file is completely separate, and can be written in parallel.
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4.1.2.10.6 Register Address Generation

The Register Address Generation logic is used to calculate all register addresses for operands
address as registers. Since the registers are in the address space, they can also be addressed by
using the Data Address Arithmetic logic if some fancy operations want to be preformed, but that
ties up the cache. The Register Address Generation logic is used by both the P-Sequencer and
the I-Sequencer. ' :
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'4.1.2.10.7 Micro Interrupts

Micro Interrupts allow various conditions to interrupt the .I-Sequencer to be handled, such as a
cache or page fault miss. When this happens, the micro-program PC is stored on the subroutine
stack, and instructions start getting fetched at the micro-interrupt address assigned to that
particular interrupt. -The various micro-interrupts -are all fed into a priority encoder, which .
comes out with the address of the highest priority interrupt.
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- 4.12.10.8 Stop IBOX

The Stop IBOX logic detects the conditions which cause the IBOX to stop lts clock and wait for
some event to occur.
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4.1.2.10.9 IBOX Timing Generator

~The 1BOX Tlmiﬁg Generator generates the eight phases, of the clock used in the IBOX. .It

consists of an eight bit circular shift register which is initialized to the sequence 01111111, and it
just circulates the zero around. The shift register is never really stoped, but when the IBOX

wants to stop its clock, it just disables the output drivers on the shift register
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;1 1.3 Execution Box -

The function of the Execution Box (EBOX) is to perform variable-precision arithmetic and |
logical operations for the IBOX; it executes one micro-instruction each 100 nano-seconds. EBOX
can be decomposed into the EBOX ALU (EBXALU), the EBOX Register File (EREGF), and the .

"EBOX Control (EBXCTL)

‘The EBXALU performs arithmetic and logical functions on two operands read during each cycle .

from the register file.

" The EREGF contains 32 read/write registers. During a single micro-cycle, any two registers can

be read for use as input to the EBXALU. Furthermore, during a micro-cycle two input operands
from the IBOX can be written into any even-odd pair of registers, or the result of the EBXALU
operation can be written into any register, or one operand from the IBOX and the result of the
EBXALU operation can be written into even-odd pair of registers.

The EREGF also can shift quarter-words and half-words into position for the EBXALU, can
sign-extend floating point numbers, and can deliver zero operands. »
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4.1.8.1 EBOX Register File

The EBOX Register File (EREGF) stores initial and intermediate operands for use by the
EBXALU during a sequence of micro-operations. ' : _

The EREGF contains two duplicate banks each of 32 36-bit registers (R[0:31]). Identical data is
always written into both banks. During a single micro-cycle, the IBOX A and B input operands
can be written into any even-odd pair of registers (A into an even register and B into an odd
register), or the result of the EBXALU operation can be written into any register, or one of the
IBOX iriput operands can be written into a register (only an even register for the A operand, and
only an odd register for the B operand) and the result from EBXALU can be written into the
other register of the even-odd pair.

Since the first cycle of a micro-lnstruction sequence normally takes two input operands from the
IBOX, the result of the previous cycle (ie, the last cycle of the previous mlcro—instruction
sequence) can not be saved in the EREGF.

Because the two register banks contain identical data, any two registers may be read out during a
micro-cycle for use as input to the EBXALU. In the case of a micro-instruction which reads the’
result of the preceding operation (or a micro-instruction which reads the A  or B input operands
from the IBOX), the necessary data is bussed around the register banks, therefore, although
writes physically occur one cycle late, they Iogically occur on time, except as noted below.

Each operand read out of the EREGF can be independently translated. The available translation
modes are: straight through, floating point sign extension, left justification of a quarter-word, and
left justification of a half-word. Operands whlch are bussed around the register banks (as
described above) cannot be translated. :

The EREGF also has the capability to deliver zero operands on either the A of B output
independently by disabling the register file output.
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4.13.11 EBOX Register File Control

The EBOX Register File Control (ERFC) primarily detects when the current micro—instruction is
attempting to use a value which will not be written into the register file until the next cycle and
in that case commands the EREGF to bus the data around the register banks. . .

The ERFC-also detects when R[O] is being read out (on either the AorB output) and commands

the EREGF to output the value zero. R[O] can therefore not be used to contain data.

The ERFC also controls the chip select lines for the EREGF so that either one or two values may
be written into the duplicate register banks.
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4.1.3.1.2 36 Bit Translate

. The 36 Bit Translate (TRANS) is used on each output Ieg of the EREGF. Each TRANS is

independent and has the capablllty to perform four different tranislations as follows:

1. 'St:aight through. The value passes straight through the TRANS wlthout
- modification. .

2. Sign extension of a floating point mantissa. Each bit of the exponent of a
* floating polnt number is replaced by bit 0 of the floating point number.

- Q_uarter-word One of four quarter words (depending upon the low-order
address bits from the IBOX) is left justlfied and the low-order quarter words are
set to zero. :

-4. Half-word. One of two half words (depending upon the low-order address bits .
' from the IBOX) is left justified, and the low-order half-word is set to zero.

~ The TRANS can not be used to modify the result of the preceding micro-instruction.
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4.1.3.2 EBOX ALU

The EBOX ALU (EBXALU) performs all arithmetic and logical operations for the EBOX. The
EBXALU can be decomposed into the 3 Input Adder (3INADD), the Shift Box (SHFBOX), the
Exponent Box (EXPBOX), the 36 Bit MUX Merge (MUXMRG), and the Q Register (QREG).

The 3INADD can add three operands, perform a few other logical functions on three operands,
or perform general logical functions on two operands. The input operands to the 3INADD are A
(the ‘A output of EREGF), B (the B output of EREGF), and Q (the quotient register, QREG).
Internally, the operands are shifted and multiplexed so that a single micro-cycle can do four bits
of a multiply.

The SHFBOX can do arithmetic or logical left or (limited) right shifts of a double-word input
onto a single word output. The three single-word inputs to the SHFBOX can be combined in
various orders to accomplish smgle—word arithmetic or logical left right shifts or rotates of up to
36 bits in a single cycle.

- The EXPBOX performs exponent arithmetic. The EXPBOX has its own internal registers, so
that after loading the EXPBOX from the A and B operands, exponent arithmetic can proceed
independently of the computations in the main data path.

The MUXMRG produces the one EBXALU output, R<0:35>. The inputs of the MUXMRG are
from 3INADD, SHFBOX, and EXPBOX. Special inputs are provided for special functions; one
. input merges the exponent with the shifter output, one input does a multiply shift, and one input"

does a divide shift.

The MUXMRG also has the capability to selectively merge each quarter-word from the
SHFBOX with the output of the 3INADD. This capability is used to merge the result of a
.quarter-word or half-word operation (which is shifted into place in the SHFBOX) back into the
. destination word (which passes unmodified through the 3INADD). In this case the destination
low-order address bits control the MUXMRG.

The QREG holds the multiplier during a multiply sequence, and- holds the dividend during a
divide sequence. The QREG has shifting capability internally. The QREG can also be used to
hold temporary results (for example, over the boundary between one micro-instruction sequence
and the next).
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413213 Input Adder

The 3 Input Adder (3INADD) has the capability to add three 36- bit numbers, to perform some
other limited logical operations of three 36-bit numbers, or to. perform general logical operations
on two 36-bit numbers. The three-input addition capability is used primarily to produce 4 bits of
a-multiply operation in-one micro-cycle. :

The 3INADD can be decomposed into the Carry Save Adder (CSA), the EBOX Full Adder
(EFA), and various multiplexers and muluplexer latches.

The CSA is an array of 20 ECL 10180 chips. The CSA forms the first two legs of the three-
input adder. During a three-input add, the CSA adds three operands to produce a sum and
carry vector output (each 40 bits long), and EFA adds those vectors to complete the add. Two
legs of the CSA are dedicated to A, (or to shifted versions of A) which is the multiplicand in a
multiply. The remaining leg of the CSA can receive A, B, Q, or a micro-code constant.

| Each of the three inputs of the CSA can be mdépenden'tly set to zero. Furthermore, the 10180 -

has the capability to mdependently complement two of its inputs. These capabilities are used in
the multiply*micro-cycle.

Two-operand functions can be performed in the EFA. One leg of the EFA can receive A B, Q,

_or micro-constant (in addition to carry out from the CSA), and the other leg of FA can receive

only B (in addition to sum from the CSA). The EFA produces a 40-bit output.
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4.1.8.2.1.1 EBOX 40 Bit Full Adder

The EBOX 40 Bit Full Adder (EFA) can perform arithmetic and logical functions on two
operands. It is constructed wnth 10181 ECL ALU chlps and 10179 ECL carry-—look-ahead units.

The EFA can be decomposed into the 40 Bit ALU 10181 (40ALU), the EBOX Full Adder
Control (EFACTL) and the Condition Box (CBOX). :

The 40ALU performs a full add in 24 nano-seconds worst case from the data inputs, neglecting
wire delays. It also performs the full 10181 repertoire of logical and arithmetic functions

- The EFACTL controls the EFA, producing the mode, function, and carry-in signals for the

10181. The mode and function bits can come either from micro-code or from the divide logic.

The carry-in bit can come from divide logic, rounding logic, multiply logic, carry-out of a’
previous cycle, guard-bit logic, or micro-code. The Rounding Box (ROUND) saves guard bits

during floating point operations and generates a carry-in bit for the EFA depending upon guard

bits and rounding mode. _

The CBOX detects single-word overflow, single-word negative, single-word zero, single-word less

than or equal to zero, mantissa zero, and mantissa overflow. Single-word carry out is generated

directly in the 40ALU. Since quarter-words and half-words are left justified and zero-filled in

the TRANS, the single-word conditions are-sufficient for testing quarter-word and half-word

operations. Wrong Branch Logic (WRONB) combines the generated conditions with control bits

received from the IBOX and determines whether the IBOX took the correct branch on a

conditional branch instruction. If the IBOX took the wrong branch, then X WRONG
BRANCH automatically becomes asserted.
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4.1.4.2.1.2 Multiply Control

The Mulnply Control module (MPYCTL) _generates various control S|gnals for use during a R
multiply cycle.

4 bits of the product are generated during each multiply cycle; the MPYCTL examines the 5 low

order bits (including' the carry out of the least-significant bit) of the Q register, and sets up the -

3INADD to perform the multiply cycle. One leg of the three-input adder receives A (the
multiplicand) or Ax2, another leg receives Ax4 or A8, and the last leg receives B (the partial
product). Each of the "A" legs is either added to or subtracted from the partial product.

The table included in MPYCTL defines a 2-bit-per-cycle multiply algorithm. XO represents the.. .
least significant bit of the Q register Q<35>, X1 represents Q<34>, and CI represents the carry out
from the Q register from the previous cycle (Q<36>). F shows the function to perform, that is,
PARTIAL_PRODUCT<PARTIAL_PRODUCT + FxMULTIPLICAND. Q and
PARTIAL _PRODUCT are then shifted right by two bits and the cycle repeats. The other
columns of the table show the values of various signals which are needed to implement F. The 4-
- bit-per-cycle algorithm is a direct extension of the 2-bit algorithm; two 2-bit cycles are performed

in parallel usmg the SINADD and exammmg 5 bits of Qmstead of 3 bits of Q_ '
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4.1.3.2.2 Shift Box

The Shift Box (SHFBOX) performs shifts in parallel with the arithmetic operation of the
SINADD. The SHFBOX can be decomposed into the Shifter (SHIFTR) the Sticky Bit
Generator (STICKY), and various zeroes counters and multiplexers.

The SHIFTR takes two %6-bit input words, and can perform a left shift of 0 to 47 bits or a right
shift of | to 16 bits onto a 38-bit output. The two low-order bits of the output become guard bits
in floating-point operations. Guard bits may be merged into the SHIFTR input at the top of the
low-order input word this capability is used during floating point postnormalization.

STICKY examines the output of a zeroes counter (the 36 Bit Bottom Zeroes Counter) and
determines whether all the bits lost (beyond the guard bits) in a right shift are zero; if any lost bit
is a one, STICKY asserts the sticky bit, Y. [Kahan 1978) discusses the need for and use of the
stlcky bit.

Two 35 Bit Top Zeroes Counters (TZC) allow the contiguous zeroes (or ones) at the top of a
floating point mantissa or an integer to be counted. The floating point count is useful during

postnormalization

A 36 Bit Bottom Zeroes Counter (BZC) counts the contiguous zeroes at the bottom of a number.
" This count is essential for generating the sticky bit Y. : :
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4.13.2.2.1 Shifter

The Shifter (SHIFTR) takes two 36-bit operands as input and can shift them left 0 to 47 bits or

‘right 1 to 16 bits, producing a. 38-bit result (36 bits with two Iow-order guard bits for: floating

point operatlons)

. .The Shiner Control (SHFCTL) allows the shlft count to come from various sources as follows

a QW3 holding reglster,_
- 'a.Q_Wé hol'd'lng register,
- QW3 of tlle A register,
- QW2of the A register,
- Umicro—constant,.
- e':lponent ALU holding register, .
= constant flelds for spedal operations,
- fop zeroes (ones) count of a mantissa, and: .
- ‘top zeroes (ones) count of an integer.

In addition, many of these coums can be subtracted from 35 before being used. Subtraction of a
count from 36 is necessary for simulating right shifts.

The SHIFTR is coi’nposed of three levels of multiplexers. The first level performs a shift of 0, 16
left, 32 left, or 16 right; the second level a shift of 0, 4, 8, or 12 left; and the third level a shift of
o1, 2 or 3 left: ,
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4.1.3.2.2.2 Sticky Bit Generator

“The Sticky Bit Generator (STICKY) is used pnmarily during prenormallzation of floatmg point
numbers. During prenormalization, a number is right shifted and. N bits are lost from the least-

- significant end. STICKY asserts the “sticky bit" if and only if the least significant N-2 lost bits

are not all zero. (The most significant 2 lost bits become guard bits.) The need for and use. of the
sticky blt are explalned in [Kahan 1973}, :
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-4.1.3.2.3 Exponent Box

The Exponent Box (EXPBOX) performs exponent anthmetic in parallel with the operation of .
the EBXALU. :

The exponent box receives operands from the EREGF and stores them for future use. Most
floating point operations thus require a preliminary cycle in which the exponents are loaded into -
the EXPBOX. During the preliminary cycle, though, the QREG can be loaded. Furthermore,
translations are not permitted until one cycle after the operands to be translated have been
received from the IBOX.

Complementers on. the A and B iﬁput operands conditionally complement the exponent
depending upon the sign of the mantissa (bit 0), producing the true excess-128 representation of
the exponent, regardless of the sign of the floating point number.

The EXPBOX contains a 12-bit ALU which is controlled entirely by micro-code. The A leg of
the ALU can come either from the A. exponent complementer or-from the latched ALU output.
The B leg of the ALU can come either from the left shift count latched from the previous cycle,

" from the B exponent complementer, or from micro-code.

Since exponents‘ in floatmgi point numbers have only an 8-bit length, the 12-bit ALU allows
exponent overflow or underflow to be carried until the last step of a floating point operation, by
which time those conditions may disappear.

The output of the ALU can be saved in an output register (for input to the SHFCTL for
prenormalization), or can be conditionally complemented by the sign of the input to the SHIFTR
(in preparation for merging it with the SHFBOX output at the end of a floating point sequence).

The PPNCMP compares the left shift count from the SHIFTR with the postnormalization limit,
and compares the ALU output register with the prenormalization limit. The signals generated by
the PPNCMP are used in generating prenormalization and postnormalization error traps.
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4.1.3.2.4 36 Bit MUX Merge

The 36 Bit MUX Merge (MXMRG), determines which of eight data paths is delivered as output
to the EREGF or to the IBOX result register. The eight data paths are:

- The lower 36 bits of the output of the SINADD shifted zero, left one, right four,
or right one bit. The left-one shift is used during divide, and the right-four shift
is used during multiply. . The upper four bits of SINADD are needed only during
muitiply operations. -

- Al zeroes.

- The output of SHFBOX.

- The output of EXPBOX.

~  Miscellaneous fields from thg EBOX.

The MXMRG also allows selective merging of each quarter-word of the SHFBOX with the
output of the 3INADD. This capability can be controlled entirely by micro-code, in which case
- the micro-code can select the source of each output quarter-word independently, or by the address

- bits of the destinanon which are supplied by the IBOX. Merging accurding tu the address bits |
of the destination is necessary for quarter-word and half-word operations in which the result
must be shifted into place and merged into the destination word.

The MXMRG also allows the exponent path to be merged with the output of the SHFBOX for
-producing final floating point results. In this case, the sign-extended mantissa comes through the
- SHFBOX and is merged with the exponent. -



8¢9:8» \

e i’ §
jeo:8> 'y
~ 2:0:8r 2
210:8 3 9 erv o
ERCE L N
440:9) ‘ .
[
£5¢0:8> 3 .
649:82 6
240: 8> > o
s n

HLEB.EE[

36 Bit MUX Merge 1/2 (MXMRGI)

<

P Y arand




Cl2 DEST LOM AORCEY vy ‘
1a1028
C1P DESY L0 ADRe> . d '

£12 NERGE 002

191828

C
191020 |
¥

1

E12 NERGE_ QM3

101028
7

€12 AMND NEPGE

2T



41325 - - - - Implementation - 227

4.1.3.2.5 Q Register

"~ The Q Register (Q_REG) is a 37-bit shift register (36 bits plus carry out of the least-significant
bit) which-is used to perform multiplication and division, and which also serves to hold
temporary values. During multiplication the QREG holds the multiplier, and during division the
QREG holds the dividend.

4The QREG is built of ECL 10141 universal shift registers. It has the capability to parallel load,
shift right four, shift right 1, shift left one, or hold, all under micro-code control. The right-four
shift is used during multiplication, and the left-one shift is used during division, as follows:

- Shifting right by 4. During multiplication, the QREG is initially loaded with the
mutltiplier. The EBOX uses a multiplication algorithm that examines the
multiplier and produces four bits of the product each micro-cycle. Each micro-
cycle the QREG parallel loads from itself, moving the higher 33 bits into the
Tower .33 bits. This is physically equivalent to shifting right by 4. The 4 most
significant bits loaded. into the QREG are the 4 least significant bits coming out
of the ALU. During a multiply these are the 4 least significant bits of the current
partial product. After the last cycle, the QREG contains the low-order word of
the product.

- Shlmng left by 1. During division the Q register is initially loaded with the
dividend. Each instruction cycle one new bit of the quotient is shlfted into the
least srgniflcant bit of the Qregister
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© 4.1.3.3 EBOX Control’
"The EBOX Control (EBXCTL) includes all control logic and - miscellaneous Iogic It can be

decomposed into the EBOX Sequencer (ESEQ), the Fixup Generator (FIXGEN) the Status

.Registers’ (STATUS) and the EBOX Transmitters/Receivers (EXCVR).

The ESEQ provides all seq uencmg control.

The FIXGEN produces the Ji xup slgnal During some operations, such as floating point add, the

“cycle which is normally the last execution ‘cycle may, in. rare instances, generate a condition: that

requires further processing. In that case, the FIXGEN raises the fixup signal at the last possible
instant, causing the EBOX to lose one cycle before continuing with the operation. If fixup is not
asserted, then the operation will complete without wasting any cycles.  This fixup capability allows
conditions generated during the current execution cycle to affect the flow of control, without
requiring that the next cycle be wasted to test conditions. :

STATUS contains processor and user ;tatus registers.

