
•

~ .

·,

UCID- 17299

Lawrence Livermore Laboratory
THE PRELIMINARY DESIGN OF AN ADVANCED PROGRAMMABLE DIGIT AL
FILTER NETWORK FOR LARGE PASSIVE ACOUSTIC ASW SYSTEMS

Thomas McWilliams, Lawrence C. Widdoes, Jr., Lowell Wood

30 September 1976

Prepared for The Naval Systems Division, Office of Naval Research
Arlington, Virginia
Under ONR Order No. N00014-76-F-0023

• 11

NASlll
This is an informal report intended
primarily for internal or limited
external d1stribut1on . The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory .

Prepared for U.S. Energy Research &
Development Adm1nistrat1on under
contract No. W·7405·Eng-48 .

OISTRIBUTION OF THIS DOCUMENT IS UNLlMITEO

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

I~

\

LAWRENCE LIVERMORE LABORATORY

SS76-15"1

THE PRELIMINARY DESIGN

OF

AN ADVANCED PROGRAMMABLE ·DIGITAL FILTER NETWORK

FOR

LARGE PASSIVE ACOUSTIC ASW SYSTEMS

An Interim Report on Research Work in

Advanced Programmable Digital Filter Network Technology

Reported by: Thomas McWilliams
Lawrence C. Widdoes, Jr •.
Lowell Wood

Special Studies Group
Physics Department . j This report was pre.!!~!'~~ an a~ount of work

sponsored by the United States Government. Neither

I
the United States nor the United States Energy
Research and Development Administration, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any

30 September 1976
warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatw, product or
process d~lQKd. or reorcsenu 1ha1 ht nll' u1"..'n!d no1
U.fringe privately owned rights .

Prepared for:

Under:·

. The·Naval Systems Division
Office of Naval Research
Arlington, Virginia

ONR Ord.er llN00014-76-F.-.0023

-·· . , --~...,...... .. r: " - ~Mas;---.- .. · ·~-.

l)]~TilrntmoN or 'T'Hrs 1'·o·e• '"_~--.... -
~1,>;;;~ r.1 :.J v • 'u ·' '"'' . 'u •. ,,,, ., .:: ..,.y,l,YJ:;r;:.J'f:l~~.,{]~,JJ1.fl.'?'4!6~

University of Ca/ifomia P.Q Box 808 Livermore, CaNtornia 94550 D Telephone (415)447-1100 0-Twx 910-386-8339 AEC LLL L~

J f'
J

i

•

FOREWORD

This is an account of research work in advanced programmable ,

digital filter network technology performed during the latter part of

FY76 and FY76T by the Special Studies Group of the LLL Physics Department

for the Office of Naval Research, under ONR Order #N00014-76-F~0023, along

the lines specified in LLL Phys. Prop. 76-101, which was submitted to ONR

in March 1976. This document reports satisfactory completion of all the

items of this proposal's Work Stateme!lt, and the successful accomplishment

··.of additional, related tasks which position this research. project to

maintain a very aggressive pace in FY77, given adequate funding.

The work reported herein was performed by Harlan Lau, Richard

McWilliams, Thomas McWilliams, Joseph Simpson, Lawrence C. Widdoes, Jr.,

and Lowell Wood, of the Special Studies Group, with research sub-contact

assistance from Paul Levine and Kottappuram Mohiuddin of Stanford

University's Electrical Engineering and Computer Science Departments,

supervised by Professor Forest Baskett.

"This document is an account of work sponsored by the U. S. Government.

Neither the United States, nor the· United States Energy Research and

Development Administration nor the United States Navy, nor any of their

employees, nor any of their contractors, subcontractors, or their

employees, makes any warranty, express or implied, or assumes.any liability

or responsibility for the accuracy, completeness or usefulness of any

information, apparatus, product or process disclosed, or represents that

its use would not infringe privately owned rights.

"This report is u.nclassified, and its distribution is unlimited.

Its reproduction or other use for any purpo'se of the U. S. Government is

authorized."

TABLE OF CONTENtS

Section Page

I. Introduction I ..
I. I Advantages of Par.allel Processors 2

2. System Overview 4
,,) ' 2.1 System Configuration 4

~.2 Processor Organization 7

\, 3. Processor Architecture . 9
' 3.1 Caches 9

3.2 Virtual Memory 10
'3.3 Memory Access Modes 13
3.4 Synchronization 14

3.4.1 Interrupts 14
3.4.2 Read-Modify-Write 15
3.4.3 Munch Registers 15
3:H Hardware Queues . 15

3.5 Status . 16
3.5. I Processor Status 16
3.5.2 User Status 17

3.6 Input/Output . 17
3.7 Instruction Set Definition 18 • 3.7.I Notation and Conventions • 19

3.7.2 Registers and Memory 19
3.7.3 Instruction Formats 20

3.7.3. I General Operand Address Specification 22
3.7.3.1.1 Short-Operand Address Calculation 22
3.7.3.1.2 Extended Addressing 24

3.7.3.2 Three-Address Instructions 25
3.7.3.3 Two-Address Instructions 26
3.7.3.4 Skip Instructions 27'
3.7.3.5 Jump Instructions 27

3.7.4 Instruction Descriptions 28
3.7.4.1 Integer Instructions . 29

3 7.4.1.1 Integer Arithmetic 29
3. 7.4.1.2 Increment and Decrement 31

3. 7.4.2 Floating Point Instructions . 32
3.7.4.2. I Floating Point Arithmetic 33
3. 7.4.2.2 Floating Point Translation 34

3.7.4.3 Arithmetic Compare Instructions .1 35
3.7.4.3.I Arithmetic Compare and Skip 36

• 3. 7.4.3.2 A rithrrietiC Compare and Jump '' 37·
3. 7.4.3.3 Arithmetic Compare and Set Flag 38

3. 7.4.4 Logical Operations . 39
3.7.4.4.I Logical Testing 39 .•.
3.7.4.4.2 Logical Assignment 40
3.7.4.4.3 Shift and Rotate. 41
3.7.4.4.4 BIT REVERSE. 42

ii TABLE OF CONTENTS

Section Page

3.7.4.4.5 Bit Counting 12 ..•
3.7.4.4.6 BIT EXTRACT 13

3.7.4.5 Byte Pointer 11.
3. 7.4.6 List Manipulation 15

• 3.7.4.6.1 Skipping List Instructions 15 . ;,

3.7.4.6.2 Non-Skipping List Instructions . 16
3.7.4.7 Data Transfer 47

3.7.4.7. I Block Transfer 47
3.7.4.7.2 Move and Exchange 18

3.7.4.8 Stack Manipulation 19
3.7.4.9 Subroutine Linkage 51

3.7.4.9.1 Jump to Subroutine . 55
3.7.4.9.2 Subroutine Context Switching 55

3.7.4.10 Traps and Interrupts . 57
3.7.4.10.1 Trap Instructions 63
3.7.4.10.2 Soft-Error Trap 64
3.7.4.10.3 Hard-Error Traps 6!>
3.7.4.10.4 Interrupt 67
3.7.4.10.5 Trap and Interrupt Returns 68

3.7.4.11 Cache Control . 69
3.7.4.12 Page Map Control 70

3.7.4.12.1 KILL MAP 70
3.7.4.12.2 Writing Segment Base Registers 71

3.7.4.13 Status Register Control 72
3.7.4.13.1 Read Status 72
3.7.4.1~.2 Wrile Slctlm '/',!,

3.7.4.14 Synchronization 73
3.7.4.14.1 SET INTERRUPT n
3.7.4.11.2 Te~t and Set/Reset . 7'J
3.7.4.14.3 Munch Registers 74
3. 7.4.14.4 Hardware Queues 75

3.7.4.15 Control Store 76
3.7.4.16 Miscellaneous 77

3.7.5 Sample Programs 78
3.7.5.I Assembly Language Specification 78

3.7.5.1.1 OPCODE Field . 78
3.7.5.1.2 GOTO Field '/8
3.7.5.1.3. OPERANDS Field 78

3.7.5.2 Use of the T Field 80
~.7.5.3 Cr:impilPrl TrPP~nrt \.nmparisons 81

3.7.5.3.1 BLISS Treesort Algorithm 82
·I

3.7.5.3.2 LLL Filter Compilation . 83
3.7.5.3.3 BLISS-10 Compilation for PDP-10. 84
3.7.5.3.4 BLISS- I I Compiiation for PDP-I I. 86
3.7.5.3.5 FORTRAN-H Compilation for IBM-370/168 . 88

3.7.5.4 Hand-Coded Quick.sort Comparisons . 89
3.7.5.4.1 A LGOL-W Quick.sort Algorithm 90

•

TABLE OF CONTENTS iii,

·Section Page ·

3.7.5.4.2 LLL Filter Hand-Coding 91. ,.
3.7.5.4.3 PDP-10 Hand-Coding 92

4. Implementation 93
~ I : 4.1 Processing Element 93

4.1.1 IBOX/EBOX Communication 94
4.1.1.1 IBOX to EBOX Signals 94

. 4.1.1.2 E BOX to IBOX Signals 95
4.1.2 Instruction Box 96
4.1.3 Instruction Box Pipeline Timing . 98

4.1.3.1 Index Register File . .JOO
4.1.3.2 Instruction Address Arithmetic 103
4.1.3.3 Data Address Arithmetic 105

4.1.3.3. I Register Address Detection 108
' 4.1.3.3.2 Data Address Arithmetic Control 110

4.1.3.3.3 T Register File 112
4.1.3.4 Instruction and Data Address Translation 114

4.1.3.4.1 Address Translation Cache . 117
4.1.3.4.2 Address Translation Ll~U Control . 119

4.1.3.5 Instruction Cache Memory. 121
4.1.3.5.1 Instruction Cache Memory Module. 123
4.1.3.5.2 Instruction Cache Control 125

4.1.3.5.2.1 Cache LRU Control . 127
4.1.3.6 Data Cache and Register File . 129

4.1.3.6.1 Cache and Register File Control 131
4.1.3.6.2 ·Data Cache Memory 133

4.1.3.7 Instruction Buffer and Decode. 137
4.1.3.7.1 Instruction Decode 140

4.1.3.8 EBOX Operand Registers . 143
4. i.3.9 Memory Interface 116

• 4.l.3.10 IBOX Control 153
4.1.3.10.l Instruction Prefetch Control 155
4.1.3.16.2 P-Sequencer Control Unit . 160
i, 1.3.10.3 I-Sequencer Control Unit 163
4.1.3.10.4 EBOX Write Address Registers 167
4.1.3.10.5 IBOX Write Control 172
4.1.3.10.6 Register Address Generation 175
4.1.3.10.7 Micro Interrupts 179
4.1.3.10.8 Stop IBOX. 183
4.1.3.10.9 · rnox Timing Generator 185 . . 4.1.4 F.xec:ution Box , 187

4.1.4. l EBOX Register File 189
4.1.4.1.1 EBOX Register File Control . 191
4.1.4.1.2 36 Bit Translate . 194

4.1.4.2 EBOX ALU 196
4.1.4.2.I 3 Input Adder 198

4.1.4.2.1.1 EBOX 40 Bit Full Adder 200

•

iv TABLE OF CONTENTS

Section

4.1.4.2.1.2 Multiply Controi .
4.1.4.2.2 Shift Box

4.1.4.2.2.1 Shifter
4.1.4.2.2.2 Sticky. Bit Generator .

4.1.4.2.3 Exponent Box
4.1.4.2.4 36 Bit MUX M.erge.
i.1.4.2.5 Q Register

4.1.4.3 EBOX Control .
4.1.4.3.I EBOX Sequencer

4.1.4.3.1.1 12 Bit Branch Address Merger
4.1.4.3.1.2 E BOX Branch Condition MUX

4. 1.4.3.1.2.1 Repitition Counter
4.1.4.3.1.3 EBOX Control Store

4.1.4.3.2 Fixup Generator
4.1.4.3.3 Status Registers .
4.1.4.'.H EBOX Transmitters/Receivers .

1.1.1.1 Timing .
4.2 lnterconnec.tion Network

5. Summary

.
6. References

Appendix I: Abbreviations .

Append ix 2: . Micro-Code Con venlions

Appendix 3: P-Sequencer Micro-Code Fields

Appendix 4: P-Sequencer Micro-Code Macros.

A ppcndix 5: P-Sequencer Micro-Code . \'

Appendix 6:. I-Sequencer Micro-Code Fields

Appendix 7: I-Sequencer Micro-Code Macros

A pp end ix 8: I-Sequencer Micro-Code

Appendix 9: E-Sequencer Micro-Code Fields

A ppei1d ix I 0: E-Seq uencer Micro-Code Macros

Appendix 11: E-Sequencer Micro-Code .

Append ix 12: Low-Level M aero Drawings

Page

208
213
215
219
221
221
227
229
231
233
235
237
239
211
217
219
253 .
255

273

271

275

278

281

282

313

318

332

336

355

..

...

•

r
. I

•

•

1. Introduction

This report describes the design of an extremely high performance programmable digital filter of
novel architecture, the LLL Programmable Digital Filter (LLL Filter) .

Essentially all of the perceived Navy requirements for advanced digital processing systems may be
effectively addressed with parallel processing systems, in which relatively independent processing
units work in parallel on portions or sub-divisions of the entire problem, exchanging information
with each other during the course of processing. This Is the case whether one is concerned

Nprimarily with fleet defense (in which various processors might provide local control and
,%';) monitoring of sensors or weapons systems while sharing information with each other on the time­
~ varying aspects of attack and defense parameter spaces, both within single ships and between

them), with SOSUS (in wh.ich each hydrophone array might have its own powerful processing
unit exchanging filtered information with essentially identical units in all other stations
monitoring a common region of the ocean, for coherent processing techniques such as aperture
synthesis, or for accuracy enhancement or reliability purposes), or weather prediction (in which
each processor might handle meteorological data acquisition and time-advanced extrapolation for
its own, relatively small section of the simulated air-ocean envelope, exchanging interface
condition information with those of its fellow processors responsible for adjacent sections).

Moreover, the enormous demands on digital processing power which Navy requirements, of which
the foregoing are only examples, impose on modern digital processing technology appear to be
most fully satisfied in the foreseeable future only by extensive use of parallel ptocessing techniques
and hardware. The doubling time for raw processing power from single processing unit
superprocessors (for example,' the CDC 6600/7600 series) has been incre<lsing steadily over the last
decade, and presently appears to be more than 4 years, a sharp contrast to the 1.5 year figure
character'istic of t_he late 50s and early 60s. Parallel processing systems, on the other hand, are
capable of indefinitely great extension. in raw processing power with essentially zero technological
risk and time lag, and moreover, with advance knowledge of system performance and thus cost­
effecti veness

. .
We have therefore undertaken to· determine the optimal structure of a parallel processing system
for addressing the specific Navy application centering on the advanced digital filtering of passive
acoustic ASW data of the type obtained from the SOSUS net.

2 Introduction I.I

1.1 Advantages of Parallel Processors ·

For problems which involve algorithms amenable to parallel processing ([Amdahl 1967),
[Ball 1962], [Carroll 196 7), [Flynn 1966), [Katz 1970)), parallel architectures can offer
certain major advantages over sequential architectures. The advantages result from the
modularity inherent in parallel architectures. These advantages can be categorized as advantages.
of reliability, economy, and size.

The advantage of reliability has been discussed extensively (for example, see [Barker 1975] or
[Hamer-Hodges 1973)); failure of a single module may not entail failure of the entire system if
the module failure can be detected and the module replaced by a duplicate under program control.

Of primary importance among the advantages of economy are the economies of scale in the
construction phase; by repeating the construction of a single processing element many times, the
total cost per processing element may be greatly reduced.

A second economy of scale comes in the design phase. Theoretically, the design cost per processing
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real
parallel processor must include some design costs per processing element which grow as the
number of processing elements is increased, but these costs may be negligible.

A third important economy has been overlooked in previous parallel processor design efforts; it is
the potentially reduced time lag between the freezing of the system design and the delivery of the
first operational system. A !though this time lag may include both hardware and software
contributions, the software contribution will be neglected in this analysis. Essentially, by
replicating a relatively simple processing element many times and using a regular interconnection
network, the lag time mentioned can be made very small; it is virtually independent of the
processing power of the total system. As a result, the semiconductor technology used in a properly
designed parallel processor can be nearly state-of-the-art, whereas the technology used in a more .
complex processing structure must be considerably more out of date. This time-lag phenomenon
will continue to seriously degrade the cost-effectiveness of delivered complex systems as long as
advancing semiconductor technology continues to provide exponentially more cost-effective
c;omponents, but may be essentially eliminated in advanced parallel processing systems.

One additional economy has also been overlooked in the past; this economy results from the
freedom of the parallel processor designer to choose the most cost-effective processing element
structure independent of the processing power of the element. Cost-effectiveness of sequential
processor structures is not constant over all levels of processing power. Although the specific
shape of the cost-effectiveness curve depends upon the technology available and upon the
characteristics of the· target problem domain, for any specific technology and problem domain the
cost-effectiveness curve has a finite number of broad maxima. Because the design of a digital
processing system must be aimed not only toward maximum cost-effectiveness, but toward some
minimum processing power, designers of single processor sequential systems have not been able to
utilize structures with possibly higher cost effectiveness but lower processing power. On the other
hand, the designer of a parallel processor may be able to achieve a total cost-effectiveness which
is nearly the same as the cost-effectiveness of the processing element, and since the processing
element may not be constrained to have a large minimum processing power, to achieve higher
total cost-effectiveness.

Independent of these economic advantages is the advantage of size; regardless of whether it is
economically feasible to build increasingly powerful sequential systems, at some point it becomes
physically impossible (with state-of-the-art technology) to build these machines. It can be argued .

/

'\
\

•

•

•

•

1.1 Introduction

that sequential systems of almost arbitrary speed can be built given enough _resources, and so the
advantage of size reduces to the advantage of economy. However, from a practical viewpoint, at
some point the cost of a sequential system increases so rapidly with speed that this argument is
moot, and in addition, there are theoretical limits both in physics _and mathematics to the speed of
sequential machines, and these limits do not apply to paratlel processors working in appropriate
problem domains. This advantage of par:atlel processor structures is important because for the
forseeable future it will be desirable to build systems with more total processing power; numerical
weather prediction with its real-time constraints is an obvious example.

These arguments about the. advantages of paratlel processors are applicable without modification
orily if the target problem domain can utilize with high efficiency each processor in a parattel
processor system of arbitrary size. The suitability of various problems for paratlel processing has
been the subject of much academic contention ([Amdahl 196 7), [Flynn 1966],
[Minsky 1971]). Unfortunately, only · a few paratlel architectures have proven economicalty
viable, so there has been little impetus to develop new algorithms for exotic paraltel machine
architectures. We believe that the computational simulations of niany large physical problems, for
example, the optimal SOSUS digital filtering. problem, are so welt-suited for parallel processor ·
architectures and so important, that any one such simulation alone is sufficient justification for
the intensive development of such digital processing technology .

•

•

4

2. System Overview.

The LLL Programmable Digital Filter consists of high-performance processors that execute
independent instruction streams and access a common main memory via a crossbar interconnection
network (crossbar). A 11 of main memory is uniformly accessible by every processor.

The crossbar arbitrates access by all processors to 16 block. storage modules (BSMs) which are
interleaved on either the most significant or the least significant address bits (manually selectable).
Ignoring conflicts, approximately I micro-second is required to accomplish a memory read of four
36-bil words.

The · crossbar contains facilities for logically disconnecting (amputating) any processor ..
. Amputation of processor Pi can be invoked by any other processor P1• In order to prevenf ·

processors, errant due to either hardware or software reasons, from performing spurious
amputations, an amputator must, by convention, pass elaborate software correctness tests (which
will involve confirmation by other pr~~essors).

·The programmable digital filter has been optimized to include 16 processors. Each processor
contains a novel dual cache, which buffers the interconnection network against processor accesses.
to instructions and local variables. Processors do not have local memory. No connections exist
between processors except through the crossbar.

Interprocessor communication takes place in main memory; memory management hardware allows
protection of interprocessor communication. Interprocessor synchronization is accomplished by a
combination of primitive mechanisms including interrupts, which can be sent from any processor
to any one other processor over the crossbar, special mutual exclusion hardware, which is
addressed as memory, read-modify-write capability in the crossbar, and special memory access
modes (specified in the virtual-to-real map) which force some memory accesses to bypass the
cac:hes: ·

An extremely high-le.vel instruction set improves the indivic;iual ·processor performance by
reducing the number of instructions which nee~ to be executed. Furthermore, natural addressing
modes are complex, and therefore the processor implementation separates addressing and
execution into three . parallel micro-processors. The instruction set is horizontally micro­
programmed in writeable control store, and can therefore be extensively modified to reduce
execution time and code size for specific applications.

A large virtual memory space is provided in order to allow the architecture and software to
remain fixed while memory costs decline and real memory size increases.

2.1 System Configuration
..

Figure 2.1-1 shows an overview of the LLL Programmable Digital Filter.

Mai_n memory is divided into a· number of block. storage modules (BSMs) that can be
simultaneou~ly and independently accessed by any of the processors. When two or more
processors demand access to any one BSM, memory contention logic establishes a queue. The
queueing discipline is such that no processor can access a given memory BSM twice before a
processor desiring to access that BSM is allowed to access it once.

Each processor communicates with the crossbar over two unidirectional 25-bit cables. The

•

'

•

....

2.1 System Overview 5·

crossbar communicates _with memory over two unidirection~l 50-bit cabJes. Internally, the crossbar
switch is 25 bits serial in each direction. ·

Main memory provides a path for interprocessor communication. Interprocessor synchronization
is accomplished by means of munch registers, which appear as memory locations, hardware
queues, which are accessed as memory locations, read-modify-write capability in the crossbar, and
inter-processor interrupts. Interrupt requests are .sent through the crossbar and are handled by
the interrupt controllers. Whenever a processor is interrupted by its associated interrupt
controller, it performs memory accesses to determine the nature of the interrupt.

Input/output is accomplished in two ways. For low speed 1/0 devices such as terminals, data is
transferred by the writing and reading of the 1/0 control words, which are addressed as memory,
and are located in the various memory controllers. Each low-speed 1/0 device is attached to some
specific interrupt controller, and thus can interrupt one processor. The interrupted processor may
then forward the interrupt. High-speed 1/0 devices (for example, disks) are handled by a direct
memory access (OMA) port, which communicates with main memory in the same way as all the
processors do.

We summarize the the major characteristics of the system architecture as follows:

Multiple (IG) identical processors execute independent instruction streams.

Every processing element can uniformly address all system memory through a (25-
bit serial) crossbar switch.

Each processing e.le.ment has dual private caches to reduce contention for main
memo.ry, to reduce average memory access time, and to insure that system
performance does not seriously degrade as more processing elements (and
.theref o~e a bigger and slower interconnection network) are added .

.Each processing element can direct an interrupt to any other processing element.

Munch registers, hardware queues, and read-modify-write memory capability are
available for synchronization.

The virtual-to-real memory maps include access mode bits which allow efficient
sharing of data and instructions .

6

I

Pe PS P2

/I
126
LVi" ..

''""'>{QI

IHl

/I'-

1/4
/

I

System Overview

1,,. J9 ' "" j\, / /

"'
112

ro ...
"6 ,

""
CROSSBAR SWITCH "7

...

....
"'"
""
""
"' J' j ' rn4i) / }" /

P3 P4 P6 P6 r7 PB P9 P18 P'1 P12 P13 Pl .. Pt~
1

I' /

/ '-/!'-
/26

·'
,,/

!
"g"''

Pt>"('}(" 1tt

I INT

I
{·~

I

~
/

' /

c

,_ PMT

INT L--7

lfi:o
/

Figure 2.1-1
System Configuration

2.1

MEMORY BANK 0

I
esn e

I

G HJ-SPCW
1/0 '°

/

I JHT Cn. i

MEMORY BANK 14

I 89'1 14

I

G 0
IHI-SP£ ml

1,..,0 I

I JHT Cl\.

i

MEMORY BANK 15

I 091 16 I
1L~SP£m: !HJ-SPCID:

)/() ! ! l/O I

I l"T Ct\. I

I

-.

•1

•

•

. :

2~2 System Overview 7

2.2 Processor Organization

The processors shown in Figure 2.1-1 are complete Mgh-performance computing elements which
could be used in either a uniprocessor or multiprocessor configuration; they are extremely cost
effective in either environment.

The processor ·architecture and design are described in Section 3 and Section
4. The basic processor organization is shown in Figure 2.2-.1.

Each processor has dual high-speed caches; one contains only instructions, and the other contains
data. Writes ordinarily do not update main memory, but affect only the caches {see Section

' 3.1 and Section 3.3 for full detail).

A virtual-to-real address map in each processor translates addresses generate? by instructions into
addresses used by the hardware, and also defines access modes for memory pages. A page can be
tagged as not cacheable, in which case it is never placed in the cache, and all writes to the page
then write through to main memory. ·

The Instruction Box (IBOX) contains a .general-purpose micro-programmed sequencer, which
executes out of writeable control store. The IBOX performs all ·operations required to decode
instructions and fetch operands. In particular, the IBOX performs the virtual to physical ac:ldress
translation, implements the various memory access modes, handles communication with the
crossbar, and fields interprocessor interrupts.

The IBOX also controls the Execution Box (EBOX). The EBOX performs all arithmetic and
logical operations except those involved in addressing. The organization of the EBOX is similar
to that of the IBOX; it contains a micro-programmed controller and internal registers. The
EBOX is designed for high-speed floating point arithmetic; its floating point algorithms allow
three rounding modes; true stable rounding, ceili~g rounding, and floor rounding .

•

8

/TO INTERRUPT CONTROL
' ' /

/ TO MAIN MEMORY
' ' /

i
i
i

~ !
i
I

I

System Overview

INSTRUCTION BOX (JBOX)

I
I

I
I
i

I/
I'\.

INSTRUCTION BOX /

CONTROL '
/

'
/I'-

...... /

/

'
EXECUTION BOX

CONTROL

I/

"

EXECUTION BOX (EBOX)

•

Figure 2.2-1
Processor Organization

2.2

~
INSTRUCTION
CACHE MEMORY

'
DATA

/ CACHE MEMORY
... , ____

L-? REGISTERS

~
ARITHMETIC
LOGIC UNIT

I . I
I
I TEMPORARY
~ REGISTERS

I
i
I

·-

..

•

•

•

3. Proce~sor Architecture

We summarize the processor's major architectural features as follows:

•

A very large (228 word) virtual address space to allow each processor to uniformly
address any system memory of feasible size in the forseeable future.

Efficient mechanisms for allowing the execut.ive to communicate with user
processes.

A high-level instruction set ideally suited for compilers .

An instruction set specifically tailored to reduce the frequency of pipeline
interlocks in a high-performance implementation.

The capability to perform three-operand instructions through the use of a unique
"T-field" descriptor. ··. · ·

Comprehensive floating-point capability, including three rounding modes and the
option to trap on excess pre- or post-normalization.

The capability to. directly perform operations on operands of 4 precisions:
quarter-word, half-word, single-word, and double-word.

Special instructions for dealing with the multiprocessor environment.

9

Certain processor implementation details are included in this section for clarity; processor
implementation ·is fully described in Section i.

3.1 Caches

Each processor has a private cache; this cache reduces memory contention and reduces access time
for areas of locality, thereby lowering the performance requirements for the switching network
and main memory.

The cache is implemented in two parts; the irr.struction cache, and the data cache. Both caches can
be reC1d simultC1neously, allowing instructions represeptable in one word, requiring only one
execution cycle, and having at most one memory operand to be executed continuously at a rate of
one instruction per cache cycle (approximately 100 nano-seconds}; the instruction set has l?een
optimized so that instructions of this type predominate dynamically. Each cache is set-associative,
with a set size of 4 and a capacity of iK words (IK lines of 4 words each).

The instruction cache retains only locations accessed as instructions, and the data cache retains
locations accessed as operands of an instruction. (Note, that instruction words may be accessed as
data.} The hardware insures that no memory word is contained in both caches as follows:
Instructions are always fetched from· the instruction cache. If a necessary imtruction is not
resident in the instruction cache, the.n a 4-word line is fetched from the data cache or memory, in
that priority, and is evicted from the data cache. If the line was marked as having been altered in
the data cache, then it is written out to memory. The instniction cache contains no mark bit;
writes and data reads always access the data cache. If a necessary data line is not resident in the
data cache, then it is fetched from the instruction cache or memory, in that

•

10 Processor Architecture 3.1

priority, and is evicted from the instruction cache. This discipline insures that no.memory word is
contai11ed in both caches simultaneously, with the disadvantage that it forces slow transitions
between writing and executing or executing and writing any block of instructions.

The cache uses physical addresses to tag entries, allowing the software to switch virtual address
spaces without sweeping the cache, and eliminating the problem of clogging the cache with
multiple copies of shared read-only data.

For communication or synchronization reasons, it will be necessary at times to insure that certain
variables are not present in the cache of a specific processor. Access modes may serve this
purpose, as described in Section 3.3, but in addition two special instructions are
provided: The instruction "KILL DATA V,L" sweeps the data cache, writing to memory (if
marked) and invalidating every entry which has a virtual address U such that V:sU:sV+L-1 (Lis
assumed to be a count of quarter-words). The instruction "KILL INSTR V.L" performs an
identical function for the instruction cache (in which no entry is ever marked). The instruction
"KILL DATA INSTR" performs both sweeps.

For reasons of efficiency, it may be convenient to avoid invalidating the cache residents swept by
the KI LL instructions. A special . instruction is provided for this purpose: The jnstruction
"UPDATE DA TA V,L" sweeps the data cache, writing to memory (if marked) every entry which
has a virtual address U such that V:SU:5V +L-1 (L is assumed to be a count of quarter-words).
No analogous instruction is provided for the instruction cache, since instruction cache entries
cannot be marked.

· Depending upon the magnitude of L· in these KILL and UPDATE instructions, the hardware
may sweep the entire cache instead of individually sweeping each location in the specified range.

·No instructions are provided which, when executed on processor Pi• cause the cache of processor
P; (i .. j) to be swept. This necessary function will be accomplished by directing a special interrupt
from Pi to Pi which causes P1 to sweep its own cache. ·

3.2 Virtual Memory

The LLL Filter uses paging to map 30-bit virtual addresses to 30-bit. real addresses (although the
particular implementation . of the LLL Filter described in Section i uses only 28-bit
real addresses).

The virtual-to-real address map is shown in Figure 3.2-1. A virtual address space is
uniquely identified by the contents of the segment base register, which is the main memory address
of the segment pointer table for the address space, or is a pointer to the disk address of same. The
segment pointer table is a contiguous list of segment table pointers, Each segment table pnintP.r is
either the main memory address of a segment table, or the disk address of same, or is null.
indicating that the segment table does not exist. Each segment table is a contiguous list of page
table pointers. Each page table pointer is either the main memory address of a page table, or the
disk address of same, or is null, indicating that the page table does not exist. Each page table
contains a list of page table entries. Each page table entry contains either the main memory
address of' a page, or the disk address of same, or is null, indicating that the page does not exist.

An address translation in general involves three memory references, one to the segment pointer
table, one to the segment table and one to a page table; the segment base register is a hardware
register inside the processor. A page map in each. processor contains (for the most recently used
pages) the complete translation from virtual page address to real page add~ess.

...

•

..

• •

3.2 Processor A re h I tee tu re 11

The processor contains two hardware page maps; one translates addresses of locations accessed as
instructions, and one translates addresses of locations accessed as data. Each page map is
implemented as a set-associative memory with a set size of four and a capacity of 61 !?ntries,
therefore 128 address translations can be stored simultaneously in the processor. An entry may be
stored in both page maps. ·

The processor hardware actually contains two segment base registers, EXEC_SEG_BASE_REG,
and USER_SEG_BASE_REG; an instruction may conveniently specify that either be used in
mapping each memory operand· of an instruction (see the discu.ssion of the M bit in Section
3. 7.3.1.2). Each page map entry contains a bit called the base bit, which identifies which of
the two segment base registers the entry is associated with. The address space specified by
EXEC .. SEG_BASE_REG will be called the executive address space, and the address space
specified by USER_SEG_BASE_REG will be called the user address space .

. Whenever a segment base· register is altered, all page map entries associated with that segment
base register must be invalidated: The instruction "WRITE EXEC JUMP X,J" loads
EXEC_SEG_BASE_REG with X, invalidates all page map entries associated with
EXEC_SEG_.BASE_REG, and jumps to location J. The instruction "WRITE USER JUMP X,J"
loads USER_SEG_BASE_REG with X, invalidates all page map entries associated with
USER_SEG .. BASE_REG, and jumps to location J. ·

In user mode, any reference to the executive address space causes a trap to the executive trap
vector at address REF_EXEC. The executive may refer to the user address space without
trapping.

Whenever a necessary translation is not resident in a page map, the necessary entry is fetched
from memory and placed in the page map. A page map resident may be evicted in this process,
but page map residents need not be written to memory when evicted. Whenever an entry is
fetched from memory, the reference bit is set in the page table entry in memory; this reference bit
is used by the operating system in the page replacement algorithm:

The data cache page map contains a mar4 bit for each entry. When a write occurs, if the page
written is unmarked in the data cache page map, then ~he mark bit is set in the appropriate page
table entry in memory and in the data cache page map. If the page written is marked in the data
cache page map, then the page table entry in memory is not modified. Mark bits are not
necessary in the instruction cache page map since all writes are done to the data cache.

Whenever the executive needs to modify page table entries to renect the changing configuration
of real memory, a protocol must be invoked which removes invalidated page table entries from
the two page maps of each processor. The hardware refills the page maps directly from main
memory, bypassing the caches, therefore invalidated page table entries need not be removed from
the caches. Special instructions are provided for removing entries from both page maps
simultaneously: For example, the instruction "KILL USER MAP V" will remove any entry in the ·
instruction cache page map or the data cache page map which maps virtual address V in the user
address space to any real address. The protocol mentioned above then requires that the processor

. Pi• executing the operating system, interrupt each processor P1 which may have in its page maps
the entz;y to be modified, and cause each such P1 to execute a KILL USER MAP instruction.

. 12 Processor Architecture 3.2

VIRTUAL ADDRESS

8
I

6 I 6 I .s I 2 I
0 7 8 . 13 14 19 20 27 28 29

SEGMENT ..
·poJNTER TABLE

- '-/
' 0
/ QW/HW SELECTION

/\
O')

SEGMENT TABLE N

cg
v

~ Fl 30 B ' 0 c.:J / LU
a:
LU PAGE TABLE (f)

<
CJ)

~ Fl 30 B ~ 0 -t.:>
LU
(f)

255
~ ;F1i20'··a.J A. ~ PAGE

- , __ -· ···- -- . ' 0 64 ,,

F: VALi D BIT
DISK/MEMORY FLAG

64 ----7 WORD

A: PAGE ACCESS MODE BITS

2 56

•.

Figure 3.2-1
Virtual to Real Address Translation

3.3 Processor Architecture 13

3.3 Memory Access Modes

Each page table entry includes bits which specify the access inodes of the page. The names and
meanings of these bits are as follows:

Instructions. If this bit is . false, then a hard trap to the executive at trap veetor
· NOT~INSTRUCTION will occur when a location from this page is accessed.as an instruction .

