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FOREWORD 

This is an account of research work in advanced programmable , 

digital filter network technology performed during the latter part of 

FY76 and FY76T by the Special Studies Group of the LLL Physics Department 

for the Office of Naval Research, under ONR Order #N00014-76-F~0023, along 

the lines specified in LLL Phys. Prop. 76-101, which was submitted to ONR 

in March 1976. This document reports satisfactory completion of all the 

items of this proposal's Work Stateme!lt, and the successful accomplishment 

··.of additional, related tasks which position this research. project to 

maintain a very aggressive pace in FY77, given adequate funding. 

The work reported herein was performed by Harlan Lau, Richard 

McWilliams, Thomas McWilliams, Joseph Simpson, Lawrence C. Widdoes, Jr., 

and Lowell Wood, of the Special Studies Group, with research sub-contact 

assistance from Paul Levine and Kottappuram Mohiuddin of Stanford 

University's Electrical Engineering and Computer Science Departments, 

supervised by Professor Forest Baskett. 

"This document is an account of work sponsored by the U. S. Government. 

Neither the United States, nor the· United States Energy Research and 

Development Administration nor the United States Navy, nor any of their 

employees, nor any of their contractors, subcontractors, or their 

employees, makes any warranty, express or implied, or assumes.any liability 

or responsibility for the accuracy, completeness or usefulness of any 

information, apparatus, product or process disclosed, or represents that 

its use would not infringe privately owned rights. 

"This report is u.nclassified, and its distribution is unlimited. 

Its reproduction or other use for any purpo'se of the U. S. Government is 

authorized." 
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1. Introduction 

This report describes the design of an extremely high performance programmable digital filter of 
novel architecture, the LLL Programmable Digital Filter (LLL Filter) . 

Essentially all of the perceived Navy requirements for advanced digital processing systems may be 
effectively addressed with parallel processing systems, in which relatively independent processing 
units work in parallel on portions or sub-divisions of the entire problem, exchanging information 
with each other during the course of processing. This Is the case whether one is concerned 

Nprimarily with fleet defense (in which various processors might provide local control and 
,%';) monitoring of sensors or weapons systems while sharing information with each other on the time­
~ varying aspects of attack and defense parameter spaces, both within single ships and between 

them), with SOSUS (in wh.ich each hydrophone array might have its own powerful processing 
unit exchanging filtered information with essentially identical units in all other stations 
monitoring a common region of the ocean, for coherent processing techniques such as aperture 
synthesis, or for accuracy enhancement or reliability purposes), or weather prediction (in which 
each processor might handle meteorological data acquisition and time-advanced extrapolation for 
its own, relatively small section of the simulated air-ocean envelope, exchanging interface 
condition information with those of its fellow processors responsible for adjacent sections). 

Moreover, the enormous demands on digital processing power which Navy requirements, of which 
the foregoing are only examples, impose on modern digital processing technology appear to be 
most fully satisfied in the foreseeable future only by extensive use of parallel ptocessing techniques 
and hardware. The doubling time for raw processing power from single processing unit 
superprocessors (for example,' the CDC 6600/7600 series) has been incre<lsing steadily over the last 
decade, and presently appears to be more than 4 years, a sharp contrast to the 1.5 year figure 
character'istic of t_he late 50s and early 60s. Parallel processing systems, on the other hand, are 
capable of indefinitely great extension. in raw processing power with essentially zero technological 
risk and time lag, and moreover, with advance knowledge of system performance and thus cost­
effecti veness 

. . 
We have therefore undertaken to· determine the optimal structure of a parallel processing system 
for addressing the specific Navy application centering on the advanced digital filtering of passive 
acoustic ASW data of the type obtained from the SOSUS net. 



2 Introduction I.I 

1.1 Advantages of Parallel Processors · 

For problems which involve algorithms amenable to parallel processing ([Amdahl 1967), 
[Ball 1962], [Carroll 196 7), [Flynn 1966), [Katz 1970)), parallel architectures can offer 
certain major advantages over sequential architectures. The advantages result from the 
modularity inherent in parallel architectures. These advantages can be categorized as advantages. 
of reliability, economy, and size. 

The advantage of reliability has been discussed extensively (for example, see [Barker 1975] or 
[Hamer-Hodges 1973)); failure of a single module may not entail failure of the entire system if 
the module failure can be detected and the module replaced by a duplicate under program control. 

Of primary importance among the advantages of economy are the economies of scale in the 
construction phase; by repeating the construction of a single processing element many times, the 
total cost per processing element may be greatly reduced. 

A second economy of scale comes in the design phase. Theoretically, the design cost per processing 
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real 
parallel processor must include some design costs per processing element which grow as the 
number of processing elements is increased, but these costs may be negligible. 

A third important economy has been overlooked in previous parallel processor design efforts; it is 
the potentially reduced time lag between the freezing of the system design and the delivery of the 
first operational system. A !though this time lag may include both hardware and software 
contributions, the software contribution will be neglected in this analysis. Essentially, by 
replicating a relatively simple processing element many times and using a regular interconnection 
network, the lag time mentioned can be made very small; it is virtually independent of the 
processing power of the total system. As a result, the semiconductor technology used in a properly 
designed parallel processor can be nearly state-of-the-art, whereas the technology used in a more . 
complex processing structure must be considerably more out of date. This time-lag phenomenon 
will continue to seriously degrade the cost-effectiveness of delivered complex systems as long as 
advancing semiconductor technology continues to provide exponentially more cost-effective 
c;omponents, but may be essentially eliminated in advanced parallel processing systems. 

One additional economy has also been overlooked in the past; this economy results from the 
freedom of the parallel processor designer to choose the most cost-effective processing element 
structure independent of the processing power of the element. Cost-effectiveness of sequential 
processor structures is not constant over all levels of processing power. Although the specific 
shape of the cost-effectiveness curve depends upon the technology available and upon the 
characteristics of the· target problem domain, for any specific technology and problem domain the 
cost-effectiveness curve has a finite number of broad maxima. Because the design of a digital 
processing system must be aimed not only toward maximum cost-effectiveness, but toward some 
minimum processing power, designers of single processor sequential systems have not been able to 
utilize structures with possibly higher cost effectiveness but lower processing power. On the other 
hand, the designer of a parallel processor may be able to achieve a total cost-effectiveness which 
is nearly the same as the cost-effectiveness of the processing element, and since the processing 
element may not be constrained to have a large minimum processing power, to achieve higher 
total cost-effectiveness. 

Independent of these economic advantages is the advantage of size; regardless of whether it is 
economically feasible to build increasingly powerful sequential systems, at some point it becomes 
physically impossible (with state-of-the-art technology) to build these machines. It can be argued . 

/ 
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1.1 Introduction 

that sequential systems of almost arbitrary speed can be built given enough _resources, and so the 
advantage of size reduces to the advantage of economy. However, from a practical viewpoint, at 
some point the cost of a sequential system increases so rapidly with speed that this argument is 
moot, and in addition, there are theoretical limits both in physics _and mathematics to the speed of 
sequential machines, and these limits do not apply to paratlel processors working in appropriate 
problem domains. This advantage of par:atlel processor structures is important because for the 
forseeable future it will be desirable to build systems with more total processing power; numerical 
weather prediction with its real-time constraints is an obvious example. 

These arguments about the. advantages of paratlel processors are applicable without modification 
orily if the target problem domain can utilize with high efficiency each processor in a parattel 
processor system of arbitrary size. The suitability of various problems for paratlel processing has 
been the subject of much academic contention ([Amdahl 196 7), [Flynn 1966], 
[Minsky 1971 ]). Unfortunately, only · a few paratlel architectures have proven economicalty 
viable, so there has been little impetus to develop new algorithms for exotic paraltel machine 
architectures. We believe that the computational simulations of niany large physical problems, for 
example, the optimal SOSUS digital filtering. problem, are so welt-suited for parallel processor · 
architectures and so important, that any one such simulation alone is sufficient justification for 
the intensive development of such digital processing technology . 

• 
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2. System Overview. 

The LLL Programmable Digital Filter consists of high-performance processors that execute 
independent instruction streams and access a common main memory via a crossbar interconnection 
network (crossbar). A 11 of main memory is uniformly accessible by every processor. 

The crossbar arbitrates access by all processors to 16 block. storage modules (BSMs) which are 
interleaved on either the most significant or the least significant address bits (manually selectable). 
Ignoring conflicts, approximately I micro-second is required to accomplish a memory read of four 
36-bil words. 

The · crossbar contains facilities for logically disconnecting (amputating) any processor .. 
. Amputation of processor Pi can be invoked by any other processor P1• In order to prevenf · 

processors, errant due to either hardware or software reasons, from performing spurious 
amputations, an amputator must, by convention, pass elaborate software correctness tests (which 
will involve confirmation by other pr~~essors). 

·The programmable digital filter has been optimized to include 16 processors. Each processor 
contains a novel dual cache, which buffers the interconnection network against processor accesses. 
to instructions and local variables. Processors do not have local memory. No connections exist 
between processors except through the crossbar. 

Interprocessor communication takes place in main memory; memory management hardware allows 
protection of interprocessor communication. Interprocessor synchronization is accomplished by a 
combination of primitive mechanisms including interrupts, which can be sent from any processor 
to any one other processor over the crossbar, special mutual exclusion hardware, which is 
addressed as memory, read-modify-write capability in the crossbar, and special memory access 
modes (specified in the virtual-to-real map) which force some memory accesses to bypass the 
cac:hes: · 

An extremely high-le.vel instruction set improves the indivic;iual ·processor performance by 
reducing the number of instructions which nee~ to be executed. Furthermore, natural addressing 
modes are complex, and therefore the processor implementation separates addressing and 
execution into three . parallel micro-processors. The instruction set is horizontally micro­
programmed in writeable control store, and can therefore be extensively modified to reduce 
execution time and code size for specific applications. 

A large virtual memory space is provided in order to allow the architecture and software to 
remain fixed while memory costs decline and real memory size increases. 

2.1 System Configuration 
.. 

Figure 2.1-1 shows an overview of the LLL Programmable Digital Filter. 

Mai_n memory is divided into a· number of block. storage modules (BSMs) that can be 
simultaneou~ly and independently accessed by any of the processors. When two or more 
processors demand access to any one BSM, memory contention logic establishes a queue. The 
queueing discipline is such that no processor can access a given memory BSM twice before a 
processor desiring to access that BSM is allowed to access it once. 

Each processor communicates with the crossbar over two unidirectional 25-bit cables. The 

• 
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2.1 System Overview 5· 

crossbar communicates _with memory over two unidirection~l 50-bit cabJes. Internally, the crossbar 
switch is 25 bits serial in each direction. · 

Main memory provides a path for interprocessor communication. Interprocessor synchronization 
is accomplished by means of munch registers, which appear as memory locations, hardware 
queues, which are accessed as memory locations, read-modify-write capability in the crossbar, and 
inter-processor interrupts. Interrupt requests are .sent through the crossbar and are handled by 
the interrupt controllers. Whenever a processor is interrupted by its associated interrupt 
controller, it performs memory accesses to determine the nature of the interrupt. 

Input/output is accomplished in two ways. For low speed 1/0 devices such as terminals, data is 
transferred by the writing and reading of the 1/0 control words, which are addressed as memory, 
and are located in the various memory controllers. Each low-speed 1/0 device is attached to some 
specific interrupt controller, and thus can interrupt one processor. The interrupted processor may 
then forward the interrupt. High-speed 1/0 devices (for example, disks) are handled by a direct 
memory access (OMA) port, which communicates with main memory in the same way as all the 
processors do. 

We summarize the the major characteristics of the system architecture as follows: 

Multiple (IG) identical processors execute independent instruction streams. 

Every processing element can uniformly address all system memory through a (25-
bit serial) crossbar switch. 

Each processing e.le.ment has dual private caches to reduce contention for main 
memo.ry, to reduce average memory access time, and to insure that system 
performance does not seriously degrade as more processing elements (and 
.theref o~e a bigger and slower interconnection network) are added . 

.Each processing element can direct an interrupt to any other processing element. 

Munch registers, hardware queues, and read-modify-write memory capability are 
available for synchronization. 

The virtual-to-real memory maps include access mode bits which allow efficient 
sharing of data and instructions . 
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2~2 System Overview 7 

2.2 Processor Organization 

The processors shown in Figure 2.1-1 are complete Mgh-performance computing elements which 
could be used in either a uniprocessor or multiprocessor configuration; they are extremely cost 
effective in either environment. 

The processor ·architecture and design are described in Section 3 and Section 
4. The basic processor organization is shown in Figure 2.2-.1. 

Each processor has dual high-speed caches; one contains only instructions, and the other contains 
data. Writes ordinarily do not update main memory, but affect only the caches {see Section 

' 3.1 and Section 3.3 for full detail). 

A virtual-to-real address map in each processor translates addresses generate? by instructions into 
addresses used by the hardware, and also defines access modes for memory pages. A page can be 
tagged as not cacheable, in which case it is never placed in the cache, and all writes to the page 
then write through to main memory. · 

The Instruction Box (IBOX) contains a .general-purpose micro-programmed sequencer, which 
executes out of writeable control store. The IBOX performs all ·operations required to decode 
instructions and fetch operands. In particular, the IBOX performs the virtual to physical ac:ldress 
translation, implements the various memory access modes, handles communication with the 
crossbar, and fields interprocessor interrupts. 

The IBOX also controls the Execution Box (EBOX). The EBOX performs all arithmetic and 
logical operations except those involved in addressing. The organization of the EBOX is similar 
to that of the IBOX; it contains a micro-programmed controller and internal registers. The 
EBOX is designed for high-speed floating point arithmetic; its floating point algorithms allow 
three rounding modes; true stable rounding, ceili~g rounding, and floor rounding . 

• 
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3. Proce~sor Architecture 

We summarize the processor's major architectural features as follows: 

• 

A very large (228 word) virtual address space to allow each processor to uniformly 
address any system memory of feasible size in the forseeable future. 

Efficient mechanisms for allowing the execut.ive to communicate with user 
processes. 

A high-level instruction set ideally suited for compilers . 

An instruction set specifically tailored to reduce the frequency of pipeline 
interlocks in a high-performance implementation. 

The capability to perform three-operand instructions through the use of a unique 
"T-field" descriptor. ··. · · 

Comprehensive floating-point capability, including three rounding modes and the 
option to trap on excess pre- or post-normalization. 

The capability to. directly perform operations on operands of 4 precisions: 
quarter-word, half-word, single-word, and double-word. 

Special instructions for dealing with the multiprocessor environment. 

9 

Certain processor implementation details are included in this section for clarity; processor 
implementation ·is fully described in Section i. 

3.1 Caches 

Each processor has a private cache; this cache reduces memory contention and reduces access time 
for areas of locality, thereby lowering the performance requirements for the switching network 
and main memory. 

The cache is implemented in two parts; the irr.struction cache, and the data cache. Both caches can 
be reC1d simultC1neously, allowing instructions represeptable in one word, requiring only one 
execution cycle, and having at most one memory operand to be executed continuously at a rate of 
one instruction per cache cycle (approximately 100 nano-seconds}; the instruction set has l?een 
optimized so that instructions of this type predominate dynamically. Each cache is set-associative, 
with a set size of 4 and a capacity of iK words (IK lines of 4 words each). 

The instruction cache retains only locations accessed as instructions, and the data cache retains 
locations accessed as operands of an instruction. (Note, that instruction words may be accessed as 
data.} The hardware insures that no memory word is contained in both caches as follows: 
Instructions are always fetched from· the instruction cache. If a necessary imtruction is not 
resident in the instruction cache, the.n a 4-word line is fetched from the data cache or memory, in 
that priority, and is evicted from the data cache. If the line was marked as having been altered in 
the data cache, then it is written out to memory. The instniction cache contains no mark bit; 
writes and data reads always access the data cache. If a necessary data line is not resident in the 
data cache, then it is fetched from the instruction cache or memory, in that 
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priority, and is evicted from the instruction cache. This discipline insures that no.memory word is 
contai11ed in both caches simultaneously, with the disadvantage that it forces slow transitions 
between writing and executing or executing and writing any block of instructions. 

The cache uses physical addresses to tag entries, allowing the software to switch virtual address 
spaces without sweeping the cache, and eliminating the problem of clogging the cache with 
multiple copies of shared read-only data. 

For communication or synchronization reasons, it will be necessary at times to insure that certain 
variables are not present in the cache of a specific processor. Access modes may serve this 
purpose, as described in Section 3.3, but in addition two special instructions are 
provided: The instruction "KILL DATA V,L" sweeps the data cache, writing to memory (if 
marked) and invalidating every entry which has a virtual address U such that V:sU:sV+L-1 (Lis 
assumed to be a count of quarter-words). The instruction "KILL INSTR V.L" performs an 
identical function for the instruction cache (in which no entry is ever marked). The instruction 
"KILL DATA INSTR" performs both sweeps. 

For reasons of efficiency, it may be convenient to avoid invalidating the cache residents swept by 
the KI LL instructions. A special . instruction is provided for this purpose: The jnstruction 
"UPDATE DA TA V,L" sweeps the data cache, writing to memory (if marked) every entry which 
has a virtual address U such that V:SU:5V +L-1 (L is assumed to be a count of quarter-words). 
No analogous instruction is provided for the instruction cache, since instruction cache entries 
cannot be marked. 

· Depending upon the magnitude of L· in these KILL and UPDATE instructions, the hardware 
may sweep the entire cache instead of individually sweeping each location in the specified range. 

·No instructions are provided which, when executed on processor Pi• cause the cache of processor 
P; (i .. j) to be swept. This necessary function will be accomplished by directing a special interrupt 
from Pi to Pi which causes P1 to sweep its own cache. · 

3.2 Virtual Memory 

The LLL Filter uses paging to map 30-bit virtual addresses to 30-bit. real addresses (although the 
particular implementation . of the LLL Filter described in Section i uses only 28-bit 
real addresses). 

The virtual-to-real address map is shown in Figure 3.2-1. A virtual address space is 
uniquely identified by the contents of the segment base register, which is the main memory address 
of the segment pointer table for the address space, or is a pointer to the disk address of same. The 
segment pointer table is a contiguous list of segment table pointers, Each segment table pnintP.r is 
either the main memory address of a segment table, or the disk address of same, or is null. 
indicating that the segment table does not exist. Each segment table is a contiguous list of page 
table pointers. Each page table pointer is either the main memory address of a page table, or the 
disk address of same, or is null, indicating that the page table does not exist. Each page table 
contains a list of page table entries. Each page table entry contains either the main memory 
address of' a page, or the disk address of same, or is null, indicating that the page does not exist. 

An address translation in general involves three memory references, one to the segment pointer 
table, one to the segment table and one to a page table; the segment base register is a hardware 
register inside the processor. A page map in each. processor contains (for the most recently used 
pages) the complete translation from virtual page address to real page add~ess. 

... 

• 
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The processor contains two hardware page maps; one translates addresses of locations accessed as 
instructions, and one translates addresses of locations accessed as data. Each page map is 
implemented as a set-associative memory with a set size of four and a capacity of 61 !?ntries, 
therefore 128 address translations can be stored simultaneously in the processor. An entry may be 
stored in both page maps. · 

The processor hardware actually contains two segment base registers, EXEC_SEG_BASE_REG, 
and USER_SEG_BASE_REG; an instruction may conveniently specify that either be used in 
mapping each memory operand· of an instruction (see the discu.ssion of the M bit in Section 
3. 7.3.1.2). Each page map entry contains a bit called the base bit, which identifies which of 
the two segment base registers the entry is associated with. The address space specified by 
EXEC .. SEG_BASE_REG will be called the executive address space, and the address space 
specified by USER_SEG_BASE_REG will be called the user address space . 

. Whenever a segment base· register is altered, all page map entries associated with that segment 
base register must be invalidated: The instruction "WRITE EXEC JUMP X,J" loads 
EXEC_SEG_BASE_REG with X, invalidates all page map entries associated with 
EXEC_SEG_.BASE_REG, and jumps to location J. The instruction "WRITE USER JUMP X,J" 
loads USER_SEG_BASE_REG with X, invalidates all page map entries associated with 
USER_SEG .. BASE_REG, and jumps to location J. · 

In user mode, any reference to the executive address space causes a trap to the executive trap 
vector at address REF_EXEC. The executive may refer to the user address space without 
trapping. 

Whenever a necessary translation is not resident in a page map, the necessary entry is fetched 
from memory and placed in the page map. A page map resident may be evicted in this process, 
but page map residents need not be written to memory when evicted. Whenever an entry is 
fetched from memory, the reference bit is set in the page table entry in memory; this reference bit 
is used by the operating system in the page replacement algorithm: 

The data cache page map contains a mar4 bit for each entry. When a write occurs, if the page 
written is unmarked in the data cache page map, then ~he mark bit is set in the appropriate page 
table entry in memory and in the data cache page map. If the page written is marked in the data 
cache page map, then the page table entry in memory is not modified. Mark bits are not 
necessary in the instruction cache page map since all writes are done to the data cache. 

Whenever the executive needs to modify page table entries to renect the changing configuration 
of real memory, a protocol must be invoked which removes invalidated page table entries from 
the two page maps of each processor. The hardware refills the page maps directly from main 
memory, bypassing the caches, therefore invalidated page table entries need not be removed from 
the caches. Special instructions are provided for removing entries from both page maps 
simultaneously: For example, the instruction "KILL USER MAP V" will remove any entry in the · 
instruction cache page map or the data cache page map which maps virtual address V in the user 
address space to any real address. The protocol mentioned above then requires that the processor 

. Pi• executing the operating system, interrupt each processor P1 which may have in its page maps 
the entz;y to be modified, and cause each such P1 to execute a KILL USER MAP instruction. 
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Virtual to Real Address Translation 
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3.3 Memory Access Modes 

Each page table entry includes bits which specify the access inodes of the page. The names and 
meanings of these bits are as follows: 

Instructions. If this bit is . false, then a hard trap to the executive at trap veetor 
· NOT~INSTRUCTION will occur when a location from this page is accessed.as an instruction . 

• 
Data. If this bit is false then a hard trap to the executive at trap vector NOT _DA TA will occur 

·_when a location from this page is accessed as an operand of an instruction. 

Read-through. If this bit is true~ then any read of a location on this page will cause a memory 
access to occur; the resulting data will be placed in the cache if and only if the location is already 
a cache resident. 

Write-only. If this bit is true, any read from a location on this page will cause a hard trap to the 
executive at trap vector WRITE_ONLY. · · 

wrTte-allocate. If this bit is true, then any write miss will allocate a cache entry and the data will 
be written into the allocated entry. Write hits will simply update the cache entry. If this· bit is 
false, then a ·write miss will not allocate a cache entry. 

Write-through. If this bit is true, then any write will update memory. If the write is a write hit, 
then cache will be updated as well. If the write is a write miss, then if and only if the write­
allocate bit Is true, a cache entry will be allocated and written. 

The combination in which both write-allocate and write-through are false is reserved to mean 
"read-only". A write to a read-only page will cause a hard. trap to the executive at trap vector 
READ_ONLY. 

Combinations of these bits allow us to obtain many useful access modes, of which the following 
are examples: 

Local-data (data " write-allocate) A cache miss caused by reading an operand from a local-data 
page causes the four-word block containing the missed word to be read over the switching 
network and placed in the data cache. Writes to local-data pages do not write tltrouglt to main 
memory. Whenever it is important that the memory shadow of a local...:data page be made 
identical to the cache,. the "UPDATE DATA" or "KILL DATA" instruction must be executed to 
update main memory. It is intended that the private variables of a process be identified as local­
data pages; cache sweeping will be necessary if the process ever moves to another processor. 

Cached-read-data (data) A cache miss in a cached-read-data page causes the missed word to be 
read over the switching network and placed in the cache. No writes are allowed to a cached­
read-data page; such a page is created by writing it as a local-data page, executing the instruction 
"UPDATE DAT A" or "KILL DA TA", and finally changing the appropriate page table entries to 
convert the page into a cached-read-data page. A cached-read-data page is destroyed by 
destroying the access route to the page, that is, by destroying all information about it in page 
tables in memory, and removing it from all page maps. Although locations from a cached-read­
page may be resident in the cache, they will be replaced by new cache residents. Since locations 
from a cached-read page can not be marked in any cache, no cache sweep is necessary to destroy 
such a page. 
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.. 
Static-code (instructions). A static-code page is similar to a cached-read-data page. that is, it is 
cached, created, and destroyed In the same way as a cached-read-data page. However, locations 
on a static-code page can be accessed only as instructions. It is intended that shared routines will 
be identified as static-code. 

Dynamic..:.code (instructions /\ data " write-allocate). In order to avoid the large overhead of 
cache sweeping and page-table modification, some programs may w_rite dynamic-code pages and 
execute them immediately. Dynamic-code pages are the same as local-data pages, except that 
locations from these pages may be accessed both as instructions and ·as data. 

Shared-data (data /\ read through /\ write-through). Words from shared-data pages are never 
placed in the cache. A write to a shared-data page writes through to main memory without 
writing in cache (write-allocate is false), and a read from a shared page reads directly from main 
memory. I/0 registers and munch registers (see Section 3.4) are on shared-data paees. 
In addition, locations which are heavily shared by multiple processors are on shared rages, 
eliminating the necessity to perform repeated cache sweeps when passing small amounts o data 
between processors. '. · · 

3.4 Synchronization 

Several mechanisms are provided to allow efficient process synchronization: interrupts, read­
modify_-write memory capability, mun.ch registers, and hardware task queues. 

3.4.l Interrupts 

Each BSMi contains one interrupt controller, which is directly attached to processor Pi by four 
interrupt lines, INT_LTNE<0:3>, as shown in Figure 2.1-1. The function of the interrupt 
controller is to receive interrupts from 1/0 devices (both low- and high-speed), which are directly 
connected to rhe interrupt controller, and from processors, which send interrupts through the 
crossbar, and to assert the interrupt lines accordingly . 

The interrupt controller contains four 36-bit registers, INT _REG[0:3]<0:35>, which can be 
accessed over the crossbar as memory locations .. The sole function of the interrupt controller is to 
set INT _LINE<i> if and only if INT _REG[i]<j>= I for some j. Each 1/0 device is connected to 
one bit of one INT _REG; the I/0 device interrupts by setting that bit. No 1/0 device i.!I 

· connected to INT _REG[O]. Any processor Pi ma.y interrupt any other processor Pi by setting some 
bit in P;'s INT _REG[OJ. Specifically, "SET INTERRUPT J,I" executed by any processor sets 
location J to (J or I) using a read-modify-write memory access. By convention, when Pi interrupts. 
Pi, Pi will set bit i in P;'s INT __REG[O]. 

Whenever INT_ LTNE<k> to processor P; is asserted, P; compares its current priority (PRIO) to k, 
which is- the priority of the interrupt. If and only if PRIO is less than k, P1 will .acknowledge the 
interrupt by resetting a bit in its interrupt register INT __REG[k] under micro-code control. If 
more than one INT _LINE is asserted, then the INT _LINE with the higher priority will be 
acknowledged first. 

After acknowledging the interrupt, P; interrupts to the executive at a specific interrupt vector, the 
address of which depends upon the identity of the 1/0 device or processor which caused the 
interrupt; that identity is fully determined by the index of the bit in INT __REG[k] which caused 
the interrupt and which Pi reset in acknowledgement. Section 3.7.4.10 contains a complete 
description of flow of control during an interrupt after interrupt acknowledgement. 
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3.4.2 Read-Modify-Write 

The crossbar network has the capability to perform read-modify-write memory cycles. This 
capability· is used to implement special instructions such as "TEST AND SET", and 
"INTERRUPT", and to implement hardware queues. Normal instructions which access a memory 
location as both a source and the destination do not use read-modify-write memory access 
capability. 

To perform a read-modify-write memory access, processor Pi, under micro-code control, sends a 
read-modify-write request to the crossbar. The crossbar causes the addressed memory module to 
read and returns the data to Pi. The crossbar prevents any other processor from accessing the 
selected memory module unt~l ·Pi returns a write. 

3.4.3 Munch Registers 

We borrow the concept of munch registers from Steele ([Steele 1975)). Associated with each 
processor is at least one munch register. Munch registers are identified by their page table entries 
as being shared-data. The instruction "MUNCH SKIP NOT FULL ADR M,V" executed by 
processor Pi translates V into a real address R and writes R into the munch register at address M. 
The munch register controller allows R to be written into M if and only if no otlter muncla register 
contains R, otherwise the controller writes zero into M. After writing to M, Pi reads M and skips 
if and only if the result is non-zero, that is, if and only if there was no conflict. 

Munch registers can also be read and written with normal memory-reference instructions, in 
particular, a munch register M is returned to the free state by writing zero into it. Note that the 
munch register controller always checks conflicts on writes to munch registers, even in the case in 
which zero is being written to the munch register. 

Munch registers are designed primarily to allow processors to enqueue on very small data elements 
without wasting storage by having a separate flag for each element. Munch registers are 
implemented as an associative memory with special control logic connected to a memory port. Any 
munc.h register is accessible by any processor, but munch registers will be allocated by software to 
processors, and that allocation will be enforced by the memory mapping hardware .. There are 
enough munch registers to allocate several to each processor. 

Note that thP. executive will update the munch registers when evicting or re-loading munched 
pages. 

3.4.4 Hardware Queues 

There exist several hardware queues which are addressed ·as memory locations. Special 
instructions such as "QUEUE" and "DEQUEUE" manipulate the hardware queues by using read­
modify-write memory accesses. For example, when processor Pi performs a "QUEUE SKIP NOT 
FULL ADR Q,X" instruction, in a read-modify-write cycle, it reads the state. of the hardware 
queue at address Q, and if the queue is not full, places X on the queue and skips to ADR. ·Jf the 
queue is full, then Pi places nothing on the queue. (writing to a dummy location in the queue 
controller in order to satisfy the crossbar that the read-modify-write cycle has been completed) 
and does not skip. 

Hardware queues allow the rapid dispatching of tasks. without the necessity of using munch 
registers or TEST AND SET instructions. Both FIFO and LIFO queues are being provided. 
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3.5 Status 

The hardware register STATUS;_REG<0:35> contains both. processor and user status. The 
processor status can be accessed only in executive mode, whereas the user status can be accessed in 
either e~ecutive or user mode. 

3.5.1 Processor Status 

The processor· status portion of STA TUS_REG is accessible only by means of the instructions 
"READ FULL STATUS", and "WRITE FULL STATUS JUMP"; these instructions read or 
write the entire STATUS_REG, including both processor and user status. The processor identity 
(PROCESSOR_ID<0:35>) is a unique number for each physical processor; it is considered part of 
the processor status and is read with the instruction "READ PROC ID". The execution of any of 
these instructions in user mode causes a hard trap to the executive at trap vector address· 
ST A TUS_A CCESS. . 

The fields included in the processor status are as follows: 

SP .. 10<0:4> 
Stack pointer identity. This field. is the address of the register used as the stack pointer in some 
instructions. The stack limit is always the next contiguous register. SP refers to the stack pointer 
register, and SL refers to the stack limit register. 

EX EC_.FILE<O: I> 
Executive register file. This field is the index of the register file used for operands and 
addressing in the executive address space. (See Section 3. 7.2 for reserved file indices.) 

USER_FILE<O:I> 
User register file. This field is the index of the register file used for operands and addressing in 
the user address space. Furthermore, when executing in the executive address space, the lowest 32 
single-words of the address space refer to these registers. nqt to real memory locatinni.. (SeP 
Section 3. 7.2 for reserved file indices.) 

USE __ SHA DOW 
Use shadow registers. If this bit is set, then memory addresses 0 to 127 (the first 32 single-words 
of the virtual address space), when mapped in the user adqress space, actually access mP.mnry 
locations; otherwise, these memory .addresses access the user register file. 

PR10<0:2> 
Processor priority. Interrupts with priority less than or equal to this number will not interrupt the 
processor. 

EXEC .. MODE 
Executive mode. The executive is currently In execution if and only if this bit is set; privileged 
instructions may be executed without trapping. · 

TRACE_ TRAP 
Trace trap. A ftet any instruction, perform a hard trap tc;> the executive at trap vector address 
TRACE. The effects of changing this bit do not appear until after the instruction following the 
Instruction which changes the status word. 
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3.5.2 User Status 

The user status portion of SJ"ATUS_REG is accessible in either user mode or executive mode, 
only by means ·of the instructions "READ USER STATUS", and "WRITE USER STATUS 
JUMP". This portion of the STATUS_REG will also be called U~ER_STATUS_REG. 

The fields included in USER_ST A TUS_REG are as follows: 

COND<0:4> 
Arithmetic condition codes negative, .zero, overflow, carry-out, and underflow. Every Ooating­
polnt and integer operation may set these condition codes. Only floating-point operations set 
underflow. 

INT _TRAP 
A !low integer overflow traps. Integer overflow will soft trap to the trap vector at address 
INT _OVFL. 

FLOAT_TRAP 
A !low floating-point underflow and overflow user traps. Floating-point underflow will soft trap 

·to the trap vector at address FLOAT _UNDFL. Floating-point overflow will soft trap to the trap 
vector at address FLOAT _OVFL. 

. PRE_LIMIT <0:5> 
Prenormalization limit. If a floating-point number is prenormalized more than this amount and 
PR.L.TRA P is true, then a soft trap will occur to the trap vector at address PRE_OVFL. The 
value PRE_LlMIT <0:5>=63 is reserved by the hardware to mean "never trap". 

POST _LIMIT <0:5>. . 
Postnormalization limit. If a floating-point number is postnormalized more than this amount and 
POST_ TRAP is true, then a soft trap will occur to the· trap vector at address POST _OVFL. 
The value POST _LIMIT <0:5>=63 is reserved by the hardware to mean "never trap" . 

• 

. 3.6 Input/Output 

The processor performs 1/0 by manipulating 1/0 registers which are logically located in the main 
memory address space and physically located in the 1/0 controllers. 

. . . 

Each 1/0 device (both low- and high-speed) has a direct connection to its 1/0 registers (which 
are located in one 1/0 controller). Protection of 1/0 devices from access by unauthorized 
processes is accomplished by using the memory protection facilities (Section 3.3). 1/0 registers 
must be marked in each p.age map as shared-data so that they will not be placed in the cache. 

As explained in Section 3.4.1, each 1/0 controller can interrupt only one processor, and therefore 
each 1/0 device can directly interrupt only one processor. However, any processor receiving an 
interrupt may forward that interrupt to any other processor by means of the interprocessor 
interrupc facility. · 
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3.7 Instruction Set Definition 

The processor executes instructions which are from one to three 36-bit words in length. With 
certain restrictions on the addressing modes, many instruction types can operate on 9, 18, 36, or 72 
bit operands, called quarter-word (qw), half-word (hw), single-word (sw), and double-word (dw), 
respectively. 

We first consider the justifications for a 36-bit word (as opposed to a 32-bit word). First, without 
devastating changes, the LLL Filter instruction format would not fit into 32-bits. Furthermore, it 
is important for an entire address to fit in a single word, and for there to be room left in the word 
to spetify an index register and an indirect bit (as in the PDP-I 0). Finally, a 36-bit word allows 
reasonably large addresses to be packed in a half-word; a 32-bit word does not. 

The disadvantages of a 36-bit word are (I) that it is incompatible with a number of machines, 
and (2) that it makes addressing standard 8-bit bytes difficult. In answer to the second problem, 
the LLL Filter allows quarter-word. addressing (a quarter-word Is a 9-bits); considering the 
exponentially decreasing cost of memory, it seems reasonable to waste the extra bit in those 

·applications which cannot find a use for it. 

In order to allow more efficient utilization of memory, the LLL Filter includes the PDP- I I feature 
which allows most instructions to operate on multiple operand sizes; in this case the sizes are 
quarter-word (9-bits). half-word (18-bits), ~ingle-word (36-bits), and double-word (72-bits). One 
major problem with multiple operand types is the necessity to shift addresses; the IBM-370 and 
PDP- I I can spend a large fraction of their time shifting array indices. To overcome this 
problem, the LLL Filter includes addressing modes which automatically allow an index to be 
shifted left 0, I, 2, or 3 places; this feature makes it convenient for a compiler to work with arrays 
composed of any of the basic operand types. 

A not her design goal was to simplify the task of writing a compiler that produc;es c;ompact and 
efficient code. A II operand addressing in the LLL Filter is completely symmetrical, that· is, every 
operand uses the same address computation procedure. The LLL Filter also provides the reverse 
form of all non-commutative operations, and allows indexing off of local variables on the stack. 
Because of the operand addressing symmetry, a compiler can perform code generation almost 
independently of deciding which variables are to be on the stack and which are to be in high~ 
speed registers. 

The most important single design goal was to allow convenient access to a very large address 
space; such an address space may allow a new architecture to survive for a long period even in 
face of exponentially decreasing memory costs, thus amortizing the expensive software 
development effort. 

The LLL Filter architecture includes multiple-word instruction formats (one to three 36-bit 
words) in order to allow sufficiently powerful instructions that the code density lost in specifying 
large addresses is not important. Using the LLL Filter instruction format, the total number of bits 

• needed to represent a program is in general less than the number needed to represent the same 
program on the IBM-370, and ap.proximately equal to the number needed on the PDP-10. 
Section 3. 7.5. gives a number of examples to substantiate this claim. 

The instruction set is horizontally micro-coded in writeable control store. The instruction set 
definition which follows is fixed in some respects, for example, in the operand addressing modes, 
but the· data paths in the implementation are sufficiently general and the control store Is large 
enough that the instruction set can be extensively modified, either by the inclusion of new special 

• 
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purpose instructions, or by the replacement of existing instructions; such modification simply 
involves writing new micro-code. 

3~7.1 Notation and Conventions 

· Bits in a word, quarter-wor~s. and half-words ar~ numbered from left to right (most significant 
to least significant). The bits in a word are numbered from 0 to 35, and subfields in a word are 
referenced by the notation X<i:j>, where i is the bit number of the high-order bit in the field, 
and j is the bit number of the low-order bit of the field. Using this notation, the quarter words 
in'a word X are X<0:8>, X<9:17>, X<l8:26>, and X<27:35>; these quarter-words are numbered 0, 
I, 2, and 3, respectively. · 

In a number of places in the description, a field is used as a signed two's complement number. If 
F is such a field, then the notation SIGNED_F (or simply S_F) refers to F considered as a two's 
complement number. · · 

Some instructions operate on a pair of data objects, Sl)ch as two quarter words, or two single 
words. If X is the first object of such a pair, then second one is refered to as NEXT _X. X and 
NEXT_X are contiguous, that is, if X and NEXT_X are addresses of objects of length L quarter 
words, then NEXT _X .. X + L. 

3.7.2 Registers and Memory 

The processor hardware includes 4 stacks of 32 registers each, REG_FILE[0:3][0:31)<0:35>. 

REG_FILE[USER_FJLE<0:1>][0:31] and REG_FILE[EXEC_FILE<0:1>)[0:31] will sometimes be 
called USER_R[0:31] and EXEC_R[0:31], respectively. R[0:31] will mean USER_R[0:31] if 
EXEC. MODE=O, and will mean EXEC_R[0:31) if EXEC_MODE·I. 

Certain instructions make use of a stack pointer and stack limit register, called SP and SL, 
respectively. SP will mean R[SP _ID), and SL will mean R[SP _ID+ I], where SP _ID is the stack 
pointer identity field in the STA TUS_REG. 

Registers can be addressed as memory; the lowest 32 single-word addresses of the executive 
address space refer to EXEC __ R[0:31), and the lowest 32 single-word addresses of the user address 
space refer to L!SER __ R[0:'31l 

REG_FILE[O] is dedicated for use by the hardware and micro-code. REG..:.FILE[0][0:31] will also 
be called TEMP[0:3 l ), since it contains many hardware temporary locations. In the following 
sections we will refer to some registers in REG_FILE[O] by name as follows: 

EXEC_SEG __ BASE_REG Executive segment base register. 

USER_SEG_BASE__REG User segment base register. 

REG_FJLE[O] can be accessed by the executive by setting USER_FILE<O:l>=O and referencing 
the registers as memory locations in the user address space . 

· REG_FJLE[ 1:3) are not dedicated; it is intended that they will contain executive and user 
registers. 
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The instruction set gives hardwired functions to some registers, as shown below: 

R[O] 
R[ I] 
R[2] 
R[3] 
R[4] 
R[5] 
R[G] 
R[7] 
R[9] 

R[30] 
R[3 I) 

• 

no .short indexing allowed 
no short indexing allowed 
no short indexing allowed 
program counter (PC) 
low-order word of temporary register RTA (RTA[O]) 
high-order word of temporary register RTA (RTA[I]) 
low-order word of temporary register RTB (RTB[O]) 
high-order word of temporary register R TB (R TB[ I)) 
general ~urpose register 

general purpose register (receives first parameter of trap) 
general purpo5e register (receives second parameter of trap) 

3.7.2 

The registers RTA and RTB can be used as a third address in some instructions, as explained in 
Section 3.7.3. 

The instruction set can manipulate the R registers as easily as memory locations, and special 
instructions are provided for saving and restoring R ·registers during interrupts, traps, and 
subroutine calls. 

Unless otherwise specified, all addresses in this description are quarter-word addresses. Directly 
addressable main memory consists of 230 quarter-words which can also be accessed as half-words, 
single-words, or double-words. 

In order to facilitate computing with data of' multiple precisions (qw, hw, sw, and dw), instructions 
are included for each precision. Some instruction types operate on only a subset of the possible 
precisions, for example, floating point instructions operate only on single-word and double-word 
operands. Most mstructaohs assume that both source operands and the destination ate .or the 
same precision, although some mstructaons are provided for converting from one precision to 
another. 

Half-w.ord operands must lie on half-word boundaries, single-word operands on single-word 
boundaries, and double-word operands on double-word boundaries. Any violation of this 
boundary rule will cause a hard trap to the executive trap vector at address 
BOUNDARY _ERROR. The registers in the register file are considered to lie on contiguous 
single-word boundaries. Instructions must lie on single-word boundaries. 

Note that a quarter-word add, for example, specifying R[ 16) and R[l 7) ·as source operands and 
R[ 18] as the destination operand, Will add the high-order quartet-word Of R[IGJ to the high­
order quarter-word of R[ 17], and store the quarter-word result in the high-order quarter word of 
R[l8]. 

3.7.3 Instruction F'ormats 

Every instruction is either one, t~o. or three 36-bit words in length. The first instruction wc>rd 
includes the opcode,. and specifies part or all of the address computation for the operands. The 
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second and ·third instn,.1ction words are used for long immediate constants and for extended 
addressing. 

Four basic instruction formats apply to the first word of an instruction, as follows: 

Three-Address Instruction 

TOP T 001 I 002 

0 9 10 11 12 23 24 35 

Two-Address Instruction 

XOP 001 002 ., 
0 11 12 23 24 35 

Skip Instruction 

SOP SKP I 001 002 

0 7 8'. 11 12 23 24 35 

Jump Instruction 

I. 
JOP IPRI 001 J 

0 10 11 12 23 24 35 

• TOP, XOP, SOP, and JOP are opcodes. OD I and OD2 are general Operand Descriptors; they 
. specify general operands which can be memory locations, registers, or constants. (It should be 
noted tpat the address computation algorithm is identical for the OD I and OD2 fields.) The T 
field specifies how tp use the registers RTA and RTB as a third operand in the instruction. SKP 

. and J specify a skip distance and a jump· distance or jump address, respectively. PR specifies 
whether to use J as an offset to the PC or as the descriptor of a memory address (as are OD I and 
OD~ . 

The three-address instruction format allows two general memory addresses to be specified, along. 
with a third operand, eUher RTA or RTB. This instruction format provides most of the 
advantages of a true three-address format (that is, the elimination of "move" instructions to make 
copies of operands at the beginning of an expression), but costs only two bits in the instruction 
word . 

• 
The two-address instruction format allows two general memory addresses to be specified, and is 
primarily used in data transmission instructions (which have one source and one destination 
operand). 

The skip instruction format allows a forward skip of from 0 to 7 words, or a backward skip of I 
to 8 words (from the location of the current instruction); it is useful for implementing small 
conditional loops and IF-THEN-:-ELSE statements. 
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A jump instruction having PR= I can jump anywhere in the range of PC+2047 to PC-2048 words 
(where PC is the ac;ldress of the next instruction), and in that case requires no additional word to . 
specify the jump address. If PR=O, J may specify any memory address, at the possible expense of 
requiring an additional instruction word. 