The EXCVR handles r.eceiving and transmitting most IBOX/EBOX communication signals.
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4.1.3.3.1 EBOX séquencer

The EBOX Sequencer (ESEQ) controls the sequencing of the EBOX The major components of
the ESEQ are the 12 Bit Branch Address Merger (BRADRM), the EBOX Branch Condition
" MUX (EBCMUX), and the EBOX Control Store (EBXCS).

" The BRADRM determines the source of the next micro-instruction. The possible micro-
- instruction address sources include a micro-subroutine return address, the IBOX-provided
macro-operation starting address, and the micro-code branch address. Since micro-instructions
are read out a full cycle before use, BRADRM must be set up approximately 1.25 cycles early.

The BRADRM allows an N-way branch (N = 2, 4, 8, or '16) on the low-order SHFBOX output,
the low-order 3INADD output, the FIXREG output, or the conditions generated ln the CBOX.

When FIXGEN asserts the fixup signal, a special branch address is forced into the micro-
program counter to.initiate a fixup sequence one full cycle later. :

The control logic in the ESEQ allows any address input to the BRADRM to be used for a Jjump -
or a jump to subroutine.

The EBCMUX detérmines whether the branch condition being tested by the micro-code is true,
and if so, allows the micro-program counter to be loaded, otherwise the micro-program counter
increments. ‘
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4.1.3.3.1.1 12 Bit Branch Address Merger

" The 12 Bit Branch Address Merger (BRADRM) allows N-way (N = 2, 4, 8, or 16) branches on

the value of any of four four-bit vectors. Depending upon N, the selected four-bit vector is
shifted -into place and substituted for the low-order bits of the branch address from the ‘micro-
code. S
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 4.1.3.3.1.2 EBOX Branch Condition MUX

The EBOX Branch Condition MUX (EBCMUX) asserts the parallel load line on the micro-
program counter if and only if the condition selected by the micro-code is true. EBCMUX allows
any of 24 conditions. to be tested, and allows those conditions to be inverted before testing.
~ Testing of conditions for branching cannot be done during the cycle that the tested conditions are
generated, but must be done during the next cycle, since the mlcro-program counter is loaded one
cycle before execution commences.
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4.].3.3.1.2;1 Repitition Counter -

The Repitition ‘Counter (REPT) allows the micro-code to contain "FOR" loops. REPT can be
loaded from either the SINADD or the micro-code, and can be counted down andtested under
micro-program control. REPT thus allows control constructs in the micro-code such as “branch if -

" zero (non-zero) then decrement and’ branch if zero (non-zero) then load".
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,4.1.3.3.].3 EBOX Control Store

The EBOX Control Store (EBXCS) contains the EBOX writeable control store, various micro—
instruction pipelme registers and EBOX Parity (EBXPAR). - : .

Control store for the EBOX is two-level for reasons of economy. The first level is addressed by

the micro-program counter; it is 4K words deep by 70 bits wide. Ten bits of the output of the .

first level become the address bits for the second level, which is 1K words deep by 140 bits wide.

In general, signals which are needed long before the micro-instruction execution commences must

- be located in the first level, and signals which are not needed until the execution starts can be

located ‘in the second level. This two-level control store allows the sharing between micro-
instructions of subparts of common control words. With the aid of an intelligent micro-code

~ assembler, the control store appears to be uniformly 4K words deep.

EBXPAR checks the parity of control store words and raises an error signal if a parity violation

s detected
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4..1.3.3.2 Fixup Generator

The purpose of the Fixup Generator (FIXGEN) is to sometimes assert the fi fixup signal and cause
the EBOX to continue with the fixup micro-instruction sequence instead of starting a new
operation sequence under command of the IBOX.

During execution cycles' in the interior of a micro-instruction sequence, FIXGEN can store
detected fixup conditions in.any of four 1-bit registers, and can use the contents of those registers
to assert fixup on the (tentatively) last cycle. :

The Fixup Multiplexer (FIXMUX) multiplexes the fixup condition chosen by the micro-code.
The output of the FIXMUX can be used to cause fixup during the current cycle, or can be stored
for use later
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41333 St'atus Registers

The Status Registers (STATUS) contains the processor and user status registers. These registers
can be conditionally loaded under micro-program control.
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4.1.3.3.4 EBOX Transmitters/Receivers

The EBOX Transmitters/Receivers (EXCVR) receives signals from the IBOX and transmits
signals to the IBOX. Deperding upon the fixup signal generated by FIXGEN, EXCVR will
.conditionally assert OPS TAKEN, RESULT, INTERRUPT IBOX, and DONE-on the last, -
execution cycle of a sequence.
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4.13.4 Timing

The EBOX is controlled by the IBOX, which specifies the operation and the: operands for the
EBOX. The IBOX provides the EBOX with the address of the first micro-instruction in the
EBOX'’s control store. The EBOX performs the operation by executing the sequence of
instructions from its contro] store beginning at the address specified by the IBOX. At the
beginning of the last micro-instruction cycle of an operation, the EBOX raises the DONE flag.
In response, the IBOX prepares the next address and operands of the first instruction of the next
operation. This section describes the timing of a normal macro-operation. :

A macro—operatlon consnsts of a sequence of mxcro—mstructlons as shown:

l FETCH. READ. EXECUTION WRITE
. | " R "FETCH‘ . READ EXE(‘;UTIUN' .NRIT'E ‘
' FETCH READ EXECUTION ceees
| FETCH REI-\DV
M v «—Instruction— _ » time (
cycle '

Sequentlal micro-instructions overlap; during a glven instruction cycle, three Operations occur in
parallel

1. During FETCH, the EBOX fetches the next micro-instruction from its control
store and places it in the pipéline register. :

‘2. During READ, the EBOX reads operands from its EREGF.

3. During EXECUTION, the EBOX executes the current micro-instruction from
the pipeline register. The ALU produces a result by the end of the execution
cycle. If the DONE bit of the micro-instruction is set, the DONE flag is raised at
the beginning of the cycle.
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During WRITE, either the IBOX or the EBOX may write into the EREGF.

l 180X URl and ‘180X uaz 4 ]
or

| 1BOX WR1 and EBOX WR l
or

[ _eem ]

. ¢m—————Instruction cycle -

The purpose of an IBOX write is to provide the operands for the next macro-operation. During
the first half-cycle, the IBOX writes operand A and B into the same address of the two register
banks. The register location written into is determined by the EBOX.

During any instruction in which the IBOX is not providing operands, or is proyiding only oﬁe
operand, the EBOX may write data into its EREGF. The EBOX write also occurs during the
first half—cycle '

At the end of an execution cycle, the result: .

- is always available to be used as an operand tor the heXt execution cycle, and

- is simultaneously written into the EREGF durmg the next execution cycle (unless
two operands are received from the IBOX for the next execution cycie).
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4.2 Interconnection Network -

The processors are connected”to memory by a serial/parallel crossbar interconnection switch (See
Figure 2.1-1). Data is transmitted 24 bits at a time through the switch, taking two cycles per data
word transmitted. Once it is through the switch, it is then transmitted fully word parallel to the
memory’s, since the relanvely slow TTL logic in the memory’s can not handle the high speed of
the switch.

The memory is divided into 16 Block Storage Modules (BSMs). The BSMs are interleaved 4
ways on the low order bits of the real address word. When a processor does a read or write, four
words are transmitted, except in cases where the data is tagged as not cacheable, in which case
only one word is transmitted. Normally the address is transmitted once and the two low-order bits
are permuted in order to obtain the addresses of four consecutive words in memory.

With N processors, the common store resembles an n-port memory because of the interconnection
network, the structure of which allows each processor to simultaneously and independently access
different BSMs. When two or more processors try to access the same BSM, the conflict is resolved
by the memory contention control logic. This logic ensures that no processor can access a BSM
twice before another processor desiring access can access it once. This effectively solves the
deadlock problem which plagues some multiple processor systems, in which a higher pnonty
processors locks out lower priority processors for an indefinite period of time.

Each BSM has its own memory contention logic, the inputs of which are the request lines from
each processor and. the outputs of which are the select lines of the interconnection network. The
request lines are activated by control logic monitoring the address lines of each processor. In a
sixteen processor system, four of the address lines would be input to a 4-to-16 line decoder. The
16 output lines would indicate which of the 16 BSMs the processor desires to access.

As soon as a particular BSM becomes idle, the memory contention logic latches the 16 processor
request lines for that BSM. It then proceeds to service the queued processors until the memory is
again idle. The 16 output lines of the latch go to a 16-to-4 line priority decoder which
determines which one of the processors is to be serviced first. The output lines of the priority
encoder are connected to a latch, and to the select lines of the interconnection network, which
routes the data from the selected processor to the BSM selected. At the end of a memory cycle
when one processor has been serviced, the latch is released and the request is cleared.

The priority encoder then elects the next processor to be serviced on the basis of the new data in
the latches. This cycle continues until the latch is empty and all processors have been serviced.
At this time the MEMORY IDLE line latches the next batch of processor requests and begins the
next round of servicing processor requests.
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5. Summary

The LLL Programmable Digital Filter is a high- performahce multiprocessor having general
purpose applicability and high programmability; it is extremely cost effective either in a
umprocessor or a multiprocessor confi iguration.

The important system.characteristics of the LLL Filter are as follows:

- Multiple (16) identical processors execute independent instruction streams.

- Every processing element can uniformly address all system memory through a (25-
bit serial) crossbar switch.

- Each processing element has dual private caches to reduce contention for main
memory, to reduce average memory access time, and to insure that system

performance does not seriously degrade as more processing elements (and
therefore a bigger and slower interconnection network) are added.

- Each processing element can direct an interrupt to any other processing element.

- Munch registers, hardware queues, and read-modify-write memory capability are
available for synchronization. .

- The virtual-to-real memory maps include access mode bits which allow efficient
sharing of data and instructions.

The architecture and instruction set of the individual processor has been optimized with regard to
the multiple processor configuration. The important processor architecture features are as follows:

- A very large (228 word) virtual address space to allow each processor to uniformly
address any system memory of feasible size in the fo'rseeable future.

- Efﬁaent miechanisms “for allowing the qxecutlve to commumcate with user
processes.

- A high-level instruction set ideally suited for compilers.

- An instruction set specifically tallored to reduce the frequency of pipeline
interlocks in a high- performance implementation.

- The capabnhty to perform three-operand instructions through- the use of a unique
"T-field" descriptor.

- Comprehensive floating-point capability, including three rounding modes and the
option to trap on excess pre- or post-normalization.

- The capability to directly perform operatlons on operands of ¢ precnsnons
quarter-word, half—word single-word, and double-word.

- Special instructions for dealing with the muitiprocessor environment.
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Al Abbreviations

This is @ list of the abbreviations used throughout the design.

ABS ABSOLUTE VALUE

ADD . ADDER

ADR ADDRESS -

BC BRANCH CONDITION
BOC ~ ~ BAD ONES COUNT (FLOATING POINT)
BR - BRANCH .
BZ : BOTTOM ZEROES

BZC BOTTOM ZEROES COUNT
C CACHE

cI - CARRY IN

CK .~ . CLOCK

CLR " CLEAR

CHP COMPARE

co CARRY OUT

- COMPL 'COMPLEMENT
COND CONDI TION
cs . CHIP SELECT
CSA CARRY-SAVE ADDER
ClL - "CONTROL
CTR COUNTER
DEC DECREMENT
DEST . DESTINATION
DI DATA IN
DIS DISABLE
00 - DATA OUT
DP DATA PARALLEL
oW DOUBLE-WORD
E € SEQUENCER MICRO INSTRUCTION FIELD
EBOX EXECUTION BOX ~
EN 'ENABLE
ERR ERROR

- EWAR EBOX WRITE ADDRESS REGISTERS
EX EXECUTION

- EXP ~ . EXPONENT
F . FUNCTION
FA FULL ADDER:

FS - ~ FROM SWITCH

*
G GREATER THAN (ZERO), CARRY GENERATE, GUARD

CE _ GREATER THAN OR EQUAL TO (ZERO)

H HIGH (ONE), HIGH (SIGNIFICANCE) BITS
HU . HALF-WORD -
I - INPUT :

1 1 SEQUENCER MICRO INSTRUCTION FIELD
180X . INSTRUCTION BOX :
IMMED - IMMEDIATE : e
INC INCREMENT , S

IND' ‘ ~ INDIRECT
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INSTR
INT
IR
IRS

LE

LEN
. LRU
Lss8

M
MANT
MC
MEM
MM
MPC
MUX

NE

NUM
'NZ

OE

opP
OVFL

- PA

PE
POS
PROC .
PRIO

REG
REL
REM
REPT
RND
‘RNM

SCNT
SEL
SIN
SKP
SO
SRC
Su

TRANS

T2C

Abbreviations

INSTRUCTION

INTERRUPT

INSTRUCTION REGISTER

SECOND OR THIRD WORD OF INSTRUCTION REGISTER

LESS THAN (ZERO), LOW (SIGNIFICANCE) BITS
LESS THAN OR EQUAL TO (ZERQ)

LENGTH

LEAST RECENTLY USED

LEAST-SIGNIFICANT BIT

MODE, MIDOLE (SIGNIFICANCE) BITS
MANTISSA

MICRO-CONSTANT

MEMORY

MULTIPLEXER MERGER

MICRO PROGRAM COUNTER
MULTIPLEXER

NEGATIVE i

- NOT EQUAL TO (ZERO)

NUMBER _
NEXT WORD .
NON-ZERO

OUTPUT ENABLE
OPERAND
OVERFLOW

CARRY PROPAGATE .

P SEQUENCER MICRO INSTRUCTION FIELD
PHYSICAL ADDRESS

PROGRAM COUNTER

PARALLEL ENABLE

POSITION -

PROCESSOR

PRIORITY

READ

REGISTER
RELEASE -
REMAINDER
REPITION
ROUND
RENAMED

SELECT, SUM
SHIFT COUNT
SELECT
SHIFTER INPUT
SKIP

SHORT OPERAND
SOURCE
SINGLE~WORD

ADDRESS TRANSLATION
QUTPUT |
TOP ZEROES COUNT

OUTPUT ‘

!

Al
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Wl
UNDFL

VAL

WE

XBOX

Abbreviations

- -GQUARTER-WORD

UNDERFLOW

OVERFLOW
VIRTUAL ADDRESS

" WRITE.

MRITE ENABLE"

TRANSMI TTED
EXPONENT BOX

ZERO

277
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A2, Micro-CodE Conventions

$ . INDICATES THE BEGINNING OF A FIELD DEFINITION'

% INDICATES THE BEGINNING OF A MACRO DEFINITION
0 DELIMIT THE BODY OF A MACRO DEFINITION
R ~ SEPARATES TERMS IN A MICRO-INSTRUCTION
3 ENDS A NICRO-INSTRUC?ION OR COMMENT

- SEPARATES A FIELD NAME FROM ITS VALUE
R INDICATES THE BEGINNING OF A CUHHENT WHICH CONTINUES T0 THE
LINE FEED .
ADD (X, Y) ALEG("X") BLEG("Y")

INDICATES THAT PARAMETER X AND Y OF ADD MACRO ARE TO BE SUBSTITUTED AS
PARAMETERS OF THE ALEG AND BLEG MACRO RESPECTIVELY.

ALEG (X) ’ tAIN"X"

INDICATES THAT PARAMETER X OF THE ALEG MACRO IS TO BE DIRECTLY
SUBSTITUTED AS TEXT AFTER THE STRING "AIN" ,

x INDICATES DEFAULT VALUE OF FIELD SPECIFICATION.

"CUHHENT INDICATES. THAT ALL TEXT UNTIL A SEHI COLON IS COMMENTS
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A3. P-Sequencer Micro-Code Fields -

~ $DEST REG CTL<@:1>
%  REG ADR el 'DEST REG ADR<@:4> = "REG ADR<®:4>"

10) S =2 = "JR<14:18>"

" ADD - 3 ! " - "SUM OF ABOVE TWO FIELDS"
$1BOX START ADR<®:11> ‘ ' | ‘
* ‘ =0
SLAST START ADR

x , T =8
. =1

80PS READY WHEN 1BOX DONE

x =0"
, : _ <l
80UT SEL A - " ISELECTS THE SOURCE FOR THE READ-ONLY DATA
- o ~ ITHE "OUT A" LINES.
x 'REG =0 ISOURCE A REGISTER
CONST =1 I IMMEDIATE CONSTANT OR CACHE ADR IF C ADR SEL
' 1S SET
SOUT SEL B © !SELECTS THE SOURCE FOR THE READ-ONLY DATA
: - L " ITHE "OUT B" LINES, -
* REG - -8 ISOURCE A REGISTER
CONST -1 tIMMECIATE CONSTANT OR CACHE ADR IF C ADR SEL
_ . 11S SET
SREG R ADR<8:4>
x* - =0
SREG W ADR<@:4>
' % ’ ‘ «0
8SRC REG CTL A<@:1> |
x . =B IDON’ T SET OPERAND :
REG ADR T sl ‘ 'snc (A OR B) REG ADR="REG R ADR<0 4>"
oo =2 : ="0D REG ADR<@:4>"

ADD =3 : ! " =SUM OF ABOVE TWO FIELDS
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8SRC REG CTL B<B:1>

* ' . =08 JOON'T SET OPERAND
REG ADR. - =l nsnc (A OR B) REG ADR="REG R' ADR<8: 4>"
0D _ =2 ="00 REG ADR<®:4>"
ADD ; =3 ! " , =SUM OF ABOVE TWO FIELDS
8SRC REG OUT SEL
50} S =8 'LET THE | SEQ CALCULATE THE 0D1 ADDRESS
x 874 , -1 op2 "
$SET EWAR
x =9

=1 ISET THE EBOX WRITE ADDRESS REGISTER TO THE
: 'DESTINATION REGISTER ADDRESS :
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A4. P-Sequencer Micro-Code Macros

%A

-xA+;'

%A+2
%A+3

. %B

%B+1

'%B+2A
%B+3 *
%0

%D .RT (AB)

AD+N (N)

%DH
%DH RT (AB)
%DH#N (N)
%DONE

%E (ADR)

<

%N (ODN)

%R D(ADR)

%R (ADR)
%51

%51 RT(AB)
%S14N (N)
%52

%S2 RT (AB)

%S24N(N)

(61
7 .