•
Data. If this bit is false then a hard trap to the executive at trap vector NOT _DA TA will occur

·_when a location from this page is accessed as an operand of an instruction.

Read-through. If this bit is true~ then any read of a location on this page will cause a memory
access to occur; the resulting data will be placed in the cache if and only if the location is already
a cache resident.

Write-only. If this bit is true, any read from a location on this page will cause a hard trap to the
executive at trap vector WRITE_ONLY. · ·

wrTte-allocate. If this bit is true, then any write miss will allocate a cache entry and the data will
be written into the allocated entry. Write hits will simply update the cache entry. If this· bit is
false, then a ·write miss will not allocate a cache entry.

Write-through. If this bit is true, then any write will update memory. If the write is a write hit,
then cache will be updated as well. If the write is a write miss, then if and only if the write­
allocate bit Is true, a cache entry will be allocated and written.

The combination in which both write-allocate and write-through are false is reserved to mean
"read-only". A write to a read-only page will cause a hard. trap to the executive at trap vector
READ_ONLY.

Combinations of these bits allow us to obtain many useful access modes, of which the following
are examples:

Local-data (data " write-allocate) A cache miss caused by reading an operand from a local-data
page causes the four-word block containing the missed word to be read over the switching
network and placed in the data cache. Writes to local-data pages do not write tltrouglt to main
memory. Whenever it is important that the memory shadow of a local...:data page be made
identical to the cache,. the "UPDATE DATA" or "KILL DATA" instruction must be executed to
update main memory. It is intended that the private variables of a process be identified as local­
data pages; cache sweeping will be necessary if the process ever moves to another processor.

Cached-read-data (data) A cache miss in a cached-read-data page causes the missed word to be
read over the switching network and placed in the cache. No writes are allowed to a cached­
read-data page; such a page is created by writing it as a local-data page, executing the instruction
"UPDATE DAT A" or "KILL DA TA", and finally changing the appropriate page table entries to
convert the page into a cached-read-data page. A cached-read-data page is destroyed by
destroying the access route to the page, that is, by destroying all information about it in page
tables in memory, and removing it from all page maps. Although locations from a cached-read­
page may be resident in the cache, they will be replaced by new cache residents. Since locations
from a cached-read page can not be marked in any cache, no cache sweep is necessary to destroy
such a page.

•

Processor Architecture 3.3

..
Static-code (instructions). A static-code page is similar to a cached-read-data page. that is, it is
cached, created, and destroyed In the same way as a cached-read-data page. However, locations
on a static-code page can be accessed only as instructions. It is intended that shared routines will
be identified as static-code.

Dynamic..:.code (instructions /\ data " write-allocate). In order to avoid the large overhead of
cache sweeping and page-table modification, some programs may w_rite dynamic-code pages and
execute them immediately. Dynamic-code pages are the same as local-data pages, except that
locations from these pages may be accessed both as instructions and ·as data.

Shared-data (data /\ read through /\ write-through). Words from shared-data pages are never
placed in the cache. A write to a shared-data page writes through to main memory without
writing in cache (write-allocate is false), and a read from a shared page reads directly from main
memory. I/0 registers and munch registers (see Section 3.4) are on shared-data paees.
In addition, locations which are heavily shared by multiple processors are on shared rages,
eliminating the necessity to perform repeated cache sweeps when passing small amounts o data
between processors. '. · ·

3.4 Synchronization

Several mechanisms are provided to allow efficient process synchronization: interrupts, read­
modify_-write memory capability, mun.ch registers, and hardware task queues.

3.4.l Interrupts

Each BSMi contains one interrupt controller, which is directly attached to processor Pi by four
interrupt lines, INT_LTNE<0:3>, as shown in Figure 2.1-1. The function of the interrupt
controller is to receive interrupts from 1/0 devices (both low- and high-speed), which are directly
connected to rhe interrupt controller, and from processors, which send interrupts through the
crossbar, and to assert the interrupt lines accordingly .

The interrupt controller contains four 36-bit registers, INT _REG[0:3]<0:35>, which can be
accessed over the crossbar as memory locations .. The sole function of the interrupt controller is to
set INT _LINE<i> if and only if INT _REG[i]<j>= I for some j. Each 1/0 device is connected to
one bit of one INT _REG; the I/0 device interrupts by setting that bit. No 1/0 device i.!I

· connected to INT _REG[O]. Any processor Pi ma.y interrupt any other processor Pi by setting some
bit in P;'s INT _REG[OJ. Specifically, "SET INTERRUPT J,I" executed by any processor sets
location J to (J or I) using a read-modify-write memory access. By convention, when Pi interrupts.
Pi, Pi will set bit i in P;'s INT __REG[O].

Whenever INT_ LTNE<k> to processor P; is asserted, P; compares its current priority (PRIO) to k,
which is- the priority of the interrupt. If and only if PRIO is less than k, P1 will .acknowledge the
interrupt by resetting a bit in its interrupt register INT __REG[k] under micro-code control. If
more than one INT _LINE is asserted, then the INT _LINE with the higher priority will be
acknowledged first.

After acknowledging the interrupt, P; interrupts to the executive at a specific interrupt vector, the
address of which depends upon the identity of the 1/0 device or processor which caused the
interrupt; that identity is fully determined by the index of the bit in INT __REG[k] which caused
the interrupt and which Pi reset in acknowledgement. Section 3.7.4.10 contains a complete
description of flow of control during an interrupt after interrupt acknowledgement.

3.i.2 Processor Architecture 15

3.4.2 Read-Modify-Write

The crossbar network has the capability to perform read-modify-write memory cycles. This
capability· is used to implement special instructions such as "TEST AND SET", and
"INTERRUPT", and to implement hardware queues. Normal instructions which access a memory
location as both a source and the destination do not use read-modify-write memory access
capability.

To perform a read-modify-write memory access, processor Pi, under micro-code control, sends a
read-modify-write request to the crossbar. The crossbar causes the addressed memory module to
read and returns the data to Pi. The crossbar prevents any other processor from accessing the
selected memory module unt~l ·Pi returns a write.

3.4.3 Munch Registers

We borrow the concept of munch registers from Steele ([Steele 1975)). Associated with each
processor is at least one munch register. Munch registers are identified by their page table entries
as being shared-data. The instruction "MUNCH SKIP NOT FULL ADR M,V" executed by
processor Pi translates V into a real address R and writes R into the munch register at address M.
The munch register controller allows R to be written into M if and only if no otlter muncla register
contains R, otherwise the controller writes zero into M. After writing to M, Pi reads M and skips
if and only if the result is non-zero, that is, if and only if there was no conflict.

Munch registers can also be read and written with normal memory-reference instructions, in
particular, a munch register M is returned to the free state by writing zero into it. Note that the
munch register controller always checks conflicts on writes to munch registers, even in the case in
which zero is being written to the munch register.

Munch registers are designed primarily to allow processors to enqueue on very small data elements
without wasting storage by having a separate flag for each element. Munch registers are
implemented as an associative memory with special control logic connected to a memory port. Any
munc.h register is accessible by any processor, but munch registers will be allocated by software to
processors, and that allocation will be enforced by the memory mapping hardware .. There are
enough munch registers to allocate several to each processor.

Note that thP. executive will update the munch registers when evicting or re-loading munched
pages.

3.4.4 Hardware Queues

There exist several hardware queues which are addressed ·as memory locations. Special
instructions such as "QUEUE" and "DEQUEUE" manipulate the hardware queues by using read­
modify-write memory accesses. For example, when processor Pi performs a "QUEUE SKIP NOT
FULL ADR Q,X" instruction, in a read-modify-write cycle, it reads the state. of the hardware
queue at address Q, and if the queue is not full, places X on the queue and skips to ADR. ·Jf the
queue is full, then Pi places nothing on the queue. (writing to a dummy location in the queue
controller in order to satisfy the crossbar that the read-modify-write cycle has been completed)
and does not skip.

Hardware queues allow the rapid dispatching of tasks. without the necessity of using munch
registers or TEST AND SET instructions. Both FIFO and LIFO queues are being provided.

16 Processor Architecture 3.5

3.5 Status

The hardware register STATUS;_REG<0:35> contains both. processor and user status. The
processor status can be accessed only in executive mode, whereas the user status can be accessed in
either e~ecutive or user mode.

3.5.1 Processor Status

The processor· status portion of STA TUS_REG is accessible only by means of the instructions
"READ FULL STATUS", and "WRITE FULL STATUS JUMP"; these instructions read or
write the entire STATUS_REG, including both processor and user status. The processor identity
(PROCESSOR_ID<0:35>) is a unique number for each physical processor; it is considered part of
the processor status and is read with the instruction "READ PROC ID". The execution of any of
these instructions in user mode causes a hard trap to the executive at trap vector address·
ST A TUS_A CCESS. .

The fields included in the processor status are as follows:

SP .. 10<0:4>
Stack pointer identity. This field. is the address of the register used as the stack pointer in some
instructions. The stack limit is always the next contiguous register. SP refers to the stack pointer
register, and SL refers to the stack limit register.

EX EC_.FILE<O: I>
Executive register file. This field is the index of the register file used for operands and
addressing in the executive address space. (See Section 3. 7.2 for reserved file indices.)

USER_FILE<O:I>
User register file. This field is the index of the register file used for operands and addressing in
the user address space. Furthermore, when executing in the executive address space, the lowest 32
single-words of the address space refer to these registers. nqt to real memory locatinni.. (SeP
Section 3. 7.2 for reserved file indices.)

USE __ SHA DOW
Use shadow registers. If this bit is set, then memory addresses 0 to 127 (the first 32 single-words
of the virtual address space), when mapped in the user adqress space, actually access mP.mnry
locations; otherwise, these memory .addresses access the user register file.

PR10<0:2>
Processor priority. Interrupts with priority less than or equal to this number will not interrupt the
processor.

EXEC .. MODE
Executive mode. The executive is currently In execution if and only if this bit is set; privileged
instructions may be executed without trapping. ·

TRACE_ TRAP
Trace trap. A ftet any instruction, perform a hard trap tc;> the executive at trap vector address
TRACE. The effects of changing this bit do not appear until after the instruction following the
Instruction which changes the status word.

•

.,

3.5.2 Processor Architecture 17

3.5.2 User Status

The user status portion of SJ"ATUS_REG is accessible in either user mode or executive mode,
only by means ·of the instructions "READ USER STATUS", and "WRITE USER STATUS
JUMP". This portion of the STATUS_REG will also be called U~ER_STATUS_REG.

The fields included in USER_ST A TUS_REG are as follows:

COND<0:4>
Arithmetic condition codes negative, .zero, overflow, carry-out, and underflow. Every Ooating­
polnt and integer operation may set these condition codes. Only floating-point operations set
underflow.

INT _TRAP
A !low integer overflow traps. Integer overflow will soft trap to the trap vector at address
INT _OVFL.

FLOAT_TRAP
A !low floating-point underflow and overflow user traps. Floating-point underflow will soft trap

·to the trap vector at address FLOAT _UNDFL. Floating-point overflow will soft trap to the trap
vector at address FLOAT _OVFL.

. PRE_LIMIT <0:5>
Prenormalization limit. If a floating-point number is prenormalized more than this amount and
PR.L.TRA P is true, then a soft trap will occur to the trap vector at address PRE_OVFL. The
value PRE_LlMIT <0:5>=63 is reserved by the hardware to mean "never trap".

POST _LIMIT <0:5>. .
Postnormalization limit. If a floating-point number is postnormalized more than this amount and
POST_ TRAP is true, then a soft trap will occur to the· trap vector at address POST _OVFL.
The value POST _LIMIT <0:5>=63 is reserved by the hardware to mean "never trap" .

•

. 3.6 Input/Output

The processor performs 1/0 by manipulating 1/0 registers which are logically located in the main
memory address space and physically located in the 1/0 controllers.

. . .

Each 1/0 device (both low- and high-speed) has a direct connection to its 1/0 registers (which
are located in one 1/0 controller). Protection of 1/0 devices from access by unauthorized
processes is accomplished by using the memory protection facilities (Section 3.3). 1/0 registers
must be marked in each p.age map as shared-data so that they will not be placed in the cache.

As explained in Section 3.4.1, each 1/0 controller can interrupt only one processor, and therefore
each 1/0 device can directly interrupt only one processor. However, any processor receiving an
interrupt may forward that interrupt to any other processor by means of the interprocessor
interrupc facility. ·

18 Processor Architecture 3.7

3.7 Instruction Set Definition

The processor executes instructions which are from one to three 36-bit words in length. With
certain restrictions on the addressing modes, many instruction types can operate on 9, 18, 36, or 72
bit operands, called quarter-word (qw), half-word (hw), single-word (sw), and double-word (dw),
respectively.

We first consider the justifications for a 36-bit word (as opposed to a 32-bit word). First, without
devastating changes, the LLL Filter instruction format would not fit into 32-bits. Furthermore, it
is important for an entire address to fit in a single word, and for there to be room left in the word
to spetify an index register and an indirect bit (as in the PDP-I 0). Finally, a 36-bit word allows
reasonably large addresses to be packed in a half-word; a 32-bit word does not.

The disadvantages of a 36-bit word are (I) that it is incompatible with a number of machines,
and (2) that it makes addressing standard 8-bit bytes difficult. In answer to the second problem,
the LLL Filter allows quarter-word. addressing (a quarter-word Is a 9-bits); considering the
exponentially decreasing cost of memory, it seems reasonable to waste the extra bit in those

·applications which cannot find a use for it.

In order to allow more efficient utilization of memory, the LLL Filter includes the PDP- I I feature
which allows most instructions to operate on multiple operand sizes; in this case the sizes are
quarter-word (9-bits). half-word (18-bits), ~ingle-word (36-bits), and double-word (72-bits). One
major problem with multiple operand types is the necessity to shift addresses; the IBM-370 and
PDP- I I can spend a large fraction of their time shifting array indices. To overcome this
problem, the LLL Filter includes addressing modes which automatically allow an index to be
shifted left 0, I, 2, or 3 places; this feature makes it convenient for a compiler to work with arrays
composed of any of the basic operand types.

A not her design goal was to simplify the task of writing a compiler that produc;es c;ompact and
efficient code. A II operand addressing in the LLL Filter is completely symmetrical, that· is, every
operand uses the same address computation procedure. The LLL Filter also provides the reverse
form of all non-commutative operations, and allows indexing off of local variables on the stack.
Because of the operand addressing symmetry, a compiler can perform code generation almost
independently of deciding which variables are to be on the stack and which are to be in high~
speed registers.

The most important single design goal was to allow convenient access to a very large address
space; such an address space may allow a new architecture to survive for a long period even in
face of exponentially decreasing memory costs, thus amortizing the expensive software
development effort.

The LLL Filter architecture includes multiple-word instruction formats (one to three 36-bit
words) in order to allow sufficiently powerful instructions that the code density lost in specifying
large addresses is not important. Using the LLL Filter instruction format, the total number of bits

• needed to represent a program is in general less than the number needed to represent the same
program on the IBM-370, and ap.proximately equal to the number needed on the PDP-10.
Section 3. 7.5. gives a number of examples to substantiate this claim.

The instruction set is horizontally micro-coded in writeable control store. The instruction set
definition which follows is fixed in some respects, for example, in the operand addressing modes,
but the· data paths in the implementation are sufficiently general and the control store Is large
enough that the instruction set can be extensively modified, either by the inclusion of new special

•

.•

3.7 Processor Architecture 19

purpose instructions, or by the replacement of existing instructions; such modification simply
involves writing new micro-code.

3~7.1 Notation and Conventions

· Bits in a word, quarter-wor~s. and half-words ar~ numbered from left to right (most significant
to least significant). The bits in a word are numbered from 0 to 35, and subfields in a word are
referenced by the notation X<i:j>, where i is the bit number of the high-order bit in the field,
and j is the bit number of the low-order bit of the field. Using this notation, the quarter words
in'a word X are X<0:8>, X<9:17>, X<l8:26>, and X<27:35>; these quarter-words are numbered 0,
I, 2, and 3, respectively. ·

In a number of places in the description, a field is used as a signed two's complement number. If
F is such a field, then the notation SIGNED_F (or simply S_F) refers to F considered as a two's
complement number. · ·

Some instructions operate on a pair of data objects, Sl)ch as two quarter words, or two single
words. If X is the first object of such a pair, then second one is refered to as NEXT _X. X and
NEXT_X are contiguous, that is, if X and NEXT_X are addresses of objects of length L quarter
words, then NEXT _X .. X + L.

3.7.2 Registers and Memory

The processor hardware includes 4 stacks of 32 registers each, REG_FILE[0:3][0:31)<0:35>.

REG_FILE[USER_FJLE<0:1>][0:31] and REG_FILE[EXEC_FILE<0:1>)[0:31] will sometimes be
called USER_R[0:31] and EXEC_R[0:31], respectively. R[0:31] will mean USER_R[0:31] if
EXEC. MODE=O, and will mean EXEC_R[0:31) if EXEC_MODE·I.

Certain instructions make use of a stack pointer and stack limit register, called SP and SL,
respectively. SP will mean R[SP _ID), and SL will mean R[SP _ID+ I], where SP _ID is the stack
pointer identity field in the STA TUS_REG.

Registers can be addressed as memory; the lowest 32 single-word addresses of the executive
address space refer to EXEC __ R[0:31), and the lowest 32 single-word addresses of the user address
space refer to L!SER __ R[0:'31l

REG_FILE[O] is dedicated for use by the hardware and micro-code. REG..:.FILE[0][0:31] will also
be called TEMP[0:3 l), since it contains many hardware temporary locations. In the following
sections we will refer to some registers in REG_FILE[O] by name as follows:

EXEC_SEG __ BASE_REG Executive segment base register.

USER_SEG_BASE__REG User segment base register.

REG_FJLE[O] can be accessed by the executive by setting USER_FILE<O:l>=O and referencing
the registers as memory locations in the user address space .

· REG_FJLE[1:3) are not dedicated; it is intended that they will contain executive and user
registers.

•

20 Processor Architecture

The instruction set gives hardwired functions to some registers, as shown below:

R[O]
R[I]
R[2]
R[3]
R[4]
R[5]
R[G]
R[7]
R[9]

R[30]
R[3 I)

•

no .short indexing allowed
no short indexing allowed
no short indexing allowed
program counter (PC)
low-order word of temporary register RTA (RTA[O])
high-order word of temporary register RTA (RTA[I])
low-order word of temporary register RTB (RTB[O])
high-order word of temporary register R TB (R TB[I))
general ~urpose register

general purpose register (receives first parameter of trap)
general purpo5e register (receives second parameter of trap)

3.7.2

The registers RTA and RTB can be used as a third address in some instructions, as explained in
Section 3.7.3.

The instruction set can manipulate the R registers as easily as memory locations, and special
instructions are provided for saving and restoring R ·registers during interrupts, traps, and
subroutine calls.

Unless otherwise specified, all addresses in this description are quarter-word addresses. Directly
addressable main memory consists of 230 quarter-words which can also be accessed as half-words,
single-words, or double-words.

In order to facilitate computing with data of' multiple precisions (qw, hw, sw, and dw), instructions
are included for each precision. Some instruction types operate on only a subset of the possible
precisions, for example, floating point instructions operate only on single-word and double-word
operands. Most mstructaohs assume that both source operands and the destination ate .or the
same precision, although some mstructaons are provided for converting from one precision to
another.

Half-w.ord operands must lie on half-word boundaries, single-word operands on single-word
boundaries, and double-word operands on double-word boundaries. Any violation of this
boundary rule will cause a hard trap to the executive trap vector at address
BOUNDARY _ERROR. The registers in the register file are considered to lie on contiguous
single-word boundaries. Instructions must lie on single-word boundaries.

Note that a quarter-word add, for example, specifying R[16) and R[l 7) ·as source operands and
R[18] as the destination operand, Will add the high-order quartet-word Of R[IGJ to the high­
order quarter-word of R[17], and store the quarter-word result in the high-order quarter word of
R[l8].

3.7.3 Instruction F'ormats

Every instruction is either one, t~o. or three 36-bit words in length. The first instruction wc>rd
includes the opcode,. and specifies part or all of the address computation for the operands. The

. 3'.7.3 Processor Architecture 21

second and ·third instn,.1ction words are used for long immediate constants and for extended
addressing.

Four basic instruction formats apply to the first word of an instruction, as follows:

Three-Address Instruction

TOP T 001 I 002

0 9 10 11 12 23 24 35

Two-Address Instruction

XOP 001 002 .,
0 11 12 23 24 35

Skip Instruction

SOP SKP I 001 002

0 7 8'. 11 12 23 24 35

Jump Instruction

I.
JOP IPRI 001 J

0 10 11 12 23 24 35

• TOP, XOP, SOP, and JOP are opcodes. OD I and OD2 are general Operand Descriptors; they
. specify general operands which can be memory locations, registers, or constants. (It should be
noted tpat the address computation algorithm is identical for the OD I and OD2 fields.) The T
field specifies how tp use the registers RTA and RTB as a third operand in the instruction. SKP

. and J specify a skip distance and a jump· distance or jump address, respectively. PR specifies
whether to use J as an offset to the PC or as the descriptor of a memory address (as are OD I and
OD~ .

The three-address instruction format allows two general memory addresses to be specified, along.
with a third operand, eUher RTA or RTB. This instruction format provides most of the
advantages of a true three-address format (that is, the elimination of "move" instructions to make
copies of operands at the beginning of an expression), but costs only two bits in the instruction
word .

•
The two-address instruction format allows two general memory addresses to be specified, and is
primarily used in data transmission instructions (which have one source and one destination
operand).

The skip instruction format allows a forward skip of from 0 to 7 words, or a backward skip of I
to 8 words (from the location of the current instruction); it is useful for implementing small
conditional loops and IF-THEN-:-ELSE statements.

I

22 Processor. Architecture 3.7.3

A jump instruction having PR= I can jump anywhere in the range of PC+2047 to PC-2048 words
(where PC is the ac;ldress of the next instruction), and in that case requires no additional word to .
specify the jump address. If PR=O, J may specify any memory address, at the possible expense of
requiring an additional instruction word.

3.7.3.l General Operand Address Specification

We first consider some notation and conventions. If X is the address of a memory location, then
M [X] will mean the contents of that location. The length of M[X] will be clear from context, it
may be either quarter-word, half-word, single-word, or double-word.

Indefinite-level indirect addressfng is denoted using the character "@", and is defined as follows:
Let IA P (Indirect Address Pointer) be th·e contents of a register. or memory location:

JA P.: format tor Indirect Addreu Vomter

0 1. 5 6

Then @IA P is an address, defined as follows:

l

0
1
0
I

REG

=0
0
.. o
ptQ

A

@IAP

A
eM[A]
A+R[REO]
@M[A+R[REG)]

35

The evalu_ation of all operands (including the jump or skip destination) logically occurs before the
execution ·of the instruction (and before the PC is updated). · .

. .
The evaluation of a general operand proceeds in two steps, which .are discussed in the following
sections. ·

3.7.3.1.1 Short-Operand Address Calculation

A short operand can be one of the 32 registers R[0:31], a memory location which is addressed as a
short offset from a register, a short immediate constant, or several other entities. The name "short
operand" derives from the fact that such operands require only a short descriptor in the
instruction. An exact definition follows.

3.7,3.1.l Processor Architecture 23

The 12-bit operand descriptor fields (ODI and OD2) ·specify short operands, and may also
specify extended indexing. They have the following format, where the bit numbers are relative to
the origin of the field:

OD: Format for OD I and OD2

1· x I I F I REG I
0 1 2 6 7 il

These fields specify extended indexing (X), indirection (I), a short offset (F), and a register name
(REG). A short operand (SO) is defined as the location specified by the fields I, F, and REG; it
is eva_luated as follows:

! E REG Short Operand (SO) Mode Name

0 0:..31 0 R[F) register-direct
I 0-31 0 M[@R[F)] register-indirect

0 0-31 S_F short-constant (- 16 to + 15)
I 0-31 0 short-zero

•
0 0-31 2 0-31 (reserved)
I 0-31 2 0-31 (reserved)

0 0-31 3-31 M[R[REG]+S_F*4] short-indexed
I 0-31 3-31 M[@M[R[REG])+S_F*4] sho~t-indexed-indirect

IF X=O, then the value of the operand described by OD is simply SO, as above. Addressing
modes in which X= I are described in the next section.

A II memory address mapping is done in the own address space when calculating short operands.

Short-zero mode is provided only as an escape to allow absolute memory addressing; short-zero
mode with X =I addresses memory absolutely, as explained in the next section.

It is intended that all of the simple variables (i.e. local variables on the stack and own variables)
be accessed directly in short-indexed mode. Short-indexed mode is of such utility that we call
locations accessed using this mode pseudo-registers (or P registers).

The only variables that can not be conveniently addressed using the short-operand addressing
modes are arrays and variables which are allocated at absolute addresses in memory. Such
locations are accessed by using extended addressing modes, as described in the next section.

•

24 Processor Architecture 3.7.3.1.2

3.7.3.1.2 Extended Addressing

Extended addressing is specified by setting ~he X bit in the operand descriptor (OD I or OD2).
In extended addressing mode, the next word in the instruction stream is used in the operand
cakulation. This word Is either the second or· third word of the instruction, and has one of these
formats:

E: Format for fllced-base extended addressing

0 1 2 3 4 56 35

V: Format for variable-base extended addressing

I I 1 I 0 I M I s I REG 1. DISPLACEMENT

0 1 · 2 3 4 5 6 10 35

C: Format for long constant

36-BIT IMMEDIATE CONSTANT

0 35

Given that the X bit is set in the opera'nd descriptor (OD I or OD2), then, with one exception, the.
·additional word in the instruction is used to calculate an extended address, and is interpreted
either as fixed-base format (E), or variable-base format (V), depending upon the value of the Y
bit (bit I) of the word itself. The exception noted is that ii the operand descriptor specifies short­
constant. mode, then the additional word is interpreted as a long constant (C), and ·provides a 36-
bit immediate constant which is used as the operand. Th~s addressing mode is called long­
constant mode. In the following discussion we will ignore long-constant mode.

The first step in the extended address calculation is to calculate the base address BASE to be
used in the indexing operation. If the the additional word in the instruction 'has fixed-base
format (E), then BASE is given by

BASE!"' ADDRESS

If the additional word in the instruction has variable-base format (V), then the register R[REG]
contains the base address, and DISPLACEMENT is an additional offset as follows: ·

RASF. :e R[RF.r.J + Slr.NF.n nISPI.A~f.MF.NT.

Let SO be the short operand specified by the operan.d descriptor. If the indirect bit (I) in the
ex tended word is zero, then the value of the operand addressed by using extended addressing is

M[BASE + so*~]

If the indirect bit is one, then the value of the operand is

•

3.7.3.1.2 Processor Architecture 25

It should be noted that the extended addressing mode always includes an indexing operation, but
that if short-zero is the short-operand addressing mode, then so .. o, and the address computed
using extended addressing i~ just BASE. Note also that. automatic address shifting occurs in
extended addressing mode, that is, the value SO is shifted left by S bits (where S is a field· in ~he
extended word) bef~re being added to BASE.

The M bit facilitates communication between the executive and the user, which operate in
different address spaces, by allowing instructions executed by the executive to have either operand
mapped in either the user or the executive address space. Only the ftnal address mapping in the
operand calculation procedure is affected by the M bi~, as follows:

M. EXEC MODE Final Mapping Space

0 0 User address space.

0 Executive address space.

0 (Hard trap to REF _EXEC.)

User address space.

Table 3.7.3.1.2-1
M Bit Interpretation

The duplicate bit (D) specifies that the two operands of the instruction use· the same extended
instruction word; it simply inhibits the program counter from being incremented after the first
operand is evaluated. This feature· is useful when both operands are elements of the same array,
but are accessed using different index re.gisters.

3.7.3.2 Three-Address Instructions

Three-address instructions have the format:

~~·-'~J·_· _r__...__ __ 0_0_1 ___ · j _____ o_o_2 __ _.

9 10 11 12 23 24 35

The TOP field includes the opcode· and specifies the precision (qw, hw, sw, or dw) of the
operation.

Fields ODI and OD2 are general operand descriptors, as described in Section 3.7.3.I; they may
denote R registers, P registers, general memory locations, or immediate constants.

The two-bit T field specifies whether RT A or R TB is used as the third address of the
. instruction, where OD I and OD2 specify- the other. two addresses. Specifically, the operation.
evoked by a three-!lddress instruction is described using the names DEST, SI, and 52, for
ex amp le, DEST 4-S I 0S2, or DEST +-S20S I, where "0" means the ·operation evoked by the TOP
field, and S2, SI, and DEST have meanings as shown in the following table. In this table, OP I
means the operand described by fi~ld ODI, and OP2 means the operand described by field 002: .

•

26 Processor Architecture 3.7.3.2

T DEST ~ ~

00 OPI OPI OP2

01 OPI RTA OP2

10 RTA OPI OP2

11 RTB OPI OP2

Table 3.7.3.2-1
T Field Meaning

These addressing modes are sufficient to aiiow any FORTRAN assignment statement except those·
of the form "A+-B+C" or "A+-B(I+J)*C(K+L)+D(M+N)*E(L+P)" to be evaluated with no move
instructions to make copies of operands or to store away the result of the expression. The first
exception clearly needs a full three address instruction if it is to be evaluated in one instruction,
and the second requires a third RT register. Because of the binary nature of arithmetic operators,
all other types of expressions require only two RT registers. For example, if two of the subscripts
of the second example were the same, or if one the subscripts were a simple local variable, or were
of the form "I+ J+K", then two RT registers would be sufficient to evaluate the expression with no
move instructions. In Section 3.7.5.2 some examples are given which show code using the
RT registers.

Preliminary evidence suggests that for typical FORTRAN assignment statements, LLL Filter code
using the RT A and R TB registers contains .5 to . 7 times the instructions necessary for the PDP­

. 10.

3. 7.3.3 Two-Address Instructions

·1 ·wo-address mstruct1ons have the format:

XOP 001 002

0 11 12 .23 24 35

The XOP field includes the op-code and _specifies the precision (qw, hw, sw; or dw) of the
operation.

Fields OD 1 and 002 are general operand descriptors, as described in Section 3.7.3.l; they may
denote R ·registers, P registers, general memory locations, or immediate cons~ants.

•

3.7.3.4 Processor Architecture 27

3.7.3.4 Slcip Instruction~

Skip instructions have the format:

SOP I SKP 001 002

0 7 8 11 12 23 24 35

The SOP field includes the op-code, specifies the precision (qw, hw, sw, or dw) of the operation,
and specifies the condition on which a skip will be taken.

Fields ODI and. 002 are general operand descriptors, as described in Section 3.7.3.1; they may.
denote R registers, P registers, general memory locations, or immediate constants.

The SK P field contains a skip distance in words. If the skip condition is false at the end of the
current instruction, then the next instruction to be executed is the next sequential instruction. If
the •skip condition is true, then the quarter-word address of t.he next instruction to be executed is
PC+4*SIGNED_SKP, where PC is the address of the current instruction.

3.7.3.5 ju111p Instructions

Jump instructions have the following format:

J

0 10 11 12. 23 24 35

. The JOP field includes the op-code, specifies the precision (qw, hw; sw, or dw) of the operation,
and specifies the condition on which a jump will be taken.

Field OD I is a general operand descriptor, as described in Section 3.7.3.I; it may denote an R
register, P register, general memory location, or immediate constant.

The J field l'p~r.ifieli ·a jump destination JUMPDEST. It is interpreted differently _d_ep_ending
upon the value of the PC-relative (PR) bit. If the PR bit is one, then JUMPDEST is
PC+4*SIGNED __ J where PC is the address of the current instruction. If the PR bit is zero, then
J is taken to be a general operand descriptor. (002), and JUMPl>EST is the address of the
operand described by that operand descriptor.

Jumps to the user address space performed in executive mode hard trap to the executive at trap
vector address JUMP _USF.R; all control transfers to the user address space must be performed bt
means of "TRAP EXEC", "RETURN FULL STATUS", and "WRITE FULL STATUS JUMP
(which may c:h::1nge the mode to user. then jump).

•

28 Processor Architecture 3.7.4

3.7.4 Instruction Descriptions .

This section describes the instruction set which is currently being micro-coded for the LLL Filter .
. For the sake of clarity, we have not used a formal descriptive system, but have developed our own
set of largely intuitive descriptive mechanisms and conventions.

Each instruction is defined by showing the opcode string of the instruction and the operation of
the instruction. The opcode string contains terms which are separated from each other by one or
more spaces and together uniquely define the instruction.

This section also describes sequences of operations which are not instructions (for example, the
interrupt procedure). The opcode string column for such sequences shows a function name (in
italics), and the function's formal parameters. A function defined in this way may· be called from
the definition of any instruction. '

Curly brackets are sometimes used in writ.ir:ig terms of the opcode. Several strings (sub-terms)
may be grouped in curly brackets and separated by commas, for example {Q,H,S,D}; this notation

. means that any one of the bracketted strings may be substituted in place of the brackets and
everything enclosed in the brackets.

The curly-bracket notation may also be used in the operation column. Let X and Y represent any
two curly-bracketted strings such that the number of sub-terms Xi of X is equal to the number of
sub-terms Yi of Y. Then if X appears in the opcode column, Y may appear in the operation
column, with the following meaning: If an opcode is constructed by choosing Xi in place of the
term X, then the operation of that opcode is formed by replacing Y by Yi. In some cases, more
than one curly-bracketted term is used in the opcode column; let W and X be two such terms. In
this case, if curly-bracketted term Y appears in the operation column, Y corresponds to only one
of W and X; that correspondence will not be formally specified, but will be obvious.

Undefined but intuitive functions appear in italics in the operation column .

The. names UPI (UPerand I), UP~ (Ul'erand ~).·SI. (Source I), S2 (Source 2), and DEST
(DJ::STination), have the meanings described in Section 3.7.3.2.

Let X represent any of the strings OP I, OP2, SI, S2, or DEST. Then ADDRESS_X means the
memory address of X. Note that registers have memory addresses.

During the execution of one instruction, "PC" will mean the address of the Instruction currently in
execution, "PC_NEXT _INSTR" will mean the address of the next instruction in the execution
sequence, and "PC_LAST _INSTR" will mean the address of the previous instruction in the·
execution sequence.

The LLL Filter instruction set includes "reverse operations" for all non-commutative instructions
with two source operands and a destination operand, that is, instructions of the form
"DEST+--OP I 0 OP2" where "0" is a non-commutative operator. A reverse operation is indicated
by the. inclusion ·of the term "V" in the opcode string. Reverse operations reverse the order of
their source operands before performing the operation. For example, "SUB V OP l,OP2" means
"OP l+--0P2-0P I" whereas "SUB OP l,OP2" means "OP l~OP l-OP2".

Reverse operations are provided in order to allow evaluating "A+--B 0 A" and "A+--B ® RTA" in
one instruction, where A and B here represent memory addresses, RTA is a special temporary
register (see Section 3. 7.3.2), and "0" is a non-commutative operator.