3.7.3.l General Operand Address Specification 

We first consider some notation and conventions. If X is the address of a memory location, then 
M [X] will mean the contents of that location. The length of M[X] will be clear from context, it 
may be either quarter-word, half-word, single-word, or double-word. 

Indefinite-level indirect addressfng is denoted using the character "@", and is defined as follows: 
Let IA P (Indirect Address Pointer) be th·e contents of a register. or memory location: 

JA P.: format tor Indirect Addreu Vomter 

0 1. 5 6 

Then @IA P is an address, defined as follows: 

l 

0 
1 
0 
I 

REG 

=0 
0 
.. o 
ptQ 

A 

@IAP 

A 
eM[A] 
A+R[REO] 
@M[A+R[REG)] 

35 

The evalu_ation of all operands (including the jump or skip destination) logically occurs before the 
execution ·of the instruction (and before the PC is updated). · . 

. . 
The evaluation of a general operand proceeds in two steps, which .are discussed in the following 
sections. · 

3.7.3.1.1 Short-Operand Address Calculation 

A short operand can be one of the 32 registers R[0:31], a memory location which is addressed as a 
short offset from a register, a short immediate constant, or several other entities. The name "short 
operand" derives from the fact that such operands require only a short descriptor in the 
instruction. An exact definition follows. 
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The 12-bit operand descriptor fields (ODI and OD2) ·specify short operands, and may also 
specify extended indexing. They have the following format, where the bit numbers are relative to 
the origin of the field: 

OD: Format for OD I and OD2 

1· x I I F I REG I 
0 1 2 6 7 il 

These fields specify extended indexing (X), indirection (I), a short offset (F), and a register name 
(REG). A short operand (SO) is defined as the location specified by the fields I, F, and REG; it 
is eva_luated as follows: 

! E REG Short Operand (SO) Mode Name 

0 0:..31 0 R[F) register-direct 
I 0-31 0 M[@R[F)] register-indirect 

0 0-31 S_F short-constant (- 16 to + 15) 
I 0-31 0 short-zero 

• 
0 0-31 2 0-31 (reserved) 
I 0-31 2 0-31 (reserved) 

0 0-31 3-31 M[R[REG]+S_F*4] short-indexed 
I 0-31 3-31 M[@M[R[REG])+S_F*4] sho~t-indexed-indirect 

IF X=O, then the value of the operand described by OD is simply SO, as above. Addressing 
modes in which X= I are described in the next section. 

A II memory address mapping is done in the own address space when calculating short operands. 

Short-zero mode is provided only as an escape to allow absolute memory addressing; short-zero 
mode with X =I addresses memory absolutely, as explained in the next section. 

It is intended that all of the simple variables (i.e. local variables on the stack and own variables) 
be accessed directly in short-indexed mode. Short-indexed mode is of such utility that we call 
locations accessed using this mode pseudo-registers (or P registers). 

The only variables that can not be conveniently addressed using the short-operand addressing 
modes are arrays and variables which are allocated at absolute addresses in memory. Such 
locations are accessed by using extended addressing modes, as described in the next section. 
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3.7.3.1.2 Extended Addressing 

Extended addressing is specified by setting ~he X bit in the operand descriptor (OD I or OD2). 
In extended addressing mode, the next word in the instruction stream is used in the operand 
cakulation. This word Is either the second or· third word of the instruction, and has one of these 
formats: 

E: Format for fllced-base extended addressing 

0 1 2 3 4 56 35 

V: Format for variable-base extended addressing 

I I 1 I 0 I M I s I REG 1. DISPLACEMENT 

0 1 · 2 3 4 5 6 10 35 

C: Format for long constant 

36-BIT IMMEDIATE CONSTANT 

0 35 

Given that the X bit is set in the opera'nd descriptor (OD I or OD2), then, with one exception, the. 
·additional word in the instruction is used to calculate an extended address, and is interpreted 
either as fixed-base format (E), or variable-base format (V), depending upon the value of the Y 
bit (bit I) of the word itself. The exception noted is that ii the operand descriptor specifies short­
constant. mode, then the additional word is interpreted as a long constant (C), and ·provides a 36-
bit immediate constant which is used as the operand. Th~s addressing mode is called long­
constant mode. In the following discussion we will ignore long-constant mode. 

The first step in the extended address calculation is to calculate the base address BASE to be 
used in the indexing operation. If the the additional word in the instruction 'has fixed-base 
format (E), then BASE is given by 

BASE!"' ADDRESS 

If the additional word in the instruction has variable-base format (V), then the register R[REG] 
contains the base address, and DISPLACEMENT is an additional offset as follows: · 

RASF. :e R[RF.r.J + Slr.NF.n nISPI.A~f.MF.NT. 

Let SO be the short operand specified by the operan.d descriptor. If the indirect bit (I) in the 
ex tended word is zero, then the value of the operand addressed by using extended addressing is 

M[BASE + so*~] 

If the indirect bit is one, then the value of the operand is 
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It should be noted that the extended addressing mode always includes an indexing operation, but 
that if short-zero is the short-operand addressing mode, then so .. o, and the address computed 
using extended addressing i~ just BASE. Note also that. automatic address shifting occurs in 
extended addressing mode, that is, the value SO is shifted left by S bits (where S is a field· in ~he 
extended word) bef~re being added to BASE. 

The M bit facilitates communication between the executive and the user, which operate in 
different address spaces, by allowing instructions executed by the executive to have either operand 
mapped in either the user or the executive address space. Only the ftnal address mapping in the 
operand calculation procedure is affected by the M bi~, as follows: 

M. EXEC MODE Final Mapping Space 

0 0 User address space. 

0 Executive address space. 

0 (Hard trap to REF _EXEC.) 

User address space. 

Table 3.7.3.1.2-1 
M Bit Interpretation 

The duplicate bit (D) specifies that the two operands of the instruction use· the same extended 
instruction word; it simply inhibits the program counter from being incremented after the first 
operand is evaluated. This feature· is useful when both operands are elements of the same array, 
but are accessed using different index re.gisters. 

3.7.3.2 Three-Address Instructions 

Three-address instructions have the format: 

~~·-'~J·_· _r__...__ __ 0_0_1 ___ · j _____ o_o_2 __ _. 

9 10 11 12 23 24 35 

The TOP field includes the opcode· and specifies the precision (qw, hw, sw, or dw) of the 
operation. 

Fields ODI and OD2 are general operand descriptors, as described in Section 3.7.3.I; they may 
denote R registers, P registers, general memory locations, or immediate constants. 

The two-bit T field specifies whether RT A or R TB is used as the third address of the 
. instruction, where OD I and OD2 specify- the other. two addresses. Specifically, the operation. 
evoked by a three-!lddress instruction is described using the names DEST, SI, and 52, for 
ex amp le, DEST 4-S I 0S2, or DEST +-S20S I, where "0" means the ·operation evoked by the TOP 
field, and S2, SI, and DEST have meanings as shown in the following table. In this table, OP I 
means the operand described by fi~ld ODI, and OP2 means the operand described by field 002: . 

• 
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T DEST ~ ~ 

00 OPI OPI OP2 

01 OPI RTA OP2 

10 RTA OPI OP2 

11 RTB OPI OP2 

Table 3.7.3.2-1 
T Field Meaning 

These addressing modes are sufficient to aiiow any FORTRAN assignment statement except those· 
of the form "A+-B+C" or "A+-B(I+J)*C(K+L)+D(M+N)*E(L+P)" to be evaluated with no move 
instructions to make copies of operands or to store away the result of the expression. The first 
exception clearly needs a full three address instruction if it is to be evaluated in one instruction, 
and the second requires a third RT register. Because of the binary nature of arithmetic operators, 
all other types of expressions require only two RT registers. For example, if two of the subscripts 
of the second example were the same, or if one the subscripts were a simple local variable, or were 
of the form "I+ J+K", then two RT registers would be sufficient to evaluate the expression with no 
move instructions. In Section 3.7.5.2 some examples are given which show code using the 
RT registers. 

Preliminary evidence suggests that for typical FORTRAN assignment statements, LLL Filter code 
using the RT A and R TB registers contains .5 to . 7 times the instructions necessary for the PDP­

. 10. 

3. 7.3.3 Two-Address Instructions 

·1 ·wo-address mstruct1ons have the format: 

XOP 001 002 

0 11 12 .23 24 35 

The XOP field includes the op-code and _specifies the precision (qw, hw, sw; or dw) of the 
operation. 

Fields OD 1 and 002 are general operand descriptors, as described in Section 3.7.3.l; they may 
denote R ·registers, P registers, general memory locations, or immediate cons~ants. 
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3.7.3.4 Slcip Instruction~ 

Skip instructions have the format: 

SOP I SKP 001 002 

0 7 8 11 12 23 24 35 

The SOP field includes the op-code, specifies the precision (qw, hw, sw, or dw) of the operation, 
and specifies the condition on which a skip will be taken. 

Fields ODI and. 002 are general operand descriptors, as described in Section 3.7.3.1; they may. 
denote R registers, P registers, general memory locations, or immediate constants. 

The SK P field contains a skip distance in words. If the skip condition is false at the end of the 
current instruction, then the next instruction to be executed is the next sequential instruction. If 
the •skip condition is true, then the quarter-word address of t.he next instruction to be executed is 
PC+4*SIGNED_SKP, where PC is the address of the current instruction. 

3.7.3.5 ju111p Instructions 

Jump instructions have the following format: 

J 

0 10 11 12. 23 24 35 

. The JOP field includes the op-code, specifies the precision (qw, hw; sw, or dw) of the operation, 
and specifies the condition on which a jump will be taken. 

Field OD I is a general operand descriptor, as described in Section 3.7.3.I; it may denote an R 
register, P register, general memory location, or immediate constant. 

The J field l'p~r.ifieli ·a jump destination JUMPDEST. It is interpreted differently _d_ep_ending 
upon the value of the PC-relative (PR) bit. If the PR bit is one, then JUMPDEST is 
PC+4*SIGNED __ J where PC is the address of the current instruction. If the PR bit is zero, then 
J is taken to be a general operand descriptor. (002), and JUMPl>EST is the address of the 
operand described by that operand descriptor. 

Jumps to the user address space performed in executive mode hard trap to the executive at trap 
vector address JUMP _USF.R; all control transfers to the user address space must be performed bt 
means of "TRAP EXEC", "RETURN FULL STATUS", and "WRITE FULL STATUS JUMP 
(which may c:h::1nge the mode to user. then jump). 
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3.7.4 Instruction Descriptions . 

This section describes the instruction set which is currently being micro-coded for the LLL Filter . 
. For the sake of clarity, we have not used a formal descriptive system, but have developed our own 
set of largely intuitive descriptive mechanisms and conventions. 

Each instruction is defined by showing the opcode string of the instruction and the operation of 
the instruction. The opcode string contains terms which are separated from each other by one or 
more spaces and together uniquely define the instruction. 

This section also describes sequences of operations which are not instructions (for example, the 
interrupt procedure). The opcode string column for such sequences shows a function name (in 
italics), and the function's formal parameters. A function defined in this way may· be called from 
the definition of any instruction. ' 

Curly brackets are sometimes used in writ.ir:ig terms of the opcode. Several strings (sub-terms) 
may be grouped in curly brackets and separated by commas, for example {Q,H,S,D}; this notation 

. means that any one of the bracketted strings may be substituted in place of the brackets and 
everything enclosed in the brackets. 

The curly-bracket notation may also be used in the operation column. Let X and Y represent any 
two curly-bracketted strings such that the number of sub-terms Xi of X is equal to the number of 
sub-terms Yi of Y. Then if X appears in the opcode column, Y may appear in the operation 
column, with the following meaning: If an opcode is constructed by choosing Xi in place of the 
term X, then the operation of that opcode is formed by replacing Y by Yi. In some cases, more 
than one curly-bracketted term is used in the opcode column; let W and X be two such terms. In 
this case, if curly-bracketted term Y appears in the operation column, Y corresponds to only one 
of W and X; that correspondence will not be formally specified, but will be obvious. 

Undefined but intuitive functions appear in italics in the operation column . 

The. names UPI (UPerand I), UP~ (Ul'erand ~).·SI. (Source I), S2 (Source 2), and DEST 
(DJ::STination), have the meanings described in Section 3.7.3.2. 

Let X represent any of the strings OP I, OP2, SI, S2, or DEST. Then ADDRESS_X means the 
memory address of X. Note that registers have memory addresses. 

During the execution of one instruction, "PC" will mean the address of the Instruction currently in 
execution, "PC_NEXT _INSTR" will mean the address of the next instruction in the execution 
sequence, and "PC_LAST _INSTR" will mean the address of the previous instruction in the· 
execution sequence. 

The LLL Filter instruction set includes "reverse operations" for all non-commutative instructions 
with two source operands and a destination operand, that is, instructions of the form 
"DEST+--OP I 0 OP2" where "0" is a non-commutative operator. A reverse operation is indicated 
by the. inclusion ·of the term "V" in the opcode string. Reverse operations reverse the order of 
their source operands before performing the operation. For example, "SUB V OP l,OP2" means 
"OP l+--0P2-0P I" whereas "SUB OP l,OP2" means "OP l~OP l-OP2". 

Reverse operations are provided in order to allow evaluating "A+--B 0 A" and "A+--B ® RTA" in 
one instruction, where A and B here represent memory addresses, RTA is a special temporary 
register (see Section 3. 7.3.2), and "0" is a non-commutative operator. 
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Note that the opcode strings shown . in the following sections are not necessarily assembler 
mnemonics; they .are simply unique names for the hardware operations. An assembler will allow 
omission of some terms and simplification of others; an intelligent assembler, for example, would 
Infer the "V" term of the opcode string from the order of the three operands of the instruction, 

3.7.4J Integer Instructions 

Integers are represented in two's complement notation. A II integer instructions operate on data of 
any integer precision, that is, quarter-word (Q), half-word (H), single-word (S), or double-word 
(D). The precision of the operation is indicated by including the appropriate term (Q, H, S, or D) 
after the opcod~. For operations which take two operands, both operands must be of the same 
precision. 

Integer operations are done in the precision of the source operands, except for extended precision 
operations (eg. "MU_L T L {Q,H,S,D}"), which are done in double precision. 

3.7.4.1.1 Integer Arithmetic 

001 002 

0 9 10 11 12 23 24 35 

Reverse operations are provided for the non-commutative operations SUB, QUO, REM, and 
DIV. 

Extended precision operations (eg. long multiply and long divide) are indicated by including the 
term "L" (Long) in the opcode string . 
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Opcode String Operation · 

ADD . {Q.,H,S,D} DEST+-S l+S2 

SUB {Q.,H,S,D} DEST+-Sl-S2 

SUB v {Q.,H,S,D} DEST+-S2-S I 

MULT {Q.,H,S,D} DEST+-S 1*52 

MULT L {Q.,H,5,D} (DEST.NEXT _DEST)+-S 1*52 

QUO {Q.,H,S,D} DEST+-S 1152 

Q..UO v {Q.,H,S,D} DEST+-52/S.I 

QUO L {Q.,H,S,D} DEST +-(S l,NEXT _51)/52 

QUO L v {Q.,H,S,D} DEST +-(52,NEXT _S2)/S I 

REM {Q.,H,S,D} DEST+-S I mod S2 

REM v {Q.,H,s:DJ DEST+-S2 mod SI 

REM L {Q.,H,S,D} DEST+-(Sl,NEXT_SI} mod S2 

REM L v {Q.,H,S,D} DE5T+-(S2,NEXT _S2) mod SI 

DIV {Q.,H,S,D} DEST+-Sl/S2 
NEX"LDEST,...SI mod S2 

DIV v {Q.,H,S,D} DEST,...S2/S I 
NEXT _DEST+-S2 mod SI 

DIV L {Q.,H,S,D} DEST+-(S !,NEXT _S l)/S2 
NEXTJ>EST4-{Sl,N.EXT .. SI) mod S2 

DIV L v {Q.,H,S,D} DEST+-(S2,NEXT _S2)/S I 
NEXT _DEST+-(52,NEXT -52) mocl SI 
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3.7.4.1.2 Increment and Decrement 

XOP 001 ·002 

0 11 12 23 24 35 

The increment (INC) and decrement (DEC) instructions provide the capability to perform either 
of. the operations OP l+-0P2+ I or OP l+-0P2-I in one instruction. 

Opcode Strin& 

INC 

DEC 

{Q,H,S,D}. 

{Q,H,S,D} 

Operation 

OP l+-0P2+ I 

OPl+-0P2-I 
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3.7.4.2 Floating Point Instructions 

Floating point precisions are single-word (S), and double-word (D), whereas integer precisions are 
quarter-word (Q), half-word (H), single-word (S), and double-word (D). The floating point 
arithmetic instructions require one floating point precision to be specified, and the floating point 
translation instructions require either a floating point precision and an integer precision or two 
floating point precisions to be specified. 

Single-precision floating point numbers have the following format: 

Single-Precision Floating Point Number 

Isl EXP j MANTISSA<0:26> 

0 1 35 

where S is the sign, EXP is an excess-128 exponent of 2, and MANTISSA is a normalized binary 
fi':lct1on. 

If X is a positive floating point number (single or double precision), then the floating point 
.number -X is represented by the two's complement of X, so that integer comparison operations 
yield the correct results for floating point operands. 

Double-precision floating point numbers have the following format: 

Double-Precision Floating Point Number 

!s.j EXP MANTI SSA<0: 26>. MANT 1.SSA<27: 62> 

0 1 8 9 35, 0 35 

where S, EXP, and MANTISSA represent the sign, exponent, and· mantissa of the double­
precision floating point number, as above. 

Any floating point operation may be either floor rounded (FR), ceiling rounded (CR), or stable 
rounded (SR) (see [Kahan 1973)); these modes are indicated by including the appropriate 
characters as a term in the opcode string. Floor rounding yields the closest floating point number 
less than the true result (equivalent to truncation .since the number system is two's-complement), 
ceiling rounding yields the closest floating point number greater than the true result, and stable 
rounding yields the closest floating point number if that number is unique, otherwise it yields the 
closest floating point number with a "O" as the least..:.significant bit. 

·~ 
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3.7.4.2.J floating Point Arithmetic 

TOP , . T 001 002 

0 9 10 11 12 23 24 35 

Most· floating point arithmetic instructions combine two operands of one floating point precision, 
an'd store into a destination of the same floating point precision. The operation precision is 
indicated by including the appropriate character in the opcode string. 

Long floating multiply (FMUL T L) takes two single-word floating point numbers and multiplies 
them to form a double-word floating point number. Long floating divide (FDIV L) divides a 
double-word by a single-word and produces a single-word. · 

Reverse operations are provided for the non-commutative operations FSUB and FDiV., 

As explained above, the terms "FR", "CR", and "SR" in the opcode string imply floor rounding 
(truncation), ceiling rounding, and stable rounding, respectively. For example, "FMUL T FR S" 
means "multiply single-precision floating point numbers with truncation." 

Opcode String Operation 

FADD {FR,CR,SR} {S,D} DEST+-Sl+S2 

FSUB {FR,CR,SR} {S,D} DEST +-S J-S2 

FSUB v {FR,CR,SR} {S,D} . DEST+-52-SI 

FMULT {FR,CR,SR} {S,D} DEST+-Sl*S2 

FMULT L {FR,CR,SR} · . (DEST.NEXT _DEST)+-S l*S2 

FDIV {FR,CR,SR} {S,D} DEST+-S 1/52 

FDIV v {FR,CR,SR} {S,D}' i.J£ST+-$2/S I 

FDIV L {FR,CR,SR} DEST+-(S l,NEXT _S l)/S2 

FDIV L v {FR,CR,SR} DEST+-(S2,NEXT _S2)/S I 
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3.7.4.2.2 Floating Point Translation 

·XOP 001 002 

0 il 12 23 24 35 

The floating point translation instructions translate floating point to integer, integer to .floating 
poirit, and floating point to floating point, in each case performing floor rounding, ceiling 

. rounding. or stable rounding. 

Floating poi~t numbers may be of any float.ing point precision, that is, single..:.word (S), or double­
word (D), and integer numbers may be of any ·integer precision, that is, quarter-word (Q), half-. 

·word (H), single-word (S), or double-word (D). In addition to the floor-rounding (FR), ceiling­
rounding (CR), and stable-rounding (SR) terms, each floating point translation opcode $~ring 
includes a two character precision term; the first character specifies the destination precision, and 
the sec~nd character specifies the source precision. For example, •FLOAT SR SD" means 
"translate with stable rounding a double-word integer to a single-word floating point number:· 
For symmetry reasons, all translate instructions include rounding modes. · 

Opcode String. Operation 

FIX {FR,CR,SR} {~H.S,D}{S,D} OP 1.-Jix(OP2) 

FLOAT {FR,CR,SR} {S,D}{~H,S,D} OP 1+-float(OP2) 

TRANS {FR,CR,SR} SD OP l+-jloat_trans(OP2) 

TRANS {FR,CR,SR} . DS OP 1.-jloat_trans(OP2) 
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3.7.4.3 Arithmetic Compare Instructions 

The arithmetic compare instructions compare two operands, possibly incrementing, decrementing, 
or adding to the destination operand, and skip (-8 to + 7 words from the location of the current 
instruction), jump (anywhere), or trap (to a fixed virtual address) conditionally on the outcome of 
the comparison. Throughout these sections, PC refers to the address of the current instruction. 

With two exceptions, the arithmetic compare instructions assume that both operands are of single­
word length, These exceptions are "SKIP {COND} {Q,H,S,D}", and "JUMP {COND} O 

. {Q,H,S~D};" each. allows specification of the length of the operands (Q, H, S, or D). Both operands 
must be of the same length. 

Every arithmetic compare instruction performs integer comparison. The for.mat of floating point 
numbers guarantees that integer comparison produces the. correct results for floating point 
operands. On the other hand, some arithmetic compare instructions add to the destination 
operand, and this addition is integer addition; those particular instructions are not intended to be 
used with floating point operands. 

In the instruction definitions which follow, we have used "{CON D}" in the opcode strings to 
represent "{N,G,E,GE,L,NE,LE,A}", abbreviations for the eight conditions on which an arithmetic 
compare instruction can skip or jump; these abbreviations mean never, greater, equal, greater or 
eq·ual, less, not equal, less or equal, and always, respectively. "{CON D}" is also used as a function 
symbol (with obvious meaning) in the description column of these opcodes. 

The opcode strings in these Instructions may include the terms in the following table, and these 
terms uniformly have the meanings shown: 

Opcode Term Meaning 

INC Add one before comparison. 

DEC Subtract one before· comparison. 

0 The comparison is with 0. 
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3.7.4.3.l Arithmetic Compare and Skip 

SOP SKP 001 002 

0 7 8 11 12 23 24 35 

The field SK P in these instructions specifies a 4-bit (signed) skip distance (in words). Depending 
upon the result of the compare instruction, the next instruction to be executed is either at PC, or 
at PC+4*SIGNED_SKP. 

These· instructions are important in that they allow two general operands to be specified in a 
compare instruction. The SK P field of 4 bits in many cases eliminates the need for includ.iilg a 
jump instruction after the compare. 

Opcode String Operation 

INC SKIP {CON DJ OPl+-OPI + f 
if OPl'{CONDJ OP2 
then PC+-PC+4*SIGNED_$KP 

DEC SKIP {CON DJ OPl+-OPI - I 
ifOPI {CONDJOP2 
then PC+-PC+4*SIGNED_SKP 

SKIP. {CON DJ I°-'H,S,D} . if OP I {CON D} OP2. 
then PCt-PC+1*SIGNED_SKP 



• I 

.. 

·"' 

3.7.4.3.2 Processor Architecture 37 

3.7.4.3.2 Arithmetic Compare and jump 

JOP 001 J 

0 10 11 12 23 24 35 

In the following instruction definitions, JUMPDEST refers to the jump destination. As describec:J 
·in 'Section 3. 7.3.5, JUMPDEST is computed in one of two ways, depending upon the value of the 
PC-relative flag (PR). If PR is true, ·then J is taken to be a signed 12-bit PC offset, and 
JUMPDEST is PC+i*SIGNED_J. If PR is false, then J is taken to be a general operand 
descriptor (see Section 3.7.3.l), and JUMPDEST is the result of evaluating that operand 
descriptor. In either case, JUMPDEST is computed before tlte execution of tlte aritltmetic-compare-
and-jump instruction. · 

Note that the 12-bit PC relati~e jump (PR true) is included only to increase code density. A II 
instructions in this section can be written with PR true or PR false; thiS symmetry makes the jump 
length decision relatively orthogonal to other decisions in code generation . 

. These instructions allow only one general operand address (OD I), since the field of the instruction 
normally reserved for a second operand descriptor (002) instead contains the jump address. · 

Opcode String . 

INC JUMP {COND} 

DEC JUMP {COND} 

INC JUMP {CON D} 0 

DEC JUMP {CON DJ U 

JUMP {CON D} 0 {Q,H,S,D} 

JUMP 

Operation 

OPl+-OPI + I 
if OP I {CON D} NEXT _OP I 
then PC+-JUMPDEST 

OPl+-OPl-1 
if OP I {CON D} NEXT _OP 1 
then PC+-JUMPDEST 

OP l+-OPl + I 
if OPI {COND} 0 
then PC+-JUMPDEST 

OPl+-OPI - I 
ifOPI {COND}O 
then PC+-JUMPDEST 

if OPI {COND} 0 
then pc ... JUMPDEST 

PC+-JUMPDEST 

(note: this is the same instruction 
as "JUMP A O") 
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3.7.4.3.3 Arithmetic Compare and Set Flag 

• TOP l T. [ 001 002 

0 9 10 11 12 23 24 35 

The.Se instructions perform an arithmetic comparison and set the destination to all zeroes or all 
. ones depending upon the result; zeroes indicate false and ones indicate true. · 

The source op~rarids may be of any integer length (Q, H, S, or Q). Tlie destination operand is 
always a singl.e word. · 

0....[!COcle StrirJg Qeeration 
. 

SET FLAG. {COND} {Q,H,S,D} DEST ... Sl {COND} 52 
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3.7.4.4 Logical Operations 

3.7.4.4.1 Logkal Testing 

~'-·so_,..P__. __ sK_P__....._ ___ 0_0_1 ____ ~1-·~--00_2~~_.I 
0 7 8 . 11 12 23 24 35 

The. logical test instructions test a group of flags (OPI) under a mask ·(OP2) and conditionally 
skip (-8 to + 7 words from the location of the current instruction) depending upon the result. The 
operands can be any integer length (Q, H, S, or D), but the flags and mask must be of the same 
length.·· 

The opcode strings in the f oll~wing instruction definitions contain the terms in the fallowing 
table, and these terms have the meanings shown: 

Opcode Term 

CT 

z 
NZ 

Meaning 

Complement OP I before anding 
(ie. use Complement with True). 

Skip if the result is Zero. 

Skip if the result is Non-Zero. 

If OP I is a word of flags, and OP2 is a mask which selects a subset of the nags, then these 
instructions can be used to test various combinations of the flags, as follows: 

Opcode String 

.AND SKIP 

AND CT SKIP 

Opcode · 

AND SKIP Z 
AND SKIP NZ 
AND CT SKIP Z 
AND CT SKIP NZ 

{Z,NZ} {Q,H,S,D} 

{Z,NZ} {Q,~ 1S,D} 

Meaning 

Skip if no selected flag is set. 
Skip if any selected flag is set. 
Skip if all selected flags are set. 
Skip if not all selected flags are set. 

Operation 

if (OP J.'\OP2) {=.-} 0 
then PC+-PC+4*SIGNED_SKP 

if (not( OP l)/\OP2) {·,-} 0 
. then PC+-PC+4*SJGN.EU_~Kl"' 
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3.7.4.4.2 Logical Assignment 

....... I _rn_P_.......__r_~ __ oo_1 __ _.l....;..· __ 0_0_2 _----'j 
0 9 10 11 12 23 24 35 

The logical assignment instructions perform a logical operation on SI and 52 and assign the result 
to DEST. The operands of logical assignment operations may be any integer length (Q, H, S, or 
D), but both operands must be of the same length. 

The terms CT and TC are used with the following meaning: CT implies that SI is 
complemented before the logical operation (use Complement and True), and TC implies that 52 is 
complemented before the logical operation (use True and Complement). · 

Opcode Strin~ Operation 

AND {Q,H,S,D} DEST ... Sl/\S2 

AND TC {Q,H,S,D} DEST ... s l/\not(S2) 

AND CT {Q,H,S,D} DEST ... not(S l)/\S2 

NOR {Q,H,S,D} DEST ... not(S l)Anot(S2) 

OR {~H.S,D} DEST ... S lv52 · 

OR TC {Q,H,S,D} DEST ... s lvnot(S2) 

OR CT {Q,H,S,D} DEST ... not(S l)vS2 

NANO {Q,H,S,D} DEST ... not(S l)vnot(S2) 

XOR {Q,H,S,D} DESTf-S I XOT 52 

EQV {Q,H,S.D} DE5T ... not(Sl xor 52) 

... 
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3.7.4.4.3 Shift and Rotate. 

~'--TO_P~_,__T __ .__~-O~D-1 __ ~_._ ____ oo_z ____ _,, . 

. 0 ·9 10 il 12 23 24 35 

The shift and rotate instructions take operands which are any integer length (Q, H, $, or D). The 
shift count .is always a single-word. 

A II shift and rotate instructions are non-commutative, therefore each instruction is provided in 
reverse form. · · 

The term "A" (Arithmetic) in the opcode string implies that the operation is arithmetic, otherwise 
the operation is logical. 

Opcode Strin~ Operation 

SHIFT {LEFT.RIGHT} {Q,H,S,D} DEST+.-Sl logical {LEFT,RIGHT} 
shifted by S2 

SHIFT {LEFT.RIGHT} v {Q,H,S,D} DEST+.-S2 logical {LEFT,RIGHT} 
shifted by SI 

SHIFT {LEFT.RIGHT} A {Q,H,S,D} DEST+.-Sl arithmetic {LEFT.RIGHT} 
shifted by 52 

S}iIFT {LEFT.RIGHT} A v {Q,H,S,D} DE$T+.-S2 arithmetic {LEFT,RIGHT} 
shifted by SI 

ROT {LEFT.RIGHT} {Q,H,S,D} DEST+.-SI rotated {LEFT.RIGHT} by S2 

ROT {LEFT.RIGHT} v {Q,H,S,D} DEST+.-52 rotated {LEFT.RIGHT} by S 1 
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3.'7.4.4~4 BiT REVERSE 

I XOP 001 002 

0. 11 12 . 23 24 35 

BIT REVERSE reverses the bits in a quarter-word, half-word, single-word, or double-word. 

Opcode String Operation 

BIT REVERSE {~H;S,D} OP l~bit_reverse(OP2) 

3.7.4.4.5 Bit Counting 

XOP 001 002 

0 11 12 23 24 35 

BIT COUNT counts the numbe~ of oi:ie bits in an operand; it is useful for counting the number 
. of elements in a set, where bits in a word represent elements in a set, as in common· 
implementations of PASCAL. · 

BIT FIRST finds the bit number of the first one bit of an operand; it is useful for. computing the 
index of the first element of a set. 

Opcode String 

lil r CUUNT 

BIT FIRST 

{Q,H,S,D} 

{~H,S,D} 

Operation 

OP i~(number of one bits in OP2) 

OP t~(index of the first one bit in OP2) 
(The search is from the left to the right.) 
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3.7.4.4.6 BIT EXTRACT 

I TOP T 001 002 

0 9 10 11 12 23 24 35 

BIT EXTRACT was suggested by Professor John McCarthy; it is particularly useful for 
extracting a set of nags from a word in order to do an N-way branch on them. SI, 52, and 
DEST _are assumed to be of the same length. 

BIT EXTRA Ci:" is non-commutative, and Is therefore provided in reverse form. 

Opcode String 

BIT' EXTRACT {Q,H,S,b} 

. BIT EXTRACT V {Q,H,S,D} 

~\ 

Operation 

DEST Is set to the value 
obtained by extracting the bits 
in SI that correspond to the 
ones in s2, then squeezing 
them to the right in DEST. 

DEST is set to the value 
obtained by extracting the bits 
in 52 that correspond to the 
ones in SI, then squeezing 

. them to the right In DEST. 
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3.7.4.5 Byte Pointer 

XOP 001 002 

0 11 12 23 24 35 

The by,te pointer instructions operate on bit-strings of arbitrary size (less than or equal to 36 bits), 
which are called bytes. These instructions all use a two word BYTE POINTER, which has the 
format: 

BYTE POINTER 

LENGTH POSIT I ON 

REG A 

0 1 5 6 18 26 27 35 

LENGTH is the size of the byte, and POSITION is the bit-number of the first bit in the byte. 
The second word of the BYTE POINTER is a standard Indirect Address .Pointer (see Section 
3. 7.3. l), which evaluates to the address of the word which contains the byte. 

The LENGTH and. POSITION fields are each 9 bits long, therefore quarter-word instructions 
can be used to manipulate them. The LENGTH and POSITION fields must specify a byte 
contained entirely within a word. When incrementing a BYTE POINTER, the hardware adds 
LENGTH to POSITION, then, if the result is greater than 35, sets POSITION to 0 and 
increments A. Byte-adjustment is similar. · 

The function byte takes an argument which is the address of a byte pointer. The value of lryte(X) 
is the bit string described by the byte pointer X. 

Opcode String-

LBYTE 

DBYTE 

ADJ BY!EP 

LBYTEINC 

DBYTE INC 

Operation 

Load BYTE 
OP l+-bY,te(OP2) 

Deposit BYTE. 
BYTE(OP l)+-0P2 

AD Just BYTE Pointer 
OP l+-OP I byte,;..ad .il;Jsted by OP2 

Load BYTE and INCrement 
OP 1+-BYTE(OP2) 
OP2+-0P:Z byte-incremented 

Deposit BYTE and INCrement 
BYTE(OPl)+-OP2 . . 
OP It-OP I byte-incremented 
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3.7.4.6 List Manipulation 

The list manipulation instructions operate on lists which h.ave two-word list headers, where the 
first word points. to the first elernent of the list, and the second word points to the last element of 

·the. list. An empty list is represented by zero in the first word of. the list header. These lists are 
assumed to be linked together by the first word of each element; the last element contains a zero 
link. 

3.7.4.6.l Skipping List Instructions 

SOP SKP 001 

0 7 8 11 12 

Opcode Strinr;-

LIST POP SKIP EMPTY 

LIST POP SKIP NOT EMPTY . 

002 

23· 24 35 

Operation 

Remove an element from the head. 
(OP2,NEXT _OP2) is the list header. 
OP I gets the address of the first element .. 
·of the list. If the list is empty, then 
the instruction skips . 

. if OP2 = O 
then PC ... PC+i*SIGNED_SKP 
else begin 

OP.l4-0P2 
OP2._M[OP2J' 

end 

Remove an element from the head. 
(OP2,NEXT _OP2) is the list header. 
OP I gets the address of the first element 
of the list. If the list is not empty, then 
the ihstrucuon skips. 

if OP2" 0 
then begin 

PC ... PC+i*SIGNED_SK P 
OPl4-0P2 
OP2+-M[OP2] 

ehd 
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3.7.4.6.2 Non-Skipping List Instructions 

XOP I . 001 

0 11 12 

Opcode String 

LIST PUSH 

LIST APPEND 

LIST POP TRAP 

002 

23 24 35 

Operation 

Add an element to the head·. 
(OP 1,NEXT _OP I) is the list header. 
OP2 p_oints to the element to be 
added to the hea:d of the list. 

M[OP2]...,0P I 
if OP I = 0 then NEXT _OP J...,OP2 · 
OPl...,OP2 

Add an element to the tail. 
(OP 1,NEXT _OP I) is the list header. 
OP2 points to the element to be 
added to the tail of the list. 

M[OP2J+-O 
if OP I = 0 then OP l+-OP2 

. NEXT _OP l..,OP2 

Remove an element from the head. 
(OP2,NEXT _OP2) is the list header. 
OP I gets the address of the first element 
of the list. If the list Is empty, then the 
instruction soft traps to the trap v~ctor 
at address LIST _:UNDFL. 

if OP2 = O 
then sufLerror(LIST _POP,PC) 
else i}egin 

OPl+-0P2 
OP2._M[OP2] 

end 
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3.7.4.7 Data Transfer 

3.7.4.7.1 Block Transfer 

XOP 001 002 

0 · 11 12 23 24 35 

The block transfer (BLT) fostruction transfers a block of data from one location in memory to 
another. · · 

(OP2,NEXT _OP2) is the descriptor of the source block. This descriptor has double-word length; 
the first word is the address of the block, and the second word is the length of the block in 
quarter words. OP I is the add~ess of the destination block. 

The operands of a BLT are continuously updated so that if an interrupt occurs during a BLT, 
the BLT can be restarted. It is therefore important that tlie values of tlit operands not be used to 
calculate tlieir own addresses. 

Opcode String 

BLT {Q,H,S,D} 

Operation 

Block Transfer. 

for l+-0 step {1,2,3,4} 
until NEXT _OP2-{ 1,2,3,4} do 
M[OP l+IJ+-M[OP2+Il 

OP2+-0P2+NEXT _OP2 
OP l+-OP l+NEXT _OP2 

. NEXT _OP2+-0 
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3.7.4.7.2 Move .and Exchange 

XOP 001 002 . 1. 

0 11 12 23 24 35 

The "MOY" Instructions move an operand of any integer length (Q, H, S, or D) to another 
operand of any integer length. The source and destination lengths are specified by including the 
appropriate characters together in the opcode string·, with the destination length preceding the 
source length. · 

In addition, the "MOY" opcode strings may include special terms which specify the move type as 
shown in the opcode descriptions below. For example, "MOY N DS" means "negate a single 
precision integer and move it to a double precision integer." 

EXCH assumes that the both operands are of the same precision. 

Opcode String 

MOY {Q,H,S,D}{Q,H,S,D} 

MOY S {Q,H,S,D}{Q,H,S,D} 

MOY {1.2 .... ,8} 

.. 

MOV c {Q,H,S,D} 

MOY N {Q..,,H.S,D} 

MOY M {Q,H,S,D} 

MOY A 

MOY A OPI 

MOY A or2 

MOY A REAL 

EX.CH {Q,H,$,b} 

Operation 

·op1~0P2 

OP 1Hign_extend(OP2) 

for 1~ I step 1 until { 1,2, ... ,8} 
do M[ADDRESS_OP l+I-IJ+-

M[ADDR ESS_OP2+1-I) 

(Note that MOV i and MOV 2 are 
thi:o sami:o as MOY SS and MOYD D.) 

OP l~not(OP2) 

OP l~twos_negative(QP2) 

OP 1~abs(OP2) 

OP t~ADDRESS_OP2 

OP h-(address specified by OD I 
in the instruction at 0 P2) 

or (+-(address specified by 002 
in the instruction at OP2) 

OP IHe.aLaddre.ss(ADDRESS_OP2) 

0Pl~OP2 

.. 



·• 

• 

• 

• 

3.7.i.8 Processor Architecture 49 

,.7.4.8 Stacie Manipulation 

· XOP I 001 002 

0 11 12 23 24 35 

The stack manipulation inslructions conditionally hard error trap on the result of the comparison 
of the stack pointer with the stack limit register. The trap location is a fixed location in virtual 
space, STACK_MANIP. 

The "PUSH {UP.DOWN} TRAP" instructions push an operand of integer length (Q, H, S, or D) 
onto a stack and trap conditionatly depending upon the outcome of a comparison. Stacks may 
grow either upward or downward; "PUSH UP". pushes onto an upward-growing stack and . 
"PUSH DOWN" pusJies onto a downward-growing stack. One operand, call it OP, is assumed to 
be a single-word stack pointer, _and the stack limit is NEXT _OP .. The length of the stack entry is 
specified by a term in the opcode string . 
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Opcode String Operation · 

ADD TRAP if (OP l+OP2) > NEXT _OP I 
then h.ard_error( 

ST A CK_.A D JUST .A DDRESS_OP 1) . 
else OP 11-0P 1 + OP2 

SUB . TRAP if (OPl-OP2) <NEXT _OP 1 
then hard_error( 

STACK_.ADJUST .ADDRESS_OP 1) 
else OP 11-0P I - OP.2 

PUSH UP TRAP {Q,H,S,D} PUSH UP and TRAP if overflow 

if (OP 1+{ 1,2,3,4}) > NEXT _OP I 
then hard_error( 

STACK_.ADJUST .ADDRESS_ OP I) 
else begin 

M[OPl]1-0P2 
OP l+-OP I+{ 1,2,3,4} 

end 

PUSH DOWN TRAP {Q,H,S,D} PUSH DOWN and TRAP if overflow 

if (OP 1-{ 1,2,3,4}) < NEXT _OP I 
then hard .... error( 

STACK.ADJUST ,ADDRESS_OPI) 
else begin 

M[OP 1)1-0P?. 
OP If-OP I-{ l,2,3,i} 

end 

POP UP {Q,H,S,D} POP an UPward stack. 

OP?.1-0P?.-{ l,?.,3,4} 
OP lt-M[OP2] 

POP DOWN {Q,H,S.D} POP a DOWNward stack. 

OP2f-0P2+f 1,2,3,4} 
• OPJ..-M[OP2] 

. I 
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3.7.4.9 Subroutine Linkage 

The subroutine linkage mechanism is designed to allow the efficient implementation of high-level 
block structured languages such as PASCAL; it explicitly implements call-by-value and call-by­
reference. 

In a block structured language, a display is often used to implement references to upper levels in 
the stack. The active display is maintained in the R registers; it consists of a pointer to the stack 
frame of each procedure which is at a lower lexical level tha.n the currently active procedure. 
When a procedure at a lower lexical level returns, the display registers above the level of the 
called procedure must be restored to their state at the time of the call. For example, consider a 
procedure CALLER on lexical level 3 which calls a procedure CALLED on lexical level I. 
CALLER first saves the old display register, DISPLAY[ I], allocates a new frame on the stack, 
then sets DISPLAY[ I) to point to the new frame. During the execution of CALLED, 
DISPLA Y[2] and above are hot needed, and therefore can be used for any other purpose, 
providing they are restored before CALLED exits. The per-procedure-call overhead in 
maintaining the display is then one memory write to save the old display register, one register 
write to set up the new display register, and one memory read to restore the old display register. 
During the execution of a procedure on lexical level I, I registers are required to hold its display; 
all registers above the level of the current display register can be used for local variables, 
providing they are restored on return. 

In the LLL Filter, an efficient mechanism is provided for passing parameters to subroutines 
through the registers, rather than on the stack. The parameter instruction (PAR) is used to save 
a register on the stack, and to place a parameter in that register. This operation represents 
essentially the same overhead as pushing parameters on the stack, but has the advantage that it 
leaves. the parameters in the registers for efficiency. 

To understand the (PAR) instruction, it is first necessary to understand the format of the current 
stack frame. Before a procedure can be called, storage on the current stack frame must be 
allocated for the callee's parameters, the old stack frame pointer, and the return program counter, 
as shown in Figure 3.7.4.9-1. · It will be convenient for the caller to allocate this extra 
space on its stack frame when it is first invoked, allowing enough room for the largest routine call 
which it will make. The allocation will thus be made far enough in advance so that pipeline 
interlocks normally will not occur (indexing off of a recently altered register will cause the pipeline 
to interlock). Furthermore, allocation in advance will save the expense of performing multiple 
allocations and deallocations, one pair for each call. 

Figure 3. 7.4.9-2 shows an example procedure . call which passes three parameters A, B, 
and C, where A and C are call by value, and B is call by reference. Figure 3.7.4.9-3 
shows the called procedure (CALLED), which uses two local registers and allocates I 0 words on its 
stack. NEW _SF is the stack frame register for CALLED. The operations preformed by the 
subroutine linkage instructions are shown as comments in the example. The exact definition of 
the instructions is given in the sections which follow. · 

If the contents of a register used to pass a parameter are known to useless after the subroutine 
call, then the parameter can be MOVed to the register, and the register need not be restored, 

· saving the overhead of one save and one restore. 