18]
Lt

(8y
)

. 18l
it
(SET EWAR=1,DEST REG CTL=0D1]

[SET EWAR=1,REG W ADR=AB)

[SET EWAR=1,DEST REG. CTL=ADD,REG.W ADR="N"]

(D, DISABLE EWAR CMP=1)

[D RT(AB),DISABLE EWAR CHP=1]
[D+N(N) , DISABLE EWAR CHP=1]
(LAST START ADRe1]

[1BOX START ADR=ADR]
_(DISABLE EWAR CMP=1)
[SRC REG OUT SEL=0DN]

[R(ADR) , DONE) A
[OPS READY WHEN 1BOX DONE-1,IBOX START ADR=ADR]

[SRC REG CTL A=0D) ‘

[SRC REG CTL A=REG ADR,REG R ADR=AB)

(SRC REG CTL A=ADD,REG R ADR=N)

(SRC REG CTL B=0D,SRC REG OUT SEL=0D1]

[SRC REG CTL B=REG ADR,REG R AUR=AB, SRC REG OUT SEL=0D11
[SRC REG CTL B-ADD,REG R ADR=N,SRC REG OUT SEL=0D1)
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" AS, P-Sequencer Micro-Code

1001=REG, 0D2=REG

. IDEST=QH " SRC 1-QHS SRC 2-QHS
' ' s1 ' ,R (SW SRC)s
D ,S1 ,R DINOP);
S1 RT(A) LR (SW SRC);
0 ,S1 ,R D(NOP);
_ S1 LR (SW SRC);
D RT(A) ,S1 RT(A) - ,R D(NOP);
N S1 . LR (SUW SRC);
D RT(B) .51 RT(B) ,R D(NOP) ;

1T=8
1T=1

1T=2

113



P-Sequencer Micro-Code

»R D(SW SRC) ;-

,R D(SW SRC) ;
,R D(SW SRC) ;
R D(SW SRC);

R (SW SRC);
'R D(NOP) ;

"R (SW SRC);

,R D(NOP);

,R (SW SRC);
+R D(NOP);

,R (SW SRC);
+R D(NOP) s

,R (SW SRC);
,R D2 REG);

+R (SW SRC);
»R D{W2 REG);

,R (SW SRC);
.R D(U2 REG);

,A (SW SRC):

-,R D(W2 REG);

,R (SUW SRC);
,R D(W2 REG):

,R (SW SRC);
+R D(W2 REG);

,R (SW SRC);
,R D(W2 REG);

R (SW SRC);

A5
1001 =REG, 002=REG '
IDEST=S ' " GRC 1=OHS SRC 2=0HS
. 0D ' ,S1
D ,S1 RT(A)
" D RT(A) .81
D RT(B) .51
|DEST=S " SRC 1D SRC 2+S.
PUR - |
D ,S14N(1)
| S1 RT(A)
D ,S1 RT(A+1)
' iy - 81
D RT(A) ~ F - ,S14N(1)
‘ s1 -
" D RT(B) ,S14N(1)
IDEST=S SRC 1=§ SRC 2-0
: s1
D
'S1 RT(A)
D
- s1
D RT(A)
: s1
D RT(B)
IDEST=S ~ SRC 1D ~ SRC 2-D
' s1 .
D ,S14N(1)
L S1 RT(A)
D ,S1 RT(A+1)
. 81
D RT(A) ,S14N(1)
: 51
D RT(B)

»S14N(1)

'R D(W2 REG);

'T=8
1Tal

' 1T=2
1T=3

1T=0
IT=1

1T=2

1T=3

1T=8

1Tal

1Te2

1T=3

1T=8

(Tal

1Ta2

ITe3

283
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- 'DEET=D

- 10D1=REG, 0D2=REG
IDEST=D -

D+N (1)
0

SRC 1aN

DH+N (1)
0

. DH4N(1

IDEST=D

D .

DH RT(A+1)
D RT(A)

DH RT(B+1)
D RT(B)

SRC 1-S

DH+N (1)

D

DH+N (1)
D

BH RT (A+1)
D RT(A)

"DH RT (B+1)

IDEST=D

D RT(DB)

SRC 1=D

DH+N (1)
0
DH+N (1)
D

DH RT (A+1)
D RT(A)

" SRC 1=S

‘P-Sequencenf Micro-Code

‘ 'an'z;s

.Sl
+S1 RT(A)
» Sl

»S1

SRC 2=S

' Sl ’ ’
.S14N{(1)

»S1 RT(A)
,S1 RT(A+1)

)
,S1+N(1)

»S1
,S14N (1)

SRC 2-D

.51
-SI‘RT(A)
»S1

»S1

SRC 2=D

,S1 .
.S14N(1)
,S1 RT(A)

,S1 RT(A+1)

,S1

»S14N(1)

,R (SW SRC);

'R DNOP) ;
R (SW SRC);
'R D(NOP) ;

JR (W SRC);
\R DINOP) ;

LR (SW SRC);
,R D(NOP);

,R (SW SRC);
»R D(NOP);

+R (SW SRC);
+R D(NOP);

,R (SW SRC);
»R D(NOP);

+R (SW SRC);
+R O(NOP);

+R (5W SHU);
,R D(W2 REG);

,R (SW SRC):
+R D2 REG);

,R (SW SRC);
R D2 REG);

+R (SW SRC);
;R N(W? REG);

»R (SW SRC);
,R D(W2 REG);

R (SW SRC);
+R D(WZ REG);

,R (SW SRC);
,R D(U2 REG);

1T«9
1Tel

1T=2

113

1T=8
1Twl
1Te2

1T=3

1T

!Tﬁl
1T=2

T3

'T=8
1T=1

17=2

A5



Ab

IDEST=D

OH RT (B+1)
D RT(B)

" SRC 1=4M

 DHeN (1)
D

DH+N (1)
0

OH RT(A+1)
D RT(A)

OH RT(B+1)
D RT(B)

P-Sequencer Micro-Code -

,S1
»S14N(1)

SRC 2=D

S1 .
SI+N(1) .
+S14N(2)
»S14N(3)

S1 RT(A) .
S1 RT(A+l)
,S1 RT(A+2)
,S1 RT{A+3)

S1

S14N(1)
»S14N(2)
»S14N(3)

S1
S1+N(1)

»S14N(2)

+S14N(3)

" ,R (SW SRC);

,R D(W2 REG);

»R (SW SRC);

+R (W2 REG); -

+R (NOP);
,R D(NOP) ;

,R (SW SRC);
+R (U2 REG);
R (NOP);
+R DINOP);

,R (SW SRC);

R (W2 REG);

,R (NOP);
+R D(NOP);

4R (SW SRC);

- R (W2 REG);

+R (NOP};

,R D(NCP};-

1T-3. .

1T=8

1Tal

1Te2

1T=3

285
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- 1001=REG,0D2=REG °

. IDEST=4M SRC 1=D

OH '
D+N (1)

. D+N(2)

D+N (3)

OH
D+N (1)

D+N(2)

" IDEST=4U

D+N (3)

OH RT(A)
D RT (A+1)
D RT(A+2)

D RT(A+3)

DH_RT(B)
D RT(B+1)
D RT(B+2)
D RT(B+3)

SRC 1=4M

. DH

" IDEST=4M

D+N (1) -
D+N(2)
D+N (3)

DH :
D+N (1)
D+N (2)
D+N(3)

DH RT(A)
0 RT(A+l)
D RT(A+2)

D RT(A+3)

DH RT(B)
D RT(B+1)
D RT (B+2)
D RT(B+3)

SRC 1=D

P-Sequencer Micro-Code

| SRC 2D

.51
,S1+N(1)

,S1 RT(A)
»S1 RT(A+1)

,S1
,S14N(1)

'Sl A
,S14N(1)

SRC 2=D

S1

S1+N(1)
+S14N(2)
»S14N(3)

S1 RT(A)
S1 RT(A+1)
.51 RT(A+2)

- 51 RT(A+3)

S1

S14N(1)
.S14N(2)
SN

S1

S14+N(1)
1 S14N(2)
»S14N(3)

SRC 2=4U

S1
S1+N(1)

- o ® w w »

VXD DVVVDT VDVDIDIVDIOVO IVIVIVDIID

LR (SW SRC);

R (W2 REG);
,R (NOP);
,R D(NOP);

,R (SW SRC);
,R (W2 REG);
,R (NOP);

-wR D(NOP);

R (SW SRC);
R (2 REG);
JR(NOP);
.R D(NOP);

,R (SW SRC);
,R (W2 REG);
+R (NOP);
+R D(NOP) 5

(SW SRC);
(W2 REG);
(NOP) 5
(NOP) ;
(NOP) ;
(NOPR) ;

(SW SRC);
(W2 REG);
{NOP} ;
(NOP) ;
(NOP) ;
O(NOP)

(SW SRC);
(W2 REG);
(NOP) ;
(NQP) :
(NOP) ;
+R D(NOP):

LR (SW SRC);
'R (U2 REG);
JR(NOP);
JR (NUF};
R (NOP);
R DI(NOP) ;

- v w e e

- e @« »

(SW SRC);

R
,R (W2 REG);

1T=8

1T=1

1T=2

1T=3

178

1T=1

1T=2

1Te3"

'T=B

Ab



A5

DH

D+N (1)
D+N(2)
D+N(3)

i DH

D+N(1) - -

'; , D+N (2)
-] D+N (3)

DH RT(A)
D RT(A+1)

D RT(A+2) -

D RT(A+3)

DH RT(B)
D RT(B+1)

¢ D RT(B+2)

D RT(B+3)

P-Sequencer Micro-Code

| S24N(2)

+S24N(3)

S1 RT(A)
S1 RT(A+1)
+S24N(2)
+S24N(3)

S1

S1+N(1)
»S24N(2)
+S24N(3)

s1 _
S14N(1)
,524N(2)

-+ S2+N(3)

(NOP) ;
(NOP) 5
"(NOP) ¢
(NOP) ;

(SW SRC) 3
(W2 REG);
(NOP); -
(NOP) ;
(NOP) ;

DINOP);

(SW SRC);
(W2 REG);
(NOP) ;
(NOP) ;
(NOP) ;
R D(NOP);

- o w

- ® ®w w e

VOVDODD WVIODODIVID DODO

" R (SW SRC);

yR (U2 REG);
,R (NOP);
,R (NOP);
,R (NOP);
+R D(NOP);

1Tl

1T=2

1T=3

287



288 ‘ P-Sequencer Micro-Code . A5

10D1 =REG, 002=GENERAL

|DEST<0H SRC 1-0HS  _ SRC 2-0HS
. sl LR (SW SRC);  1T-8
D - .51 'R D(NOP) ;
. S1 RT(A) LR (SW SRC);  1Tsl
. b ,51 'R DINOP); .
: 81 . LR (SWSRC); !T=2
| D RT(A) ,S1 RT(A) 'R DINOP);
! . s1 R (SW SRC); 1T=3

D RT(B) ,S1 RT(B) +R D{NOP);



AS

P-Sequencer Micro-Code

,R D(SH SRC);
R D(SH SRC);
R D(SH SRC);
,R D(SW SRC);

,R (SW SRC);
»R D(NOP);

R (SW SRC);

+R D(NOP);

,R (SW SRC);

+R D(NOP);

,R (SW SRC);
,R D(NOP);

,R (SW SRC);

+R D(W2 SRC);

,R (SW SRC);
+R D(U2 SRC);

,R (SW SRC);

.. wR D(W2 SRC);

»S14N(1)

,R (SW SRC);

,R D(W2 SRC);

,R (SW SRC);

,R D{W2 SRC);

+R (SW SRC)
»R D(U2 SRC);

,R  (SW SRC);
"R D(U2 SRC) s

R (SW SRC);
'R D(W2 SRC)

10D1=REG, 0D2=GENERAL
IDEST=S SRC 1=0HS SRC 2=QHS
D sl
D . ,S1 RT(A)
D RT{A) . ,51
D RT(B) 81
IDEST=S = . SRC 1D SRC 2=5
s1
D ,S14N(1)
81 RT(A)
D ,S1 RT(A+1)
st
D RT(A) ,S14N(1)
: s1
D RT(B) ,S14N(1)
IDEST=S SRC 1=5 'SRC 2=D
' s1
o .
, S1 RT(A)
D
S1
D RT(A)
4 s1
D RT(B) .
IDEST=5 SRC 10 SRC 2=0
81
0 ,S14N(1)
"S51 RT(A)
D ,S1 RT(A+1).
51
D RT(A) ,S14N(1)
| - 51
D RT(B)

1T=8
1T=1
1T=2

17e3

17=0

1Tl
1Te2

1T=3

17-0
1T=1
1Ta2

173

1T=8
ITal
1T=2

IT=3

289



290

1001 =REG, 0D2=GENERAL .
SRC 1=5

IDEST=0

IDEST=D

|DEST=0

D+N (1)
D(1)

D+N (1)
0(1)

D RT(A+1)
RT (A)

D
D RT(B+1)
0 RT(B) .

DH+N (1)

D
BDH+N (1)
1]

DH RT(A+1)
D RT(A)

DH RT(B+1)
D RT(B)

SRC 1=5

DH+N (1)
D R

DH+N (1)
0

" DH RT(A+1)

|DEST=D

‘D RT(A)

DH_RT (B+1)
D RT(B)

SRC 1D

DH+N (1)
D .

UH+N (1)
D

DH RT (A+1)
D RT(A)

DH RT(B+1)

SRC 1-=D

P-Sequencer Micro-Code

SRC 2=5

&

,51
,51 RT(A)
,51

»S1

SRC 2=S

,S1 :
+S1IN(1)
,S1 RT(A)
,S1 RT{A+1)

.51 '
+S1+N(1)

WS
,S1+N(1)

SRC 2<D

»S1
.S1 RT(A)
»S1

,S1

SRC 2=0

,S1
+S1+N(1)

.81 RT(A)

. ,S1 RT(A+1)

,S1
,SL4N (1)
,S1

(NOP} ;

(SW SRC);
(NOP) ;

(SW SRC);
(NOP) ;

(SW SRC) ;
(NOP) ;

- -

O O O O

R (SW SRC);
R DINOP)

R (SW SRC);
R D(NOP);

+,R (SW SRC);
R D(NOP);

R

R

(SW SRC) s
D(NCP) ;

,R (SW SRC)}
,R D(W2 SRC);
,R (SW SRC);
R D{U2 SRC);
R

,R (SW SRC);
+R D(W2 SRC);

*,R  (SW SRC);

,R D42 SRC);

,R (SW SRC);

- R D(W2 SRC);

yH (6H SRC)y
,R D{W2 SRC);

+R (SW SRC);

. +R D2 SRC);

,R (SW SRC);

(SW SRC} ;

ITa®

IT=1

1T=2

1T=3 -

'T=8

T=1

1T=2

IT=3

17-8

1Tel

1T=2.

173

A5

i



A5

1DEST=D . -

P-quuencer Micro-Code

DRTB) ,S1N(1)
SRC 1=4W' ~ SRC 2=D.
A S1
. S1+N(1)
DH+N (1) ,S14N(2)
D ,S14N(3)
. S1 RT(A)
S " 61 RT(A+1)
DH+N (1) ,51 RT(A+2)
D ,51 RT(A+3)
S1
S1+N(1)
DH RT (A+1) ,S14N(2)
D RT(A) ,S14+N(3)
61
- S14+N(1)
DH RT(B+1) ,S14N(2)

D RT(B) -+ ,S14N(3) -

LR D2 SRC);

R (SW SRC):
+R (W2 SRC);
+R (NOP);
+R D(NOP);

+R (SW SRC);
,R (U2 SRC);
,R (NOP);
+R D(NOP);

R (SW SRC);
"R (U2 SRC);
JRINOP);
"R D(NOP) ;

LR (SW SRC);

R (42 SRC);
R _(NOP);
.R DINOP) ;

1T=0

1Tal

ITe2

1T=3

291



'P-Sequencer Micro-Code

202
10D1 =-REG, 0D2=GENERAL
|DEST =41 SRC 1D SRC 2<D
DH '81 !R
D+N (1) ,S1+N(1) ,R
..D+N(2) R
D+N(3) R
OH ,S1 RT(A) ,R
D+N (1) ,S1 RT(A+1) .R
D+N (2) .R
D+N (3) ,R
DH RT(A) ,S51 ,R
D RT(A+1) ,S14N(1) ,R
D RT(A+2) . R
D RT (A+3) ,R
DH RT(B) ,S51 = ,R
D RT(B+1) ,S1+N (1) .R
D RT (B+2) ,R
D RT(B+3) ,R
IDEST=4M . SRC 1=44 =~ SRC 2<D
' ) " 81 R
. S1+N(1) R
DH ,S14N(2) R
D+N (1) " ,S14N(3) ,R
" D+N(2) : ,R
D+N(3) - , R
S1 RT(A) R
S1 RT(A+1) ,R
DH ,S1 RT(A+2) ,R
D+N (1) .S1 RT(A+3) ,R
D+N(2) R
* D+N(3) ,R
51 ,R
S14N(1) R
DH RT(A) ,S1+N(2) ,R
D RT(A+1) ,514N(3) R
D RT (A+2) ~ ,R
D RT(A+3) ,R
51 ,R
S14N(1) ,R
DH RT (B} ,S1+N(2) .R
D RT(B+1) ,514N{3) N
D RT (B+2) .R
D RT(B+3) .R
IDEST=4U SRC 1<D SRC 2=4U
S1 ,R
S1+N(1) ,R

. (SW SRC) s
(W2 SRC);
(NOP) ;

D(NOP) ;

(SW SRC);
(W2 SRC)
(NOP) ;

D (NCP) 3

{SW SRC);

(42 SRC) ;

(NOP) ;
D(NOP}) ;

(SW SRC) ;
(W2 SRC);

ANOP}) ;

D(NOP) ;

¢

(SW SRC);

(W2- SRC) ;
- (NOP) 5

{NOP) ;

(NOP) ;
D(NOP) ;

(SW SRC) ¢
(W2 SRC):
{NOP} ;
(NOP) ¢
(NOP) ¢
D(NOP) 3

(SW SRC)
(U2 SRC);
{NOP) 3
(NOP) ;
(NOP) 3
D(NOP) ;

(SW SRC}; -

(W2 SRC);
(NOP) 5
{NOP) 3
(NOP) &

D (NOP) s

(SW SRC) ;
(W2 SRC)+

1T=0

17=1

1Te2 -

1T=3

1T

1Tel

1T=2

IT=3

1T=4

Ab

»



A5

OH

D+N (1)
D+N (2)
D+N(3)

.. DH

- D4N(1)
D+N(2)
D+N(3)

DH RT(A)

D RT(A+1)
D RT(A+2)
D RT(A+3)

DH RT (B)
D RT(B+1)
D RT (B+2)
D RT(B+3)

P-Sequencer Micro-Code

~ N(OD1)
- IN(©D1)

S1 RT(A)
S1 RT(A+1)

- ,N(0D1)

,N(0D1)

St

S14N(1)
,N(001)
,N(001)

S1

S14N(1)
,N(0D1)
,N(0D1)

WR (W3 SRC)
,R (U3 SRC);
»R (NOP);
»R D(NOP);

+R (SUW SRC);
yR (U2 SRC);
,R (K3 SRC):
+R (N4 SRC);
R (NOP);
,R D(NOP);

R (SW SRC);
R (W2 SRC);
R (W3 SRC);
R (W& SRC);
R (NOP);
R D(NOP);
R
R
R
R
R
R

(W2 SRC) ;s
(W3 SRC) 3
(W4 SRC) s
(NOP) ;
D(NOP) ;.