•

3.7.i Processor Architecture 29

Note that the opcode strings shown . in the following sections are not necessarily assembler
mnemonics; they .are simply unique names for the hardware operations. An assembler will allow
omission of some terms and simplification of others; an intelligent assembler, for example, would
Infer the "V" term of the opcode string from the order of the three operands of the instruction,

3.7.4J Integer Instructions

Integers are represented in two's complement notation. A II integer instructions operate on data of
any integer precision, that is, quarter-word (Q), half-word (H), single-word (S), or double-word
(D). The precision of the operation is indicated by including the appropriate term (Q, H, S, or D)
after the opcod~. For operations which take two operands, both operands must be of the same
precision.

Integer operations are done in the precision of the source operands, except for extended precision
operations (eg. "MU_L T L {Q,H,S,D}"), which are done in double precision.

3.7.4.1.1 Integer Arithmetic

001 002

0 9 10 11 12 23 24 35

Reverse operations are provided for the non-commutative operations SUB, QUO, REM, and
DIV.

Extended precision operations (eg. long multiply and long divide) are indicated by including the
term "L" (Long) in the opcode string .

. 30 Processor Architecture

Opcode String Operation ·

ADD . {Q.,H,S,D} DEST+-S l+S2

SUB {Q.,H,S,D} DEST+-Sl-S2

SUB v {Q.,H,S,D} DEST+-S2-S I

MULT {Q.,H,S,D} DEST+-S 1*52

MULT L {Q.,H,5,D} (DEST.NEXT _DEST)+-S 1*52

QUO {Q.,H,S,D} DEST+-S 1152

Q..UO v {Q.,H,S,D} DEST+-52/S.I

QUO L {Q.,H,S,D} DEST +-(S l,NEXT _51)/52

QUO L v {Q.,H,S,D} DEST +-(52,NEXT _S2)/S I

REM {Q.,H,S,D} DEST+-S I mod S2

REM v {Q.,H,s:DJ DEST+-S2 mod SI

REM L {Q.,H,S,D} DEST+-(Sl,NEXT_SI} mod S2

REM L v {Q.,H,S,D} DE5T+-(S2,NEXT _S2) mod SI

DIV {Q.,H,S,D} DEST+-Sl/S2
NEX"LDEST,...SI mod S2

DIV v {Q.,H,S,D} DEST,...S2/S I
NEXT _DEST+-S2 mod SI

DIV L {Q.,H,S,D} DEST+-(S !,NEXT _S l)/S2
NEXTJ>EST4-{Sl,N.EXT .. SI) mod S2

DIV L v {Q.,H,S,D} DEST+-(S2,NEXT _S2)/S I
NEXT _DEST+-(52,NEXT -52) mocl SI

•

. i

" ' . '

. 3.7.4 .. 1.2 Processor Architecture 31

3.7.4.1.2 Increment and Decrement

XOP 001 ·002

0 11 12 23 24 35

The increment (INC) and decrement (DEC) instructions provide the capability to perform either
of. the operations OP l+-0P2+ I or OP l+-0P2-I in one instruction.

Opcode Strin&

INC

DEC

{Q,H,S,D}.

{Q,H,S,D}

Operation

OP l+-0P2+ I

OPl+-0P2-I

•

32 Processor Architecture 3.7.4.2

3.7.4.2 Floating Point Instructions

Floating point precisions are single-word (S), and double-word (D), whereas integer precisions are
quarter-word (Q), half-word (H), single-word (S), and double-word (D). The floating point
arithmetic instructions require one floating point precision to be specified, and the floating point
translation instructions require either a floating point precision and an integer precision or two
floating point precisions to be specified.

Single-precision floating point numbers have the following format:

Single-Precision Floating Point Number

Isl EXP j MANTISSA<0:26>

0 1 35

where S is the sign, EXP is an excess-128 exponent of 2, and MANTISSA is a normalized binary
fi':lct1on.

If X is a positive floating point number (single or double precision), then the floating point
.number -X is represented by the two's complement of X, so that integer comparison operations
yield the correct results for floating point operands.

Double-precision floating point numbers have the following format:

Double-Precision Floating Point Number

!s.j EXP MANTI SSA<0: 26>. MANT 1.SSA<27: 62>

0 1 8 9 35, 0 35

where S, EXP, and MANTISSA represent the sign, exponent, and· mantissa of the double­
precision floating point number, as above.

Any floating point operation may be either floor rounded (FR), ceiling rounded (CR), or stable
rounded (SR) (see [Kahan 1973)); these modes are indicated by including the appropriate
characters as a term in the opcode string. Floor rounding yields the closest floating point number
less than the true result (equivalent to truncation .since the number system is two's-complement),
ceiling rounding yields the closest floating point number greater than the true result, and stable
rounding yields the closest floating point number if that number is unique, otherwise it yields the
closest floating point number with a "O" as the least..:.significant bit.

·~

·-

3.7.4.2.l Processor Architecture 33

3.7.4.2.J floating Point Arithmetic

TOP , . T 001 002

0 9 10 11 12 23 24 35

Most· floating point arithmetic instructions combine two operands of one floating point precision,
an'd store into a destination of the same floating point precision. The operation precision is
indicated by including the appropriate character in the opcode string.

Long floating multiply (FMUL T L) takes two single-word floating point numbers and multiplies
them to form a double-word floating point number. Long floating divide (FDIV L) divides a
double-word by a single-word and produces a single-word. ·

Reverse operations are provided for the non-commutative operations FSUB and FDiV.,

As explained above, the terms "FR", "CR", and "SR" in the opcode string imply floor rounding
(truncation), ceiling rounding, and stable rounding, respectively. For example, "FMUL T FR S"
means "multiply single-precision floating point numbers with truncation."

Opcode String Operation

FADD {FR,CR,SR} {S,D} DEST+-Sl+S2

FSUB {FR,CR,SR} {S,D} DEST +-S J-S2

FSUB v {FR,CR,SR} {S,D} . DEST+-52-SI

FMULT {FR,CR,SR} {S,D} DEST+-Sl*S2

FMULT L {FR,CR,SR} · . (DEST.NEXT _DEST)+-S l*S2

FDIV {FR,CR,SR} {S,D} DEST+-S 1/52

FDIV v {FR,CR,SR} {S,D}' i.J£ST+-$2/S I

FDIV L {FR,CR,SR} DEST+-(S l,NEXT _S l)/S2

FDIV L v {FR,CR,SR} DEST+-(S2,NEXT _S2)/S I

•

Processor Architectu.re 3.7.4.2.2

3.7.4.2.2 Floating Point Translation

·XOP 001 002

0 il 12 23 24 35

The floating point translation instructions translate floating point to integer, integer to .floating
poirit, and floating point to floating point, in each case performing floor rounding, ceiling

. rounding. or stable rounding.

Floating poi~t numbers may be of any float.ing point precision, that is, single..:.word (S), or double­
word (D), and integer numbers may be of any ·integer precision, that is, quarter-word (Q), half-.

·word (H), single-word (S), or double-word (D). In addition to the floor-rounding (FR), ceiling­
rounding (CR), and stable-rounding (SR) terms, each floating point translation opcode $~ring
includes a two character precision term; the first character specifies the destination precision, and
the sec~nd character specifies the source precision. For example, •FLOAT SR SD" means
"translate with stable rounding a double-word integer to a single-word floating point number:·
For symmetry reasons, all translate instructions include rounding modes. ·

Opcode String. Operation

FIX {FR,CR,SR} {~H.S,D}{S,D} OP 1.-Jix(OP2)

FLOAT {FR,CR,SR} {S,D}{~H,S,D} OP 1+-float(OP2)

TRANS {FR,CR,SR} SD OP l+-jloat_trans(OP2)

TRANS {FR,CR,SR} . DS OP 1.-jloat_trans(OP2)

•

Processor Architecture 35

3.7.4.3 Arithmetic Compare Instructions

The arithmetic compare instructions compare two operands, possibly incrementing, decrementing,
or adding to the destination operand, and skip (-8 to + 7 words from the location of the current
instruction), jump (anywhere), or trap (to a fixed virtual address) conditionally on the outcome of
the comparison. Throughout these sections, PC refers to the address of the current instruction.

With two exceptions, the arithmetic compare instructions assume that both operands are of single­
word length, These exceptions are "SKIP {COND} {Q,H,S,D}", and "JUMP {COND} O

. {Q,H,S~D};" each. allows specification of the length of the operands (Q, H, S, or D). Both operands
must be of the same length.

Every arithmetic compare instruction performs integer comparison. The for.mat of floating point
numbers guarantees that integer comparison produces the. correct results for floating point
operands. On the other hand, some arithmetic compare instructions add to the destination
operand, and this addition is integer addition; those particular instructions are not intended to be
used with floating point operands.

In the instruction definitions which follow, we have used "{CON D}" in the opcode strings to
represent "{N,G,E,GE,L,NE,LE,A}", abbreviations for the eight conditions on which an arithmetic
compare instruction can skip or jump; these abbreviations mean never, greater, equal, greater or
eq·ual, less, not equal, less or equal, and always, respectively. "{CON D}" is also used as a function
symbol (with obvious meaning) in the description column of these opcodes.

The opcode strings in these Instructions may include the terms in the following table, and these
terms uniformly have the meanings shown:

Opcode Term Meaning

INC Add one before comparison.

DEC Subtract one before· comparison.

0 The comparison is with 0.

•

36 Processor Architecture 3.7.4.3.1

3.7.4.3.l Arithmetic Compare and Skip

SOP SKP 001 002

0 7 8 11 12 23 24 35

The field SK P in these instructions specifies a 4-bit (signed) skip distance (in words). Depending
upon the result of the compare instruction, the next instruction to be executed is either at PC, or
at PC+4*SIGNED_SKP.

These· instructions are important in that they allow two general operands to be specified in a
compare instruction. The SK P field of 4 bits in many cases eliminates the need for includ.iilg a
jump instruction after the compare.

Opcode String Operation

INC SKIP {CON DJ OPl+-OPI + f
if OPl'{CONDJ OP2
then PC+-PC+4*SIGNED_$KP

DEC SKIP {CON DJ OPl+-OPI - I
ifOPI {CONDJOP2
then PC+-PC+4*SIGNED_SKP

SKIP. {CON DJ I°-'H,S,D} . if OP I {CON D} OP2.
then PCt-PC+1*SIGNED_SKP

• I

..

·"'

3.7.4.3.2 Processor Architecture 37

3.7.4.3.2 Arithmetic Compare and jump

JOP 001 J

0 10 11 12 23 24 35

In the following instruction definitions, JUMPDEST refers to the jump destination. As describec:J
·in 'Section 3. 7.3.5, JUMPDEST is computed in one of two ways, depending upon the value of the
PC-relative flag (PR). If PR is true, ·then J is taken to be a signed 12-bit PC offset, and
JUMPDEST is PC+i*SIGNED_J. If PR is false, then J is taken to be a general operand
descriptor (see Section 3.7.3.l), and JUMPDEST is the result of evaluating that operand
descriptor. In either case, JUMPDEST is computed before tlte execution of tlte aritltmetic-compare-
and-jump instruction. ·

Note that the 12-bit PC relati~e jump (PR true) is included only to increase code density. A II
instructions in this section can be written with PR true or PR false; thiS symmetry makes the jump
length decision relatively orthogonal to other decisions in code generation .

. These instructions allow only one general operand address (OD I), since the field of the instruction
normally reserved for a second operand descriptor (002) instead contains the jump address. ·

Opcode String .

INC JUMP {COND}

DEC JUMP {COND}

INC JUMP {CON D} 0

DEC JUMP {CON DJ U

JUMP {CON D} 0 {Q,H,S,D}

JUMP

Operation

OPl+-OPI + I
if OP I {CON D} NEXT _OP I
then PC+-JUMPDEST

OPl+-OPl-1
if OP I {CON D} NEXT _OP 1
then PC+-JUMPDEST

OP l+-OPl + I
if OPI {COND} 0
then PC+-JUMPDEST

OPl+-OPI - I
ifOPI {COND}O
then PC+-JUMPDEST

if OPI {COND} 0
then pc ... JUMPDEST

PC+-JUMPDEST

(note: this is the same instruction
as "JUMP A O")

38 Processor Architecture 3.7.i.3.3

3.7.4.3.3 Arithmetic Compare and Set Flag

• TOP l T. [001 002

0 9 10 11 12 23 24 35

The.Se instructions perform an arithmetic comparison and set the destination to all zeroes or all
. ones depending upon the result; zeroes indicate false and ones indicate true. ·

The source op~rarids may be of any integer length (Q, H, S, or Q). Tlie destination operand is
always a singl.e word. ·

0....[!COcle StrirJg Qeeration
.

SET FLAG. {COND} {Q,H,S,D} DEST ... Sl {COND} 52

•

3.7.4.i Processor Architecture 39

3.7.4.4 Logical Operations

3.7.4.4.1 Logkal Testing

~'-·so_,..P__. __ sK_P__....._ ___ 0_0_1 ____ ~1-·~--00_2~~_.I
0 7 8 . 11 12 23 24 35

The. logical test instructions test a group of flags (OPI) under a mask ·(OP2) and conditionally
skip (-8 to + 7 words from the location of the current instruction) depending upon the result. The
operands can be any integer length (Q, H, S, or D), but the flags and mask must be of the same
length.··

The opcode strings in the f oll~wing instruction definitions contain the terms in the fallowing
table, and these terms have the meanings shown:

Opcode Term

CT

z
NZ

Meaning

Complement OP I before anding
(ie. use Complement with True).

Skip if the result is Zero.

Skip if the result is Non-Zero.

If OP I is a word of flags, and OP2 is a mask which selects a subset of the nags, then these
instructions can be used to test various combinations of the flags, as follows:

Opcode String

.AND SKIP

AND CT SKIP

Opcode ·

AND SKIP Z
AND SKIP NZ
AND CT SKIP Z
AND CT SKIP NZ

{Z,NZ} {Q,H,S,D}

{Z,NZ} {Q,~ 1S,D}

Meaning

Skip if no selected flag is set.
Skip if any selected flag is set.
Skip if all selected flags are set.
Skip if not all selected flags are set.

Operation

if (OP J.'\OP2) {=.-} 0
then PC+-PC+4*SIGNED_SKP

if (not(OP l)/\OP2) {·,-} 0
. then PC+-PC+4*SJGN.EU_~Kl"'

•

40 Processor Architecture 3.7.4.4.2

3.7.4.4.2 Logical Assignment

....... I _rn_P_.......__r_~ __ oo_1 __ _.l....;..· __ 0_0_2 _----'j
0 9 10 11 12 23 24 35

The logical assignment instructions perform a logical operation on SI and 52 and assign the result
to DEST. The operands of logical assignment operations may be any integer length (Q, H, S, or
D), but both operands must be of the same length.

The terms CT and TC are used with the following meaning: CT implies that SI is
complemented before the logical operation (use Complement and True), and TC implies that 52 is
complemented before the logical operation (use True and Complement). ·

Opcode Strin~ Operation

AND {Q,H,S,D} DEST ... Sl/\S2

AND TC {Q,H,S,D} DEST ... s l/\not(S2)

AND CT {Q,H,S,D} DEST ... not(S l)/\S2

NOR {Q,H,S,D} DEST ... not(S l)Anot(S2)

OR {~H.S,D} DEST ... S lv52 ·

OR TC {Q,H,S,D} DEST ... s lvnot(S2)

OR CT {Q,H,S,D} DEST ... not(S l)vS2

NANO {Q,H,S,D} DEST ... not(S l)vnot(S2)

XOR {Q,H,S,D} DESTf-S I XOT 52

EQV {Q,H,S.D} DE5T ... not(Sl xor 52)

...

3.7.4.4.3 Processor Architecture 41

3.7.4.4.3 Shift and Rotate.

~'--TO_P~_,__T __ .__~-O~D-1 __ ~_._ ____ oo_z ____ _,, .

. 0 ·9 10 il 12 23 24 35

The shift and rotate instructions take operands which are any integer length (Q, H, $, or D). The
shift count .is always a single-word.

A II shift and rotate instructions are non-commutative, therefore each instruction is provided in
reverse form. · ·

The term "A" (Arithmetic) in the opcode string implies that the operation is arithmetic, otherwise
the operation is logical.

Opcode Strin~ Operation

SHIFT {LEFT.RIGHT} {Q,H,S,D} DEST+.-Sl logical {LEFT,RIGHT}
shifted by S2

SHIFT {LEFT.RIGHT} v {Q,H,S,D} DEST+.-S2 logical {LEFT,RIGHT}
shifted by SI

SHIFT {LEFT.RIGHT} A {Q,H,S,D} DEST+.-Sl arithmetic {LEFT.RIGHT}
shifted by 52

S}iIFT {LEFT.RIGHT} A v {Q,H,S,D} DE$T+.-S2 arithmetic {LEFT,RIGHT}
shifted by SI

ROT {LEFT.RIGHT} {Q,H,S,D} DEST+.-SI rotated {LEFT.RIGHT} by S2

ROT {LEFT.RIGHT} v {Q,H,S,D} DEST+.-52 rotated {LEFT.RIGHT} by S 1

42 Processor Architecture 3.7.4.4.4

3.'7.4.4~4 BiT REVERSE

I XOP 001 002

0. 11 12 . 23 24 35

BIT REVERSE reverses the bits in a quarter-word, half-word, single-word, or double-word.

Opcode String Operation

BIT REVERSE {~H;S,D} OP l~bit_reverse(OP2)

3.7.4.4.5 Bit Counting

XOP 001 002

0 11 12 23 24 35

BIT COUNT counts the numbe~ of oi:ie bits in an operand; it is useful for counting the number
. of elements in a set, where bits in a word represent elements in a set, as in common·
implementations of PASCAL. ·

BIT FIRST finds the bit number of the first one bit of an operand; it is useful for. computing the
index of the first element of a set.

Opcode String

lil r CUUNT

BIT FIRST

{Q,H,S,D}

{~H,S,D}

Operation

OP i~(number of one bits in OP2)

OP t~(index of the first one bit in OP2)
(The search is from the left to the right.)

3.7.4.4.6 Processor Architecture 43

3.7.4.4.6 BIT EXTRACT

I TOP T 001 002

0 9 10 11 12 23 24 35

BIT EXTRACT was suggested by Professor John McCarthy; it is particularly useful for
extracting a set of nags from a word in order to do an N-way branch on them. SI, 52, and
DEST _are assumed to be of the same length.

BIT EXTRA Ci:" is non-commutative, and Is therefore provided in reverse form.

Opcode String

BIT' EXTRACT {Q,H,S,b}

. BIT EXTRACT V {Q,H,S,D}

~\

Operation

DEST Is set to the value
obtained by extracting the bits
in SI that correspond to the
ones in s2, then squeezing
them to the right in DEST.

DEST is set to the value
obtained by extracting the bits
in 52 that correspond to the
ones in SI, then squeezing

. them to the right In DEST.

Processor Architecture .' 3.7.4.5

3.7.4.5 Byte Pointer

XOP 001 002

0 11 12 23 24 35

The by,te pointer instructions operate on bit-strings of arbitrary size (less than or equal to 36 bits),
which are called bytes. These instructions all use a two word BYTE POINTER, which has the
format:

BYTE POINTER

LENGTH POSIT I ON

REG A

0 1 5 6 18 26 27 35

LENGTH is the size of the byte, and POSITION is the bit-number of the first bit in the byte.
The second word of the BYTE POINTER is a standard Indirect Address .Pointer (see Section
3. 7.3. l), which evaluates to the address of the word which contains the byte.

The LENGTH and. POSITION fields are each 9 bits long, therefore quarter-word instructions
can be used to manipulate them. The LENGTH and POSITION fields must specify a byte
contained entirely within a word. When incrementing a BYTE POINTER, the hardware adds
LENGTH to POSITION, then, if the result is greater than 35, sets POSITION to 0 and
increments A. Byte-adjustment is similar. ·

The function byte takes an argument which is the address of a byte pointer. The value of lryte(X)
is the bit string described by the byte pointer X.

Opcode String-

LBYTE

DBYTE

ADJ BY!EP

LBYTEINC

DBYTE INC

Operation

Load BYTE
OP l+-bY,te(OP2)

Deposit BYTE.
BYTE(OP l)+-0P2

AD Just BYTE Pointer
OP l+-OP I byte,;..ad .il;Jsted by OP2

Load BYTE and INCrement
OP 1+-BYTE(OP2)
OP2+-0P:Z byte-incremented

Deposit BYTE and INCrement
BYTE(OPl)+-OP2 . .
OP It-OP I byte-incremented

•

•

3.7.i.6 Processor Architecture 45

3.7.4.6 List Manipulation

The list manipulation instructions operate on lists which h.ave two-word list headers, where the
first word points. to the first elernent of the list, and the second word points to the last element of

·the. list. An empty list is represented by zero in the first word of. the list header. These lists are
assumed to be linked together by the first word of each element; the last element contains a zero
link.

3.7.4.6.l Skipping List Instructions

SOP SKP 001

0 7 8 11 12

Opcode Strinr;-

LIST POP SKIP EMPTY

LIST POP SKIP NOT EMPTY .

002

23· 24 35

Operation

Remove an element from the head.
(OP2,NEXT _OP2) is the list header.
OP I gets the address of the first element ..
·of the list. If the list is empty, then
the instruction skips .

. if OP2 = O
then PC ... PC+i*SIGNED_SKP
else begin

OP.l4-0P2
OP2._M[OP2J'

end

Remove an element from the head.
(OP2,NEXT _OP2) is the list header.
OP I gets the address of the first element
of the list. If the list is not empty, then
the ihstrucuon skips.

if OP2" 0
then begin

PC ... PC+i*SIGNED_SK P
OPl4-0P2
OP2+-M[OP2]

ehd

•

. 46 Processor Architecture 3.7.4.6.2

3.7.4.6.2 Non-Skipping List Instructions

XOP I . 001

0 11 12

Opcode String

LIST PUSH

LIST APPEND

LIST POP TRAP

002

23 24 35

Operation

Add an element to the head·.
(OP 1,NEXT _OP I) is the list header.
OP2 p_oints to the element to be
added to the hea:d of the list.

M[OP2]...,0P I
if OP I = 0 then NEXT _OP J...,OP2 ·
OPl...,OP2

Add an element to the tail.
(OP 1,NEXT _OP I) is the list header.
OP2 points to the element to be
added to the tail of the list.

M[OP2J+-O
if OP I = 0 then OP l+-OP2

. NEXT _OP l..,OP2

Remove an element from the head.
(OP2,NEXT _OP2) is the list header.
OP I gets the address of the first element
of the list. If the list Is empty, then the
instruction soft traps to the trap v~ctor
at address LIST _:UNDFL.

if OP2 = O
then sufLerror(LIST _POP,PC)
else i}egin

OPl+-0P2
OP2._M[OP2]

end

•

·•

•

·~

•

3.7.4.7 Processor Architecture 47.

3.7.4.7 Data Transfer

3.7.4.7.1 Block Transfer

XOP 001 002

0 · 11 12 23 24 35

The block transfer (BLT) fostruction transfers a block of data from one location in memory to
another. · ·

(OP2,NEXT _OP2) is the descriptor of the source block. This descriptor has double-word length;
the first word is the address of the block, and the second word is the length of the block in
quarter words. OP I is the add~ess of the destination block.

The operands of a BLT are continuously updated so that if an interrupt occurs during a BLT,
the BLT can be restarted. It is therefore important that tlie values of tlit operands not be used to
calculate tlieir own addresses.

Opcode String

BLT {Q,H,S,D}

Operation

Block Transfer.

for l+-0 step {1,2,3,4}
until NEXT _OP2-{ 1,2,3,4} do
M[OP l+IJ+-M[OP2+Il

OP2+-0P2+NEXT _OP2
OP l+-OP l+NEXT _OP2

. NEXT _OP2+-0

48 Processor Architecture 3.7.i.7.2

3.7.4.7.2 Move .and Exchange

XOP 001 002 . 1.

0 11 12 23 24 35

The "MOY" Instructions move an operand of any integer length (Q, H, S, or D) to another
operand of any integer length. The source and destination lengths are specified by including the
appropriate characters together in the opcode string·, with the destination length preceding the
source length. ·

In addition, the "MOY" opcode strings may include special terms which specify the move type as
shown in the opcode descriptions below. For example, "MOY N DS" means "negate a single
precision integer and move it to a double precision integer."

EXCH assumes that the both operands are of the same precision.

Opcode String

MOY {Q,H,S,D}{Q,H,S,D}

MOY S {Q,H,S,D}{Q,H,S,D}

MOY {1.2 ,8}

..

MOV c {Q,H,S,D}

MOY N {Q..,,H.S,D}

MOY M {Q,H,S,D}

MOY A

MOY A OPI

MOY A or2

MOY A REAL

EX.CH {Q,H,$,b}

Operation

·op1~0P2

OP 1Hign_extend(OP2)

for 1~ I step 1 until { 1,2, ... ,8}
do M[ADDRESS_OP l+I-IJ+-

M[ADDR ESS_OP2+1-I)

(Note that MOV i and MOV 2 are
thi:o sami:o as MOY SS and MOYD D.)

OP l~not(OP2)

OP l~twos_negative(QP2)

OP 1~abs(OP2)

OP t~ADDRESS_OP2

OP h-(address specified by OD I
in the instruction at 0 P2)

or (+-(address specified by 002
in the instruction at OP2)

OP IHe.aLaddre.ss(ADDRESS_OP2)

0Pl~OP2

..

·•

•

•

•

3.7.i.8 Processor Architecture 49

,.7.4.8 Stacie Manipulation

· XOP I 001 002

0 11 12 23 24 35

The stack manipulation inslructions conditionally hard error trap on the result of the comparison
of the stack pointer with the stack limit register. The trap location is a fixed location in virtual
space, STACK_MANIP.

The "PUSH {UP.DOWN} TRAP" instructions push an operand of integer length (Q, H, S, or D)
onto a stack and trap conditionatly depending upon the outcome of a comparison. Stacks may
grow either upward or downward; "PUSH UP". pushes onto an upward-growing stack and .
"PUSH DOWN" pusJies onto a downward-growing stack. One operand, call it OP, is assumed to
be a single-word stack pointer, _and the stack limit is NEXT _OP .. The length of the stack entry is
specified by a term in the opcode string .

50 Processor Architecture. 3.7.4.8

Opcode String Operation ·

ADD TRAP if (OP l+OP2) > NEXT _OP I
then h.ard_error(

ST A CK_.A D JUST .A DDRESS_OP 1) .
else OP 11-0P 1 + OP2

SUB . TRAP if (OPl-OP2) <NEXT _OP 1
then hard_error(

STACK_.ADJUST .ADDRESS_OP 1)
else OP 11-0P I - OP.2

PUSH UP TRAP {Q,H,S,D} PUSH UP and TRAP if overflow

if (OP 1+{ 1,2,3,4}) > NEXT _OP I
then hard_error(

STACK_.ADJUST .ADDRESS_ OP I)
else begin

M[OPl]1-0P2
OP l+-OP I+{ 1,2,3,4}

end

PUSH DOWN TRAP {Q,H,S,D} PUSH DOWN and TRAP if overflow

if (OP 1-{ 1,2,3,4}) < NEXT _OP I
then hard error(

STACK.ADJUST ,ADDRESS_OPI)
else begin

M[OP 1)1-0P?.
OP If-OP I-{ l,2,3,i}

end

POP UP {Q,H,S,D} POP an UPward stack.

OP?.1-0P?.-{ l,?.,3,4}
OP lt-M[OP2]

POP DOWN {Q,H,S.D} POP a DOWNward stack.

OP2f-0P2+f 1,2,3,4}
• OPJ..-M[OP2]

. I

•

3.7.4.9 Processor Architecture 51

3.7.4.9 Subroutine Linkage

The subroutine linkage mechanism is designed to allow the efficient implementation of high-level
block structured languages such as PASCAL; it explicitly implements call-by-value and call-by­
reference.

In a block structured language, a display is often used to implement references to upper levels in
the stack. The active display is maintained in the R registers; it consists of a pointer to the stack
frame of each procedure which is at a lower lexical level tha.n the currently active procedure.
When a procedure at a lower lexical level returns, the display registers above the level of the
called procedure must be restored to their state at the time of the call. For example, consider a
procedure CALLER on lexical level 3 which calls a procedure CALLED on lexical level I.
CALLER first saves the old display register, DISPLAY[I], allocates a new frame on the stack,
then sets DISPLAY[I) to point to the new frame. During the execution of CALLED,
DISPLA Y[2] and above are hot needed, and therefore can be used for any other purpose,
providing they are restored before CALLED exits. The per-procedure-call overhead in
maintaining the display is then one memory write to save the old display register, one register
write to set up the new display register, and one memory read to restore the old display register.
During the execution of a procedure on lexical level I, I registers are required to hold its display;
all registers above the level of the current display register can be used for local variables,
providing they are restored on return.

In the LLL Filter, an efficient mechanism is provided for passing parameters to subroutines
through the registers, rather than on the stack. The parameter instruction (PAR) is used to save
a register on the stack, and to place a parameter in that register. This operation represents
essentially the same overhead as pushing parameters on the stack, but has the advantage that it
leaves. the parameters in the registers for efficiency.

To understand the (PAR) instruction, it is first necessary to understand the format of the current
stack frame. Before a procedure can be called, storage on the current stack frame must be
allocated for the callee's parameters, the old stack frame pointer, and the return program counter,
as shown in Figure 3.7.4.9-1. · It will be convenient for the caller to allocate this extra
space on its stack frame when it is first invoked, allowing enough room for the largest routine call
which it will make. The allocation will thus be made far enough in advance so that pipeline
interlocks normally will not occur (indexing off of a recently altered register will cause the pipeline
to interlock). Furthermore, allocation in advance will save the expense of performing multiple
allocations and deallocations, one pair for each call.

Figure 3. 7.4.9-2 shows an example procedure . call which passes three parameters A, B,
and C, where A and C are call by value, and B is call by reference. Figure 3.7.4.9-3
shows the called procedure (CALLED), which uses two local registers and allocates I 0 words on its
stack. NEW _SF is the stack frame register for CALLED. The operations preformed by the
subroutine linkage instructions are shown as comments in the example. The exact definition of
the instructions is given in the sections which follow. ·

If the contents of a register used to pass a parameter are known to useless after the subroutine
call, then the parameter can be MOVed to the register, and the register need not be restored,

· saving the overhead of one save and one restore.

This parameter passing method requires a register for each parameter passed to a procedure.
One possible code-generation technique is to assign 8 registers to be used for passing parameters;

•

52 Processor Architecture 3.7.4.9

. if a procedure has ~ore than 8 parameters, it will push the rest of the parameters onto the stack.
Furthermore, it will be efficient to have two types of temporary registers for use in procedures; the
first type will be used to hold local variables, which are saved and restored when a procedure is
entered and exited, and the other type will never be saved, but will be used for holding temporary
results and ~ailing bottom-level procedures (which call no other procedures).

" ,::,

~·

...

3.7.4.9

SF:

SP-20:

SP-16:

SP-12:

• SP-8:

SP-4:

SP.:

Processor Architecture

CURRENT FRAME VARIABLES

SAVE PARAMETER N REGISTER

. . .
SAVE PARAMETER 3 REGISTER

SAVE PARAMETER 2 REGISTER

SAVE PARAMETER 1 REGISTER

OLD STACK FRAME POINTER<SF>

RETURN PROGRAM COUNTERCPC)

FIRST FREE WORD ON STACK

Figure 3.7.4.9-1
Current Stack Frame

53

CALLED:

•

Processor Architecture

PAR 1 P_REG,A

PAR A 2 P_REG-1,B

·PAR 3 P_REG-2,C

JUMP SUB NEW_SF,CALLED

MOV 3 P REG-l,-20(~P)

Figure 3.7.4.9-2
Example Procedure Call

ALLOC 2 NEW_SF+l,140

! "ROUTINE BODYn

RETURN SUB 2 NEW_SF+l,NEW_SF

Figure 3. 7.4.9-3
Example of Called Proced.ure

3.7.4.9

!M[SP-12] .. R[P_REG]
!R[P_REG] .. M[A]

!M[SP-16] .. R[P_REG-l]
! R[P _REG-1] .. B

!M[SP-20] .. R[P_REG-2]
! R[P _REG-2) .. M[C]

!M[SP-8] .. R[NEW_SF]
!M[SP-4] .. PC+4
!R[NEW_SF] .. SP
!PC .. CALLED

! R[P _R.EG-2]+-M[fl.[SP]-20]
!R[P_REG-l] .. M[R[SP]-16]
!R[P_REG] .. M[R[SP)-12]

!M(SP] .. R[NEW_SF+l]
!M[SP+4] .. R[NEW_SF+2]
.!SP .. SP+40

!R[NEW_SF+l] .. M[R[NEW_SF]]
IR[NEW_SF+2]~M[R[NEW_SF]+4]

!PC .. M[R[NF.W_SF]-4]
!SP+-R[NEW_SF]
IR[Nii.W_Sjo: }·l'i[K[N~W_St-:)-8 J

.

3.7.4.9.1 Processor Architecture 55

3.7.4.9.1 jump to Subroutine

001 J

0 10 11 12 .23 24 35

OP 1 is the stack frame register. The JUMP SUB instruction: saves on the stack the return
program counter and the old stack frame register (OP I), and sets the new stack frame register
(OP 1) equal to the stack pointer.

Opcode String

JUMP SUB.

3.7.4.9.2 Subroutine Context Switching

XOP 001

0 11 12

Operation

JUMP to SUBroutine

M[SP-8)+.0P I
M[SP-4)+-PC_NEXT _INSTR
OPl+-SP
PC+-JUMPDEST

002

23 24 35

f .

PAR saves the value of a register (OP I) in one of eight parameter-save areas on the current
stack frame, and loads OPI with a value parameter, OP2. PAR A Is Identical except it loads
OP I with the address of OP2. ·

ALLOCATE i~ used by the called procedure to allocate OP2 words on the stack, and to save I to
8 registers (sequentially, starting with OP 1) at the beginning of the new stack frame.

RETURN SUB restores I to 8 registers (sequentially, starting with OP I) from the beginning of
the current stack frame, restores the PC from the previous stack frame, sets the SP to the value. of
the current stack frame pointer (OP2), and restores the previous. stack frame pointer from the
previous stack frame.

56 Processor Architecture 3.7.4.9.2

Opcode String Operation

PAR { 1,2, ... ,8} subroutine PA Rameter

M(SP-8-{ 1,2, ... ,8}*4)+-0P I
OP l+-OP2

PAR A { 1,2, ... ,8} subroutine PARameter Address

M(SP-8-{ 1,2, ... ,8}*4)f:-0P I
OP l+-ADDRESS_OP2

ALLOCATE { 1,2, ·:· ,8} ALLOCATE stack and save registers

..
if SP > (SL+OP2*4)
then hard_error(

STACK.ADJUST,SP.JD*4)
else begin

for l+-1 step l until { l,2, ... ,8}
do M[SP+l*4-4]+-
M[ADDRESS_OP 1+1*4-4]

SP+-SP+OP2
end

RETURN SUB {O, 1,2, ... ,8} RETURN from SUBroutine and
restore registers.

for l+-1 step I until {0,1,2, ... ,8}
do M[ADDRESS_OP l+l*i-i].,_
M[OP2+1*4=4)

PC+-M[OP2-4]
SP+-0P2
OP2+-M[OP2-8]

-

3.7.4.10 Processor Architecture 57

3.7.4.10 Tr;ips and Interrupts

This section describes trap instructions, soft-error traps, hard-error traps, and interrupts.