This parameter passing method requires a register for each parameter passed to a procedure. 
One possible code-generation technique is to assign 8 registers to be used for passing parameters; 
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. if a procedure has ~ore than 8 parameters, it will push the rest of the parameters onto the stack. 
Furthermore, it will be efficient to have two types of temporary registers for use in procedures; the 
first type will be used to hold local variables, which are saved and restored when a procedure is 
entered and exited, and the other type will never be saved, but will be used for holding temporary 
results and ~ailing bottom-level procedures (which call no other procedures). 

" ,::, 

~· 

... 
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SF: 

SP-20: 

SP-16: 

SP-12: 

• SP-8: 

SP-4: 

SP.: 

Processor Architecture 

CURRENT FRAME VARIABLES 

SAVE PARAMETER N REGISTER 

. . . 
SAVE PARAMETER 3 REGISTER 

SAVE PARAMETER 2 REGISTER 

SAVE PARAMETER 1 REGISTER 

OLD STACK FRAME POINTER<SF> 

RETURN PROGRAM COUNTERCPC) 

FIRST FREE WORD ON STACK 

Figure 3.7.4.9-1 
Current Stack Frame 
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• 

Processor Architecture 

PAR 1 P_REG,A 

PAR A 2 P_REG-1,B 

·PAR 3 P_REG-2,C 

JUMP SUB NEW_SF,CALLED 

MOV 3 P .... REG-l,-20(~P) 

Figure 3.7.4.9-2 
Example Procedure Call 

ALLOC 2 NEW_SF+l,140 

! "ROUTINE BODYn 

RETURN SUB 2 NEW_SF+l,NEW_SF 

Figure 3. 7.4.9-3 
Example of Called Proced.ure 

3.7.4.9 

!M[SP-12] .. R[P_REG] 
!R[P_REG] .. M[A] 

!M[SP-16] .. R[P_REG-l] 
! R[ P _REG-1 ] .. B 

!M[SP-20] .. R[P_REG-2] 
! R[ P _REG-2 ) .. M[ C] 

!M[SP-8] .. R[NEW_SF] 
!M[SP-4] .. PC+4 
!R[NEW_SF] .. SP 
!PC .. CALLED 

! R[ P _R.EG-2 ]+-M[ fl.[ SP ]-20] 
!R[P_REG-l] .. M[R[SP]-16] 
!R[P_REG] .. M[R[SP)-12] 

!M(SP] .. R[NEW_SF+l] 
!M[SP+4] .. R[NEW_SF+2] 
.!SP .. SP+40 

!R[NEW_SF+l] .. M[R[NEW_SF]] 
IR[NEW_SF+2]~M[R[NEW_SF]+4] 

!PC .. M[R[NF.W_SF]-4] 
!SP+-R[NEW_SF] 
IR[ Nii.W_Sjo: }·l'i[ K[ N~W_St-: )-8 J 

. 
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3.7.4.9.1 jump to Subroutine 

001 J 

0 10 11 12 .23 24 35 

OP 1 is the stack frame register. The JUMP SUB instruction: saves on the stack the return 
program counter and the old stack frame register (OP I), and sets the new stack frame register 
(OP 1) equal to the stack pointer. 

Opcode String 

JUMP SUB. 

3.7.4.9.2 Subroutine Context Switching 

XOP 001 

0 11 12 

Operation 

JUMP to SUBroutine 

M[SP-8)+.0P I 
M[SP-4)+-PC_NEXT _INSTR 
OPl+-SP 
PC+-JUMPDEST 

002 

23 24 35 

f . 

PAR saves the value of a register (OP I) in one of eight parameter-save areas on the current 
stack frame, and loads OPI with a value parameter, OP2. PAR A Is Identical except it loads 
OP I with the address of OP2. · 

ALLOCATE i~ used by the called procedure to allocate OP2 words on the stack, and to save I to 
8 registers (sequentially, starting with OP 1) at the beginning of the new stack frame. 

RETURN SUB restores I to 8 registers (sequentially, starting with OP I) from the beginning of 
the current stack frame, restores the PC from the previous stack frame, sets the SP to the value. of 
the current stack frame pointer (OP2), and restores the previous. stack frame pointer from the 
previous stack frame. 
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Opcode String Operation 

PAR { 1,2, ... ,8} subroutine PA Rameter 

M(SP-8-{ 1,2, ... ,8}*4)+-0P I 
OP l+-OP2 

PAR A { 1,2, ... ,8} subroutine PARameter Address 

M(SP-8-{ 1,2, ... ,8}*4)f:-0P I 
OP l+-ADDRESS_OP2 

ALLOCATE { 1,2, ·:· ,8} ALLOCATE stack and save registers 

.. 
if SP > (SL+OP2*4) 
then hard_error( 

STACK.ADJUST,SP.JD*4) 
else begin 

for l+-1 step l until { l,2, ... ,8} 
do M[SP+l*4-4]+-
M[ADDRESS_OP 1+1*4-4] 

SP+-SP+OP2 
end 

RETURN SUB {O, 1,2, ... ,8} RETURN from SUBroutine and 
restore registers. 

for l+-1 step I until {0,1,2, ... ,8} 
do M[ADDRESS_OP l+l*i-i].,_ 
M[OP2+1*4=4) 

PC+-M[OP2-4] 
SP+-0P2 
OP2+-M[OP2-8] 
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3.7.4.10 Tr;ips and Interrupts 

This section describes trap instructions, soft-error traps, hard-error traps, and interrupts. 

Traps and interrupts use trap vectors. A trap vector includes a new PC and possibly Cl status 
word; those values are lo<tded into the processor during a trap after the previous state of the 
machine has been saved. 

The trap instructions allow trapping within the current n1oclr~ (TRAP SELF), or trapping to the 
exerntive (TRAP EX EC). TRAP SELF does not save the status reg·ister, but places the addresses 
of OP I and OP2 into R[30] and R[31] (after saving them); it is intended to be used as a two­
pararneter subroutine call. TRAP EXEC saves the status register and gets a new status rcg·ister 
from the trap vector; it also places the addresses of OPI and OP2 in R[30) and R[31), but 
without saving those registers. TRAP EXEC is intended to be used to implement monitor.catls; 
the executive will reserve R[30] and R[31] to receive parameters. The TRAP opcodes define the 
trap· vector addresses; each instruction type has 61 different opcodes, each of which. traps to a 
unique trap vector. . The TRAP SELF trap vectors are contiguous in both the user and executive 
virtual address spaces, starting at address TRAP _SELLA DR, and the TRAP EXEC trap vectors 
are contiguous in the executive address space starting at address TRAP _EXEC_A DR (they do 
not exist in the user address space). Both TRAP USER and TRAP EXEC save the PC of the 
next instruction (some types of tn1ps save the PC of the current instruction); a return will thus not 
re-execute the trap instruction. 

Some types of imtruction execution errors (for example, integer overflow) will cause a soft error 
trap. A soft error traps to a fixed trap vector address (which depends upon the identity of t~1e 
error) in the current address space. A soft error trap saves the USER_STATUS_REGISTER 
(<1ml sets a new USER_STATUS_RECISTER from the trap vector}, if the trap occurs in user 
mode, but saves the STATUS_ REGISTER (and sets a new STATUS_REGJSTER from the trap 
vector), if the tr;ip occurs in executive mode. The ~oft error trflp ·routine also sa.ves on the stack 
the PC of the next instruction Clnd one or more parameters, the nature of which is specific to the 
type of error. Retwns from soft error traps will usually be to the next instrt1ction, since most 
instructions with soft errors complete execution before trflpping. Cases in which the trapping 
instruction needs to be re-executed are handled by passing the PC of the trapping instruction as a 
pflramcter. 

Other types of instruction execution errors (for example, writing a read-only page) will cause a 
hard error trap. A hard error traps to a fixed trap vector address (which depends upon the 
identity of the error) in the executive address space. H;ird errors occurring in the executive trap 
to different locations than hard errors occurring in the user. A ha1'd error trap saves one or more 
paramf.'ters, the PC of the trapping instruction, and the STATUS_REG; the save area is simply 
the stack defined by- the new ST A TUS .. REG, which is obtained from the trap vector. The 
STATUS .. REG v;ilue in the tr~p vector will also set the processor into executive mode. As With 

·.soft errors, the nature and number of the parameters saved is specific to the type of error. Most 
hard errors cau~e abortion of an instruction before any results arc written; those instructions can 
be re-executed. 

Two speci<ll hard errors may occur during traps or interrupts: page fault, and stack overflow. 
These errors trnp again to special hC1rd error trap vectors, passing parameters which allow the 
proper execution and return of trap which encountered the error. The special ha.rd error handler 
PAGE.fAULT_lN . .TRAP must not encounter a pag.e fault error, and the hard error handler­
SP .. OVFL must not encounter a stack overflow error. 
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/\ n interrupt is s.i1·nibr to :·t 111-ird error, but no parilrneter is saved. An interrupt is initiated when 
nne of the four intr.'rrupt lines i:; as.~erted; if the priority c1f the interrupt is higher than PRIO, 
thr·n the intr.rrupt is cicceptE·d .and the proce~sor, unclcr micro-code control, finds an interrupt 
vector address (Jl-JT. VECTOR) in main h1emory (where it was stored by the interrupting devic•::). 
Tli€' prncr.srnr cit the s;uni:'. time res('ts the :;:terrupt bit which caused the interrupt line ll) be 
ass~rtccl. Interrupts are test,:-d immediately before execution of an instruction; at that tirn.:! PC is 
the <1ddress of the next instruction to be executed. 

Three return instructinns handle all returns froin traps or interrupts; RETURN REGS, 
RETURN USER STATUS, and RETURN FULL STATUS re~tore only registers, only th2 user 
sL'ltus, and the full status, respectively. RETURN REGS h:1ndlc~ returns frorn TRAP SELF, 
R ETLIRN USER STATUS li;1ndlf~s returns from soft error trap;. and RETURN FULL 
STATUS hcindb returns from hard error trcips, TRAP EXEC, and interrupts. Both RE'fURN . 
US LI~ STATUS and RETURN FULL STATUS allow OP I to specify the number of locatio11s 
to be popped off ,.,f the stack. .1. 
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• 

. ,, 

USER SPACE 

ADDRESS 132: 

VECTORS FOR 
. SOFT ERRORS 

FROM USER 

TRAP _SELF _ADR: 

VECTORS FOR 
II TRAP SELF II • 

FROM USER 

Processor Architecture 

Figure 3.7.4.10-1 

EXEC SPACE 

ADDRESS · 132: 

VECTORS FOR 
SOFT ERRORS 

FROM EXEC 

TRAP_SELF_ADR: 

VECTORS FOR 
"TRAP SELF" 

FROM EXEC 

TRAP _EXEC_ADR: 

VECTORS FOR 
"TRAP EXEC" 

FROM USER 
<OR EXEC) 

VECTORS FOR 
HARO ERRORS 

FROM 
USERjt.XEC 

INTERRUPT 
VECTORS 

User and Executive Address Spaces 

59 



60 

• 

Processor Architecture 

Vector for TRAP SELF from user: 

HANDLER ADDRESS 

Vee tor 1 for TRAP SELF from e><ecu t i ve: 

HANDLER ADDRESS 

Vector for soft error from user: 

HANDLER ADDRESS 

NEW USER_STATUS_REG 

Vector for soft error from e><ecutive 

HANDLER ADDRESS 

NEW STATUS_REG 

Vector for hard error from user or e><ecutive: 

HANDLER .ADDRESS FOR USER HARO ERROR 

NEW STATUS_REG FOR USER HA~D ERROR 
~ .. ~~~~~~~~~~~~~~~~~~~--

Hi\ MDL t:R i\DD~ESS rnR ~x~c 1-1/\RD !!RROR 

NEW STATUS_REG FOR EXEC HARD ERROR 

Vector for interrupt~ 

HANDLER ADDRESS 

NEW STATUS_REG 

Figure 3.7.4.10-2 
Trap Vector Formats . 

3.7.4.10 
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TRAP TYPE 
• 

TRAP SELF 

TRAP EXEC 

USER SOFT ERROR 

EXEC SOFT ERROR 

HARO ERROR 

. ,-

INTERRUPT 

• 
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SAVE AREA.FORMAJ RETURN TYPE 

PC_NEXT _INSTR 

R C30l 

R £311 

PC_NEXT_INSTR 

STATUS_REG 

PARAMETER CS} 

PC_NEXT _INSTR 

USER_STATUS_REG 

PARAMETER CS> 

PC_NEXT_INSTR 

STATUS_REG 

PARAMETER CS} 

PC 

STATUS_REG 

PC 

STATUS_REG 

Figure 3.7.4.10""'.3 . 
. Save Area Formats 

RETURN REGS 

RETURN FULL STATUS 

RETURN USER STATUS 

RETURN FULL STATUS 

RETURN FULL STATUS 

RETURN FULL STATUS 
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Trap Address 

INT_OVFL 
ZERO_DIVIDE 
LIST __ UNDFL 

.FLOAT _UNDFL 
FLOAT_OVFL 
POST __ OVFL 
PRE_OVFL 

Trap Address 

Processor Architecture 

Error Condit ion 

integer overflow 
divide by zero 
list underflow 
floating underflow 
floating overflow 
postnormalization overflow 
prenormalization overflow 

Figure 3. 7.4.10-4 
Soft Error Trap Addresses 

Error Condition 

TRACE trace trap 
PAGE_FAULT _IN_TRAP page fault during trap 

SP __ .OVFL 
PAGE_FAULT 
STACK_ADJUST 
EXECUTE_ USER 
JUMP_.USER 
REF .. EXEC 
STATUS ACCESS 
ILLCGALIN~TR 
NOT _.INSTRUCTION 
NOT_DATA 
WRITE_ONLY. 
READ_ONLY 
BOUNDARY._ ERROR 

SP overflow in trap 
page fault 
stack overflow 
execute to user space from exec 
jump to user space from exec 
reference to exec space from user 
ar.CP.S.~ing prnr.eSSOf St<ltllS by User 
illegal i1utrui:tion 
page at PC is not instruction type 
operand page is not data type 
reading a write-only page 
writing a read-only page 
data/imtructinn .hounciary error 

Figure 3. 7.4.10-5 
Hard Error Trap Addresses 

Parameters 

PC 
PC 
PC 
PC 
PC 
PC 
PC 

Parameters 

PC 

3.7.4.10 

page address 
trap address 
trap parameter 
trap address 
page address 

· st~<;k reiister adr 
PC 
PC 
PC 
PC 
PC 
PC 
PC 
PC 
PC 
pr. 

.. 
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3.7.4.10.l Trap Instructions 

. XOP 

• 't.. 
0 

·'\ .. 
Opcode String 

TRAP .SELF . {0, 1,2, ... ,63} 

• 

TRAP EXEC {0, 1,2, ...• ~3}. 

. . 

Processor Architecture 

11 12 

001 002 I 
23 24 35 

Operation 

M[SP]+-PC_NEXT _INSTR 
M[SP+il+-R[30] 

· 'M[SP+'SJ+-R[31] 
R[30]+-A OORESS_OP I 
R[31]+-AOORESS_OP2 · 
SP+-SP+l2 
PC+-M[TRA P _SELLA OR+{0, 1,2, ... ,63}*4) 
if SP> SL . 
then SP _ovfl(SP _10*4) 

TEMP[ll+-STATUS_REG 
EXEC_MOOE+-1 
STATUS_REG+-

M[TRA P _EXEC..AOR+{0,1,2, ... ,63}*8+4) 
M[SP]+-PC_NEXT _INSTR 
M[SP+i]+-TEMP[ I] 
R[30)+-AOORESS_OP I 
R[3 l]+-A OORESS_OP2 
PC+-M[TRA P J:XEC..A OR+{0, 1,2, ... ,63}*8) · 
SP+-SP+S 
if SP> SL 
then SP _ovfl(SP -10*4) 
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3.7.4.10.2 Soft-Error Trap 

Opcode String 

soft_error(TRA P _A DR,PA R) 

Processor Architecture 

Operation 

if page fault 
in (M[SP),M[SP+4),M[SP+8)) 

then page_faulUn_trap( 
TRAP _ADR,PAR) 

M[SPJ~PAR 
M[SP+4)~PC_NEXT_INSTR 
if EXEC_MODE 
then M[SP+8J~STA TUS_REG 
else M[SP+8J~USER_STATUS_REG 
PC~M[TRA P _ADR) 
SP~SP+l2 

if SP> SL 
then SP _ovfl(SP -10*4) 

3.7.i.I0.2 

, 

-. 
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3.7.4.10.3. Processor Architecture 

3.7A.I0.3 Hard-Error Traps 

Opcode String 

liard_error(TRAP _ADR,PAR) 

page_Jault_in_trap(TRAP .ADR,PAR) 

Operation 

TEMP[ I )4-STA TUS_REG 
if EXEC_MODE 
then begin 

STATUS_REG ... M[TRAP .ADR+ 12] 
M[SP+4] ... PC . 
PC4-M[TRAP .ADR+S] 

end . 
else begin 

EXEC_MODEf-1 
. ST A TUS_R EG4-M[TRA P .A DR+4] 

M[SP+4)4-PC 
PC4-M[TRAP .ADR] 

end 
M[SP]f-PAR 
M[SP+8]t-TEMP[l] 
sp ... sP+ 12 
if SP> SL 
then SP _ovfl(SP JD*4) 

TEMP[ I )4-ST A TUS_REG 
if EXEC_MODE 
then begin · 

STA TUS_REG ... M[ 
SOFT _ERROR_PAGE_FAULT+12] 

M[SP+8]t-PC_NEXT JNSTR . 
PCf-M[ 
PAG~_FAULT JN_TRAP+S] 

end · 
else begin 

EXEC __ MODEf-1 
STATUS_.REG4-M[ 

SOFT _ERROR_PAGE_FA ULT +4] 
· M[SP+S]t-PC_NEXT _INSTR 
PCf-M[ 

PAGE_FAULT _IN_TRAP] 
end 

M[SP]f-TRAP .ADR 
M[SP+4] ... PAR 
M[SP+ 12)4-TEMP[I] 
SPt-SP+ 16 
if SP> SL 
then SP _ovfl(SP _ID*4) 
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Opcode String 

SP -'-ovjl(PAR) 

Processor Architecture 

Operation 

TEMP[l)+-STATUS_REG. 
if EXEC_MODE 
then begin 

3.7.4.10.3 

STA TUS_REG+-M[STACK_OVFL+ 12) 
M[SP+i]+-PC 
PC+-M[STACK_OVFL+S] 

end 
else begin 

EXEC_MODE+-1 
STAT{)S:...REG+-M[STACK_OVFL+4) · 
M[SP+i]+-PC 
Pr.+-M[STA r.K _OVFLJ 

end 
M[SP]+-PAR 
M[SP+8]+-TEMP[l] 
SP+-SP+ 12 . 



3.7.4.10.4 

3.7.4.10.4 Interrupt 

.... Opcode Strin~ 

interrupt(INT _VECTOR) 
·. 

• 

• 

Processor Architecture 

Operation. 

TEMP[l] ... STATUS__REG 
EXEC_MODE._ I · 
STA TUS_REG ... M[INT _ VECTOR+4] 
M[SP] ... PC 
M[SP+4] ... TEMP[ I] 
SP ... SP+8 
PC ... M[INT-VECTOR] 
if SP> SL 
then SP _ovf1(SP _ID*4) 
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3.7.4.10.5 Trap and Interrupt Returns . . 

XOP 001 

0 il 12 

Opcode String 

RETURN REGS 

. .' 

RETURN F.ULL STATUS 

RETURN USER STATUS 

002 

23 24 35 

Operation 

Return and restore registers. 
(Return from TRAP SOFT.) 

PC+-M[SP-12) 
R[~O]+-M [:.>l'-8) 
R[3 I ]+-M[SP-4) 
SP+-SP-12 

Return and restore full status. 
(Return from interrupt, hard 
error, or TRAP EXEC.) 

PC+-M[SP-8) 
STA TUS__REG+-M[SP-4) 
SP+-SP-OP I 

Return and restore user status. 
(Return from soft error.) 

PCt-M[SP-8) 
USER_ST A T·us_REG+-M[SP-4) 
SP+-SP·OPI 

3.7.4.10.5 

•' 
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3.7.4.11 Cache Control 

• 

·~'~~xo_P _____ )..._ ___ 0_0_1 ___________ 0_02 ____ _ 

0 11 12 23 24 35 

The cache control instructions have been described in Section 3.1. If a very large sweep range is 
specified in a cache control instruction, the processor will choose to sweep the entire cache instead 

· of sweeping each location in the range .. 

For efficiency reasons, a special instruction is provided to sweep both the instruction cache and 
the data cache simultaneously. · 

Opcode ·string 

UPDATE DATA 

KILL DATA 

KILL INSTR .. 

KILL DATA INSTR 

Operation 

Sweep through the data cache (for OP2 
quarter-words), starting at virtual address 
OP I, and writing back changed locations. · 

Same as UPDATE DATA, except that 
the words in the cache in the given 

· range are also invalidated, so that 
future references to them will be made 
to memory . 

Sweep through the instruction cache 
(for OP2 quarter-words), invalidating.each 
location starting at virtual address OP 1. 

Same as KILL DATA followed 
by KILL INSTR. 
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3.7.4.12 Page Map Control 

'3,7.4.12.I KILL MAP 

XOP 001 002 

0 11 12 23 24 35 

The page m;ip control instructions have been described in Section 3.2. KILL MAP deletes a 
specific entry from both page maps. KILL MAP EX EC deletes all executive address space entries 
in the page m;ip, and KILL MAP USER deletes all user address space entries in the page map . 

Qr-code Sering 

KILL EXEC MAP 

KILL USER MAP 

. KILL ALL EXEC MAP 

KILL ALL USER MAP 

. Op~• dliu11 

Invalidate the entry in the associative 
map that corresponds to the executive 
virtual address M[OP I). 

Invalidate the entry in the associative 
map that' corresponds to the user 
virtual address M[OP I). 

Invalidate all executive address 
space entries in the page map. 

Invalidate all user address 
space entries in the page map. 

'. 



..... 
' 

• 

3.7.4.12.2 Processor Architecture . 71 

3.7.4.12.2 Writing Segment Base Registers· 

JOP . lrRJ 001 J I 
0 10 11 12 23 24 35 

These instructions allow writing either segment base register. A jump is included to allow writing 
the exectHive to write its own segment base register (\Vhich affects the instruction address space for 
the executive). Execution. of WRITE EXEC JUMP will cause all executive address space entries 
to be deleted from the page map. Execution of WRITE USER JUMP will cause all user address 
space enti"ies to be deleted from the page map. 

Opcode String 

WRITE EXEC JUMP 

·WRITE USER JUMP 

Operation 

EXEC_SEG_BASE_REG~OP I 
PC~ JUMPDEST 

USER_SEG_BASE_REG~OP I 
PC~ JUMPDEST . 
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3.7.4.13 Status Register Control 

3. 7.4.13. l Read Status 

[ XOP 001 002 

0 11 12 23 24 35 

The full processor status and the processor ID are accessible only in executive mode. 

Opcode Strin~ Operation 

READ FULL STATUS OP l+-STATUS_REG 

READ USER STATUS OP l+-USER_STA TUS_REG 

READ PROC ID OPl+-PROCESSORJ.D 

3.7.4.13.2 Write Status 

j 

0 10 11 12 23 24 35 

The processor status register is accessible only in executive mode. A jump is provided after the 
load so that the executive can load a user's status register and jump to the user in one instruction. 
The M bit cannot be set in the jump destination of these or any other jump instructions. 

Opcode String 

WRITE FULL STATUS JUMP 

WRITE USER STATUS JUMP 

Operation 

STA TUS_REG+-OP I 
PC+-JUMPDEST 

USER_STA TUS_REG4-0P I . 
PC+-JUMPDEST 

,. 
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3.7.4.14 . 

3.7.4.14 SynchronizaUon 

· 3.7.4.14.i SET INTERRUPT . . . " 

0 

XOP 

Processor Architecture 73 

001 002 

11.12 23 24 35 

Interrupts have been described in Sectio·n 3.4.1. A processor Pi may direct an interrupt to 
processor Pi by. setting bit i in P /s interprocessor interrupt word using a read-modify-write 
memory cycle. 0 P 1. and 0 P2 are assumed to be single-word operands. 

· Opcode String 

SET INTERRUPT 

RESET INTERRUPT 

3.7.4.14.2 Test and Set/Reset 

I XOP 001 

Operation 

(using read-modify-write cycle) 
. OP l+-OP lvOP2 

(using read-modify-write cycle) 
OP l+-OP 1Anot(OP2) 

002 

0 11 12 23 24 35 

TEST AND SET and TEST AND RESET allow the setting and resetting of single-word nags 
using a read-modify-write memory cycle. 

Opcode String . 

TEST AND SET 

TEST A ND RESET 

Operation 

(using read-modify-write cycle) 
0Ph-OP2 
OP2+--l. 

(using read-modify-write cycle) 
OPl+-0P2 
OP2+-0 
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3.7.4.14.3 Munch Registers 

SOP SKP .I 001 002 

0 7 8 11 12 23 24 35 

Munch registers have been described in Section 3.4.3. These instructions allow a munch register 
to be set if and only if there is no conflict (that is, no other' munch register eq~als OP2). If a 
conflict exists, the munch register controller writes a zero into the munch register. The instruction 
definitions assume that OP I is a munch· register. 

Opcode String 

MUNCH SKIP OK 

MUNCH SKIP NOT OK 

Operation 

if no_.conflict 
then begin 

0Pl+-OP2 
PC+-PC+SIGNED_SKP 

end 
else OP l+-0 

if no_conflict 
then OP l+-OP2 
else begin 

PC+-PC+SIGNED_SKP 
OPl+-0 

end 
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5.7.4.14.4 Hardware Queues 

I SOP ·1 SKP 
·I 

001 002 

0 7 8 11 12 23 24 35 

This ins~ructions have been described in Section 3.4.4. The definitions assume that Q.UEUE.X is 
a hardw.are queue at location ADDRESS_X. The processor uses a read-modify-write memory 
cycle to both determine whether th~ queue is "full (empty) ·and to enqueue (dequeue) an entry if 
and only if such enqueueing (dequeueing) is possible. Both LIFO and FIFO queues are 
provided; they are distinguished by their addresses. 

Opcode String 

Q..UEUE SKIP FULL 

Q..UEUE SKIP NOT FULL 

DEQUEUE_ SKIP EMPTY 

. DEQUEUE SKIP NOT EMPTY 

Operation 

(using read.:.modify-write cycle) 
if not_full 
then QUEUE.OP h-OP2 
else PC+-PC+SIGNED_SKP 

(using read-modify-write cycle) 
if not_full 
then begin 

QUEUE.OP l+-OP2 
PC+-PC+SIGNEO_SKP 

end 

(using re~d-modify-write cycle) 
if not_ em Ptf 
then OP l+-QUEUE.OP2 
else PC+-PC+SIGNEO_SKP 

(using read-mocUfy-write cycle) 
if not_ empty 
then begin 

OP l+-QUEUE.OP2 
PC+-PC+SIGNED_S KP 

end 
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· 3.7.4.15 Control Store 

XOP 001 002 

0 11 12 23 24 35 

When the processor is powered-up, an LSI-11 console machine initializes the control memories in 
the processor. The following instructions allow the operating system to alter the control memories. 

Opcode String 

WRITE ISEQ 

WRITE PSEQ 

WRITE ESEQ 

WRITE DECODE RAM 

WRITE DATA CACHE LRU 

WRITE INSTR CACHE LRU 

WRITE DATA ADR TRN LRU 

WRITE INSTR ADR TRN LRU 

Operation 

Word OPl in the ISEQcontrol 
gets OP2. 

Word OPl in the PSEQcontrol 
gets OP2. 

Word OP 1 in the ESEQ control 
gets OP2. 

Word OP 1 in the DECODE RAM 
gets OP2. 

Word OPl in the DATA CACHE 
LRU DECODE RAM gets OP2. 

Word OPI in the INSTR CACHE 
LRU DECODE RAM gets OP2. 

Word OPI in the DATA ADDRESS 
TRANSLATlON LRU OlCUUI:: RAM 
gets OP2. 

Word OPI in the INSTR ADDRESS 
TRANSLATION I.RU DECODE RAM 
gets OP2. 

I, 

... , 
'• 
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S.7.4.16 Mi.scelianeou.s 

: ..... I __ xo_·P_· _ ___..__ __ 0_0_1 ____ · ..... 1 ___ 00_2 __ _ 

0 11 12 23 24 35 

Opcode String Operation 

WAIT Wait for interrupt. 

·HALT Stop processor 0 P I. 

• START Start processor OP I, if 
halted, else does nothing. 

RESET Reset 1/0 devices and switch. 

EXECUTE Execute OP I in the address space 
of OPI. 

AMPUTATE Lock processor OP I out of the switch. · 

• 
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3.7.5 Sample Programs 

This section presents sample programs which for comparison are coded in several assembly 
languages, including assembly language for the LLL Filter. 

The purpose of this section is to indicate the density of COJllpiled code for the LLL Filter, to 
suggest the relative execution speed of the LLL Filter compared with existing machines, and to 
clarify the LLL Filter instruction set. 

3.7.5.1 Assembly Language Specification 

This section presents a brief, informal description of the assembly language which is used for the 
sample programs included in this report. 

An assembly language statement may_, hav.e five main fields, as follows: 

LA BEL OPCODE GOTO OPERANDS COMMENTS 

The LA BEL and COMMENTS fields are self-explanatory. The remaining fields are described 
in the following sections. 

3.7.5.1.l OPCODE Field 

The OPCODE field contains an opcode string, as described in Section 3.7.4, or an abbreviated 
form of the opcode string. An opcode string may be abbreviated by the deletion of certain terms; 
the assembler fills in default values for these terms. The following list shows the assembler 
defaults for opcode string terms: 

{S,D} 

{FR,CR,SR} 

Assembler Default 

s 

SR 

For example, the assembler expands the opcode string "FDIV" into "FDIV SR S", meaning 
"single-word floating divide with stable rounding." · · 

3.7.5.1.2 GOTO Field 

The GOTO field is used for any instruction which includes a skip or a jump destination. The 
GOTO field contains the name of the destination instruction.· · 

3.7.5.1.3 OPERANDS Field 

The OPERANDS field specifies the operands of the instruction. The operand names RTA, 
RTB, PC, SP, and SL are reserved words which indicate special R registers, as shown in Section 
3.7.2. The notation RX means R[X). 
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Operands are written in the order shown in Table 3. 7.3.2- l. In instructions having two operands, 
the order of'the operands is OP I, OP2. In instructions having three operands, the operands are 
written "DEST,OP l,OP2." 
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3.7.5.2 Use of the T Field. 

' . 
The main use of the T format i11structions is in the evaluation of expressions. The following 
examples co!11pare LLL Filter code and PDP-10 code in the evaluation of expressions. 

Expression LLL Filter I Words PDP-10 I Words 

A .. A+B 1 2 

ADD A.B. MOVE RO,B 
ADDM RO,A 

A .. B+C 2 3 

ADD RTA,B,C MOVE R0,8 
MOV A,RTA ADD RO,C 

MOVEM RO,A 

A .. B+C-D :• 2 4 

ADD RTA,B,C MOVE RO,B 
SUB A,RTA,D ADD RO,C 

SUB RO,D 
MOVEM RO,A 

A .. A•B+C•D 3 6 

MULT RTA,A,B MOVE RO,A 
MULT RTB,C,D MULT RO,B 
ADD A,RTA,RTB MOVE Rl,C 

MULT Ri,O 
ADD RO,Rl 
l'IOVEM RO,A 

A .. B•(C(J)-D(K)) 4 6 

SUB RTA, C(J), D(K) MOVE RO,J 
MULT A,RTA,B MOVE Rl,K 

MOVE R2,C(RO) 
SUB R2,D(Rl) 
MULT R2,B 
MOVEl1 R2,A 

A .. B(I+J)•C(K+L)+D(M+N)•E(L+P) 12 14 

ADD RTA,l,J MOVE RO,I 
• ADD RTB,K,L· ADO RO ,,J 

MULT RTA,B(RTA),C(RTB) MOVE Rl ,K 
MOV ·RI ,RTA ADD Rl,L 
ADD RiA,M,N MOVE R2,B(RO) 
Ann RTR,1.,P MIJJ.T R7., r.( R 1 ) 
MULT.RTA,D(RTA),E(RTB) MOVE RO,M .. 
ADD A,RTA,Rl ADD RO,N 

MOVE Rl,L 
ADD RI, P 
MOVE R3,D(RO) 
MULT R3,E(Rl) 
ADD R2,R3 
MOVEM R2,A 
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. 
This last example might seem a little unlikely, but it was given because except for the statement 
"A~B+C", ·it is the only expression that can not be evaluated with no "MOY" instructions, 
because each of the four subs.cripts need the RT registers, and each of the products need the RT 
registers for their results. If even one of the four subscripts takes one more or one less operation, 
then the expression can be evaluated with no "MOY" instructions . 

. 3.7.5.3 Compiled Tree.sort Comparisons 

This section compares compilations of the Treesort algorithm. The first ·compilation shown is the 
output of a hypothetical simple compiler compiling BLISS for the LLL Filter. The second 
compilation is the output of the BLISS-10 compiler compiling BLISS for the PDP-10. The third 
compilation is the output of the BLISS;--11 compiler compiling BLISS for the PDP:-11. Each of 
the first three compilations is shown for two cases, called case NO REGS and case REGS, which· 
correspond to the cases in which the variables T, J, K, and N are declared to be OWN variables 
and REGISTER variables, respectively. The last compilation is the output of the FORTRAN-H 
compiler compiling a FORTRAN version of the same algorithm for the IBM-370/168. This 
compilation was performed using the full optimization capability of FORTRAN-H (OPT=2). 

The following table summarizes the importan·t static parameters of the compilations. 

fl INSTRUCTIONS I BITS DATA CACHE CYCLES 

LLL Filter (NO REGS) 33 1584 81 . 

LLL Filter (REGS) 33 . 1584 19 

BLISS-10 (NO REGS) 63 2268 60 

BLISS-10 (REGS) 42 1512 19· 

BLISS-J l (NO REGS) 63 1376 63 

BLISS-11 (REGS) 58 1216 31 

FORTRAN-ff 370/168 84 243.2 51 
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3\7.5.3.l BLISS Treesort Algorithm 

This section presents the Treesort algorithm which is compiled for several machines in 'the 
following sections. The listing shown declares T, ], K, and N to be registers. 

MODULE= 
BEGIN 

REGISTER T,J,K,N; 
LABEL. Ll, L2; 
OWN A[ 61]; 

!NCR I FROM 2 TO .N DO BEGIN 
K ... I; 
J ... I; 
T ... A[. I]; 
L1: no OECHN 

J ... J/2; 
IF . T L.EQ .A[ .J] THEN LE.A.VE Ll; · 
A[ . K ] ... A[ . J ] ; · 
K ... J; 

END UNTIL .J EQL l; 
A[ .K] ... T; 

. END; 

DECR I FROM . N-1 TO l DO BEG IN 
T ... A[.l+l]; 
A[ . I+ l ] ... A[ 1 ] ; 
K .. l; 
J ... 2; 
L2: WHILE .J LEQ .I DO BEGIN 

IF .J LSS .I THEN BEGIN 
IF (.A[.J+l]Grk .A[.J]) fH~NJ ... J+l; 

END; 
IF .A[ .J] GTR .T THEN BEGIN 

A[ . K ] ... A[ • J] ; 
K..-.J; 
J•2•.J· 

END ELSE [EAVE L2; 
END; 
A[ .K] .... T; 

END; 

END ELUDOM; 

,.,. 
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3.7.5.3.2 LLL Filter Compilation 

This section presents the output of a hypothetical non-optimi.zing compiler compiling the above 
BLISS program for the LLL Filter. A long with each assembly language instruction is. shown the 

... number of data cache cycles required for the instruction for each of case NO REGS and case 
REGS, and the length of the instruction ·in words. 

The assembly language output is identical for case NO REGS and case REGS, therefore only one 
listing is shown. 

NO REGS REGS 
# DATA #DATA I 36-BIT 

; CACHE CACHE INSTR 
CYCLES CYCLES WORDS 

MOV I,12 2 0 1 
SKIP LE Ll I,N 2 0 1 
JUMP L4 0 0 1 

Ll . MOV K,I . 3. O· 1 
MOV J,' I 3 0 1 
MOV T ,A( I) 4 1 2 

LZ SHIH RIGHT A J,#1 . z 0 1 
SKIP LE L3 T,A(J) 3 l 2 
MOV A(K) ,A(J) 5 3 2 
NOV K,J 3 0 l 
SKIP NE. L2 J,11 l 0 l 

L3 MOV A(K), T 4 z 2 
INC SKIP G L4 I ,N 3 o.· l 
JUMP Ll 0 0 1 

L4 DEC I ,N 3 0 1 
JUMP LE 0 Lll I 1 0 1 

L5 MOV T, A+ 1( I) 4 1 2 
MOV A+ 1 (I) ,A+l 4 3. 2 
MOV K,#1 z 0 l 
MOV J,12 2 o· 1 . 

L6 SKIP LE L7 J' I 2 0 1 
JUMP LlO 0 0 1 

L7 SKIP GE LB. j, I 2 0 1 
SKIP LE LS A+l(J),A(J) 3 2 3 
ADD . J,#1 2 0 1 

LB SKIP LE LlO A(J), T 3 1 2 
NOV A(K) ,A(J) 5 3 z 
MOV K,J 3 0 l 
SHIFT LEFT A · J,#1 2 0 l 
SKIP G LlOJ,I. 2 0 1 
JUMP L7 0 0 1 

LlO MOV A(K), T 4 2 2 
INC JUMP G 0 LS I 2 0 1 

Lll 

TOTAL: 81 19 44 
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3.7.5.3.3 BLISS-10 Compilation for PDP-10 

Following is the cod.e generated by the BLISS-'10 compiler compiling the above BLISS program 
for the PDP- IO for the case in which T, J, K, and N are not ~eclared to be registers. 

MOVE I 17' 2. L4 MOVE 6,N 
MOVEM 17, I SOJ 6,0 

Ll CAM LE 17,N MOVE 17,6 
JRST L4 JUMP LE 17,L9 
MOVEM 17,K LS MOVE 7 ,A+l(l 7) 
MOVEM 17,J MOVEM 7,T 
MOVE 4,A(l7) MOVE 10 ,A+l 
MOVEM 4,T MOVEM 10 ,A+l(l 7) 

L2 MOVE 5,J MOVE I 12,1 
. ASH 5,-1 MOVEM 12 0K 

• MOVEM 5,J MOVEI 11,2 
MOVE 6,A(5) MOVEM 11,J 
CAN LE 6,T L6 CAMGE . 17 ,J 
JRS

0

T L3 JR5T L8 
MOVE 10 I K CAMG 17,J 
MOVE 11,J JRST L7 
MOVE 12,A(ll) MOVE . 5,J 

· NOVEM . 12,A(lO) MOV~ 6,J 
MOVEM 11, K MOVE 7,A(6) 
CAIE 11, I CAML 7 ,A+l( 5) 
JRST L2 JRST L7 

L3 MOVE 4,K AOJ 5,0 
MOVE 5,T MOVEM 5,J 
MOVEM 5,A(4) L7 ~IOVE 5,J 
AOJA 17,, Ll MOVE 6,T 

CAML 6,A(S) 
JRST L8 
MOVE 10,K 
MOVE 12,A(5) 
MOVEM ~17.,A(lD) 
MOVEM 5,K 
ASH 5, 1 
MOVEM 5,J 
JRST L6 

LS MOVE 10,K 
MOVE 12,T 
MOVEM 12,A(IO) 
SOJG 17~1..5 

L9 
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Following ls the code generated by the BLISS-10 compiler compiling the above BLISS program 
for the PDP-10 for the case in which T, j, K, and N are declared to be registers. 

.MOVEI 13,Z LZ MOVE 13,14 
Ll CAM LE 13,14 SOJ 13,0 

JRST LZ JUMP LE 13,L5 
MOVE 15,13 L6 MOVE 17 ,A+l(l3) 
MOVE 16,13 MOVE 6,A+l 
MOVE 17 ,A(l3) MOVEM 6,A+l( 13) 

L3 ASH 16,-1 HOVEi 15,I 
CAMG 17,A(l6) HOVEi 16,Z 
JRST L4 L7 .CAMLE 16,13 
MOVE 4·,A(l6) jRST LIO 
MOVEM 4,A(l5) CAML 16, 13 
MOVE 15,16 JRST Lll 
CAIE 16,l MOVE ll,A(l6) 
JRST L3 CAMGE ll ,A+l(l6) 

L4 MOVEM 17 ,A(l5) AOJ 16,0 
AOJA 13,LI Lll CAML 17,A(l6) 

JRST LIO 
MOVE IZ,A(l6) 
HOVEPI IZ,A(l5) 

. MOVE 15,16 
MOVE 1,16 
ASH I, I 

. MOVE 16,I 
JRST L7 

LIO PIOVEPI 17,A(l5) 
• SOJG 13,L6 

/ 
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3.7.5.3.4 BLISS-11 Compilation for PDP-11 

Following is the code generated by the BLISS-I I compiler compiling the ~bove BLISS program 
for the PDP-I I for the case in wMch T, J, K, and N are not declared to be registers. 

HOV IT,R$0 MOV @#N,R$5 
HOV IJ,R$3 DEC R$5 
HOV #K,R$1 HOV R$5,R$2 
HOV 12,-(SP) BR L$13 
BR L$6 L$12: MOV R$2,R$5 

. L$5: HOV @SP,@R$1 ASL R$5 
HOV @SP.@R$3 HOV A+2(R$5),@R$0 

.MOV @SP,R$5 HOV @#A+2,A+2(R$5) 
ASL R$5 HOV #l ,@R$1 
MOV A{R$5),@R$0 HOV #2,@R$3 

L$7: ASR @R$3 L$14: HOV @R$3,R$5 
MOV @R$3,R$2 CMP R$5,R$2 
MOV R$2,R$5 BGT L2 
ASL R$5 BGF., L$18 
CHP A{R$5),@R$0 HOV R$5,R$4 
BGE LI ASL R$4 
MOV @RSI, R$4 ASL R$5 
ASL R$4 CMP A+2(R$4) ,A(R$5) 
HOV A{ R$5), A( R$4) BLE L$18 
MOV R$2,@R$1 INC @R$3 
CMP R$2,#l L$18: HOV @RS3,R$5 . 
BNE LS7 ASL RS5 

Ll: MOV @R$_1, R$4 CHP A(RS5),@R$0 
ASL R$4 BLE L2 
HOV @R$0,A(R$4) MOV @R$1,R$4 . 
INC @SP ASL R$4 

L$6: CMP @SP,HN HOV A(R$5),A(R$4) 
BLE LSS MOV @R$3;@R$1 

HOV R$5,@R$3 
DR L$14 

·L2: HOV @R$l,.R$4 
ASL R$4 . 
HOV @R$0,A(R$4) 
DEC R$2 

L$13: BGT L$12 

• 
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Following is·the code generated by the BLISS-I I compiler compiling the above BLISS program 
for the PDP-I I for the case in which T, J, K, and N are declared to be registers . 

.. 
MOV 12,-(SP) DEC R$2 
BR L$6 HOV RSZ,@SP 

L$5: · HOV @SP,R$3 BR L$13 
HOV R$3,R$4 L$12: HOV @SP,R$2 
HOV R$3,R$1 ASL R$2 
ASL R$1 MOV A+Z(R$2),R$5 
MOV A(RSl) ,R$5 MOV @IA+2,A+Z(R$2) 

LS7: ASR R$4 MOV ll ,R$3 
HOV R$4,R$1 MOV 12,R$4. 
ASL R$1 L$14: CMP R$4,@SP 
CMP R$5,A(RS1) BGT LZ 
BLE Ll BGE L$18 
HOV R$3,R$0 MOV R$4,R$1 · 
ASL RSO ASL R$1 
HOV A( RSl) ,A( RSO) HOV R$4,R$2 
HOV R$4,R$3 ASL R$2 
CHP R$4,#l CMP A+Z(R$1) ,A(R$2). 
BNE L$7 BLE LS18 

Ll: HOV R$3,R$1 INC R$4 
ASL R$1 LS18: MOV R$4,R$2 
MOV R$5,A(RS1) ASL R$2 
INC @SP CMP A(R$2),R$5 

L$6: CMP @SP,RS2 BLE LZ 
BLE ·L$5 MOV R$3,R$1 

ASL R$1 
MOV A(R$2) ,A(R$1) 
MOV R$4,R$3 
MOV R$2,R$4 
BR L$14 

LZ: MOV R$3,R$0 
ASL R$0 
HOV R$5,A(R$0) 
DEC @SP 

LS13: BGT L$12 





• 
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.. 
3.7.5.4 Hand-Coded Qu.ichort Comparisons 

This section compares hand-coded versions of a particular renditiori of the Q.uicksort algorithm. 
This version of. the Q.uicksort algorithm comes from [Sedgewick 1975) pg. 329. 