{SW SRC) ;

1T=1

1T=2

17=3

‘293



204

\

1001 =GENERAL , 0D2=REG

1DEST=QH SRC 1=QHS i SRC 2=0HS

S2
N(0D1)

S1 RT(A)

N(0D1)

: 52
D RT(A) ,S1 RT(A)

o S2
+ D RT(B) »S1 RT(B)

’
’

’
’

X OX O

"'P-Sequencer Micro-Code

i

(SH SRC);  !T=8

(W1 SRC DEST);

(S SRC);  !T=1
(S DEST};

, (SW SRC) ; Te2 -
- ,R D(NOP};

. R
+R D(NOP) ;

(SW SRC);  !T=3



Ab P-Sequencer Micro-Code 295

1001 =GENERAL , 0D2=REG _
IDEST-S SRC 1=GHS SRC 2-QHS
s2 ,R D(SW SRC DEST); 1 TuB
Sl RT(A),S2 - R D(SW DEST); !T=1
D RT(A) .2 R D(SW SRC);  1Tw2
_ DRT®) ,52 R D(SW SRC); - !T3
1DEST=5 “SRC 1.0 SRC 2s5
52. ;R (SWSRC); !T«B
N@©D1).  .E (42 SRC);
N(0D1) ‘D (WF DEST);
S1 RT(A),52 ' ,R (NOP); 171
S1 RT(A+) 'R D(SH DEST);
S 2 LR (SWSRC); !Te2
. DRT(A) ,N(0D1) "R D(W2 SRC): :
52 LR (SWSRC); !T=3
0 RT(B) ,N(OD1} 'R DO2 SRO) '
IDEST=S SRC. 1=5 SRC 2-D
52 E (SWSRC); !T=B
S24N (1) 'R D(1 DEST);
S1 RT(A),52  ,R (NOP); 171
524N (1) 'R D(SW DEST);
| 2 . R (SWSRC); !T=2
D RT(A) LSZ4N(1) 'R D(NOP);
s2 - R (SWSRC): !Te3 -
D RT(B) . ,524N (1) 'R DINOP);
|DEST=S  SRC 1D SRC 2-D
' 52 ' 'R (SM SRC); IT«B
S24N (1) 'R (M2 SRC); .
N10D1) '0 (WF DEST);
S1 RT(A),52 R (NOP); CiTel
S1 RT(A+1),52+N(i),R D(SW DEST);"
. 52 | LR (SWSRC); 1Te2
D RT(A) ,S24N(1) 'R D(W2 SAC);
52 LR (SWSRC); !Te3
D RT(B) ©,S24N(1) "R D(W2 SRC);



296
1001 =GENERAL , BD2=REG
1DEST=D SRC 1=5
D RT(A+1)
D RT(A)
D RT (B+1)
'D RT(B)
|DEST=D SRC 1=D
H
DH RT(A+1) .
D RT(A)
OH RT (B+1)
D RT(B)
IDEST=D SRC 1-S
OH RT(A+1)
D RT(A)
DH RT (B+1)
. D RT(B)
IDEST=0 SRC 1=D
H

P-Sequencer Micro-Code

SRC 2<S '
(S2 DEST); !T=8

s2 R
D (WF SRC DEST);
S1 RT(A),52 ,R (52 DEST); !T=l
% 'D F DEST);
,52 R (SW SRC):  !Te2
‘D (NOP); |
,52 R (SM SRC); !T=3
‘D (NOP);
SRC 2=
52 LR (SWSRC);  !T-8
N(0D1) 'R (M2 SRC DFST);
“N(0D1) . 'D G DEST);

,S1 RT(A),S2 ,R (S2 DEST); !T=l
S1 RT(A+1),N(0D1),R D(WF DEST);

,52 LR (SW SRC); T2
"N (0D1) 'R D(M2 SRC);
,52 - . ,R (SWSRC); T3
N(0D1) 'R D(W2 SRC);
SRC 2=0 |
52 LR (SW SRC); - !T=B
S2+N(1) 'R (W2 SRC DEST};
D (WF DEST);
S1 RT(A),S2 LR (S2 DEST); ITal
 624N(1) . 'R D(WF DEST);
52 LR (SW SRC); . !T«2
1524N (1) 'R D(NOP) ; A
,82 LR (SW SRC);  1Te3
524N(1) 'R DINOP);
SRC 2=0
52 R (SW SRC);  !T-B
S24N (1) 'R (M2 SRC-DEST);
N(0D1) ‘D (WF DEST);
,51 RT(A),52  ,R (52 DEST); !T=l

S1 RT(A+1),S2+N(1),R D(WF DEST);

Ab



- DH RT (A+1)
D RT(A)

OH RT (B+1)
D RT(B)

1DEST=D SRC 1=4U

DH RT (A+1)
D RT(A)

DH RT-(A+1)
D RT(A)

P-Sequencer Micro-Code

S2 ' R

'S24N(1)

,S2 , R

'S24N(1)

SRC 2=D

52 R
LS24N(1) 'R

N (0D1) 'R

N(0D1) 'R

N(0D1) ‘D

S1 RT(A),S2

(SW SRC);  !T=2

+R D(W2 SRC);

(SW SRC);  !T=3

,R D(U2 SRC);

(SW SRC);  !T=0
(W2 SRC DEST);
(U3 SRC);

(W4 SRC) ¢

(WF3 DEST);

R (NOP); 1Tel

"S1 RT(A+1),524N(1),R (NOP);

" ,51 RT(A+2) ,N(0D1)

S1 RT(A+3) .N(OD1)
s2 R
524N (1)

,N(0D1) -
"N{OD1) .

52 ,
S2+N (1) ,
,N(0D1) R
,N(0D1) '

+R (52 DEST);
yR D(WF DEST);

(SW SRC)s  1T=2
(W2 SRC);
(W3 SRC) ;
(W4 SRC);

(SW SRC); . !T=3
(W2 SRC) ;
(W3 SRC) s
(W4 SRC);

297
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'DEST=4U

© 10D1~GENERAL , 0D2=REG

© 1DEST=4M SRC 1D

H

DH RT(A)

D RT(A+1)
D RT(A+2)
O RT(A+3)

DH RT (B)

D RT(B+1)
D RT(B+2)
D RT(B+3)

DH RT(A)

IDEST=4W

D RT(A+1)
0 RT(A+2)
D RT{(A+3)

OH RT(B)

D RT(B+1)
D RT(B+2)
D RV (B+3)

SRC 1=D

P-Sequencer Micro-Code

»52

6RC 2=D

S24N(1)

N(001)
N(0D1)

,S1 RT(A),S2
S1 RT(A+1),S2

N(0D1)
N(0D1)

,S2

,S24N (1)

»N(0D1)
.N(001)

52

,N(0D1)
,N(0D1)

SRC 1=4U

S2
S24N (1)
N(0D1)
N(0D1)
N(0D1)
N(0D1)
N(0D1)
N(0DD)

+S24N (1)

SRC. 2=D

S1 R1{A),S2

S1 RT(A+1),52+N(1)
,S51 RT(A+2) ,N(OD1) ,R
S1 RT(A+3),N(0OD1) ,R

N(0D1)
N(0D1)

S2

S24N(1)

+N(0D1)

.N(0D2)

S2

G24N (1)

»N(0D1)
,N(002)

SRC 2-4M

ommMmMIIDO0

D

(SW SRC DEST);
(U2 SRC .DEST);

(W3 DEST);
(W4 DEST);

(SW DEST);
(W2 DEST);
(W3 DEST);
(W4 DEST);

(SW SRC) ;
(W2 SRC);
(NOP) ;
(NOP) 5

(SW SRC) ;
(U2 SRC);
(NOP) ;
(NOP) ;

(SW SRC);
(W2 SRC);
(W3 SRC);
(W4 SRC);
(UF3 DEST)
(W2 DEST);
(W3 DEST);
(W6 DEST);

LR (NOM),;
R (NOP);

T=1

1T=2

1T=3

1T=0

1 Tul

{SW DEST) s
(W2 DEST);

,E (W3 DEST);
,0 (W4 DEST);

(SW SRC) 3
(W2 SRC);
(W3 SRC) 4
(W4 SRC)
(NOP) ¢
(NOP) ¢

(SW SRC) ;
(W2 SRC);
(W3 SRC);
(W4 SRC) s
(NOP) ;
(NOP) ;

1T=2

1T=3

1T=8

A5



Ab

DH RT(A)
. D RT(A+])
D RT(A+2)

D RT(A+3) -

DH RT(B)
D RY(B+1)
D RT(B+2)

* D RT(B+3)

P-Sequencer Micro-Code -

52
S24N(1)

,524N(2)
S2+4N(3)

'N(OD1)
N(0D1)

S1 RT(A),S2

. ® ® ® e e

OMDOVDO

(SW SRC) ;
(W2 SRC);
(WF DEST);
(W2 DEST);
(W3 DEST)
(W4 DEST);

R O(NOPY:

S1 RT(A+1),52+N(1),R (NOP);

»S24N(2)
S2+N (3)
N(0D1)

N(OD1) .

52
S24N(1)
,524N(2)

- +524N{3)

S2

- S24N (1)

+S2+N(2)
+ 524N (3)

R

.- ® ® e w =

OMIDVVD OMIIVOVW OMXO

* ® ® @ e « -

(SW DEST) s

(W2 DEST); .

(W3 DEST) 5
(W4 DEST);

(SW SRC)
(U2 SRC);
(NOP) 3
(NOP) ;
(NOP) ;
(NOP) ;

(SW SRC) 3
(W2 SRC);
(NOP) 3
(NOP) 3
(NOP) ;
(NOP) ;

“17=0

M=l

1Ta2

ITe3

299



300 P-Sequencer Micro-Code

!001=GENERAL.002=GENERAL

-

|DEST=CH SRC 1-QHS  SRC 2-GHS

N (0D1)
N{(0D1)

S1 RT(A)
N(0D1)

N(OD1)
D RT(A) ,51 RT(A)

4 ' N(0D1)
D RT(B) . ,S1 RT(B)

E (SWSRC); !T=8
JR (SW SRC);
'R D1 SRC DEST):

,R (W SRC); !T=l
+R D(SW SRC DEST);

E (SW SRC); 1T=2
R (SW SRC);
,R D(NOP)

E (SW SRC); !T=3
,R (SW SRC);
»R D(NOP)

A 3]



Ab’ S ‘ P-Sequencer Miqrd-Code

10D1=GENERAL , 0D2=GENERAL

: IDEST=S SRC 1=QHS . ~ SRC 2=QHS
! . JE (SWSRC);  !T=8 .
~1 N (0D1) "R D(SW SRC DEST);
| S1 RT(A) R D(SW SRC); ~ !T=l
; | _ N@EDL) 'D (SW DEST); -
- F . o E (SWSRC); !T=2
o : D RT(A) - ,N{(OD1) ,R D(SW SRC);
L : ' E (SWSRC); !T=3
- . D RT(B) - N@I1) R D(SW SRC);
IDEST=S " ".SRC 1<D " SRC 2<S
' ' o " E (SWSRC); !T=8
o N (0D1) R (SW SRC);
- N(OD1) 'R (W2 SRC);
. o N(0D1) 'D (WF DEST);
' S1 RT(A) LR (SW SRC); !Tal
51 RT{A+1),N(OD1) ,R D(SW DEST);
. ‘ E (SWSRC); T2
N (0D1) LR (SW SRC);
DRT(A)  ,N(OD1) 'R (W2 SRC);
: E (SWSRC); !Ta3
. - N(OD1) LR (SW SRC);
D RT(B) ,N(0D1) 'R (2 SRC);
|DEST<S . SRC 15 'SRC 2=D
' E (SWSRC); !7=8
N (0D1) LR (SW SRC);
R (W2 SRC):
N (0D1) ,D (W1 DEST);
S1 RT(A) R (SWSRC);  !Tal
'R (W2 SRC); |
N (0D1) ‘D (SW OEST);
. E (SWSRC); ~!T=2
e N (0D1) LR (SW SRC);
DRT(A) 'R D2 SRC)3
. : | E (SWSRC): !Ta3
| S N(0D1) LR (SW SRC);
g o D RT(B) 'R D2 SRC);
i . ) ! '
' IDEST=S  SRC 1<D SRC 2=D .
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D RT(A)

D RT(B)

P-Sequencer Micro-Code

N (0D1)

N(0D1)
N(0D1)

S1 RT(A)
S1 RT(A+1)
N (0D1)
N(0D1)
,N(OD1)

N(0D1) -
LN@OD1)

- -

mMIMm O CoIMIM

(SW SRC);
(Sl SRC);
(U2 SRC);
(W2 SRC);
(WF DEST);.

(SW SRC);

(W2 SRC);
(WF DEST)

(SW SRC) ;
(SW SRC) :
(W2 SRC);

,R D(W2 SRC);

E
R
E

(SW SRC) ;
(SW SRC);
(U2 SRC};

",R D(L2 SRC);

17=0

1Tel

ITe2

17=3

AS



A5 | " P-Sequencer Micro-Code 4 303

1001 =GENERAL ; 0D2=GENERAL

IDEST-0 . SRC 1-§ SRC 2-S
E (SWSRC); T8
N(0D1) LR (SW SRC DEST);
N(0D1) .E D2 DEST) 5
S1 RT(A) . - R (SWSRC); !Tal
_N(0oD1) ,E  (SW DEST);
D (W2 DEST);
e : | E (SWSRC); !Ta2
D RT(A) ,N(0D1) LR (SW SRC);
D RT (A+1) ,D (NOP);
o E (SW SRC); !7<3
D RT(B) ,N(0D1) LR (SW SRC);
D RT(B+1) ' . ,D (NOP);
IDEST=D SRC 1=D "~ SRC 2=5 |
LE (SWSRC); !T=8
N(0D1) ,R  (SW SRC);
N(0D1) JR (U2 SRC);
N{0D1) ,E (W1 DEST);
N(0D1) ,0  (WF DEST);
S1 RT(A) LR (SWSRC); !T=1
S1 RT(A+1),N(OD1),R (S2 DEST);
N (0D1) ,0  (IF DEST);
' , E (SWSRC); !Te2
DH RT(A+1) ,N(0D1) ,R (SW SRC);
D RT(A) ,N(0D1) ,R (U2 SRC);
‘ ‘ " E (SWSRC); !T=3
DH RT(B+1) ,N(0D1) LR (SW SRC);
D RT(B) ,N(0D1) LR ({2 SRC);
IDEST=D © SRC 15 SRC 2:D
' ' E (SW SRC); !7-8
N (0D1) LR (SW SRC); -
o R (W2 SRC):
N(OD1) - JE (U2 DEST);
N(0D1) ,D (WF DEST);
S1 RT(AA)  ,R (SW'SRC); !Tal
: R (U2 SRC);
N(0D1) ,E (52 DEST);
) N (0D1) .0 (WF DEST);
e € (SW SRC); !T=2
DH. RT (A+1) LN(0D1) LR (SW SRC);
' +R D(W2 SRC);

D RT(A)



OH RT(B+1)

- D RT(B)

IDEST=D

’

SRC 1=D

- DH RT(A+1)

'DEST=0

D RT(A)

BH RT(B+1)
D RT(B)

SRC 1=4U

. P-Sequencer Micro-Code

,N(0D1)

SRC 2=D

N(0D1)

N(0D1)
N(0D1)

S1 RT(A)
S1 RT(A+1)
N(0D1) -
N{0D1)
N(0D1)

,N(0D1)

N(0D1)
,N(OD1)

SRC 2=0

- N(0D1)

DH RT(A+1)
D RT(A) .

OH RT(B+1)
D RT(B) '

N(OD1)
N{(0D1)
N(OD1)
N(0D1)
N(0D1)

S1 RT(A)
S1 RT(A+1)

E
,R

(SW
(SW

SRC) ;
SRC) s

R D(W2 SRC);

- ®w -

OoOmMmIIIXDIMIOM

’
*
’
’
’

R
R

S1 RT(A+2),N(0D1)
S1 RT(A+3),N(0D1)

N (0D1)

N(0D1)
,N(001)
.N(oD1)

N(0D1)
N{(OD1)

+N(001)
+N(0D1)

- ‘e -

E

)

DIDIOIMDOM VDOIVM

(SW
(SW
(W2
(W2
(WF

(SW
(W2
(52
(WF

15W
(SW
(W2
D2

{SW
(SW
(W2

D2

(SW
{SW
(W2
(W2
(W3
(W4

(WF2 DEST);

(WF

(SW
(W2
,R

(S
(SW
(W2
(W2
(W3
(W4

(SW
(SW
(W2
(W2
(U3
(Wa

SRC);
SRC) ;
SRC);

1T=3

1T=8

SRC DEST);

DEST) ;

SRC) ;
SRC) ;
DEST)
DEST)

SRCY
SRC) ;
SRC)
SRCY ;

SRC) ;

SRC) ;
SRC) ;
SRC) s

SRC)
SRC);
SRC) ;
SRC);
SRC);
SRC) ;

DEST) s

SRC) ;
SRC);

1T=1

1T=2

1Te3

1T=8

1Tl

(52 DEST);
,R D{WF DEST);

SRC);
SRC}; .
SRC)
SRC);
SRC);
SRC) ;

SRC);
SRC) s
SRC);
SRC)
SRCH ¢
SRC) ¢

1Te2

T3

AS



‘Ab

10D1<GENERAL , 0D2-GENERAL - -
CIDEST=4W . SRC 1D

DH RT(A)

D RT(A+1)
D RT(A+2)
D RT(A+3)

. DH RT(B)
D RT(B+1) .
D RT(B+2)
D RT(B+3)

IDEST=4U SRC 1=4U

~ N(OD1)

-N(0D1)

OH RT(A)

P-Sequencer Micro-Code

SRC- 2=D

N (0D1)

N(0D1)
N(0D1)
N(0D1)
N(0D1)
N(0D1)

S1 RT(A)
S1 RT(A+1)
N(0D1)
N(0D1)
N(0D1)
N(0D1)

* ® e w

* ® ® w e

N(0D1)
,N(0D1)

-

N(ODD)
,N(0D1)

- ® w e -

SRC 2:0

N (0D1)
N (0D1)

N(0D1)
N(0D1)
N(0D1)
N(0D1)

* ® * w e w e

S1 RT(A)
S1 RT(A+1)

.S1 RT(A+2) ,N(0D
S1 RT(A+3),N(0D
N(0D1)

N(0D1)

. . S ek pdw W
VIOIMIM OM-—=-—JOD OMMMDIOMDIM

N(001)

N(0D1)
,N(0D1)

om>DMDIM OoOM>IOMIIM OMMM>DT OmMMMXOoMmM>DoMm

(SW SRC) ;
(SW "SRC) ;
(W2 SRC) ;
(W2 SRC);
(WF DEST)
(W2 DEST)
(U3 DEST)
(W4 DEST)

(SW SRC) ;
(W2 SRC);
(SW DEST)
(W2 DEST)
(W3 'DEST)
(W4 DEST)

(SW SRC) ;
{SW SRC) s
(W2 SRC) s
(W2 SRC);
{NOP} ;
(NOP) ;

(SW SRC) s
(SW SRC) ;
(W2 SRC) ;-
(U2 SRC);
(NOP) ;
(NOP) ;

we we we we

(SW SRC)
(S SRC) ;
(W2 SRC) ;
(U2 SRC);
(W3 SRC) ;
{W4 SRC) ;
(W4 DEST);
(W2 DEST);
(W3 DEST) ¢
(W4 DEST);

(SW SRC) 3
(W2 SRC);
,R (SW DEST);
,R (W2 BEST);
(U3 DEST)
(W4 DEST);

(SW SRC) ;
{SW SRC) ;
(W2 SRC);
(W2 SRC);
(W3 SRC) s

'T=8

IT=1

1Te2

1Te3

1T«0

1T=l

1Ta2

305, -
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IDEST=4U

ooo
TOD

T(A+1)
T(A+2)
T(A+3)

DH RT(B)

D RT(B+1)
D RT(B+2)
D RT(B+3)

SRC 1=D

. DH RT(A)

D RT(A+])

"D RT(A+2)
O RT (A+3)

DH RT(B)

0 RT(B+1)
D RT(B+2)
D RT(B+3)

‘P-Sequencer Micro-Code-

,N(001)

N(0B1)

N(0D1)
,N(0D1)
,N(0D1)

~ SRC"2=4U

N(0D1)
N(0D1)

N (0D1)
N (0D1)

N(OD1)

N{0D1)

S1 RT(A)
S1 RT(A+1)

N(OD1)

N(0D1) .
N(OD1) .
N(OD1)

N(0D1)

- N(OD)

N(0OD1)
N(0D1)

¥

. ® @ * w w w e

OMIDIDOMIMOMDIIDIMIOIM OMMMDIDIOTD OMMMIITIDIDMIOM

- - o -

oMM MOMXD

-

. ® ® e @ w e

- . w e e =

- w ® w -

. (W4 SRC);

(NOP) ;
{NOP) ;
(SW SRC) .
{SW SRC);
(W2 SRC);
(W2 SRC);
(W3 SRC);
(W4 SRC);
{NOP) ;
(NOP} 3

(SW SRC) ;
(SW SRC) ;
(W2 SRC);
(W2 SRC);
(W3 SHU)
(W4 SRC);

(WF DEST);’
" (W2 DEST);

(W3 DEST)

(W4 DEST);

(SW SRC) ;
(W2 SRC);
(W3 SRC);
(W4 SRC);
(SW DEST) ;
(W2 DEST);
(W3 DEST);
(W4 DEST);

(SW SRC);
(SW SRC);
{W2 SRC):
(U2 SRC);
(W3 SRC);
{Wg SRC):
(NOP) ;

(NOP) ;

(SW SRC) s
{SW, SRC) ¢
(W2 SRCY;
(W2 SRCY;
(U3 SRC);
(W4 SRC) ¢
(NOP}

(NOP) ;

1T=3

1T=0

I Tel

=2

1T=3

A5



AG. I-Seguen‘cet" Micro-Code Fields

$ADD F<0@:5>

A+8
A+l
A+B
A+B+1
A-B-1
‘A-B
Ax2
Ax2+1
A-1 -

NA
NA AND B
NA AND NB

Z
NA OR B

B

A XNOR B
A AND B
NA OR NB’
A XOR B
NB '

A AND NB
MINUS ONE
AOR B

A OR NB
A _

8ADD LEG A<B:1>

x*

INDEX REG
LSI 11

8SADD LEG B<0:2>

x

SO '
VAR BASE
FIX BASE

% BLOCK ADR

=0

=1

=12
=13
=18
=19
=24
=25
=38

=32

- =34

=36
=38

=40 .