Traps and interrupts use trap vectors. A trap vector includes a new PC and possibly Cl status
word; those values are lo<tded into the processor during a trap after the previous state of the
machine has been saved.

The trap instructions allow trapping within the current n1oclr~ (TRAP SELF), or trapping to the
exerntive (TRAP EX EC). TRAP SELF does not save the status reg·ister, but places the addresses
of OP I and OP2 into R[30] and R[31] (after saving them); it is intended to be used as a two­
pararneter subroutine call. TRAP EXEC saves the status register and gets a new status rcg·ister
from the trap vector; it also places the addresses of OPI and OP2 in R[30) and R[31), but
without saving those registers. TRAP EXEC is intended to be used to implement monitor.catls;
the executive will reserve R[30] and R[31] to receive parameters. The TRAP opcodes define the
trap· vector addresses; each instruction type has 61 different opcodes, each of which. traps to a
unique trap vector. . The TRAP SELF trap vectors are contiguous in both the user and executive
virtual address spaces, starting at address TRAP _SELLA DR, and the TRAP EXEC trap vectors
are contiguous in the executive address space starting at address TRAP _EXEC_A DR (they do
not exist in the user address space). Both TRAP USER and TRAP EXEC save the PC of the
next instruction (some types of tn1ps save the PC of the current instruction); a return will thus not
re-execute the trap instruction.

Some types of imtruction execution errors (for example, integer overflow) will cause a soft error
trap. A soft error traps to a fixed trap vector address (which depends upon the identity of t~1e
error) in the current address space. A soft error trap saves the USER_STATUS_REGISTER
(<1ml sets a new USER_STATUS_RECISTER from the trap vector}, if the trap occurs in user
mode, but saves the STATUS_ REGISTER (and sets a new STATUS_REGJSTER from the trap
vector), if the tr;ip occurs in executive mode. The ~oft error trflp ·routine also sa.ves on the stack
the PC of the next instruction Clnd one or more parameters, the nature of which is specific to the
type of error. Retwns from soft error traps will usually be to the next instrt1ction, since most
instructions with soft errors complete execution before trflpping. Cases in which the trapping
instruction needs to be re-executed are handled by passing the PC of the trapping instruction as a
pflramcter.

Other types of instruction execution errors (for example, writing a read-only page) will cause a
hard error trap. A hard error traps to a fixed trap vector address (which depends upon the
identity of the error) in the executive address space. H;ird errors occurring in the executive trap
to different locations than hard errors occurring in the user. A ha1'd error trap saves one or more
paramf.'ters, the PC of the trapping instruction, and the STATUS_REG; the save area is simply
the stack defined by- the new ST A TUS .. REG, which is obtained from the trap vector. The
STATUS .. REG v;ilue in the tr~p vector will also set the processor into executive mode. As With

·.soft errors, the nature and number of the parameters saved is specific to the type of error. Most
hard errors cau~e abortion of an instruction before any results arc written; those instructions can
be re-executed.

Two speci<ll hard errors may occur during traps or interrupts: page fault, and stack overflow.
These errors trnp again to special hC1rd error trap vectors, passing parameters which allow the
proper execution and return of trap which encountered the error. The special ha.rd error handler
PAGE.fAULT_lN . .TRAP must not encounter a pag.e fault error, and the hard error handler­
SP .. OVFL must not encounter a stack overflow error.

Processor Arch itecturc 3.7.1.10

/\ n interrupt is s.i1·nibr to :·t 111-ird error, but no parilrneter is saved. An interrupt is initiated when
nne of the four intr.'rrupt lines i:; as.~erted; if the priority c1f the interrupt is higher than PRIO,
thr·n the intr.rrupt is cicceptE·d .and the proce~sor, unclcr micro-code control, finds an interrupt
vector address (Jl-JT. VECTOR) in main h1emory (where it was stored by the interrupting devic•::).
Tli€' prncr.srnr cit the s;uni:'. time res('ts the :;:terrupt bit which caused the interrupt line ll) be
ass~rtccl. Interrupts are test,:-d immediately before execution of an instruction; at that tirn.:! PC is
the <1ddress of the next instruction to be executed.

Three return instructinns handle all returns froin traps or interrupts; RETURN REGS,
RETURN USER STATUS, and RETURN FULL STATUS re~tore only registers, only th2 user
sL'ltus, and the full status, respectively. RETURN REGS h:1ndlc~ returns frorn TRAP SELF,
R ETLIRN USER STATUS li;1ndlf~s returns from soft error trap;. and RETURN FULL
STATUS hcindb returns from hard error trcips, TRAP EXEC, and interrupts. Both RE'fURN .
US LI~ STATUS and RETURN FULL STATUS allow OP I to specify the number of locatio11s
to be popped off ,.,f the stack. .1.

3.7.4.10

•

. ,,

USER SPACE

ADDRESS 132:

VECTORS FOR
. SOFT ERRORS

FROM USER

TRAP _SELF _ADR:

VECTORS FOR
II TRAP SELF II •

FROM USER

Processor Architecture

Figure 3.7.4.10-1

EXEC SPACE

ADDRESS · 132:

VECTORS FOR
SOFT ERRORS

FROM EXEC

TRAP_SELF_ADR:

VECTORS FOR
"TRAP SELF"

FROM EXEC

TRAP _EXEC_ADR:

VECTORS FOR
"TRAP EXEC"

FROM USER
<OR EXEC)

VECTORS FOR
HARO ERRORS

FROM
USERjt.XEC

INTERRUPT
VECTORS

User and Executive Address Spaces

59

60

•

Processor Architecture

Vector for TRAP SELF from user:

HANDLER ADDRESS

Vee tor 1 for TRAP SELF from e><ecu t i ve:

HANDLER ADDRESS

Vector for soft error from user:

HANDLER ADDRESS

NEW USER_STATUS_REG

Vector for soft error from e><ecutive

HANDLER ADDRESS

NEW STATUS_REG

Vector for hard error from user or e><ecutive:

HANDLER .ADDRESS FOR USER HARO ERROR

NEW STATUS_REG FOR USER HA~D ERROR
~ .. ~~~~~~~~~~~~~~~~~~~--

Hi\ MDL t:R i\DD~ESS rnR ~x~c 1-1/\RD !!RROR

NEW STATUS_REG FOR EXEC HARD ERROR

Vector for interrupt~

HANDLER ADDRESS

NEW STATUS_REG

Figure 3.7.4.10-2
Trap Vector Formats .

3.7.4.10

3.7.4.10

TRAP TYPE
•

TRAP SELF

TRAP EXEC

USER SOFT ERROR

EXEC SOFT ERROR

HARO ERROR

. ,-

INTERRUPT

•

Processor Architecture 61

SAVE AREA.FORMAJ RETURN TYPE

PC_NEXT _INSTR

R C30l

R £311

PC_NEXT_INSTR

STATUS_REG

PARAMETER CS}

PC_NEXT _INSTR

USER_STATUS_REG

PARAMETER CS>

PC_NEXT_INSTR

STATUS_REG

PARAMETER CS}

PC

STATUS_REG

PC

STATUS_REG

Figure 3.7.4.10""'.3 .
. Save Area Formats

RETURN REGS

RETURN FULL STATUS

RETURN USER STATUS

RETURN FULL STATUS

RETURN FULL STATUS

RETURN FULL STATUS

62

Trap Address

INT_OVFL
ZERO_DIVIDE
LIST __ UNDFL

.FLOAT _UNDFL
FLOAT_OVFL
POST __ OVFL
PRE_OVFL

Trap Address

Processor Architecture

Error Condit ion

integer overflow
divide by zero
list underflow
floating underflow
floating overflow
postnormalization overflow
prenormalization overflow

Figure 3. 7.4.10-4
Soft Error Trap Addresses

Error Condition

TRACE trace trap
PAGE_FAULT _IN_TRAP page fault during trap

SP __ .OVFL
PAGE_FAULT
STACK_ADJUST
EXECUTE_ USER
JUMP_.USER
REF .. EXEC
STATUS ACCESS
ILLCGALIN~TR
NOT _.INSTRUCTION
NOT_DATA
WRITE_ONLY.
READ_ONLY
BOUNDARY._ ERROR

SP overflow in trap
page fault
stack overflow
execute to user space from exec
jump to user space from exec
reference to exec space from user
ar.CP.S.~ing prnr.eSSOf St<ltllS by User
illegal i1utrui:tion
page at PC is not instruction type
operand page is not data type
reading a write-only page
writing a read-only page
data/imtructinn .hounciary error

Figure 3. 7.4.10-5
Hard Error Trap Addresses

Parameters

PC
PC
PC
PC
PC
PC
PC

Parameters

PC

3.7.4.10

page address
trap address
trap parameter
trap address
page address

· st~<;k reiister adr
PC
PC
PC
PC
PC
PC
PC
PC
PC
pr.

..

3.7:4.10. l

3.7.4.10.l Trap Instructions

. XOP

• 't..
0

·'\ ..
Opcode String

TRAP .SELF . {0, 1,2, ... ,63}

•

TRAP EXEC {0, 1,2, ...• ~3}.

. .

Processor Architecture

11 12

001 002 I
23 24 35

Operation

M[SP]+-PC_NEXT _INSTR
M[SP+il+-R[30]

· 'M[SP+'SJ+-R[31]
R[30]+-A OORESS_OP I
R[31]+-AOORESS_OP2 ·
SP+-SP+l2
PC+-M[TRA P _SELLA OR+{0, 1,2, ... ,63}*4)
if SP> SL .
then SP _ovfl(SP _10*4)

TEMP[ll+-STATUS_REG
EXEC_MOOE+-1
STATUS_REG+-

M[TRA P _EXEC..AOR+{0,1,2, ... ,63}*8+4)
M[SP]+-PC_NEXT _INSTR
M[SP+i]+-TEMP[I]
R[30)+-AOORESS_OP I
R[3 l]+-A OORESS_OP2
PC+-M[TRA P J:XEC..A OR+{0, 1,2, ... ,63}*8) ·
SP+-SP+S
if SP> SL
then SP _ovfl(SP -10*4)

63

i
I
I

64

3.7.4.10.2 Soft-Error Trap

Opcode String

soft_error(TRA P _A DR,PA R)

Processor Architecture

Operation

if page fault
in (M[SP),M[SP+4),M[SP+8))

then page_faulUn_trap(
TRAP _ADR,PAR)

M[SPJ~PAR
M[SP+4)~PC_NEXT_INSTR
if EXEC_MODE
then M[SP+8J~STA TUS_REG
else M[SP+8J~USER_STATUS_REG
PC~M[TRA P _ADR)
SP~SP+l2

if SP> SL
then SP _ovfl(SP -10*4)

3.7.i.I0.2

,

-.

L.

3.7.4.10.3. Processor Architecture

3.7A.I0.3 Hard-Error Traps

Opcode String

liard_error(TRAP _ADR,PAR)

page_Jault_in_trap(TRAP .ADR,PAR)

Operation

TEMP[I)4-STA TUS_REG
if EXEC_MODE
then begin

STATUS_REG ... M[TRAP .ADR+ 12]
M[SP+4] ... PC .
PC4-M[TRAP .ADR+S]

end .
else begin

EXEC_MODEf-1
. ST A TUS_R EG4-M[TRA P .A DR+4]

M[SP+4)4-PC
PC4-M[TRAP .ADR]

end
M[SP]f-PAR
M[SP+8]t-TEMP[l]
sp ... sP+ 12
if SP> SL
then SP _ovfl(SP JD*4)

TEMP[I)4-ST A TUS_REG
if EXEC_MODE
then begin ·

STA TUS_REG ... M[
SOFT _ERROR_PAGE_FAULT+12]

M[SP+8]t-PC_NEXT JNSTR .
PCf-M[
PAG~_FAULT JN_TRAP+S]

end ·
else begin

EXEC __ MODEf-1
STATUS_.REG4-M[

SOFT _ERROR_PAGE_FA ULT +4]
· M[SP+S]t-PC_NEXT _INSTR
PCf-M[

PAGE_FAULT _IN_TRAP]
end

M[SP]f-TRAP .ADR
M[SP+4] ... PAR
M[SP+ 12)4-TEMP[I]
SPt-SP+ 16
if SP> SL
then SP _ovfl(SP _ID*4)

65

66

Opcode String

SP -'-ovjl(PAR)

Processor Architecture

Operation

TEMP[l)+-STATUS_REG.
if EXEC_MODE
then begin

3.7.4.10.3

STA TUS_REG+-M[STACK_OVFL+ 12)
M[SP+i]+-PC
PC+-M[STACK_OVFL+S]

end
else begin

EXEC_MODE+-1
STAT{)S:...REG+-M[STACK_OVFL+4) ·
M[SP+i]+-PC
Pr.+-M[STA r.K _OVFLJ

end
M[SP]+-PAR
M[SP+8]+-TEMP[l]
SP+-SP+ 12 .

3.7.4.10.4

3.7.4.10.4 Interrupt

.... Opcode Strin~

interrupt(INT _VECTOR)
·.

•

•

Processor Architecture

Operation.

TEMP[l] ... STATUS__REG
EXEC_MODE._ I ·
STA TUS_REG ... M[INT _ VECTOR+4]
M[SP] ... PC
M[SP+4] ... TEMP[I]
SP ... SP+8
PC ... M[INT-VECTOR]
if SP> SL
then SP _ovf1(SP _ID*4)

67

•

68 Processor Architecture

3.7.4.10.5 Trap and Interrupt Returns . .

XOP 001

0 il 12

Opcode String

RETURN REGS

. .'

RETURN F.ULL STATUS

RETURN USER STATUS

002

23 24 35

Operation

Return and restore registers.
(Return from TRAP SOFT.)

PC+-M[SP-12)
R[~O]+-M [:.>l'-8)
R[3 I]+-M[SP-4)
SP+-SP-12

Return and restore full status.
(Return from interrupt, hard
error, or TRAP EXEC.)

PC+-M[SP-8)
STA TUS__REG+-M[SP-4)
SP+-SP-OP I

Return and restore user status.
(Return from soft error.)

PCt-M[SP-8)
USER_ST A T·us_REG+-M[SP-4)
SP+-SP·OPI

3.7.4.10.5

•'

•

3. '7.4. l l Processor Architecture .. 69•

3.7.4.11 Cache Control

•

·~'~~xo_P _____)..._ ___ 0_0_1 ___________ 0_02 ____ _

0 11 12 23 24 35

The cache control instructions have been described in Section 3.1. If a very large sweep range is
specified in a cache control instruction, the processor will choose to sweep the entire cache instead

· of sweeping each location in the range ..

For efficiency reasons, a special instruction is provided to sweep both the instruction cache and
the data cache simultaneously. ·

Opcode ·string

UPDATE DATA

KILL DATA

KILL INSTR ..

KILL DATA INSTR

Operation

Sweep through the data cache (for OP2
quarter-words), starting at virtual address
OP I, and writing back changed locations. ·

Same as UPDATE DATA, except that
the words in the cache in the given

· range are also invalidated, so that
future references to them will be made
to memory .

Sweep through the instruction cache
(for OP2 quarter-words), invalidating.each
location starting at virtual address OP 1.

Same as KILL DATA followed
by KILL INSTR.

70 Processor Architecture 3.7.4.12

3.7.4.12 Page Map Control

'3,7.4.12.I KILL MAP

XOP 001 002

0 11 12 23 24 35

The page m;ip control instructions have been described in Section 3.2. KILL MAP deletes a
specific entry from both page maps. KILL MAP EX EC deletes all executive address space entries
in the page m;ip, and KILL MAP USER deletes all user address space entries in the page map .

Qr-code Sering

KILL EXEC MAP

KILL USER MAP

. KILL ALL EXEC MAP

KILL ALL USER MAP

. Op~• dliu11

Invalidate the entry in the associative
map that corresponds to the executive
virtual address M[OP I).

Invalidate the entry in the associative
map that' corresponds to the user
virtual address M[OP I).

Invalidate all executive address
space entries in the page map.

Invalidate all user address
space entries in the page map.

'.

.....
'

•

3.7.4.12.2 Processor Architecture . 71

3.7.4.12.2 Writing Segment Base Registers·

JOP . lrRJ 001 J I
0 10 11 12 23 24 35

These instructions allow writing either segment base register. A jump is included to allow writing
the exectHive to write its own segment base register (\Vhich affects the instruction address space for
the executive). Execution. of WRITE EXEC JUMP will cause all executive address space entries
to be deleted from the page map. Execution of WRITE USER JUMP will cause all user address
space enti"ies to be deleted from the page map.

Opcode String

WRITE EXEC JUMP

·WRITE USER JUMP

Operation

EXEC_SEG_BASE_REG~OP I
PC~ JUMPDEST

USER_SEG_BASE_REG~OP I
PC~ JUMPDEST .

72 Processor Architecture 3.7.4.13

3.7.4.13 Status Register Control

3. 7.4.13. l Read Status

[XOP 001 002

0 11 12 23 24 35

The full processor status and the processor ID are accessible only in executive mode.

Opcode Strin~ Operation

READ FULL STATUS OP l+-STATUS_REG

READ USER STATUS OP l+-USER_STA TUS_REG

READ PROC ID OPl+-PROCESSORJ.D

3.7.4.13.2 Write Status

j

0 10 11 12 23 24 35

The processor status register is accessible only in executive mode. A jump is provided after the
load so that the executive can load a user's status register and jump to the user in one instruction.
The M bit cannot be set in the jump destination of these or any other jump instructions.

Opcode String

WRITE FULL STATUS JUMP

WRITE USER STATUS JUMP

Operation

STA TUS_REG+-OP I
PC+-JUMPDEST

USER_STA TUS_REG4-0P I .
PC+-JUMPDEST

,.

•

3.7.4.14 .

3.7.4.14 SynchronizaUon

· 3.7.4.14.i SET INTERRUPT . . . "

0

XOP

Processor Architecture 73

001 002

11.12 23 24 35

Interrupts have been described in Sectio·n 3.4.1. A processor Pi may direct an interrupt to
processor Pi by. setting bit i in P /s interprocessor interrupt word using a read-modify-write
memory cycle. 0 P 1. and 0 P2 are assumed to be single-word operands.

· Opcode String

SET INTERRUPT

RESET INTERRUPT

3.7.4.14.2 Test and Set/Reset

I XOP 001

Operation

(using read-modify-write cycle)
. OP l+-OP lvOP2

(using read-modify-write cycle)
OP l+-OP 1Anot(OP2)

002

0 11 12 23 24 35

TEST AND SET and TEST AND RESET allow the setting and resetting of single-word nags
using a read-modify-write memory cycle.

Opcode String .

TEST AND SET

TEST A ND RESET

Operation

(using read-modify-write cycle)
0Ph-OP2
OP2+--l.

(using read-modify-write cycle)
OPl+-0P2
OP2+-0

•

74 Processor Architecture 3.7.i.14.3

3.7.4.14.3 Munch Registers

SOP SKP .I 001 002

0 7 8 11 12 23 24 35

Munch registers have been described in Section 3.4.3. These instructions allow a munch register
to be set if and only if there is no conflict (that is, no other' munch register eq~als OP2). If a
conflict exists, the munch register controller writes a zero into the munch register. The instruction
definitions assume that OP I is a munch· register.

Opcode String

MUNCH SKIP OK

MUNCH SKIP NOT OK

Operation

if no_.conflict
then begin

0Pl+-OP2
PC+-PC+SIGNED_SKP

end
else OP l+-0

if no_conflict
then OP l+-OP2
else begin

PC+-PC+SIGNED_SKP
OPl+-0

end

•

. i

,,
J

•

3.7.4.M.4 Processor Architecture 75

5.7.4.14.4 Hardware Queues

I SOP ·1 SKP
·I

001 002

0 7 8 11 12 23 24 35

This ins~ructions have been described in Section 3.4.4. The definitions assume that Q.UEUE.X is
a hardw.are queue at location ADDRESS_X. The processor uses a read-modify-write memory
cycle to both determine whether th~ queue is "full (empty) ·and to enqueue (dequeue) an entry if
and only if such enqueueing (dequeueing) is possible. Both LIFO and FIFO queues are
provided; they are distinguished by their addresses.

Opcode String

Q..UEUE SKIP FULL

Q..UEUE SKIP NOT FULL

DEQUEUE_ SKIP EMPTY

. DEQUEUE SKIP NOT EMPTY

Operation

(using read.:.modify-write cycle)
if not_full
then QUEUE.OP h-OP2
else PC+-PC+SIGNED_SKP

(using read-modify-write cycle)
if not_full
then begin

QUEUE.OP l+-OP2
PC+-PC+SIGNEO_SKP

end

(using re~d-modify-write cycle)
if not_ em Ptf
then OP l+-QUEUE.OP2
else PC+-PC+SIGNEO_SKP

(using read-mocUfy-write cycle)
if not_ empty
then begin

OP l+-QUEUE.OP2
PC+-PC+SIGNED_S KP

end

'76 P.rocessor Architecture 3.7.4.15·

· 3.7.4.15 Control Store

XOP 001 002

0 11 12 23 24 35

When the processor is powered-up, an LSI-11 console machine initializes the control memories in
the processor. The following instructions allow the operating system to alter the control memories.

Opcode String

WRITE ISEQ

WRITE PSEQ

WRITE ESEQ

WRITE DECODE RAM

WRITE DATA CACHE LRU

WRITE INSTR CACHE LRU

WRITE DATA ADR TRN LRU

WRITE INSTR ADR TRN LRU

Operation

Word OPl in the ISEQcontrol
gets OP2.

Word OPl in the PSEQcontrol
gets OP2.

Word OP 1 in the ESEQ control
gets OP2.

Word OP 1 in the DECODE RAM
gets OP2.

Word OPl in the DATA CACHE
LRU DECODE RAM gets OP2.

Word OPI in the INSTR CACHE
LRU DECODE RAM gets OP2.

Word OPI in the DATA ADDRESS
TRANSLATlON LRU OlCUUI:: RAM
gets OP2.

Word OPI in the INSTR ADDRESS
TRANSLATION I.RU DECODE RAM
gets OP2.

I,

... ,
'•

3.7:4.16 .. Processor Architecture 77

S.7.4.16 Mi.scelianeou.s

: I __ xo_·P_· _ ___..__ __ 0_0_1 ____ · 1 ___ 00_2 __ _

0 11 12 23 24 35

Opcode String Operation

WAIT Wait for interrupt.

·HALT Stop processor 0 P I.

• START Start processor OP I, if
halted, else does nothing.

RESET Reset 1/0 devices and switch.

EXECUTE Execute OP I in the address space
of OPI.

AMPUTATE Lock processor OP I out of the switch. ·

•

78 Processor Architecture 3.7.5

3.7.5 Sample Programs

This section presents sample programs which for comparison are coded in several assembly
languages, including assembly language for the LLL Filter.

The purpose of this section is to indicate the density of COJllpiled code for the LLL Filter, to
suggest the relative execution speed of the LLL Filter compared with existing machines, and to
clarify the LLL Filter instruction set.

3.7.5.1 Assembly Language Specification

This section presents a brief, informal description of the assembly language which is used for the
sample programs included in this report.

An assembly language statement may_, hav.e five main fields, as follows:

LA BEL OPCODE GOTO OPERANDS COMMENTS

The LA BEL and COMMENTS fields are self-explanatory. The remaining fields are described
in the following sections.

3.7.5.1.l OPCODE Field

The OPCODE field contains an opcode string, as described in Section 3.7.4, or an abbreviated
form of the opcode string. An opcode string may be abbreviated by the deletion of certain terms;
the assembler fills in default values for these terms. The following list shows the assembler
defaults for opcode string terms:

{S,D}

{FR,CR,SR}

Assembler Default

s

SR

For example, the assembler expands the opcode string "FDIV" into "FDIV SR S", meaning
"single-word floating divide with stable rounding." · ·

3.7.5.1.2 GOTO Field

The GOTO field is used for any instruction which includes a skip or a jump destination. The
GOTO field contains the name of the destination instruction.· ·

3.7.5.1.3 OPERANDS Field

The OPERANDS field specifies the operands of the instruction. The operand names RTA,
RTB, PC, SP, and SL are reserved words which indicate special R registers, as shown in Section
3.7.2. The notation RX means R[X).

3.7.5.1.3 Processor Architecture 79

Operands are written in the order shown in Table 3. 7.3.2- l. In instructions having two operands,
the order of'the operands is OP I, OP2. In instructions having three operands, the operands are
written "DEST,OP l,OP2."

80 Processor Architecture 3.7.5.2

3.7.5.2 Use of the T Field.

' .
The main use of the T format i11structions is in the evaluation of expressions. The following
examples co!11pare LLL Filter code and PDP-10 code in the evaluation of expressions.

Expression LLL Filter I Words PDP-10 I Words

A .. A+B 1 2

ADD A.B. MOVE RO,B
ADDM RO,A

A .. B+C 2 3

ADD RTA,B,C MOVE R0,8
MOV A,RTA ADD RO,C

MOVEM RO,A

A .. B+C-D :• 2 4

ADD RTA,B,C MOVE RO,B
SUB A,RTA,D ADD RO,C

SUB RO,D
MOVEM RO,A

A .. A•B+C•D 3 6

MULT RTA,A,B MOVE RO,A
MULT RTB,C,D MULT RO,B
ADD A,RTA,RTB MOVE Rl,C

MULT Ri,O
ADD RO,Rl
l'IOVEM RO,A

A .. B•(C(J)-D(K)) 4 6

SUB RTA, C(J), D(K) MOVE RO,J
MULT A,RTA,B MOVE Rl,K

MOVE R2,C(RO)
SUB R2,D(Rl)
MULT R2,B
MOVEl1 R2,A

A .. B(I+J)•C(K+L)+D(M+N)•E(L+P) 12 14

ADD RTA,l,J MOVE RO,I
• ADD RTB,K,L· ADO RO ,,J

MULT RTA,B(RTA),C(RTB) MOVE Rl ,K
MOV ·RI ,RTA ADD Rl,L
ADD RiA,M,N MOVE R2,B(RO)
Ann RTR,1.,P MIJJ.T R7., r.(R 1)
MULT.RTA,D(RTA),E(RTB) MOVE RO,M ..
ADD A,RTA,Rl ADD RO,N

MOVE Rl,L
ADD RI, P
MOVE R3,D(RO)
MULT R3,E(Rl)
ADD R2,R3
MOVEM R2,A

•

3.7.5.2 Processor Architecture 81

.
This last example might seem a little unlikely, but it was given because except for the statement
"A~B+C", ·it is the only expression that can not be evaluated with no "MOY" instructions,
because each of the four subs.cripts need the RT registers, and each of the products need the RT
registers for their results. If even one of the four subscripts takes one more or one less operation,
then the expression can be evaluated with no "MOY" instructions .

. 3.7.5.3 Compiled Tree.sort Comparisons

This section compares compilations of the Treesort algorithm. The first ·compilation shown is the
output of a hypothetical simple compiler compiling BLISS for the LLL Filter. The second
compilation is the output of the BLISS-10 compiler compiling BLISS for the PDP-10. The third
compilation is the output of the BLISS;--11 compiler compiling BLISS for the PDP:-11. Each of
the first three compilations is shown for two cases, called case NO REGS and case REGS, which·
correspond to the cases in which the variables T, J, K, and N are declared to be OWN variables
and REGISTER variables, respectively. The last compilation is the output of the FORTRAN-H
compiler compiling a FORTRAN version of the same algorithm for the IBM-370/168. This
compilation was performed using the full optimization capability of FORTRAN-H (OPT=2).

The following table summarizes the importan·t static parameters of the compilations.

fl INSTRUCTIONS I BITS DATA CACHE CYCLES

LLL Filter (NO REGS) 33 1584 81 .

LLL Filter (REGS) 33 . 1584 19

BLISS-10 (NO REGS) 63 2268 60

BLISS-10 (REGS) 42 1512 19·

BLISS-J l (NO REGS) 63 1376 63

BLISS-11 (REGS) 58 1216 31

FORTRAN-ff 370/168 84 243.2 51

82 Processor Architecture 3.7.5.3.1

3\7.5.3.l BLISS Treesort Algorithm

This section presents the Treesort algorithm which is compiled for several machines in 'the
following sections. The listing shown declares T,], K, and N to be registers.

MODULE=
BEGIN

REGISTER T,J,K,N;
LABEL. Ll, L2;
OWN A[61];

!NCR I FROM 2 TO .N DO BEGIN
K ... I;
J ... I;
T ... A[. I];
L1: no OECHN

J ... J/2;
IF . T L.EQ .A[.J] THEN LE.A.VE Ll; ·
A[. K] ... A[. J] ; ·
K ... J;

END UNTIL .J EQL l;
A[.K] ... T;

. END;

DECR I FROM . N-1 TO l DO BEG IN
T ... A[.l+l];
A[. I+ l] ... A[1] ;
K .. l;
J ... 2;
L2: WHILE .J LEQ .I DO BEGIN

IF .J LSS .I THEN BEGIN
IF (.A[.J+l]Grk .A[.J]) fH~NJ ... J+l;

END;
IF .A[.J] GTR .T THEN BEGIN

A[. K] ... A[• J] ;
K..-.J;
J•2•.J·

END ELSE [EAVE L2;
END;
A[.K] T;

END;

END ELUDOM;

,.,.

3.7.5.3.2 Processor Architecture 83

3.7.5.3.2 LLL Filter Compilation

This section presents the output of a hypothetical non-optimi.zing compiler compiling the above
BLISS program for the LLL Filter. A long with each assembly language instruction is. shown the

... number of data cache cycles required for the instruction for each of case NO REGS and case
REGS, and the length of the instruction ·in words.

The assembly language output is identical for case NO REGS and case REGS, therefore only one
listing is shown.

NO REGS REGS
DATA #DATA I 36-BIT

; CACHE CACHE INSTR
CYCLES CYCLES WORDS

MOV I,12 2 0 1
SKIP LE Ll I,N 2 0 1
JUMP L4 0 0 1

Ll . MOV K,I . 3. O· 1
MOV J,' I 3 0 1
MOV T ,A(I) 4 1 2

LZ SHIH RIGHT A J,#1 . z 0 1
SKIP LE L3 T,A(J) 3 l 2
MOV A(K) ,A(J) 5 3 2
NOV K,J 3 0 l
SKIP NE. L2 J,11 l 0 l

L3 MOV A(K), T 4 z 2
INC SKIP G L4 I ,N 3 o.· l
JUMP Ll 0 0 1

L4 DEC I ,N 3 0 1
JUMP LE 0 Lll I 1 0 1

L5 MOV T, A+ 1(I) 4 1 2
MOV A+ 1 (I) ,A+l 4 3. 2
MOV K,#1 z 0 l
MOV J,12 2 o· 1 .

L6 SKIP LE L7 J' I 2 0 1
JUMP LlO 0 0 1

L7 SKIP GE LB. j, I 2 0 1
SKIP LE LS A+l(J),A(J) 3 2 3
ADD . J,#1 2 0 1

LB SKIP LE LlO A(J), T 3 1 2
NOV A(K) ,A(J) 5 3 z
MOV K,J 3 0 l
SHIFT LEFT A · J,#1 2 0 l
SKIP G LlOJ,I. 2 0 1
JUMP L7 0 0 1

LlO MOV A(K), T 4 2 2
INC JUMP G 0 LS I 2 0 1

Lll

TOTAL: 81 19 44

84 Processor Architecture 3.7.5.3.3

3.7.5.3.3 BLISS-10 Compilation for PDP-10

Following is the cod.e generated by the BLISS-'10 compiler compiling the above BLISS program
for the PDP- IO for the case in which T, J, K, and N are not ~eclared to be registers.

MOVE I 17' 2. L4 MOVE 6,N
MOVEM 17, I SOJ 6,0

Ll CAM LE 17,N MOVE 17,6
JRST L4 JUMP LE 17,L9
MOVEM 17,K LS MOVE 7 ,A+l(l 7)
MOVEM 17,J MOVEM 7,T
MOVE 4,A(l7) MOVE 10 ,A+l
MOVEM 4,T MOVEM 10 ,A+l(l 7)

L2 MOVE 5,J MOVE I 12,1
. ASH 5,-1 MOVEM 12 0K

• MOVEM 5,J MOVEI 11,2
MOVE 6,A(5) MOVEM 11,J
CAN LE 6,T L6 CAMGE . 17 ,J
JRS

0

T L3 JR5T L8
MOVE 10 I K CAMG 17,J
MOVE 11,J JRST L7
MOVE 12,A(ll) MOVE . 5,J

· NOVEM . 12,A(lO) MOV~ 6,J
MOVEM 11, K MOVE 7,A(6)
CAIE 11, I CAML 7 ,A+l(5)
JRST L2 JRST L7

L3 MOVE 4,K AOJ 5,0
MOVE 5,T MOVEM 5,J
MOVEM 5,A(4) L7 ~IOVE 5,J
AOJA 17,, Ll MOVE 6,T

CAML 6,A(S)
JRST L8
MOVE 10,K
MOVE 12,A(5)
MOVEM ~17.,A(lD)
MOVEM 5,K
ASH 5, 1
MOVEM 5,J
JRST L6

LS MOVE 10,K
MOVE 12,T
MOVEM 12,A(IO)
SOJG 17~1..5

L9

•

·•

3.7.5.3.3 Processor A rchltecture 85

Following ls the code generated by the BLISS-10 compiler compiling the above BLISS program
for the PDP-10 for the case in which T, j, K, and N are declared to be registers.

.MOVEI 13,Z LZ MOVE 13,14
Ll CAM LE 13,14 SOJ 13,0

JRST LZ JUMP LE 13,L5
MOVE 15,13 L6 MOVE 17 ,A+l(l3)
MOVE 16,13 MOVE 6,A+l
MOVE 17 ,A(l3) MOVEM 6,A+l(13)

L3 ASH 16,-1 HOVEi 15,I
CAMG 17,A(l6) HOVEi 16,Z
JRST L4 L7 .CAMLE 16,13
MOVE 4·,A(l6) jRST LIO
MOVEM 4,A(l5) CAML 16, 13
MOVE 15,16 JRST Lll
CAIE 16,l MOVE ll,A(l6)
JRST L3 CAMGE ll ,A+l(l6)

L4 MOVEM 17 ,A(l5) AOJ 16,0
AOJA 13,LI Lll CAML 17,A(l6)

JRST LIO
MOVE IZ,A(l6)
HOVEPI IZ,A(l5)

. MOVE 15,16
MOVE 1,16
ASH I, I

. MOVE 16,I
JRST L7

LIO PIOVEPI 17,A(l5)
• SOJG 13,L6

/

86 Processor Architecture S.7.5.3.4
I

3.7.5.3.4 BLISS-11 Compilation for PDP-11

Following is the code generated by the BLISS-I I compiler compiling the ~bove BLISS program
for the PDP-I I for the case in wMch T, J, K, and N are not declared to be registers.