The following table summarizes the results of these comparisons: 

LLL Filter 

PDP-10 

I INSTRUCTIONS 

53 

63. 

I BITS 

2916 

2268 

It is instructive to compare the inner loops of the variot,1s Q.uicksort programs, and these are 
marked. 

It should be noted that the LLL Filter code has not been highly optimized; by using absolute 
addresses for arrays, most multiple-word instructions can be reduced to single-word instructions, 
and furthermore, constants can be shared, elimin.ating duplicate versions in line . 
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3.7.5.4.1 ALGOL-W Quiclcsort Algorithm · 

This section presents in ALGOL-W the Quicksort algorithm which is hand-coded in 'the 
following sections. 

Certain liberties have been taken with the ALGOL-W language. Specifically, "INFINITY" is 
assumed to be a reserved word, the operator ":=:" is the exchange operator, and .a macro facility is 
assumed (eg. "DEFINE N=400;"). · 

BEGIN DEFINE N=400; DEFINE M=9; 

BEGIN INTEGER ARRAY A(O::N+l); 
INTEGER ARRAY STACK(0::2*(ENTIER(LN((N+l)/(M+2))))+1); 
INTEGER P,L,R,1,J,V,T; 

A(O):=-INFINITY; 
A(N+l):=INFINITY; 

P:=O; L:=l; R:=N; 
PART: I:=L; J:=R+l; v::A(L).: 

WHILE I<J DO BEGIN . 
Ii=I+l; WHILE A(l)(V DO l:=l+l: 
J:=J-1; WHILE A(J)>V DO J:=J-1; 
A(J):=:A(I); 
END; 

A(I) := :A(J); 
A(J) := :A(L); 
IF R-J>J-L THEN GO TO RBIG; 
IF J-L<=M THEN GO TO POP; 
IF R-J<=M THEN GO TO LEFT; 
P:=P+2; 
STACK(P):=L; · 
STACK.CP+l):=J-1: 

RIGHT: L:=J+l; 
GO TO PART; 

RBIG: IF R-J<=M THEN GO TO POP; 
IF J-L<=M THEN GO TO RIGHT; 
P:=P+2; 
STACK(P) :=J+l; 
STACK(P+l):=R; 

LEFT: R: =J-1; 
GO TO PART; 

POP: L:=STACK(P);. 
R: :-::STACY.( P+ l) I 
P:=P-2; 
IF P>=O THEN GO TO PART; 

INSERT:fOR 1:=2 UNTIL N DO 

END; 
END. 

. BEG IN 
V:=A(I); J:=l-1; 
WHILE A(J)>V DO RF.GIN A(.1+1) ::A(~J) 1 J:=J"l"; END; 
A(J+l):=V; 
END; 

. . 
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3.7.5A.a·LLL Filter Hand-Coding 

·This section presents a version of the above ALGOL-W program hand coded in· LLL Filter · 
assembly language. We assume that P, L, R, I, J, and V are stored in R registers. 

MOV A,#-INFIN L9 MOV STACK+2( P), L . 
MOV A+N+l,IINFIN DEC STACK:t-3( P)-,J 
MOV P,#0 ADD P,#2 

~ MOV L,#1 "RT INC L,J 
MOV R,IN JUMP PT 

PT MOV I, L RB SKIP G LlO RTA,#M 
. ~ INC J,R JUMP pp 

MOV V,A(L) LIO SKIP LE RT RTB,#M 
INC STACK+2(P),J 

*** INNER LOOP FOLLOWS *** . MOV STACK+3(P),R 
ADD P,#2 

LI ADD I,#1 ·LF DEC R,J 
SKIP L LI A( I), Y JUMP PT 

L2 SUB J,#1 pp MOY L,STACK(P) 
SKIP G L2 A( J), Y MOY R,STACK+l(P) 

: EXCH A(J) ,A(I) SUB P,#2 
I 

! 
SKIP L LI I ,J JUMP GE 0 PT p 

IN MOY I,#2 
' *** END OF INNER LOOP *** · SKIP LE L6 I~#N I 
I . JUMP L3 ' i 

I EXCH A(J),A(I) L6 DEC J, I 
EXCH A(J),A(L) MOV V ,A( I) 

' SUB RTA,R,J SKIP LE L5 A(J), V 
. I SUB RTB,J,L . L4 MOV A+l(J),A(J) 

SKIP LE Lil RTA,RTB SUB J,#1 
JUMP · RB SKIP G L4 A(J), V 

Lil SKIP G L7 RTB,IM L5 MOY A+l(J), V 
JUMP pp INC SKIP G L3 1,#N 

Li SKIP G L9 RTA,#f'I JUf'IP L6 
JUMP · LF L3 

• 

. • 
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3.7.5.4.3 P-DP-10 Hand-Coding 

This section presents a version of the above ALGOL-W program hand coded by John Reiser in 
PDP-10 assembly language. We assume that P, L, R, I, J, and V are stored in registers, and we 
ca11 those registers RP, RL, RR, RI, RJ, and RV. In addition, we use the names RTI, RT2, and 
RT3 to refer to distinct temporary registers. 

NINF . -2u35 PUSH RP,RL 
HOVEi RTl,-Z(RJ) 

MOVE RTI ;NINF HRLH RTl, (RP) 
MOVEM RTI,A' RIGHT HOVEi RL, (RJ) 
HOV MM RTI ,A+N+l JRST PART 
MOVE I RP,STACK-1 RBIG CAIG RTZ,M 
MOVE I RL, 1. JRST POP 
MOVE I RR,N CAIG RT3,M 

PART MOVE I RI, ( RL) JRST RIGHT 
MOVE I RJ, l(RR) PUSH RP,RJ 
MOVE RV,A(RL) HRLM RR, (RP) 

LEFT HOVEi RR, (RJ) 

*** INNER LOOP FOLLOWS *** JRST PART 
POP TLNN RP,·l 

Ll CAM LE RV ,A+l (RI) JRST INSERT 
AOJA Rl,Ll HLRZ RR,RL 

LZ CAMGE RV,A-l(RJ) JRST PART 
SOJA · RJ,L2 · 'INSERT HOVE I Rl,RN 
MOVE R Tl , A- 1 ( RJ ) SOJLE RI ,OUT 
EXCH RTI,A+l(RI) TOP MOVE RV,A(RI) 
MOVEM RTl ,A-1 (RJ) CAHG RV,A+l(RI) 
CAILE RJ, 2(RI) JRST · BOT 
JRST Ll HOVEi RJ., l(RI) 

CAM LE RV ~A+l(RJ) 

*·** END OF INNER LOOP *** AOJA RJ,. -1 
MOVSI RTl,A+l(Ri) 

·MOVE R Tl , A-1( RJ) HRRI . RTl,A(RI) 
EXCH RTI,A+l{RI) BLT .RTl ,Aw 1 ( RJ) 
EXCH RTl ,A(RL) · MOVEM RV,A(RJ) 
MOVEH R Tl , A- 1 ( RJ ) BOT SOJG RI, TOP 
MOVE I RT2, (RR) OUT 
SUBI RT2, ('RJ) 
MOVE I RT3, (RJ) 
SUBI RT3,(RL) 
.CAJGE RT3,2(RT2) 
,JRST RBlfi 
CAIG RT3,M 
JRST ·POP 
CAIG RT2,M 
JRST LEFT 
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4. !mplementation 

4.1 Processing Element 

The major features of the processing element implementation are as follows: 

State-of-the-art high-speed ECL logic . 

Triple micro-controllers, two for fetching instructions and operands, and one for 
executing instructions. 

An instruction set defined in a writeable control store which can be dynamically 
modified to accomodate the special require~ents of some codes . 

. Special data paths f~r the rapid e.xecution of floating-point instructions. 

Hamming-coded main memory to allow the use of cost-effective 4K-bit and IGK­
bit RAM chips. 
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The processing element is shown in Figure 2.2-1. The entire proce~sing element, including control 
store, requires approximately 4000 ECL IOK ICs. The processing element cycles in 100 nano­
seconds, with register-to-register and register-to-memory integer adds proceeding in pipeline 
mode at I 00 nano-seconds per instruction. With stable rounding, floating addition takes. 6 cycles, 
a.nd floating multiply takes 11 cycles. With truncation, floating addition· takes 5 cycles, and floating. 
multiply takes 10 cycles. 

The processing element contains three independent micro-programmed processors, which are 
designated the P-sequencer, the I-sequencer, a.nd the E-sequencer. The P-sequencer does the 
basic instruction decode which takes care of the different operand types, and register operands. 
The I-sequencer calculates memory, indexed, and indir~ct operands, in addition to contro11ing 
things like cache misses and the interaction with the switch. The £-sequencer executes all of the 
basic instructions, once the P and I sequencers have fetch the op_erands, and scheduled the write(s) 
for the result(s). A 11 three of the sequencer's have writeable control stores, which can be 
dynamically changed. 

In this discussion "macro-instruction" ("macro-operation") will mean the sequence of micro­
instructions executed by the three sequencers to emulate a user-level Inst.ruction. 

Drawings in general will be referenced by an abbreviation which is given in all capital letters. 
For example the drawing for the instruction box has the abbreviation IBOX. 

The drawings are the output of an advanced computer-aided design system; they are a 
hiera.rchical representation of the machine. In general, a single page is the definition of a macro­
b(ldy included in a drawing at a higher level; the definition may use macro-bodies which are 
defined at a lower level. The name of a macro-body appears inside the body at the call site; it is 
also the title of the body definition .. Most macro-bli)dy definitions are one page, although 
multiple-page definitions are allowed. Multiple-page definitions ·are indicated by placing a page 
number (for example, "1/2") in the title of each drawing of the definition. 

Lines in the drawings represent bundles of signals. The notation X<i:j> means the bundle ·of 
signals X<i>. X<i+ I>, ... , X<j>. The notation X:Y:Z means the bundle of signals (or vectors of 
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signals) X, Y, and Z, in that order. Special nmerger" bodies are also used to bundle separately 
. named signals. 

The parameter passing mechanism is simila"r to that of ALGOL; actual parameters may be passed 
to a macro-body where it is used (paramters are bundles of signals) and the body definition may_ 

·refer to those parameters by their formal names. Global signals will be declared, although no 
declarations have yet been made on these drawings. Any macro-body can refer to global signals 
which are delared at a higher level. 

The de(initions of most low-level bodies are not shown in thi~ report, although an appendix 
contains some low-level definitions. 

4.1.l IBOX/EBOX Communication 

This section describes the signals which connect the IBOX and EBOX. In the logic diagrams, all 
signals connecting the I BOX an EBOX are prefixed with ;the character nX". Times in 
parentheses indicate when the signal is available in the sender's reference frame. 

4.1.l.I IBOX to EBOX Signals 

START ADR<O:l I> (T10) 
Starting address In the EBOX of the sequence of micro-operations which emulate the current 
instruction. 

·A 0P<0:35> (TSO) 
Operand to the EBOX. A OP is normally the operand described by ODI. 

B OP<0:3!:i> (TSO) 
Operand to the EBOX. BOP is normally the operand described by 002. 

USE A OP (T50) 
This signal allows the IBOX to wrap the EBOX result around into the A input. If this signal is 
oot set and the EBOX is reading an operand from the IBOX, then the operand reaq into the A 
input is simply the result of the last EBOX cycle. 

USE B OP (TSO) 
This signal allows the IBOX to wrap the EBOX result around into the B input. If this signal is 
not set and the E BOX is reading an operand from the IBOX, then the opP.ranri read into the B 
input is simply the result of the last EBOX cycle: · 

BRANCH TA KEN (TSO) 
During conditional branch instructions, t_his signal indicates that the IBOX took the branch. 

BRANCH COND<0:2> (TSO) 
During conditional branch instructions, these signals indicate the one of eight branch cond.itions 
wtl~tl iri the instruction. 

A OP LOW ADR<O:I> (TSO) 
The least-significant two bits of the A operand address. These bits are used in quarter-word and 
half-word operations. 
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BOP LOW ADR<O:l> (TSO} 
The least-significant two bits of .the B operand address. These bits are used in quarter-word and 
half-word operations. 

DEST LOW ·ADR<O:l> (TSO} 
The least-significant two bits of the destination operand address. These bits· are used in quarter­
word and half-word operations. 

KILL EBOX (TSO} 
Stop the EBOX unconditionally. 

PAUSE EBOX (TSO} 
This signal can be tested by the EBOX and if asserted, will cause a soft stop to occur. 

4.1.l.2 EBOX to IBOX Signals 

USING OPS (T4} 
Tfiis signal indicates to the IBOX that if the input operands are not ready for the EBOX, then 
the EBOX clock should be stopped until the input operands become ready.· . 

OPS TAKEN (TIO). 
This signal indicates to the IBOX that the input operands have been loaded into the EBOX and 

. therefore the I BOX operand registers can be reloaded. 

RESULT DATA<0:3S> (T20) 
. The result of a sequence of micro-operations. 

TRAP (T20} 
The instruction in. execution has trapped. 

RESULT (T20) 
A result is available on RESULT DA TA <0:35>. 

DONE (T20} 
Th~ F. BOX is done with the current sequence of operations and is ready to accept a new starting 
address. · 

INTERRUPTIBOX(T200 
Interrupt the J BOX. Several cycles are wasted in. cleaning up the IBOX to prepare for an 
I BOX/EBOX dialogue, 

WRONG BRANCH (T21) 
The JBOX took the wrong direction on the conditional branch currently in execution. 
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4.1.2 Instruction Box 

The instruction box (IBOX)° cont.rols the fetching of instructions and operands, the interaction 
with the crossbar swjtch to read and write main memory, and all 1/0 operations. 

The I BOX has two caches, one for instructions and one for data, which each hold 4K words. 
The main reasons for having two caches is that it doubles the cache bandwidth, and simplifies 
the scheduling of cache operations, since the instruction prefetch logic has its own dedicated cache. 
A given word of memory can only be in one of .the two caches at a time. When ever a miss 
occurs in one of the caches, the other cache is checked for that word. If it is found there, then it 
is moved from the one cache to the other. In addition, the instruction cache does n_ot have any 
modify bits, so if a modified word is moved from the data cache to the instruction cache, then it is 
also written back to main memory. 

The main register stack is 128 words by 36-bits, which contains the three sets of registers for the 
user,· and a set of temporary registers for use by the IBOX. All of the registers are stored thrP.P. 

. times, which allows· three different registers to be read out at the same time. During each micro- · 
cycle, one register write and three reads may be done. 

One of the register stacks exists in the Index Register File macro, and is used for index 
operations. The other two are in the Data Cache and Register File macro, which are used for 

. reading register operands for instructions. 

The Instruction Address Arithmetic, Instruction Address Translation, Instruction Cache, and 
Instruction Buffer and Decode macros all have to do with prefetching instructions. The Index 
Register File, Data Address Arithmetic, Data Address Translation, ·and Data Cache and Register 
File macros are used for the calculation of operands. Memory Interface allows memory read and 
write operations to be done to the switch. One of its more interesting features is that it puts 
hamming codes on the data before it goes to the switch, and checks and corrects it when it comes 
back. That way, if there is an error introduced any place between the processor and the memory, 
it can be corrected if its a single error, and detected if its a double error. The ~BOX Operand' 
Register macro holds the next pair of operands for the EBOX, and the EBOX ·Interface macro · 
just specifies the interconnections hetween the lBOX and the EBOX 

.. 

.. 



• 

C44 S!C R£G 6CL 

F'J~t r£ft R 

'1 

JOCEC REGISTER 
. nu: 

• 

IBOX CONTROL 

INSTRICTJON LJ . INS1RUCTION 
ADQRESS AllJTtftTJC . IQlRESS ~TJON 

INSTR UA INSTR UA 
INSTRUCTION CACHE 

iNSTR PA INSTR PA INSTR OISf I-----. 

IC 

- jWll) 

-ADO 

llllTA 
AOJ00£8S AllJTN"ETJC 

--I JtCIEX REG 

IC 

llllTA 
IQlRESS~TJON 

~ JtCIEX REG 

IC 

W DATA 

1 
DATA CACHE AIC) 

REGISTER l'JU: 

JNSTRUCTJOH aEfOt 
A1C> llECUIE 

L-...1 INSTR OISf 

---' OISf A A 

OISf A 1-----J 
___.W DATA JOCID< Rm~ JtCIEX REG DPA DPA 

R A 
T. c OISf B~ DUAJ ]DUA 

u t"liaTA w oere c:eox w DAIA 

===-----=-~_j_FF=======±=t==::J~ WDATA --

~ 
JNTCAFACE 

f'.ROn ~I , · f"A>rl n£n< e:35, 

IC 

RCSU... T · l.181961=, 
IC .1-~~~~~...J ~ 

~JNA ·OP A OP A 

EBOIC Of'E-D 
RmJSTERS 

" 
'-------t JN B OPB OPB 

Instruction Box (IBOX} 

£JIOIC 
INTERFACE 

E 

•••n tL--
IC 

REQLT ~~~~~~~~~~~~---, 
DATA 

RESU.. T T46 L 

ID .... 

.! 



98 Implementation 4.1.2 

. . . . . . . 

4.1.2 Instruction Box Pipeline Timing 

The IBOX Pipeline Timing shows an example of the parallelism which results in the IBOX 
. when a. series of contiguous instructi~ns are executed, each of which requires a single EBOX 

execution cycle. Each box in the figure represents a IOOns event. 

. The pref etch logi~ fetches an instruction every cycle, as long as the pipeline can use the· . 
instructions. The prefetch logic looks at the instructions as they are decoded, and if it sees an 
unconditional .branch, it takes it. If it sees a conditional ~hort PC relative branch or. skip 
backwards, then it assumes that it is a loop, and also jumps backwards. In all other cases, it 
fetches the next instruction assuming the branch is false. When the conditional bran·ch is 
executed, if the prefetch logic went the wrong way. the pipeline if flushed, and the processor star.ts 
fetching instructi<;ms the other direction. 

Once the instruction is decoded, the next step is to fetch the P-sequence micro-instruction for the 
instruction. The P-sequence micro-instruction then specifies a starting address in thP. l-~equencer, 
and calculates register addresses for the register operands. Depending on the operand formats for 
the specific instruction, and the specific addressing modes used, a number of P-sequence and I~ 
sequence micro-instructions may be done. 

After an I-sequencer micro-instruction is executed, there is a two stage pipe. The first stage of 
the pipe calculates addresses and does a virtual to real address translation. · The virtual to real 
address translation was not done in parallel with the cache read so that the page size could be 
smaller than the size of the chips used to implement the cache, whi~h are IK bit ECL RAMs. 
The second stage of the pipe can then do two register reads, or a register read and a cache read. 
If a register Is read as a memory location, then the. hardware automatically reads the correct 
register. 

After the operands of t.he instruction are read, then a half cycle is allowed for the operands to get 
to the EBOX. The EBOX then executes the Instruction taking some number of cycles, and writes 
the result(s) back. The addresses of the result(s) have already been scheduled at this time, .and 
hardware logic actually does the writes. If a write conflicts with what the IBOX wants to do 

. during a given cycle (i.e. the IBOX wants to do a cache read, and the EBOX wants to do a cache 
write), then the clock for the IBOX is stoped for a cycle, and the write otcurs. For mn.st 
addressrng modes, the IBOX does not need to write into the cache or the general register file, so· 
very few write conmcts should occur. . . 

There is a set of comparators which take care of the cases where a result of one instruction is used 
in one of the next two instructions, which causes the <tppropriate data to bypass the cache or 
register file, with no loss in time. The only place where execution time is lost is where an 
instruction tries to index off of a rescently generated result, in which case up to three cycles may 
be lost. Because of this, it is 2 cycles faster to index off a local variable on your stack, than it is to 
load it into a register a,nd then index off of it once. 
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4.1.2.1 Index Register File 

The index register file is used for reading1registers which are us.~d in address arithmetic, such as 
in index operations and register indirection. The multiplexer is used to determine the source of 
the register address, and the comparator is used to detect that the next cycle is writing into the 
register being read, to allow the appropriate data to bypass the index register file, saving a cycle. 

The IREGM drawing shows how the 36B x 128W register file is implemented . 
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4.1.2.2 Instruction Address Arithmetic 

The Instruction Address Arithmetic logic calculates the address of the next instruction to be 
fetched if it PC+4 (next wora), or the destination of a PC relative skip or short jump. In all . 
other cases, the Data Address Arithmetic logic is used to calculate the address of the next 
instruction. · 

The 28B x 128W RAM is used to remember the PC of all instr.uctions in the pipe, in case one of 
themgets an error, or the pipeline gets flushed for some reason . 
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4.l.2.3 Data Address Arithmetic 

The Data Address Arithmetic logic does all of the non-register operand address calculations. It 
contains a set of 16 36-bit tempor.ary registers (see the T REGISTER FILE macro), which can be 
used in the calculation of addresses.· The REG ADR Detection logic detects if the address 
generated iS a register, which causes the ca~he read to be automaticaUy turned into a register ~ead .. 
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4.1.2.3.1 Register Address Detection 

The Register Address Detection logic checks to see of the memor:y address ls in the range of 0 to 
127, in which case it is a register address . 
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4.1.2.3.2 Data Address Arithmetic Control 

The .Data Address Arithmetic Control causes the write data (WDA TA) bus to be selected in the 
Data Address Arithmetic logic, if the word being read out of the Index Regi_ster File is being . 

· written the next cycle . 
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4.1.2.3.3 T Register File 

. The T Register File is a set of 16 registers for use In calculating addresses. They are written 'into 
from the output of the data addre~s arithm~tic adder, and can be read into the A or B leg of the 
adder. The control of this register file is particularly complicated because results to be written 

. into it have to be delayed for two cycles,· in case a micro-interrupt occurs, and the instruction· . 
doing the write has to be canceled. · 
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4.1.2.4 Instruction and Data Address Translation 

The Instruction Address Translation and Data Address Translation logic translates virtual 
addresses for the instruction and data caches into physical addresses. The address translation is 
done by a lookup in a small set associative cache, which has 64 words, and a set size of 4. 
Because of the very large address space (30-bits), this method was prefered to the more 
conventional method of using a direct mapping cache for the address translation. Since different 
da~a is stored in the two address translation caches, up to 128 different page translations can be 
kept in the processor . 
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4.1.2.4.1 Address Translation Cache 

The Address Translation Cache is a standard set associative cache with a set size pf 4, and with 
64 total entries. The input to the cache is the bus VA <0:35>, where VA <6:35> contains· the 
address to be translated. The way the cache operates is' to look up four words based on 
VA<22:25>, and to compare the address stored there to VA<6:21>. If one of those words match, 
then the physical address stored in that location is read out. Otherwise, the address translation 
required is not stored in the cache, and a micro-interrupt occurs. · 
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· 4.1.2.4.2 Address Translation LR U Control 

The Address Translation LRU Control keeps track of the least rescently used word in each set in 
the Address Translation Cache, so that when an element needs to be replaced in the cache, that 
word can be the one. The way this is implemented is as follows. For each set in the cache, there 
are five bits stored, two of which specify the most rescently used word, two which give the ·least 
rescently used word, and one which tells the order of the other two words. In order to update 
these five bits on a reference to the cache then, these five bits and two bits which tell which word 
is ·currently being referenced are fed into the address lines of a RAM which is programmed to 
give the new five bits for this set. It should be noted that the two· bits which give the most 
rescently referenced word are just the current word being referenced, so they do not need to be 
generated by the RAM. · 
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4.1.2.5 Instruction .Cache Memory 

The Instruction Cache Memory and the Data Cache Memory are both basically the same, and are 
conventional se~ associative cache organizations. They each hold 4K 36-bit words, and have a set 
size of 4. The instruction cache does not have a modify bit, so writes to it must also go to 
memory. The data cache has a modify bit for every four words, and words are always transfered 
between the caches and main memory in groups of 4 . 
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4.J.2.5.1 Instruction Cache Memory Module 

The Instruction Cache Memory Module implements one set of the Instruction cache. Since words 
are always transfere(f between the cache and memory four at a time (called a line), the high order 
address bits only need be stored in the cache for every fourth word. The two SB x 256W RAMs 
are· used to store the high order 16 bits of the physical address for a line. The 18B x I K and 
I 9B x I K RAMs store the data words plus parity. The I B x 256W .RAM stores the parity bit 
for the physical addresses. · · · · 
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4.1.2.5.2 Instruction Cache Control . . 

The Instruction Cache Control asserts the· signal HOLD INSTR C MISS if an instruction cache 
miss occurs. It atso selects which set is to be written into on a cache miss . 
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4.1.2.5.2.1 Cache LR U Control 

·The Cache LRU Control is almost identical to the Address Translation LRU Control,. with the 
only mail difference being that it has to keep track of 1024 lines, instead of 64: 
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4.1.2.6 Data Cache and ·Register File 

The Data Cache and Register File contains a cache memory for data, plus two register files, which 
both contain the four processor register sets. The outputs OUT A and OUT B are perfectly 
symmetrical, and both can read a cache location, a register, or an immediate constant. · If a 
register is addressed as memory, then if the word was being read out of OUT A, the one register 
file will be used to read the register, otherwise the other'register file wi11 be used. 

The EBOX has two operand registers, OP A and OP B. When the 1:-sequencer is calculating an 
operand to be put In OP A, It normally uses OUT A, and If it Is calculating an operand for OP 
B, it used OUT B. The P-sequencer can then- read a register operand on the other output, 
allowing two operands to be read per micro-cycle, with no co.nflict in the data paths being used. 
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4 .. l.2.6J Cache and Regl5ter File Control 

There are two Cache and Register File Controls, one for OUT A and one for OUT B. They 
control the output multiplexers to take care of when a register is read as a memory location, and 
which write compares happen the result of one instruction is used. by one of the following 
instructions, which cause the W DA TA bus to be selected on the output. 
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4.1.2.6.2 Data Cache Memory 

The Data Cache Memory Is very ·similar to the instruction cache, with the main difference being 
that a bit Is stored for each line In .the cache, indicating that It has been written Into . 
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4.1.2.7 Instruction· Buffer and Decode 

The Instruction Buffer and DecOde buffers instructions so that they are around during later cycles 
in th~ pipeline, and decodes them, to find out the starting address in the P-sequencer and the E­
sequencer. It also recognizes branch and skip instructions for the prefetch logic . 
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4.1.2.7.I Instruction Decode 

The Instruction Decode logic decodes instructions mainly by looking the opcode up in a 28B x 2K 
· word RAM. The top bit of the opcode is used to tell if the instruction is a skip instruction or n.ot, 

meaning that exactly half of all of the opcodes will always be skips. If it is a skip instruction, 
then Z*4:1R BUF<l:7> is fed into the decode RAM, otherwise IR BUF<l:ll> is put into it. This 

·also means that 128 of the non-skip opcodes are unusable, bu~ this seemed a reasonable price to· · 
pay for l:Jeing able to use a 2K decode RAM, rather than a 4K one . 
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4.1.2.8 EBOX .Operand Regbters 

The EBOX Operand Registers are used to hold the next set of operands for the EBOX. u·the 
JBOX gets further than two operands ahead of the EBOX in fetching instructions and operands, 
then it stops and waits. If the EBOX is done with a given instruction, and the operands for the 
next instruction are not ready, then it waits. The EBOX Operands Ready Control keeps track of 
when .operands are ready, and when the EBOX takes them. 
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4.1.2.9 Memory Interface 

·The Memory Interface controls communication between the processor and the switch, and takes 
care of generating hamming codes, and correcting errors. The format for the switch control words 
is shown in drawing IOFORM. An 1/0 operation is started by sending an 1/0 control word to 

. the switch, which specifies a memory address, whether it is a read, write, or both (a read-modify­
write operation), and whether I or 4 words are to be transfered. If it is a read operation, the 
processor just sits and waits for the data to come back. On writes, the processor waits until the · 
s~itch sends a control word back with its VA LID bit set, which signals that the processor has a 
direct path to memory opened, and to start sending data. · . 

_, . 
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. . 
4.1.2.10 IBOX Control . 

The major sections of the IBOX Control are shown in drawing IBOXC. The following sections 
will go into detail about what each of these sections do. In addition to these sections, there is a 
section which gives the flow of control of the pref etch logic. 
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4.1.~.10.1 Instruction Prefetch Control 

. In addition to the three micro-sequencers in the machine, there is. a hardware control unit called 
the Instruction Pref etch Con~rol, which keeps fetching instructions ahead of. the P-sequencer, in 
order to keep the pipeline full. The basic now of control is shown in drawing FLOWF I. 

. . 

The sequencer goes from one. state to the next every micro-cycle, where states are represented by 
octagons, with the state number shown inside. The rectangular boxes represent ·actions to be 
preformed, and the diamonds represent conditionals. The rectangular boxes with cut off corners 
represent macro calls to the macros defined.in drawings FLOWF2, FLOWF3, and FLOWF4 . 
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. 4.1.2.10:2 P-Sequencer Control Unit 

The P-Sequencer Control Unit is started at address OP SEQ.Start ADR<0:9>, which is generated 
by the decode RAM. For a given instruction, it can only execute sequential micro-instructions. 

·.Its main function is to take care of the difference between the many d.ifferent formats for the 
operands of instructions, and to fetch all register operands, which the I-Sequencer fetches memory 
operands. · 

.. 
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4.1.2.10.3 I-Sequencer Control Unit 

The I-Sequencer Control Unit is the main work horse in the IBOX, and is a powerful micro­
programed controler. It can branch anywhere in Its control store, can execute nested subroutines 
up to 16 levels deep, and can preform micro-Interrupt~. which stack their return address. The 
control store is divided Into two parts, a fast and slow· part. The only difference is the time at 
which the control bits come out. The fast signals are designated Fl21 since they come out around 
time 2.1, and the slow signals are designated 130 . 
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4.1.2.10.4 EBOX Write Address Registers 

The EBOX Write Address Registers are used to keep track of pending writes from the EBOX 
into either the cache, the register file, or to memory. There are two write address registers, which 
allow the IBOX to schedule up to two writes ahead of the EBOX. If the IBOX tries to schedule 
a third write, then it is stoped until the EBOX does a write, freeing up one of the registers. It 
has a set of four comparators for each of its two write address registers, which compare the 
address of the words currently being read from the three register stacks and the cache, to the 
addresses which have pending writes. If one of the comparators compare, then signals are asserteq 
which cause the IBOX to either wait for the write to occur, or to take the data directly from the 
output of the EBOX. For example, If the IBOX is reading an operand for one instruction, and it. 
finds out that it is the result of the previous instruction, rather than reading the operand from 
memory or a register file, it sets a bit in the EBOX operand register saying for the EBOX to use 
the result of the previous instruction, rather than the contents of the EBOX operand register . 
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4.1.2.10~5 IBOX Write Control 

Th~ IBOX Write Control controls the writing into the· cache ~nd register files. The IBO~ is 
structured such that only one thing can be written into either the cache or the general register file 
at one time. The T register file is. completely separate, and can be written in parallel. 

. . 
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4. 1..2.10.6 Register Address Generation 

The Register Address Generation logic is used to calculate all register addresses for operands 
address as registers. Since the registers are in the address space, they can also be addressed by 
using the Data Address Arithmetic logic if some fancy operations want to be preformed, but that 
ties up the cache; The Register Address Generation logic Is used by both the P-Sequencer and 
the I-Sequencer. · · 
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· 4.1.2.10.7 Micro Interrupts 

Micro Interrupts allow various conditions to interrupt the J-Sequencer to be handled, such as a 
cache or page fault miss. When this happens, the micro-program PC is stored on the subroutine 
stack, and instructions start getting fetched at the micro-:interrupt address assigned to that 
particular interrupt. ·The various micro-:interrupts ·are all fed into a priority encoder, which 
comes out. with the address of the highest prioiity interrupt. 
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. 4.1.2J0.8 Stop IBOX 
. . 

The Stop IBOX logic detects the conditions which cause the IBOX to stop its clock and wait for 
some event to occur. · 
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4.l.2.10.9 IBOX Timing Generator 

. The IBOX Timing Generator generate$ the eight phases. of the clock used in the IBOX .. It 
consists of an eight bit circular shift register which is initialized to the sequence Ol l l Ill l, and. it 
jUst circulates the zero. around. The shift register is never really stoped, but when the IBOX 
wants to stop its clock, it just disables the output drivers on the shift register . 
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4.1.5 Execution Box · 
.. 

The function of· the. Execution Bo~ (EBOX)' is to perform variable-precision arithmetic and 
logical operations for the IBOX; it executes one micro-instruction each 100 nano-seconds. EBOX 
can be decomposed into the EBOX ALU (EBXALU), the EBOX Register File (EREGF), and the 

· EBOX Control (EBXCTL). 

The EBXALU performs arithmetic arid logical functions on two operands read during each cycle . 
from the register file. · · 

The: EREGF contains 32. read/write registers. During a single micro-cycle, any two registers can 
be read for use ·as input to the EBXALO. Furthermore, during a micro-cycle two input operands 
from the IBOX can be written info any even-odd pair of registers, or the resu.lt of the EBXALU 
operation can be written into any register, or one operand from the IBOX and. the result of the 
EBXALU operatio" can be written into even-odd pair of .registers. · · 

Th~ EREGF also can shift quarter-words and half ~words into position for the EBXALU, can 
sign-extend floating point numbers, and can deliver zero operands. · 
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4.1.!U EBOX Register File 

The EBOX Register File (E~EGF) stores initial and intermediate operands for use by the 
EBXALU during a sequence of micro-operations . 

The_ EREGF contains two duplicate banks each of 32 36-bit regis.ters (R[0:3l]). Identical data is 
always written into both banks. During a single micro-cycle, the IBOX A and B input operands 
can be written· into an_y even-odd pair of registers (A into an even register and B into an odd 
register), or the result of the EBXALU operation can b;e written into any register, or one of the 
IBOX iriput opera_nds can be written into a register (only an even register for the A operand, and 
only an odd register for. the B operand) and the result from EBXALU can be written into the 
other register of the even:...odd pair. 

Since the first cycle of a micro-instruction sequence normally takes two input operands from the 
IBOX, the result of the previous cycle (ie., the last cycle of the previous micro-instruction 
sequence) can not be saved in the EREGF. 

Because the two register banks contain identical data, any two registers. may be read out during a 
micro-cycle for use as input to the EBXALU. In the case of a mici-o-instruction which reads the· 
result of the preceding operation_ (or a micro-instruction which reads the A or B input operands 
from the IBOX), the necessary data is bussed around the register banks, therefore, although 
"'.rites physically occur one cycle late, they logically occur on time, except as noted below. 

Each operand -read out of the IREGF can be independently translated. The available translation 
modes are: straight through, floating point sign extension, left justification of a quarter-word, and 
left justification of ·a half-word. Operands which are bussed around the register banks (as 
described above) cannot be translated. 

The EREGF also has the capability to deliver zero operands on either the A or B output 
independently by·di_sabting the register file output · 
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4.1.5.U EBOX Register File Control 

The EBOX Register File Control (ERFC) primarily detects ~heri the current micro-instruction is 
attempting t9 u~ a value which will not b.e written into the register file until the next cycle, and 
in that case commands .the EREGF to bus the data around the register banks. . . · 

. . . 
The ERFC also detects when R[O] is being read out (on either the A or B output) and commands 
the £REGF to output the value zero. R[O] can therefore not be used to amtain data. 

The ERFC also controls the chip select lines for the EREGF so that either one or two values may 
be written into th~ duplicate register banks. · 
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4.UU.2 56 Bit Translate 

.. The 36 Bit Translate (TRANS) is used on each oµtput leg of the EREGF. Each TRANS ts 
Independent and has the capability to perform four different translations as follows: 

1. · Stsaight through. The value passes straight through the TRANS without 
modification. 

2. Sign extension of a floating point mantissa. Each bit of the exponent of a 
. floating point number is replaced by bit 0 of the floating point number . 

. S. Quarter-word. One of fom: quarter words {depending upon the low-order 
address bits from the .IBOX) is left justified, and the.low-order quarter words are 
set to zero. 

· 4. Half-word, One of two half words (depending upon the low-order address bits, 
· from the IBOX) is left j~st~fied, and the low-order half-word is set to zero. 

The TRANS can not be used to modify the result of the preceding micro-instruction. 
. . . . 
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4.1.5.2 EBOX ALU 

the EBOX ALU (EBXALU) performs atl arithmetic and logical operations for the EBOX. The 
EBXALU can be decomposed into the 3 Input Adder (3INADD), the Shift Box (SHFBOX),' the 
Exponent Box (EXPBOX), the 36 Bit MUX Merge (MUXMRG), and the Q.Register (Q.REG). 

The 3INA DD can add three operands, perform a few other logical functions on three operands, 
or perform general logical functions on two operands. The input operands to the 3INADD are A 
(the ·A output of EREGF), B (the B output of EREGF), and Q. (the quotient register, Q.REG). 
lnterna11y, the operands are shift~ and multiplexed so that a single micro-cycle can do four bits 
of a multiply. 

The SHFBOX can do arithmetic or logical left or (limited) right shifts of a double-word input 
onto a single word output. The three single-word inputs to the SHFBOX can be combined in 
various orders to accomplish single-word arithmetic or logical left right shifts or rotates of up to 
36 bits in a single cycle. · 

The EXPBOX performs exponent arithmetic. The EXPBOX has its own internal registers, so 
that after loading the EXPBOX from the A and B operands, exponent arithmetic can proceed 
independently of the computations in the main data path. 

The MU.XMRG produces the one EBXALU output, R<0:35>. The inputs of the MUXMRG are 
from· 31NADD,.SH.FBOX, and EXPBOX. Special inputs are provided for special functions; one 

. input merges the exponent with the shifter output, one input does a multiply shift, and one input .. 
does a divide ~hift. 

The MUXMRG also has the capability to selectively merge each quarter-word from the 
SHFBOX with the output of the 31NADD. This capability is used to merge the result of a 
.quarter-word or half-word operation (which is shifted into place in the SHFBOX) back into the 
destination word (which passes unmodified through the 3INADD). In this case th~ destination 
low-order address bits control the MUXMRC. ' 

The Q.REG ho1ds the multiplier during a multiply sequence, and· holds the dividend during a 
divide sequence. The Q.REG has shifting capability internally. The Q.REG can also be used to 
hold temporary results (for example, over the boundary between one micro-instruction sequence· 
and the next) . 
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4.1.!.2.I ! Input Adder 

Th~ 3 Input Adder (3JNAQD) has the capability to add three 36-blt numbers, to perform s9me 
other limited logical operations of three 36-bit numbers, or tQ perform general logical operations 
on two 36-bit numbers. The three-input addition capability is used primarily to produce 4 bits of 
a multiply ·operation in· one micro-cycle . 

The 3INADD can be decomposed into the Carry Save Adder (CSA), the EBOX Full Adder 
(EFA), and various multiplexers and multiplexer latches. 

The CSA is an array of 20 ECL 10180 chips. The CSA forms the first two legs of the three­
input adder. During a three-Input add, the CSA adds .three operands to produce a sum and 
carry vector output (each . 40 bits long), and EF A adds those vectors to complete the add. Two 
legs of the CSA are dedicated to A, (or to shifted versions of A) which is the multiplicand in a 
multiply. The remaining leg of the CSA can receive A, B, Q, or a micro-code constant. 

Each of the three inputs of the CSA can be independently set to zero. Furthermore, the 10180 
has the capability to independently complement two of its inputs. These capabilities are used in 
the multiply-micro-cycle. · 

' ' . 

Two-operand functions can be performed In the EF A. One leg of the EF A can receive A, B, Q, 
. or micro-constant (in addition to carry out from the CSA), and the other leg of FA can receiv.e 

only B (In addition to sum from the CSA) .. The EF A produces a 40-bit output 
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4.1.S.2.l.I EBOX 40 Bit Full Adder 

The tBOX .40 Bit Fu11 Adder (EFA) can perform arithmetic and logical functions on two 
operands. It is constructe~ with 10181 ECL ALU chips and 10179 ECL1carry-look-ahead units. 

The EFA can be decomposed Into the 40 Bit ALU 10181 (40ALU), the EBOX Full Adder 
Control (EFACTL),· and the Coridition Box (CBOX). 

The 40ALU performs a full add In 24 nano-seconds worst case from the data inputs, neglecting 
wire delays. It also performs the fu11 10181 repertoire of logical and arithmetic functions. 

· The EFACTL controls the EFA, producing the ·mode, function, and carry-in signals for the 
I 0181. The mode and function bits can come either from micro-code or from the divide logic. 
The carry-in bit can come from divide logic, rounding logic, multiply logic, carry-out of a· 
P.revious cycle, guard-bit logic, or micro-code. The Rounding Box (ROUND) saves guard bits 
during floating point operations and generates a carry-In bit for the EFA depending upon guard 
bits and rounding mode.. .., · 

The CBOX detects single.:.word overflow, single-word negative, single-word zero, single-word less 
than or equal to zero, mantissa zero, and mantissa overflow. Single-word carry out is generated 
directly in the 40ALU. Since quarter-words and half-words are left justified and zero-filled in 
the TRANS, the single-word conditions are sufficient for testing quarter-word an~ half-word 
operations. Wrong Branch Logic .(WRONB) combines the generated conditions with control bits 
received from the IBOX and ·determines whether the IBOX took the correct branch on a 
conditional branch · instruction. If the IBOX took. the wrong branch, then X WRONG 
BRANCH automatically becomes asserted. 
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4.1.4.2.1.2 Multiply Control 

The Multiply Control module (MJ;>YCTL) generates various control signals for use (luring a 
multiply cycle. · · 

i bits of the product are generated during each·multiply cycle; the MPYCTL examines the 5 low 
order bits (including' the carry out of the least-significant bit) of the Q.. register, and sets up the· 
31NA DD to perform the multiply cycle. One leg of the three-input adder receives A (the 
multiplicand) or A *2, another leg receives A*i or A*8, and the last leg receives B (the partial 
product). Each of the "A" legs is either added to or subtracted from the partial product. 

The table included in MPYCT.L defines a 2-bit-per-cycle multiply algorithm. XO represents the. 
least significant bit of the Q.. regist~r Q..<35>, XI represents Q..<34>, and CI represents the carry out 
·from the Q register from the previous cycle (Q<36>). F shows the function to perform, that is, 
PARTIAL~PRODUCT4:-PARTIAL_PRODUCT_ + F*MULTIPLICAND. Q,. and 
PAR TIA L .. PR ODUCT are then shifted right by t_wo bits and the cycle repeats. The other 
columns of the table show.the values of various signals which are needed-to implement F. The i­
bit-per-cycle algorithm is a direct extension of the 2-bi~ algorithm; two 2-bit cycles. are performed 
in parallel using the 31NADD and examining 5 bits of Q.instead of 3 bits of Q . 
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4.1.S.2.2 Shift Box 

The Shift Box (SHFBOX) performs shifts in parallel with the arithmetic operation of the 
3INADD. The SHFBOX can be decomposed into the Shifter (SHIFTR), the Sticky Bit 
Cenerator (STICKY), and various zeroes counters and multiplexers. 

The SH~FTR takes two 36-bit input words, and can perform a left shift of 0 to 47 bits or a righ~ 
shift of I to 16 bits onto a 38-bit output. The two low-order bits of the output become guard bits 
in floating-point operations. Guard bits may be merged into the SHIFTR input at the top of. the 
low-order input word; this capability is used during floating point postnormalization. 

STICKY examines the output of a zeroes counter (the 36 Bit Bottom Zeroes Counter) and 
determines whether all the bits lost (beyond the guard bits) in a ·right shift are zero; if any lost bit 
is a one, STICKY asserts the stick' bit, Y. [Kahan 1973] discusses the need for and use of the 
sticky bit. 