=42
=44
<48
=48
=508
=52
=54
=56
=58
=68
=62

=0

=1
=Z
=3 .

=B
=1
=2
3
=4
=7

YADDRESS ARITHHET]C ADDER FUNCTION LINES

307

1 (F<@> IS THE MODE CTR, F<l:4> IS THE FUNCTION

! AND F<5> IS THE CARRY IN)

'ICONTROLS LEG A ON ADDRESS ARITHMETIC ADDER

'PRE-FETCH PC. USED BY INSTR QUEUE LOGIC
'INDEX REG FILE. .

'DATA FROM LSI-11 :
'WRITE DATA BUS. ONLY USED BY HARDWARE

'CONTROLS LEG B ON ADDRESS ARITHMETIC ADDER.
'BRANCH OFFSET FOR SHORT PC RELATIVE BRANCHES

- ISHORT OPERAND OFFSET

'VARIABLE BASE OFFSET
'FIXED BASE OFFSET

'CACHE MISS BLOCK ADDRESS
!'T REGISTER



308

8ADD LOAD IND REG

x

8ADD RIGHT SHIFT 8 BITS

3

$C ADR SEL

*

8C CLEAR HOLD MISS

*x

8C FETCH

*

8C OPERATION
L]

8C W CHECK

*

8C W SET NUM<B:1>

=1

=0
=‘1

=0
=1

=0

=] .

=]

=B
=1

=
=1
=2
=3

I-Sequencer Micro-Code Fields . A6

s

'LOAD THE INDIRECT BIT AND INDEX REGISTER FIELD
'FROM THE INDIRECT ADDRESS POINTER COMMING OUT
'OF THE INDEX REGISTER FILE INTO A SPECIAL
'REGISTER FOR THEM.

'RIGHT- SHIFT THE OUTPUT OF THE ADDRESS
IARITHMETIC ADDER BY 8 BITS.

'ALLOW LONG IMMEDIATE CONSTANTS TO BE USED -
IFEED THE CACHE ADDRESS INTO THE LONG IMMEDIATE
'CONSTANT FIELD OF THE "OUT A" AND "OUT B" .
'MULTIPLEXERS

ICLEAR THE HOLD' CACHE MISS REGISTER
ITHE CURRENT MEMORY READ IS FETCHING AN INSTR
'1HE CURRENT ﬂlCROlNQTRUC}UN 15 USING THE CACHE

ICHECK THE CACHE TO SEE IF A WORD 1S THERE SO
ITHAT 1T MAY BE WRITTEN IN THE FUTURE

- ISPECIFIES A SPECIFIC CACHE SET TO BE WRITTEN

VINTO. THIS 1S ONLY USED BY DIAGNOSTIC PROGRAMS



As

'$C W SET SRC SEL
x |

LRU
$DISABLE EWAR CHP.
‘.*
‘$EBOX W ADR 1S A REG

x .

$1B0X C W
*

$180X REG W

.

$1MMED CONST LONG

*

$INDEX REG ADR SEL<@:2>

x USER

o0 .
VB REG
IND -

T

=8
=1

-8
=1

=0

el

=8

=]

el

=0

=1A

=8

=]
=3
=4

=6

I-Sequencer Micro-Code Fields - - 309

IWRITE INTO THE CACHE SET GIVEN BY
1"C W SET NUM<B:1>"
'WRITE INTD THE LRU CACHE SET

'DISABLE THE EBOX WRITE ADDRESS REGISTER ©
'UNTIL IT IS SET AGAIN,

/THE EBOX WRITE ADDRESS TO BE PUT IN THE EWARS

'1S A REGISTER ADDRESS

ICAUSES THE 1BOX TO WRITE THE "W DATA"
ILINES INTO THE CACHE.

ICAUSES THE IBOX TO WRITE THE "W DATA"
ILINES INTO' THE REGISTER FILE(S)

'LONG IMMEDIATE CONSTANT

'SELECTS THE SOURCE FOR THE ADDRESS OF THE
IINDEX REGISTER FILE ~

'"REG SET<B:1>:REG R ADR A<B:4>"
'USER'S REGISTER SPECIFIED BY THE MICROCODE

" I"REG SET<@:1>:0D REG ADR<@:4>"

1"REG SET<B:1>:1RS<6:18>" VARIABLE BASE IND R
!"REG SET<8:1>:IND INDEX REG ADR<®:4>"

1"742:REG R ADR A<@:4>"
11B0X TEMPORARY REGISTERS
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~ 8INSTR OUT A

*

" $LOAD AT LRU DECODE RAM

3

$LOAD C LRU DECODE RAM

3

8MEM R

*

S$MEM START R

X

$MEM START W

x

S$MIC BR ADR<®:11>

b 4

8MIC BR SEL<B:2>
START

* : I"UL’ HR

$MIC COND SEL<B:2>

*

=8.

-1

=0
=]

=B
=1

30

=1

=0
=1

=0
=]

=R

=@
-1

I-Sequencer Micro-Code Fields - A6

ISAYS THAT AN INSTRUCTION IS BEING READ
f0UT OF "OUT A", AND TO PUT IT IN THE
'INSTRUCTION QUEUE.

ISTART A MEMORY READ THROUGH THE SWITCH

'MICRO BRANCH.ADDRESS

" 1"P [BOX START ADR<@:1i>"
I"MIC BR ADR<Bs11>"
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$MIC EN INT-

x -

s$MIC JSR

%x
SOUT SEL<B:1>

C
* REG ‘
CONST
8REG R ADR<B: 4>
%x
SREG W ADR<9:4>

x

SREL INTERPROC INT

x

$RESET INSTR QUEUE

*

$SET C MODIFY BIT

NO
x
S8SET EWAR
.

=8
=1

-0
-1

=0

=
. =2

-8

=0

=8
=]

: "

=]
=8
el

=0
=1

I-Sequencer Micro-Code Fields sl

1ENABLE MICRO INTERRUPTS

100 A JUMP TO SUBROUTINE
ISELECTS THE SOURCE FOR THE READ ONLY DATA

" ITHE "OUT A" OR "OUT B" LINES.
\DATA BEING READ OUT OF THE CACHE

!SOURCE A REGISTER
z{gﬂgg%ATE CONSTANT OR CACHE ADR IF C ADR SEL

IREGISTER READ ADDRESS

'REGISTER WRITE ADDRESS

'INTER PROCESSOR INTERRUPT HAS BEEN SERVICED.
'ALLOW THE SWITCH TO SEND ANOTHER!

ICLEAN 1T OUT

'DON'T SET CACHE MODIFY BIT IF WRITE

ISET EBOX WRI1TE ADDRESS REGISTER TO THE

- 'ADORESS OF THE WORD BEING READ OUT. OF THE

ICACHE NOW. '



312"

8SET OP

K

$SRC REG CTL<@:1>

* * REG ADR
oDl -
ADD

8SRC REG OUT SEL

* A
B

$SWITCH START W

X

8T R ADR<B:2>
*x

8T WU ADR<@:2>
X

$TRANS ADR

x

QPPDATE AT LRU BITS

x

SUPDATE C LRU BITS

L 3

81 TRANS

*

=B
=1

=]
=2
=3

"B

=1

=B
=1

=8

=0

=0
el

=0
=]

=0

el

=0

=1

I-Sequencer Micro-Code Fields

—

ISET EBOX OPERAND REGISTER

'SRC (A UR B) REG ADR="REG R ADR<8:4>"
. ="0D1 REG ADR<@:4>" :
=SUM OF ABOVE TWO FIELDS

'START A MEMORY WRITE THROUGH THE SWITCH. -
!T REGISTER STACK READ ADDRESS |

I'T REGISTER STACK WRITE ADDRESS

'00 A VIRTUAL TO PHYSICAL ADDRESS TRANSLATION
ION THE MEMORY ADDRESS

!DON’T TRANSLATE THE MEMORY ADDRESS - DO
1ABSOLUTE MEMORY ADURESSING

'UPDATE THE ADDRESS TRANSLATION LRU BITS
tUPDATE THE CACHE LRU BIT

IWRITE INTO THE ADDRESS TRANSLATION CACHE

A6



%A4+B (LEG)
4B LEG)
%BR

%CR

%CR OP<F (F)

%CR OP«R+F (S,F)

%CR OP«RS (SEL)

| %CR OP<RS+F (SEL,F)
_ %CR ReF (F) |

%CR R«R(D,S)

“%CR ReR+F (D, S,F)

%CR R«RS (D, SEL)

-%CR R«RS+F (D, SEL,F)

%IND REG
%INDEX TRANS (SEL) .

~ %INDEX (SEL)

%REG W(ADR) . -
%TR(S)

LTH(D)

LTWR(D, S)

XTeF (F)
XTeR(D,S)
LTeR+F (D, S,F) -
%TRS (D, SEL)
%TeRS+F (D, SEL, F)

313

A7. I-Sequencer Micro-Code Macros '

" [ADD F=A+B,ADD LEG B=LEG}

(ADD F=B,ADD LEG BsLEG)

(MIC BR ADR)

[C.ﬁPERATIUNul,UPDATE C LRU BITS=1,0UT SEL=C]
(CR,SET OP=1, INDEX TRANS(T),ADD F=B,ADD LEB B=F)
[CR,SET OP=1,REG R ADR=S, INDEX TRANS(T).A+B(F)j
(CR,SET OP=1, INDEX TRANS (SEL)] 'j

[CR,SET OP=1, INDEX TRANS (SEL) , A+B (F))

[CR.REG W(D),B(F), INDEX TRANS(T))

[CR,REG W(D), INDEX TRANS(T),REG R ADR=S)
[CR,REG W(D),A+B(F), INDEX TRANS(T) ,REG R ADR=S)

[CR,REG W(D), INDEX" TRANS (SEL))
(CR,REG W(D), INDEX TRANS(SEL),A+B (F)]
[ADD LOAD IND REG-1]

[ADD LEG A=INDEX REG, TRANS ADR=1, INDEX REG ADR SEL=SEL)
[ADD LEG A=INDEX REG, INDEX REG ADR SEL=SEL] |
[1BOX REG We1,REG W ADR=ADR]

{T R ADR=S) '

[T W ADR=D]

(TW(D), TR(S))
. (TWD),B(F))

(TW(D), INDEX(T),REG R ADR=S] _
{TW(D),A+B(F), INDEX TRANS(T),REG R ADR«S)
[TW (D), INDEX (SEL))

{TW(D) , INDEX (SEL) ,A+B (F))
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A8. 1-Sequencer Micro-Code

IEVALUATE A SHORT OPERAND (X<8)

- IREG=9, | =9 REGISTER-DIRECT
~ SET OP=1,SRC REG CTL-0D,DONE
'REG=8, 1=1 REGISTER-INDIRECT
CR ReRS(R1,00),TW(T1),IND REG,JSR(REG IND OP)
IREG=1,1-8 ' SHORT-CONSTANT
SET OP=1,0UT SEL=CONST,DONE
IREG=1, I =1 ILLEGAL
BR=ILLEGAL OP
IREG=2 ILLEGAL

BR=ILLEGAL OP
'REG=3-31,1=0. ' SHORT-INDEXED

CR OP«RS+F (0D, SO) , DONE
IREG=3-31,1-1  SHORT-INDEXED- INDIRECT

CR ReRS+F (R1,0D,S0), JSR(MEM IND OP)
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TEVALUATE A LONG OPERAND WITH A FIXED BASE (X=1,XI1=8,M<8,V=8)

'REG=8,1=6 ~  REGISTER-DIRECT
CR OP«RS+F (0D, FIX BASE) , DONE;
'REG=8, 1 =1 'REGISTER-INDIRECT

CR R«RS(R1,00),TW(T1),IND REG, JSR(REG IND);
CR OP«R+F (R1,FIX BASE), INDEX SHIFT,DONE;

\REG=1,1<8 -  LONG-CONSTANT
'« SET OP=1,0UT SEL-CONST, IMMED CONST LONG=1,DONE;
IREG=1, 1= LONG ABSOLUTE ADDRESSING

CR OPF (FIX BASE) ,DONE;
\REG=2 ILLEGAL -

BR=ILLEGAL OP;
IREG=3-31,1=8  SHORT- INDEXED

CR R«RS+F (R1,00,S0) ;
BR=L1; 'WAIT FOR CACHE READ

IREG=3-31,1=1  SHORT-INDEXED- INDIRECT
CR ReRS+F (R1,00,50) , JSR (MEM IND) ;
L1: CR OP«R+F (R1,FIX BASE), INDEX SHIFT,DONE;



316 . 1-Sequencer Micro-Code

'TEVALUATE A LONG OPERAND WITH A VARIABLE BASE' (X=1,X1=8,M=8,V=1)
IREG=0, 1=8 REGISTER-DIRECT

T«RS+F (T1,00, VAR BASE), lNDEX SHIFT; .
CR 0P«RS+F(VB‘REG T, TR(TI) OONE; -

IREG=8, 1=1 REGISTER-INDIRECT
L CR R<RS(R1,00), TW(T1),IND REG, JSR (REG IND);

TeR+F (T1, Ri, VAR BASE) , INDEX SH]FT
CR OP<RS+F (VB REG, T), TR(Tl) DONE;;

~ 'REG=1,1=08 LONG-CONSTANT

"SET OP=1,0UT SEL=c0NST.innED CONST LONG=1,DONE;

" 'REG=1,1=1 LONG ABSOLUTE ADDRESSING

CR OP«RS+F (VB REG,VAR BASE),DONE}
IREG=2 ILLEGAL
" BReILLEGAL OP;
IREG=3-31,1=8 = SHORT-INDEXED

CR ReRS+F (R1, OD S0);
BR=L1; :

'REG=3-31,1=1  SHORT-INDEXED-INDIRECT
CR Re«RS+F (R1,00,S0), JSR(MEM IND);

L1: TeR+F (T1,R1,FIX BASE}, INDEX SHIFT;
CR OP«RS+F (VB REG,T),TR(T1),DONE;

A8
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A8 . ~ 1-Sequencer Micro-Code , 317

IEVALUATION OF AN INDIRECT ADDRESS CHAIN WITH THE RESULT PUT IN R1.

MEM 1N0=N0P : ST 1G0 INDIRECT THROUGH A MEMORY LOC.
" CR Re<R(R1,R1),TW(T1), IND REG; ‘
INDRET (R181,RI118,R111);

‘ !GO INDIRECT THRbUGH A REGISTER.
INDRET (R181,RI18,RI11)} -

RIBL: CR R<R(R1,R1),TW(T1),IND REG; IR=8, I=1
-INDRET (RI@1,R118,RI11);

RI18: CR ReRS+F(R1,IND,T),TR(T1); - IReB, 1-8

T RETURNG : |
RILL:  CR RRSWF (RL,IND, ), TRUTD): IReB, 1=1
' . NOP; .

CR R<R(R1,R1),TU(T1),IND REG;
INDRET(R]Ol.RIlG;RIll); ~
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A9. E-Sequencer Micro-Code Fields

$AB1 SEL<0:2>. : IMMXCTL. CSACTL. SELECT CSA A8l INPUT.
, . NA | . =a . .

NA%2 =1

A -2

Ax2 =

'MINUS ONE 4 -

Z -6
$A23 SEL<@:2> : IMMXCTL. CSACTL. SELECT CSA A23 INPUT.

NA%G - =8 |

NA%8 . =1.

Ax4 =2

Ax8 . =3

MINUS ONE -4

Z -6 4 |
SAUTO MERGE IMXMRG2. EN MEANS 1BOX CONTROLS MERGE

R DIS =0 'MERGING UNDER EBOX CONTROL
: EN =1 IMERGING UNDER 1BOX CONTROL
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88C SEL<0:5> -

SW IN BOUNDS

SW N

SWZL

SW VL

. SW CO

SW LE

. FLOAT FIX L

NEVER
PRE V L
POST V L
EXP N
EXP V-L

PAUSE EBOX
MANT Z L
MANT V L

I ALL Z
F ALL Z

B ALL Z
COUNT DONE

E-Sequencer Micro-Code Fields

=8

=2
=3
=4
=5
=6
=7

=8

=3

=10
=11
=12
=13
=14

=15

=16
=17
=18
=19
=20

T=21

=22

'|EBCMUX. BRANCH CONDITION SELECT

s

)

319



320

SW IN BOUNDS L
SW N L

SW Z

SW V.

SWCO L

SW LE L

FLOAT FIX

ALUWAYS
PRE V
POST V.
EXP N L °
EXP V

PAUSE EBOX L -
MANT 7

MANT V

I ALL Z L
FALL Z L

B AL Z L
COUNT DONE L

8BR ADR<®:11>
E 3
$BR DEST<@:2>
RETURN
START
x BRANCH
. SHIFT
" FA

FIXREG
ALU COND

E-Sequencer Micro-Code Fields

=32
=33
=34

=35

=36
=37
=38
=39

=40
=41
=42
43
=44
=45
=46
=47

=48
=49
=58
=51
=52
=53

=0

=0
=1
=2
=3
=4
=5
=6
=7

¥

- =54 .

'EBXCTL. BRANCH ADDRESS

. "1EBXCTL. BRANCH CONTROL

A9



AS

. $BR NWAY<8:1> .