HOV IT,R$0 MOV @#N,R$5
HOV IJ,R$3 DEC R$5
HOV #K,R$1 HOV R$5,R$2
HOV 12,-(SP) BR L$13
BR L$6 L$12: MOV R$2,R$5

. L$5: HOV @SP,@R$1 ASL R$5
HOV @SP.@R$3 HOV A+2(R$5),@R$0

.MOV @SP,R$5 HOV @#A+2,A+2(R$5)
ASL R$5 HOV #l ,@R$1
MOV A{R$5),@R$0 HOV #2,@R$3

L$7: ASR @R$3 L$14: HOV @R$3,R$5
MOV @R$3,R$2 CMP R$5,R$2
MOV R$2,R$5 BGT L2
ASL R$5 BGF., L$18
CHP A{R$5),@R$0 HOV R$5,R$4
BGE LI ASL R$4
MOV @RSI, R$4 ASL R$5
ASL R$4 CMP A+2(R$4) ,A(R$5)
HOV A{ R$5), A(R$4) BLE L$18
MOV R$2,@R$1 INC @R$3
CMP R$2,#l L$18: HOV @RS3,R$5 .
BNE LS7 ASL RS5

Ll: MOV @R$_1, R$4 CHP A(RS5),@R$0
ASL R$4 BLE L2
HOV @R$0,A(R$4) MOV @R$1,R$4 .
INC @SP ASL R$4

L$6: CMP @SP,HN HOV A(R$5),A(R$4)
BLE LSS MOV @R$3;@R$1

HOV R$5,@R$3
DR L$14

·L2: HOV @R$l,.R$4
ASL R$4 .
HOV @R$0,A(R$4)
DEC R$2

L$13: BGT L$12

•

' I .

. '" I .
I .

•

.•

. 3.7.5.3.4 Processor Architecture 87

Following is·the code generated by the BLISS-I I compiler compiling the above BLISS program
for the PDP-I I for the case in which T, J, K, and N are declared to be registers .

..
MOV 12,-(SP) DEC R$2
BR L$6 HOV RSZ,@SP

L$5: · HOV @SP,R$3 BR L$13
HOV R$3,R$4 L$12: HOV @SP,R$2
HOV R$3,R$1 ASL R$2
ASL R$1 MOV A+Z(R$2),R$5
MOV A(RSl) ,R$5 MOV @IA+2,A+Z(R$2)

LS7: ASR R$4 MOV ll ,R$3
HOV R$4,R$1 MOV 12,R$4.
ASL R$1 L$14: CMP R$4,@SP
CMP R$5,A(RS1) BGT LZ
BLE Ll BGE L$18
HOV R$3,R$0 MOV R$4,R$1 ·
ASL RSO ASL R$1
HOV A(RSl) ,A(RSO) HOV R$4,R$2
HOV R$4,R$3 ASL R$2
CHP R$4,#l CMP A+Z(R$1) ,A(R$2).
BNE L$7 BLE LS18

Ll: HOV R$3,R$1 INC R$4
ASL R$1 LS18: MOV R$4,R$2
MOV R$5,A(RS1) ASL R$2
INC @SP CMP A(R$2),R$5

L$6: CMP @SP,RS2 BLE LZ
BLE ·L$5 MOV R$3,R$1

ASL R$1
MOV A(R$2) ,A(R$1)
MOV R$4,R$3
MOV R$2,R$4
BR L$14

LZ: MOV R$3,R$0
ASL R$0
HOV R$5,A(R$0)
DEC @SP

LS13: BGT L$12

•

" .

•

. ..

3.7.5.4 Processor Architecture 89

..
3.7.5.4 Hand-Coded Qu.ichort Comparisons

This section compares hand-coded versions of a particular renditiori of the Q.uicksort algorithm.
This version of. the Q.uicksort algorithm comes from [Sedgewick 1975) pg. 329.

The following table summarizes the results of these comparisons:

LLL Filter

PDP-10

I INSTRUCTIONS

53

63.

I BITS

2916

2268

It is instructive to compare the inner loops of the variot,1s Q.uicksort programs, and these are
marked.

It should be noted that the LLL Filter code has not been highly optimized; by using absolute
addresses for arrays, most multiple-word instructions can be reduced to single-word instructions,
and furthermore, constants can be shared, elimin.ating duplicate versions in line .

•

90 Processor Architecture S.7.5.4.l

3.7.5.4.1 ALGOL-W Quiclcsort Algorithm ·

This section presents in ALGOL-W the Quicksort algorithm which is hand-coded in 'the
following sections.

Certain liberties have been taken with the ALGOL-W language. Specifically, "INFINITY" is
assumed to be a reserved word, the operator ":=:" is the exchange operator, and .a macro facility is
assumed (eg. "DEFINE N=400;"). ·

BEGIN DEFINE N=400; DEFINE M=9;

BEGIN INTEGER ARRAY A(O::N+l);
INTEGER ARRAY STACK(0::2*(ENTIER(LN((N+l)/(M+2))))+1);
INTEGER P,L,R,1,J,V,T;

A(O):=-INFINITY;
A(N+l):=INFINITY;

P:=O; L:=l; R:=N;
PART: I:=L; J:=R+l; v::A(L).:

WHILE I<J DO BEGIN .
Ii=I+l; WHILE A(l)(V DO l:=l+l:
J:=J-1; WHILE A(J)>V DO J:=J-1;
A(J):=:A(I);
END;

A(I) := :A(J);
A(J) := :A(L);
IF R-J>J-L THEN GO TO RBIG;
IF J-L<=M THEN GO TO POP;
IF R-J<=M THEN GO TO LEFT;
P:=P+2;
STACK(P):=L; ·
STACK.CP+l):=J-1:

RIGHT: L:=J+l;
GO TO PART;

RBIG: IF R-J<=M THEN GO TO POP;
IF J-L<=M THEN GO TO RIGHT;
P:=P+2;
STACK(P) :=J+l;
STACK(P+l):=R;

LEFT: R: =J-1;
GO TO PART;

POP: L:=STACK(P);.
R: :-::STACY.(P+ l) I
P:=P-2;
IF P>=O THEN GO TO PART;

INSERT:fOR 1:=2 UNTIL N DO

END;
END.

. BEG IN
V:=A(I); J:=l-1;
WHILE A(J)>V DO RF.GIN A(.1+1) ::A(~J) 1 J:=J"l"; END;
A(J+l):=V;
END;

. .

3.7.5.4.2 Processor Architecture 91

3.7.5A.a·LLL Filter Hand-Coding

·This section presents a version of the above ALGOL-W program hand coded in· LLL Filter ·
assembly language. We assume that P, L, R, I, J, and V are stored in R registers.

MOV A,#-INFIN L9 MOV STACK+2(P), L .
MOV A+N+l,IINFIN DEC STACK:t-3(P)-,J
MOV P,#0 ADD P,#2

~ MOV L,#1 "RT INC L,J
MOV R,IN JUMP PT

PT MOV I, L RB SKIP G LlO RTA,#M
. ~ INC J,R JUMP pp

MOV V,A(L) LIO SKIP LE RT RTB,#M
INC STACK+2(P),J

*** INNER LOOP FOLLOWS *** . MOV STACK+3(P),R
ADD P,#2

LI ADD I,#1 ·LF DEC R,J
SKIP L LI A(I), Y JUMP PT

L2 SUB J,#1 pp MOY L,STACK(P)
SKIP G L2 A(J), Y MOY R,STACK+l(P)

: EXCH A(J) ,A(I) SUB P,#2
I

!
SKIP L LI I ,J JUMP GE 0 PT p

IN MOY I,#2
' *** END OF INNER LOOP *** · SKIP LE L6 I~#N I
I . JUMP L3 ' i

I EXCH A(J),A(I) L6 DEC J, I
EXCH A(J),A(L) MOV V ,A(I)

' SUB RTA,R,J SKIP LE L5 A(J), V
. I SUB RTB,J,L . L4 MOV A+l(J),A(J)

SKIP LE Lil RTA,RTB SUB J,#1
JUMP · RB SKIP G L4 A(J), V

Lil SKIP G L7 RTB,IM L5 MOY A+l(J), V
JUMP pp INC SKIP G L3 1,#N

Li SKIP G L9 RTA,#f'I JUf'IP L6
JUMP · LF L3

•

. •

•

!
; .
! .

·92 Processor Architecture 3.7.5.4.3

3.7.5.4.3 P-DP-10 Hand-Coding

This section presents a version of the above ALGOL-W program hand coded by John Reiser in
PDP-10 assembly language. We assume that P, L, R, I, J, and V are stored in registers, and we
ca11 those registers RP, RL, RR, RI, RJ, and RV. In addition, we use the names RTI, RT2, and
RT3 to refer to distinct temporary registers.

NINF . -2u35 PUSH RP,RL
HOVEi RTl,-Z(RJ)

MOVE RTI ;NINF HRLH RTl, (RP)
MOVEM RTI,A' RIGHT HOVEi RL, (RJ)
HOV MM RTI ,A+N+l JRST PART
MOVE I RP,STACK-1 RBIG CAIG RTZ,M
MOVE I RL, 1. JRST POP
MOVE I RR,N CAIG RT3,M

PART MOVE I RI, (RL) JRST RIGHT
MOVE I RJ, l(RR) PUSH RP,RJ
MOVE RV,A(RL) HRLM RR, (RP)

LEFT HOVEi RR, (RJ)

*** INNER LOOP FOLLOWS *** JRST PART
POP TLNN RP,·l

Ll CAM LE RV ,A+l (RI) JRST INSERT
AOJA Rl,Ll HLRZ RR,RL

LZ CAMGE RV,A-l(RJ) JRST PART
SOJA · RJ,L2 · 'INSERT HOVE I Rl,RN
MOVE R Tl , A- 1 (RJ) SOJLE RI ,OUT
EXCH RTI,A+l(RI) TOP MOVE RV,A(RI)
MOVEM RTl ,A-1 (RJ) CAHG RV,A+l(RI)
CAILE RJ, 2(RI) JRST · BOT
JRST Ll HOVEi RJ., l(RI)

CAM LE RV ~A+l(RJ)

*·** END OF INNER LOOP *** AOJA RJ,. -1
MOVSI RTl,A+l(Ri)

·MOVE R Tl , A-1(RJ) HRRI . RTl,A(RI)
EXCH RTI,A+l{RI) BLT .RTl ,Aw 1 (RJ)
EXCH RTl ,A(RL) · MOVEM RV,A(RJ)
MOVEH R Tl , A- 1 (RJ) BOT SOJG RI, TOP
MOVE I RT2, (RR) OUT
SUBI RT2, ('RJ)
MOVE I RT3, (RJ)
SUBI RT3,(RL)
.CAJGE RT3,2(RT2)
,JRST RBlfi
CAIG RT3,M
JRST ·POP
CAIG RT2,M
JRST LEFT

-. •

•

4. !mplementation

4.1 Processing Element

The major features of the processing element implementation are as follows:

State-of-the-art high-speed ECL logic .

Triple micro-controllers, two for fetching instructions and operands, and one for
executing instructions.

An instruction set defined in a writeable control store which can be dynamically
modified to accomodate the special require~ents of some codes .

. Special data paths f~r the rapid e.xecution of floating-point instructions.

Hamming-coded main memory to allow the use of cost-effective 4K-bit and IGK­
bit RAM chips.

93

The processing element is shown in Figure 2.2-1. The entire proce~sing element, including control
store, requires approximately 4000 ECL IOK ICs. The processing element cycles in 100 nano­
seconds, with register-to-register and register-to-memory integer adds proceeding in pipeline
mode at I 00 nano-seconds per instruction. With stable rounding, floating addition takes. 6 cycles,
a.nd floating multiply takes 11 cycles. With truncation, floating addition· takes 5 cycles, and floating.
multiply takes 10 cycles.

The processing element contains three independent micro-programmed processors, which are
designated the P-sequencer, the I-sequencer, a.nd the E-sequencer. The P-sequencer does the
basic instruction decode which takes care of the different operand types, and register operands.
The I-sequencer calculates memory, indexed, and indir~ct operands, in addition to contro11ing
things like cache misses and the interaction with the switch. The £-sequencer executes all of the
basic instructions, once the P and I sequencers have fetch the op_erands, and scheduled the write(s)
for the result(s). A 11 three of the sequencer's have writeable control stores, which can be
dynamically changed.

In this discussion "macro-instruction" ("macro-operation") will mean the sequence of micro­
instructions executed by the three sequencers to emulate a user-level Inst.ruction.

Drawings in general will be referenced by an abbreviation which is given in all capital letters.
For example the drawing for the instruction box has the abbreviation IBOX.

The drawings are the output of an advanced computer-aided design system; they are a
hiera.rchical representation of the machine. In general, a single page is the definition of a macro­
b(ldy included in a drawing at a higher level; the definition may use macro-bodies which are
defined at a lower level. The name of a macro-body appears inside the body at the call site; it is
also the title of the body definition .. Most macro-bli)dy definitions are one page, although
multiple-page definitions are allowed. Multiple-page definitions ·are indicated by placing a page
number (for example, "1/2") in the title of each drawing of the definition.

Lines in the drawings represent bundles of signals. The notation X<i:j> means the bundle ·of
signals X<i>. X<i+ I>, ... , X<j>. The notation X:Y:Z means the bundle of signals (or vectors of

94 Implementation 4.1

signals) X, Y, and Z, in that order. Special nmerger" bodies are also used to bundle separately
. named signals.

The parameter passing mechanism is simila"r to that of ALGOL; actual parameters may be passed
to a macro-body where it is used (paramters are bundles of signals) and the body definition may_

·refer to those parameters by their formal names. Global signals will be declared, although no
declarations have yet been made on these drawings. Any macro-body can refer to global signals
which are delared at a higher level.

The de(initions of most low-level bodies are not shown in thi~ report, although an appendix
contains some low-level definitions.

4.1.l IBOX/EBOX Communication

This section describes the signals which connect the IBOX and EBOX. In the logic diagrams, all
signals connecting the I BOX an EBOX are prefixed with ;the character nX". Times in
parentheses indicate when the signal is available in the sender's reference frame.

4.1.l.I IBOX to EBOX Signals

START ADR<O:l I> (T10)
Starting address In the EBOX of the sequence of micro-operations which emulate the current
instruction.

·A 0P<0:35> (TSO)
Operand to the EBOX. A OP is normally the operand described by ODI.

B OP<0:3!:i> (TSO)
Operand to the EBOX. BOP is normally the operand described by 002.

USE A OP (T50)
This signal allows the IBOX to wrap the EBOX result around into the A input. If this signal is
oot set and the EBOX is reading an operand from the IBOX, then the operand reaq into the A
input is simply the result of the last EBOX cycle.

USE B OP (TSO)
This signal allows the IBOX to wrap the EBOX result around into the B input. If this signal is
not set and the E BOX is reading an operand from the IBOX, then the opP.ranri read into the B
input is simply the result of the last EBOX cycle: ·

BRANCH TA KEN (TSO)
During conditional branch instructions, t_his signal indicates that the IBOX took the branch.

BRANCH COND<0:2> (TSO)
During conditional branch instructions, these signals indicate the one of eight branch cond.itions
wtl~tl iri the instruction.

A OP LOW ADR<O:I> (TSO)
The least-significant two bits of the A operand address. These bits are used in quarter-word and
half-word operations.

..

•

4.1.1.1 Implementation

BOP LOW ADR<O:l> (TSO}
The least-significant two bits of .the B operand address. These bits are used in quarter-word and
half-word operations.

DEST LOW ·ADR<O:l> (TSO}
The least-significant two bits of the destination operand address. These bits· are used in quarter­
word and half-word operations.

KILL EBOX (TSO}
Stop the EBOX unconditionally.

PAUSE EBOX (TSO}
This signal can be tested by the EBOX and if asserted, will cause a soft stop to occur.

4.1.l.2 EBOX to IBOX Signals

USING OPS (T4}
Tfiis signal indicates to the IBOX that if the input operands are not ready for the EBOX, then
the EBOX clock should be stopped until the input operands become ready.· .

OPS TAKEN (TIO).
This signal indicates to the IBOX that the input operands have been loaded into the EBOX and

. therefore the I BOX operand registers can be reloaded.

RESULT DATA<0:3S> (T20)
. The result of a sequence of micro-operations.

TRAP (T20}
The instruction in. execution has trapped.

RESULT (T20)
A result is available on RESULT DA TA <0:35>.

DONE (T20}
Th~ F. BOX is done with the current sequence of operations and is ready to accept a new starting
address. ·

INTERRUPTIBOX(T200
Interrupt the J BOX. Several cycles are wasted in. cleaning up the IBOX to prepare for an
I BOX/EBOX dialogue,

WRONG BRANCH (T21)
The JBOX took the wrong direction on the conditional branch currently in execution.

•

96 Implementation 4.1.2

4.1.2 Instruction Box

The instruction box (IBOX)° cont.rols the fetching of instructions and operands, the interaction
with the crossbar swjtch to read and write main memory, and all 1/0 operations.

The I BOX has two caches, one for instructions and one for data, which each hold 4K words.
The main reasons for having two caches is that it doubles the cache bandwidth, and simplifies
the scheduling of cache operations, since the instruction prefetch logic has its own dedicated cache.
A given word of memory can only be in one of .the two caches at a time. When ever a miss
occurs in one of the caches, the other cache is checked for that word. If it is found there, then it
is moved from the one cache to the other. In addition, the instruction cache does n_ot have any
modify bits, so if a modified word is moved from the data cache to the instruction cache, then it is
also written back to main memory.

The main register stack is 128 words by 36-bits, which contains the three sets of registers for the
user,· and a set of temporary registers for use by the IBOX. All of the registers are stored thrP.P.

. times, which allows· three different registers to be read out at the same time. During each micro- ·
cycle, one register write and three reads may be done.

One of the register stacks exists in the Index Register File macro, and is used for index
operations. The other two are in the Data Cache and Register File macro, which are used for

. reading register operands for instructions.

The Instruction Address Arithmetic, Instruction Address Translation, Instruction Cache, and
Instruction Buffer and Decode macros all have to do with prefetching instructions. The Index
Register File, Data Address Arithmetic, Data Address Translation, ·and Data Cache and Register
File macros are used for the calculation of operands. Memory Interface allows memory read and
write operations to be done to the switch. One of its more interesting features is that it puts
hamming codes on the data before it goes to the switch, and checks and corrects it when it comes
back. That way, if there is an error introduced any place between the processor and the memory,
it can be corrected if its a single error, and detected if its a double error. The ~BOX Operand'
Register macro holds the next pair of operands for the EBOX, and the EBOX ·Interface macro ·
just specifies the interconnections hetween the lBOX and the EBOX

..

..

•

C44 S!C R£G 6CL

F'J~t r£ft R

'1

JOCEC REGISTER
. nu:

•

IBOX CONTROL

INSTRICTJON LJ . INS1RUCTION
ADQRESS AllJTtftTJC . IQlRESS ~TJON

INSTR UA INSTR UA
INSTRUCTION CACHE

iNSTR PA INSTR PA INSTR OISf I-----.

IC

- jWll)

-ADO

llllTA
AOJ00£8S AllJTN"ETJC

--I JtCIEX REG

IC

llllTA
IQlRESS~TJON

~ JtCIEX REG

IC

W DATA

1
DATA CACHE AIC)

REGISTER l'JU:

JNSTRUCTJOH aEfOt
A1C> llECUIE

L-...1 INSTR OISf

---' OISf A A

OISf A 1-----J
___.W DATA JOCID< Rm~ JtCIEX REG DPA DPA

R A
T. c OISf B~ DUAJ]DUA

u t"liaTA w oere c:eox w DAIA

===-----=-~_j_FF=======±=t==::J~ WDATA --

~
JNTCAFACE

f'.ROn ~I , · f"A>rl n£n< e:35,

IC

RCSU... T · l.181961=,
IC .1-~~~~~...J ~

~JNA ·OP A OP A

EBOIC Of'E-D
RmJSTERS

"
'-------t JN B OPB OPB

Instruction Box (IBOX}

£JIOIC
INTERFACE

E

•••n tL--
IC

REQLT ~~~~~~~~~~~~---,
DATA

RESU.. T T46 L

ID

.!

98 Implementation 4.1.2

.

4.1.2 Instruction Box Pipeline Timing

The IBOX Pipeline Timing shows an example of the parallelism which results in the IBOX
. when a. series of contiguous instructi~ns are executed, each of which requires a single EBOX

execution cycle. Each box in the figure represents a IOOns event.

. The pref etch logi~ fetches an instruction every cycle, as long as the pipeline can use the· .
instructions. The prefetch logic looks at the instructions as they are decoded, and if it sees an
unconditional .branch, it takes it. If it sees a conditional ~hort PC relative branch or. skip
backwards, then it assumes that it is a loop, and also jumps backwards. In all other cases, it
fetches the next instruction assuming the branch is false. When the conditional bran·ch is
executed, if the prefetch logic went the wrong way. the pipeline if flushed, and the processor star.ts
fetching instructi<;ms the other direction.

Once the instruction is decoded, the next step is to fetch the P-sequence micro-instruction for the
instruction. The P-sequence micro-instruction then specifies a starting address in thP. l-~equencer,
and calculates register addresses for the register operands. Depending on the operand formats for
the specific instruction, and the specific addressing modes used, a number of P-sequence and I~
sequence micro-instructions may be done.

After an I-sequencer micro-instruction is executed, there is a two stage pipe. The first stage of
the pipe calculates addresses and does a virtual to real address translation. · The virtual to real
address translation was not done in parallel with the cache read so that the page size could be
smaller than the size of the chips used to implement the cache, whi~h are IK bit ECL RAMs.
The second stage of the pipe can then do two register reads, or a register read and a cache read.
If a register Is read as a memory location, then the. hardware automatically reads the correct
register.

After the operands of t.he instruction are read, then a half cycle is allowed for the operands to get
to the EBOX. The EBOX then executes the Instruction taking some number of cycles, and writes
the result(s) back. The addresses of the result(s) have already been scheduled at this time, .and
hardware logic actually does the writes. If a write conflicts with what the IBOX wants to do

. during a given cycle (i.e. the IBOX wants to do a cache read, and the EBOX wants to do a cache
write), then the clock for the IBOX is stoped for a cycle, and the write otcurs. For mn.st
addressrng modes, the IBOX does not need to write into the cache or the general register file, so·
very few write conmcts should occur. . .

There is a set of comparators which take care of the cases where a result of one instruction is used
in one of the next two instructions, which causes the <tppropriate data to bypass the cache or
register file, with no loss in time. The only place where execution time is lost is where an
instruction tries to index off of a rescently generated result, in which case up to three cycles may
be lost. Because of this, it is 2 cycles faster to index off a local variable on your stack, than it is to
load it into a register a,nd then index off of it once.

FIRST INSTRUCTION

IHCRE'tENT AND
TRAtG.-ATE PC

READ JNlTR
FROn CID£

Te

SECOND INSTRUCTION
INCR9£N1 AoC>
TRRN&.ATI; PC

RCACi lt6TR
F1iOn CID£

F£TO< P SEQ
nlCfll>JNSTR

TH

DB:<IOC DCSTR

,.

moo 1 sco
nJCROINSTR
AoC> RF.AD

INOCX RCGJSTCR

F'CTOt P SCO
nlCA>JNSTR

Tl•

THIRD INSTRUCTION

JN~Oi91T ftilD
TR"'4S.AT£ PC

1. DECODE !HsTR

Te

FOURTH INSTRU:TION

J NCR 0£H1 Ate>
TRANSLATE PC

•

REA() 1"6TR
flROn CAOC

-SS CAO£ AC>
AllTWIE"l IC RCGISTBI

AtC11-.ATIOH OP£RfMl JCADS

FETOt I 8111
ftlCROINSTR
AM> READ

JNIEC Rl:Gl 6T£R

FC'TOt p sco
NCROJMSTR

Tte

DECODE J H 8fR

Te

ADORCSS
A:Ult...::T JC

""DT-.ATIOH

FETC>t I sea
n lCROJfCST R
AtO READ

INIEC RCGJ STER

f"C'TOI P S:CO
nlCROJHSIR

T ..

e>a:CUTIOH CYQ..E
OF f"IRST INSTR

•

..ii 1E RESt.L T
F1iOn nRST lNSI R

INTO CAOtE OR
RCGI STCR FILE

WAITE a;s..a.. T
FROft GECOC> INSTR

INTO CAO£ OR
REGISTER FIL£

j'

EJU:QJTJON CYa..£
OT SCCOtC> INSTR

ADDRESS I ARJ THl'CT IC.
AoC> T-..u>TIOH

F"ETOt I SCQ
nJCROINSTR
AHO READ

ltCCX REGISTER

CAOtE AoC>
RCGJ sr£R

~DllCADS

y ...

ADDRESS
AAJTWCTIC

AN> TIMMSU\TION

C>CQITJC»I Cl'D..£
OF 1HJRO INSl'R

. CACHE · AtC>
RCGJGTCR

OPC-.o llCAD6

1411

WRITE RCSLl.T
f"ROn THJRO INGTR

J H 10 CACHE OR
REGISTER FD.£

E>C£CUTJOH CYQ.E
Of' f"CldllH INSTR

IBOX Pipeline Timing (IBOXT)

MAJ TE REGL&. T

lf'ROl"I rOURTH INSTR
INTO CAOC OR
RCGJSTER FIL£ .

•

•
100 Implementation 4.1.2 .. l

4.1.2.1 Index Register File

The index register file is used for reading1registers which are us.~d in address arithmetic, such as
in index operations and register indirection. The multiplexer is used to determine the source of
the register address, and the comparator is used to detect that the next cycle is writing into the
register being read, to allow the appropriate data to bypass the index register file, saving a cycle.

The IREGM drawing shows how the 36B x 128W register file is implemented .

..

2•6 :PC Q.CU[(8: 21): 292

w om (e:

RC'G M ADh8: ,

11£G

II!

:J
7 BIT
18164

4 IC

6

6

Fl 1]NOC>(~ A>R U: c &. ,

Hl:>C:T M OtP X R£

JNDOC QA:; ADU2,
JNllO: P1•:; AfP< 3,

UC>[)(Pffi A (6,

JND[)(Rffi ACR<6,

JBOX NO 1 US JHG CACHE

IC

RA WA IE

T

Rl"AO HG PC

:J6 en
.111173

IC

TV L

Index Register File (IREGF)

..

Jt()C')(RCG AOh0:6>

-0

(e- ,

(8: ,

ADJUST
soc

0](8:~

(8• D)

•fi8 IC 12SW

""" ·1"486
00(8 , 0](6:11) 00<6· 1) 0JC1?:1,.,

68)(1261
RArl ·-x x x

eB IC 1291 68 IC 129W 60)(12&1 - >. I< ., ... """ """ ·- 1- T ·-,. x x

A 11£ cs A A 11£ cs.

36B X 128W IBOX REG (IRECM)

•·.

•

-~

00<12: ,.,

•

.,

4.1.2.2 Implementation 103

4.1.2.2 Instruction Address Arithmetic

The Instruction Address Arithmetic logic calculates the address of the next instruction to be
fetched if it PC+4 (next wora), or the destination of a PC relative skip or short jump. In all .
other cases, the Data Address Arithmetic logic is used to calculate the address of the next
instruction. ·

The 28B x 128W RAM is used to remember the PC of all instr.uctions in the pipe, in case one of
themgets an error, or the pipeline gets flushed for some reason .

•

CG IR<24::Jl5>

ACIR' AflO <6:'3

28 BIT
REG

1e1 ;;tl6.

"
O<

T1• L

Instruction Address Arithmetic (IADRA)

289 >C 16W _,
18146A

"
A M£ CS

T42 L

PC QuEd; c 0: 'Z7>

0 ..

"

I
!
I

•

4.1.2.3 Implementation 105

4.l.2.3 Data Address Arithmetic

The Data Address Arithmetic logic does all of the non-register operand address calculations. It
contains a set of 16 36-bit tempor.ary registers (see the T REGISTER FILE macro), which can be
used in the calculation of addresses.· The REG ADR Detection logic detects if the address
generated iS a register, which causes the ca~he read to be automaticaUy turned into a register ~ead ..

TA F"ROt l ST t 1<8:

W OAT~< e: 36 >

C27 ACE i...cG A<e: >

OPC"RAtO tn CTl.<8· >

"'

AOO f"G 8<8 >

27 ,.,, :4>

J27 AOC• RJGH1 St-OFT B 8

·- > ..

T R£GI8TER F.JL.£

01 OG

,.

A<9:J!> ·

:J6 en ===---1 191,.4 ,. T

2

:J
!16 6JT
18164 T .. x

5

•

,.

Data Address Arithmetic 1/2 (ADRAR I)

•

REG ADii
DETECTION

,.

' .•

-~

UA< •

I

•
·•

C2'4 Re 14: t 8>

C24 JR<2£:39

SRC RC'G OUT $£L

4 F£T Oi NDI I N>TR

T;,7

A<81>

A<t :6>

TT.I l

I BIT
Rc:G

18176

x

QC

Gen
R£G

1-

SO OFF'SET<8~4>

SJC'"..fol£0 SO «"f"m:Tt8:36>

ND

19~76 T~~~~ ,.....~~~~~~~~~~~~~~~~~~~~~~~~~~~~..,....,1~ND=-~R£~G"-'"°"""°~'8~0~4:.;>
K

IHD SlOP C CPCRA· JON

Data Address Arithmetic 2/2 (APRAR2) -0
~

108 Implementation 4.1.2.3.1

4.1.2.3.1 Register Address Detection

The Register Address Detection logic checks to see of the memor:y address ls in the range of 0 to
127, in which case it is a register address .

•

.•
'.•

)C6>

J
1<9>

Jc '1>
!<12>
]CJ3>

ct6> 4
J<16> 6
Jc 17> ..

<18> 7

"

1<2'4'>

)<26>
1<27>
J (2'8>

-
REG ADR Detection (RADRD)

0
U)

•

I

110 Implementation 4.1.2.3.2

4.1.2.3.2 Data Address Arithmetic Control

The .Data Address Arithmetic Control causes the write data (WDA TA) bus to be selected in the
Data Address Arithmetic logic, if the word being read out of the Index Regi_ster File is being .

· written the next cycle .

..

...

A< .
I

I BIT
REG

18176 T~--------""'-"'"""'..,..'-"A;:;<,,.;.>
II

Q(

I BIT
REG

18176 T A< >

II

Q(

. T27

Data Address Arithmetic Control (ADRARC) --

112 Implementation 4.1.2.S.3.

4.1.2.3.3 T Register File

. The T Register File is a set of 16 registers for use In calculating addresses. They are written 'into
from the output of the data addre~s arithm~tic adder, and can be read into the A or B leg of the
adder. The control of this register file is particularly complicated because results to be written

. into it have to be delayed for two cycles,· in case a micro-interrupt occurs, and the instruction· .
doing the write has to be canceled. ·

•

•

• .

.,. ..

01 C8::Ji6>

C8;2'> H

L

fl?1 T M rA[)Rc0•2> I ~

SRC RrG OUl S£L
L

•

4 BIT
REG

18176 l ,.
CK
4.

I
T:ll

"en
RCG

18176 ,.
CK

I , ...

•

4 en
REC-

18176 ,.
CIC

T ...

:J6 BIT
REG .,.

"'"6 '' I Ii ,.
CK

TO

T Register File (TREGF)

:168 ,. 16" _,
,.

,.

•
•.

Tl!6 L

!

ooca: ,.

n?7 L

--~

•

114 Implementation 4.l.2.4

4.1.2.4 Instruction and Data Address Translation

The Instruction Address Translation and Data Address Translation logic translates virtual
addresses for the instruction and data caches into physical addresses. The address translation is
done by a lookup in a small set associative cache, which has 64 words, and a set size of 4.
Because of the very large address space (30-bits), this method was prefered to the more
conventional method of using a direct mapping cache for the address translation. Since different
da~a is stored in the two address translation caches, up to 128 different page translations can be
kept in the processor .

•

..

ADDRESS T-.ATION LAU COHTIICL

lT_R£~G~<i!!;,•·~""'>!,_ _________ ~-------------------.:...-----.,....--1T R&;

..---11MDEX REG
I(

-;-- TRANB HJT SO

~'-!..Jl~'6!j>T:J!!.R.J•i!!lj !!!Ift'[.JA~1T'-1.!!l!.-'.JA!!.!1TJ!S.JL._ ______ f--+-------'-----------.-.-1---<~lj IAIATC AT LAU. BIT8

~· !W·~-·!!U-!l.JLJ--!!!l'-Aanu.l!M -·w-15J-Ol!llLJ2!L '-----+-+--------------------;--<:q LOM> AT LRU m:::com: RAl't

ADDRESS
T-.ATION ao£

LC 1NXl<~~~...-~G~ce:,w'""m.<'-------------+--t---1llCIO:A£G
.1.elNS::?.TR=.;,-=<:oB..,o:J6=:>;.... __ _,._ ______________ VA-·

Le 1"4::!...,&!NS:2JTR~T~·-=~i::w,_,....,.... _____________ -1 _ w

~~" 8Ci'

~·,~·~·~NS~TR!!....T~RAHS~~l!!!-~~..lo...·------------+--(v~xiTRAN; ADA

TRAMi: HIT SET t-----

I(

Instruction Address Translation (IADRTN)

-HIT -"-

..

.IMSJR TD- MTT I

'I N>TR TRA~ _._..,,,.
,~

-

•

-CJ>

ADORE SS ~TIOH I.RU COH'T1IOL
T RCG<8:36>

T REG

JICE< Rlli

- I
... lJC UIU GET tul - f' l"RQi.IS HIT I j - -HR SET .- I TRIANS HIT

I"
, D UPOAT£ Al I RU •na l i - IA n 1VAtrS nJSS l

v UPDATE Al. I.JIU BJT8 TRAtcS nJSS

"' ,..., D LOAD AT Dll tW"lf- RAn I - LOAD AT LRU DECODE .RAft ...,

AOORC88

I TRAINSl..ATJON CAO£

'l...V-V R£Goe8:31i>
lllODC AEG.

0 UA<8·3&> -Hn 8CT

Y:.• 11 TIDGMC W ..-w
~ PAce:'l&> - •GET ...

~
)(

)34 D TRANS orro L· ·--
~

...
Data Address. Translatioh (DA DR TN)

•

4.1.2.4.l Implementation 117

4.1.2.4.1 Address Translation Cache

The Address Translation Cache is a standard set associative cache with a set size pf 4, and with
64 total entries. The input to the cache is the bus VA <0:35>, where VA <6:35> contains· the
address to be translated. The way the cache operates is' to look up four words based on
VA<22:25>, and to compare the address stored there to VA<6:21>. If one of those words match,
then the physical address stored in that location is read out. Otherwise, the address translation
required is not stored in the cache, and a micro-interrupt occurs. ·

.: ·~

•

•

lt«lCX RrG< l?.:35>

i

l

I OT 4
OCCOCll[.R cl::_ 18161 I "Sf'f<8:1> • o::. ' ?

" • 3

CN9 f..:N~ I

I
T-.:w 142 L

1818GA

IC

I r· 2P

%'"
VA<?:~>. I .
TRANS fiOR L

...