Two 35 Bit Top Zeroes Counters (TZC) allow the contiguou~ zeroes (or ones) at the top of a 
floating point mantissa or an integer to be counted. The flo~ting point count is useful during 
postnormalization. 

A 36 Bit Bottom Zeroes Counter (BZC) counts the contiguous zeroes at the .bottom of a number. 
· T.his count Is essential for generating the sticlc.y bit Y. · 
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4.UU.2.1 Shifter 

The Shifte~ (SHIFTR) takes two SS-bit operands as input and can shift them left 0 to 47 bits or 
·right l , to 16 bits, producing a. *bit result (SS bits with two low-order guard bits for1 noating 
point operation~).· 

· The Shifter Control (SHFCTL) allows the shift count to come from various sources as follows: 

- a Q.W3 holding register: .. 

a Q.W2 holding register, 

- Q.W3 of the A register, 

- Q.W2 of the A register, 

- micro-constant, 

• exponent ALU holding register, . 

constant fields for special operations, 

- top zeroes (ones) count of a mantissa, and. 

- top zeroes (ones) count of an integer. 

In addition, many of. these counts can be subtracted from S6 before being used. Subtraction of a 
count from 36 is necessary for simulating right shifts. 

The SHIFTR. is composed ~f three levels of multiplexers. The first level performs a shift of 0, 16 
left, 32 left, or 16 right; the second level a shift of 0, 4, 8, or 12 left; and the third level a shift of 
0, I, 2, or 3 lefti 
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4.1.S.2;2.2 Sticky Bit Generator 

The Sticky Bit Generator (STICKY) is usfd primarily during prenormaUzation of floating point 
numbers. During .prenormalization, a number is right shifted and N bits are lost from the least­
significant end. STICKY asserts the "sticky bit". if and only if the least significant N-2 lost bits 
are not all zero. (The most significant 2 .lost bits become guard bits.) The need for and use. of the 
sticky bit are explained in [Kahan 19731 
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· 4.UU.5 Exponent Box 

The Exponent Box (EXPBOX) performs expon~nt arithmetic in parallel with the operation of . 
the EBXALU. . 

The exponent box receives operands from the EREGF and stores them for future use. Most . 
floating point operations thus require a preliminary cycle in which the exponents are loaded into · 
the EX PBOX. During the preliminary cycle, though, the Q.REG can be loaded. Furthermore, 
translations are not permitted until one cycle after the operands to be translated have· been 
received from the lBOX. 

Complementers on the A and B input operands conditionally complement the exponent 
depending upon the sign of the mantissa (bit 0), producing the true excess-128 representation of 
the exponent, regardless of the sign of the floating point number . 

The EXPBOX contains a 12-bit ALU which is controlled entirely by micro-code. The A leg of 
the ALU can come either from the A exponent complementer or .. from the latched ALU output. 
The B leg of the A LU can come either from the left shift count latched from the previous cycle, 

· from the B exponent complementer, or from micro-code. 

Since exponents. in floating point numbers have only an 8-bit length, the 12-bit ALU allows 
exponent overflow or underflow to be carried uritil the last step of a floating point operation, by 
which time those conditions may dis.appear. 

The output of the ALU can be saved in an output register (for input to the SHFCTL for 
prenormalization), or can be conditionally complemented by the sign of the input to the SHIFTR 
(in preparation for merging it with the SHFBOX output at the. end of a floating point sequence). 

The PPNCMP compares the left shift count from the SHIFTR with the postnormalization limit, 
and co.mpares the ALU output register with the prenormalization limit. The signals generated by 
the PPNCMP are used in generating prenormalizatton and postnormalizatlon error traps . 
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• 4.1.S.2.4 36 Bit MUX Merge 

The 36 Bit MUX Merge (MXMRG), determines which of eight ~ata paths is delivered .as ou~put 
to the EREGF or to the IBOX result register. The eight data paths are: ' 

- The lower 36 bits of the output of the 3INADD shifted zero, left one, right four, 
or right one bit. The left-one shift is used during divide, and the right-four shift 
is· used during multiply .. The upper four bits of SINA DD are needed only during 
multiply operations. 

- A 11 zeroes. 

- The output of SHFBOX. 

The output of EXPBOX. 

·- Miscellaneous fields from the EBOX. 

The MXMRG also allows selective merging of each quarter.:.word of the SHFBOX with the 
output of the SINADD. This capability can be controlled en'tirely by micro-code, in which case 
the mlcro-~ode can. select the source of each output quarter-word independently, or by the address 

. bits of the destination, which are supphed by the IBOX. Merging at:1.:un.li11~ Lo Llie addren bits . 
of the destination is necessary for quarter-word and half-word operations in which the result 
must be shifted into place and merged into the destination word. 

The MXMRG also allows the exponent path to be merged with the output of the SHFBOX for 
·producing final noatin·g point results. In this case, the sign-extended mantissa comes through the 
SHFBOX arid is merged with the exponent. 
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4.1.5.2.5 Q.. Register 

The ~Register (Q.REG) is a, 37-bit shift register (36 bits plus carry out of the least-significant 
bit) which· is used to perform. multiplication and division, and which also serves· to hold 
temporary values. During multiplication, the Q.REG holds the multiplier, and during division the 
Q.REG holds the dividend: 

The Q.REG is- built of ECL 10141 universal shift registers. It has the capability to parallel load, 
shift right four, shift right I, shift left one, or hold, ·all under micro-code control. The right-four . 
shift is used during multiplication, and the left-one shift is used during division, as follows: 

·' 

- Shifting right by 4. During multiplication, the Q.REG is initially loaded with the 
multiplier. The EBOX uses a multiplication algorithm that examines the 
multiplier and produces four bits of the product each micro-cycle. Each micro:­
cycle the Q.REG parallel .loads from itself, moving the higher 33 bits into the 
lower. 33 bits. This is physically equivalent to shifting right by 4. The 4 most 
significant bits loaded into the Q.REG are the 4 least significant bits coming out 
of the ALU. During a multiply these are the 4 least significant bits of the current 
partial product. After the last cycle, the Q.REG contains the low-order word of 
the product. 

- Shifting left by I. During division the Q. register is initially loaded with the 
dividend. Each instruction cycle one new bit of the quotient ts s.htfted into the 
least significant bit of the .Q. register . 
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4.1.3.3 -EBOX Control· 

·The Ef>OX Control (EBXCTL) includes all control logic and ·miscellaneous logic. It can be 
decomposed into the EBOX Sequencer (ESEQ), the Fixup Generator (FIXGEN), the Status 

. Registers (STATUS), and the E.BOX Transmitters/Receivers (EX CVR) . 

The ESEQ..provides all sequenci11g control. 

The FIX GEN produces the fixup .. signal. During some operations, such as floating point add, the 
· cycle which is normally the last execution ·cycle may, in. rare instances, generate a condition· that' 
requires further processing. In that case, the FIXGEN raises the fixup· signal at the last possible 
instant, causing the EBOX to lose one cycle before continuing with the operation. If ftxup ts not 
asserted, then the operation will complete without wasting· any cycles. This fix up capability allows 
conditions generated during the current execution cycle to affect the flow of control, without 
requiring that 'the next cycle be wasted to test conditions. 

ST A TUS contains processor and user status registers. 

The EXCVR handles receiving and transmitting most IBOX/EBOX communication signals. 
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-t.1.s:s.1 Implementation .2s1 

4.1.!.!.1 EBOX Sequencer 

The EBOX Sequencer (ESEQ) controls the sequencing of the EBOX. The major components of 
the ESEQ. are the 12 Bit Branch Address Merger (BRADRM), the EBOX Branch Condition 

· MUX (EBCMl)X), and the EBOX Control Store (EBXCS). 

The BRADRM determines the source of the next micro-instruction. The possible micro­
instruction address sources. include a micro-subroutine return address, the IBOX-provided 
macro-operation starting address, a.nd the micro-code branch address. Since micro-instructions 
are read out a full cycle before use, BRADRM must be set up approximately 1.25 cycles early. 

The BRADRM allows an N~way branch (N • 2. 4, 8, or 16) on the low-order SHFBOX output, 
the low-order 31NADD output, the FIXREG output, or the conditions generated in the CBOX. 

When FIXGEN asserts the fixup signal, a special branch address ts forced into the micro-
program counter to. initiate a fixup sequence one full cycle later. · . . 

The control logic in the ESEQ. allows any address input to the BRADRM to be used for a jump 
o~ a jump to subroutine. 

The EBCMUX determines whether the branch condition being tested by the micro-code is true, 
and if ·so, allows the micro-program counter to be loaded, otherwise the micro-program counter 
increments . 

• 



'17 fJ>Cl..F L 

R£T AnR•8:1 > 

)( ,;1AR1 Anfl<8:lt> 
tR~c8:t > 

itttFT<3:?:'lG> 
FA< "lb: 3'9> 

ALU COH0<9· > 

... 
Tt7 ·r1>a.P 

BR DCST<B: > 

Z:H: 

)( kJL RO>< D 

11 

£ 1611 

s 

" ,., :n 

" • 
R 

12 BIT 
AEG 

.19176 

R 

11• 

C12' tc 

• 12 811 
I -.ot 
2 IDIA£88 
> rCRGCR 

.. 
Ii " 6 .,. 

H. SCL EN 

H 

" 

8 

..... 
""""-~~~~~-~·~ ... ,__~~~-l1 ~-~~!· 

• 
·RCT 

L 

1• 

12 811 C1R 
1Mt6 

p 

H. 

=-=------,-------B 12 l 

EBOX Sequencer (ESEQ;t 

CDOX 
lllCA: 

c 

t2 BIT CTR 
1ee16 

1 

T>-4; L 

c.o 
4 811 ClR 

• 18136 

1 .. 
CK" 

1• 

.• 

( 8: 

t28 )( 1&a -18t46A T 

• 

.. 
1~ 

I 
I 
I 
J 



• 

. i 

~ I 
. i . i 

• 

4.1.s.s: 1.1 Implementation 

4.UU.1.1 12 Bit .Branch Address Merger 

The 12 Bit Branc.h Address Merger (BRADRM) allows N-way (N .. 2, 4, 8, or 16) bra.nches on 
the value of any of four four-bit vectors. Depending upon N, · the selected four-bit veetor ts 
shifted· into place and substituted for ·the tow-order bits of the branch address from the ·mtcrO.:.. 
d~ . . . 
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. 4.UU.1.2 EBOX Branch Condition MUX 

The EBOX Branch Condition MUX (EBCMUX) ass~rts the parallel load line on the micro­
program counter if and only if the condition selected by the micro-code ls true. EBCMUX allows 
any of 24 conditions. to be tested, and allows thos~ conditions to be inverted before testirig . 

. Testing of conditions for branching cannot be done during the cycle that the tested conditions are 
generated, but must be d9ne during the next cycle,· since the micro-program counter is loaded one 
cycle before execution commences . 
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4.1.J.S.l.2.1 Repltition Counter· 

The Repitition Counter (RE?T) allows the micro-code to contain •FoR• loops. REPT can be 
loaded from either the 3INADD or the micro-'-code, and can be counted down anrhested under 
micro-program control. REPT thus allows control constructs in the micro-code such as ~ranch lf 

· zero (non-zero) then decrement•, and ·•branch if zero (non-~ero) then load•. · . 
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4.1.S.3, 1.3 Implementation 239 

4.1.!U.1.3 EBOX Control Store 

The EBOX Control Store (EBXCS) contains the EBOX writeable control store, various micro-
instruction pipeline registers, and EBOX Parity (EBXPAR). · 

Cc:>ntrol store for the EBOX is two-level for reasons of economy. The first level is addressed by 
the micro-program counter; it is 4K words deep by 70 bits wide. Ten bits of the output of the 
first level become the address bits for the second level, which is .IK words deep by 140 bits wid·e. 
In general, signals which are needed long before the micro-instruction execution commences must. 
be located in the first level, and signals which are not needed until the execution starts can be 
located· in the second ievel. This two-level control store allows the sltaring between micro­
instructions of subparts of common control words. Wit~ the aid of an intelligent micro-code · 
assembler, the control store appears to be uniformly 4K words deep. 

EBXPAR checks the parity of control store words and raises an error signal lf a parity violation 
. is detected. · 
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. 
4.1.3.3.2 Fixup Generator 

The purpose of the Fix up Generator (FIX GEN) is to sometimes assert the fixup signal and c~use 
the EBOX to continue with the fixup micro-instruction sequence instead of starting a new 
operation sequence under command of the IBOX. 

During execution cycles' in the interior of a micro-in~truction sequence, FiXGEN can store 
detected fixup conditions in. any of four I-bit registers, and can use the contents of those registers 
to assert fixup on the (tentatively) last cycle. 

The Fixup Multiplexer (FIXMUX) multiplexes the fixup condition chosen by the micro-code. 
The output of the FIXMUX can be used to cause fixup dur:ing ~he current cycle, or can be stored· 
for use later . 
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4.1.5.5.5 Status Registers 

The Status Registers (ST A TUS) contains the processor and user status registers. These. registers 
can be conditionally loaded under micro-program control. · ' ' 
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4.i.3.3.4 .· EBOX Transmitters/Receivers 

··The Ef>OX Tra~smitters/Receivers (EX CVR) receive~ signals from· the IBOX and transmits 
signals to the IBOX. Depending u'pon the fixup signal 'generated by FIXGEN, EXCVR will 

.conditionally assert OPS TAKEN, RESULT, INTERRUPT IBOX, and DONE· on t_he last,· 
execution cycle of a sequence . 
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4.1.5.4 .Timing . 

The EBOX is co1:mol1ed by the IBOX, which specifies the operation and the· operands f~r the 
EBOX. The IBOX provides the EBOX .with the address of the first micro-instruction in the 
EBOX's .control store. The EBOX performs the operation by executing the sequence of 
instructions from its control store beginning at the a~dress specified by the IBOX. · At the 
beginning of the last micro-instruction cycle of an oper.ation, the EBOX raises the DONE flag. 
In response, the IBOX prepares the next address and operands of the first instruction of the next 
operation. This section describes the timing of a normal macro-operation. 

A macro-operation consists of a sequence of micro-instructions as shown: 

FETCH . 

• 

• 

READ.1 · EXECUTION 

· 1 FETCH . READ 

+--Instruction--+ 
cycle 

l.IRITE 

EXECUTION l.IRITE 

FETCH READ I EXECUTION 

FETCH READ ..... 

time 

Sequential micro-instructions overlap; during a given instruction cycle, three operations occur in 
parallel: 

• 

I. During FETCH, the EBOX fetches the next micro-instruction from its control 
store and places it in the pipeline register. 

·2. During READ, the EBOX reads operands from its EREGF. 
> 

3. During EXECUTION, the EBOX executes the cur~ent micro-Instruction from 
the pipeline register. The ALU produces a result by the. end of the execution 
cycle. If the DONE bit of the micro-Instruction Is set, the DONE flag Is raised at 
the beginning of the cycle. · 
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During WRITE, either the IBbX or the EBOX may write· into th~ EREGF. 
J 

IBOX WRl and IBOX WR2 

or 

IBOX WRl and EBOX WR 

or 

EBOX WR . I 
"--~---·'"···-····,···· 

.-., 

-----Instruct ion ·cycle·-------+ 

4.1.4.4 

The purpose of .an IBOX write is to provide the operands for the next macro-operation. During 
the first half-cycle, the IBOX writes operand A and B into the same address of the two r.egister 
banks. The r~gister location written into is determined by the EBOX. 

During any instruction in which the IBOX is not providing operands, or is. providing only one 
operand, the EBOX may write data Into its EREGF. The EBOX write also occurs during the 
first half-cycle. · · 

At the end of an execution cycle, the result: . 

is always available to be used as an o~erand tot the liext execmton cycle, and 

is simultaneously written into the EREGF during the next execution cycle .(unless 
two operands' are received from the IBOX for the next execution cycle). 

·" 

.. 

... 



.. 

' . - ! 

• 

~-
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4.2 Interconnection Netwotlc 

The processors are connected\\ to memory by a serial/parallel crossbar interconnection switch (See 
Figure 2.1-1). Data is transmitted 24 bits at a time through the switch, taking two cycles per data 
word transmitted. Once it is through the switch, it is then transmitted fully word parallel to the 
memory's, since the reiatively slow TTL logic in the memory's can not handle the high speed of 
the switch. 

The memory is divided into 16 Block Storage Modules (BSMs). The BSMs are interleaved 4 
w~ys on the low order bits of the real address word. When a processor does a read or write, four 
words are transmitted, except in cases where the data is tagged as not cacheable, in which case 
only one word is transmitted. Normally the address is transmitted once and the two low-order bits 
are permuted in order to obtain the addresses of four consecutive words in memory. 

With N processors, the common store resembles an n-port memory because of the interconnection 
network, the structure of which allows. each processor to simultaneously and independently access 
different BSMs. When two or more processors try to access the same BSM, the conflict is resolved 
by the memory contention control logic. This logic ensures that no processor can access a BSM 
twice before another processor desiring access can access it once. This effectively solves the 
deadlock problem which plagues some multiple processor systems, in which a higher priority 
processors locks ou~ lower priority processors for an indefinite period of time. 

Each BSM has its own memory contention logic, the· ii:iputs of which are the request lines from 
each processor and. the outputs of which are the select lines of the interconnection network. The 
request lines are activated by. control logic monitoring the address lines of each processor. In a 
sixteen processor system, four of the address lines would be input to a 4-to-16 line decoder. The 
16 output lines would indicat~ which of the 16 BSMs the processor desires to access. 

As soon as a particular BSM becomes idle, the memory contention logic latches the 16 processor 
request lines for that BSM. It then proceeds to service the queued processors until the memory is 
again idle. The 16 output lines of the latch go to a 16-to-4 line priority .decoder which 
determines which one of the processors is to be serviced first. The output lines of the priority 
encoder are connected to a latch, and to the select lines of the interconnection network, which 
routes the data from the selected processor to the BSM selected. At the end of a memory cycle 
when one processor has been serviced, the latch is released and the request is cleared. 

The priority encoder then elects the next processor to be serviced on the basis of the new data in 
the latches. T.his cycle continues until the latch is empty and all processors have been serviced. 
At this time the MEMORY IDLE line latches the next batch of processor requests and begins· the 
next round of servicing processor requests. 
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nso 16 ce:?3> 

Memory-Processor Communication (MPRCSW) 

ns1 • "'°. 
ns1 1 "'° 1 

ns1 2 "'° 2 

ns1 :11 "'° 3 

ns1 4 "'° • 
ns1 i; SWITCH n;o & 

""I 6 PROCESSOR "'° 6 

ns1 ., INTERFACE "'° " 
ns1 er. n;o B 

ns1 9 "'° 9 

ns1 18 nso 

ns1 11 nso i 

ns1 12 nso -
)( 

nu 13 nso 1 

ns1. 14 nso 1 

ns1 1& nso 1 

. . 

Pe ce:2'4> 

p 1 ce:Z•> 

p 2 c8:2' .. > 

P ,. ce::>4> 

P 4 cB:2'4> 

p 6 <8:2'4> 

p #. <8:24> 

p 7 <8:?4> 

p 9 <8:2'4> 

p 9 <8:24> 

P 18 ce:~> 

p 11 <8:24> 

p 12 ce :>•> 

p b •B:24> 

p 14 •8:24> 

p I& •8:24'> 
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I 
PO 

II e llfOll•·: II 9 <0> PO 
118 

RI 
~ruur:·1 1 <A> 

R I 

II 2 ii 2 

R 3 
RfQllf'":l 3 <0> 

R 3 

R 4 
ih'fr,. . ..- ;.i 4 ce> 

R 4 

R 6 R 6 

Rt. R 6 

A 7 R 7 
PROC l'l>OC 
SLIJlC".H R 8 ::111 ro. R 8 
lHTr~ 

R' 91 
R 19 

wn .. •·~r 9 • A> 

M"Qt.f"ST 18 <fll> 

•T=--ACE 
R 9 

R 19 

R II R 11 

R 1'! R '2 

" R 13 
RfOI.•·..: r 1:1 te> 

" R 13 

R 14 R 14 

R 16 
Pf Ola·: 1 1S ce> 

R 16 

D"" I esn 
Pl Pl. 

PSl 1 18::""4> I 

.. 

PSO 1 <8:23> 

REO£ST 1e <I> 

HtiOtr.sl I <I> 

RIOLCS1 2 C1> 

RI QI.CST :a ct> 

RI OIEST • <" 

RI OIXSl 6 Cl> 

fe-Ol•"ST 6 c"1> 

lo!"""oursr 7 ,,, 

~01.-s1· e ,,., 

fo'!':otrST 9 <1> 

Rl"~ ... ST :Ht <I> 

Rf'QUEST '1 ... 
~CST'12' <I> 

RC0.6.ST 13 <I> 

'Rf:Ot.A:ST l4 <I> 

Rt--OtlEST 16 <I> 

flSnSF.L <9:3> 

,PSJ 2' <9:2<4> 

PO 

....oc 

• 

PSO 2 <0:?.J> 

Rf"Oll'"ST " <2'> 

Rr.otCST I <2> R I I---,----"="'-'"-"-=-

Rraur:sr ?. <2> 

Rf"OU£"!:T 3 <2> 

R 2 -------"'-"'="-"-=­

R 3
1
,. ------=-=-"-'~~~ .. :. 

N1'.ota~s1 • <2> 

Rf"QlJf"ST 6 <2> R 6 I-------"="'-'"-""-'-""'-

Rf'Ollf"ST " <2> 
R6!-------"'-"'~"-~~ 

Jlf0llf"$T 7 (~) 
R 7 !-------"'-"'"'-'"-'-'-= 

RrOUFST 0 <2> 

R'l'"OllfST 9 <2> 
i~!:~ R 0 I 

R 9 ------~~~~~= 

R'lrOU"ST "' <2> R 101~------=='""-'-""-'""'"" 
Rr.ou.:s1 II <2> 

11111------~=~~~~ 

Kour.st 12 <2> R 121------==='-'"'"-=-

RCOlCST 3 <2> X R 131-------==='-'""-:=, 

Pl""OlCST •• <2> R HI-------==='-'"-'--"""-

Rr<M•:sr 16 <2> 

A!;n!;f"L 2 <111:3> esn ;---~--=="""-.,__== 
Pl 

PSI 3 <9:2'4'> 

Procenor Switch Interface 1/4 (PS INT I) 

• 

rt;O 3 ce~?J> 

I 
PO 

R 8 
P50 3<A:?'3> 

RI 
Nf'Q.lf'ST 1 <'3> 

R 2 
Nf"Q.CST 2 <)> 

R3 
Rl-CIEST 3 <3> 

R 4 

R 61 
Rt. 

Rf'.'QEST 6 c 3> 

R 7 
H£QF.ST 7 c)) 

PROC 
SMllCH RB 

RC"Q.1£$1 B <3> 

lHTfACE 
R 9 

Hf"QCST 9 <3> 

R 19 
Nf"OU:ST 19 <3>

0 

R 11 

R· 12 

" R 13 

R"~, ... 

R£Ql.£ST 11 c 3> 

•3•"\ 
J-~----~""~·-u-•.£.s~T~l-3~<3~> 

l------~Rf""-"Q~,£~S~T~·~·-4~•3~• 

P£"01..£ST 12: 

R I& 
Pf"Qlf°ST 15 c'3> 

esn PSJ 3 <8:2~> 

Pl 

• 



• . , 
• .. 

~o 6 •tt:2::1> P~O 6· «8:23> rso 7 co·?."l> .. 

I I 
PO 

A• 
Rl".QUfST 8 <4> 

PO 
A 9 

PO 
R 8 

PO 
Rf"Qlf""ST 8 <7> 

R 8 

At k'f"Oll ~· I <4> 
RI 

Rl~Ot.EST 1 c6> 
Rt 

Rf'"Ql..-ST 1 «6> 
RI 

R£QF.ST 1 <7> 

A2 
R'fQl..-:'H ?. <4> 

R 2 
Rl"Ol.CS1 ,. <6> 

R2 
QlJ£"ST 2 C6> 

R 2 
RrGEST 2 <7> 

A :J 
R{"Qll.'"'T :J <4> 

R :J 
RC"OlCS'T 3 c&> 

A :J 
Rl"Ql£ST «6> 

R :J 
REQCST 3 •7> 

A 4 
kfQllf'•:"f 4 •4> 

R 4 R 4 
Rf'"QlCS 4 C6> 

R 4 
Rf"Q .. ST '4 <7> 

AG 
fft""OICH " <4> 

R G 
Rf"QU[ST 6 c6> 

R 6 R 6 
Rf'"QEST 6 <7> 

A 6 
Nf-"Ql.-ST " <4> 

N 6 A 6 
Rt"Ol..-ST 6 «I» 

R 6 
ttf"QlfST 6 <7> 

A 7 
kf"oe.-:.T 7 <4> 

R 7 R 7 R7 
RFG£ST 7 <7> 

Pl>OC 
$.lo.ITCH AB 

Rt:Ollf ST e <4> 
PROC 
SWJ104 RB 

R'FQIEST 8 t6> PROC 
NJ 1CH RB 

RrQlrst e <6> 
PROC Rl:QCST R «7> 
S&UTOt R 8 

l .. "lf"ACE 
A 'O 

P.'fl'Xlf":;T .. <4> 
JHTFACC 

R 9 
JlfOllCST 9 11.6> 

INTFACX 
R 9 

RCQl.Jf""ST 9 <6> 
INTf-AC:E 

Rt'.:GIEST 9 <7> 
R 9 

A te 
t<'f"Qt •• S'T 18 <4> 

R 18 A 18 R 18 
IX'"Qlf:ST 18 <7> 

R tt 
...... Otl"Sl II <4> 

R II A t1 
R£Ql .. ST 11 <6> 

R 1S 
Rr.OU:ST .. •7> 

A t2 
PrOtCSl" 12 <4> 

R 12 
R'('QUFST 12' c6> 

A 1'! 
RCOl.-ST 12 <6> 

R 12 
RCOl.£.ST 12 •7> 

IC R t:J 
RfOllf"S"T l:J •4> 

IC R 1:J 
R("QUf"Sl t :J t6> 

IC A l:J IC R l:J 
.. Rf:Qlf:ST l'.l <7> 

R 14 

R ,·c; 

~01a·n 14 <4> 

RfQ1!f·~1 IG ... R 14 

R t6 
llCOUFST t& c6> 

R 14 

RI& 

R 141 
RCQlf""S1 14 <7> 

R'fOl.E"Sl 15 •7> 
R 16 

89" 
&!:n~r:L 4 <8:3> esn esnSCL 6 •.e: 3• esn esnsn. " c e: "l> esn RSnfCL 7 C0:3> 

PJ PJ Pl Pl 

PSI ... ·<8:2'4 > PSI 6 c 0:24> I PSJ 6 <8:?4> PSJ. 7 t8:24> I 

' 
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PSI R •0:2'4> 

~OB <R:?'l> 

PO 
W't"Ollf'Sli • •A> 

R e !--------'~~=~~ 
w.·a.a·s• 1 <B> R 1 1--------'"--==-=-'-"'-= 

Rrou·s'I ? <9> 
R 2 I-------'"--=""-=-'-"""-

R'f.:.t•·s'I 3 <A• R :J 1--------'"--==-"-'--"-"'"-= 

IO:f'"i01..a·s1 • <9• R < 1--------'=-==-"-'--'---'= 

R 6 
RC0tr:>1 i; <D• 

R 6 
Pl·Dt1·:-:1 " <A> 

R 7 
...,..°' •. 51 7 •8• 

.. ,.Dir.SI 0 •8> ""°" SWITCH RB 

~Ol..-sl 9 <D> 
JHH"ACC 

R 9 

R _10 
"'·c.1a·s1 "' <D> 

R 11 
RfQlrST 11 <8• 

~'£1111..:sT I? <9> R 1<!1-------"'-'='"""'"'-',.__,_,.~ 

J,.•f.UW:ST 13 <D> >C R 13!------~==~~=-. 
R 1<!.._~~~~-"''-="-""'--'-~-""" 
R 16·~'-------'~~~~~~ 

k'f'"Gl•Sl 1• •0> 

PCVl .... ST 16 •D> 

BSl"ISrL • <&:3> osn r-------===-=--""""-"~ 
Pl 

I PSI 9 ( ft:24> 

PSO 9 <8:23> PSO 10 <~:23> 

I 
PO 

R ., 1---------""~'"'=.-~s_r_a~·~"~' . 
PO 

R 8 
R'fQ9 .. ST 8 <18> 

PO 
·Re 

RC"Oll""ST 8 "10 

R 1 1---------""'~"'=rc_s_r~1-'-"~'. R 1 
JlfOIJfST 1 <UJ> 

RI 
RFOLCST 1 <11> 

R 2 1---------"'~' "'=rc_s_1~2-•-9~•. R <! 
Rr"OUFST 2 < 18> 

R 2 
Rr:QU:S:l 2 ( '1) 

R 3 1-------""""'auc=_,.s.,r_..:J1_•""9""'· R :J 
RC"QICST "] <Ht> 

R :J 
lil'(QU:"!>T <11> 

11 • 1-------""'"-auc=·_,.s.,r_.,4_•;;.o9..._•, R < R < Rf:QU··:a 4 <11> 

R 6 1-------"'11'._lll=f"~S'-'T-"'li-•;;.o'>"'->· R' 6 R'COU'.ST 6 <19> 
R 6 

Rf"OU""ST 6 ( 11) 

R 6 >-------~"" .. '"~O'•S•T~6-'-9~'. R' 6 
J.'f"Oll"~T " C1ff) 

R 6 
lilf"Ot.rST lo <11• 

R 7 t-------"PF._111=0'~S'-'T_..7_•~9~>. R 7 
R'fQtlfST 7 <19> 

"7 
Pf"Ql£ST 7 <ttJ 

l'ROC 
SMJ lCH RB 

PROC 
Sl.IJTOt R 0 

M""QU-ST 8 ,,,. fill'.aur:s1 E ,.,. fc'ro111r!:1 e <10> 
Sl.IU~ R 8 1------~==~~~ 

JNTJ"ACC 
A 9 

JNTf"ACC 
R 9 

WF.OlFST 9 ( 11 > Q:QrST ~ <9> KOllf.ST 9 <19> 
JNT"'="AOC 

1191---------=~~~~ 

R'f'Ol..f""ST 1e .... .. 18>-------~~~~~~ .. 18 
Wt 011·sr 1 .. <19> 

R 18 RfOUrsT "' c 11) 

R 11 

.. 12 

R 11 

.. '" 
Rf"QU("'SJ 11 <11> 

R£ourm 12 <1U 

J!S?!;:f"I. 9 48:3> 

PCOUFST 1E <9> 

Wf'01·.-s1 11 C19> 

Rf:OICST ,~ <19> 
.. 111 

• ·R 12------~=-..--~ 

RCOl£ST 1-· •9• 
)I R t:Jt------==""-''-'-= IC R l:J 

Rf"OU£ST 13 <19> 
IC R El 

WJ"OUJ"ST 1 <11> 

R 1< 

It 16 

",.I 
R 16, 

OUCST 1• .... 
Rf"Ol.EST 1•- .... 

RfOl.-ST 1• <16'> 

R'f"Ol ... ST 16 <19> 

wrOttf'.!iT 14 op -

HC"GUrsT 16 <11> .. 161------==='-'~=· 

BSn >------~B-S~n~S£~l~6~· "~' -'· osn llSM!;f:L 19 <8:)> EIS11 I nsnso. 11 <9:3> 

P: Pl Pl 

~J '"' <9:24> I ,PS 11 <8:24> 
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SI L 

IHTi';Rr"Aci: 
ICOHTROL 
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""'-10 
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I 
...OWOc27> ila?JlC 
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··"""'° 
""""11C1A:4'~ IUSnHO 

x 

•' 

.... .. 8 

A I 
.. . 
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P.,. 
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R "'I ... "4 

• & 
R6 

I: 6 
At. 

"'7 
",. 

ee Q 9 ... " .. 
R 18 • ... 

;::~ 
•13~ 
• 
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. R 14 
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• 

• 
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~ 

z .. en 
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R 
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Rf"Ant L 
~·rttn L 

Q' 
Q 2 

• 

UA.l!D 

Rf'nr.T 

\A. IO> 4MORO 
2 

. UAI. mt> 
3 

36 BIT 
18164 COt.,.T 

""'·"° 
T .. 

)( 

z 
6 

z 
6 

z 

=""'~'~o~·~ .. ="°"":=o:'-----12 
~z---------i3. 36 RJT 

18164 Tl-----"'~ 

)( 

z 

2 

H 

" 

• 

I Of" 8 
OCCOOCR 

UU6l 
Sc8:7> l s Q 

)( 

CN90'1 

f. 

i 
C:Ol ... T l Q3 

co 
IOAD L 

lt1 

03 

POii 10f"t6Q:J~ 
DECOOCR O 4 R 

0& R 

36 en O 
6 

l R 6. 

R~nlc9:3> 

LATCH 

1&133 1 .__~o~c~,"~'~"~'~~~·--i 
R 

Q 7 
DI 

)( Q 8 

Q 9 

.. '" 
Q" 

SO> )( 

Q •2 

113 l 
Q t3 ..... R 14 

Q t6 
II 16 

Interface Control (INTCTL) 



PSOel PSOlr ~2r PSO~~ PSOr ~6r PS06r PS07r.· I 

DO DO 00 Ill> DO 00 DO 00 
PSI ft C8:il'"1>'-" 

DI e DI • Of • DI e · DI e DI 8 DI e OJ e' 
PSI I ce;;a3,,A 

DI I DI I Of ' 01 I DI I DI I DI I Dl I 
·-· PSI 2' C8:23>"' DI 2 DI 2 DI 2 Ill 2 DI 2 DI 2 DI 2 DI 2 -

PSJ :t c 8:23>,A 
DI :J DI > DI :J DI :J DI > DI > DI :J DI > .. 

PSI 4 c 8:23>"' Dl 4 DI 4 DI .. DI 4 DI 4 DI 4 DI 4 ·Df 4 - Ii c8;~3>"' DI 6 Di 6 DI 6 DI 6 Dl 6 DI 6 DI 6 DI 6 

PSI 6 ( e: ::--.,"' 
OJ 6 At'OC Dl 6 PROC DI '"PWOe DI 6 Pl!OC DI 6 PROC DI 6 PROC OJ 6 PROC DI 6 PROC 

PSI 7 ce:>3>"' rcn "°' rcn rcn """ rcn. ""'" "°' DJ 7 $1.111Dt Dl 7 SMITC4 Cl ? SUl10I DI 7 sel lOI DI 7 SM11Cll 
I 

OJ 7 SWITOt DI 7 SWllOt Dl 7 SMJTOt 

PSI A c 8: 23>"' -
DI 8 Dl 8 0 • Dl 8 Dl e DI 8 DJ B. DI 8 

PSI 9 <8:2.3>,A 
DI 9 DJ 9 0 • DI 9 DJ 9 DJ 9 DI 9 DJ 9 

' PST te c8·"">'-A 
l 1• I 1e .. I 1e I 1e DJ 1• I 1e I 1e 

PSI ll c8•2''h~ : 
I 11 · DJ 1t DO; " I ti J ti I ti I U I ti I 

PSI 12 <8:23>~ J 12 x DI 12 x 12· x I 12 IC I 12 x I 12 IC I 12 x 12 x 
! 

PSI 1:1 <8:2~>'-.A DJ l:J I t:J - l:J J t:J I l:J I l:J J t:J DI t:J -
PSI ... <8:2"l>'-.A DJ 14 DJ 14 Cl 1.4 DJ 14 I 14 I 14 l 14 DI 14 

PSI 16 <8:2~>~ 
DJ 16 DJ 16 0 •6 OJ 16 I 16 I 16 I 16 

1
m 16 

Ill en. nJ en. I l'Q CTL n1 CTL nJ en. nl CTL n1 CTL i nJ en. .. 

I I ' I I I. 1· I I ,.-" 9 IDL£ ncn I JDLE 

I 
~!J 2 ll!!:f; I nc:n "I: 'I'll c -- 4 1 .... r -:• J; : ftC ..-n 6 Jill.£ ncn 7 JDt.£ 

: 
R£Q1£ST 8 ce:16> : RE9!£ST I •!·!§> ._.,.lES1 2 COh .-. RECLEST-. cllt1: ti> Dl'"QUEST • cA: II:) RE ....... S"'i 6 ce: 6> Dr0l£S1 A ce: u::., R£Q•r" ...... , <8:16• 

.. -· 
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• 

! ' 

00 DO DO DO DO DO DO DO 
PSI 8 c8::l,>'8 

DI e DI e DI e DI ... DI e DI e DI e DI e 

PSI t <A-23>•" DI t DI 1 DI t DI 1 DJ t DI 1 DI 1 DI t 
PSI :io- c8:<»3>'9 

~I 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 
PS1 ~ C8:23>'9 

DI JI DI JI DI :J DI JI DI :J DI JI DI JI DI :J 
PSI 4 c8;::S03> .A 

DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 

PSI 6 c 8:?.3>'9 
DI 6 DI 6 DI 6 DI 6 DI 6 DI 6 DI 6 DI 6 

PSI ._ c&.:::>:1>,B 
OJ 6 PROC DI 6 PROC OJ 6 PROC DJ 6 PROC DI 6 PA'OC DJ 6 PROC DI 6 Pl!OC DJ 6 PROC 

PSI 7 c A:::io3>'8 ... ... .... ..:.. ..._ .. ... ... rcn 
DI 7 SMJ n:H DI 7 SWJTOt OJ 7SWI10t 01 7 SWJlOt DJ 7 SWITOt OJ 7 SWJTOt OJ 7 SWJTOt DI 7 SWITOI 

Pl::J e ·, e:2'3>'8 
DI e DI 8 DI 8 DI 8 DI 8 DI 8 DI 8 DI 8 

PSI 9 c&.:23>~ 
DI 9 DI 9 DI 9 DI 9 DI 9 DI 9 DI 9 DI 9 

PSI 19 Cill:=>3>'8 I 1e I 1e I te I 1e I 1e I 1e OJ 1e I 18 
PSI ·11 <8:2"1>"8 

DI 11 I II LOI 11 I 11 I II I II I 11 I Ji 
PS• 1::> C8:2'3> .A 

I 12 • I 12 IC I I 12 IC I 12 IC I 12 IC' I 12 • I 12 IC I 12 IC 

-· t1- ica:23,,e I Ill 
I 
,-1 13 I t:J I Ill I t:J I Ill I IJI I Ill 

PSI 14 dJ:2"1>'8 I 
I t4 I t4 DI 14 I 14 DJ 14 I 14 I 14 I t4 .. 

PSI tli <8:23>'8 
OJ 16 :01 16 I t5 DI 16 OJ 16 DJ 16 DI t6 I 16 

nl en. ... CTL .... CTL n1 CTL ... CTL .. . CTL ... CT\. ... CTL 

ncn e JOLC I . l't[ft 9 )1"111 r I re" te Jnt E I re" 11 1DL£ I ,...ft 12 """" r I r£n t"l JDL£ I flF'ft 114 ,..,,. r I r£n 16 JOLI=' 
·1 

DtOlrsy e ce: 16> orO"MrST 9 <8• ,r;;., Rf:IDlt£ST •9 CfiJ:•S::.> . __. .... ~ST • • ce: 6> . .--.... rsy J::> c•: JJ;.> R£Qu£ST •"' c&, t.f;.> R£Ol~ST •4 <8: 16> R£01£ST "' ce, "" 
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n1 

•. 

PNCtTOCOL 
tCTMORK 

x 
nlH 

I 

I 

• 

DI 8 Ht:~)> 

01 , (8:.?.):) 

DI 2 ce:?:l> 

DI J <"':~']> 

DI 4 <0:~)> 

01 6 <8:21:> 

DI 6 cfl:-?.3> 

DJ 7 <8:?:1> 

'" R <8:?.:1> 

DI 9 <8:?.)> 

DI 19 ce:z:u 

DI " <8:2''1> 

DI I? ce:?'l> 

()J 13 te:.?.·o 

DI 14 <8:?)> 

DI 16 <9:2'"1> 

PROC MEM Switch 

~ 
' 
i! 

3 

.. 
6 

6 

7 24 BIT 00 <8-Zl> .. 
e 16"""' J. 

9 

•• 1 

' " ·i 

1i! 

13 

14 
llH 

s 

~ 

(PMSMUX) 



. ' 
' I 

I I 
I 

I 

:JD lD 

• 
CCl81 
t0nn 
.118 .. 

, &~.1 

NlU 

l A..ldO O 

lO 

" . .....,91'81 
IDOO.JN3 Ol&J". 

119.91 

.. 
" • 

~ 

ICl8l 

011~ 91 0 

s 

lN39N3 

• 
IOOO:>:JO 
91 30 ' 

sl----...J 

9'1 

.. 
• 
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Switch MEM INTFACE (SWMINT} 

.. 



• .. 

~·r ftSOlr ftm2r ~r nsor 
~6r ftS06r nso7r 

DO I DO DO DO DO 
,. 

DO DO DO 
·ftSJ • (. 22>"' 

DI 8 DI e DI.• DI e DI e DI e DI e DJ e 
ftSJ I c fJ:: ?.2'>'-" 

DI t DI I DI I DI I DI I DI I DI I DI I 

~· 2 <&:??.>"' DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 

rist 3 c 9:22'>,A I 
DI :J .DI :J DI ] DI :J DI :J DJ :J DI :J DI :J 

f'tSI 4 c 8:22'>"' 
DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DJ 4 

ftSI I:. < 9:22>'-A 
DI 6 DI 6 DJ 6 DI 6 DJ 6 DI 6 DJ 6 DJ 6 

"51 6 c 8:22>,A OJ 6·~ DJ 6 ..en DI 6 l"Crl DI 6 f'En DJ 6 ..en DI 6 PCn DJ 6 l"Crl DJ 6l"Crl 

ns1 ., <&:"'2>"' NOC PQGC AOOC AOOC :J AOOC AOOC ....u: AOOC 
OJ7DU10t DI 7 sw::TCH DI '1' SWJ 1CH OJ 7 :SWITOt DI 7 SWITCH DI 7 SWJTOt DI 7 SWJTOt DJ 7 SWITOt 

ns1 e c e-:22>"' .Pl B DJ B DI B DJ B DI B DI B DI B DI B 

nst 9 c A-:22'>'-" 
DI 9 DI 9 DI 9 DJ 9 DI 9 DI 9 DI 9 DI 9 

tlSJ 18 <e:22>'<.A 
I 19 :>J 18 DI 1• J 1• DJ 1• I 1e DI te I 1e 

ftSJ .. <8:"'2>"' DI 11 :>J 11 I II J 11 DI 11 I 11 I 11 J II 

""' 2 <8:22> ·'°' DJ 12 IC ·:ti 12 IC I 12 IC DI 12 IC I 12 IC J 12 IC I 12 IC DI 12 IC 

nst t3 <8:?.2>,A 
DI l:J I l:J DI IJI I l:J DJ l:J I l:J I l:J J l::J 

"51 14 ce:?..2>,A l 
DI 

, 
DI 14 .;1 14 DI I., J 14 DI 14 J 14 DI 1• 14 

ftSJ 16 C8'!22>'A iDI 
·-

DI 16 OJ 16 11; I 16 DI 16 J 16 I 16 DI 16 
Pl Pl Pl Pl Pl Pl Pl PJ 

es~· e ie:,> I ~1<8·"1> l BSng""t ,. <8!:t> I ~SCl ']: <fh'l> I ~· 4<8-.3> l n::"'SCl. 6 ce~:J> I ~· 6<8:)> l 8~9"'-1. 7 <8:"~ 
\. 