2 WAY
4 WAY
8 WAY
% 16 WAY
8BYTE PTR PE
% HOLD.
LOAD
$SW CO PE
' . HOLD
* . LOAD
8COND STATUS PE
x HOLD
LOAD
$COND STATUS SEL
x  COND CODES
MC
$OONE

. %

8EBOX CONTROL PE

x°~ HOLD
LOAD

SEXP COMPL

I

S8EXP SUM PE

* HOLD
LOAD

=0
=]
=2
=3

=B

=] .

=B

=]

=B
=1

=B
=1

=6
=1

=B
=]

=8
=1

=8.

=1

E-Sequencer Micro-Code Fields

IEBXCTL. NUMBER OF BRANCH DESTINATIONS

I TUO-WAY BRANCH
IFOUR-WAY BRANCH *

JEIGHT-WAY BRANCH

'SIXTEEN-WAY BRANCH

ISHFCTL. LOAD QW2 AND QU3 OF R

IFACTL. LOAD SW CO

ISTATUS. LDAD CONDITION'CODES

ISTATUS. SELECT STATUS TO SAVE
'NORMAL. CONDI TIONS CODES _

IMICRO-CONSTANT

IFIXGEN. LAST MICRO-CYCLE
IEBOX2. LOAD CONTROL BITS FROM 1BOX.
IEXPBOX. COMPLEMENT EXPONENT

'EXPBOX. LOAD EXP SUM REGISTER

321
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8FA A IN SEL<B:3>

3

8FA B "IN SEL

* B8
S

8$FA CTL SEL<B:2>

»® EBOX

’ olv
RND
MULT
SAVED CO
GUARD

CO STATUS

=0
=1
=2 .
=3
=4
=8
=9
=10
=11
=12
!3INADD. SELECT FOR FA B LEG

=8 10P B
=1 'SUM OUTPUT FROM CSA

. IFACTL. SELECT FA CTL SUUHCE .
=8
=1 'DIVISION
=2 'ROUNDING
=3 MULTIPLY
=4 'ADD CARRY (SAVED)
=5 'ADD GUARD
=6 'ADD CO FROM STATUS WORD

=7

E-Sequencer Micro-Code Fields

'3INADD. SELECT FOR FA A LEG

A9
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8FA CTL<B:5>

x

- A48

A+l

‘A+B

A+B+l
A-B-1
A-B

- Ax2

Ax2+1
A-1

NA :
NA AND B

NA AND NB

Z
NA OR B
B

A XNOR B

A AND B

NA OR NB
A XOR B
NB

A AND NB

MINUS ONE
AORB
A OR NB
A

SFIXUP EN

x

oIS
EN

‘E-Sequencer Micro-Code Fields

=0
el

=12

=13

=18
=19
=24
=25
=30

=32 -

=34

=36"
=38 -
=48 .

42
=44
=46
<48
=59
=52
<S4
=56
=58
=68

=62.

=0
el

IFACTL. 'FA MODE/FUNCTION CONTROL

IFIXREG. ENABLE FIXUP IF DONE

323
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" $FIXUP REG SEL<0:3>

X NEVER -
"~ ALUWAYS
"~ PRE V

MANT V
"SW Z

SW IN BOUNDS.

FLOAT FIX

8FIXUP REG TEST

* NO REG
"~ REG

8FIXUP REGS CLK EN-

* - DIs
EN

$FIXUP REG1 CLK EN
* DIS
EN

$FIXUP REG2 CLK EN
* DIs
. EN

$FIXUP REG3 CLK EN
x . DIS

EN

E-Sequencer Micro-Code Fields

)
=]
=2

=4
=5
=6
=7

=8
=3

=11
=12
=13
=14

o5

=8
=1

=0
=1

=0
=1

- 0
=1

=B
=1

=10

!FlXREC. SELECT FIXUP REGISTER INPUT

! : 1

IFIXREG. ENADLE TESTING OF FIXUP REGISTERS

IFIXREG. ENABLE SETTING FIXUP REG 8

IFIXREG. ENABLE SETTING FIXUP REG 1

- IFIXREG. ENABLE SETTINC FIXUP REG 2

IFIXREG. ENABLE SETTING FIXUP REG 3

A9
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$G SEL<@:3> -
BZC -
ADD
POST -
DIVIDE
Z

* HOLD

SINTERRUPT 1BOX

" NEVER
NO FIX
$JSR '
L

S$LOGICAL SHIFT

L 3

$MC COND<B: 3>

b 3

8MC EXP<0:11>

%

$MC REPT<B:7>

x

8MC SHIFT<@:5>
*

$MC<B: 35>

*

- SMERGE EXP

3

]-:-Seqdenbe_r Micro-Code Fields'

=1
=2
=3
=4
=8

=B

el

8.

=1

=]

=0

-0

-8

=0

=0

=6
=1

=0

'ROUND. SELECT GUARD BIT INPUT AND MODE.
 fUSE BOTTOM ZEROES COUNT (EG. IN PRENORM)

'FLOATING ADD . '
'POSTNORMAL1ZATION
'FLOATING DIVIDE

!CLEAR

'HOLD

'FIXGEN.,

'IFF NO FIXUP

1EBXCTL. JUMP TO SUBROUTINE

1JMP OR RET.
I JSR '

!SHFCTL. LOGICAL/ARITHMETIC SHIFT

'DRAG BIT IS SHIFT SIGN
'DRAG BIT IS SIGN OF SHIFT A IN

'STATUS. CONDITION NlCRq—FONSTANT
TEXPBOX. EXPONENT HICRO-CDNSTANT'
'REPT. REPflTION HlCRO;CONSTANT
ISHFCTL. SHIFT MICRO-CONSTANT
!31NADD. EBOX HlCRDdeNéTANT

IMXMRG1. FOR EXP USE (MM SEL OR 1)
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$MERGE LEN

% Qu

HU
$MERGE QWO
) .

SMERGE Qw1

x

S$MERGE QU2

x

$MERGE QU3

*

8MM EN

BIS .
* * EN

8MM SEL<B:2>

- FA
SHIFT
EXP
. FA/2
MUL
DIV
$MULT EN
* pIs
EN

$0P A ADR<@:4>
x* Z

=8
=1

0

=]

=0
=1

=8

=1

=0
=1

=0
=1

E-Sequencer Micro-Code Fields

IMXIMRG2. QW OR HW MERGE.

!nxﬁncz. FOR W@ USE (MM SEL OR 2)

IMXMRG2. FOR-QN} USE (MM SEL OR 2)

!nxnasé. FOR Qu2 ﬂse (MM SEL OR 2)
" RG2. FOR a3 QSE (MM SCL ON 2)

IMXPRG1. ENABLE MUX MERGER ouTRUT

!HXHRGi. SELECT MUX MERGER

=2

=4
=5

=7

=0
=1

8

IMMXCTL. ENABLE MULTIPLY OPERATION

'Q REGISTER CONTROLS 3-INPUT ADDER
'ERFC1. EBOX A REGISTER ADR
|GARBAGE REGISTER

A9



A9

80P-B ADR<B:4>
X ,-Z
$0P W ADR<8:4>

* Z

$POST MAX PE

x HOLD
LOAD

8PRE EN

* pDIS
EN

8PRE MAX PE

* HOLD

: LOAD -

' 90 MODE<@:2>

%* LOAD
RIGHT 1-
LEFT 1
HOLD
RIGHT 4

_S$RECOMP AB1 -

3
SRECOMP A23

x

e
»

.=a
=1 '

=0
=]

=0
=]

=B
=l

=0

Aul

E-Sequencer Micro-Code Fields . - : 327

IERFC1. EBOX B REGISTER ADR
!GARBAGE REGISTER

'ERFC1. EBOX WRITE REGISTER ADR
!GABBARGE REGISTER

ISTATUS. LOAD MAX POSTNORH AMOUNT

ISHIFTR/SHFBOX. ~ENABLE PRENORMALIZATION
ISTATUS. LOAD MAX PRENORM AMOUNT

'Q. CONTROL LINES TO Q REG

'PARALLEL LOAD
ISHIFT RIGHT 1
ISHIFT LEFT 1
'HOLD

'SHIFT RIGHT 4
}CSACTL. COMPLEMENT A LEG OF CSA

ICSACTL. COMPLEMENT B LEG OF CSA
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$REPT CTR MODE<B:1>

LOAD
DEC

* HOLD

$REPT CTR SEL
FA

* " MC

$RESULT SEL
ALWAYS
NO BRANCH .

% NEVER
DONE
NO FIX

8RLSB PE

S HOLD

* .LOAD

$RND MODE<B:1>
STABLE .
CEILING

* . FLOOR

8SHIFT A IN SEL<B:1>

* A

YA
BAQZM SIGN
8SHIFT B IN SEL<0:2>

1

. E-Sequencer Micro-Code Fields - o A9

=]

=3

=9
=1

=B
=1
=2
=3

=4

=8

=1

aa'

=1
=2

=0
=2
-3

=2
=3
=4
=5
=b
-7

'REPT. REPITITION CTR MODE

'REPT. SELECT FA CTR OR MC CTR
'FA CTR

'MICRO-CONSTANT CTR

IFIXGEN. CONTROL X RESULT SIGNAL

IRESULT ALWAYS READY

IRESULT READY IFF NOT BRANCH

'RESULT NEVER READY

'RESULT READY IFF DONE AND NOT FIXUP
'RESULT READY IFF NOT FIXUP

" \ROUND. LOAD LS BIT OF R<8:35>

YROUND. ROUNDING MOOE

ISHFBOX. SELECT SHIFTER A INPUT
IA INPUT GETS A OP

A INPUT GETS ZERO

'A INPUT GETS BAQZM SIGN

ISHFBOX. SELECT SHIFTER B INPUT

IMERGE GUARD BITS
'MERGE GUARD BITS

- IMERGE GUARD BITS

IMERGE GUARD BITS
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$SHIFT C

*

fL<9:S>

FzC

Zz
C28 BYTE LEN
C28 BYTE POS

- C20 B QW3

EXP SUM

- RIGHT 1

MC .
B BYTE LEN
B BYTE POS

- B QU3

DEST
12C

36-C26 BYTE LEN
36-C28 BYTE POS
36-C28 B QU3

36-EXP. SUM
36-B BYTE LEN
36-B BYTE POS
36-B QU3

POST

$SHIFT SIGN

*x
8TEST ST

* .
$TEST LR

x

8TRANS A

-

ICKY EN -

DIS
EN

ONG BRANCH

" DIS

EN
SEL<B:1>

SW
FLOAT
au
HU

E-Sequencer Micro-Code Fields

=16
=18
=20
=20
=22

. =24

=30
=32

=58
=52
=52
=54
=60
=61
=61

=68

-
=l

=0
=l

=0
=1'

=0
=1
=2

ISHFCTL. SELECT SCNT SOURCE

1981 0800
1681 0018
1001 Pi60G

'pp1 8118
1ol 1008
'pBl 1018
1981 1108
1881 1101

1981 1118

1918 2008

1011 0018

811 816@

811 0118
811 1100
811 1181
811 1181

1100 8180 POSTNORMALIZE.

ISHFCTL. DRAG BIT FROM EBOX MICRO-CODE

IDRAG BIT=0
'DRAG BIT=1

ISTICKY. TEST BZC236-LSHF-2
IWRONGB. TEST WRONG BRANCH TAKEN

IEREGF. A OP TRANSLATION SELECT

!STRAIGHT THROUGH

!SIGN EXTEND FLOATING POINT
101 TRANSLATION

'HW TRANSLATION
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_ $TRANS B SEL<B:1>
" Su

FLOAT
au
' HW
SUSE 1 A OP
* e
8USE 1 B OP
. .

'$XBOX A SEL<B:1>

A EXP
EXP SUM
* . HOLD

=B

=]
=2
=3

=8
=]

=0
=1

=0

) |

E-Sequencer Micro-Code Fields

IEREGF. B OP TRANSLATION SELECT
ISTRAIGHT THROUGH
v ISIGN EXTEND FLOATING POINT
10W TRANSLATION '
'HW TRANSLATION
'EREGF. USE 1BOX A OP INSTEAD OF R

IUSE R
'USE 1BOX OP

'EREGF. USE IBOX B OP INSTEAD OF R

. 1USE R
IUSE 1BOX OP

IEXPBOX. SELECT XBOX ALU A LEG
4 ILOAD A EXP

TLUAU EXP SUR.
'HOLD -

‘A9
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$XBOX ALU CTL<8:5>

A+8

A+l

A+B
A+B+1 -
A-B-1"
A-B :

- A%2

$XBOX B

. o%

Ax2+1
A-1

NA
NA AND B
NA AND NB

Y4
NA OR B

B . .

A XNOR B
A AND B

NA OR NB

A XOR B

NB -

A AND NB
MINUS ONE
A OR B

A OR NB

A

SEL<B:1>

B EXP
SCNT/MC
HOLD

8XBOX SCNT SEL<O:1>

* .

MC
SCNT
HOLD

E-Sequencer Micro-Code Fields

-0
-1

=12

=13
=18
=19
=24
=25
=30

=32
=34
=36
=38
=48
=42
=44
=46
=48
=50
=52
=54
=56
=58
=60
=62

|:0'
=]
=2

=B
=1
|=2;

IEXPBOX. EXPBOX ALU MODE/FUNCTION

IEXPBOX. SELECT XBOX ALU B LEG

'LOAD B EXP
ILOAD EXP SUM
'HOLD

!EXPBDX. XBOX SCNT REG SELECT

ILOAD MC
'LOAD SCNT
'HOLD

331
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~ A10. E-Sequencer Micro-Code Macros

%AUTO MERGE (
SHIFT(A,Z,DEST),
FA(Z,B, B), :
AUTO MERGE ENB, MM SEL=FA]

%BR NZ DEC(CTR,ADR) [
"BR DEST=BRANCH
BC SEL=COUNT DONE L,
BR ADR="ADR", °
REPT CTR SEL="CTR",.
REPT CTR MODE=DEC)

%BR Z DEC(CTR,ADR) [
BR DEST=BRANCH
BC SEL=COUNT DONE,
BR ADR="ADR",
REPT CTR SEL="CTR",
REPT CTR MODE=BEC)

%BR (COND, ADR) (
' BR DEST=BRANCH,
BR SEL="COND",
BR ADR="ADR"]

#%CHECK BOC(R) [
: CSA A IN Ax2Z, CSA B IN z,
FA(A,S,A+B),
FIX SAVEISH Z,"R"))

USA(A,B.Cl) I
ABl1 SEL="A",
A?3 SFi="B"
. FA A IN SEL="CI")

%DONE (COND) (
OP W ADR=IU, -
BR DEST=START,
BR SEL="COND",
DONE=1]

%FA- SEL (SOURCE) (
FA CTL SEL="SOURCE")

%FA(A,B,C) [
FA lN("A"."B").
FA CTL="C"]

'MERGE BACK QW OR HU

ISHIFT A LEFT AS PER ADDRESS

IPUT B THROUGH FA
IMERGE A INTO B

'REPT. BRANCH NOT ZERO AND DEC
ISET UP BRANCH ADDRESS MUX
IBRANCH IF COUNT NOT DONE

!7T0 BRANCH ADDRESS

'SELECT COUNTER OUTPUT
IDECREMENT SELECTED COUNTER

IREPT. BRANCH NOT ZERO AND DEC
ISET UP BRANCH ADDRESS MUX
IBRANCH IF COUNT DONE

170 BRANCH ADDRESS

ISELECT COUNTER OUTPUT
'DECREMENT SELECTED COUNTER

IBRANCH TO ADR IF COND IS TRUE
ISET UP BRANCH ADDRESS MUX
ISET UP BRANCH CONDITION MUX
TINPUT TO BRANCH ADDRESS MUX

ICHECK FOR POST-BAD ONES COUNT
ICSA GIVES (Ax2) XOR A :
'Ax2 1S ON A LEG, A IS ON CI LEG
'FIXUP T0 R IFF .
L A+((Ax2) XOR A)=0

ISELECT CSA A, B. AND Cl1 LEGS
IAD] SEL CONTROLS THE A LEG

1A23 SEL CONTROLS THE B LEG

IFA A IN SEL CONTROLS THE CI LEG

IDONE TFF COND '

IMAKE SURE IW IS WRITE ADDRESS
ISELECT START ADR ON ADR MUX
ISET UP BRANCH CONDITION MUX
!DONE IFF COND

ISELECT SOURCE OF FA CTL

ISELECT FA A IN, FA B IN, FA CTL
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XFIXUP INlT[
“FIXUP REG SEL=NEVER,
FIXUP REGO CK EN=1,
- FIXUP REG1 CK EN=1,
FIXUP REG2 CK EN=1,
FIXUP REG3 CK EN= 1]

%FIXUP SAVE (COND,R) [ .
FIXUP REG SEL="COND",
FIXUP REG"R" CK ENI

%F I XUP (REG?, COND, ADR) [
BR DEST=START,
BR ADR="ADR",
FIXUP REG SEL="COND",
FIXUP REG TEST="REG?",
FIXUP EN=1] .

%FLOAT SW OUT(R,FIX R,ADR) {
0PS (14U, "RY,2), &
XA (A- B)
SHIFT(A,Z,2), R«SHIFT MERGE EXP=1,
FA(A,B, A+0), LOAD CUND
FIXUP SAVE (FLOAT FIX,"FIX R"),
F IXUP (REG,FLOAT FIX, "ADR"),
DONE (ALWAYS) ,RESULT (NO FIX)]

%FLOAT SW POST(A,B,FIX R) [
SHIFT("A" “B" POST), ReSHIFT,

CHECK BOC ("FIX R"1,

G SEL=POST,
XBOX SEL (EXP SUM,SCNT/MC,SCNT) ]

%HOLD COl '
CO COND PE<HOLD]

%Al 2

%IBl 3]

¥ce 4

%10( 5)

%I 2]

’

333

ICLEAR ALL FIXUP REGISTERS
'SELECT FIXUP MUX TO CLEAR

"IENABLE REG 8 CLOCK

'ENABLE REG 1 CLOCK

IENABLE REG 2 CLOCK

IENABLE REG 3 CLOCK

ISAVE FIXUP CONB IN FIXUP REG R
ISELECT FIXUP COND
IENABLE CLOCK OF FIXUP REG R

'FIXUP TO ADR IFF COND (OR REG)
ISELECT START ADR

'ADR 1S FIXUP ADDRESS

!SELECT FIXUP CONDITION

- ICONDITIONALLY TEST FIXUP REGS

'ENABLE FIXUP
'0UTPUT SW FLOATING RESULT

TADJUST EXPONENT BY SHIFT CNT
IMERGE EXPONENT INTO SHIFT OUT
ITEST MANTISSA CONDITIONS
'SAVE FLOAT FIX CONDITION
'FIXUP ON REGS OR FLOAT FIX
'RESULT IFF NO FIX

IPOSTNORMALIZE A:B, USE FIX R
'POSTNORMALIZE BY FZC

ICHECK BAD ONES COUNT
IRECOMPUTE GUARD BITS

ISET UP FOR EXPONENT ADJUST

'HOLD CDAIN CO REGISTER

'REG ADR FOR A OP FROM 1BOX

YREG ADR FOR B OP FROM IBOX

'REG ADR FOR C OP FROM 1BOX
'REG ADR FOR D OP FROM IBOX.
ILAST INSTR MUST HRITE IW
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%JSR (COND, ADR) {
BR DEST=BRANCH,
BR SEL="COND", :
BR ADR="ADR", “
. JSR=1]

%LOAD BYTE PTRI
BYTE PTR PE=LOAD)

%LOAD COl
SW COo PE=LOAD]

%LOAD ‘COND [

COND STATUS SEL=COND CODES,

COND STATUS PE=LOAD)

%LOAD CONTROL {
EBOX CONTROL PE=LOAD]

%LOAD REPT (CNT) {
REPT CTR MODE=LOAD,
MC REPT="CNT"]

%HERGE(LEN)[
MERGE LEN="LEN“
AUTO MERGE]

$MULTIPLYI
. ~ TRANS A SEL=FLOAT,

MULT EN=1,

FA(B CO,S,A+B),FA SEL(NULT)

Q MODE=RIGHT 4]

%0PS (W, A,B) [
OP W ADR="i",
OP A ADR="A",
0P B ADR="B"]

%RESULT (COND) [
RESULT. SEL="COND"]

YRET(COND) [ .
BR DEST=RETURN,
BR SEL="COND"]

'JSR TO ADR IFF COND

!SET UP BRANCH ADDRESS MUX
ISET UP BRANCH COND MUX
'INPUT TO BRANCH ADDRESS MUX
'ENABLE JSR

ISET UP EXTERNAL BYTE PTR REG

'LOAD CO
IENABLE LOADING OF CO REGISTER

ILOAD CONDITION STATUS
ISELECT COND STATUS INPUT
IENABLE LOADING OF COND STATUS

'LOAD CONTROL BITS FROM IBOX

IREPT. LOAD REPITION COUNTERS

'MERGE OPERAND lNTO R
104 OR HW MERGE
'ENABLE AUTO MERGE

ISET UP MULTIPLY CYCLE
FTRANSLATE: MULTIPLICAND

'ENABLE MULTIPLY CONTROL OF CSA
!SET UP FA TO MULTIPLY

© ISHIFT MULTIPLIER RIGHT &
- ISET UP THREE REGISTER ADRS

'WRITE REGISTER ADDRESS
'READ REGISTER ADDRESS A
'READ REGISTER ADDRESS B8

ISET RESULT ON THREE CUNUS:
YALWAYS, NEVER, OR IFF NO FIXUP

'RET IFF COND

- 1SET UP BRANCH ADDRESS MUX

ISET UP BRANCH COND MUX
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%ReSHIFT( o
~ MM SEL=SHIFT] .