2411)(16&1
l!Hfl·

11114'...A

IC

1611 " 16'1
Rllft·

A ... cs
18.46A T A 16 en 0 <>
~

OffN
c

A ... cs ,_
(• 0)(c,.,

B
09' CH-

I ~)

I 248)(161.1

""" -1 1814GA

'
I

IC

168,. 16'"' - _
A ..: cs

18SMr.A - v <>
IC ?~·,_

A ME cs
~ v x.. c..,

[_a.-~

I ~)
.248)(UM

RAn

-~ UU46A

" l&e x 16M<

""" -- .• ... r.s
1814CiA T I vl A 16 Bll

M
a.PCH

c
A llE c=.-

" - I
~ ~·

c~

I
9

a.--1""r I 240)(16M --x 1814GA

"
1611 " 16111

""" -- A ..: cs
1814£.A T A 16 811 <> I C11l'CH ...

c
A ..: cs

" c::. <> v
9

09' "!!..-
~>

'""22'26' Jft<6:21> "4<22,26>

V36 /16)"'"
I / I }'"

i /

. Address. Trarslation Cache (ADRTRN} ·

T

l

T

T

VA(?:?S>

!
24 BJT
HU97

c
IC

•

,..
(

TRANS Hn SCT<8>

TRCIHS HJT ,;.._<•>

-.
.

TRAHS HIT S£T<2>

-

lRAHS HJT SCT<3>

conro<T

PA<6> CIC~

PA<& RmD OtLY

·­-co

PA< 7> E>COJTE OM..Y

VA(0:1> PA<0:1>

PA<2: 2!i>

VA< ?.6: ".'JS> PR< 2'6: l&>

.. .

..

I
1.

.4.1.2.4.2 Implementation 119

· 4.1.2.4.2 Address Translation LR U Control

The Address Translation LRU Control keeps track of the least rescently used word in each set in
the Address Translation Cache, so that when an element needs to be replaced in the cache, that
word can be the one. The way this is implemented is as follows. For each set in the cache, there
are five bits stored, two of which specify the most rescently used word, two which give the ·least
rescently used word, and one which tells the order of the other two words. In order to update
these five bits on a reference to the cache then, these five bits and two bits which tell which word
is ·currently being referenced are fed into the address lines of a RAM which is programmed to
give the new five bits for this set. It should be noted that the two· bits which give the most
rescently referenced word are just the current word being referenced, so they do not need to be
generated by the RAM. ·

T REGcD:JS>

UA< 2:

UPDATE: AT LRU BITS L

OAO M

TR'ANS i-IJT 'S£"T<8>
lllANS H11 S£T<!>
1~ Hll Sfl<?>
lNAHS Hll 51·1<3>

TRANS IT SCT< >

TfK¥fS ttl J SCT<:J>

4 BIT
LATCH
1811'6

"
Cl<

T.!6 L

I BJ!
LATOt
~8176

"
oc

1 SJ!
LA10t
un,.;

"
ex

T~t L

2 en
LATO<
18176

"
ac

T37 L

T44

T

6B)I 16W

"'" UUlliA

IC

H

Addr~s.s Translatioo LRU control (A TLRU)

•

Ar8:6>

OLD LRU BJTS<e: I>

0.0 LRli- fDTS<8: 4>

Jll " 12111 -,_
HCY LRU BITS<8· > H

x

OA<G: >

RA"6 nJSS

•

•

4.1.2.5 Implementation 121

4.1.2.5 Instruction .Cache Memory

The Instruction Cache Memory and the Data Cache Memory are both basically the same, and are
conventional se~ associative cache organizations. They each hold 4K 36-bit words, and have a set
size of 4. The instruction cache does not have a modify bit, so writes to it must also go to
memory. The data cache has a modify bit for every four words, and words are always transfered
between the caches and main memory in groups of 4 .

-I 37 B~ PAlllTJ
INSTR C "'"'A P DIR

II x pl
~

•
A P DIA

INSTR C ADR P CRR _,.(A>

INSTRUCION .-- DI
IMsTR CAO£

DD
INSTR C p,JNSTR OUT<8;""'>

~
CAOC CONTRolL • llOOU..£

I
IC

INSTR C "C£l 2 HIT
INSTR r: HIT ££T' A>

:J ·x

x 8-

PIP A

I
A.PERR

IHSTR C AOR P f"RA l!'r"Tc t >

......_ DI
INSTR c:.A0£
~y

DD -
WE

llOOU..£

HIT
INSTR r -r -c•>

x

a-
PIP A

I
AP ERR

INSTD r ,::'()A p r.,.,, ..r-wc>>

;....___ DI
JNSTA CAO£

DO -~

' WE
nDllU..£

HIT
INSTR r MIT c.rTc>>

x
a-... A

I

1+~
Bil PARJ~

H INSTR C ~ p can C'!C"'T"c"'I> TREE p AP ERR
IC I -

INSTR c.AO£ -DI
"°'°""

DO

0 IH49•:Ai>
IC flOCk.LE

L

HIT
INSTR C HIT ...-.,3, ... B- r.:---PIP A ...__ I

16 BIT___,
t•174 INSTR r n1ss BLOOC: ADR<e: 16>

•6 j ,,
"" -·~ x T

.I' n:a: P
2

/·
I

I x
:.s~ ~·BIT

REG
INSTR Mce:36> lHSTR PA.c0:3&•

J
1et;JI!, T C4't

IC

~

<-tOLD JNSrR c nJSS -~ I :_zr .-'

T""9 L
~ x

JNSTR C LPU !:CT Hl.1'1<9: 1 >

Instructmn ~ache Memory (ICACHE)

~·

•

....

4.1.2.5. l Implementation 123

4.J.2.5.1 Instruction Cache Memory Module

The Instruction Cache Memory Module implements one set of the Instruction cache. Since words
are always transfere(f between the cache and memory four at a time (called a line), the high order
address bits only need be stored in the cache for every fourth word. The two SB x 256W RAMs
are· used to store the high order 16 bits of the physical address for a line. The 18B x I K and
I 9B x I K RAMs store the data words plus parity. The I B x 256W .RAM stores the parity bit
for the physical addresses. · · · ·

•

•

0)(9:17>

01<18:36>

1111X2661
11111 " '" - AA ft

T -~
211 ... 1 T

[)O(tltl7>

" "
)

A IE cs A IE cs
Ace:'1':· vv <> <>

A<2'4:D> A----...• I /
Ac8~9>

v ,.,., ..
i

<:: c x JI.
A<8~9> L -- I } A<fJ:,:·

/
T4:J-.U. ~,-.....-~

~ "~ •A £:'
t9186A VL!'......:'V
"

H

llBX ~ >- 198 >< 1K - """ - 211•1 DO<l8''.16> T
L

-1 T

" " . IE cs .. IE
<> Q Q <>

~<8116> S:.c t 6a2:1>

A AOR<8:1GJ

/e ~- HIT ,.,va /
c rv

AcB:?.3>
8 CrF' £N

..

ME

H.

1e ·x 266W) li'787 PARIT1 !!i f EAi> -llP T
L

"
A IE ""'

vv

INSTR Cuhe Memory Module (IMEMMD)

·~

...

. .

•

•

4.1.2.5.2 Implementation 125

4.1.2.5.2 Instruction Cache Control . .

The Instruction Cache Control asserts the· signal HOLD INSTR C MISS if an instruction cache
miss occurs. It atso selects which set is to be written into on a cache miss .

•l~J6"-'C:;...::W:....::SC,_..T~H..n~-•~9-:l~>:....----------..,---------,,--------------------------~----~e 2 BIT.

3&CMS£T

0T'"-"R..,e;,.<;.:8,,_.:"'J6=.>--..;...-------------"'. T RC&

....,""'"""':="-"~'"'----------~----... llCllE'.X REC

="-'-""'-'""'--'~,.._.""-----------~1
C AIR

J .. 6 INSTR II> JOO

)'45 JH$TR c CLC~ Ha..D russ L

.•

IC

CAO£ HiT

CAO<C """'

2 BIT
REG

18176

IC

ex

I BIT
REG

18176

IC

ex

Instruction Cache Control (ICACC)

181681

IC
Tl------1

2 BIT
REG

1•176

IC

ex

T49

-"' . (J)

1 or 4
OCClllCJI

18162
1-----s e1---,...NS"'T...__.c'""'"-'sn=.-•e,...· :.;..>

IC.

.• ~ .

. -·

•

.. I

4. t.2.5.2.1 Implementation 127

4.1.2.5.2.1 Cache LR U Control

·The Cache LRU Control is almost identical to the Address Translation LRU Control,. with the
only mail difference being that it has to keep track of 1024 lines, instead of 64:

•

C HIT 6£1<8•

H T SCTC2>

C H(T S(Tcu· L

C H T sE·J,3>

•

B BIT
REG

1•176

x

ex

, ..

1 811
REG

18176

x

ex

1 811
REG

181:76

x

ex

2 BIT
REG

19176

IC.

ex

T46

x

A IE

T41>-6t L

·Cache LRU Control (CLRUC_)

Jll IC 12&1 -,_
Tt-~N("•W~l•llU~B~T-~-8~·-•~,H

IC

2

c OLD LRU ensce· 1 >

"

T SET NJIC8: >

-~
co

4.1.2.6 I mp lementation 129

4.1.2.6 Data Cache and ·Register File

The Data Cache and Register File contains a cache memory for data, plus two register files, which
both contain the four processor register sets. The outputs OUT A and OUT B are perfectly
symmetrical, and both can read a cache location, a register, or an immediate constant. · If a
register is addressed as memory, then if the word was being read out of OUT A, the one register
file will be used to read the register, otherwise the other'register file wi11 be used.

The EBOX has two operand registers, OP A and OP B. When the 1:-sequencer is calculating an
operand to be put In OP A, It normally uses OUT A, and If it Is calculating an operand for OP
B, it used OUT B. The P-sequencer can then- read a register operand on the other output,
allowing two operands to be read per micro-cycle, with no co.nflict in the data paths being used.

• \

DATA CAO£
rc_,_y

C CIUT<8:J6> - 0 IN C OUT -(.ii>
0

NH9:35>
PA c- :J6 BIT

Ill RCG

II
18176

T
C44 C AnP.<8: 36>

II

<i1'

A--..... I -:-----ttOl.O CACHC nJ SS

=~
....__

1
:J6 BIT

T44 L
18173

v II T-

L48 1"'1£0 Ccitr.>T
)(

J~ C AOR SCL ::r-1
146 &:.

:J6B)(12BW -:-----
lOOX ~G :J6 IDT

-DI DO 1 1e1.-. ou1':.tt<e:3&>
)(II

T
= z

RA "" M£ 8 ,...__ ,..._ :J EN s

RCC OCT<8:1>:SRC RfG fiOR All8·4>
RCG '°' HZ 6

OUT 6£L A<8·t> U..CHC IAJloll R'C(;JSTCR c .. e OUT R'fG AOR -A<8:6>
6 FI LC. COHl ROL C• REG

t£XT M OP OUT Rf G A
... conP t£XT COl'P

..->CT U CnP OUT A

LAST W OP OUT REG A
LW Ccn>

)(
LAST COfF

LAST W O'IP OUT A

"""" ----368)(129W - •
IOOX REG :J6 IDT

-p1 DO 1 1e1,..
OUT E<B::IS>

K K
T

z
RA "" M£ 8 -:i °' T6L3

s

RCG SE'Tc8:1">:SllC RCG UlR Bc8:4>
REG Fa> T42 6

,..IW SEL 8(8: > CACHE ,Qihtl RCGJSTClit
C'40 OUT REG AOR OC8:6>

8 FIL:.[CONTROL · C-48 REG ..
..-x1 M OP ()UT REG B ,.. Ccn> NCXT COl'F

..CXT U C'1F' OUT R

LAST U OP OUT RCG 8
LW Ccn> IC LAST COft'

l.AST U Cl'IP OUT B

".,,. ...
-

l~G SCT•8: 1 > :PA<21 :26)

lot 0HHU9;)6>

Rf'(; M f\0Pt9:6>
-

RfG ~ .
[ROX M MTA<8: 35>

Data Cache and Register File (CRFILE)

•

.,.

I ;

4.1.2.6.I Implementation ISi

4 .. l.2.6J Cache and Regl5ter File Control

There are two Cache and Register File Controls, one for OUT A and one for OUT B. They
control the output multiplexers to take care of when a register is read as a memory location, and
which write compares happen the result of one instruction is used. by one of the following
instructions, which cause the W DA TA bus to be selected on the output.

t .

. .

•

LAST W OW' CAOC

LU OW'

t£XT M Cl'F CA0£

r£1't APR' JS REG L

$(9:)

7 BIT
REG

18176

IC

CIC

2 BIT
REG

tet76 ~1--~..i..!!?-~s~·a~·u..:•:.....0-~~~~~~~~~~~~~~~~~~~~~~---1
IC

CIC
CCfW£>CT

T:Jt see> 6<1> READ"'°"'

• •· CAOC

• 1 RCGJ~T.ER

• CONS-~

IC

IC

1 BIT
REG

18176 TP-~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
II

I BIT
REG

18176

II

CIC

1 BJT
lllEG

18176 yl--......!oC~4":...1~•~8~·.i..:..•~~~~~~~~~..,l.:..J.:ZZ..Jt.:.U.~~~~+-~~~~--
ll

CIC

Cache and R~ister File Control (CRFCTL)

.•.

....

.•.

..

•

4.1.2.6.2- Implementation 133

4.1.2.6.2 Data Cache Memory

The Data Cache Memory Is very ·similar to the instruction cache, with the main difference being
that a bit Is stored for each line In .the cache, indicating that It has been written Into .

..

I l7B~PMJ"I
1' x pl.

C DAIA P CRll

A P Diii t" - P CRR SCT<9>

DATA. ,--- 01 DATA CAO£
DD

P t:at" r.nce:-S.>
·~T

CAO£ COHTRQL • llOOl.I..[~ HIT m-tce>
WE HJT

CW SET ? c ~"r"IC'ft SCT<e>
~

,..... SET lllO x "°°
x B-

.
~ ISi AP CA

I I
A P DIR c - p CRR 8CTCH -I-- DI DATA CAO£ DD -rE.-T

WE
llOOl.I..[

HIT
t" MIT SCl'c h

-BET lllO "°°
r: ...,tF•r-.,, --c•>

x
B-

RA.., AP Na

I I .;;

·,.··~
--:;1 C i!W"'ID p roo rr-Tc~t

A P DIR

,..... I-- DI DATA CAO£ OD -l'C-T

WE
llODtLIE HIT

C HI,. ac-rc~• -8CT lllO "°°
r _.. .. ,.,.._ _,.....,::>,

"
B-

RA ... AP CA

I I
I 36 en -11 •1 AP DIR.

,. _...,.o~-,-.>

' [I n:IE p

OJ DATA CAO£ OD -l'C-T
R lNcei~> ,.

WE llODtLIE HJT
C· HIT SE"T<~>

L
149 sr1 C --.wrv R1T

SET rlli> 1'1111)
r -..JJ'•rTO. SO<,>

" B- ~-

.... ... <P tA

I I r;--PA•24:-TI>_
16 BIT

EBO>C M AOAc t6:2'S>
t6 BIT

RIEG .. >1 " ... -·., -· 18174
18176 r ftl!l:t:: no,..,_ .-v.oce: O:>

x T J T
2 x

J TREE p
" I :.·~

CK

}6 c 111»<8•2'.!.•

~ I ·" PfH8:'35>
.. 36 BIT

zw. H •••n c ·onoce:-w:::>

~
T

££10>< M AORce: ~, "
/ Y.! c ... sn N...n<e:u

1•2 -
~--....

HOLD C IUSS

:[~:r L
RE:SU. T L . T68 L

£"""' • C O'P CN. L =~ ..., "
- x. Dala Cache Memor DCACHE y ()

•

18 K i!6io6I - noo ;£T ftOO
T

X. .•

"
A IE cs

4> v
.)1(9:17>

"llct9::U.>

' 811 K 2WM um M IK - RAn
211•• 00<&.:17> '-- T T .·.

K x

A IE cs A IE cs
() 0 J <>v

~
A<8·7>

RAcA:9> I /
Ac8:9>

•••::12 'L .
A<A:9> l

Y-f 1 J
MAC9:9>

AC8:7> I
8

I /
T4e L T4'"1-46 a.

18118 ~ ... OI ~ ~

K
1819GA ~·

" .. >- 198 x '" 81111~
.;_• RAn - 211•1 00<19::36> -1 T -~ T

L
IC •

A >C cs A IE CS
\ v v•

l:A<ea7> p.ce1t6>

8 ADR< 9: 16>

HIT
/e l/e ?:. / /

Crv

D
OP DI

CA«9:16>

IE I

-
·e.:.. ~ I ~ \ 1 a en PARJT~

A P (RR I TRCC p

/ I " I AP

cs 'I
-

K

A IE

v <.> '

Data Cache Memory Module (MEM~OD)

IMUl 1 M T N.l'U&. >

J& c ..

36 C &.I SC'T SPC SEL

1§! t.flOATA C U!U BJ lS L lWOA'fC C LJiU BJT&

~J-~~L,._, _C_LR!J=.=~P:~C"'O"'!E"""-"~"'"'-'L~--------;: LOAD C UlU DCCGCE RMI

l .. 6 C OP(RATlOH L '
<>~

1'46 Cl....£AR HOl.D ft 6S

"

L

2 BJT
11£G

19176

IC

QC

I BIT
11£G

·2 BIT
l 1•174

2
II

:J DC

2 BJT
llCG

T
t•t76 T 6

IC

CIC

T49

:;<;.·

1•176 Ti---+--------------------m!!O!!....._~!l.!l
IC

QC

(DCACC)

-

I OF 4
DCCCllCR

18162
0

c .. .•.
IC

EMBENI

CH T

"

.;.

•

•

4.1.2.7 I~plementation 137

4.1.2.7 Instruction· Buffer and Decode

The Instruction Buffer and DecOde buffers instructions so that they are around during later cycles
in th~ pipeline, and decodes them, to find out the starting address in the P-sequencer and the E­
sequencer. It also recognizes branch and skip instructions for the prefetch logic .

•

•

llCS~TIOI<

DC.cODE

NSlR
· I STllllT

T
R..-<e:

IR 8JF
x

IC
146 JNSTR O!J! A

12 BIT 12.BIT
REG REG

E START 1•17• T
,.,,.

T
IC x

oc oc

3 BIT :J arr
REG REG

_..,.COM> t•t76 ,.,~

x x

oc oc

TM

INSTRUCTI<»I
QIJ[L£ COofTROL

•

F DEQlllE

Insttl!lction Buff er and Decode 1/2 (INBDI)

•.

12 .BIT
REG

1•176 T
x

ex

3 BIT
REG

18176 I
x

ex

De

12 BIT
REG

1 .. 76
T

x

ex

3 BIT
REG

t•t76 ,.

IC

ex

T•

·"'"

:J BIT
REG
,.,~

IC

ex

la

l

I
I
I
I
i
'

I
I

I
I
I
I
I
I
I .,
I
I
I
I

.I

I

•
ol

R Ell.f"•'8•

SJC"".+11.0 t:O Of'rS£T<9:35)

139 Jf'W£0 CONST LONG

~

~n· H ~-· RCG lllEG
I. 1'11176 T I 181 ~ ·y

x x

°' . ex

i
T6

Jl6 an
Rf:G

18176 T

x

ex

t
T17

36 BIT
111£G

18176

x

ex

T24

Instruction Buffer and Decpde 2/2 .. (INBD2)

•

•.

17 JRc&:

4 JRf8:36)

L40 Jnr'CO COHSTc e;

l48 L

(.:>

~

. . 140 Implementation 4.L2.7.I ·

4.1.2.7.I Instruction Decode

The Instruction Decode logic decodes instructions mainly by looking the opcode up in a 28B x 2K
· word RAM. The top bit of the opcode is used to tell if the instruction is a skip instruction or n.ot,

meaning that exactly half of all of the opcodes will always be skips. If it is a skip instruction,
then Z*4:1R BUF<l:7> is fed into the decode RAM, otherwise IR BUF<l:ll> is put into it. This

·also means that 128 of the non-skip opcodes are unusable, bu~ this seemed a reasonable price to· ·
pay for l:Jeing able to use a 2K decode RAM, rather than a 4K one .

•

•

....

•

2<o8 IC 21<

" STAA'T<2 :9>
IC" 1 [SlARfce: I • 21UH ,; FWAHC"H C<Mlc8:2>

F 0-C()()[c9jZ> •

M: Ra.Ee ·7>

R RJF< • t >

R 86<9

R<

R<

]lfC~) t l
11£

JRc 23>

Ute 31 > • 002 A£
]We~>

JRc 31>
002 IS T AR£

JR< :E>

STAJlfc >

Instruction Decode 1/2 (DECOD I)

141 BE<&

S>'.J P INSTR L

Ai.MAI'S ERANOI

IR R.-< 11 • L
BRAK:tt. JHSlR l.

S DECOO INC D<Sl

r 21 Ji£ D<Sll> QUD..1£

•

SKIP l1RANOI

IC

Tte

I BIT
LAT04
1111"6

IC

CIC

OCCIDIHG JHSTR ..cRO •

Instruc:~n Decode 2/2 (DECOD2)

...

l&-6 ~ PC•t

.... JN~Rc8>

..
t&i MSTR<1 >

NM CF JMSTRc >

NOT CCC ·HS R

i
I

. '

Pl.LS£ 6-6 DCCa>JHC HS

,, __

....

!'
!

4.1.~.8 Implementation 143

4.1.2.8 EBOX .Operand Regbters

The EBOX Operand Registers are used to hold the next set of operands for the EBOX. u·the
JBOX gets further than two operands ahead of the EBOX in fetching instructions and operands,
then it stops and waits. If the EBOX is done with a given instruction, and the operands for the
next instruction are not ready, then it waits. The EBOX Operands Ready Control keeps track of
when .operands are ready, and when the EBOX takes them.

IN Ao.~::!;;>

AS T M O"P 0.Jl A

I Bil I aJT
REG OCG

OP A 1•176 lt76. l

"
oc ...
r:a r•

N &c8:

AST .. O'IP QJT

I BJT 1 E.JT
REG llSG

SO OP B 18176- 1-76

• "'
oc a:

r:a , ...
SO OP

C44 Sl>C RCG CUT SO.

1 BIT
REG

1
18176

l
I "

oc

T44

'I BIT
REG

18176

•
oc

T44

l6 BIT
Ra;

18176

CIC

I EIT
REG

18176

ll

a:

36. •IT
RE5

1'U:06

)('

I •T
AC>
,.,~

IC

EBOX Operand Registers (EOPREG)

•

k USE OP A

x

•

.,
' I
I

•
•

•

OPS T

T46

R R

D Cl Cl
y

1•131. 1•131

c • c • Cl T44 Cl

114' :eox sro 6!!C m

"'c :

EBOX Operands Ready Control (EOPRDY) -

•

146 Imp lementaUon 4.1.2.9

4.1.2.9 Memory Interface

·The Memory Interface controls communication between the processor and the switch, and takes
care of generating hamming codes, and correcting errors. The format for the switch control words
is shown in drawing IOFORM. An 1/0 operation is started by sending an 1/0 control word to

. the switch, which specifies a memory address, whether it is a read, write, or both (a read-modify­
write operation), and whether I or 4 words are to be transfered. If it is a read operation, the
processor just sits and waits for the data to come back. On writes, the processor waits until the ·
s~itch sends a control word back with its VA LID bit set, which signals that the processor has a
direct path to memory opened, and to start sending data. · .

_, .

..
•

DAT A COf HROL WORD

I PMin I I ~10 I PAC 7-27>

•· 2 :J 2:J

. \.PMm I I ~~I WI~ 14 -1 Ut&JSCDC81l1) PAce16>

.. 2 :J 4 6 16 ,,. 2:J

DATA LJDRD

IPMm I I ~0 1 Dct&::J6> I
e 2 :J . 2:J

IPMm 1. l HATltNG coocce:t» · I Oc811~> ·I I
e 2 e .. 2:J

Switch Control Word Formats (IOFORM)

M OATAc9: J6>

14~ LOAD N:n OUT REG

16

rs< e: 24'>

139 Rfl lMlCJlf..-,pQC NT

T44 l

~BIT
;ice;

: 111176 .l' ~_,.C..;."4""-'""S""<"""· 2-1 :_

K

"

'a

unn

K

..

Cl

Cl

I
DI

HAl"W'IJMG CODE
GDCRATOR.i'CORRECTOA

K

SWJTDt OUTPUT
f"ORnATTERG

DO

?v":eme~y Interface (MFACE)

•

co

26 BJT
REC

18176
T

K

oc

1'63+1'67

(003WVH) JOlJaJJ03/JOll!Jauao apo3 ~U!WWl!H

-,..

• "ION S

'----41.....,DOM
x

'----~ ur""" l3t-----------..,,,9~,~.~ x

0 XU 9 !----_,.,, ""·"'•""• .-------l 9 ..,1""'3113!1
IOOO:t30 119)O~

rai--t--------~,~9C~,~.-.-

.118~9

c ·8>

•'
•

l .. PU•
Pl!

CJ ·C• pte
Bl Pl

CJ c & ·C2 """ 82 18163 P2

OJttD P'.18
.ID Pl

Pl?
PIJ
Pt4 1e111e

01•34>
l T

·St S<6>

z
Cl: 4> ·C• 84)(- z

z)(

01:1> -116 - z
7

Dl:i'>
B6

01:::1>
IP

q. 3> •CB .. Pi'e
P?1

n• . ., pu
81 Pl

DI• 6> -· 82 18163 P2

P??
P?".3

19169 Pi'•
OJ<.'.JG>

ftJ· 6> -ID P:J z
DI·~ -· 84)(z

z
DI· 8>

116 z
z

01'•9'>
B6

Ol•'IA>
IP

.... ~ ·C"- .. P'.l8
P:11

D]••1>
81 Pt

Pt2 P;I?

DJ•.,, ~~

P'.13

82 18163 P2 PJ4 19168

nl•,3> D-.,
z

m P:J
z .~. ·sc•>
z

01•14> .,..,.~

84)(z
z)(

OJ• 16> -116
z
z

0"•16>
B6

01•1:7>
IP

0)<119> .. '""" ""°' 01• •9> D1~

Bt Pt:!

0 1 •29>.
_,

82 18163 ""
01•""> ~

m P:J

U)<3'J> 19168

01<34>
OJ <"Tu> T

.... S<"1>

z

i
I
j
'

OJ•~> ---84)(- l
z)(

D'•Zl> -116 z
7

01•~>
B6

DI• 26>
IP .

Check Bit Generator 1/2 (CHKGN I)

'

•

·C:Ji? - l'9A?

""'"' Bl

112 1•163

ID

f'<!A")

P<!HJ ,.,,.
z
z ·S16 60> z T •

84 IC
7
z IC

116 z
7

116

117

. ,.,.
T

.-- ~c >

IC

-
181619

O c"I: >

IC

--"""' P'(•n
18169

PW«! ,.,
PARnY

01<33> T
01<):'4>

OJ<3S>
(Jee> IC
z
7

•
Check Bit Generator 2/2 (CHKGN2)

•

•

I ,.,6'!:
c 416

04
,---9 Ql rJ)(D<l6>

II. Qi! FI)(D<34•- A QI FIX D<Tl>

""· ca [I

<>V

nx 11<"12>
117

F x 11<3 > 1•16'! Q6 FIX D<:Je> c Q6
fl)(D<L-9>

04 ti)(11<29>
8 Q3

F)(()c:>7> x Qi!
f"JX Dc?.6> A QI r >< Cct>

Q8

Ee [1
•J> v

rrx 11<25> ~ F J>C Oc2~> 18162 Q6 F J)('Dt? > c Q6
FJ)(()1'2?>

04
F J)(O..?t>

8 Q3
FJ>C Dc?.e>

II Qi!
FJX Dc19> A Q1
f)(n.1e>

"" Ee El

<> v
-

f"J)(De,,.,
QJ> rJ)([)1;16,.

18162 Q6. Fil(Or 16> c QI; r JK oc , .. , ... Fl>< D< ,,., a Q3 r)(0<1=>> x Q2 r uc: I'll(' > A Q1 FU< t'.c?>

"" Ce Cl

I.}' V

F'J)(,...,.,
117 ,.))(Dc9>

1•162 06 r)(ncA> c Q6 r1x n,,.,. ...
f"J)(0<6> a Q3
r JX ocs;.> x Q2 r nc. nc 4>

A Q1
J"l)(~c .

""

.·

Ee E•

(> 0
F',X D< b

Q7 rue nc > 18162 06 .. rue oc > tU4> c Q6 rJV < > .. 04 f"1)(nc > S<6>
8 Q3

FJX t'.c >
II Q2

f'tx C<6> t:Cil..>
A QI

~·~

"" ca El 117 ~ vv •••61 06 £C1 > c 416
04 6<2>

8 113
II Q2

SC:l>
A Ill

""· c.e a
v <:.>

Syndrome Bat Decoder (SDEC)

• ,.

i.

• .

•

4.1.2.10 Impleme~tation 153

. .
4.1.2.10 IBOX Control .

The major sections of the IBOX Control are shown in drawing IBOXC. The following sections
will go into detail about what each of these sections do. In addition to these sections, there is a
section which gives the flow of control of the pref etch logic.

p &CDLE:tCER
CONmc.,. UNIT

x

< SCQLCNCCll
COHlROL ... IT

...

£90>< MRITE
AIX»IE.SS REGISTER'S

"

ftJCll) IHTERA.FT8

x

IJ30X Control (IBOXC)

JBOJC MRJTE
COttTROL

IC

STOP J80X

x

RCGJSTCR AOOll£SS
GCMCRAll<»I

x

JOOX TlnlNG
GCt£.RATOR

"

...

·.1

I

•

•

4.l.2.10.I Implementation 155 .

4.1.~.10.1 Instruction Prefetch Control

. In addition to the three micro-sequencers in the machine, there is. a hardware control unit called
the Instruction Pref etch Con~rol, which keeps fetching instructions ahead of. the P-sequencer, in
order to keep the pipeline full. The basic now of control is shown in drawing FLOWF I.

. .

The sequencer goes from one. state to the next every micro-cycle, where states are represented by
octagons, with the state number shown inside. The rectangular boxes represent ·actions to be
preformed, and the diamonds represent conditionals. The rectangular boxes with cut off corners
represent macro calls to the macros defined.in drawings FLOWF2, FLOWF3, and FLOWF4 .

•

•

INOlll.. STATE
I

(

FCTCH PC+HTCH PC+4

rETCH JMSTR MORD

DCCOOE INSTR

,v
f"CTOi INSTR WORD 2: .)

'\~
._ ____ .;;.... ________ (___ n:_T_CH_l_J~;- >)

Instruction Pref etch Control (FLOWF I)

;..·_

,.

.. ,.,

IN

LOAD OP SEQ CTR

LOA> .DCCOOC IR

rctCH PC"•BRAMCH OR SKJP ADR

FCTOI JNSTR WORD

I
OUT

NO

NO

J·C1CH f"CH'"CTCH PC~

f"ElCH JNSTR WORD

Decode INSTR (FLOWF2)

~

··~ "1

•

•

NO

f"£TOi INSTR WORD

NO

HOU> C11 JR RCG

Fetdl INSTR Word 2 (FLOWF3)

.•.

· (HMOl.:I)

mo

ON

ON

<RIOl'1 IUSHt t013.J
·v

8:U

ON

· 1

NI

•

..

•

160 Implementation 4.1.2.10.2

. 4.1.2.10:2 P-Sequencer Control Unit

The P-Sequencer Control Unit is started at address OP SEQ.Start ADR<0:9>, which is generated
by the decode RAM. For a given instruction, it can only execute sequential micro-instructions.

·.Its main function is to take care of the difference between the many d.ifferent formats for the
operands of instructions, and to fetch all register operands, which the I-Sequencer fetches memory
operands. ·

..

-. ,.

OP S(Q SlAHl A()R(8:9>

118

P LAST SlART ADR

f"l21 t'llC l1R S£"L($t
F·1:r:·1 n1c 10(sru u
f"l21 MIC Fu.< Sl:L«~
MJC IHl

t• mT CTR _, ..
..

A

-..
...: cs

JOCB x "' -..

I
PN<9:JOC>

I

P<8:JOO

» en

I ~· I 18~76

CK

>OC BIT
ACG

18176

!'

CIC

1 BIT
REG

18176 ..
CK

118

P Sequence'r Control Unit 1/2 (PSEQJ)

11

1 BIT
ACG

18176 ..
CIC

TN

•

PN16C6,:JOO

Pl6<9_:_)C)()

C?e F£TCH H£ M INSTR

Cte rrTCH NC:M J~TR

JLTOi t<M INSTR

JROX USING Hf"XT ST~T AOR

~--

•.

•

P Je:>X START ADl!C9: ;J>.

• 8 BJT
fP...!Jlll!!!l!X_!;!S'T~AR!!!.I~AD!?!l!C~4~:;,,ll~>--------------------------------11 1•174

<9: ~

.·,.

.,.

811 :x64W -
II

IAMECS ...

~-------12 •

Tt-----

y·1------

P Sequeno:er Control Unit 2/2 (PSEQ.2)

•

\
PO! .STMJ AQRc9;3>

•

..

•

4.1.2.10.3 Implementation 163

4.1.2.10.3 I-Sequencer Control Unit

The I-Sequencer Control Unit is the main work horse in the IBOX, and is a powerful micro­
programed controler. It can branch anywhere in Its control store, can execute nested subroutines
up to 16 levels deep, and can preform micro-Interrupt~. which stack their return address. The
control store is divided Into two parts, a fast and slow· part. The only difference is the time at
which the control bits come out. The fast signals are designated Fl21 since they come out around
time 2.1, and the slow signals are designated 130 .

CGI n•c Alll!•8·11>

p 180)(SIART ADRice· 11> r.---
'

Fl<!I nJC BR AORce,11>
I r---.__

8 12 BIT 1211 I(16"

• 18168 _,
12 BIT CTR 12 BIT CTR

T-~ 181'4GA ,_
12 mT 1'1916 18816

IC - HH64l I T '
IC

I T s .
x l-- A ME cs.

IC I(

<>. v E «?' CUI PC «?' Q.R PC
f'J?1 ftJC RR ArtR<8:7> y-· TL

0

JT26
<>

r.--- ~~~ UAc"1:1':36>
L TZl-23 L

f'J2t ftJC BR AORdh UAl'TI!'l£>
1

f'J?.t ftJC 9R AORc8·9> •UAr34 :".JS>
2

f"J~1 n1 C OR AOR<8: 1 B> :UAC.: >
:J

4 BIT
18164 .

r121 ntr BR AoR<8:9> JtORffiACR NZ: IHD BJ T r.--
• x
6

6
'

~ f'l21 nIC CON> GB..<8:'> 1 BIT
LATOt.
181:0 r<ic JNT

I 1

f'J?t n11c BR so.. "8:2> x

PQ.E.R UP JNn ex OE I <?

T44-- I

nJC OR i1&1e6A <'>
I(co

4 BIT CTR

I RJT 19136
nlCRO IHTUlR\.F'l S ..

LATCH I 1
18"33

nIC)NT I ' I(

·ic O<

"' S2 CJ

x

T~ I ~
CK OE

I FJ21 .ISR I

3~ 4 Ell
LA"lOI

¢~~ 181:0 :- - 138 ,JSR L INl AllR I T
JKT AORce::J

L

I
= ':" 18183A

I
~L ¢

I
I(., :cs: OE Iv

H7L
1412 ftlC £H IHT L

•
I Seqt:·encer Control Unit 1/3 ((SEQ.I)

..