M.emory Processor Switch 1/2 (MPSW I) 
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nsoer ~91 nso1•r nso11r "~~r nsonr ~l .. r _nso16r 

DO DO 00 ! DO DO DO DO DO 
ns1 e ce::.;io,'"A 

DI e DJ e DI e DI e DI e DI e DI e DI e 
~ 

"SJ i c 0:22>'8 
DI I DI I DI I OJ I DI I DI I DI I DI I 

..SJ 2 c 8:22>'8 
DI 2 DI 2 DJ 2 DI 2 DI 2 DJ 2 DI 2 DI 2 

ftSt '1 <8:22>'8 
OJ 3 DJ 3 DI 3 DJ 3 DJ 3 DI 3 DI 3 DI 3 

nsr"' <8:22>'9 Dl4 DI 4 DI 4 DI 4 DI 4 DJ 4 DJ 4 DJ 4 

ns1 6 ~ 0:22>,R 
DI 6 DJ 6 DI 6 DI 6 DI 6 DI 6 DJ 6 DJ 6 

m1 6 ce:22>'8 
DI 6 flCft DI 6n£n DI .. ICJI DI 6tten DI "'ncn DI 6 !CO DJ 6 r£n DI 6 rcn I 

ns1 7 c e:>:>>'18 PROC PROC PROC PllOC PROC PROC PllOC PllOC 
DI 7 SWJ TO< DJ 7 mn-04 DI 7SWJ1'0t OJ 7$Ml1CH 01 7 SWJlCH OJ 7 SMllOt DJ 7 SWITCH OJ 7 SMJTOt 

ns1 8 « 8:22>.._B 
DJ 11 DI 8 DI 8 DI 8' DJ 8 01 8 DJ 8 DJ 8 

nsr 9 «Qt::>::>>•.A 
DI 9 DJ 9 DI 9 OJ 9 OJ 9 

1
01 9 OJ 9 OJ 9 

nst 1e «8:22"•'8 OJ 
1• 01 18 DI "' I 1e DI 1• OJ 1• I·,. I 1• 

ns1 II <8·:>2•'8 
1 II I II 

I " 
1 II 1 " I II ,_l 11 ·01 " 

"SI 12 <8:?.~'8 
I 12 >< 01 12 "' DI 12 IC JH >< I 12 IC 1 12 " 1 12 " 01 12 " nsr t"l <8•i!2>'8 
1. 13 1 13 DI I) I ta I IJI I 13 01 13 01 13 

"Sl 1~ <8·?.2->'8 
I 14 DI 1 .. DI 14 I M I 14 I 14 OJ 14 DI 14 

"St 16 <8·?2>~ 
J i6 DI 16 DI 16 I 16 l 16 01 16 I 16 DJ 16 

Pl P: PI Pl Pl Pl Pl I Pl 

~ B <9:,> I . BEftSCL 9 c9•']> I BSr.<n 18 c•:"11> 
l · 

~t. .. ,,.,, I ,..__,..., 12' <9:,> I ~r.L ,,., .... -., I esnsi: t4 C8:3> I R'S"!El. 16 <8:'t> I 

' 

Memory. Processor Switch 2/2 (MPSW2) 

•' 
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5. Summary 

The LLL Programmable Digital Filter is a high-performance multiprocessor having general 
purpose applicability and high programmability; it is extremely cost effective either in a 
uniprocessor or a multiprocessor configuration . 

The important system.characteristics of the LLL Filter are as follows: 

Multiple (16) identical processors execute independent .instruction streams. 

Every processing element can uniformly address all system memory through a (25-
bit serial) crossbar switch. 

Each processing element has dual private caches to reduce contention for main 
memory, to reduce average memory access time, and to insure that system 
performance does not seriously degrade as more processing .elements (and 
therefore a bigger and slower interconnection network) are added. 

Each processing element can direct an interrupt to any other processing element. 

Munch registers, hardware queues, and read-modify-write memory capability are 
available for synchronization . 

The virtual-to-real memory maps include access mode bits which allow efficient 
sharing of data and instructions. 

The architecture and instruction set of t~ individual processor has been optimized with regard to 
the multiple processor configuration. The important processor architecture features are as follows: 

A very large (228 word) virtual address space to allow each processor to uniformly 
address any system memory of feasible size in the forseeable future. 

Efficient mechanisms for allowing the ~xecu,tive to communicate with user 
processes. 

· A high-level instruction set ideally suited for compilers. 

An instruction set specifically tailored to reduce the frequency of pipeline 
interlocks in a high-performance implementation. 

The capability to perform three-operand instructions through ·the use of a unique 
"T -field" descriptor. · 

Comprehensive floating-point capability, including three rounding modes and the 
option to trap on excess pre- or post-normalizatfon. 

The capability to directly perform operations on operands of 4 precisions: 
quarter-word, half-word, single-word, and double-word. 

Special instructions for dealing with the multiprocessor environment. 
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Al. Abbreviations 

Thie is a list of the abbreviations used throughout the design. 

ABS 
ADD 
ADA 

BC 
BOC 
BR 
BZ 
BZC 

c 
CI 
CK 
CLR 
CMP 
co 

· COMPL 
COND 
cs 
CSA 
CTL 
CTR 

DEC 
DEST 
DI 
DIS 
DO 
DP 
ow 
E 
EBO>< 
EN 
ERR 

· EIJAR 
EX 
EXP 

F· 
FA 

.FS 

G 
.GE 

H HIJ .. 

I 
. .I 

IBO)( 
IMMED 
INC 
IND • 

• 

ABSOLUTE VALUE 
ADDER 
ADDRESS · 

BRANCH CONDITION 
BAD ONES COUNT (FLOATING POINT> 
BRANCH . . 
BOTTOM ZEROES 
BOTTOM ZEROES COUNT . 

CACHE 
CARRY IN 
CLOCK 
CLEAR 
COMPARE 
CARRY OUT 

·COMPLEMENT 
CONDI TJON 
CHIP SELECT 
CARRY-SAVE ADDER 

·coNTROL 
COUNTER 

DECREMENT 
DESTINATION 
DATA IN 
DISABLE 

· DATA OUT 
DATA PARALLEL 
DOUBLE-WORD 

E SEQUENCER MICRO INSTRUCTION FIELD 
EXECUTION BO>< · 
ENABLE 
ERROR 
EBOX WRITE ADDRESS REGISTERS 
EXECUTION 
.EXPONENT 

FUNCTION 
FULL ADDER.· 
FROM SWITCH 

GREATER THAN <ZERO), CARRY GENERATE, GUARD 
GREATER THAN OR EQUAL TO <ZERO> 

HIGH <ONE>, HIGH (SIGNIFICANCE> BITS 
HALF-IJORD I 

INPUT. 
I SEQUENCER MICRO INSTRUCTION FIELD 
INSTRUCT ION BOX 
IMMEDIATE 
INCREMENT 
INDIRECT 

\ . 

275 
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INSTR INSTRUCTION 
INT INTERRUPT 

. i IR INSTRUCTION REGISTER 
IRS SECOND OR THl'RO WORD OF INSTRUCTION REGISTER 

• 
L LESS THAN (ZERO), LOW (SIGNIFICANCE) BITS 
LE LESS THAN OR EQUAL TO (ZERO> 
LEN LENGTH 

. LRU LEAST RECENTLY USED 
LSB LEAST-SIGNIFICANT BIT 

M MOOE, MIDDLE (SIGNIFICANCE> BITS 
MANT MANTISSA 
MC MICRO-CONSTANT 
MEM MEMORY 
MM MULTIPLEXER MERGER 
MPC MICRO PROGRAM COUNTER 
MUX MULTIPLEXER 

N NEGATIVE (:-

NE NOT EQUAL TO (ZERO> 
NUM NUMBER 
NW NEXT WORD . 

'NZ NON-ZERO 

OE OUTPUT ENABLE 
OP OPERAND 
OVFL OVERFLOW 

p CARRY PROPAGATE 
p P SEQUENCER MICRO INSTRUCTION FIELD 
PA PHYSICAL ADDRESS 
PC PROGRAM COUNTER 
PE PARALLEk ENABLE 
POS POSITION · 
PROC PROCESSOR 
PRIO PnIORITY 

·R REAO 
REG REGISTER 
REL RELEASE· 
REM REMAINDER 
REPT REPITION 
AND ROUND 

'RNM RENAMED 

s SELECT, SUM 
; .. 

SCNT SHIFT COUNT 
SEL SELECT 
SIN SHIFTER INPUT 
SKP SKIP 
so SHORT OPERAND 
SAC SOURCE 
SW SINGLE-WORD 

TRANS ADDRESS TRANSLATION 
T OUTPUT 
TZC TOP ZEROES COUNT ;;. 

a OUTPUT 

• 
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·aw .QUARTER-WORD 
• 

UNDFL UNDERFLOW .. 
v OVERFLOW 

"' i VA .. VIRTUAL ADD~ESS 

w WRITE 
WE WR I TE ENABLE· 

x TRANSMITTED 
XBOX EXPONENT BOX 

z I ZERO 

I 

I 
I 
I ; 

I 

I 

; 

• 

• 
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A2. Micro-Code Conventions 

S INDICATES THE BEGINNING OF A FIELD DEFJNJTION 1 

i INDICATES THE BEGINNING OF A MACRO DEFINITION 

CJ DELIMIT THE BODY OF A MACRO DEFINITION 

S.EPARATES TERMS IN A MICRO-INSTRUCTION 

ENDS A MICRO-INSTRUCTION OR COMMENT 

• SEPARATES A FIELD NAME FROM ITS VALUE 

INDICATES THE BEGINNING OF A COMMENT WHICH CONTINUES TO THE 
LINE FEED . 

ADD(X,Y> .:ALEG<"X">,BLEG<"Y") 
INDICATES THAT PARAMETER X ANO Y OF ADO MACRO ARE TO BE SUBSTITUTED AS 
PARAMETERS OF THE ALEG ANO BLtG MACRO RESPECTIVELY. 

ALEG <X> :AIN"X" 

INDICATES THAT PARAMETER X OF THE ALEG MACRO IS TO BE DIRECTLY 
SUBSTITUTED AS TEXT AFTER THE STRING "AIN" 

* · INDICATES DEFAULT VALUE OF FIELD SPECIFICATION. 

COMMENT INDICATES. THAT ALL TEXT UNTIL A SEMi COLON JS COMMENTS· 

• 

,; 
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A!J. P-Sequencer Micro-Code Fields 

SDEST REG CTL<0:1> 

REG ADR 
001 

. ADD · 

llBOX START ADR<0:11> 

* 
ILAST START ADR 

* 

.. 1 
;.2 
.3 

.. 0. 

... 0 
.. 1 

SOPS READY WHEN IBOX DONE 

* 
SOUT SEL A 

* ·REG 
CONST 

SOUT SEL B 

* REG 
CONST 

IREG R ADR<0:4> 

* 
SREG W ADR<0:4> 

* 
ISRC REG CTL A<0:1> 

* 

• 

REG ADA 
OD 
ADO 

.. 0 
·1 

· ... 0 

·" 

279 

!OEST REG ADR<0:4> .. "REG AOR<0:4>" 
! " • "IR<14:18>" 

" • "SUM OF ABOVE TWO FIELDS" 

!SELECTS THE SOURCE FOR THE READ-ONLY DATA 
!THE "OUT A" LINES. 

!SOURCE A REGISTER 
!IMMEDIATE CONSTANT OR CACHE ADA IF CADA SEL 
! IS SET 

!SELECTS THE SOURCE FOR THE READ-ONLY DATA 
!THE "OUT. B" LINES. 

!SOURCE A REGISTER 
! I MMEO I A TE CONSTANT OR CACHE ADA IF C ADA SEL 
! IS SET 

!DON'T SET OPERAND 
!SAC (A OR B> REG AQR .. "REG R ADR<0:4>" 

., " .;."OD REG ADR<0:4>" 
· ! " ·SUM OF ABOVE TWO FIELDS 
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SSRC REG CTL 8<0:1> 

* REG ADR. 
OD 
ADD 

SSRC REG OUT SEL 

001 
002 

ISET EWAR 

* 

• 

.. 0 
=1 

. -2. 
.3 

P-Sequencer Micro-Code Fields 

. ·~ 

!DON'T SET OPERAND 
•!SAC lA OR Bl REG ADR="REG R~ ADR<0:4>" 
! " •"OD REG ADR<0:4>" 

" ~SUM OF ABOVE TIJO FIELDS 

!LET THE I SEQ CALCULATE THE 001 ADDRESS 
! n II 002 II 

! SET THE EBOX IJR I TE ADDRESS REG I STER TO THE ·. 
!DESTINATION REGISTER ADDRESS 

AS 
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A4. P-Seguencer Micro-Code Macros· · 

· %A+l 

%A+2 
%A+3 

;,• ' .. 

is 

%8+1 

%8+2 

%8+3 • 

·%D 

%Q.RT(A8) 

%D+N(N) 

%DH 

%DH RT(AB) 

%DH.+N(N) 

%DONE 

%E(A0R) 

XH 

%N(OONJ 

.%R D(AORJ 

%R(AORJ 

%51 

%51 RT(ABJ 

%Sl+N(NJ 

%52 

%5.2 RHABJ 

%S2+N(N) 

(6). 

(7) 

(8) 
CSJ 

(8) 

(9) 

U0J 

CllJ 

. CSET EWAR .. l,DEST REG CTLaODll 
.1,· 

CSET EWAR=l,REG W ADR=ABJ 

CSET EWAR;.1,DEST REG. CTL=AOO,REG IJ ADR·"N"J 

CO,OISABLE EIJAR CMPalJ 

CO RT(ABJ,OISABLE EIJAR CMP·lJ 

CO+N(NJ,DISABLE El.JAR CMPalJ 

CLAST START ADR·lJ 

CIBOX START ADR=ADRJ 

. CO I SABLE EIJAR CMPall 

CSRC REG OUT SELaODNJ 

CR (AORJ ,OONEJ 

COPS READY WHEN IBOX DONE-1,IBOX START ADR·ADRJ 

CSRC REG CTL A·ODJ 

CSRC REG CTL A·REG ADR,REG R ADR·ABJ 

CSRC REG CTL A=ADD,REG R AORaNJ 

CSRC REG CTL B·OO,SRC REG OUT SEL=OOlJ 

CSRC REG CTL B=REG AOR,REG R ADRaAB,SRC REG OUT SELmOOlJ 

CSRC REG CTL BaAOD,REG R ADR·N,SRC REG OUT SEL·ODll 
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AS. P .. Sequencer Micro-Code 

!OOl·REG,002 .. REG 

!OEST-QH .SRC 1 .. QHS SRC 2 .. QHS 

Sl ,R <SW SRCl.; !T·8 
0 . '$1 ,R O<NOPJ: 

i. 
Sl RT(A) ,R (SW SRC); !T·l 

0 ,Sl ,R Q(NQP); 

Sl ,R (SW SRCl; !T·2 
0 RT<A> ,Sl RHAl · ,R Q(NOP); 

51 ,R <SW SRCl; !T·3 
0 RT (8)' ,Sl RHB> ,R O<NOPl; 

• 
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. P-Sequencer Micro-Code 283 

!QD1 .. REG,OD2·REG 
' i !OEST·S SRC laQHS SRC 2mQHS 

• D , Sl ·,R O{?IJ SRC>; · !Ta8 

D ,Sl RT{A) ,R O{SIJ SRCJ; !T·l 

D RT(A) ,Sl ,R O{SIJ SRC); IT·2 

D RHB) ,s1 ,R O{SIJ SAC); . !T·3 

• 
!DEST·S SAC l·D SRC 2·S· 

Sl ,R {SIJ SRC>; !T·8 
D ,Sl+NUl , R 0{NQP) ;· 

Sl RT{A) ,R (SIJ SRCl; !T·l 
D ,Sl RT(A+ll ,R 0(N0Pl; 

· .... : . Sl ,R (SIJ SRCJ; !.T•2 
D RT(A) . . ·~ · ,Sl+NU> ,R 0(N0Pl; : 

' Sl ,R (SIJ SRC); ·!T·3 
0 RHB> , Sl+N U) ,R O(NQP); 

!DEST .. s SRC l=S SRC 2c0 

Sl ~R (SIJ SAC>; !T·8 
D , R 0 (l,J2 REG) : 

Sl RT(A) ,R (SIJ SRC>; !Tal 
D ,R 0(1J2 REG); 

Sl ,R (SIJ SAC>; !T·2 
D RT<A> ,R 0(1J2 REG>; 

Sl ,R (SIJ SAC>: !T·3 
D RHB) ·,A 0(1J2 REG>; 

!DEST .. s SAC lsO SAC 2-0 

Sl ,R (SIJ SAC); !T·8 
D ,Sl+NU> ,R 0(1J2 REG); 

Sl AT(A) ,R (SIJ SAC); !T·l 
D ,Sl RT(A+l> , R 0 UJ2 REG); 

Sl ,R (SIJ SRC) 1 !T·2 
0 RT(A) ,Sl+N U) ,A 0(1J2 REG); 

Sl ,R (SIJ SRCJ; !T·3 
0 RHB> .,Sl+NU) , R D UJ2 REG) ; 

·'I 
: 

• 
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!001-REG,002·REG 

!OEST .. O . SAC 1 .. s ·sRG 2;..s 

O+N U) • Sl .A CSW SAC); ! h0 
0 ,R OCNOP); 

O+N CU • Sl RTCA) ,R CSW .SAC); !T·l 
• 0 ,R OCNOPl; 

0 RT CA+U ,Sl ,R CSW SAC); !T-=2 
0 RTCM ,R OCNOP); 

I 0 RHB+U • Sl ,R CSIJ SAC); !T·3 
0 RHB> ,ROCNOP); 

. !OEST·D SAC J .. n SAC Z=S 

I OH+NU) 'Sl ,R CSW SAC); !T-0 
I . D ,Sl+NU> ,R OCNOP); 
! 
I 

DH+N U) , Sl RTCA) ,R <SW SAC); !T-1 
D ,Sl RTCA+l) ,R OCNOP); 

DH RTCA+l) • Sl ,R CSW SAC): !T·2 
D RTCA> ,Sl+NU> ,A DCNOP); 

DH RT CB+l> • Sl ,R CSW SAC>; !Ta3 
0 RT CB> ,Sl+NUl ,A OCNOP); 

!OEST·O SAC l~S SAC 2=0 

DH+NU) • Sl ,R lSIJ ~Hi.;); !T-=0 
p , A D CW2 REG) ; 

DH+NUl , Sl RTCA) ,R CSIJ SAC): !T1el 
o· . ,R DCW2 REG); • 
DH RTCA+ll • 51 ,A CSW SAC); !T=2 
0 RT CA) ,A OCW2 REG>: 

DH RT CB+l l I Sl ,R CSIJ SAC); !T·3 
D nT CO> ,R nfU? REG}; 

!OEST .. O SAC l=D SAC 2=0 

DH+NU) • Sl ,R CSIJ SRCl ; !Tm0 
0 .Sl+NO> , R D CIJ2 REG) ; 

DH+NUl , Sl RT<Al ,A CSl.I SRCl; ff .,1 -0 ,Sl RTCA+ll ,A 0(1.12 REG>: 

DH RTCA+ll ,Sl ,R CSIJ SAC); !T-2 
0 RT CA> , Sl+N U) ,R OCIJ2 REG>: 

.~ 
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A5 

!OESTcO 

• 

• 

OH RHB+l> 
0 RT (0} 

SAC 1=4W 

OH+NU> 
0 

OH+NU> 
0 

OH RT(A+ll 
0 A.HA> 

OH RT(B+l) 
0 RHB> 

P-Sequencer Micro-Code · 285 

• Sl ,R (SW SAC>; !T-3 .. 
, Sl+N U > , R 0 (W2 REG); 

SAC 2=0 

51 ,R (SW SRCJ; !T·B 
Sl+NUJ ,R (W2 REG>; · 

,Sl+N(2J ,R ·(NOP>; 
,Sl+N(3J ,RO(NOPJ; 

Sl RT(A} ,R (SW SRCl; !T·l 
Sl RT(A+ll ,R (W2 REG>; 

,Sl RHA+2) ,R (NOP>; 
,51 RT(A+3l ,R Q(NOPJ; 

Sl ,R (SIJ SRCJ; !T·2 
Sl+NUJ ,R (W2 REG>; 

,Sl+N(2l ,R (NOP); 
,Sl+N(3) ,R O(NOPJ; 

51 ,R (SW SRC>; IT·3 
Sl+NUJ ~R UJ2 REG>; 

,Sl+N(2) ,R (NOP); 
,Sl+N(3) ,R 0(N0Pl; 



286 P-Sequencer Micro-Code A5 

. ! 001 cREG' 002 cREG 

!DEST .. 41J SRC l=D SRC 2 .. 0 

DH '51 ,R <SW SRC); !T·0 
D+N CU ,Sl+NU) ,R CW2 REG>; 

. D+N (2) ,R <NOP); 
D+NC3) ,R OCNOP); 

OH , Sl RTCA) ,R CSW SRC); !T .. 1 
O+N CU ,Sl RTCA+l> ,R CW2 REG); 
D+NC2) ,R CNOP); 
D+NC3> · ,R OCNOP); 

DH RTCA) ,Sl ,R CSW SRC); !T·2 
D RT<A+l> ,Sl+NU) ,R CW2 REG); 
D RTCA+2) ,R CNOP); 
0 RT<A+3) ,R OCNOP); 

DH RT<B) ,Sl ·' ,R CSW SRC>; !T·3 
D RT <B+l) , Sl+N Cl) ,R CW2 REG); 
0 RT <B+2) ,R CNOP); 
D RT CB+3) ,R OCNOP)s . 

!DEST·41J SRC 1=4W SAC 2=0 

Sl ,R CSW SAC); !Tc0 
Sl+NU > ,R CW2 REG); 

. OH ,Sl+NC2) ,R <NOP); 
O+N (1) · ,Sl+N(3) ,R CNOP); 
D+NC2> ,R CNOP); 
O+NC3l ,R CNOP); 

Sl RTCA) ,R CSW SRC>; !Tal 
Sl RTCA+l) ,R CW2 REG>; 

OH ,Sl RTlA+2J ,R <NOP); 
O+N CU ,Sl ATCA+3) ,R CNOP); 
O+N(2) .,R <NOP); 
D+NC3l ,R Q(NQP) I 

' Sl ,R (SW SRCl; !T·2 

• Sl+N Cl) ,R CW2 REG); 
OH RT <A> ,Sl+N(2) ,R <NOP); 
Q RT<A+l) , $!-f-NC3l ,R <NOP): 
0 RT (A+2) ,R CNOPJ; 
D RT (A+3) ,R D<NOPJ; . ' 

Sl ,R. CSW SRCJ; !T·3. 
Sl+N U) ,R CW2 REG); 

DH RT <6> _ ,Sl+NC2) ,R (NOP); 
0 RT CB+l) ,Sl+N(3J ,H lNUP i ; 
0 RT<B+2) ,R .<NOP); ,,,. . 

0 RT<B+3) ,R ·O<NOP); 

!OEST .. 41J SRC 1=0 SRC 2 .. 41.J 

Sl ,R (SW SRC); !r .. 0 .•' 
• Sl+NCU ,R <W2 REG);· 



A5 p....,sequencer Micro-Code 287 

DH , S2+N (2) ,R (NOP); 
D+N U) , S2+N (3) ,R (NOP>; 
O+N (2) ,R (NOP>; 

I 
O+N(3) ,R <NOP); 

I Sl AHA) ,R (SW SAC); !Tal -._ i 
. ' Sl RT<A+l) ,R (W2 REG); 

I DH ,S2+N(2) ,R (NOP>; 
D+N U > · ,S2+N(3) ,R (NOP>; 

I D+N(2) ,R (NOP>; 
-· ; I D+N(3) ,R D<NOP>; 

Sl ,R (SW SRC>; IT·2 
Sl+N U > ,R <W2 REG); 

• OH AHA> ,S2+N(2) ,R <NOP); 
D RT(A+l) ,S2+N(3) ,R <NOP>; 
0 RT (A+2l ,R (NOP>; 
0 RT (A+3l ,R D<NOP); 

Sl ,R (SW SRCl; !T·3 
Sl+NUl ,R (W2 REG); 

DH. RT (8) ,S2+N(2) ,R <NOP>; 

• 0 RT (8+1) ., S2+N (3) ,R (NOP>: 
0 RT(B+2) ,R <NOP>; 
0 RHB+3> ,R 0(N0P) I 

:·· 



288 P-Sequencer Mic;ro-Code A5 

!0Dl·R~G,002·GENERAL 

!OEST-=OH SRC l=QHS SRC 2aQHS 

Sl ,R (SW SAC); !Ta0 
0 ,Sl ,A D(NQP); 

Sl RHA> ,A (SW SRC>; !Tal 

• 0 , Sl . ,R 0(NQP) 1 

Sl ,A <SW SAC>; !Tc2 
0 RT (A) ,Sl RHAl ,R O.<NOP); 

Sl ,A (SW SAC): !T .. J 
0 RHB> ,Sl RT(Bl ,R O<NOP>; 

1· 

I 
I 
I . 

I 

. i 

• 

. ,; 



I . 
I 

I 
' l 

I 



. i 290 P-Sequencer MicrO-Code AS 
' 

• 
!001-REG,002·GENERAL 

!OESTcO SAC l=S SAC 2=5 
~ 

O+N Cl> ,Sl ,A CSW SAC>: !T·0 
D Cl l ,0 CNOP>: .. 

• O+NCl) ,Sl RTCA> ,A CSW SRCl: !T=l 
0 Cl) ,0 CNOP>; 

0 RT CA+l) ,Sl ,R CSW S~C>; !T·2 
· 0 RTCA> ,0 CNOPl; 

0 RTCB+l> ,Sl ,R CSW SRCl; !T=3 
0 RTCB> ,0 CNOPJ; 

!DEST .. o SRC 1=0 SRC 2 .. s 
DH+NUJ ,Sl ,A CSW SAC>; !T·0 
0 ,Sl1NUJ ,R orNnP>: 
OH+NU) , Sl RTCA) ,R CSIJ SRC) 1 !T·l 
0 ,Sl RTCA+l> ,R OCNOP>: 

OH RT CA+l) ,Sl ,R CSW SRC>: !T .. 2 
0 RTCA> ,Sl+NCl> ,R DCNOP>; 

DH RT CB+l l ,Sl ,R CSW SRC); !T .. J 
0 ATCBl ,Sl+NCll ,ROCNOP); 

10Es·r .. o SAC 1 .. s SAC z .. o 

OH+N U) ,Sl ,R (SIJ SAC> 1 IT=0 
0 , A 0 UJ2 SAC) I 

DH+N Cl) .Sl ATCAJ ,R CSIJ SAC); !Tal 
0 ,R OCIJ2 SAC>; 

OH RTCA+l) 'Sl ,A CSIJ SRC>; !T·2· 
·o RT CA> , R D CIJ2 SAC> ; 

OH RT CB+l J , Sl · ,R CSIJ SAC>; !T .. J 
D RTCB> ,A OCIJ2 SRCJ; 

!OEST·O SAC 1=0 SAC 2 .. 0 

DH+NU> ,Sl ,A CSIJ SAC); !T-0 
D , Sl+N CU · ,R DUJ2 SAC); 

UH+N U) ,91 RTCA> ,H CSU SRC) 1 11 .. 1 
0 ,Sl RTCA+l) , R 0 CIJ2 SAC) ; .. 

' 
OH RTCA+l) ,Sl ,R CSIJ SAC); !T·2 
D RT CA> ,Sl+N(ll . ,A OUJ2 SRC); 

OH RT CB+l) • Sl ,R ($1J SRCJ; !T·3 '.I 



• 
A5 i>-Sequencer Micro-Code 291 

·O RHB> , Sl+N U) , R 0 UJ2 SRC>; 

!OESTc:D SRC 1=41.J··' SRc· 2 .. 0. 

... Sl ,R (SIJ SAC); !T·0 
Sl+N CU ,R cw2·sAC>; 

DH+NCU ,Sl+NC2) ,R CNOP); 
D ,Sl+NC3) ,A DCNOP); 

Sl RTCA) ,A CSIJ SAC); !T·l 
· Sl RT CA+l l ,R CW2 SACl; 

OH+NU) ,Sl RTCA+2) ,R CNOPl; 
0 ,Sl RTCA+3l ,A DCNOP); 

Sl ,R CSIJ SRCl; !Ta2 
Sl+N U) ,A CW2 SRCl; 

; . DH RTCA+ll ,Sl+NC2) ,R CNOPl; 
I D RT<Al ,Sl+NC3l ,R.DCNOPl; 

! Sl ,R CSIJ SAC); !T·3 
i . Sl+NCU ,R CW2 SRC); 

i DH RTCB+l) ,Sl+NC2l ,R CNOP); 
0 ATCBl ,Sl+NC3) ,R DCNOP); 

: I 

i ; 

' 

• 

• 
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!001 .. REG,OD2=GENERAL 

!OEST .. 4W SRC 1=0 SAC 2 .. 0 
I 

OH ,Sl ,R . (SW SRCJ; !T=0 
O+N U J , Sl+NU J ,R (W2 SRCJ; 

· . -D+N (2J ,A (NOPJ; 
,.. 

O+N(3J ,RO(NOPJ; 

OH ,Sl RT(AJ . ,A (SW SRCJ; !Ta:l 
O+N U J ,Sl RT<A+lJ ,A (W2 SRCJ; 

• O+N(2J ,A (NOPJ; 
O+N(3J ,RO(NOPJ; 

OH RT<AJ ,Sl ,R (SW SACJ; !T·2 
0 RT <A+l J , Sl+N U J ,R (W2 SAC); 
0 RT (A+2) ,R (NOP); 
0 RT <A+3) ,R O<NOPJ: 

DH RT<BJ , Sl :.'!,· ,R (SW SRCJ; !T·3 
D RT<B+U ,Sl+NUJ ,R (W2 SACJ; 
0 RT (8+2) ,R .. (NOP); 
0 RT (0+3) ,RO(NOPJ; 

!DEST .. 4W . SAC 1=4W SRC 2 .. 0 
• 

Sl ,R (SW SACJ; !T .. 0 
Sl+N U J . ,R (W2·SRCJ; 

OH ,Sl+N(2J .,R ·(NOP); 
D+N U J ,Sl+N(3) ,R (NOP); 
O+N(2) ,R (NOP); 
D+N(3) ,A Q(NOPJ; 

Sl RT (A°) ,R (SW SACJ: !Tal 
Sl RT(A+l) ,A CW2 SAC); 

OH ,Sl RTCA+2) ,R (NOP); 
O+N r 1) ,Sl RT(A+3) ,R (NOP); 
O+N(2) ,R <NOP}: 

• O+N (3) ,R OCNOP); 

Sl ,A (SW SAC); !T·2 
S1+N U) ,A (1.12 SAC>; 

OH RT<Al ,Sl+N(2) ,R (NOP>; 
0 RHA+U ,Sl+N(3) ,R (NOP>; 
0 RT(A+2) ,R (NOP>; 
D RT <A+3J ,R O(NOP); 

Sl ,R (SW SRCl; !T·3 
Sl+N U) ,A (W2 SAC); 

I DH RT (8) ,Sl+N(2) ,A (NOP); I . D RTlB+ll ,Sl+N(3) ,n (NOP) 1 
D RT <B+2) ,A (NOP) ; 
D RT (8+3) ,A O(NOPJ; 

!DESTa:4W SRC 1 .. 0 SRC 2=4W 

Sl ,A <"SW SRC); !TcU ~· 
Sl+NU J ,A UJ2 SAC)~ 

• 

• 



, AS P-Sequencer MicrO-Code ·293 

DH ,N (QOl) ,R (l.J3 SAC); 
D+NU) . ,N (QOl) ,R (l.J3 SAC) s 
D+N<2> ,A <NOP); 
O+N(3) ,A D<NOPl; 

Sl AT<AJ ,A <SW SACJ; !T·l 
Sl AT<A+lJ ,A (l.J2 SAC); 

... OH · ~N (QOl J ,A (l.J3 SACJ; 
. D+N U J ,N(QDlJ ,A <W4 SAC); 

D+N<2J ,A (NOP); 
O+N(3) ,A D<NOPJ; 

Sl ,R (51.J SAC); !T·2 
Sl+NUJ ,A U.J2 SACJ; 

DH AT(A) ,N(QDlJ ,A U.J3 SACJ; 
0 AT<A+lJ ,N (QOl J ,A (1.14 SAC>; 
D RHA+2) ,R <NOP>; 
0 RT<A+3J ,A O<NOPJ; 

Sl ,R (Sl.J SRCJ; !T·3 
Sl+NU J ,A (l.J2 SAC); 

OH RT <Bl ,N<ODlJ ,A (1.J3 SACJ; 
0 RT <B+l J ,N (QDlJ ,A (l.J4 SACJ; 
D RT<B+2) ,R <NOPJ; 
D RT <B+3) ,R D<NOPJ; 

• 

.., 

• 



294 
' 

· P-Sequencer Micro-Code A5 

!OQlsGENERAL,OD2=AEG 

!OEST-QH SAC l=QHS SAC 2 .. QHS 

S2 ,A (SW SAC); !T .. 0 
N(QDl) ,D (Wl SAC DEST) ; 

~-

Sl RT(A) ,R (SW SAC); !T .. 1 
N (001) ,D (SW DEST); 

S2 ,A (SW SAC); !T .. 2 
0 AHA) ,Sl RT(A) ,R D(NQP); 

. ! 
I S2 ,R (SW SAC); !T-3 I. 

• 0 RHB) ,Sl RT(B) ,A 0(N0P); 

• 



• 
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!ODl•GENERAL,002aREG 

!DEST·S SRC l·QHS SRC 2-aHs 
S2 ,R O<SW SRC OEST); !T-0 

·-.:. 
. Sl RT (A) ,S2 ~R O<SW OEST>; !T·l 

0 RT(A) ,S2 ,R 0(5W SRC); !T·2 

- D RT(B) ,S2 ,R 0(51J SRC); !T·3 • 

· !DEST·S . SRC l·D SRC 2·5 

52. ;R (SW SRC); !T·0 
.N <001) . ,E (W2 SRC); 
N<OOl) ,0 (WF OEST>; 

Sl RT<Al,52 
., . 

,R (NOP): !T.;1 
Sl RT<A+l) ,R Q(SIJ DEST>: 

S2 ,R (SW SRC): !Ta2 .. 0 RT(A) ,N <001> ,R 0(W2 SRC); 

S2 ,R (SW SRCl; !T=3 
0 RHB> ·,N <001} ,R 0(W2 SRC); 

!OESTmS . SRC. laS SRC 2 .. 0 

S2 ,E (SW SRC); !Tc:0 
I . S2+N U l ,R O<Wl OEST>: 
i 

I 
Sl RT (A) ,52 ,R <NOP); !T·l 
S2+N U l ,R 0(51J OEST>; 

I 
! : 52 ,R (SIJ SRC) 1 !T .. 2 

0 AHA) ,S2+NUl ,R O<NOPl; 

I S2 ,R (SIJ SRC); · !T·3 
' I 

I 0 RHB). , S2+N (1 l ,R O<NOP>; 

!OEST·S SRC 1·0 SAC 2 .. 0 
• 

S2 ,R (St.I SRCl; !T-0 
S2+NU l ,R (t.12 SRC); 
N<OOl l .o UJF OEST>; 

Sl RT (A) I S2 , R (NOP); JT al 
Si RT<A+ll,S2+N(ll,R OCSW OEST>;~ ... 

• 52 ,R (St.I SRCl: .1T .. 2 
0 RT(A) ,S2+NUl , R 0 UJ2 SAC) ; 

S2 ,R (SIJ SRC); !T·3 ., D RT{B) · , S2+N U) ,R 0(1J2 SRC); 



• 

I 
I 
,. 
I 

I 
I 
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t 

!OOlcGENERAL,002=REG 

!OEsr ... o SRC l=S 

0 RT (A+l J 
0 RHA>. 

0 RT<B+ll 
0 RHB) 

!OEST·O SRC 1·0 

H 

OH RT (A+l) . 
0 RT<A> 

DH RT <B+l) 
0 RT<B> 

!OEST·D SRC l=S 

01-1' RT (A+l) 
0 RHAJ · 

OH RT <B+l J 
0 RHB> 

!OEST::O SAC 1=0 

H 

P·-seq uencer Micro-Code AS 

SRC 2=5 

S2 ,R <S2 OEST>; !T=0 
0 (WF SRG OEST> ; 

Sl RT(A),52 ,R ·(52 OEST>; !T·l 
0 <WF OEST>; 

,S2 ,R <SW SRC); ·!Ta2 .:. 
,0 (NOP); 

,S2 ,R <SW SRC); !T-3 
,0 (NOPJ; 

SRC 2 .. s 
S2 ,R (SW SRC); !T .. 0 
N <001) '.R <W2 SRC oi=sn : 
N <001 > .o <WF OEST>; 

, Sl RHAJ, S2 ,R (S2 OESTl; !Ta:l 
Sl RHA+l) , N <001 J , R 0 (WF OEST> ; 

,S2 ,R (SW SRC); !Tc2 
,N <001) ,R 0(W2 SRC>; 

,S2 ,R <SW SRC>; rT .. 3 
,N <001) ,R DUJ2 SRC); 

SRC 2=0 

S2 ,R (SW SRC); · !Tm0 
S2+N U J ,R .<IJ2 SAC OEST>; 

o· UJF OEST>; 

Sl RT<AJ,S2 ,R (S2 OEST>;. !T·l 
S2+N (lJ ,R 0 <WF OEST>; 

,S2 ,R (SW SRC) I · !T•2 
,S2+N U J · ,R O(NOPJ; 

,S2 ,R lSIJ l:iACJ; !T.•3 
,S2+N U > ,R O<NOPJ; 

SAC 2·0-

l:i:l ,R <SW snc>; n-0 
S2+N Cl) . ,R (W2 SAC OEST> i 
N <001 J ,0 (WF OEST>; 

, Sl AHA) • S2 ,R (52 OESTI; !T·l 
51 RT<A+ll,S2+N(lJ,R D<WF DESTJ; ,. 

' 



. I 

I 
i 

• 

AS 

• 

!OEST =D 

DH RT CA+l )· 
D RTCA) 

OH RTCB+U 
0 RTCB) 

P-Sequencer Micro-Code 

,S2 ,R CSW SRC>; !T·2 
, S2+NCU ,R DCW2 SRC): 

,R CSW SRC); !Ta3 
,R DCW2 SRC); 

,S2 
, S2+NCU. 

SRC la:4W SRC 2 .. 0 

H 

H 

DH RTCA+U 
D RTCA). 

DH RT<A+l) 
D RTCA) 

52 
. , S2+N CU 

N <001 > 
N <001 > 
NC001 > 

,R C5W5RC); !Tc0 
,R CW2 5RC DEST); 
,R CW3 5RC>; 
,R CW4 SRC); 
, D CWF3 DEST> ; 

Sl RTCA),52 ,R CNOPJ; !T·l 
. 51 RT CA+l), 52+N Cl), R CNOP) ; 

. ,Sl RTCA+2>,NCOD1> ,R (52 DEST>; 
Sl RTCA+3). N coon • R D CWF DEST>; 

52 ,R CSW 5RCJ; IT·2 
52+N Cl l , R CW2 SRC) ; 

, N CODU , E CW3 5RC); 
, N <001> , D CW4 SRC>; 

52 
S2+N Cl> 

,NC.001) 
,NC001> 

,R C5W 5RCJ; !T;.,3 
,R CW2 5RCJ; 
,E CW3 SRC>; 
,D CW4 5RC>; 

/ 

297 
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i 298 P-Seq uencer Micro-Code A5 
I• 

' 

!001·GENERAL,002aREG 

!DES.T ... 4W SAC 1 .. D SAC 2•0. 

H ,S2 ,R CSW SAC DEST) ; !T·0 
S2+N CU ,R CW2 SRC . OEST) ; 
N (001) ,E <W3 OESTI;. 
N C001 l ,D <W4 OESTI; 

H , Sl ATC Al, S2 ,R <SW DESTI; !Tml 
Sl RT<A+ll,S2 ,R <W2 DESTI; 
N C001 l ,E <W3 DESTI; 
N C001 l ,D <W4 DEST); 

DH RTCAl ,S2 ·,R CSW SRCl; !T·2 
0 RT <A+l I ,S2+N Ul ,R <W2 SRCl; 
D RT (A+2l , N (001 l ,E <NOPl; 
0 RT<A+3l ,N CODU ,0 <NOPI; 

I 

I OH RT <Bl ,52 ,R <SW SRCI; !T .. 3 
D RT <B+ll , S2+N U l ,R <W2 SRCl; 

.. 0 RT <B+2l ,N COOU ,E <NOPI; 
I 0 RTCB+3l ,NCOOU ,0 <NOP); 

!OEST .. 4W SAC 1=41J SRC2=0 

S2 ,R CSIJ SRCl; !T·8 
S2+N U) ,R (IJ2 SRCI; 
N C001l ,R (IJ3 SRCl; 
N (001 l ,R . <W4 SRCI; 
N (001 l ,E <WF3 OESTI; 
N <001 l ,E CW2 DESTI; 
N (OOll ,E CW3 OESTI: 
N <001 J ,D U.J4 OESTI; 

Sl Rl lAJ .~2 ,R mar>; !T .. 1 

• 51 RT<A+ll,S2+Nll),R <NOPI: 
H ,51 RT<A+2l,NC001l ,A CSW OESTI: 

51 RT<A+3l,N<OD1l ,A CW2 DEST>; 
N C001 l ,E CW3 OEST); 
NC001) ,D CW4 OESTI; 

52 ,R CSW SRCI; !Ta2 
S2+N (1) ,R CW2 SRCl; 

OH RT <Al , N <001 l ;R lW~ SRCJ I 
D RT<A+ll , N <OD2l . ,R CW4 SACl; 
0 RTCA+2l ,E CNOPl; 
0 RT<A+3} ,0 CNOPl; 

52 ,R (SW SRCJ; !Ta3 
S2+N U J ,R cw2 snci; 

DH RT <Bl , N CODll ,A (IJ3 SRCl ; 
0 RT<B+ll , N COD2l ,R CIJ4 SRCJ; 
0 RT <B+2l ,E CNOPJ; 
0 Rl (8+3l ,D <NOP); 

!DEST .. 41.J SAC l=D SAC 2 .. 41.J ,. 



• 

.... 

I 
[. 

I 

: I ... 