%SHIFT(A,8,C0) [
. SHIFT A IN SEL="A",
SHIFT B IN SEL="B",
SHIFT CTL="C")

%START QU HUW(
- ~ TAKE,
SAVE CONTROL,
FIXUP INIT]
%TAKE Al o
‘ " USE I A OPsl}
 %TAKE BT o
USE I B OP=1)

%TAKE (
TAKE A,
TAKE B)

%TEST BOUNDS (CONSTANT) {
- MC=-"CONSTANT",
FA(MC,B,A+B))

% TRANS (LEN) (
: TRANS A SEL="LEN",
- TRANS ‘B SEL="LEN"}

%XA(C) [ :
XBOX ALU CTL="C"]

%XBOX- SEL (A,B,S) [
. XBOX A SEL="A",
XBOX B SEL="B",
XBOX SCNT SEL="SCNT")

335

'R OUTPUT GETS SHIFT
ISELECT SHIFT ON MUX MERGER

ISHIFT AB CONTROLLED BY C
ISELECT SHIFTER A LEG
!SELECT SHIFTER B LEG
ISELECT SHIFTER CONTROL

ISTART QW OR HW INSTRUCTION
'TAKE A AND B OPS FROM 1BOX
!SAVE CONTROL SIGNALS FROM IBOX
PALWAYS INITIALIZE FIXUP REG
ITAKE A OPERAND FROM 1BOX

'TAKE B OPERAND FROM 1BOX

!TAKE A AND B OPS FROM 1BOX

ISET UP TEST FOR MC>X2>8

ISET MC=-CONSTANT
'ADD MC TO B YIELDING B-MC

!TRANSLATE A AND B

ICONTROL EXPONENT BOX ALU

ISELECT EXPONENT BOX ALU INPUTS
!SELECT A INPUT

'SELECT B INPUT

'SELECT SCNT INPUT
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'ADD Q, ADD H

!*********************************************************#*********************

ADD Q:

oPS(4,2,2),
START QU HUW;

.OPS(S '[A, 1B) , TRANS (QW) ,

TAKE A

" FA(A,B,A+B), LOAD COND
FIXUP SAVE(SH vV,0);

0PS (1U,5,4),

- MERGE (QW) ,
DONE (ALWAYS) ,RESULT (ALWAYS),

PIXUP (REG, NEVER, INT OVFL);

ISET UP TO WRITE DESTINATION INTO R4

- ISTART QW HW INSTRUCTION

ITRANSLATE OPERANDS

- ITAKE DESTINATION INTO 4

'ADD AND SAVE STATUS
ISAVE FIXUP CONDITION

'MERGE RESULT INTO DESTINATION
'ALWAYS DELIVER A RESULT
'FIXUP IFF OVFL

!*******************************************************************************

ADD H:

0Ps(4,2,2),
START QW HW;

OPS (5, 1A, 1B}, TRANS (HW),
TAKE A
FA(A,B,A+B),LOAD COND
FIX SAVE (HU vV,8);

OPS(1U,5,4),
NERGE(HH)
DONE (ALWAYS) , RESULT (ALWAYS) ,

FIXUP (REG, NEVER, INT OVFL);

!SET UP TO WRITE DESTINATION INTO R4
ISTART QW HW INSTRUCTION

'TRANSLATE OPERANDS
'TAKE DESTINATION INTO 4
'ADD AND SAVE STATUS
!SAVE FIXUP CONDITION

IMERGE RESULT INTO DESTINATION
IALWAYS DELIVER A RESULT ‘
'FIXUP IFF REG OVFL
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1ADD S, ADD D

3

ADD S:

OPS(IW, 1A, IB), TAKE,
FA(A,B,A+B),LOAD COND,

DONE (ALWAYS) , RESULT (ALWAYS) ,

FIXUP(SW V, INT OVFL);

KRR AR IIAARIIRIKORAARRAR AR AOORKARAKAAOR K

ADD D: .

aMSA  [IA) i
%MSB [IB] -

%2WSA  [IC)

ASB (0]

OPS (LSA, MSA, MSB) , TAKE;

OPS(6,L5A,LSB) , TAKE,
FA(A,B,A+B),LOAD CO,
RESULT (ALWAYS) ;

OPS (1W,MSA,MSB) ,

FA(A,B, A+B) FA SEL (SAVED CO),
LOAD COND

UONE(ALUAYS) RESULT(ALHAYS)

-FIXUP(SW vV, INT OvVFL) ¢

~ E-Sequencer Micro-Code : 337

D oRoRoR AR AKAAKAAR AR AR AR AR AR AR AAAAKKAAKAAK AR K

!TAKE BOTH OPERANDS FROM IBOX

'ADD AND SAVE STATUS
'ALWAYS DELIVER A RESULT
'FIXUP IFF SW V

'MOST SIGNIFICANT WORD OF OPERAND A
IMOST SIGNIFICANT WORD OF OPERAND B
'LEAST SIGNIFICANT WORD OF OPERAND A-
ILEAST SIGNIFICANT WORD OF OPERAND B

ITAKE MOST SIGNIFICANT PARTS FIRST

ITAKE LEAST SIGNIFICANT PARTS
'ADD AND SAVE CARRY
'DELIVER LEAST SIGNIFICANT RESULT

'ADD

ISAVE STATUS

TALWAYS DELIVER A RESULT
'FIXUP IFF SW V
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'INC Q, INC H

E-Sequencer Micro-Code R | | A.IAI'

! ****************************‘************************f**************************

INC Q:

. 0PS(Z,2,2).
START QU HU;

OPS (4, 18,Z), TRANS (QW) ,
FA(A,Z,A+1),LOAD COND,
FIXUP SAVE(SW V,8);

OPS(IW,4,1A),
MERGE (QW) ,

OONE (ALWAYS) ,RESULT (ALUAYS),

FIXUP (REG,NEVER, INT OVFL);

'START QW HW INSTRUCTION

I TRANSLATE OPERANDS
'INCREMENT AND SAVE STATUS
'SAVE FIXP CONDITION

IMERGE QW INTO QUTPUT
IALWAYS DELIVER THIS RESULT
IFIXUP IFF OVFL

1 3ok RAAKARRAARIK KA AAARIARARARAARAAIIAKAAARAAKAKARAAKIKAKITIR K 4 A AR A ARk NN

INC H:

oPs(z,z,2),
START QU Hu;

OPS (4, 1B,2) , TRANS (HW) ,
FA(A,Z,A+1).LOAD COND.
FIXUP -SAVE (SW V,8) ;

OPS(IW,4,1A),
MERGE (HW) ,

DONE (ALWAYS) ,RESULT (ALWAYS) ,

FIXUP (REG,NEVER, INT OVFL)}

ISTART QW HU INSTRUCTION

!TRANSLATE OPERANDS
FINCREMENT AND SAVE STATUS
!SAVE FIXUP CONDITION

'MERGE HW INTO OUTPUT
!ALUAYS DELIVER THIS RESULT
'FIXUP IFF OVFL :
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'INC S, INCD

!*******************************************************************************

INC S:

OPS(IW,1A,7),TAKE A,
FA(A,Z,A+1),LOAD COND,

OONE (ALWAYS) ,RESULT (ALWAYS), . -
FIXUP(NO REG,SW V,INT OVFL);

1 33k KA AIRAAAK A ARAIAIAAA IR AR AKAKKIAAKAAHK AR AAIAAA KA AR AAK AR AN KK

“INC D:
%MS {isl -
%S (5]

OPS (LS, Z,MS), TAKE B;

opPs(z,Z,LS), TAKE B,
FA(Z,B,A+B+1),L0AD CO,
RESULT (ALWAYS) &

OPS(1W,MS, 2),

FA(A,B,A+8) ,FA SEL (SAVED CO),
LOAD COND,

DONE (ALLAYS) ,RESULT (ALUAYS) ,
FIXUP (NO REG,SW V, INT OVFL);

E-Sequencer Micro-Code

'USE ONLY OPERAND A :
PINCREMENT AND SAVE STATUS
YALWAYS DELIVER THIS RESULT
'FIXUP IFF SW V

IMOST SIGNIFICANT WORD
'LEAST SIGNIFICANT WORD

ITAKE MS AS THE B OPERAND

ITAKE LS AS THE B OPERAND
'INCREMENT LOW HALF AND SAVE CARRY
'ALWAYS DELIVER THIS RESULT

'USE THE SECOND HALF OF THE OPERAND

. 'ADD THE SAVED CARRY OUT

!SAVE THE STATUS
'ALWAYS DELIVER THIS RESULT
'FIXUP IFF OVFL



FADD FR S:

%SMALL  [4)
Z1A+1B 5] -
%POST - [6]
“PRE ' (8)
 4BOC (1}
LFFIX  [2)

0PS(Z, 1A, 1B), TAKE,

XBOX SEL (A EXP,B EXP,HOLD),XA(A-B),
EXP SUM PE=LOAD,

FIXUP INIT:

OPS (SMALL, IA, 1B), TRANS (FLOAT, FLOAT),

- PRE EN=1,SHIFT(Z,B,36-EXP SUM),ReSHIFT,

FIXUP SAVE (PRE V,PRE),
G. SEL=BZC,
BR(EXP N,FADD FR S A SMALL);

OPS (1A+1B, 1A, SMALL) , TRANS (FLOAT, FLOAT),

FA(A,B,A+B) ,FA SEL (GUARD),
G SEL=ADD,
XA(A) ,EXP SUM PE«LDAD;

FADD FR S JOIN:

UPS(POST 1A+18,2),
FLOAT SH POST(A Z, BOC)

FLOAT SW OUT(POST, FFIX FADD FR S FIX);
FADD FR S A SNALL'

OPS (1A+1B, SMALL, 1B) , TRANS (FLOAT,FLOAT),
FA(A,B,A+B),

XA (B} ,EXP SUM PE=LODAD,

G SEL-ADD, _

B (ALWAYS,FADD FR S JOIN); -

. 340 ) ’ E-Seq uencer Micro-Code ) All

ISMALLER OF A AND 1B
YINITIAL RESULT 1A+IB :
'RESULT OF POSTNORMAL I ZATION

'PRE OVERFLOW FIXUP REGISTER
IBAD ONES COUNT FIXUP REGISTER
IFLOAT FIX FIXUP REGISTER

" 'SUBTRACT EXPONENTS

ISAVE EXPONENT DIFFERENCE
VINITIALIZE FIXUP REGISTERS

'PRENORMAL I ZE SMALLER

'CHECK PRENORM OVERFLOW
!SAVE GUARD BITS
!BR ON EXP DIFFERENCE SIGN

'1B IS SMALLER

'ADD 1A AND 1B WITH GUARD BITS
!SAVE THE RECOMPUTED GUARD BITS
!SAVE THE LARGER EXPONENT

1COME HERE IN BOTH CASES

|POSTNORMAL | ZE

. 10UTPUT FLOATING RESULT POST

'1A IS SMALLER

'ADD A AND 1B

!SAVE THE LARGER EXPONENT
IRECOMPUTE GUARD BITS
'RETURN TO FINISH FADD



All E-Sequencer Micro-Code

OPS(Z, 1A, 1B), TAKE,

XBOX SEL (A EXP,B EXP HOLD), XA(A B)
EXP SuM PE:LOAD

FIXUP INIT;

OPS (SMALL, 1A, IB) TRANS(FLOAT FLOAT)
PRE EN=1, SHIFT(Z B, 36-EXP SUH) R«SHIFT

" FIXUP SAVE (PRE V.PRE),

G SEL=BZC,
BR(EXP N,FADD SR S A SNALL)-

'OPS(IA+IB.lA,SNALL)}TRANS(FLOAT.FLUAT),

FA(A,B,A+B) ,FA SEL (GUARD),
G SEL=ADD,

‘XA (A) ,EXP SUM PE=LOAD;

FADD SR S JOIN:

0PS (POST, 1A+1B,2), -
FLOAT SW POST (A, Z,80C);

OPS (ROUND, POST, 2) ,
FA(A,B,A+B) ,FA SEL(RNU) RND HODE=STABLE.
FIXUP SAVE (MANT V,RND V)

FLOAT SW OUT (ROUND,FFIX,FADD SR S FIX);
FADD SR S A SMALL:

OPS (1A+1B,SMALL, 1B}, TRANS (FLOAT,FLOAT) ,
FA(A,B, A+B)

XA(B) EXP SUM PE-LOAD.

G SEL<-ADD,

BR(ALWAYS,FADD FR S JOIN);

341

FADD SR S:

%SMALL - (4) ISMALLER OF 1A AND I8

%1A+1B (5] 'INITIAL RESULT 1A+1B

%POST (6] 'RESULT OF POSTNORMALIZATION
%ROUND (7] 'RESULT OF ROUNDING

%PRE (8] IPRE OVERFLOW FIXUP REGISTER
.%80C (1] IBAD ONES COUNT FIXUP REGISTER
%FFIX (2] IFLOAT FIX FIXUP REGISTER -
%RND V(3]

'ROUNDING OVERFLOW FIXUP REG

ISUBTRACT EXPONENTS
ISAVE EXPONENT DIFFERENCE
PINITIALIZE FIXUP REGISTERS

'PRENORMAL1ZE SMALLER
!CHECK PRENORM OVERFLOW
ISAVE GUARD BITS

!BR ON EXP DIFFERENCE SIGN

1B 1S SMALLER

'ADD 1A AND 1B WITH GUARD BITS
ISAVE THE RECOMPUTED GUARD BITS
ISAVE THE LARGER EXPONENT

ICOME HERE IN BOTH CASES

'POSTNORMAL 1 ZE

-'PERFORM STABLE ROUNUING

ICHECK ROUNDING OVERFLOW
I0UTPUT FLOATING RESULT ROUND

'T1A IS SHMALLER

'ADD IA AND IB

ISAVE THE LARGER EXPONENT -
'RECOMPUTE GUARD BITS
'RETURN 1O FINISH FADD
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FMULT FR S:
%MPCND (1A
MPYR  [1B)
¥PROD  [4)
%POST  [5)

. 9BOC )]
YFFIX (1)

OPS (Z,MPCND, MPYR) , TAKE
SHIFT(A,Z,Z) ,ReSHIFT,

Q MODE=LOAD,

XBOX SEL (A EXP,B EXP,HOLD),XA{A+B),

| .EXP SUM PE=LOAD;

OPS (PROD, MPCND, Z),

XBOX SEL (EXP SUM,SCNT/MC,MC) ,MC EXP=128,
XA (A-B) ,EXP SUM PE=LOAD,

LOAD REPT(5),

MULTIPLY; -

FMULT FR S L1:

OPS (PROD, MPCND, PROD) ,
MULTIPLY, .

BR NZ DEC(MC,FMULT FR S L1);

OPS.(POST,PROO, Z),
FLOAT SW POST(A,Q,B0C);

FLOAT SW OUT (POST,FFIX,FMULT FR S FIX);

'MULTIPLICAND

'MULTIPLIER

IPROBUCT REGISTER

'PRODUCT AFTER POSTNORMALIZE

IBAD ONES COUNT FIXUP REGISTER
IFLOAT FIX FIXUP REGISTER

'PUT MULTIPLIER ON SHIFTER OUT
'LOAD Q@ REGISTER WITH MULTIPLIER
'ADD EXPONENTS

ICORRECT EXPONENT SUM

ISET UP COUNTER
!D0 ONE MULTIPLY CYCLE HERE

'D0 ANOTHER MULTIPLY CYCLE'
'REPEAT MULTIPLY CYCLES

'POSTNORMALIZE A:Q
I0UTPUT FLOATING RESULT POST
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" FMULT SR St

SMPCND  (1A)

ZMPYR . {IB]
%PROD - [4)
%POST (5]
%ROUND 6]
%80C (@]
2FFIX . (1]
ZRND V3]

OPS (Z, MPCND, MPYR) , TAKE
SHIFT(A,Z,2), R«SHIFT

Q NODE=LUAD

XBOX SEL (A EXP B EXP,HOLD),XA(A+B),
EXP. SUM PE=LOAD

0PS (PROD, MPCND, 2},

XBOX SEL (EXP SUH, SCNT/MC,MC) , HC EXP=128,
XA (A-B) ,EXP SUM PE-LOAD, -

LOAD REPT(S).