•

•

X>CB)(11()0(BIT _, RCG

~
211~1

T I
18176 T

l'M!li(X:l'>

IC
IC

A 1,£ cs ~K

vv J.
~1 ntc ..:>Rc211t>

,I
V•~

12 811 12 BIT 12 BIT 12 BIT
REG REG REG REG

-1 18176 T ~1 nJC AOA<8:11>
I 181"- T-1 UU76 T-1 18176

T
C61 rllC ADRc 8: tt >

IC IC IC IC

Ci!' Ci!' Ci!' "'" J, J, ,t .l.

>OC8 x ti(
)()(BIT

_, LATCH

211 .. 1
18176

f"J?1<A:l00
~ T l

IC
T

IC

" M£ cs CK

Ct6 tUC AOR<8: 1 n
vv I

T21-24 L

I Sequencer Control Unit 2/3 · (ISEQ.2) ·•

•

n :cao WORD Bl T ASSIGtft'.:.NTS

I Sequencer Control Unit 313 (ISEQ.3)

l

I .,

I

. •

•

4.1.2.10.4 Implementation 167

4.1.2.10.4 EBOX Write Address Registers

The EBOX Write Address Registers are used to keep track of pending writes from the EBOX
into either the cache, the register file, or to memory. There are two write address registers, which
allow the IBOX to schedule up to two writes ahead of the EBOX. If the IBOX tries to schedule
a third write, then it is stoped until the EBOX does a write, freeing up one of the registers. It
has a set of four comparators for each of its two write address registers, which compare the
address of the words currently being read from the three register stacks and the cache, to the
addresses which have pending writes. If one of the comparators compare, then signals are asserteq
which cause the IBOX to either wait for the write to occur, or to take the data directly from the
output of the EBOX. For example, If the IBOX is reading an operand for one instruction, and it.
finds out that it is the result of the previous instruction, rather than reading the operand from
memory or a register file, it sets a bit in the EBOX operand register saying for the EBOX to use
the result of the previous instruction, rather than the contents of the EBOX operand register .

•

1€XT M OF
-49 T R£G AOR A(8 :6>

-48 •T f«' ADR ece :6>

N-':'XT WOP

NEXT MOP JH

T42-46L

£11All

£EtOXW ~ 1 09!2'6>

DoiAR 9 tOT '"'-l

D~R t..A...JO

EBOX Write Address Registers 1/4 (EWAR 1)

•

LAST U

lAST OF
£"8AR' & W ADR,8: 6>: L.IAA 8 W AOR' 4:26>

l4r46 L .

MAR e 11 ~c 6•

£MAR IJ < CM

T<e-46 L

4 c AnR<2"'·

,..: MAR 1 Al ADR<

EBOX Write Address Registers 2/4 (EWAR2)

•
..

CR t:C>A• 27:

J4!· cw 9t£CJ(
T47 L

E!6 en
REG

1e17& Tl-----i.=:.!!..!!...!~~:.:i,~:......-;..._
x

QC

2 BIT
REG

Zt.'iifr
REG

t;et76

x

QC

2 BJT
REG

~C~HC.1.J~>..l..~,,~e~t~•:......-------------------..:....-------IJ 1-9176 Tl----"ll!:.~.i.....!=....!l!..l....:!!l!!!:.l!:i..1..:..-;..._
•

19176 T~-------------'"'":.:"':::....&..>....,_.. .. T_ =,_,<e ,_>

•
QC QC

EBOX Write Address Registers 3/4 (EWAR3)

, ·~

'•

C HIT L ~ ' STOP J.ol t10R OU:l£ FlLL

·:·-) ~

-~

~ 1!i2 nu! e CIC

T~ l Rb
" IC

MO £00>: Rf'Sll.T L
~ T6t fl.I'~ 1 nt. .

~~ 161 l

" IC

d-4 • . ..
-C D ·o .. ._ 1 R£G CM' rN I

18131
IC .

....... bee IC

IX•
o,..,

I ~ ·:·~ R
O.IAll ' c Kt£ Cl'IP r'N I

~
s

144 £ROX U AOR IS A R£G ,· D 0

18186A
18131 ·~v £MAR e R£G OP s:w 1

a IC

R£G '°' D -- bee IC
0 I.

18131)c1
o,...

~~ R
.-.~ e CIC..: OP EN •

!)cc • op llL-)c• • ..
PH44 ('Q'Sj:jia_[rUAR C:l'P . I • a

D o,...
" c.- \Al.Jn un:u - +-- D Q

,
18131

!>cc IC
0 .'--!>CC IC .__ '>c1

..
s)c1

o,.. EMAR F"~~

R ~)
144 SH r.- B-

n~ FlLL •
~.

P44 Sf."1 fl.•AR 8

A D Q
£1M¥l e \Al. ID

v 18186A 18131

.!.

C HJT l
v~ IC - xc IC

o"' f;UAR 8 NOT U:... JD

)C1 "'
1·

R

I

• · EBOX Write Address Registers 4/4 (EWAR4)

•

•

l '72 Implementation 4.1.2.10.5

4.1.2.10~5 IBOX Write Control

Th~ IBOX Write Control controls the writing into the· cache ~nd register files. The IBO~ is
structured such that only one thing can be written into either the cache or the general register file
at one time. The T register file is. completely separate, and can be written in parallel.

. .

...
•

(MAR 1 M AOAric19:

r121 RrG ~ R>Ac &; '4>

G Sf'"l"8:1 >:DrST Rf'li AtR<9:.c>

(_ •N• H RCG
1

::

6

T I

7 BIT
REG

18176 T
IC .

CIC

Tll9

•

6 BIT I
REG

18176 T

IC I

CIC

7 811
RCG

UU76

IC

CIC

, ...

"
L

· 1BOX Write Control 1/2 (IWC I)

I

7 BIT
18173

IC

RE& M ADR<8:6>

HC><I JBOX RCC M ADR<8:6>

C49 CBO>< Rffi M AOR<8:6>

-......
··-..1

()J

•

~:~~ :~::""'-~"-':"'-"---~-11~eG111---~T~4ll:::.....l~BOX""'~us 1~NG=-ou T

T &<! L

REG II

£~ ' R('G DIP f"M L
lH f.2-63

1 BIT ... "'"" .. LA10t
181'6

)(

CIC
,_IC CH

T1-6 L

STOP M

J.ut JAIOX Rf"G W
]4'0)81))(c "

•
t---------iD Ol--------------.... ----------...J,o;e~..:!!~ilol.

1•1:11 o;e HD R£Sll..

)(

• C ... HD Sll..

X R£ta.T

IBOX Write Control 2/2 (IWC2)

•

I
i

I

4.1.2. lO:S Implementation 175

4. 1..2.10.6 Register Address Generation

The Register Address Generation logic is used to calculate all register addresses for operands
address as registers. Since the registers are in the address space, they can also be addressed by
using the Data Address Arithmetic logic if some fancy operations want to be preformed, but that
ties up the cache; The Register Address Generation logic Is used by both the P-Sequencer and
the I-Sequencer. · ·

•

•

~2 ll£ST Af"G. en <I•

R<1'4:1R>

Olll S L·li!·t>

P22 OW SCL •

OP A

s Bee- >

m OUT mg·

G "AOR<I•·)

SAC R£G

I BIT. I BIT
REG REG

19176 T ••176 48 SAC Rf"G

IC IC

ex ex 1 BIT
IEG

1et76
T

C44 SAC RC OUT
De He

IC

ex

T44

·•

R.egts·:er Address Generation 1/2 · (RAG I)

0

.•.
•

SllC Rf"G C •••

P22 SRC R£G Cll· A<8>
K

C E lR<19: 23> • 6 BIT
1e1T.J 001 REG ADR<8:4>

C16 JRc 14: 10> K SRC Rffi AOR Ace: >
RCG R ACR<8: 4>

C1S Ul«t9>
K

Cl~ 11?<?8>
CIS IR<?1>
CIS JPc22'>
Cl '"' 3•

·~:

At)
Ii

A«lt>

A<1>

C1 JR< 31 I :J&>

RB; ADR c8· >

Ct:i JPt'.11>
C15 Utc3?.>
I~ JRc3)>

C.H .. IW•3'4>
CH .. Hl<3S>

C 4 f" 04 tCM INSTR

121

SR'C R£G C:r 8<8> S£T OP B

PZ2 SRC R£G CT B<!> S£T

Register Address Generation 2/2 (RAG2)

' ~·

·ADO -

•.

. So Bit A.dder/A SEL (A DAS EL)

·I
i
I

•

•
•

. •

4.1.2.10.7 Implementation 179

· 4.1.2.10.7 Micro Interrupts

Micro Interrupts allow various conditions to interrupt the J-Sequencer to be handled, such as a
cache or page fault miss. When this happens, the micro-program PC is stored on the subroutine
stack, and instructions start getting fetched at the micro-:interrupt address assigned to that
particular interrupt. ·The various micro-:interrupts ·are all fed into a priority encoder, which
comes out. with the address of the highest prioiity interrupt.

•

•

n1

NT ACR<8>
PC A'"IOPa>SJ Ki J NT •

1•166

2 ANY

JI 811

4 x QI

5 Q2

• IN'T A<

,.
Cll

""" •
OfrA PERR

1•16&
<."

• I 2 ANY

I
JI 811

4 x QI

5 Q2

• ,.
QC

•
Micro Interrupts 1/3 (MICll)

,•· • •

•
'• •

C48 OUT IR£G AOR A<2> R(ADING PC OUT A

48 OUl lfilfG AOR A<4>
[49 OUl 1W(G nnR A(:J>

C48 OUT :R£G ADA A<6>
181848

I
48 OUT -~G AOR A<6>

C48 OUT Jf'EG ADR 8<2'>
C49 OUl ~G AOR B•3>
C48 ()t..11 RCG ADR B<4 >

....

49 C F:TCH
49 JtCiTR OU: rn

AIR<:ih

ri!" ADR L A:AD
49 c ... (:1-£()(

AIRcli>

. C48 __ C_ CA.:llMTIOH

Micro Interrupts 2/'3 (MICl2). • ' ~

l .. !~ftJSSL B
•J- .. ~--~---- ·-I< ~~BY?"ASS L

.. TT SE'T<8l
c t-11 srrc11

t-Jl b1.1 c J

1 an
REG

1•176

".
oc

T•

Micro Interrupts '3/3 (MICl3)

- "!SS !!fl

"'

C-48

..

,

4.1.2.10.8 Implementation 183

. 4.1.2J0.8 Stop IBOX
. .

The Stop IBOX logic detects the conditions which cause the IBOX to stop its clock and wait for
some event to occur. ·

~ .

•

•

I

, I

•

•

LAST M OF A OUT L

N;XT M CrP A L

EWtR f'tl.L L

148 IBO>< USING OUT

C49 ioRC Rf"G OUT SCL

. LAST M C'rF-8 all L

Nl"XT U Cl"F A OUT •-

fUAA I •RI L

NO Rf°Sl.A.. T L

HDO Mi Cf1P JNr•DC R'f:G L

lU.:w? HI L l

..

I
t

•

IBOX ~£ OUT A l

I~ I 1e1a:m . 18193A c---:.:'BO=x,_,,usc,,.,__,OUT=-B,,_,L._ ____ -lf-+--...---a
K X

Stop JBOX (STOPBX)

STOP A

STOP B

• &TOP C

i
/ i
•1

•

i
. I

.. -

4.1.2. IQ.9 · Implementation 185

4.l.2.10.9 IBOX Timing Generator

. The IBOX Timing Generator generate$ the eight phases. of the clock used in the IBOX .. It
consists of an eight bit circular shift register which is initialized to the sequence Ol l l Ill l, and. it
jUst circulates the zero. around. The shift register is never really stoped, but when the IBOX
wants to stop its clock, it just disables the output drivers on the shift register .

. I

•

1M<e>

.,..... L

1M<O

L

1NC2)

1M<2> L

111<»

ntc:J> L

Tsce>

Tace> L

,..,,,

ncu L

Tac2>

T8«2> L

;CTCP SIGNALS nun IE UA...ID BY lilt FCR CLOQC: .CCU
T8<:J>

T8«3> L

STOP I.I CT
STOP~

SlOf' B • • STOP ,-
lOP ., AlR D a Q ,.,. ,.,.

OP REG F'U a:· 11· II
a Q

e

.. • a •
D a > a D

le231 lllDI Riil - 81 82 a> I.DI Riil - ... 82 a> LD

81
...... ••

II :c.:: M :11

• a ill

R :ca ~ R

112
II

CIC oe DI D2 D:J

82
II

CIC oe DI D2 D:J

x

·•
z "

IBOX Timing Generator (ITIG EN)

...
t;

•

..

4.1.3. Implementation 187

4.1.5 Execution Box ·
..

The function of· the. Execution Bo~ (EBOX)' is to perform variable-precision arithmetic and
logical operations for the IBOX; it executes one micro-instruction each 100 nano-seconds. EBOX
can be decomposed into the EBOX ALU (EBXALU), the EBOX Register File (EREGF), and the

· EBOX Control (EBXCTL).

The EBXALU performs arithmetic arid logical functions on two operands read during each cycle .
from the register file. · ·

The: EREGF contains 32. read/write registers. During a single micro-cycle, any two registers can
be read for use ·as input to the EBXALO. Furthermore, during a micro-cycle two input operands
from the IBOX can be written info any even-odd pair of registers, or the resu.lt of the EBXALU
operation can be written into any register, or one operand from the IBOX and. the result of the
EBXALU operatio" can be written into even-odd pair of .registers. · ·

Th~ EREGF also can shift quarter-words and half ~words into position for the EBXALU, can
sign-extend floating point numbers, and can deliver zero operands. ·

•

1.

c

I< .A OP<e:-,c>
moic I A OIP

REGISTER'
f"U.£.

• Rroce: :JG> mGIC ALU
A REG ..

v e OPte:-.-:.,
8 OIP A A

<9:35.>

e Rroce:3S> A
8 REG 8

o

I

Eucution Box (EBOX)

.!'-

•

...

•

4.1.3.l; lmplement~tion · 189

4.1.!U EBOX Register File

The EBOX Register File (E~EGF) stores initial and intermediate operands for use by the
EBXALU during a sequence of micro-operations .

The_ EREGF contains two duplicate banks each of 32 36-bit regis.ters (R[0:3l]). Identical data is
always written into both banks. During a single micro-cycle, the IBOX A and B input operands
can be written· into an_y even-odd pair of registers (A into an even register and B into an odd
register), or the result of the EBXALU operation can b;e written into any register, or one of the
IBOX iriput opera_nds can be written into a register (only an even register for the A operand, and
only an odd register for. the B operand) and the result from EBXALU can be written into the
other register of the even:...odd pair.

Since the first cycle of a micro-instruction sequence normally takes two input operands from the
IBOX, the result of the previous cycle (ie., the last cycle of the previous micro-instruction
sequence) can not be saved in the EREGF.

Because the two register banks contain identical data, any two registers. may be read out during a
micro-cycle for use as input to the EBXALU. In the case of a mici-o-instruction which reads the·
result of the preceding operation_ (or a micro-instruction which reads the A or B input operands
from the IBOX), the necessary data is bussed around the register banks, therefore, although
"'.rites physically occur one cycle late, they logically occur on time, except as noted below.

Each operand -read out of the IREGF can be independently translated. The available translation
modes are: straight through, floating point sign extension, left justification of a quarter-word, and
left justification of ·a half-word. Operands which are bussed around the register banks (as
described above) cannot be translated.

The EREGF also has the capability to deliver zero operands on either the A or B output
independently by·di_sabting the register file output ·

•

<8:

OP< •

IJS£ p

)(IJS(90P

l6 811
••17l

A

36 8JT
1 .. ;o,

II

T.-7·L

£ NIHW"CSL

u

..
A

368)(t6W -t8146A

c•>•3 Tl---o--------~
y

:J6B)(l6W -1•146A
ce>•'ll

z
A CS

T

ESOX Register File (EREGF)

36 BIT
1-.ATC

T -

36 en
~TE

u

-- -

,,.. ____ _...

A_. 9

B RM BY

EJIOX 11£ GJ S
FIL£ COMTAOL

c

'·

.,.,_

•

I
I

I

.. : I

,.

•

4.1.3. l. ... Implementation 191

4.1.5.U EBOX Register File Control

The EBOX Register File Control (ERFC) primarily detects ~heri the current micro-instruction is
attempting t9 u~ a value which will not b.e written into the register file until the next cycle, and
in that case commands .the EREGF to bus the data around the register banks. . . ·

. . .
The ERFC also detects when R[O] is being read out (on either the A or B output) and commands
the £REGF to output the value zero. R[O] can therefore not be used to amtain data.

The ERFC also controls the chip select lines for the EREGF so that either one or two values may
be written into th~ duplicate register banks. ·

' .

•

[18 OP W ADR< >

e UADR<8·

OP c 8:4>

"

•

1 Bll
LAlot
1Bl:Ji! 1 r----....,.---".--------..:L!.l.:4!...!!0l'!:-'ll!L!-!!J!!:!.•4~>

1

QC

-------'"
11'4 L

L.

•an
LATOt ... ,..

14 OP AOAce· .
•
Cl<-·

TM L

•
EBOX Register File Contro1 1/2 (ERFCl)

...

A ADR COOmRC

4
OP A AlA'<

A

T

""" ce: >
4

C OP AlRc8:3> z

B ADR COO

•

£ OP A IWlQ(18>
OP A Rr»<1>

'£ OP A RD-I<?>
OP A R1~<3>·
OP C4>

....
B ADR<4>

1 BIT
LATOt
1•134 '";

EBOX Register File Contr912/2 (ERFC2)

194 Implementation •. 1.3.1.2

4.UU.2 56 Bit Translate

.. The 36 Bit Translate (TRANS) is used on each oµtput leg of the EREGF. Each TRANS ts
Independent and has the capability to perform four different translations as follows:

1. · Stsaight through. The value passes straight through the TRANS without
modification.

2. Sign extension of a floating point mantissa. Each bit of the exponent of a
. floating point number is replaced by bit 0 of the floating point number .

. S. Quarter-word. One of fom: quarter words {depending upon the low-order
address bits from the .IBOX) is left justified, and the.low-order quarter words are
set to zero.

· 4. Half-word, One of two half words (depending upon the low-order address bits,
· from the IBOX) is left j~st~fied, and the low-order half-word is set to zero.

The TRANS can not be used to modify the result of the preceding micro-instruction.
. . . .

•

•·

;

7 BIT
;£LOA! I 1 19'74 r1Z:J·Z·H;H;H I a

Z1f!!:C!;J>eZ•,1Z •QM 2

•
~ • ..

•
'
2

9 BJT
:J ,., .. ,• Tc•:B>

4 •
15

•
7

Tl M mct·2•;9!! sn1cua £N;t•n Q1 , 11 "" EN <C

9~
a...~~~~~~~~~~--t• •••"4 Tl 'fc!1t7>
1c ... :•n 12

::~:;:· ~ !<18;29•.

=~ ~ •qq•

'
SS Bit Translate (TRANS) t

I

•

196 Implementation 4.1.3.2

4.1.5.2 EBOX ALU

the EBOX ALU (EBXALU) performs atl arithmetic and logical operations for the EBOX. The
EBXALU can be decomposed into the 3 Input Adder (3INADD), the Shift Box (SHFBOX),' the
Exponent Box (EXPBOX), the 36 Bit MUX Merge (MUXMRG), and the Q.Register (Q.REG).

The 3INA DD can add three operands, perform a few other logical functions on three operands,
or perform general logical functions on two operands. The input operands to the 3INADD are A
(the ·A output of EREGF), B (the B output of EREGF), and Q. (the quotient register, Q.REG).
lnterna11y, the operands are shift~ and multiplexed so that a single micro-cycle can do four bits
of a multiply.

The SHFBOX can do arithmetic or logical left or (limited) right shifts of a double-word input
onto a single word output. The three single-word inputs to the SHFBOX can be combined in
various orders to accomplish single-word arithmetic or logical left right shifts or rotates of up to
36 bits in a single cycle. ·

The EXPBOX performs exponent arithmetic. The EXPBOX has its own internal registers, so
that after loading the EXPBOX from the A and B operands, exponent arithmetic can proceed
independently of the computations in the main data path.

The MU.XMRG produces the one EBXALU output, R<0:35>. The inputs of the MUXMRG are
from· 31NADD,.SH.FBOX, and EXPBOX. Special inputs are provided for special functions; one

. input merges the exponent with the shifter output, one input does a multiply shift, and one input ..
does a divide ~hift.

The MUXMRG also has the capability to selectively merge each quarter-word from the
SHFBOX with the output of the 31NADD. This capability is used to merge the result of a
.quarter-word or half-word operation (which is shifted into place in the SHFBOX) back into the
destination word (which passes unmodified through the 3INADD). In this case th~ destination
low-order address bits control the MUXMRC. '

The Q.REG ho1ds the multiplier during a multiply sequence, and· holds the dividend during a
divide sequence. The Q.REG has shifting capability internally. The Q.REG can also be used to
hold temporary results (for example, over the boundary between one micro-instruction sequence·
and the next) .

•

I'

i
I

I

I
l i

(n1VX9l)
..

·.II

..

n1V X093

• e·r----------:!lll'!nr.~
7lllMl'>ln ______ _, -~ • 1--------~:Vll'r.ll

-~I C W 1------------

8 II t-----------:'l!ll'll"r.:K

~m;;-rmr..,.------1 u11<S • r----------,...,....,,.
l09 .UI.. W !'---------~~~

cllCJ81t--------•.• '11'1rnl .•

•

1·

I

198 Implementation 4.1.3.2.1

4.1.!.2.I ! Input Adder

Th~ 3 Input Adder (3JNAQD) has the capability to add three 36-blt numbers, to perform s9me
other limited logical operations of three 36-bit numbers, or tQ perform general logical operations
on two 36-bit numbers. The three-input addition capability is used primarily to produce 4 bits of
a multiply ·operation in· one micro-cycle .

The 3INADD can be decomposed into the Carry Save Adder (CSA), the EBOX Full Adder
(EFA), and various multiplexers and multiplexer latches.

The CSA is an array of 20 ECL 10180 chips. The CSA forms the first two legs of the three­
input adder. During a three-Input add, the CSA adds .three operands to produce a sum and
carry vector output (each . 40 bits long), and EF A adds those vectors to complete the add. Two
legs of the CSA are dedicated to A, (or to shifted versions of A) which is the multiplicand in a
multiply. The remaining leg of the CSA can receive A, B, Q, or a micro-code constant.

Each of the three inputs of the CSA can be independently set to zero. Furthermore, the 10180
has the capability to independently complement two of its inputs. These capabilities are used in
the multiply-micro-cycle. ·

' ' .

Two-operand functions can be performed In the EF A. One leg of the EF A can receive A, B, Q,
. or micro-constant (in addition to carry out from the CSA), and the other leg of FA can receiv.e

only B (In addition to sum from the CSA) .. The EF A produces a 40-bit output

•

•

•

~A~••::.w·=:.:;>_,~2._ ______________________ ~.

<8•]6) ,

,G~•~·~·l6....:•;...-------------------------i2
rcce ·36>

6,:;:. A M

£6 ~A JN !In<!>

ce > ,

36 BIT
1•174

•

l'Ll..llP\..T
CONTROL

"

•

.-----------=-•~1~·....,--..:H

••

SHJFT Alll f-1 ~----------'::!::.l:!.~.!.C.,l::':.I"
Ae! n CH l::iv>---------'S;!:H!.!1.!Jr'-'1!.!AZ:!-!>:_,

SHIFT AZl~1~---------;A2~3n.!..!.C.,lN~
A23nCNK,,,>----------.,,,~!!!.,.!.!;,.!<

JilEC~ A81 I P.l:ConP A•>!
A:C_. A23 r:--------"'"'"~·C~onP~~A2~3

A81 CJ f----------.!=~~~~i:..i::
'----------""-3_c_.11r-------------.!!S.!...b.I

3 INPUT Adder (31NADD)
•

A A Nc8:39>

rA<8·

F'A JNCllt•

. !

·' I
l

I
I

200 Implementation 4.1.3.2. t. t

4.1.S.2.l.I EBOX 40 Bit Full Adder

The tBOX .40 Bit Fu11 Adder (EFA) can perform arithmetic and logical functions on two
operands. It is constructe~ with 10181 ECL ALU chips and 10179 ECL1carry-look-ahead units.

The EFA can be decomposed Into the 40 Bit ALU 10181 (40ALU), the EBOX Full Adder
Control (EFACTL),· and the Coridition Box (CBOX).

The 40ALU performs a full add In 24 nano-seconds worst case from the data inputs, neglecting
wire delays. It also performs the fu11 10181 repertoire of logical and arithmetic functions.

· The EFACTL controls the EFA, producing the ·mode, function, and carry-in signals for the
I 0181. The mode and function bits can come either from micro-code or from the divide logic.
The carry-in bit can come from divide logic, rounding logic, multiply logic, carry-out of a·
P.revious cycle, guard-bit logic, or micro-code. The Rounding Box (ROUND) saves guard bits
during floating point operations and generates a carry-In bit for the EFA depending upon guard
bits and rounding mode.. .., ·

The CBOX detects single.:.word overflow, single-word negative, single-word zero, single-word less
than or equal to zero, mantissa zero, and mantissa overflow. Single-word carry out is generated
directly in the 40ALU. Since quarter-words and half-words are left justified and zero-filled in
the TRANS, the single-word conditions are sufficient for testing quarter-word an~ half-word
operations. Wrong Branch Logic .(WRONB) combines the generated conditions with control bits
received from the IBOX and ·determines whether the IBOX took the correct branch on a
conditional branch · instruction. If the IBOX took. the wrong branch, then X WRONG
BRANCH automatically becomes asserted.

...

•

..

(V.:13) Jappy 11n.:11m OJ. XOSl

C9>ll:l tU

z •

a1-------------­ ..,,~CN):> If 1--------------

9>

..

Z:ROt L:J.1:r.:RD!:R£" L:RI"" L

SM N
D

ticc
T?ll _,

(18 FA :TL•9:4J

··sw co

£.12 SW COP£ L

G8:G1:t

F.19 FA CTL

.•

&

" 1'!'131

D

R
"v

1 BIT
RCG

1e1"'1

A

PE CK

T2e

•·

DIV CT\.<e:G>

;RCnAIMll:R<8 + HlO O.SC Sl.ll!RACT>

R£n H ·11£MINJCR SIGN

"90 N L -w.NJt«>(R :"'JGH IL

~·==--=-= _)---R•ll«l CTL 11:6>

L

18 rA CTI.c9:6>

DJU CT <8:6>

ROUND L<8:&>
2 6 OJT

ca· ,.
18164

:J •2
T

f"l..._lPTLY CTL<8:6>

4

AOD GO CTL<8:6>
6

II

r.1e rA cn.c&:4> :CO s ATUS
6

... c
L

18 FA CT SEL <0:2>

EH~ FA °Cll..<9:4> H

.EBOX FA Control (EFACTL)

.. ...

..

R(J6>

1(9)