A5 

• 

H 

H 

OH RT(Al 
0 RT(A+l) 
0 RT(A+2) 
0 RT(A+3) · 

OH RT (8) 
0 RT(B+ll 
0 RT (8+2) 

• 0 RT (8+3) 

P-Sequenc~r Micro-Code 299 

S2. ,R (SW SRCl; · !T·0 
S2+N U l ,R (W2 SRC); 

,S2+N(2) ,R (WF DEST); 
S2+N(3) ,R (W2 DEST>; 
N (001) ,E OJ3 DEST>; 
N<OOll .o UJ4 OEST>; 

Sl RT(Al,52 ,R (NOP); !Tal 
Sl RT(A+ll,S2+N(ll,R (NOPl1 

, S2+N (2) . , R (SW DEST> ; 
S2+N(3) ,R (W2 OEST>; . 
N(QOl l ,E UJ3 OEST>; 
N(QDl). .o UJ4 OEST>; 

S2 ,R (SW SRC); !T·2 
S2+N U l ,R (W2 SRCl; 

,S2+N(2) ,R (NOP); 
,S2+N(3) ,R (NOP); 

,E . (NOP); 
.o (NOP); 

S2 . ~R (SW SRCl; !T·3 
. S2+N U l ,R (W2 SRC); 
,S2+N(2) ,R (NOP); 
,S2+N(3) ,R (NOP); 

,E (NOP); 
.o (NOP>; 



300 P-Sequencer Micro-Code A5 

!OOlcGENERAL,OD2~GENERAL 

!OEST=QH SAC l=QHS SAC 2~aHs 

E (SW SRC>; !T~0 
N <001 l ,R <SW SRCl; 
N <001) ,R D<Wl SRC DEST); 

Sl RT<Al ,R <SW SRC>1 !T .. 1 
N <001) ,R D<SW SAC DEST); 

E <SW SRCl: !T'!"2 
N <001) ,R <SW SRCl ; 

0 RT(A) , Sl AHA> ,R D(NQP) 

E <SW SRCl; !T·3 
N <001) ,R (SIJ SAC); 

0 RHB> , 51 RHB) ,R D<NOPl 

';: 

• 

• 

• 



AS.· .P-Sequencer Mi~ro-Code 301 

!00l·GENERAL,002aGENERAL 

!DEST=S SAC 1 .. QHS SAC 2 .. QHS 
I 
J ,E (SW SRC): !Ta0 

...: I : N <001) ,A D<SW SRC OEST); 
; i 

I Sl RT(A) ,A D<SW SRCl; · !T•l 

' 
N<001) ,0 (SW DEST) 1 

. I 
£ <SW SRC); !T=2 

D AHA) . ,N<OOU ,R D<SW SRCJ; 

E lSW SRCJ; n .. 3 
D AHBJ · ,N <OOU ,A D<SW SRCJ1 

!OEST .. s . SAC 1 .. 0 SAC 2aS 

E (SW SACJ; !T·0 
N(001 J ,A (SW SRC); 
N (001) ,A (1.12 SACJ: 

• N <001J ,0 <WF OESTJ; 

Sl AT(A) ,A <SW SACJ; !Tal 
Sl AT<A+1J,N(001J ,A O(SW DESTl1 

E <SW SRC>; !T·2 
N <001) ,A (SW SRCJ 1 

D AHA) ,N<001l ,A (1.12 SACl; 

E . (SW SRC); !T·3 
N (001) ,R (SW SRCl; 

D RHB) ,N (001) ;R (1.12 SRCJ 1 

!DESTaS SRC 1 .. s SRC 2a0 

E (SW SRCl; !Ta0 
N (001 J ,R (SW SRCJ; 

R (1.12 SRCJ; 
N (001) ,0 CWl OESTl; 

Sl AT<Al ,R fSW SRC); IT·l 
,R CW2 SAC>; 

N (001) ,0 <SW DESTl: 

E <SW SRCJ; · !T .. 2 
N (001) ,R (SW SRCJ; 

0 RHAJ . ,A DCW2 SRCJ s 

,._ E (SW SRCJ; !T·3 
N(Q01l ,A <SW SACJ; 

0 ATCBJ , A D U.J2 SAC) s 

• !DESTaS SAC 1 .. 0 SAC 2 .. 0 . 
'-> 



• 
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E <~W SAC); n .. e 
N <001) ,A (SW SAC); 

E <W2 SAC); 
N <001) ,A <W2 SAC); 
N <001) ,0 (WF OEST>; 

Sl RT(A) ,R <SW SAC); !T·l 
Sl AT<A+ll ,A <W2 SAC); 

• N <001.l ,0 <WF OEST); 

E <SW SAC); !T ... 2 
N<OOll ,R (SW SAC); 

E (IJ2 SAC); 
D RT <Al ,N<ODll ,A D<W2 SAC); 

E CSW SAC); !T .. 3 
N<001) · ,R (SW SAC); 

E (W2 SAC); 
D RT<Bl ,N COOll ,A OCW2 SAC); 

I 

. I 

• 



A5 P-Sequenc:er Micro-Code 303 

!00l·GENERAL;002=GENERAL 
. 

!OEST·O SRC l·S SRC 2·S 

E CSW SRC) 1 !T·0 

'" 
NCOOl) ,R CSW SRC DESTJ; 
NCOOl > ,E DCW2 DESTJ; 

I 

Sl ATCA> ,R CSW SRC>; !T·l 
. N coDi> ,E CSW DEST); 

: .. D CW2 DESTJ; 

E CSW SRC>; !T·2 
0 RTCA) ,N CODU ,A CSW SRC>; 
D RTCA+l) ,D CNOP>; 

E CSW SRC>; !T .. 3 
D ATCB> ,NCODU ,R CSW SAC); 
0 RTCB+l> ,D· CNOP>; 

!OEST·O SAC l=D SRC 2·S 

,E CSW SAC>; !T-8 
N CODU ·,A CSW SAC>; 
N CODU ,R CW2 SRC>; 

• N COOl > ,E CWl DESTJ; 
N COOl > ,D CWF DESTJ; 

Sl ATCA> ,R CSW SRC>; !T·l 
Sl RTCA+ll,NCODll,R CS2 DEST> 1 
N COOll ,D CWF DESTJ 1 

E (SW SRC>; !T·2 
OH RTCA+l> ,N COOU ,R (SW SRC) 1 
0 RTCA) ,N COOl) ,R CW2 SRC>; 

E CSW SRCl; !Ta3 

• DH ATCB+l> ,N COOl) ,A CSW SRC); 
0 ATCB> • N.<ODU ,R CW2 SRC>; 

.. 
!OEST .. o SRC lmS . SAC 2=D 

\ 

E CSW SAC); 1t .. e 
I N COOl > ,R CSW SAC); 
I. A CW2 SAC); 

"NCOOl) . ,E CW2 OEST>; 
N <001) ,D CWF DEST>; 

Sl AHA> ,R (SW SAC); !T·l 
A CW2 SRC>; 

··-· NCODl l ,E CS2 'OEST>; 
NCOOll ,D CWF DEST>; 

E CSW SAC) i !T•2 
OH. RT CA+U .• NCOOU ,R CSW SAC>; .. D RTCAJ , R D CIJ2 SRC) ; 
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I ' ' I 

304 P-Seq uencer Micro-Code AS 

• 
E (SW SRCJ; !T·3 

OH RT<B+ll ,N (001) ,R (SW SRCJ; 
0 RT<BJ ,R 0 (1.12 SRC>; 

!OEST .. O SRC i .. o SRC 2=0 

• E (SIJ SRCJ; !T=8 
N <001) ,R CSW SRC); 

E U.J2 SAC); 
N <ODl) ,R (1.12 SRC DEST> : 
N <ODl > ,0 (I.IF DEST>; 

Sl RT (A) ,R (SW SRC); !Tml 
Sl RT(A+l) ,R (1.12 SRC); 
N <001 > · ,E (S2 OEST>; 
NW01> ,0 (I.IF DEST>: 

t l~W SRC); !T"'2 
N <001) ,R (SW SRCJ; 

· OH RT<A+l> ,E (1.12 SRCJ; 
0 RT(A} ,N <OOU ,A 0(1.12 SRC>; 

E (SW SRCJ; !Ta3 
N <001 J ,R (SW SRCJ: 

OH RT<B+U ,E U.J2 SRC>; 
0 RT <BJ , N <001 >. ,R 0(1.12 SRCJ; 

!OESl=D 5RC 1=4W 5RC 2=0 

E CSW SRCJ: !T·0 
N C001 > ,R CSW SAC); 

E CW2 SRC); 
N'<001 J ,R CW2 SRC>; 
N <001 J ,R CW3 SRCJ; 
N com> ,R CW4 SRCJ; 
N (001 > ,E <WF2 DEST>; 
N (001) ,0 Cl.IF DESTI; 

Sl RT(A) ,R <SW SRCJ; !Tel 
Sl RT<A+IJ ,R (1.12 SRCJ; 
51 AT<A+2J,NC001J ,A l52 DEST>; 
51 RT<A+3J,N(001) ,R 0(1.JF OEST); 

E (SW 5RCJ: !T•2 
N C001) ,R <SW SRC); . 

E <W2 SRCJ; 
N (001) ,R (1.12 SRCJ; 

DH RT<A+U ,N COOU ,R (1.13 SRCJ; 
0 RT<AJ ,N CO~ll ,R (l.J4 SRCJ; 

E (SW SACJ; !Ta3 -· NCODU ,R (SW SRCJ; 
E (1.12 SRCJ; 

N <001) ,R lW:l SRCJ; 
DH RT<B+l) ,N <ODU ,R UJ3 SRCJ; 

• 0 RT <BJ ,N <ODU ·,R U.J4 SRCJ: "" 
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D RT <A+l J ,N(Q01) ,R <W4 SRCJ i 
· D RT (A+2) ,E <NOP>; 
D RT <A+3) ,0 <NOP); 

E <SW SRCJ; , !T-3 
N <001) ,R <SW SRCJ; 

E <W2 SRC); 
N <001) ,R (IJ2 SAC); .. 

DH RT <B) ,N<ODU ,R (IJ3 SRC); 
D RT <B+l) ,N <OOU . ,R <W4 SRC); 
D RT <B+2J ,E <NOP); 

• 0 RT <B+3) ,0 <NOP> i 

IOESTa4W SRC l=D SRC 2-=41J 

E <SW SAC); !T=0 
N <001> ,R <SW SAC); 

E (IJ2 SRC); 
N<ODlJ ,A (W2 SAC) 1 

~R UJ~ Sf<C); 
('i ,R (IJ4 SAC); . 

N (001) ,E .<IJF DEST> ; . 
N (001 l , E·. (IJ2 OEST> ; 
N <001) ,E <W3 DEST>; 

• N <001 J ,0 <W4 DEST>; 

• $1 RT<AJ ,R <SW SRCJ; !l=l 
Sl RT<A+lJ· ,R (W2 SRC); 

. ,R (IJ3 SACJ: 
,R (IJ4 SRCJ: 

N <001 l ,E <SW OEST); 
NlOOlJ. ,E (IJ2 OEST); 
N (001 l . ,E UJ3 DEST>: 
N <001 J ,0 (IJ4 DEST>; 

E <SW SAC): 1T .. 2 
N (001) ,R (SIJ SRCJ; 

E fW?. SRCJ: 
N <001 l .R <W2 SRCJ; 

· DH RT<A). ,R <W3 SAC); 
D RT <A+l) ,R (IJ4 SRCJ; 
0 RT<A+2) ,E <NOPJ; 
0 RT<Ai-3) ,0 <NOP>; 

E <SW SRCJ; !To:3 
N <001) ,R <SIJ.SRC); 

E (!-12 SAC>; 
N <001 l ,R <W2 SAC); 

OH RT<B) ,R (IJ3 SRC); 
0 RT <B+l) ,R (IJ4 SRC): 
0 RT <B+2J ,E (NOP>; 

I 0 RT <8+3) ,0 <NOPJ; 

.. 
I .. 

• 



A6. I-Sequence~ Micro-Code Fields 

IADD F<0:5> 

* A+0 c:0 
A+l. c:l 
A+B ..12 
A+B+l =13 
A-B-1 =18 
A-B .. 19 
A*2 =24 
A*2+l .. 25 
A-1 · =30 

NA =32 
NA AND B .. 34 
NA AND NB =36 
z a38 
NA OR B =40 
B =42 
A XNOR B .. 44 
A AND B c:46 
NA OR NB =48 
A XOR B =50 
NB =52 
A ANO NB .. 54 
MINUS ONE a56 
A OR B =58 
A OR NB c:60 
A .. s2 

IADD LEG A<0:1> 

* =0 
INDEX REG .. 1 
LSI 11 .. z 

.. 3 

• IADD LEG B<0:2> 

* .. 0 
so .. 1. 
VAR BASE .. 2 
FIX BASE c3 
C BLOCK ADA ..,4 
T .7 

' 
• 

S07 

!ADDRESS ARITHMETIC ADDER FUNCTION LINES. 
.! lF<0> IS THE MOOE CTR, F<1:4> IS THE FUNCTION 
! AND F<5> IS THE CARRY JN) 

!CONTROLS LEG A ON ADDRESS ARITHMETIC ADDER 

!PRE-FETCH PC. USED BY INSTR QUEUE LOGIC 
! INDEX REG FILE . 
!DATA FROM LSI-11 
!WRITE DATA BUS. ONLY USED BY HARDWARE 

!CONTROLS LEG B ON ADDRESS ARITHMETIC ADDER. 

!BRANCH OFFSET FOR SHORT PC RELATIVE BRANCHES 
· !SHORT OPERAND OFFSET 

!VARIABLE BASE OFFSET 
!FIXED BASE OFFSET 
!CACHE MISS BLOCK ADDRESS 
!T REGISTER 
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SAOD LOAD IND REG 

* 

SADD RIGHT SHIFT 8 BITS 

* 
. 

SC ADA SE.L 

* 

SJ:: CLEAR HOLD MISS 

. * 

SC FETCH 

* 
SC OPERATION 

SC W CHECK 

* 

SC W SET NUM<0:1> 

* 

I-Sequencer Micro-Code Fields AG 

=0 
=1 ~ !LOAD THE INDIRECT BIT ANO INDEX REGI~TER FIELD 

!FROM THE INDIRECT ADDRESS POINTER COMMING OUT 
!OF THE INDEX REGISTER FILE INTO A SPECIAL 
!REGISTER FOR THEM. 

=0 
=1 !RIGHT· SHIFT THE OUTPUT OF THE ADDRESS 

!ARITHMETIC ADDER BY 8 BITS . 

=0 !ALLOW LONG IMMEDIATE CONSTANTS TO BE USED 
=1 !FEED THE CACHE ADDRESS INTO THE LONG IMMEDIATE 

!CONSTANT FIELD OF THE "OUT A" ANO "OUT B" 

=0 
=1 . 

-0 
.. 1 

=0 
=1 

., ! MULTIPLEXERS . 

!CLEAR THE HOLD.CACHE MISS REGISTER 

!THE CURRENT MEMORY READ IS FETCHING AN INSTR 

! IHI:. CURRENT 1'11CROIN$TRUCION 16 U81NG HIE CACHE 

!CHECK THE CACHE TO SEE IF A WORD IS THERE SO 
!THAT IT MAY BE WRITTEN IN THE FUTURE 

!SPECIFIES A SPECIFIC CACHE SET TO BE WRITTEN 
!INTO. THIS IS ONLY USED BV DIAGNOSTIC PROGRAMS 



t. 

• 



• 

, 

,. 
I 

! . 
! 
I 
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. IJNSTR OUT A 

* 

ILQAO AT LAU DECODE RAM 

* 
ILOAD C LAU DECODE RAM 

* 
IMEM R 

* 
SMEM START R 

* 
SMEM START W 

* 
SMIC BR ADR<0:11> 

* 
SMIC BR SEL<0:2> 

STflRT 

* MIL ~R 

IMlC COND SEL<0:2> 

* 

I-Sequencer Micro-Code Fields A6 

... 0. 

.. 1 !SAYS THAT AN INSTRUCTION IS BEING READ 
!OUT OF "OUT A", ANO TO PUT IT IN THE 
!INSTRUCTION QUEUE. 

=0 
.. 1 

=0 
.. 1 

=0 
... 1 

.. 0 

.. 1 !START A MEMORY READ THROUGH THE SWITCH 

=0 
.. 1 

!MICRO BRANCH ADDRESS 

=0 

g;ff !"P IBOX START AOR<0:11>" 
cl !"MIC on AOR(91ll>" 

.. 0 

... 1 



' 

AS I-Sequencer Micro-Code Fields Sil 
• 

IMJC EN INT· 

* -0 
·1 !ENABLE MICRO INTERRUPTS 

". IMIC JSR • 
* =0 

.. 1 !00 A JUMP TO SUBROUTINE 

IOUT SEL<0:1> !SELECTS THE SOURCE FOR THE READ ONLV DATA 
· ! THE "OUT A" OR "OUT B" LINES. 

c .. 0 !DATA.BEING READ OUT OF THE CACHE 

* REG .. 1 !SOURCE A REGISTER 
CONST 11:::2 !IMMEDIATE CONSTANT OR CACHE ADR IF C AOR SEL 

! IS SET 

IREG R AOR<0:4> !REGISTER .READ ADDRESS 

* .. 0 

IREG IJ AOR<0:4> !REGISTER WRITE ADDRESS 

* -0 

IREL INTERPROC INT 

* .. 0 
·1 !INTER PROCESSOR INTERRUPT HAS BEEN SERVICED. 

!ALLOW THE SWITCH TO SEND ANOTHER! 

SRESET INSTR QUEUE 

* =0 
al !CLEAN IT OUT 

ISET C MODIFY BIT 

NO .. 9 !DON'T SET CACHE MOOIFV Bll IF WRITE 

* al 

SSET EWAR 

* =0 
al !SET EBOX WAI.TE ADDRESS REGISTER TO THE 

!ADDRESS OF THE WORD BEING READ OUT. OF THE 
!CACHE Now. 

L 

.. ... 



i 
I ' 

' i 

I 

' I . I 

312. 

SSET OP. 

ISRC REG CTL<0:1> 

* · REG ADR 
001 . 
ADD 

SSRC REG OUT SEL 

* A 
B 

SSWITCH START W 

* 
ST R ADR<0:2> 

* 
ST LJ ADR<0:2> 

* 
STRANs° ADR 

* 

SUPDATE AT LAU BITS 
• 

* 
SUPDATE·C LRU BITS 

* 
SW TRANS 

* 

=0 
-1 

... 0. 
.. 1 

.. 0 

I-Sequencer Micro-Code Fields 

!SET EBOX OPERAND REGI;STER 

!SRC (A OR B> REG ADR="REG R ADR<0:4>" 
! " .. "QDl REG ADR<0:4>" 
! " . ·SUM OF ABOVE Ti.JO FIELDS 

.. 1 !START A MEMORY WRITE THROUGH THE SWITCH. 

!T REGISTER STACK READ ADDRESS 

.. 0 

!T REGISTER STACK WRITE ADDRESS 

.. 0 

=0 !DO A VIRTUAL TO PHYSICAL ADDRESS TRANSLATION 
!ON THE MEMORY ADDRESS 

El !DON'T TRANSLATE THE MEMORY ADDRESS - DO 
!ABSOLUTE MEMORV ADDRESSING 

!UPDATE THE ADDRESS TRANSLATION LRU BITS 

!UPOATE THE CACHE LAU BIT 

!WRITE INTO THE ADDRESS TRANSLATION CACHE 

AS 

-·· 



• 

' 

1· . 
I . 
I . 
I . 

•. . i 

I 

: I 
..... 

. . 

SIS 

A7. I-Sequencer Micro-Code Macros 

iA+B(LEG> 

'XB(LEG> 

'XBR 

'XCR 

'XCR OP+-F(F) 

'XCR OP+-R+F(S,F> 

'XCR QP .. RS (SEU . 
. 'XCR OP+-RS+F (SEL, F) 

'XCR R+-F (F) 

'XCR R+-R m, SJ 

'XCR R~R+F (0, S, F) 

'XCR . R+-RS m, SEU 

·'XCR R .. RS+F(O,SEL,F> 

'XINO REG 

'XINOEK TRANS (SEU 

'XINOEX (SEU 

%REG l.HAOR) . 

'XTR, (S) 

'XTLJ (Q) 

'XTLJR (0, SJ 
' ir ... Fff) ': 

'XT+-R(O,S) 

'XT +-R+F (0, S, F> 

'XT +-RS (0, SEU 

'XT +-RS+F m, SEL,F> 

• 

CADD F=A+B,ADD LEG B .. LEGl 

CADD FaB,'ADD LEG BaLEGJ 

CMIC BR ADR) 

CC_OPERATIONal,UPDATE c LRU BITS-1,0UT SELmCJ 

CCR.SET OPal,INDEX TRANS(TJ,ADD F·B,ADO LEB B·Fl 

CCR,SET.OP=l~REG R ADR=S,INDEX TRANS(TJ,A+B(F)J 

CCR,SET OPml,INDEX TRANS(SEL)J 

CCR,SET OP=l,JNDEX TRANS(SEL>,A+B(F)J 

CCR,REG LJ(D),B(FJ,INDEX TRANS(T)J 

.CCR.REG W (OJ, INDEX TRANS (T), REG R ADR·Sl 

CCR.REG LJ(D),A+B(FJ,INDEX TRANS(TJ,REG R ADR·Sl 

CCR.REG LJ(DJ,JNDEX.TRANS(SEL>J 

CCR,REG LJ(D),INDEX TRANS(SEL>,A+B(F)J 

CADD LOAD IND REG=ll 

[ADD LEG A=INDEX REG, TRANS ADR=l,INDEX REG ADR SELeSELJ 

CADD LEG AalNDEX REG, INDEX REG ADR.SEL·SELJ 

CIBOX REG W=l,REG LJ ADR~ADRJ 

CT R ADR=Sl 

CT W ADR=Dl 

CTW (OJ, TR (S) J 

CTLJ(Q) ,Bff)J 

CTLJ(DJ,INDEX(TJ,REG R ADR~SJ 

CTW m >. A+B (F) , INDEX TRANS ( n • REG R ADA-SJ 

CTLJ(OJ,INDEX(SEL>J 

CTW(DJ,JNDEX(SEL),A+B(F)J 



, 
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A8. I-Sequencer Micro-Code 

! EVALUATE A SHORT OPERAND (X.b0) 

· !REGm0,1=0 REGISTER-DIRECT 

SET OP=l,SAC REG CTL=OO,DONE 

!REGm0,l=l REGISTER-INDIRECT 

CR R~RS{Rl,OOJ,TW<Tl>,JND REG,JSR<REG IND OP> 

! REG· .. 1, I =0 SHORT -CONST ANT 

SET OP=l,OUT SEL=CONST,DONE 

!REGsl,Jcl ILLEGAL 

BR-=ILLEGAL OP 

!REG1112 ILLEGAL 

BA ... JLLEGAL OP 

!REGa3-31, 1=0. '.SHORT-INDEXED 

·~ 

CA OP~RS+F<OD,50),DONE 

!REG·3-31,l=l SHORT-INDEXED-INDIRECT 

CR R~RS+F{Rl,00,SO>,JSRCMEM IND OP> 

.• 



I 

: I .. 

AS J;..Sequencer Micro-Code 

!EVALUATE A LONG OPERAND WITH A FIXED BASE cx-1,x1 .. 0,M-0,V=0) 

!REG-:0,la9 REGISTER-DIRECT .. 
CR OP~RS+F(OD,FIX BASE>,DONE; 

!REG=0,1·1 REGISTER-INDIRECT 

CR R~RS(Rl,OD>,TW(Tll,INO REG,JSR(REG IND>; 
CR OP~R+F(Rl,FIX BASE>, INDEX SHIFT,DONE; 

. i ! REG•l, I .. e · LONG-CONSTANT 

• 

SET OP=l,OUT SEL=CONST,IMMED CONST LONG•l,DONE; 

! REG= 1, I • 1 LONG ABSOLUTE ADDRESS I NG . 

CR OP~F(FIX BASE>,DONE; 

!REG·2 ILLEGAL 

• BR=ILLEGAL OP; 

!REG-3-31,1=0 . SHORT-INDEXED 

CR R~RS+F(Rl,OD,SO); 
BR=Ll; !WAIT FOR CACHE READ 

!REG .. 3-31, I =l SHORT-INDEXED-INDIRECT 

CR R~RS+F(Rl,OD,SO>,JSR(MEM.IND>; 

Ll: CR OP~R+F(Rl,FIX BASE>,INOEX SHIFT,DONE; 

315 
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• 

I 

. I 

316 I-Sequencer Micro-Code 

!EVALUATE A LONG OPERAND WITH A VARIABLE BASE· (X=l,X1=0,M=0,V=ll 

!REG=0,1=0 REGISTER-DIRECT 

T .. RS+F<Tl,00,VAR BASE>, INDEX SHIFT; 
CR OP .. RS+F <VB REG, Tl, TR<Tl> ,DONE; 

!REG:0,l=l REGISTER-INDIRECT 

CR, R .. RSCRl,00>,TWHll,IND REG,JSR(REG IND>; 
T .. R+F(Tl,Rl,VAR BASE>. INDEX SHIFT; 
CR OP .. RS+F(VB REG,Tl,TR<Tll,DONE: 

!REG:al,1=0 LONG-CONSTANT 

·SET OPa.l,OUT SEL=CONSl, IMMED CONST LONG•l,DONE; 

!REGal,lcl LONG ABSOLUTE ADDRESSING 

CR OP .. RS+F<VB REG.VAR BASE>,DONE1 

!REG .. 2 ILLEGAL 

BR=ILLEGAL OP; 

!REG·3-31,1=0. SHORT-INDEXED 

CR R .. RS+F<Rl,OD,SO>; 
BR=Li; 

!REGe3-31,1=1 SHORT-INDEXED-INDIRECT 

CR R .. RS+FCRl,OD,SOl,JSR(MEM IND>1 

Lli 

• 

• 

i .. R+F<Tl,Rl,FIX BASE),lNDEX SHI~T; 
CR OP .. RS+F<VB REG,Tl,TRCTll,DONE; 

AS 

-• 



• 

I 
i ' 
I i 

AS I-Sequencer Micro-Code 

!EVALUATION OF AN INDIRECT ADDRESS CHAIN WITH THE RESULT PUT IN Rl. 

MEM IND: !GO INDIRECT THROUGH A MEMORY LOC. 
NOP; . 

. CR R~R CRl, Al), TW <Tl>, I ND REG; 
INDRETCRl01,Rll0,Rlll); 

REG .JNO: !GO INDIRECT THROUGH A REGISTER. 
. INDRETCRl01,Rll0,Rlllts 

.. 
Rl01: CR R~RCRl,Rl>,TWCTl>,INO REG; 

·INORETCRl01,Rll0,Rlll);. 

Rll0z CR R~Rs+FCRl,INO,T>,TRCTl); 
RETURN; 

Rill: CR R~RS+FCRl,IND,T>,TRCTl); 
. NOP; 

• 

• 

CR R~R<Rl,Rl),TWCTl>,INO REG; 
INORETCRl01,Rll0;Rlll); 

317 
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A9. E-Seguencer Micro-Code Fields 

SA01 SEL<0:2> 

NA 
NA*2 A . 
A*2 

.MINUS ONE 
z 

SA23 SEL<0:2> 

NA*4 
NA*S 
A*4 
A*8 
MINUS ONE 
z 

IAUTO MERGE 

* DIS 
EN 

c0 
.. 1 
=2 
=3 
=4 . 
.. s 

=0 . 
=1 . 
=2 
=3 
=4 
=6 

=0 
=1 

!MMXCTL. CSACTL. SELECT CSA A01 INPUT. 

!MMXCTL. CSACTL. SELECT CSA A23 INPUT. 

!MXMRG2, EN MEANS IBOX CONTROLS MERGE 

!MERGING UNDER EBOX CONTROL 
!MERGfNG UNDER IBOX CONTROL 

. ,; 



i . 

. i 

• 

... 

• 

A9 

SBC SEL<0: 5> · .. 

* 

• 

SW IN BOUNDS 
SW N 
SW Z L 
SW V L 
SW CO 
SW LE 

. FLOAT FIX L 

NEVER 
PRE V L 
POST V L 
EXP N 
EXP V·L 

PAUSE EBOX 
MANT Z L 
MANT V L 
I ALL Z 
F ALL Z 
B ALL Z 
COUNT DONE 

E-Sequencer Micro-Code Fields 

c:8 
,.,9 
c:l0 
c:ll 
=12 
,.,13 
c:l4 
.. 15 

cl6 
=17 
c:l8 
=19 
=20 

... 21 
.. 22 

!EBCMUX. BRANCH CONDITION SELECT 

319 
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SW IN BOUNDS L a32 
SW N L .. 33 
SW Z .,34 
SW V. ..35 
SW CO L -=36 
SW LE L =37 
FLOAT FIX .. 3g 

.. 39 .. 
• ALWAYS =40 

PRE V =41 
POST V. ..42 
EXP N L .. 43 
EXP V =44 

=45 
c46 
=47 

PAUSE EBOX L ;.4g 
MANT 7 =49 
MANT V =50 
I ALL Z L =51 

' F ALL Z L =52 
B ALL Z L .. 53 
COUNT DONE L . =54 

SBR ADR<0:11> !EBXCTL. BRANCH ADDRESS 

* =0 

SBA DEST<0:2> !EBXCTL. BRANCH CONTROL 

RETURN .. 0 
=1 

START .. 2 

* BRANCH =3 
SHIFT ::::4 

• FA -s 
FIXREG a6 
ALU COND =7 

I 
I 

. I 

it 



• 

A9 

SBR NWAY<0: l> . 

* 

·: 2 WAY 
4 WAY 
8 WAY 
16 WAY 

SBYTE PTR PE 

* HOLD. 
LOAD 

ISW CO PE 

* 
HOLD 
LOAD 

SCOND STATUS PE 

* HOLD 
LOAD 

SCOND STATUS SEL 

* 
SD ONE 

·* 

CONO CODES 
MC 

SEBOX CONTROL PE 

HOLD 
LOAD 

IEXP COMPL 

'* 
SEXP SUM PE 

* HOLD 
LOAD 

=0 
=1 

=0 
=1 

E-Sequencer Micro-Code Fields 

!EBXCTL. NUMBER OF BRANCH DESTINATIONS 

!TWO-WAY BRANCH 
!FOUR-WAY BRANCH;. 

·!EIGHT-WAY BRANCH 
!SIXTEEN-WAY BRANCH 

!SHFCTL. LOAQ QW2 ANO QW3 OF R 

!FACTL. LOAD SW CO 

!STATUS. LOAD CONDITION CODES 

!STATUS. SELECT STATUS TO SAVE 

!NORMAL CONDITIONS CODES 
!MICRO-CONSTANT 

!FIXGEN. LAST MICRO-CYCLE 

!EBOX2. LOAD CONTROL BITS FROM .IBOX. 

!EXPBOX. COMPLEMENT EXPONENT 

!EXPBOX. LOAD EXP SUM REGISTER 

321 
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SFA A IN SEL<0s3> 

* A 
B 
Q 

MC 
z 
A CO 
B CO 
Q co 
MC CO 
z co 

IFA B 'IN SEL 

* B 
s 

SFA CTL SEL<0:2> 

* • EBOX 
DIV 
AND 
MULT 
SAVED CO 
GUARD 
CO STATUS 

.. 0 

.. 1 
=2. 
... 3 
=4 
=8 
.. 9 
.. 10 
.. 11 
.. 12 

.. 0 
-1 
.. 2 
=3 
=4 . 
.. 5 
.. s 
r::7 

£-Sequencer Micro-~ode Fields 

!31NAOO. SELECT FOR FA A LEG 

!31NAOO. SELECT FOR FA B LEG 

!OP B 
!SUM OUTPUT FROM CSA 

.. !FACTL. SELECT FA CTL SUUHCE . 

!DIVISION 
!ROUNDING 
!MULTIPLY 
!ADO CARRY (SAVED) 
!ADO GUARD 
!ADO CO FROM STATUS WORD 

A9 



• 

,,. 

' 

; 
I . 

i 
I . 

: ' 
I 

•· 

A9 

IFA CTL<0:5> 

A+0 
A+l 
A+B 
A+B+l 
A-B-1 
A-B 
A*2 

* 

• A*2+1 
A-1 

NA 
NA ANO B. 
NA ANO NB 
z 
NA OR B 
B 
A XNOR B 
.A ANO B 
NA OR NB 
A XOR B 
NB 
A ANO NB 
MINUS ONE 
A ORB . 
A OR NB 
A 

IFIXUP EN 

* 

• 

DIS· 
EN 

·E-Sequencer Micro-Code Fields 

.. 0 

.;1 
=12 
=13 
=18. 
=1.9 
-24 
.;.25 
=30 

=32 . 
=34 
..36· 
.;3g . 
=40 . 
=42 
=44 
=46 
=48 
=50 
=52 
.. 54 
=56 
=58 
.. 60 
=62. 

!FACTL. ·FA MOOE/FUNCTION CONTROL 

!FIXREG. ENABLE FIXUP IF DONE 
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324 E-Sequencer Micro-Code Fields A9 
I 

. SFIXUP REG SEL<0:3> !FIXREG. SELECT FIXUP REGISTER INPUT 

* NEVER · .. 0 
AU.JAYS c:l 

=2 
PRE V .=3 
MANT V .. 4 

·sw z =5 
SW IN BOUNDS =6 
FLOAT FIX ,,.7 

-8 ... 
=9 
.. 10 
.. 11 
=12 
.. 13 
=14 
.. 15 

SFIXUP REG TEST !FIXREO. ENADLE TESTING OF. FJXUP RF.r.TSTER·s 

* NO REG =0 
REG .. 1 

SF I XUP REG0 CLK EN · !FIXREG. ENABLE SETTING FIXUP REG 8 

* DIS .. 0 
EN .. 1 

SFIXUP REGl CLK EN !FIXREG. ENABLE SETTING FIXUP REG 1 

* DIS -0 
EN .. 1 

SFIXUP REG2 CLK EN !FIXREG. ENABLE SETTING FIXUP REG 2 

• * DIS w:P,I 
EN =1 

SFI XUP REG3 CLK EN !FIXREG. ENABLE SETTING FIXUP REG 3 

* DIS =0 
EN .,1 



• 

.. 

, ! · . 

• 

• 

A9 

IG SEL<0: 3> · 

BZC 
ADD 
POST 
DIVIDE 
z 

* HOLD 

SINTERRUPT IBOX 

'* 
IJSR 

* 

NEVER 
NO FIX 

ILOGICAL SHIFT 

* 
IMC CON0<0:3> 

* 
SMC EXP<0:11> 

* 
IMC REPT<0:7> 

* 
SMC SHIFT<0:5> 

* 
SMC<0:35> 

* 
IMERGE EXP 

* 

a0 
·al 

·' 

.. 0 
al 

=0 

.. 9 

·0 

c:0 
al 

[-Sequencer Micro-Code Fields 

!ROUND. SELECT GUARD BIT INPUT ANO MODE. 

!USE BOTTOM ZEROES COUNT <EG. IN PRENORM> 
!FLOATING ADD 
!POSTNORMALIZATION 
!FLOATING DIVIDE 
!CLEAR 
!HOLD 

!FIXGEN. 

! IFF NO FIXUP 

!EBXCTL. JUMP TO SUBROUTINE 

!JMP OR RET. 
!JSR 

!SHFCTL. LOGICAL/ARlTHMETIC SHIFT 

!DRAG BIT IS SHIFT SIGN 
!DRAG BIT IS SIGN OF SHIFT A IN 

!STATUS. CONDITION MICRO-CONSTANT 

!EXPBOX. EXPONENT MICRO-CONSTANT 

!REPT. REPTITION MICRO-CONSTANT 

!SHFCTL. SHIFT MICRO-CONSTANT 

!3INADD. EBOX MICRO-CONSTANT 

!MXMRGl. FOR EXP USE <MM SEL OR 1) 
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IMERGE LEN !MXMRG2. aw OR HW MERGE. 

* aw =e 
HW .. 1 

IMERGE awe !MXMRG2. FOR awe USE (MM SEL OR 2) .. , 
* ... 0 

.. 1 

IMERGE QWl !MXMRG2. FOR awl l)SE (MM SEL OR 2> 

* . =0 
=1 

I IMERGE QW2 !MXMRG2. FOR aw2 USE (MM SEL OR 2) I : 

* ·0 
.. 1 

' .; 
I "· IMERGE QW3 I 1"1><1'1RG2 • FOR QW3 us~ CMM SC:L on 2) 

* =0 
' .. 1 • i 
I 

SMM EN !MXMRGl. ENABLE MUX MERGER OUTPUT 

DIS =0 

* • EN ·1 

IMM SEL<0:2> !MXMRGl. SELECT MUX MERGER 

•* FA c0 
.. 1 

SHIFT .. 2 . 
EXP =3 

• FA/2 =4 
MUL =5 
DIV =6 

=7 

IMULT EN !MMXCTL. ENABLE MULTIPLY OPERATION 

* DIS =;0 
EN !!;1 !Q REGISTER CONTROLS 3-INPUT ADDER 

IOP A ADR<0:4> !ERFCl. EBOX A REG,ISTER ADR 

* z .. 0 !GARBAGE REGISTER 

... 



..•. 

.. 
... 

• 

. I 

I 

I 
I 
I ' 

~· I 

' 
' 

I 

: I 
: I 

·• I 
i 

• 

A9 

SOP B ADR<0:4> 

* z 
SOP W ADR<0:4> 

* z 
IPOST MAX PE 

* 
SPRE EN 

* 

HOLD 
LOAD 

DIS 
EN 

SPRE MAX PE 

* HOLD 
. LOAD · 

.. sa MOOE<0: 2> 

* LOAD 
RIGHT 1 
LEFT 1 
HOLD 
RJGHT.4 

IRECOMP A01 · 

* 
IRECOMP A23 

• 

.. e 

..0 
=1 

E-Sequencer Micro-Code Fields 

!ERFCl. EBOX B REGISTER ADA. 

!GARBAGE REGISTER 

!ERFCl. EBOX WRITE REGISTER ADA 

!GARBARGE REGISTER 

!STATUS. LOAD MAX POSTNORM AMOUNT 

!SHIFTR/SHFBOX. ENABLE PRENORMALIZATION 

.!STATUS. LOAD .MAX PRENORM AMOUNT 

!Q. CONTROL LINES TO Q REG 

!PARALLEL LOAD 
!SHIFT RIGHT 1 
!SHIFT LEFT 1 
!HOLD 
!SHIFT RIGHT 4 

!CSACTL. COMPLEMENT A LEG OF CSA 

!CSACTL. COMPLEMENT B LEG OF CSA 

327 
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IREPT CTR MOOEc0~1> 

LOAD 
DEC 

* HOLD 

IREPT CTR SEL 

FA 

* MC 

SRESULT SEL 

ALWAYS 

.* 
NO BRANCH . 
NEVER 
DONE 
NO FIX 

IRLSB PE 

* 
HOLD 
. LOAD 

IRND MODE<0:1> 
STABLE . 
CEILING 

* · FLOOR 

SSHI FT A I~ SELc0: 1> 

* A 
z 
RAOZM SIGN 

SSHIFT B IN SELc0:2> 

* B 
A 
Q 
z 
GB 
GA 
GQ 
r::z 

I-Sequencer Micro-Code Fields 

.. 1 
=2 
.. 3 

=0 
=1 
=2 
=3 
=4· 

.. 0 
·1 . 

.. 0 
=2 
·3 

=0 
=1 
=2 
=3 
=4 
=5 
c6 
... 7 

!REPT. REPITITION CTR MOOE 

!REPT. SELECT FA CTR OR MC CTR 

!FA CTR 
!MICRO-CONSTANT CTR 

!FIXGEN. CONTROL X RESULT SIGNAL 

!RESULT ALWAYS READY 
!RESULT READY IFF NOT BRANCH 
!RESULT NEVER READY 
! RESULT READY I FF DONE ANO NOT FI XUP . 
!RESULT READY IFF NOT FIXUP 

! ROUND. LOAD LS BIT OF R<0: 35> 

!ROUND. ROUNDING MOOE 

!SHFBOX. SELECT SHIFTER A INPUT 

!A INPUT GETS A OP 
!A INPUT GETS ZERO 
!A INPUT GETS BAQZM SIGN 

!SHFBOX. SELECT SHIFTER B INPUT 

!MERGE GUARD BITS 
!MERGE GUARD BITS 
!MERGE GUARD BITS 
ll'IERGE GVARD BITS 

A9 

.. 

.. 
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A9 E-Sequencer Micro-Code Fields 

ISHIFT CTL<0:6> 
FZC =0 

* z ~16 
C20 BYTE LEN =18 
C20 BYTE POS =20 
C20 B. QW3 .. 20 
EXP SUM =22 
RIGHT 1 =24 
MC =26 
B BYTE LEN =28 
B BYTE POS =29 . . B QW3 =29 
DEST =30 

IZC =32 

36-C20 BYTE LEN =50 
36-C20 BYTE POS =52 
36-C20 B QW3 =52 
36-EXP.SUM a54 
36-B BYTE LEN =60 
36-B BYTE POS =61 
36-B QW3 c:6l 

POST 

ISHIFT SIGN 

* 
STEST STICKY EN 

DIS 

* EN 

STEST WRONG BRANCH 

* . DJS· 
EN 

STRANS A SEL<0:1> 

* SW 
FLOAT 
aw 
HW 

=0 
.:.1 

.. 9 
=1 

!SHFCTL. SELECT SCNT SOURCE 

!001 0000 
!001 0010 
!001 0100 

!001 0110 
!001 1000 
!001 1010 
!001 1100 
!001 1101 

!001 1110 

!010 0000 

!011 0010 
!011 0100 

!011 0110 
!011 1100 
! 011 1101 
!011 1101 

!100 0100 POSTNORMALIZE. 

!SHFCTL. DRAG BIT FROM EBOX MICRO-CODE 

!DRAG BIT=0 
!DRAG Bilal 

!STICKY. TEST BZC~36-LSHF-2 

!WRONGB. TEST WRONG BRANCH TAKEN 

!EREGF. A OP TRANSLATION SELECT 

!STRAIGHT THROUGH 
!SIGN EXTEND FLOATING POlNT 
!CW TRANSLATION . 
!H~ TRANSLATION 

329 
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ITRANS B SEL<0:1> !EREGF. B OP TRANSLATION SELECT 

* SW =0 !STRAIGHT THROUGH 
FLOAT ·1 !SIGN EXTEND FLOATING.POINT 
aw m2 ! aw TRANSL An ON 
HW mJ !HW TRANSLATION 

• SUSE· I A OP !EREGF. USE IBOX A OP INSTEAD OF R 

* 
' . .. 0 !USE R 

.. 1 !USE IBOX OP .,. 

SUSE B OP !EREGF. USE IBOX B OP INSTEAD OF R 

* .. 0 !USE R 
·1 !USE IBOX OP 

·sxsox A SEL<0:1> !EXPBOX. SELECT XBOX ALU A LEG 

A EXP .. 0 . ';· ! LOAD A EXP 
l:'.><P SUM c.l !LUAU EXP SUM 

* ,HOLD ·2 !HOLD 

• 

.. 



A9 E-Sequencer Micro-Code Fields 331 

SXBOX ALU CTL<0:5> !EXPBOX. EXPBOX ALU MODE/FUNCTION 

A+0 =0 
A+l =1 
A+B ... 12 

_.. A+B+l =13 
A-B-1 =18 
A-B =19 

.·A*2 =24 
A*2+1 =25 

, .. A-1' .. 30 

NA =32 
NA AND B =34 
NA ANO NB =36 
z =38 
NA OR B =40 
B =42 
A XNOR B. i;:44 
A ANO B =46 
NA OR NB =48 
A XOR B =50 
NB =52 
A AND NB =54 

• MINUS ONE =56 
A OR B =58 
A OR NB =60 

*· A a62 

IXBOX B SEL<0:1> !EXPBOX. SELECT XBOX ALU B LEG 

B EXP. .. 0· !LOAD B EXP 
SCNT/MC =1 !LOAD EXP SUM 

* HOLD =2 !HOLD 

SXBOX SCNT SEL<0:1> !EXPBOX. XBOX SCNT REG SELECT 
• MC =0 !LOAD MC 

SCNT =1 !LOAD SCNT 
* • HOLD c2; !HOLD 

I . 

I 
I , 
i ' . i 
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. AIO. E-Sequencer Micro-Code Macros 

%AUTO MERGEC 

• SHIFT<A,Z,DEST>, 
FA.<Z,B,B), 
AUTO MERGE ENB,MM SELc:FAJ 

%BR NZ DEC<CTR,ADR> C 
"BR DEST=BRANCH 
BC SEL=COUNT DONE L, 
BR ADR="ADR'', · 
REPT CTR SEL="CTR", 
REPT CTR MODE=DECJ 

%BR Z DEC<CTR,ADR> C 
BR DEST=BRANCH 
BC SEL·COUNT DONE, 
BR AQR .. 11 ADR", . 
REPT CTR SEL="CTR", 
REPT CTR MODE·DECJ 

%BR<COND,AOR) C 
BR DEST=BRANCH, 
BR SEL·"COND", 
BR ADR="ADR 11 J 

%CHECK BOC <R) C 
. CSA A IN A*2,CSA B IN Z, 

FA(A,S,A+B), 
FIX SAVE{SW Z, 11 R11 )J 

~r.SA f A , B , C I ) [ 
A01 SEL= 11 A11

, 

A7~ SH ="B" 
. FA A IN SEL="Cl 11 J 

%DONE <COND> C 
OP W ADR=IW, · 
BR DEST=START, 
BR SEL= 11 COND 11

, 

OONE=ll 

%FA SEL<SOURCE) C 

FA CTL SEL= 11 SOURCE 11 J 

%FA<A,B,C) C 
F.A I N ( II A II • II B" ) • 
FA CTL· 11 C11 l 

!MERGE BACK aw OR HW 
!SHIFT A LEFT AS PER ADDRESS 
!PUT B THROUGH FA 
!MERGE A INTO B 

!REPT. BRANCH NOT ZERO AND DEC 
!SET UP BRANCH ADDRESS MUX 
!BRANCH IF COUNT NOT DONE 
!TO BRANCH ADDRESS 
!SELECT COUNTER OUTPUT 
!DECREMENT SELECTED COUNTER 

!REPT. BRANCH NOT ZERO AND DEC 
!SET UP BRANCH ADDRESS MUX 
!BRANCH IF COUNT DONE 
!TO BRANCH ADDRESS 
!SELECT COUNTER OUTPUT 
!DECREMENT SELECTED COUNTER 

!BRANCH TO ADR IF CONO IS TRUE 
!SET UP BRANCH ADDRESS MUX 
!SET UP BRANCH CONDITION MUX 
!INPUT TO BRANCH ADDRESS MUX 

!CHECK FOR POST BAO ONES COUNT 
!CSA GIVES <A*2) XOR A 
!A*2 IS ON A LEG, A IS ON Cl LEG 
!FIXUP TO R IFF . 
! A+(tA*2) XOR A>·0 

!SELECT CSA A, B, ANO Cl LEGS 
!A01 SEL.CONTROLS THE A LEG 
!A23 SEL CONTROLS THE B LEG 
!rA A iN SEL CONTROLS THE er LEG 

!DONE IFF COND 
!MAKE SURE IW IS WRITE ADDRESS 
!SELECT START AOR ON ADR MUX 
!SET UP.BRANCH CONDITION MUX 
!DONE IFF COND 

!SELECT SOURCE OF FA CTL 

!SELECT FA A JN, FA B IN, FA CTL 
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AIO E-Seq uencer Micro-Code Macros. 333 

%FIXUP INITC 
FIXUP REG SELcNEVER, 
FIXUP REG0 CK EN=l, 
Fl XUP REGl CK EN=l, 
FIXUP REG2 CK EN=l, 
FIXUP REG3 CK EN=ll 

%FIXUP SAVECCOND,R> C 
FIXUP REG SEL="COND", 
FIXUP REG"R" CK ENJ 

%FIXUPCREG?,COND,ADR) C 
BR OEST=ST ART, 
BR ADR="ADR", 
FJXUP REG SEL="COND", 
FIXUP REG TEST·"REG?", 
FIXUP EN=ll . 