MULTIPLY;

FMULT FR S L1:

0OPS (PROD, MPCND, PROD) ,
MULTIPLY,
BR NZ DEC(MC,FMULT SR S L1)

OPS(POST.PROD.Z),
FLOAT SW POST(A,Q,BOC);

OPS (ROUND, POST, Z2) ,
FA(A,B,A+B),FA SEL(RND) RND MODE=STABLE,
FIXUP. SAVE (MANT V,RND V)'

FLOAT SW OUT (ROUND,FFIX,FMULT SR S FIX);

'MULTIPLICAND

IMULTIPLIER

'PRODUCT REGISTER

'PRODUCT AFTER POSTNORMALIZE
'RESULT OF ROUNDING

IBAD ONES COUNT FIXUP REGISTER

IFLOAT FIX FIXUP REGISTER
YROUNDING OVERFLOW FIXUP REG

'PUT MULTIPLIER ON SHIFTER OUT
ILOAD Q REGISTER WITH MULTIPLIER
'ADD EXPONENTS

ICORRECT EXPONENT SUM

!SET UP COUNTER
'D0 ONE MULTIPLY CYCLE HERE

'00 ANOTHER MULTIPLY CYCLE
'REPEAT MULTIPLY CYCLES
'POSTNORMALIZE A:Q
'PERFORM STABLE ROUNDING

!CHECK ROUNDING OVERFLOW
I0UTPUT FLOATING RESULT ROUND
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'INC (SKIP,JumMP), DEC (SKIP,JUMP)

E-Sequencer Micro-Code All

!*******************************************************************************

INC (SKIP,JUMP):

0PS (4, 1A,2), TAKE,
LOAD CONTROL,
FA(A,B,A+l),
RESULT (ALWAYS)

oPsS (1W,4,18B),
.FA(A,B,A-B),
LOAD COND,

TEST WRONG BRANCH=EN,
DONE(SW V L);

'BR(ALWAYS, INT OVFL);

D RAHAAAIAKIAAAAARAAAAAKAAKAAAARAAAARIAARAAAAAAAAAKAAAAAAAIAAAAAKAAAKAIAARAAAK KA K

DEC (SKIP, JUMP):

OPS(4,1A,7Z), TAKE,
LOAD CONTROL,
FA(A,B,A-1),
RESULT (ALWAYS) ;

OPS(1U,4,18B),
FA(A,B,A-B),

LOAD COND,

TEST WRONG BRANCH=EN,
DONE(SW V L)

BR (ALWAYS, INT OVFL);

ITAKE OP1 AS A OPERAND
!SAVE BRANCH CONDITION ETC
'INCREMENT OP1

'ALWAYS DELIVER OP1+1

ICOMPARE OP1+1 WITH OP2

ITEST WRONG BRANCH
IDONE IFF NOT OVFL

INOT OONE SO GO TO OVERFLOW.

!TAKE OP1 AS A OPERAND
ISAVE BRANCH CONDITION ETC
IDECREMENT OP1

- JALWAYS DELIVER OP1-1

ICOMPARE OP1-1 WITH OP2

ITEST WRONG BRANCH
'DONE IFF NOT OVFL

INOT DONE SO GO TO OVERFLOW
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ISKIP @, SKIP H, SKIP S, SKIP D

1 AR AAAKAAAKAAKAAAAAKARIAKIAAK A AKIAAKIKAKKAAAKAK I AK KA A AR

SKIP Q:

opPstz,2,2), IRECEIVE QW OPERANDS
START au Hu- ‘ .

OPS(IU 1A, 1B}, TRANS(QU) ITRANSLATE QW OPERANDS -
FA(A,B.A-B), ICOMPARE

TEST WRONG BRANCH:EN 'TEST WRONG BRANCH

* DONE (ALWAYS) ‘ ' INO RESULT

1AM KA AKAKAAKAARAIAAKAAA AR KIKAIKAK KKK AR A A KA AKAA K

SKIP H:
0PS(2,2,2), IRECEIVE HW OPERANDS
START QW HU; .

OPS(IW, 1A, 1B), TRANS(HH), _ ITRANSLATE HU OPERANDS
FA(A,B,A-B), | COMPARE .
TEST WRONG BRANCH=EN, ITEST WRONG BRANCH
DONE (ALWAYS); - INO RESULT

!************************************#**********#*******************************, :

SKIP S:

0PS(IuW, IA, 1B}, TAKE, ITAKE BOTH OPERANDS

LOAD CONTROL, 'LOAD BRANCH CONDITION ETC.
FA(A,B,A-B), ‘ 'COMPARE . .

TEST WRONG BRANCH=EN, 'TEST WRONG BRANCH

" DONE (ALWAYS) ; - ' . INO RESULT

!*******************************************************************************

.SKIP D:

%MSA (1Al IMOST SIGNIFICANT WORD OF OPERAND A
%MSB [1B) IMOST SIGNIFICANT WORD OF OPERAND B
%LSA (1c) ILEAST SIGNIFICANT WORD OF OPERAND A
%LS8 (D) ILEAST SIGNIFICANT WORD OF OPERAND B

'TAKE MOST SIGNIFICANT PARTS FIRST
'LOAD BRANCH CONDITION ETC.

ITAKE LEAST SIGNIFICANT PARTS
ISUBTRACT AND SAVE CARRY

OPS (LSA, MSA, MSB) , TAKE,
LOAD CONTROL;

0PS (6,LSA,LSB), TAKE,
FA(A,B,A-B),LDAD CO;

OPS (11, MSA, MSB).,

FA(A,B,A-B),FA SEL (SAVED CoOJ,

TEST WRONG BRANCH=EN,
OONE (ALWAYS) ;. -

ISUBTRACT
ITEST WRONG BRANCH
'ALWAYS DELIVER A RESULT
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'AND SKIP (Z,NZ) Q, AND SKIP (Z,NZ) H, AND SKIP (Z,NZ) S
!****w************#*Sk*********************W******w********w********m*myw :

AND SKIP (Z,N2) Q:. _
' 0PS(z,Z,2), : 'RECEIVE QW OPERANDS

- START QW Hu;
OPS (1UW, 1A, iB), TRANS (QW), : !TRANSLATE QI OPERANDS
FA(A,B,A AND B), 'AND THE OPERANDS
LOAD COND,
TEST WRONG BRANCH=EN, : 'TEST WRONG BRANCH
DONE (ALWAYS) 3 . - INO RESULT

!***************i***************************************************************

AND SKIP (Z,NZ) H:

0PS (2,2,2), P IRECEIVE HW OPERANDS
START QW HI; ‘ -

_.OPS(IW, 1A, 1B), TRANS (HW) , I TRANSLATE HW OPERANDS
FA(A,B,A AND B), IAND THE OPERANDS
L OAD COND, . :
TEST WRONG BRANCH-EN, ITEST WRONG BRANCH
DONE (ALWAYS) ; INO RESULT

1 okek K AKAK KKK AR KK AR KA AAAKAAAAK AR KA AR AR KKK AKIORAK KA IAAKAAK KA AR A K AR A

"AND SKIP (Z,NZ) S: .
OPS (1U, 1A, 1B), TAKE, : I TAKE BOTH OPERANDS

1 NAD CONTROL, ILOAD BRANCH CONDITION ETC.
FA(A,B,A AND B}, IAND THE OPERANDS

.LOAD COND, )

TEST WRONG BRANCHZ=EN, ITEST WRONG BRANCH

- DONE (ALWAYS); . _ . "IND RESULT

1



A

All
AND SKIP Z D:
2MSA  LIA)
M5B (IB) -
2LSA  [IC]
2S8  {10]

OPS (LSA, MSA, 1SB) , TAKE,
LOAD CUNTRUL
FA(A,B,A AND‘B):

0PS (6,LSA,LSB), TAKE,
FA(A,B,A AND B),
BR(SW Z,AND SKIP Z D L1);

oPS(IUW,Z,7),

FA(A,B, MINUS ONE),
LOAD COND, ;
TEST WRONG BRANCH=EN.<
OONE (ALWAYS) ¢

AND SKIP Z D L1:

0PS (IW,6,2),
FA(A,B,A), _
LOAD COND, - '
TEST -LIRONG BRANCH:EN
DONE (ALWAYS) ;

E-Sequencer Micro-Code - 347

IMOST SIGNIFICANT WORD OF OPERAND A -
'MOST SIGNIFICANT WORD OF OPERAND B

ILEAST SIGNIFICANT WORD OF OPERAND A
ILEAST SIGNIFICANT WORD OF OPERAND B

ITAKE MOST SIGNIFICANT PARTS FIRST

'LOAD BRANCH CONDITION ETC.
'AND THE MOST SIGNIFICANT PARTS NOW

'TAKE LEAST SIGNIFICANT PARTS
IAND THE LEAST SIGNIFICANT PARTS

- IBRANCH IF (MSA AND MSB) =8

fPUT A'NON-ZERO OUTPUT ON THE FA

'TEST WRONG BRANCH
INO RESULT

- 1{MSA AND MSB) =0

'READ BACK (LSA AND LSB)
IPUT OUT (LSA AND LSB) ON THE FA

!TEST WRONG BRANCH

.INO RESULT
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AND SKIP NZ D:

#%MSA (1A}
%*MSB (18)
%L SA {1C)
%LSB (10}

OPS (LSA,MSA,MSB) , TAKE,
LOAD CONTROL
FA(A,B,A AND B);

OPS (6,L5A,LSB), TAKE,
FA(A,B,A AND B),
BR(SW Z L,AND SKIP NZ D L1);

opPs(iuW,Z,2),
FA(A,B,ZERO), 4
LOAD COND,

TEST WRONG BRANCH= EN,
DONE (ALWAYS) 5

 AND SKIP NZ D L1:

OPS(1UW,6,2),
FA(A,B,A),

LOAD COND,

TEST WRONG BRANCH=EN,
~ DONE (ALWAYS) 3

E-Sequencer Micro-Code All

'MOST SIGNIFICANT WORD OF OPERAND A
'MOST SIGNIFICANT WORD OF OPERAND B
'LEAST SIGNIFICANT WORD OF OPERAND A

'LEAST SIGNIFICANT WORD OF OPERAND B

'TAKE MOST SlGNIFICANT PARTS FIRST
ILOAD BRANCH CONDITION ETC.

'AND THE MOST SIGNIFICANT PARTS NOW
'TAKE LEAST SIGNIFICANT PARTS

IAND THE LEAST SIGNIFICANT PARTS
'BRANCH IF (MSA AND MSB) =8

'PUT A ZERO OUTPUT ON THE FA

ITEST WRONG BRANCH
INO RESULT

I (MSA AND MSB) =8
IREAD BACK (LSA AND LSB)

IPUT OUT (LSA AND LSB) ON THE FA

ITEST WRONG BRANCH
IND RESULT

@



All : - " E-Sequencer Micro-Code : - 349

~ ISHIFT LEFT L Q, SHIFT LEFT L'H

!*****ﬁ*****************}**********#********************************************

SHIFT LEFT L Q:

- %0 (1A}

%SCNT 18]

0PsS(2,2,2),
START QU HU;

OPS (4,0, SCNT), TRANS (QW)
SHIFT(A,Z,B QU3), ‘
TEST BOUNDS(9),FIX SAVE(SW IN BOUNDS, @) ;

- OPS(1W,4,2),

MERGE (QUW) , 4
DONE (ALWAYS) ,RESULT(NO FIX),
F IXUP (REG, NEVER, SW LOGIC ZERO);

IDATA :
ISHIFT COUNT

ISHIFT DATA
ISAVE 9>SCNT28 IN FIX REG 0 °

'MERGE QW INTO R ,
'DELIVER RESULT IFF NO FIX
IFIXUP IFF SCNT NOT IN BOUNDS

1 ook ok KoKk KKK AKIRAAKAACK AR AAAKARAAA KA IAAAAAK AR AAAKAAAK KK AAKAK AR KA A K

SHIFT LEFT L H:

PO (1A
%SCNT  [1B)

0pPs(z,z,2),

- START QW HW;
- OPS(4,D,SCNT), TRANS (HW)

SHIFT(A,Z,B QU3),
TEST BOUNDS (18),FIX SAVE (SW IN BOUNDS, 8);

OPS(1U,4,2),

MERGE (HW),” -
DONE (ALWAYS) ,RESULT(NO FIX),
F IXUP(REG,NEVER, SW LOGIC ZERD)

IDATA
ISHIFT COUNT.

ISHIFT DATA :
ISAVE 9>SCNT208 IN FIX REG @

IMERGE HUW INTO R
'DELIVER RESULT IFF NO FIX
'FIXUP IFF SCNT NOT IN BOUNDS
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ISHIFT LEFT L S, SHIFT LEFT L D
1 SHRIAARAAAKAAA AR AR AKAAAIAKIRIAARAAARAAAAARAKAAKK KA AAAAAAAAAAAAKAAKIAARAAAKAAAK A KKK

SHIFT LEFT L S:

%0 (1A) _ IDATA
%SCNT (181 , ISHIFT COUNT
OPS (IW,D,SCNT), TAKE,
SHIFT(A,Z,8 QW3), 'SHIFT DATA
. DONE (ALWAYS) ,RESULT (NO FIX), : 'DELIVER RESULT IFF NO FIX
TEST BOUNDS (36), 'TEST 36>SCNT20
FIXUP (SW IN BOUNDS,SW LOGIC ZERO); _ ' 'FIXUP IFF SCNT NOT IN BOUNDS

1 3k AR A AAHORA KA IARIARIRARAAKAKAKARAAK A IRAIAAKIAAA KA KA KA A AN

" SHIFT LEFT L D:

%08 Al } , ~ 'DATA WORD 8 (MOST SIGNIFICANT)
%SCNT  [1B] - ISHIFT COUNT <
%01 [ic ‘ IDATA WORD 1 (LEAST SIGNIFICANT)
%085 [5) . 108 SHIFTED -
OPS(D1,Z,18), TAKE, . IPREPARE TO ACCEPT IC

TEST BOUNDS(72), ITEST 72>SCNT>@

LOAD BYTE PTR; a ISAVE SCNT FOR LATER

OPS (D@S,D1,2), TAKE A, 4 IACCEPT IC

SHIFT(D1,Z,B GU3), ICREATE LOW ORDER WORD .
BR(SW_IN BOUNDS L,DW LOGIC ZERO), IGIVE ZERO IF SCNT NOT IN BOUND
RESULT (NO BRANCH) ;- . 'RESULT IFF SCNT IN BOUNDS -
OPS (1W,D8,01), ~ ISCNT IS IN BOUNDS

SHIFT (D8,D1,C2@ B QU3), ICREATE HIGH ORDER WORD

OONE (ALWAYS) , RESUL T ({ALWAYS) ; 'ALWAYS DELIVER A RESULT

)

"I

-



.
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'LBYTE, DBYTE

!******************************************************************************* :

LBYTE:
%BW [1A)
"%BP - [lB]

OPS (4, BN BP), TAKE,

~SHIFT(A Z B BYTE POS).R«SHIFT;

OPS(1U, 4,BP), '
SHIFT(Z,A,B BYTE LEN),ReSHIFT,
DONE (ALWAYS) , RESULT (ALWAYS) ;

IBYTE WORD
IBYTE LEN, BYTE POS

'LEFT JUSTIFY BYTE

'SHIFT BYTE INTO RESULT WORD

YALWAYS DELIVER RESULT

!*******************************************************************************

DBYTE:
%O (1A
%BP (gl

%*BW (4]

0PS (6, DU, BP) TAKE,
SHIFT(A A,B BYTE POS) ReSHIFT,
LOAD BYTE PTRy

0PS(5,6,8P),
SHIFT(A,A,B BYTE LEN),RSHIFT;

0PS(7,4,5),TAKE A,
SHIFT(A,B, 36 €28 BYTE LEN) ReSHIFT;

oPS (1U,7,2),
SHIFT(A,A,36-C28 BYTE POS),R«SHIFT,
DONE (ALWAYS) , RESULT (ALUAYS) ;

'DESTINATION WORD = T:E:B
IBYTE LEN, BYTE POS
'BYTE WORD = C:D:X

'X=E, D=7, C=B

ISET UP TO ACCEPT D

IR6 « E:B:T -

1LOAD BYTE PTR REG FOR LATER
IRS « B:T:E

'R4 « BYTE WORD C:D:X

IR7 « X:B:T

IRESULT « T:X1B
'ALWAYS DELIVER A RESULT
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'LBYTE INC:
%BU (1A
%BP tigl
%BL (4]
%BA  [5]
%LR (6]
INBP (7]
%71 - (8]
%72 I
273 [10)
"UNBA - [11]

OPS (LR, BW,BP) , TAKE,

SHIFT(A,Z,B BYTE POS),ReSHIFT;

OPS(LR,LR,BP),

SHIFT(Z,A,B BYTE LEN) ,R<SHIFT,

RESULT(ALNAYS)
OPS(BL,Z,BP),

SHIFT(Z,B,MC),MC SHIFT=27,

FA(Z,B.Z2) ,MERGE QW3=1;
OPS(T1,BL,BP), TAKE B,

CSA (Ax2,Z,B) ,FA(B CO,S,A+B);

oPS(72,2,T1),
FA(MC,B, A-B) ,MC=36;

OPS (NBP, BL,BP),
FA(A,B,A+B), "
BR(SW N,BYTE POS OVFL) 5

OPS(NBP NBP,BP),

SHIFT(A,Z, Z) FA(Z B,B),MERGE QW3-1,

REQULT(ALNAYS)

OPS(1U,BA,2),
FA(A,B,A)

DONE (ALWAYS) , RESUL T (ALWAYS) ;
BYTE POS OVFL:

OPS(NBP Z,8P),

- SHIFT(Z,2,2), FA(Z B,B), NERGE OU3=1 A
RESULT(ALNAYS)

OPS(TB.BA.Z).

SHIFT(A,A,MC) ,MC SHIFT=6,ReSHIFT;

OPS (NBA, Z,T3),
FA(MC,B,A+B) ,HC=256;

OPS (1W,NBA,NBA),

SHIFT(A B,MC), MC SHIFT= 36, R«SH]FT
BONE (5U'V L) RESULI(ALNAYbI.

ops(iu,z,?2),

E-Sequencer Micro-Code

'DATA WORD

'BYTE LEN, BYTE POS

IBYTE LEN

!BYTE POINTER ADDRESS
ILBYTE RESULT

INEW BYTE POINTER
IPOS+2+LEN

136-POS+2xLEN

'BA ROTATED LEFT 6

INEW BYTE POINTER ADDRESS

!BEGIN LBYTE INTO LR
ILEFT JUSTIFY BYTE -

ISHIFT BYTE INTO LR
'ALWAYS DELIVER A RESULT

'ALIGN BYTE LENGTH AS QW3

ICLEAR QWB, W1, QW2 |
IBA « BYTE. POINTER ADDRESS
IT1 « POS+2+LEN

172 « 36-POS+24LEN

INBP « POS+LEN
'BR IF POS+2xLEN>36

'MERGE POS+LEN INTO BP QU3
'AND DELIVER NEW BYTE PTR

IPASS BACK ADDRESS UNCHANGED

'BYTE POSITION OVERFLOW

'MERGE @ INTO BYTE POS QW
IDELIVER NEW BYTE PTR

IROTATE BA TO LEFT JUSTIFY
1ADD 4 TO BA

'ROTATE NEW ADDRESS

All

_!PASS ADDRESS. DONE IFF NOT OVFL

N

n



All

FA(MC,B,A) ,MC=BYTE PTR TRAP,
DONE (ALWAYS) , TRAP; -,

E-Sequencer Micro-Code

|ADDRESS OVERFLOW. TRAP.

353



- 354
MSBIT:
%20 [1A) . !DATA
%8P [IB]  !BYTE LEN,BYTE POS

OPS (4.D,BP) , TAKE,
SHIFT(A.Z,BYTE POS),ReSHIFT;

0PS (5,4,2),
FA(A,B,A+Q),
MM SEL=12C;

OPS(IW,5,2),
FA(A,B, A+1)
DONE (SW N L) RESULT(DONE)°

oPS(1W,Z,2),
FA(Z,B, A)
DONE(ALUAYS) RESULT(ALNAYS)

'E-Sequencer Micro-Code . . All

ILEFT JUSTIFY BYTE IN DATA WORD *

ISET UP TO TEST BYTE SIGN

-1RS « 1ZC

VINCREMENT 12C

1IF BYTE28 THEN DELIVER 1ZC+1
. IBYTE<® ' '
IDELIVER @ RESULT
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