%FLOAT SW OUT CR, FIX R,AOR) C 
OPS (J wt II R II ' z) ' ,:. 
XA CA-B), 
SHIFTCA,Z,Z),R ... SHIFT,MERGE EXP•l, 
FACA,B,A+0),LOAD COND, 
FIXUP SAVECFLOAT FIX,"FIX R"), 
FIXUPCREG,FLOAT FIX,"ADR"), 
OONECALWAYS),RESULTCNO FIX)J 

%FLOAT SW POSTCA,B,FIX R> C 
• SHIFT C"A", "B", POST>, R ... SHIFT, 

CHECK BOCC"FIX R"), 
G SEL=POST, 
XBOX SELCEXP SUM,SCNT/MC,SCNT)J 

'XHOLO CO C 

ii AC 
iIB C 

ire c 
%10( 

%11JC 

CO COND PE·HOLOJ 

21 
31 

41 

51 

21 

!CLEAR ALL.FIXUP REGISTERS 
!SELECT FIXUP MUX TO CLEAR 

"!ENABLE REG 0 CLOCK 
!ENABLE REG 1 CLOCK 

. ! ENABLE REG 2 CLOCK 
!ENABLE REG 3 CLOCK 

!SAVE FlXUP COND IN FlXUP REG R 
!SELECT FIXUP COND 
!ENABLE CLOCK OF FlXUP REG R 

!FIXUP TO ADR IFF COND (OR REG) 
!SELECT START ADR . 
!ADA.IS FIXUP ADDRESS 
!SELECT FIXUP CONOITJON 
!CONDITIONALLY TEST FIXUP REGS 
!ENABLE FIXUP 

!OUTPUT SW FLOATING RESULT 

!ADJUST EXPONENT BY SHIFT CNT 
!MERGE EXPONENT INTO SHIFT OUT 
!TEST MANTISSA CONDITIONS. 
!SAVE FLOAT FIX CONDITION 
!FIXUP ON REGS OR FLOAT FIX 
!RESULT lFF NO FIX 

!POSTNORMALIZE A:B, USE FIX R 
!POSTNORMALIZE BY FZC 
!CHECK BAD ONES COUNT 
!RECOMPUTE GUARD BITS 
!SET UP FOR EXPONENT ADJUST 

!HOLD CO IN CO REGISTER 

!REG ADR FOR A OP FROM IBOX 
!REG ADR FOR B OP FROM IBOX 

!REG ADR FOR C OP FROM lBOX 

!REG ADR FORD OP.FROM lBOX. 

!LAST INSTR MUST ~RITE IW 
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334 E-Sequencer Micro-Code Macro~· AIO 

iJSR<COND,ADR) C 
BR DEST.,BRANCH, 
BR SEL="40ND", 
BR ADR.,"ADR", 
JSR=lJ 

%LOAD BYTE PTR C 
BYTE PTR PE=LOADJ 

%LOAD CO C 
SW CO PE=LOAOJ 

%LOAD'CONDC 
COND STATUS SEL .. COND CODES, 
COND STATUS PE.,LOADJ 

%LOAD CONTROL C 
. EBOX CONTROL PE·LOAOJ 

%LOAD REPT<CNT> C ·· 
REPT CTR MODE=LOAD, 
MC REPT .. "CNT"1 

%MERGE<LEN> C 
MERGE LEN="LEN", 
AUTO MERGEJ 

%MULTIPLY C 
TRANS A SEL=FLOAT, 
MULT EN=l, 
FA(B CO,S,A+B>:,FA. SEL<MULT),' · 
Q MODE=RIGHT 41 

ioPS(W,A,8) [ 
OP W ADR=;,W 11

, 

OP A AOR="A", 
OP B ADR="B"J 

%RESUL T<CONDl C 
RESULT. SEL="COND"l 

%RET <CONDl C . 

• 

• 

BR DEST=RETURN, 
BR SEL•"COND"l 

. . 
!JSR TO AOR IFF COND 
!SET UP BRANCH ADDRESS MUX 
!SET UP BRANCH COND MUX 
!INPUT TO BRANCH ADDRESS MUX 
!ENABLE JSR 

!SET UP EXTERNAL BYTE PTR REG 

!LOAD CO 
!ENABLE LOADING OF CO REGISTER 

!LOAD CONDITION STATUS 
!SELECT COND STATUS INPUT 
!ENABLE LOADING OF COND STATUS 

!LOAD CONTROL BITS FROM IBOX 

!REPT. LOAD REPITION COUNTERS 

!MERGE OPERAND INTO R 
!OW OR HW MERGE 
!ENABLE AUTO MERGE 

!SET UP MULTIPLY CYCLE 
!TRANSLATE MULTIPLICAND 
!ENABLE MULTIPLY CONTROL OF CSA 
!SET UP FA TO MULTIPLY 
!SHIFT MULTIPLIER RIGHT 4 

!SET UP THREE REGISTER ADAS 
!WRITE REOISTEn ADDRESS 
!READ REGISTER ADDRESS A 
!READ REGISTER ADDRESS B 

!SET RESULT ON THREE CONUS: · 
!ALWAYS, NEVER, OR IFF NO FIXUP 

!RET IFF COND 
· !SET UP BRANCH ADDRESS MUX 

!SET UP BRANCH COND MUX 



• 

~- I 

! 

AIO E-Sequencer Micro-Code Macros 335 

'XR+-SHI FTC . 
MM SELaSHJFTJ 

'XSHIFT<A,8,C) C 
SHIFT A IN SEL="A", 
SHIFT B IN SEL .. "B", 
SHIFT CTL="C 11 l 

%START aw HWC 
. TAKE, 

SAVE CONTROL, 
FI XUP I NI TJ . 

%TAKE AC 

%TAKE s'c 

'lTAKE C 

USE I A OPalJ 

USE I B OP·ll 

TAKE A, 
TAKE BJ 

%TEST BOUNOS(CONSTANT)[ 
MC=-"CONSTANT", 
FA(MC,B,A+B)J 

'XTRANS(LEN> C 
TRANS A SELa"LEN", 

· TRANS. B SEL..,"LEN"J 

'XXA (C) C 
><BOX ALU CTL .. "C"J 

'lXBOX SEL(A,B,S> C 
><BOX A SEL="A", 
><BOX B SEL•"B", 
><BOX SCNT SEL•"SCNT 11 J 

!R OUTPUT GETS SHIFT 
!SELECT SHIFT ON MUX MERGER 

!SHIFT AB CONTROLLED BV C 
!SELECT SHIFTER A LEG 
!SELECT SHIFTER B LEG 
!SELECT SHIFTER CONTROL 

!START aw OR HW INSTRUCTION 
!TAKE A ANO B OPS FROM IBOX 
!SAVE CONTROL SIGNALS FROM IBOX 
!ALWAYS INITIALIZE FIXUP REG 
!TAKE ~ OPERAND FROM IBOX 

!TAKE B OPERAND FROM IBOX 

!TAKE A ANO B OPS FROM IBOX 

!SET UP TEST FOR MC>X~0 
!SET MC=-CONSTANT 
!ADO MC TO B YIELDING B-MC 

!TRANSLATE A ANO B 

!CONTROL EXPONENT BOX ALU 

!SELECT EXPONENT BOX ALU INPUTS 
!SELECT A INPUT 
!SELECT B INPUT 
!SELECT SCNT INPUT 
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AH. E-Sequencer Micro-Code 

!ADD Q, ADD H 

'******************************************************************************* 
ADD C: 

OPS < 4 , Z , Z ) , 
START aw HW; 

OPS <S ;I A, I B> , TRANS <OW>, 
TAKE A, 

. FA <A, B, A+B>, LOAD COND, 
FIXUP SAVE<SW V,0); 

OPS ( I U , 6 , Ii) , 
· MERGE <OW) , 

OONE<ALWAYSl,RESULT<ALWAYSl, 
PIXUP<REG,NEVER,INT OVFL); 

" '' 

!SET UP TO WRITE DESTINATION INTO A4 
!START aw HW INSTRUCTION 

!TRANSLATE OPERANDS 
!TAKE DESTINATION INTO 4 
!ADD AND SAVE STATUS 
!SAVE FIXUP CONDITION 

!MERGE RESULT INTO DESTINATION 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF OVFL 

'******************************************************************************* 
ADD H: · 

OPS < 4, Z, Z > , 
'START aw HW; 

OPS<S,IA,IB>,TRANSCHW), 
TAKE A, . 
FA<A.B.A+Bl,LOAD COND, 
FIX SAVECHW V,0); 

OPS < I W, 5 , 4 ) , 
Mi;:RGE CHI.I) , . 
DONE<ALWAYSl,RESULT<ALWAYSl, 
FIXUP(REG,NEVER,INT OVFL); 

!SET UP TO WRITE DESTINATION INTO R4 
!START aw HW INSTRUCTION 

!TRANSLATE OPERANDS 
!TAKE DESTINATION INTO 4 
!ADD AND SAVE'STATUS . 
!SAVE FIXUP CONDITION 

!MERGE RESULT INTO DESTINATION 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF REG OVFL 

... _ 

, .. 
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!ADD S, ADD D . 

'******************************************************************************* 
ADD S: 
OPS<IW,IA,IB>,TAKE, 
FA.(A, B, A+B>, LOAD COND, 
DONE <ALWAYS), RESUL l <ALWAYS>, 
Fl~UP<?W V,INT OVFL>; 

!TAKE BOTH OPERANDS FROM IBOX 
!ADO ANO SAVE STATUS 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF SW V 

'******************************************************************************* 
ADO 0: 

%MSA 
'XMSB 
%LSA 
%LSB 

CI Al 
Cl Bl· 
CI Cl 
CIOl 

OPS<LSA,MSA,MSB>,TAKE; 

OPS<G,LSA,LSB>,TAKE,­
FA<A,B,A+B>,LOAD CO, 
RESULT (ALWAYS); 

OPS (J W, MSA, MSB), 
FA(A,B,A+B>,FA SEL<SAVEO CO), 
LOAD COND, 
DONE<ALWAYS>,RESULT<ALWAYS>, 

-FIXUP<SW V, INT OVFU; 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD OF OPERAND B 
!LEAST SIGNIFICANT WORD OF OPERAND A· 
!LEAST SIGNIFICANT WORD OF OPERAND B 

!TAKE MOST SIGNIFICANT PARTS FIRST 

!TAKE LEAST SIGNIFICANT PARTS 
!ADO ANO SAVE CARRY 
!DELIVER LEAST SIGNIFICANT RESULT 

!ADO 
!SAVE STATUS 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF SW V 
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! I NC Q, INC H 

'******************************************************************************* 
l~C Q: 

OPS(Z,Z.Zl, 
START aw HW; 

OPS(4,IS;zl,TRANSCQWl, 
· FA(A,Z,A+ll,LOAO CONO, 

FIXUP SAVE<SW V,0); 

OPS (I W , 4 , I A) , 
MERGE (QW), 
OONE{ALWAYSl,RESULT{ALWAYSl, 
FIXUP<REG,NEVER,INT OVFL); 

J ·~ . t 

!START aw HW INSTRUCTION 

!TRANSLATE OPERANDS 
!INCREMENT ANO SAVE STATUS 
!SAVE FIXP CONQITION 

!MERGE aw INTO OUTPUT 
!ALWAYS DELIVER THIS RESULT. 
!FIXUP IFF OVFL 

'*************************************************~**************•lfOtC******•• 
INC H: 

OPSCZ,Z,Zl, 
START QW HW; 

OPS(4,IB,Zl,TRANS<HWl, 
FA{A,Z,A+ll,LOAO CONO, 
FIXUP·SAVE<SW V,0); 

OPS CI W , 4 , I A ) • 
MERGE <HW), 
DONECALWAYSl,RESULT<ALWAYSl, 
FIXUP<REG,NEVER,INT OVFLl: 

'· 

!START aw ~w INSTRUCTION 

!TRANSLATE OPERANDS 
!INCREMENT ANO SAVE STATUS 
!SAVE FIXUP CONDITION 

!MERGE HW INTO OUTPUT 
!ALWAYS DELIVER THIS.RESULT 
!FIXUP IFF OVFL 

... 

... 

.. 
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! INC S, INC 0 

'******************************************************************************* 
INC S: 

OPS<IW,IA,Z),TAKE A, 
FA(A,Z,A+ll,LOAO CONO, 
DONE (ALWAYS), RESUL T<ALWAYS), . 
FI XUP <NO REG, SW V, I.NT OVFU; 

!USE ONLY OPERAND A 
!INCREMENT ANO SAVE STATUS 
!ALWAYS DELIVER THIS RESULT 
!FIXUP IFF SW V 

'******************************************************************************* 
. INC 0: 

%MS 
'XLS 

CIBJ · 
CSJ 

OPS(LS,Z,MS),TAKE B; 

OPS(Z,Z,LS),TAKE 8, 
FA(Z,B,A+B+ll,LOAO CO, 
RESULT <ALWAYS); 

OPS ( IW, MS, Z) , 
FA(A,B,A+0),FA SEL(SAVEO CO), 
LOAD CONO, 
OONE<ALWAYS),RESULT(ALWAYS), 
F"IXUP<NO REG,SW V,INT OVFL); 

!MOST SIGNIFICANT WORD 
!LEAST SIGNIFICANT WORD 

!TAKE MS AS THE B OPERAND 

!TAKE LS AS THE B OPERAND 
!lNCREMENT LOW HALF ANO SAVE CARRY 
!ALWAYS DELIVER THIS RESULT 

!USE THE SECOND HALF OF THE OPERAND 
!ADD THE SAVED CARRY OUT 
!SAVE THE STATUS 
!ALWAYS DELIVER THIS RESULT 
!FIXUP IFF OVFL 
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FADD FR S: 

%SMALL £41 
%1 A+IB £51 · 
%POST £61 

%PRE £01 
%BOC Cl] 
%FF IX £21 

OPSCZ,IA,IB>,TAKE, 
XBOX SELCA EXP,B EXP,HOLO>,XA<A-8), 
EXP SUM PE=LOAO, . 
FJXUP INJT; . 

OPS<SMALL,JA,IB>,TRANSCFLOAT,FLOAT>, 
· PRE EN=l, SHI FHZ, B, 36-EXP SUM), R+-SHJFT, 

FIXUP SAVECPRE V,PRE), 
G SEL=BZC, 
BR<EXP N,FAOO FR S A SMALL); 

OPSCIA+IB;IA,SMALLl,TRANSCFLOAT,FLOAT), 
FA(A,B,A+B>,FA SELCGUARO), 
G SEL=ADO, 
XA<Al,EXP SUM PE·LOAO; 

FAOO FR S JOIN: . 
OPSCPOST,IA+IB,Zl, 
FLOAT SW POSTCA,Z,BOC); 

FLOAT SW OUTCPOST,FFIX,FAOD FR S FIX>; 

FAOO FR S A SMALL: 

OfSCIA+IB,SMALL,JBl,TRANSCFLOAT,FLOATl, 
FACA,B,A+B), . 
XA<B>,EXP SUM PE=LOAO, 
G SEL,,,AOO, 
BRlALWAYS,FAOD FR S JOJN)1 

!SMALLER OF IA ANO 18 
!INITIAL RESULT IA+IB 
!RESULT OF POSTNORMALIZATION 

!PRE OVERFLOW FIXUP REGISTER 
!BAO ONES COUNT FIXUP REGISTER· 
!FLOAT FIX FIXUP REGISTER 

· !SUBTRACT EXPONENTS 
!SAVE EXPONENT DIFFERENCE 
!INITIALIZE FJXUP REGISTERS 

!PRENORMALIZE SMALLER 
!CHECK PRENORM OVERFLOW 
! SAVE GUARD BITS 
!BR ON EXP DIFFERENCE SIGN 

! I B IS ·SMALLER 
!ADO IA AND IB WITH GUARD BITS 
!SAVE THE RECOMPUTED GUARD BITS 
!SAVE THE LARGER EXPONENT 

!COME HERE IN BOTH CASES 

!POSTNORMALIZE 

!OUTPUT FLOATING RESULT POST 

! IA IS SMALLER 
!ADD IA AND IB 
!SAVE THE LARGER EXPONENT 
!RECOMPUTE GUARD BITS 
!RETURN TO FINISH FADO 



• 
. 1· 

• 

~: 

• 

A 11 E-Seq uencer Micro-Code 341 

FADD SR S: 

%SMALL · C4J 
%1A+IB [51 
%POST C61 
%ROUND C71 

%PRE C0J 
. %BOC ClJ 

%FFIX C2J 
%AND V C31 

OPS(Z,IA,IB>,TAKE, 
XBOX SEL(A EXP,B EXP,HOLO>,XA(A-B>, 
EXP SUM PE=LOAD, 
FIXUP INIT; 

OPS(SMALL,IA,IB>,TRANS<FLOAT,FLOAT), 
PRE EN=l,SHIFT<Z,B,36-EXP SUM>,R~SHIFT, 
FIXUP SAVE<PRE V,PRE>, 
G SEL=BZC, 
BR<EXP N,FADD SR SA SMALL>; 

· OPS (I A+ 1B, I A, SMALL> , TRANS (FLOAT, FLOAT> , 
FA (A, B', A+B), FA SEL (GUARD>, 
G SEL=ADD, 
XA<A>,EXP SUM PE=LOAD; 

FADD SR S JOIN: 

OPS(POST,JA~IB,Z>, 
FLOAT SW POST(A,Z,BOC); 

OPS<ROUND,POST,Z>, 
FA(A,B,A+B>.FA SEL(RND>,RND MODE=STABLE, 
FIXUP SAVE(MANT V,RND V); . 

FLO.AT SW OUT<ROUND,FFIX,FADD SR S FIX>: 

FADD SR S A SMALL: 

OPS(IA+IB,SMALL,IB>,TRANS<FLOAT,FLOAT>, 
FA(A,B,A+B>, . 
XA<B>,EXP SUM PE=LOAD. 
G SEL=ADD, 
BR(ALWAYS,FADO FR S JOIN); 

!SMALLER OF IA AND IB 
! IN I Tl AL RESULT I A+ IB. 
!RESULT OF POSTNORMALIZATION 
!RESULT OF ROUNDING 

!PRE OVERFLOW FIXUP REGISTER 
!BAD ONES COUNT FIXUP REGISTER 
!FLOAT FIX FIXUP REGISTER · 
!ROUNDING OVERFLOW FIXUP REG 

!SUBTRACT EXPONENTS 
!SAVE EXPONENT DIFFERENCE 
!INITIALIZE FIXUP REGISTERS 

!PRENORMALIZE SMALLER 
!CHECK PRENORM OVERFLOW 
!SAVE GUARD BITS 
!BR ON EXP DIFFERENCE SIGN 

! IB IS SMALLER 
!ADD IA AND IB WITH GUARD BITS 
!SAVE THE RECOMPUTED GUARD BITS 
!SAVE THE LARGER EXPONENT 

!COME HERE IN BOTH CASES 

!POSTNORMALIZE 

.!PERFORM STABLE ROUNDING 
!CHECK ROUNDING OVERFLOW 

!OUTPUT FLOATING RESULT ROUND 

! IA IS SMALLER 
! ADO I A AND IB 
!SAVE THE LARGER EXPONENT 
!RECOMPUTE GUARD BITS 
!RETURN .TO FINISH FAOO 
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FMULT FR S: 

%MPCNO CIAl 
%MPYR CIBJ 
%PROO C4l 
%POST CSJ 

%BOC C0J 
%FFIX ClJ 

OPS(Z,MPCNO,MPYR),TAKE 
SHIFT(A,Z,Z>,R~SHIFT, 
Q MODE=LOAO, 
XBOX SEL<A EXP,B EXP,HOLD},XA<A+B), 

. EXP SUM PE=LOAD; 

OPS<PROO,MPCNO,Z}, 
XBOX SEL<EXP SUM,SCNT/MC,NC>,MC EXP-128, 
XA<A-B>,EXP SUM PtcLOAO, 
LOAD REPT (5) , 

.MULTIPLY; 

FMUL T FA S L1 : 

OPS <PROD, MPCNO, PROD> , 
MULTI PLY, 
BR NZ OEC<MC,FMULT FR S Ll>; 

OPS. <POST, PROO, Z) , 
FLOAT SW POST <A,·a, BOC>; 

FLOAT S.W OUT<POST,FFIX,FMULT FR S FIX>; 

• 

! MULTI PLI CANO 
!MULTIPLIER 
!PRODUCT REGISTER 
!PRODUCT AFTER POSTNORMALIZE 

!BAD ONES COUNT FIXUP REGISTER 
!FLOAT FIX FIXUP REGISTER 

!PUT MULTIPLIER ON SHIFTER OUT 
!LOAD Q REGISTER WITH MULTIPLIER 
!ADD EXPONENTS 

!CORRECT EXPONENT SUM 

!SET UP COUNTER 
!00 ONE MULTIPLY CYCLE HERE 

!DO ANOTHER MULTIPLY CYCLE. 
!REPEAT MULTIPLY CYCLES 

!POSTNORMALIZE A:Q 

!OUTPUT FLOATING R~SULT POST 

I . 
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FMULT SR S: 
%MPCND CIAl 
%MPYR .• CIBl 
%PROO · C4J 
%POST C5J 
%ROUND C61 

%BOC C01 
%FFIX. ClJ 
%ANO V C3J 

OP~(Z,MPCNO,MPYR>,TAKE 
SHIFTCA,Z,Z>,R~SHIFT, 
Q MOOE .. LOAO, 
XBOX SELCA EXP,B EXP,HOLD>,XACA+B>, 
EXP SUM PE .. LOAO: 

OPSCPROO,MPCND,Z>, . 
XBOX SEL<EXP SUM,SCNT/MC,MC> ,MC EXP .. 128, 
XACA-B>,EXP SUM PE=LOAO, 
LOAD REPT (5), 
MULTIPLY: 

FMULT FR S Ll: 

OPSCPROO,MPCNO,PROO), 
MULTIPLY, . 
BR NZ DEC<MC,FMULT SR S Ll>: 

OPSCPOST,PROO,Z), 
FLOAT SW POSTCA,Q,BOC>; 

OPS<ROUNO,POST,Z>, . 
FA(A,B,A+B>,FA SEL(RND>,RND MODE=STABLE, 
FIXUP SAVE<MANT V,RND V); 

FLOAT SW OUT<ROUND,FFIX,FMULT SR S FIX>; 

!MULTIPLICAND 
!MULTIPLIER 
!PRODUCT REGISTER 
!PRODUCT AFTER POSTNORMALIZE 
!RESULT OF ROUNDiNG 

!BAD ONES COUNT FIXUP REGISTER 
!FLOAT FIX FIXUP REGISTER 
!ROUNDING OVERFLOW FIXUP REG 

!PUT MULTIPLIER ON SHIFTER OUT 
!LOAD a REGISTER WITH MULTIPLIER 
!ADD EXPONENTS 

!CORRECT EXPONENT SUM 

!SET UP COUNTER 
!DO ONE MULTIPLY CYCLE HERE 

!DO ANOTHER MULTIPLY CYCLE 
!REPEAT MULTIPLY CYCLES 

!POSTNORMALIZE A:a 

!PERFORM STABLE ROUNDING 
!CHECK ROUNDING OVERFLOW 

!OUTPUT FLOATING RESULT ROUND 
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!INC (SKIP,JUMP>, DEC (SKIP,JUMP> 

'******************************************************************************* . , ' 

I NC (SK I P , JUMP) : 

OPS(4,IA,Z>,TAKE, 
LOAD CONTROL, 
FA(A,B,A+l.>, 
RESULT (ALWAYS); 

. OPS ( I W , 4 , I B > , 
. FA (A, B, A-8), 

LOAD COND, 
TEST WRONG BRANCH=EN, 
DONE_(SW V U; 

BR(A~WAYS,INT OVFL>; 

!TAKE OPl AS A OPERAND 
!SAVE BRANCH CONDITION ETC 
! INCREMENT OPl 
!ALWAYS DELIVER OPl+l 

!COMPARE OPl+l WITH OP2 

!TEST WRONG BRANCH 
!DONE IFF NOT OVFL 

!NOT DONE SO GO TO OVERFLOW-

'*******************************************************************************" 
DEC <S~I P, JUMP>: 

OPS(4,IA,Z>,TAKE, 
LOAD CONTROL, 
FA(A,B,A-1>, 
RESULT(ALWAYS); 

OPS (J W, 4 , 18) , 
FA (A, B, A-B), 
LOAD COND, 
TEST WRONG BRANCH=EN, 
DONE (SW V U; 

BR(ALWAYS,INT OVFL); 

!TAKE OPl AS A OPERAND 
!SAVE BRANCH CONDITION ETC 
!DECREMENT OPl 

· !ALWAYS DELIVER OPl-1 

!COMPARE OPl-1 WITH OP2 

!TEST WRONG BRANCH 
!DONE IFF NOT OVFL 

!NOT DONE SO GO TO OVERFLOW 

• 



• 
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!SKIP a, SKIP H, SKIP S, SKIP D 

'******************************************************************************* 
SKIP a: 

OPS € Z , Z , Z > , . · . 
START aw HW; 

OPS<IW,IA,IB>,TRANS<aW>, 
FA (A, B, A-B>, 
TEST WRONG BRANCH=EN, 
DONE (ALWAYS>; 

!RECEIVE aw OPERANDS 

!TRANSLATE aw OPERANDS· 
!COMPARE 
!TEST WRONG BRANCH 
!NO RESULT 

'******************************************************************************* 
SKIP H: 

OPS(Z,Z,Z>, 
START aw HW; 

OPS(IW,IA,IB>,TRANS<HW), 
FA <A, B, A-B>, 
TEST WRONG BRANCH=EN, 
DONE (ALWAYS); · 

!RECEIVE HW OPERANDS 

!TRANSLATE HW OPERANDS 
!COMPARE 
!TEST WRONG BRANCH 
!NO RESULT . 

'******************************************************************************* 
SKIP S: 

OPS (I W, I A, 1B > ·, TAKE, 
LOAD CONTROL, 
FA<A,B,A-B>, 
TEST WRONG BRANCH=EN, 
DONE (ALWAYS>; 

!TAKE BOTH OPERANDS 
!LOAD BRANCH CONDITION ETC. 
!COMPARE 
!TEST WRONG BRANCH 
!NO RESULT 

'******************************************************************************* 
-SKIP D: 

'XMSA 
.%MSB 
'XLSA 
%L~B 

CI Al 
CIBJ 
CI CJ 
Cl DJ 

OPS<LSA,MSA,MSB>,TAKE, 
LOAD CONTROL; . 

OPS(6,LSA,LSB>,TAKE, 
FA<A,8,A-B>,LOAD CO; 

OPS< I W, MSA, MSB>, 
FA ('A, B, A-B>, FA SEUSAVEO COJ, 
TEST WRONG BRANCH=EN, 
DONE <ALWAYS);. 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD OF OPERAND B 
!LEAST SIGNIFICANT WORD OF OPERAND. A 
!LEAST SIGNIFICANT WORD OF OPERAND B 

!TAKE MOST SIGNtFICANT PARTS FIRST 
!LOAD BRANCH CONDITION ETC. 

!TAKE LEAST SIGNIFICANT PARTS 
!SUBTRACT ANO SAVE CARRY 

!SUBTRACT 
!TEST WRONG BRANCH 
!ALWAYS DELIVER A RESULT 
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!ANO SKIP <Z,NZ> a, ANO SKIP <Z,NZ> H, ANO SKIP <Z,NZ> S 

'*******************************************************************************' 
AND SK I P { Z, NZ) a: . 
OPS { Z , Z ~ Z > , 
START aw HW.; 

OPS<IW,IA,18),TRANS{QW), 
FA {A, B, A ANO B > , 
LOAD CONO, 
TEST WRONG BRANCH=EN, 
DONE CALWAYS) ; 

• ! : 

!RECEIVE aw OPERANDS 

!TRANSLATE aw OPERANDS 
!AND THE OPERANDS 

!TEST WRONG BRANCH 
!NO RESULT 

'*~***************************************************************************** 
AND SKIP <Z,NZ) H: 

OPS < Z, Z, Z) , 
START OW HW; 

.OPS(IW,IA,18),TRANS<HW), 
FA (A, B, A AND B) , 
LOAD tONO, 
TEST WRONG BRANCH=EN, 
DONE <ALWAYS>; 

!RECEIVE HW OPERANDS 

!TRANSLATE HW OPERANDS 
!ANO THE OPERANDS 

!TEST WRONG BRANCH 
!NO RESULT 

'******************************************************************************* 
. ANO SK I P t Z, NZ> S:. 

OPS (J W, I A , 18 ) , TAKE , 
I OAD CONTROL, 
FA(A,B,A ANO BJ, 
LOAD CONO, 
TEST WRONG BRANCHZ=EN, 
DONE (ALWA VS) ; 

!TAKE BOTH OPERANDS 
!LOAD BRANCH CONDITION ETC. 
!ANO THE OPERANDS 

!TEST WRONG BRANCH 
.!NO RESULT 



Al.I 

ANO SKIP Z 0: 

%MSA CIAJ 
%MSB . CIBJ ·. 
%LSA CICJ 

,'.',_; 'XLSB . CIOJ 

OPSCLSA,MSA,MSB>,TAKE, 
LOAD CONTROL, 
FA (A, B, A AND 8 > ; .. 
OPSC6,LSA,LSB>,TAKE, 
FACA,8,A ANO 8), 
8R<SW Z,ANO SKIP Z 0 Ll>; 

OPS <I W, Z , Z> , 
I FA<A.B,MINUS ONE>, I LOAD CONO, 
i . TEST WRONG 8RANCH=EN, 

DONE <ALWAYS>;· 

AND SK I P Z 0 Ll : 

OPS <I W , 6 , Z ) ~ 
FACA,8,A), 
LOAD CONO, 
TEST WRONG 8RANCH=EN, 
DONE (ALWAYS>; 

I. 

E-Seq uencer Micro-Code 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD OF OPERAND 8 
!LEAST SIGNIFICANT WORD OF OPERAND A 
!LEAST SIGNIFICANT WORD OF OPERAND 8 

!TAKE MOST SIGNIFICANT PARTS FIRST. 
!LOAD BRANCH CONDITION ETC. 
!ANO THEMOST SIGNIFICANT PARTS NOW 

l l~~E,T~~ACJA~} G~: b~ T~~~A~~R~~RTS 
!BRANCH IF <MSA ANO MSB>=0 

!PUT A 1

NON~ZERO OUTPUT ON THE FA 

!TEST WRONG BRANCH 
!NO RESULT 

.. ! CMSA ANO MSB> =0 

!READ BACK <LSA ANO LSB> 
!PUT OUT <LSA ANO LS8"l ON THE ·FA 

!TEST WRONG BRANCH 
. !NO RESULT 

!H7 

c 
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AND SKIP NZ D: 

%MSA 
%MSB 
%LSA 
%LSB 

CI Al 
CIBJ 
CICJ 
CIOJ 

OPS<LSA,MSA,MSBl,TAKE, 
LOAD CONTROL, 
FA (A, B, A AND BI ; 

OPS<6,LSA,LSBl,TAKE, 
FA (A, B, A AND BI , 
BR<SW Z L,ANO SKIP NZ D LlJ; 

:. OPS < I W , Z , Z J , 
FA (A, B, ZEROJ, 
LOAD CONO, 
TEST WRONG BRANCH=EN, 
DONE <ALWAYS); 

ANO SKIP NZ D Ll: . 

OPS .<I W, 6, ZJ , . 
FA<A,B,AI, 
LOAD COND, 
TEST WRONG BRANCH=EN, 
DONECALWAYSI; 

.. 
~i 

E-Seq uencer M lcro-Code 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD ·oF OPERAND B 
!LEAST SIGNIFICANT WORD OF OPERAND A 
!LEAST SIGNIFICANT WORD OF OPERAND B 

!TAKE MOST SIGNIFICANT PARTS FIRST 
!LOAD BRANCH CONDITION ETC. 
!AND THE MOST SIGNIFICANT PARTS NOW 

!TAKE LEAST SIGNIFICANT PARTS 
!AND THE LEAST SIGNIFICANT PARTS 
!BRANCH IF <MSA AND MSBJ-0 

!PUT A ZERO OUTPUT ON THE FA 

!TEST WRONG BRANCH 
!NO RESULT 

! <MSA AND MSBJ-0 

!READ BACK <LSA ANO LSBI 
!PUT OUT <LSA AND LSBJ ON THE FA . 

!TEST WRONG BRANCH 
!NO RESULT 

A 11 

Cr \J_, 
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!SHIFT LEFT La, SHIFT LEFT L'H 

'******************************************************************************* { ·~ . . 

SHIFT LEFT L a: 

'XO Cl Al 
'XSCNT CIBJ 

OPS ( Z , Z , Z ) , 
START aw HW;. 

OPS(4,0,SCNT),TRANS(aW) 
SHJFT(A,Z,B QW3), 
TEST BOUN05(9),FJX SAVE(SW IN BOUNDS,0); 

· OPS ( I W, 4 , Z ) , 

!DATA 
!SHJFT·COUNT 

!SHIFT DATA 
!SAVE 9>SCNT~0 JN FIX REG 0 ' 

MERGECaW), !MERGE aw INTO R 
DONECALWAYS),RESULHNO FIX), !DELiVER RESULT IFF NO FIX 
FIXUPCREG,NEVER,SW LOGIC ZERO); !FIXUP IFF SCNT NOT IN BOUNDS 
'******************************************************************************* 
SHIFT LEFT L H: 

%0 CIAJ 
'XSCNT CJBJ 

OPS(Z,Z,Z), 
. START aw HW; 

OPS(4,D,SCNT),TRANS(HW) 
SHIFT(A,Z,B aW3), 
TEST BOUNDSC18),FIX SAVECSW IN BOUNDS,8)1 

OPS ( I W, 4 , Z) , 
MERGE (HW),. 
DONE (ALWAYS), RESULT CNO FIX),' 
FI XUP (REG, NEVER. SW LOGIC ZERO) 1 

!DATA 
!SHIFT COUNT 

!SHIFT DATA 
!SAVE 9>SCNT~0 IN FIX REG 0 

!MERGE HW INTO R 
!DELIVER RESULT IFF NO FIX 
!FIXUP IFF SCNT NOT JN BOUNDS 
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!SHIFT LEFT L S, SHIFT LEFT L D 
'*************************~***************************************************** 

SHIFT LEFT L S: 

%0 
%SCNT 

Cl Al 
CI BJ 

OPS(JW,D,SCNTl,TAKE, 
SHJFT(A,Z,B QW3), 
OONE<ALWAYSl,RESULT<NO FIX), 
TEST BOUNDS (36), 
FJXUP<SW IN BOUNDS,SW LOGIC ZERO); 

!DATA 
!SHIFT COUNT · 

!SHIFT DATA 
!DELIVER RESULT IFF NO FIX 
!TEST 36>SCNT~0 
!FIXUP IFF SCNT NOT IN BOUNDS 

'******************************************************************************* 
SHI FT LEFT L D: 

%00 
~SCNT 
%01 
%005 

CI Al 
CIBJ 
CI CJ 
(5) 

OPS(Dl,Z,IBl,TAKE, 
TEST BOUNDS <72), 
LOAD BYTE PTR; 

OPS<D0S,Dl,Zl,TAKE A, 
SHIFT<Dl,Z,B QW3), 
BR(SW IN BOUNDS L,DW LOGIC .ZERO), 
RESULT<NO BRANCHY;. 

OPS ( JW, D0, 01>,. 
SHJFT(00,Dl,C20 B QW3). 
DONE <ALWAYS>, RESULT <ALWAYS>; 

!DATA WORD 0 <MOST SIGNIFICANT) 
!SHIFT COUNT 
!DATA WORD 1 <LEAST SIGNIFICANT> 
!D0 SHIFTED 

!PREPARE TO ACCEPT· JC 
!TEST 72>SCNT<?:0 
!SAVE SCNT FOR LATER 

!ACCEPT JC 
! CREA TE LOW ORDER WORD . 
!GIVE ZERO IF SCNT NOT IN BOUND 
! RE.SULT I FF SCNT IN BOUNDS 

!SCNT IS IN BOUNDS 
!CREATE HIGH ORDER WORD 
!ALWAYS DELIVER A RESULT 

... 
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!LBYTE, .DBYTE 

'***********************************************~******************************* 
LBYTE: 

%BW 
·%BP 

CI Al 
CIBl 

OPSC4,BW,BP>,TAKE, 
·SHIFTCA,Z,B BYTE POS>,R~SHIFT; 

OPS C I W, 4, BP> , 
SHIFTCZ,A,B BYTE LEN>,R~SHl~T. 
OONECALWAYS>,RESULTCALWAYS>; 

!BYTE IJORO 
!BYTE LEN, BYTE POS 

!LEFT JUSTIFY BYTE 

!SHIFT BYTE INTO RESULT WORD 
!ALWAYS DELIVER RESULT 

'******************************************************************************* 
DBYTE: 

%OW. 
%BP 
%BW 

CI Al 
CIBJ 
[4) 

OPSC6,0W;BPJ,TAKE, . 
SHIFTCA,A,B BYTE POS>,R~SHIFT, 
LOAD BYTE PTA; 

OPS CS, 6, BP>, · 
SHIFTCA,A,B BYTE LEN>,R~SHIFT; 

OPSC7,4,5),TAKE A, 
SHIFT<A,B,36-C20 BYTE LEN) ,R~SHIFT; 

OPS C I W, 7, Z > , 
SHIFTCA,A,36-C20 BYTE POS>,R~SHIFT, 
OONECALIJAYS>,RESULTCALIJAYS); . 

• 

. I 

!DESTINATION WORD .. T:E:B 
!BYTE LEN, BYTE POS 
!BYTE WORD = C:D:X 

!X=E, D=T, C=B 

!SET UP TO ACCEPT D 
!R6 ~ E:B:T 
!LOAD BYTE PTA REG FOR LATER 

!RS ~ B:T:E 

!R4 ~ BYTE WORD C:01X 
!R7 ~ X:B:T 

!RESULT ~ T:XaB 
!ALWAYS DELIVER A RESULT 
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.LBYTE INC: 

%BW CI Al !DATA WORD 
%BP CI Bl !BYTE.LEN, BYTE POS 

.%BL [4] !BYTE LEN 
%BA CSJ !BYTE POINTER ADDRESS -J) %LR . [6] !LBYTE RESULT 
%NBP [7] !NEW BYTE POINTER 
%Tl ·cs1 !POS+2~EN 
%T2 (9] !36-POS+2*LEN 
%T3 £10] !BA ROTATED LEFT 6 
%NBA Clll !NEW BYTE POINTER ADDRESS 

OPS.(LR, BW, BP), TAKE, !BEGIN LBYTE INTO LR 
SHIFT(A,Z,B BYTE POS>,R~SHIFT; !LEFT JUSTIFY BYTE · 

OPS (LR, LR, BP>, 
SHIFT£Z,A,B BYTE LEN>,R~SHIFT, !SHIFT BYTE INTO LR 
RESULT (ALWAYS); ! ALWAYS DEL I VER A RESULT . 

OPS (Bl, Z, BP> , 
SHIFT£Z,B,MCJ,MC SHIFTm27, !ALIGN BYTE LENGTH AS aW3 
FA<Z,B.ZJ,MERGE aW3=1; !CLEAR awe, awl, aw2 

•. OPS <T 1. BL , BP> , TAKE H, !BA~ BYTE.POINTER ADDRESS 
CSA<A*2,Z,BJ,FA(B CO,S,A+B); ! Tl ~ POS+2~EN 

OPS <T2, Z, TU, 
FA(MC,B,A-BJ,MC=36; !T2 ~ 36-POS+2~EN 

OPS (NBP, BL, BP>, 
FA <A, 8, A+B>, . !NBP ~ POS+LEN 
BR(SW N,BVTE POS OVFL>; !BR IF POS+2~EN>36 

OPS CNBP, NBP, BP>, 
SHIFTCA,Z,Z>,FACZ,B,B>,MERGE QW3=1, !MERGE POS+LEN INTO BP QW3 
RESULT <ALWAYS); !ANO DELIVER NEW BYTE PTR 

OPS <I W, BA, Z) , 
FA(A,B,A> ,· !PASS BACK ADDRESS UNCHANGED 
OONE<ALWAYSJ,RESULTCALWAYSJ; 

BYTE POS OVFL: !BYTE POSITION OVERFLOW 

OPS£NBP,Z,9P), 
SHIFT CZ,Z,Z> ,FACZ,B,B).,MERGE aw3 .. 1, !MERGE 0 INTO BYTE POS aw 
RESULT (ALWAYS> ; !DELIVER NEW BYTE PTR 

I OPS <T3, BA, Z>, 
I SHI FHA, A, MC>, MC SHI FT .. s,R~SHIFT; !ROTATE BA TO LEFT JUSTIFY 
I 

1· OPSCNB~.Z.T3), 
FA (MC, B, A+B>, MC=256;. !ADO 4 TO BA 

OPS ( I W, NOA, NBA) , 
SHIFTCA,B,MC),MC SHIFT=30,R~SHIFT, !ROTATE NEW ADDRESS 
DONE (SW V U, RESUL I lALWAYSI; !PASS ADDRESS. DONE IFF NOT OVFL 

~' 
OPS Cl W, Z, Z) , 
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FA<MC,B,A>,MC~BYTE PTA TRAP, 
DONE <ALWAYS) , TRAP; ! ADDRESS OVERFLOW. TRAP • 

• 
:_,, 

, .. 

• 
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!DATA 

.MSBI T: 

%0 
%BP 

CI Al 
[JB) !BYTE LEN.BYTE POS 

OPS(4,0,BP>,TAKE, 
SHIFT(A,Z,BYTE POS>,R~SHIFT; 

OPS(S,4,Z), 
FA (A, B, A+0), 
MM SEL= I ZC; . 

OPS ( I W, 5, Z > , 
FA(A,B,A+l>, 
OONE(SW N L>,RESULT(OONE); 

OPS (I W , Z •. Z ) , 
FA(Z,B,A>, 
OONE(ALWAYS>,RESULT(ALWAYSl; 
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!LEFT JUSTIFY BYTE IN DATA WORD 

!SET UP TO TEST BYTE SIGN 
. !RS ~ IZC 

! INCREMENT I ZC 
·!IF BVTE~0 THEN DELIVER IZC+l 

!BYTE<0 

!DELIVER 0 RESULT 
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