SCNTcu

TC4>

1<6>

• _,

'BIT ,.,4,
L

P£ Cl<

T29

c;ie R• 315> : R l.88
G

G
y ' BIT

~~~~--~~~~~~~--~~~~--!' ,.,74 
--~~~~~~~~~~~2 

COIWOIT 

lF SOfTo-1 I RJGHf SHln > 
.THEN YHY mt Gt> ELSE Y•Y 

Rounding Box (ROUND) 

II 

~. 

Tl--~~~~~~~~~~~ 

~ 

8TMLE ICIPE c•> • co. Ge9CY+G1.acllG>) 

L<8> 

CE.ILi~ l'IDD£ CI) + ~ • cie.at•Y 

f"L.OOA l'tDD£ C2 OR 3> • CO • e 

:J BJT 

:JBIT H R£GB< 
1 1e174 . ••141 I 

T I 
0

T 
2 ft · G 

P£ Cl< 

T 
T29 

... 

.._., 

-~ 
r.;-; 
! .... ,_J 

;, 

,. 
! 



Cond it;.on Box 

~ LJ 
(CBOX} 

" 

COtillJTIOt 
CiCHEJIAT CRS 

G 



(I N'.JOO) Z/I uo1uauao uompuoo 

\ . 

~ll~:JN N O·l>S 

llO"\Rl:lnO 10N , n 

.ino 1-.:> 00 

n 1_, <~ >XOID 

CRtQl'I 3"'1!)NIS 
"" 

c.• <•l>tf 

ttSSIJJMI. ......... 

UG&lllO 

cf.•Ciib riii 6::1 iii 
... 

.:r ;a:;os n 'I& 1 n hi 

c. 
1 i hS 

A"" 

5S 

.. . . • 



• 

• 

S<4> 
S<G> 

S<7> 
IS<8> 

S<11> 

SW 

S< 1 31 

6<17:· 

Sc 

6<20 
S<2D 
S<.?o 

LE lLS'S THAH OA EQUAL ( ZCRO> 

Z L 

S<'.ll> 
Sc3.~ 

s·-' 

S<3l6> 

Coridition Generators 2/2 · (CGE~2) 

.. 



• 

SM N 

. DI 

c 

Cl 

c 

LBRAHCH 1AK£M 

I BIT 
LATOt 
181J4 T 

A ,. 
Q( 

I BIT 
LA10t 
181J4 T 

8 

Q( 

1 an 
LATO. 
1e1>o 1 

c 
Q( 

1 8JT 
LATOt 
18134 T 

D 1 

ac 

1 BIT 
LATOt 
18134 T 

[ 
T 

ac 

1 BIT 
LATOt 
18134 , ! 

,. 
T 

CIC 

1 BIT 
LA1CH 
181J4 t 

G 

1 

l17 SM N 

17' SU N L ,. 
! 

1-

"" :r 

l.L L 

SS 

IC ...OIG 

7 GRCAT£R 

Wrong Branch Logic (WRONGB) 



208_ Implementation i. l.i.2. l.2 

4.1.4.2.1.2 Multiply Control 

The Multiply Control module (MJ;>YCTL) generates various control signals for use (luring a 
multiply cycle. · · 

i bits of the product are generated during each·multiply cycle; the MPYCTL examines the 5 low 
order bits (including' the carry out of the least-significant bit) of the Q.. register, and sets up the· 
31NA DD to perform the multiply cycle. One leg of the three-input adder receives A (the 
multiplicand) or A *2, another leg receives A*i or A*8, and the last leg receives B (the partial 
product). Each of the "A" legs is either added to or subtracted from the partial product. 

The table included in MPYCT.L defines a 2-bit-per-cycle multiply algorithm. XO represents the. 
least significant bit of the Q.. regist~r Q..<35>, XI represents Q..<34>, and CI represents the carry out 
·from the Q register from the previous cycle (Q<36>). F shows the function to perform, that is, 
PARTIAL~PRODUCT4:-PARTIAL_PRODUCT_ + F*MULTIPLICAND. Q,. and 
PAR TIA L .. PR ODUCT are then shifted right by t_wo bits and the cycle repeats. The other 
columns of the table show.the values of various signals which are needed-to implement F. The i­
bit-per-cycle algorithm is a direct extension of the 2-bi~ algorithm; two 2-bit cycles. are performed 
in parallel using the 31NADD and examining 5 bits of Q.instead of 3 bits of Q . 

• 

• 

.. . 



"r:>....,C"'·""=----------1 I:> .a.I 

.. ,...,3,r.=~:---------~1~ ... 

I== 
• 

== 
"1CNWIO:) 

~ 
• • • 

• • • ,_ • 
• • • ·-• 
• • 

if-• • 
• • l!> . . KJ wca. • • • •• • • u 

a.l"UlHS • • • • • • • 
IOUI_, "1DIWIOO • • • • 

-
,_, UIM9 J."WU-.U 

I> <MID:llll , IO UINI 
" 

D •• -
J.'11M .,., .69UU 

-

• . 

• 



• 
• 

6 Ml SO.<> £\.(8> 9-> 
6M • ' .. 

() 

2 2 

1 an J I an 
J 18164 11eui UllM 

.. 
A 

.. c 
6 6 

6 6 

H ·SHIF""' 1 ,. [N 

[6 N.I. T £N H 

£6 ft.LT E~ 

0<3b> 

... 

6 trl.< . 
z ~ 

J 
I BIT 
18164 

" ·6H··=-1 .. B 

J 
, BIT 
t•t64 , ... 

D 

""'" 6 6 

z ·6*;n 
6 

.,,,_-r l 

Et !l!,l '!:I H 

'· 6 , 
o<D> { 

0•3'4> 
o~n> 

0<32'> 

H 

Multiply MUX. Control (MMXCTL) 



-. 

i 
·--· l. 

<1.i::>vs::>> 10J1uo3 v~ 

c >O 

c ' 



• 

• 

2 

JI 
1 an 
t8l64 T .. 

H Ii 

6 

c 4: , 

i 
I 2 I 

:J 
1 811 I 
18104 T 

I H .. 3 
H 6 I 
H 6 

• 2: ) 

• 

Multiply CIN Control (MCICTL) 

.. 



• 

.. 

4.1.3.2.2 Implementation 213 

4.1.S.2.2 Shift Box 

The Shift Box (SHFBOX) performs shifts in parallel with the arithmetic operation of the 
3INADD. The SHFBOX can be decomposed into the Shifter (SHIFTR), the Sticky Bit 
Cenerator (STICKY), and various zeroes counters and multiplexers. 

The SH~FTR takes two 36-bit input words, and can perform a left shift of 0 to 47 bits or a righ~ 
shift of I to 16 bits onto a 38-bit output. The two low-order bits of the output become guard bits 
in floating-point operations. Guard bits may be merged into the SHIFTR input at the top of. the 
low-order input word; this capability is used during floating point postnormalization. 

STICKY examines the output of a zeroes counter (the 36 Bit Bottom Zeroes Counter) and 
determines whether all the bits lost (beyond the guard bits) in a ·right shift are zero; if any lost bit 
is a one, STICKY asserts the stick' bit, Y. [Kahan 1973] discusses the need for and use of the 
sticky bit. 

Two 35 Bit Top Zeroes Counters (TZC) allow the contiguou~ zeroes (or ones) at the top of a 
floating point mantissa or an integer to be counted. The flo~ting point count is useful during 
postnormalization. 

A 36 Bit Bottom Zeroes Counter (BZC) counts the contiguous zeroes at the .bottom of a number. 
· T.his count Is essential for generating the sticlc.y bit Y. · 

. . 
' 

: .. 

I· 
' 



• 

.. 

J6 BIT~~ CC<"#'l.£110• 
A<1:JS> .11 I .181"6 T A AciS<1: 15>. 

. ~I 
I y i 

A<8> /:IL 
/(!7 
l 
i =II ARS<9: 35> 

A<8: 'JS> .11 

£18 SHln A JN S£Lt1> 

BAQ7"(.8) 

[l8 SHIFT ~ JN SEL<9J 

B<9: 36> .11 

J6 BIT 
TOP c :ztRa::s 

I COUMrCR 
J 

z 

CJ( 

p 

H I 3& BIT 

' TOP c I 

2£1i'O£S I a.:TI:R ~ 
. Cl< • 

I 
T--13 L 

1----......:;;•~l....,_..,_~N:;;:...<;.:8"-''""""6>"----~-----~----'~~--~~~~------~-----~A T 

2 
SH FT B JH<8:1> 

Gl'left: 1> 

Ge:"G1 
G 

£18 ~HJIT B 

>o 

36 Bil 
LA OCH 
1806 

L 
Tt--~SH~n~"'B~ff-•_e_,_~,...·-~....,,. ...... ~~=-~~~~"""--------~----~.L Stnn e N<2: 

C>: 

T19-13 L 

SllCKY BIT 
GEM:RAlOR 

SHtnCR 

.---~e 

..... 

12'C~• 
I AU. Z 

f"7C<8:6> 

F ..._L Z 

:$H Jf"T c 8: 37> 

~A_,•e_,_3&=.-'-'--'1.._ __________________ ---t1 ~1~1 

_o_•e_;~:is~'----------~------------12 4 
·11---..... --,_......:BAW=._""= ... "-''=------t 

36 BIT 
eon on 
Z£JIOCS 
co .. ncR 

Cl----------=:.C::.<;.:B,_,,.,.&:.:;> __ llZC y~·---------------------_.Y_,8"~C 

. Zl---'B"-'-ALL=_.. $CNT<8~6> . LSW" ez -su'4--------------------'""~·~s'"''""'"'"e"''"'6""' 

r6 SHlf"T 9 JN SEL• 1 :~> 

E6 Pll£ EH 

B 

Cl< 

Tte-13 L 

Shift Box 

y 

(SHFBOX) 



.. 

! 

I 
I 
: i 
I 

i 

! I 
. I 

. I 
i 

• 

4.1.3.2.2. I Implementation 215 

4.UU.2.1 Shifter 

The Shifte~ (SHIFTR) takes two SS-bit operands as input and can shift them left 0 to 47 bits or 
·right l , to 16 bits, producing a. *bit result (SS bits with two low-order guard bits for1 noating 
point operation~).· 

· The Shifter Control (SHFCTL) allows the shift count to come from various sources as follows: 

- a Q.W3 holding register: .. 

a Q.W2 holding register, 

- Q.W3 of the A register, 

- Q.W2 of the A register, 

- micro-constant, 

• exponent ALU holding register, . 

constant fields for special operations, 

- top zeroes (ones) count of a mantissa, and. 

- top zeroes (ones) count of an integer. 

In addition, many of. these counts can be subtracted from S6 before being used. Subtraction of a 
count from 36 is necessary for simulating right shifts. 

The SHIFTR. is composed ~f three levels of multiplexers. The first level performs a shift of 0, 16 
left, 32 left, or 16 right; the second level a shift of 0, 4, 8, or 12 left; and the third level a shift of 
0, I, 2, or 3 lefti 



SHinCR 
CONTRU. 

c 

DAA6i--~~~-""""' 

son<e: 6> 

.. 

2 

2 

2 

•· 

••tin RIGHT 1 TO 16 , soun un • TO 47 

60IT .. '1 )()( >OC .. Stnn RIGHT 16-JOOOC ( t TO 16) 

COCT• TY )QC >OC en - U> .. SHIF"T L..[fl YY>OOOC. •• TO..,., 

•• 

s 1 •3> 

Shifter (SHIFTR) 



'! 

f"Ac2'!i:Je> •GM<?> f:t· 

6 BIT 
RCGDI 
19141 

FAc:l-4:39> ·GM<3> 

•21: 2'6> /1 :PYT£ bDt 

•RYTC POS C B Qlll) 

EE pnn cn,c~t 

L 

P£ ex 

6 BIT 
RCGEH 
18141 

p 

PC ex 

T29 

FT 36 

• 

118-13 L 

6 BJT 
tt:n:n::tt:n:n "Ll"I" • c, It 

18174 

e-r..-e..oe.•.-.•t -._.._..-. ' 0 12 Cl 

Cl2 OEST LCM ADR«8:1> 

C28 BYTE LCl4<8:&> 

(:2i8 8YT£ PO$C8:6> 

l&-13 B rTR<8:6> 

c1e nc SHJnc&:&» 16 
L18-1] B BYTE PlR"<&:§» 1

6 

Tl IJCS1 9!1FT<8:6> I 

L<:l:6> 

·SLll 

C28 EXP H 

£18 Pll£ f_N 

COIKNT 

~•n~ I ~BIT LOW - ... cq SHIFT !!J!1!!9 191111 MAG 

·•2 -
36 D 

• 8 e SHJf"T A IN<8> 
91 9 v 

1 9 9 1B 

1 1 
• 9 Et2 LOGJCAL pti a 

9 9 1 :J6 

' • ' 18 

6 BIT 

181~ Tt--------+----1 
e 

8 

36 PLUS • nJNJS 1 

A 

ADD 

A<9> '' 

A<8> ,1 

Shifter Control (SHFCTL) 

ncce:&> 

6 BIT 
'------------11 18174 

JZCC8•6» 12 .. 
8 t-~-~--~~~~~~~~-1 

ce:&> 

·. 9-> 
:-... 

~ 



tee:)> 

<4> 

... 
•4:6> M 

• 

36 Plus or Minus I (36PMI) 



• 

• 

4.1.3.2.2.2 Implementation 219 

4.1.S.2;2.2 Sticky Bit Generator 

The Sticky Bit Generator (STICKY) is usfd primarily during prenormaUzation of floating point 
numbers. During .prenormalization, a number is right shifted and N bits are lost from the least­
significant end. STICKY asserts the "sticky bit". if and only if the least significant N-2 lost bits 
are not all zero. (The most significant 2 .lost bits become guard bits.) The need for and use. of the 
sticky bit are explained in [Kahan 19731 

• 

•. 

: . 

' . • . 

. ! 

. ..... 



.. 

: ST IOCT • • IFT BZC I 36-t.SW-2 

1ST IOCT • 1 IFT IBZC-:12 .... SW < 2· 

• 

ce· > ., : ) 

E~e TEST STJDCT £N 

¥ Str.c!> 

T 

• 
Stick "f Bit Generator (STICKY) 

... 



I , 
I 

1··. 
I : 

.1 

I 

• 

. .... · . 

.. 

• 

4.1.3.2.3 Implementatior 221 

· 4.UU.5 Exponent Box 

The Exponent Box (EXPBOX) performs expon~nt arithmetic in parallel with the operation of . 
the EBXALU. . 

The exponent box receives operands from the EREGF and stores them for future use. Most . 
floating point operations thus require a preliminary cycle in which the exponents are loaded into · 
the EX PBOX. During the preliminary cycle, though, the Q.REG can be loaded. Furthermore, 
translations are not permitted until one cycle after the operands to be translated have· been 
received from the lBOX. 

Complementers on the A and B input operands conditionally complement the exponent 
depending upon the sign of the mantissa (bit 0), producing the true excess-128 representation of 
the exponent, regardless of the sign of the floating point number . 

The EXPBOX contains a 12-bit ALU which is controlled entirely by micro-code. The A leg of 
the ALU can come either from the A exponent complementer or .. from the latched ALU output. 
The B leg of the A LU can come either from the left shift count latched from the previous cycle, 

· from the B exponent complementer, or from micro-code. 

Since exponents. in floating point numbers have only an 8-bit length, the 12-bit ALU allows 
exponent overflow or underflow to be carried uritil the last step of a floating point operation, by 
which time those conditions may dis.appear. 

The output of the ALU can be saved in an output register (for input to the SHFCTL for 
prenormalization), or can be conditionally complemented by the sign of the input to the SHIFTR 
(in preparation for merging it with the SHFBOX output at the. end of a floating point sequence). 

The PPNCMP compares the left shift count from the SHIFTR with the postnormalization limit, 
and co.mpares the ALU output register with the prenormalization limit. The signals generated by 
the PPNCMP are used in generating prenormalizatton and postnormalizatlon error traps . 



A O<P<1:e1 / 

A OCP'9> 1'1 

e D<P'1 :a> ,. 

SCNT<B: > 

CL X90>C SCH! &El< 1 , 

Te- l 

1:1. :.cEIO>C SCNl 

B BIT 
conR...Cn 

18196 

c 

e en 
COl'IFU:n 

19196 

D 

COPIP 

•4 H 

A 

A 
L EL xeox A s:ncp 

ABS<&· > 

B !CDO?S B SD, Cl> 

7 

F 

·-----­. . 

NE u k"\.--.....ic:l!JU~ 

POST U ~--..C:a.Tu .... 

Exponent Box (EXPBOX) 

E'KP SU'I< > 

.;:.. 
7 

4 

e 
JCP s .... ' , 

• 

I BIT 
RCBE>f 
18141 

IC 

PE O< 

Tl6 

12 BIT 
RCCD< , .... , 

" 
PE O< 

8 BJT 
CGnPL£n 

18196 

II 

PCP Sl•!<e> [lC!' " 

C <8: > 



• 

• .• 

CllnOl1" 

L£T 0 BE THE D<FOME NI' 0 lFFE IDC£ 

-0> tPRC lllRrt M>C LI IFT 

-0>1-f'll-ftnAIO -I lf'f' 

O<~ llA)C •1 IFT 

°' PllDIOlln - lf'f' 

IO>PRCNORrl M>CI L lf'f' 

f'llE U L 

N01Ca AIDING 64 FClll ARJ'IHl£nc CDfPIR[ 

COftl\..EftBfTG TI£ NIST SJGllF EMT BIT 

•o::>c:P Q .. t:t> 

c 

an> 

SOfTC9> 

SCHT<_1 :6> 

H:POS1<9;6> 

" 

L 

" 

L 

" 

L 

• 

Pre/Post Normalization Compare (PPNCMP) 

9 

Tl "'li y L 

" 

P061 

~ 
lJ 
l\J 



• 

.224 . Implementation 4. l.S.2.4 

• 4.1.S.2.4 36 Bit MUX Merge 

The 36 Bit MUX Merge (MXMRG), determines which of eight ~ata paths is delivered .as ou~put 
to the EREGF or to the IBOX result register. The eight data paths are: ' 

- The lower 36 bits of the output of the 3INADD shifted zero, left one, right four, 
or right one bit. The left-one shift is used during divide, and the right-four shift 
is· used during multiply .. The upper four bits of SINA DD are needed only during 
multiply operations. 

- A 11 zeroes. 

- The output of SHFBOX. 

The output of EXPBOX. 

·- Miscellaneous fields from the EBOX. 

The MXMRG also allows selective merging of each quarter.:.word of the SHFBOX with the 
output of the SINADD. This capability can be controlled en'tirely by micro-code, in which case 
the mlcro-~ode can. select the source of each output quarter-word independently, or by the address 

. bits of the destination, which are supphed by the IBOX. Merging at:1.:un.li11~ Lo Llie addren bits . 
of the destination is necessary for quarter-word and half-word operations in which the result 
must be shifted into place and merged into the destination word. 

The MXMRG also allows the exponent path to be merged with the output of the SHFBOX for 
·producing final noatin·g point results. In this case, the sign-extended mantissa comes through the 
SHFBOX arid is merged with the exponent. 

• 

. .. 



i 

Ci •8>i3§ w iij 

c 

~ El----:=.,..,,<'7 

zt----:=...,,.,..., 

a:1,iJS W it3 

...., .... ,...,. ..... --41 
:e • ·~Et--_,,,.,,..,,,,.,., 

zi--....,., .... ,..,.,,.. 

.... ..... -_,,...,..,.,,,..,... 
~1:1----...,;.­

zi----: .......... ,..,.... 

( ·8> 

91---...,,.,,e..,, "'•""' 
9

J---"""'•e"'•"'e"•"'!I 
• • ..----,,,e""•"'e"'•"'• ":!l"=r---"11 

· ' ~ c..---....,,·e""•"'e"'•"" 

ce:e,e 



• 

• 

"'E"'t?,_,,lfilGE.__=•GWll='"---------------------------le t BIT 
tltlB 

A 

2 DrST LOU AOR(e> 

C 0£~T LOM ArQct> 

a 

D 

·Ct~ .Sl LOW AQR•:1 > 

£1 l'W:R(.£ LCM 

. S6 BIT MUX Merge 2/2 (MXMRG2) 

... 



• 

' 
• j 

. 4.1.3.2.5 Implementation 227 

4.1.5.2.5 Q.. Register 

The ~Register (Q.REG) is a, 37-bit shift register (36 bits plus carry out of the least-significant 
bit) which· is used to perform. multiplication and division, and which also serves· to hold 
temporary values. During multiplication, the Q.REG holds the multiplier, and during division the 
Q.REG holds the dividend: 

The Q.REG is- built of ECL 10141 universal shift registers. It has the capability to parallel load, 
shift right four, shift right I, shift left one, or hold, ·all under micro-code control. The right-four . 
shift is used during multiplication, and the left-one shift is used during division, as follows: 

·' 

- Shifting right by 4. During multiplication, the Q.REG is initially loaded with the 
multiplier. The EBOX uses a multiplication algorithm that examines the 
multiplier and produces four bits of the product each micro-cycle. Each micro:­
cycle the Q.REG parallel .loads from itself, moving the higher 33 bits into the 
lower. 33 bits. This is physically equivalent to shifting right by 4. The 4 most 
significant bits loaded into the Q.REG are the 4 least significant bits coming out 
of the ALU. During a multiply these are the 4 least significant bits of the current 
partial product. After the last cycle, the Q.REG contains the low-order word of 
the product. 

- Shifting left by I. During division the Q. register is initially loaded with the 
dividend. Each instruction cycle one new bit of the quotient ts s.htfted into the 
least significant bit of the .Q. register . 

• 



• 

E12 O l"OOC I ' . 
£12' 0 l"()(l(c2> 

.. --- 61 S2 
OP<9:3> Ol.. 4 BIT e 

-I BIT SHlf"T 

I 
i. 

~•1&0 l DP 1~:1 Q 
QU!t:3> 

04<9:)> 
4 • I 
6 

OR -- ci< 

J 
/1 

/ 
.Lil!.... 

. cu,, 

.. 
Ac•> 

/1 
~ •• S2 / 

OPC4:~>:t7 • DI. 32 BIT 
:::3 BIT }6 SHlf"T 
i:e1r.e l 

~ce:36> OPQnc9:35> OP,::, 0 Qt4:'JS> 

oce·-cio> e / 
I 

~-
OR 

CJ( 

r12 Q rtOOF<I!» 

117 I. COND ·W['"MJND£R SIGN B OJN 

1 BIT 

) 
IEG 

DPOn<36> 
18131 0<36> 

/ 
I T 

2 

~ 

• 
Q. Register (Q.REG) 

• '" 



.. i 

I 
I : 
: i 

.. . 

• 

4.1.3.3 I i:np lementation 229 

4.1.3.3 -EBOX Control· 

·The Ef>OX Control (EBXCTL) includes all control logic and ·miscellaneous logic. It can be 
decomposed into the EBOX Sequencer (ESEQ), the Fixup Generator (FIXGEN), the Status 

. Registers (STATUS), and the E.BOX Transmitters/Receivers (EX CVR) . 

The ESEQ..provides all sequenci11g control. 

The FIX GEN produces the fixup .. signal. During some operations, such as floating point add, the 
· cycle which is normally the last execution ·cycle may, in. rare instances, generate a condition· that' 
requires further processing. In that case, the FIXGEN raises the fixup· signal at the last possible 
instant, causing the EBOX to lose one cycle before continuing with the operation. If ftxup ts not 
asserted, then the operation will complete without wasting· any cycles. This fix up capability allows 
conditions generated during the current execution cycle to affect the flow of control, without 
requiring that 'the next cycle be wasted to test conditions. 

ST A TUS contains processor and user status registers. 

The EXCVR handles receiving and transmitting most IBOX/EBOX communication signals. 

• 



• 

FIKLP"G£N£RA~ 

" 

• 

CllDX 
~1·rTCRS-'RCCEl\ICRS 

T 

EBOX Control (EBXCTL) 

STATUS REGISTE.RB 

R 

--

.• 



.. 

. - . 

• 

"· 

-t.1.s:s.1 Implementation .2s1 

4.1.!.!.1 EBOX Sequencer 

The EBOX Sequencer (ESEQ) controls the sequencing of the EBOX. The major components of 
the ESEQ. are the 12 Bit Branch Address Merger (BRADRM), the EBOX Branch Condition 

· MUX (EBCMl)X), and the EBOX Control Store (EBXCS). 

The BRADRM determines the source of the next micro-instruction. The possible micro­
instruction address sources. include a micro-subroutine return address, the IBOX-provided 
macro-operation starting address, a.nd the micro-code branch address. Since micro-instructions 
are read out a full cycle before use, BRADRM must be set up approximately 1.25 cycles early. 

The BRADRM allows an N~way branch (N • 2. 4, 8, or 16) on the low-order SHFBOX output, 
the low-order 31NADD output, the FIXREG output, or the conditions generated in the CBOX. 

When FIXGEN asserts the fixup signal, a special branch address ts forced into the micro-
program counter to. initiate a fixup sequence one full cycle later. · . . 

The control logic in the ESEQ. allows any address input to the BRADRM to be used for a jump 
o~ a jump to subroutine. 

The EBCMUX determines whether the branch condition being tested by the micro-code is true, 
and if ·so, allows the micro-program counter to be loaded, otherwise the micro-program counter 
increments . 

• 



'17 fJ>Cl..F L 

R£T AnR•8:1 > 

)( ,;1AR1 Anfl<8:lt> 
tR~c8:t > 

itttFT<3:?:'lG> 
FA< "lb: 3'9> 

ALU COH0<9· > 

... 
Tt7 ·r1>a.P 

BR DCST<B: > 

Z:H: 

)( kJL RO>< D 

11 

£ 1611 

s 

" ,., :n 

" • 
R 

12 BIT 
AEG 

.19176 

R 

11• 

C12' tc 

• 12 811 
I -.ot 
2 IDIA£88 
> rCRGCR 

.. 
Ii " 6 .,. 

H. SCL EN 

H 

" 

8 

..... 
""""-~~~~~-~·~ ... ,__~~~-l1 ~-~~!· 

• 
·RCT 

L 

1• 

12 811 C1R 
1Mt6 

p 

H. 

=-=------,-------B 12 l 

EBOX Sequencer (ESEQ;t 

CDOX 
lllCA: 

c 

t2 BIT CTR 
1ee16 

1 

T>-4; L 

c.o 
4 811 ClR 

• 18136 

1 .. 
CK" 

1• 

.• 

( 8: 

t28 )( 1&a -18t46A T 

• 

.. 
1~ 

I 
I 
I 
J 



• 

. i 

~ I 
. i . i 

• 

4.1.s.s: 1.1 Implementation 

4.UU.1.1 12 Bit .Branch Address Merger 

The 12 Bit Branc.h Address Merger (BRADRM) allows N-way (N .. 2, 4, 8, or 16) bra.nches on 
the value of any of four four-bit vectors. Depending upon N, · the selected four-bit veetor ts 
shifted· into place and substituted for ·the tow-order bits of the branch address from the ·mtcrO.:.. 
d~ . . . 

·i: 

• 

• 



<B> 

' .. 

4 BIT 
..... "-"" ...... ~~-11 191:Jit 

IR ::aof'• > 

RDJI•• > 

. 1R A£W0·4 > 

""' ......... _________ ~2 

..... ...., ...... _________ ~> ~.:!! 

B 

1'£ Pa: AOR< 8 • > 

!iE..••·;:• DJ• ~.~:;. ~.~ •• ::. 2 •1----------------------------
'-""""""-..1.~-------!• s 

I 

12 Bir. Branch Address Merger (BRADRM) 

.• 



• 

I 
i 
i 

• 

• 

4.1.3.3. l.2 · Implementation 235 

. 4.UU.1.2 EBOX Branch Condition MUX 

The EBOX Branch Condition MUX (EBCMUX) ass~rts the parallel load line on the micro­
program counter if and only if the condition selected by the micro-code ls true. EBCMUX allows 
any of 24 conditions. to be tested, and allows thos~ conditions to be inverted before testirig . 

. Testing of conditions for branching cannot be done during the cycle that the tested conditions are 
generated, but must be d9ne during the next cycle,· since the micro-program counter is loaded one 
cycle before execution commences . 

• 

• 



• 

18lOOC 
Cll' -ISi' RO~ 

_,. z l 

~· 2 

] Rl.l 'Z 
3 

1 Bir 
18164 

F "'-l 

" B "'-L & 

Cc:iur.T IXlHE 
6 

R 

,_£_,AC""-..::SCL"'-<'-'li,.:>c....---~ ..... )1e1~·-o-----------------l.....J 
~-

""""' .;;SM=-...,.L---~2 

" ... ,._ ... ~ ..... --~·=- . !~!! 
"""=-="''-----14 a 

POST V 
2 

.... ' BJT ~ 
18~6'4 

r<P u T 
4 

[ 

,,, ... ,._..._ ___ ..J6 

Fil.OAT F X L 
6 

BR 04 JNJ COO 

6 

6 

E BC U:L< B> • JNU 
T17 f"IXl.fl' /1 L 

P[ L 

£ CSCL< >•3 

• EBOX Branch Condition MUX (EBCMUX)' 



• 

• 

.. 

4.1 :3.3.1.2.1 Implementation 237 

4.1.J.S.l.2.1 Repltition Counter· 

The Repitition Counter (RE?T) allows the micro-code to contain •FoR• loops. REPT can be 
loaded from either the 3INADD or the micro-'-code, and can be counted down anrhested under 
micro-program control. REPT thus allows control constructs in the micro-code such as ~ranch lf 

· zero (non-zero) then decrement•, and ·•branch if zero (non-~ero) then load•. · . 

• 



·~· 

'" 

Cl!t·~> 

Rtfl'JTlON CQ..NTER AU.GISI. 

nllCllOWJAD -.ua: -

-.0. ~F ZDIO-ZDIO TtO< :.Olm 
0

Bll'l<H iF ZER~ZDIO T- KCID!Dn' 

DATA PATH~ -

60 UP ,:JA'IJI IH DATA PATH 

co 
B Bil CTR 

11'1li6i 

T 

~ 

CIC 

T 

·C 

CK 

Tie 

!· 

t BIT 
18173 

n 

T.6 L 
[I? !!EPJ CIR eq. 

~·f ;, 

Repitition Counter (REPT) 



I 
I· 

4.1.S.3, 1.3 Implementation 239 

4.1.!U.1.3 EBOX Control Store 

The EBOX Control Store (EBXCS) contains the EBOX writeable control store, various micro-
instruction pipeline registers, and EBOX Parity (EBXPAR). · 

Cc:>ntrol store for the EBOX is two-level for reasons of economy. The first level is addressed by 
the micro-program counter; it is 4K words deep by 70 bits wide. Ten bits of the output of the 
first level become the address bits for the second level, which is .IK words deep by 140 bits wid·e. 
In general, signals which are needed long before the micro-instruction execution commences must. 
be located in the first level, and signals which are not needed until the execution starts can be 
located· in the second ievel. This two-level control store allows the sltaring between micro­
instructions of subparts of common control words. Wit~ the aid of an intelligent micro-code · 
assembler, the control store appears to be uniformly 4K words deep. 

EBXPAR checks the parity of control store words and raises an error signal lf a parity violation 
. is detected. · 

, . 

• 



• 

.-nr YJR0<128'~' 

98 IDT MO en ... REG ;- REG , 
CS«&&.: 1W'> 

,.,,,, 
E'18<8·DD) 1"18C'48:89> I 19176 T I T 

/ / • 2 

cic cic 

TJe I 
H2 

LJ 
• / 

/ 

•. 
.. 

42 en 
~. 

LATOf , 
11'.S<B·~> 

1•1'6 ---JTY ,---.<7A• '19> 

/ 
J L 

T 

O< 

! 
T7 L 

a 
"' 'PARITY U"IOl"loc,..• 77> 

/ 

CllOX --· [$ 
~- t"'A<:1a·~> r~a1 • .....,.,, 

~ RAn t o..a:.n DAl Ace: 17> 
R c (BOX CS <.a·t:'9> £'<.8·69> --

... IL 1L$ 

I ~ > <> 
79 IDT 

A<8:' > REG ,.,;;116. 
PARITY .i>RD<ft:#.9) 

I T 
6 

X PRJnARr Rm ME 1. 'i:1' 

I 
T6 

)( SE'COHrnRY R1Wt ME L 

. -

&a 
/ 

E30X Control Store (EBXCS) 

~ • I ~ 

[l :><9·49> 

·. 

nece,39> 

r1ce·44> 

~<lfh7> 

E'6<:9:69> 

£<8: .. 9> 

9-.J 
} 



.... 

1c•i!7> Dtce:t7:• 

J«8:1"> OC!B:!j:. 

&c•:J7> gc:J6<1i]> 

·1ce:t6> mc61;69> 

A• ' 
CS<:I> 

LOAOING 

um x c 

4 2 

WRIT£ EHi 4 2 

CHIP SCU:CT 

c8·19> 

<61/J• 9> 

-·--211.-t 

• 
A 

2m&X« -

T 

·-·· 

t• 
[<8:19> •• > 

t• 

211.-1 Tl-~~ ..... ~~~~~~~~~~~~~~~A..:.ElEii.ol!~ 

29>C« -211.-1 Tl-~~ ..... ~~~~~~~~~~~~~~~...:;:=;uc~ 

2 

A 

,. x 41( -2119-1 Tt--~~-+~~~~~~~~~~~~~~-"~""'·~IR..._> 

:J 

cs 
ClllOC 

sec--. 
__ , 

,._cc .... •: ---4 l T 

4 

A 

see· <I> 

EBOX. RAM Array (EBXRAM) 

I 
i 

\ 



H ~ Ill! lC IK -
211e-1 IVO C$ 

T 
T<8:17> 

l.<o!l:l7> G:/ 
I 

. • 
A IE 

·' I 
11111 XI~ -

I 
2118-1 IVO C$ T 

T<IB,36> 

I 

A IE 

I 
um x uc RAr1 

I 
2119-1 IVO CS T 

T(-W..:s;"'I> 

2 

A WC 

I 
IDB X UC RArl ·-

I 
21 , ... , liVO C8 

T 
Tcc...~71) 

JI 

A WC 

I 
UJe X UC RAft 

I 21' ... , "'° C8 T 
,(7?~A0> 

4 

A IE .. 
I IEGIU JROtlENTS OF ..... IOtORIEC - AS 'Ul.L.°'8• 

COWIE 

LCAJ 

FOR I BB X 1.tC RfWt-

1118 X I K RAft 
66 LINES 1 LOAD 

I 21 ut~ 1 ""° cs T 
T .. <Cala• IA:1> 

MRI TC EMAIL£ LI fi£ S 1 LOFll> 6 

A IE 

I -
1BB X UC RAft 

I 2119-1 "'°·cs T Tc !188· 126> 

6 .. IE 

I 
tBB X UC RAft 

I 2118-1 "'° cs T 
T<126: 143> 

.,, 
A IE 

I 
I> 

Al8:9> -

WC L 

EBOX Secondary RAM Array (EBXSF.C) 

• ,•._ 



01VdX9l) .(\fJl?d X09l 

·• ! 

31 

lC191 
e o~~~~~~~~ 

9 

, 
U:••• • 011-~--..n;i;:;;;;;r-n-r:~~-<X 

• 

• 

.. 

IDJO'.M) .u. 1-. 
.ue•1 

..., 

• 



• 

• 

244 Implementation 4.1.3.3.2 

. 
4.1.3.3.2 Fixup Generator 

The purpose of the Fix up Generator (FIX GEN) is to sometimes assert the fixup signal and c~use 
the EBOX to continue with the fixup micro-instruction sequence instead of starting a new 
operation sequence under command of the IBOX. 

During execution cycles' in the interior of a micro-in~truction sequence, FiXGEN can store 
detected fixup conditions in. any of four I-bit registers, and can use the contents of those registers 
to assert fixup on the (tentatively) last cycle. 

The Fixup Multiplexer (FIXMUX) multiplexes the fixup condition chosen by the micro-code. 
The output of the FIXMUX can be used to cause fixup dur:ing ~he current cycle, or can be stored· 
for use later . 

• 

I _., 

• 

·-



i ·. 
i I 
i 
I 
I 
l 

I 

.,._ ~ " 

Ulleto 9ZI 
" 

(N30XU) 

~ 

It 

" t 

IC l<H 
0 

9 
• 

)0 

a 
L 9.Ctel 

!Bii. 
J.Ia c 

lO 

:> 
L 

9L•' !Bit 

J.19 ' 

lO 

• L 
9.t:•I 

!Bit 
.118 I 

lO 

., L 

~-· !Bit 
UBI 

" c 

U:••• " oi.-~.._~ 

8 

" ii 

IC&e& 

" 
0 

8 

" 
IC:: lei 

" 
0 

9 

" • 
IC&e& 

" 
0 

II 

.I 



JN 80lH)S • l'IC > X I e 

A 
SW IN 

N 

G sr. ce> 

·Al.MAYS 

• BAO CM'""!: CQUttl 

H 
UL 

POSl UL 

1? FJ>ClP .Rf.G SQ.f.8:2> 

.Fixup MUX (FIXMUX) 

"' 
.. 

• 

2 

3 1 BIT 
18164 .. • 

6 

6 

? 

T 

.*--

i 
i 
' I 

I 



.. 
4.1.3.3.3 Implementation 247 

4.1.5.5.5 Status Registers 

The Status Registers (ST A TUS) contains the processor and user status registers. These. registers 
can be conditionally loaded under micro-program control. · ' ' 

• 

• 

• 

. • 

.• 

.. 



• 

SUN 
SU 7. l 
SUV L 
... co 

nc CC»C><8:3, 

,, ·£12' S:OtC:,, STATUS SQ. 

'"" 

R<3": 

•. 

• 
" 
~I 

6 BIT 
RCG 
18176 

A 

O< 

6 en; 
RCG 
1817S 

8 

N STAnJS Otll STATUS<e> 

STATUS ON'.) STATUS< > 

U STATUS CClt40 STATUS< > 

4 en: 
R£G91 
1e141, 

T 
a R CO STATUS CON:>STTC> 

P£ 0: 

TI!9 
.... : .. 

Status Registers (STATUS) 

.. .. 



• 

JI. • 

4.l.3.3.4 Implementation 249 

4.i.3.3.4 .· EBOX Transmitters/Receivers 

··The Ef>OX Tra~smitters/Receivers (EX CVR) receive~ signals from· the IBOX and transmits 
signals to the IBOX. Depending u'pon the fixup signal 'generated by FIXGEN, EXCVR will 

.conditionally assert OPS TAKEN, RESULT, INTERRUPT IBOX, and DONE· on t_he last,· 
execution cycle of a sequence . 

• 



X ~H COtC> X £BOX CONTROL<!: l> 

X AOP ~OM AOA<!:t> )C nt0x COH1ROLC4:6>. 

)II £ROX COHtR<lt..<6·7) 

X [){ST lOM AORc8: J"• )I CQOX COHTROL. c B;"!> 

X PAUS£ [ROX )( .£80)( CONTRg..CJ!> 

• 

12 BIT 
11£GDt 

ck~C...,=-"""~""'~·9,.__.l~e~·----~-i· I 19176 Tl--~--=~1~2-....~lllX=-·~C~OlfT::.:..::<>~·~9-•1~9.._> 
R 

PE. Cl< 

Tl2 

36 BIT 
LAlCH 

181"6 X li£SU...1 OAT~< . 
L" ~~~~~"'--"'-'""'~0<.:::.:;;:.;"""""'" 

Cl< 

117 L 

• 

EBOX Transmtt~ers/Recetvers 1(3 (EXCVRI) 

Ct? CAO)( COHTROL<8> Cl 2 1!!!f!!9! TAOCEM 

C12 £R>X CONTROL.c!:l> 

(12 £90)( Cc.llROL.<4:6> C12 A OP LOU ADA<•: U 

C!2 COO>< CCfollROl.<6:7> C12 B OP LOM AOR<•: J> 

CJ? coox COHTROLC8:9> C12 D£S1 LOU f!!!<!:J) 

C!2 COOX COHTR0!..<18> CJ f! Pf!U§£ [BO)( 

CJ2 l!RA!tCH LES§ 

C J1! 1!!!A!!9! EC!UAL 

CJ? 8Rf!4CH GREAJER 



• ,. •. 

" .u.~g,,,.a...i...--io o 
18131 

H 
Q 

.• 

• 

u...------le Jl6 CT 

191:1! 

"------i.o e~-.1<.,1;::..t..1:2.1..,~ollll&.1 

•••31 

T 

T 

EBOX Transmitters/Receivers 2/3 (EXCVR2) 



I 
.I 

! -

EBOX Transmitters/Receivers 3/3 (EXCVR3) 

•. . . 



• 

• 

• i 

• 

.,, ., 
T· 
·' 

4.1.3.4 Implementation 
··:·> . ~ ~ 253 

4.1.5.4 .Timing . 

The EBOX is co1:mol1ed by the IBOX, which specifies the operation and the· operands f~r the 
EBOX. The IBOX provides the EBOX .with the address of the first micro-instruction in the 
EBOX's .control store. The EBOX performs the operation by executing the sequence of 
instructions from its control store beginning at the a~dress specified by the IBOX. · At the 
beginning of the last micro-instruction cycle of an oper.ation, the EBOX raises the DONE flag. 
In response, the IBOX prepares the next address and operands of the first instruction of the next 
operation. This section describes the timing of a normal macro-operation. 

A macro-operation consists of a sequence of micro-instructions as shown: 

FETCH . 

• 

• 

READ.1 · EXECUTION 

· 1 FETCH . READ 

+--Instruction--+ 
cycle 

l.IRITE 

EXECUTION l.IRITE 

FETCH READ I EXECUTION 

FETCH READ ..... 

time 

Sequential micro-instructions overlap; during a given instruction cycle, three operations occur in 
parallel: 

• 

I. During FETCH, the EBOX fetches the next micro-instruction from its control 
store and places it in the pipeline register. 

·2. During READ, the EBOX reads operands from its EREGF. 
> 

3. During EXECUTION, the EBOX executes the cur~ent micro-Instruction from 
the pipeline register. The ALU produces a result by the. end of the execution 
cycle. If the DONE bit of the micro-Instruction Is set, the DONE flag Is raised at 
the beginning of the cycle. · 



254 Implementation 

During WRITE, either the IBbX or the EBOX may write· into th~ EREGF. 
J 

IBOX WRl and IBOX WR2 

or 

IBOX WRl and EBOX WR 

or 

EBOX WR . I 
"--~---·'"···-····,···· 

.-., 

-----Instruct ion ·cycle·-------+ 

4.1.4.4 

The purpose of .an IBOX write is to provide the operands for the next macro-operation. During 
the first half-cycle, the IBOX writes operand A and B into the same address of the two r.egister 
banks. The r~gister location written into is determined by the EBOX. 

During any instruction in which the IBOX is not providing operands, or is. providing only one 
operand, the EBOX may write data Into its EREGF. The EBOX write also occurs during the 
first half-cycle. · · 

At the end of an execution cycle, the result: . 

is always available to be used as an o~erand tot the liext execmton cycle, and 

is simultaneously written into the EREGF during the next execution cycle .(unless 
two operands' are received from the IBOX for the next execution cycle). 

·" 

.. 

... 



.. 

' . - ! 

• 

~-

4.2 Implementation 255 

4.2 Interconnection Netwotlc 

The processors are connected\\ to memory by a serial/parallel crossbar interconnection switch (See 
Figure 2.1-1). Data is transmitted 24 bits at a time through the switch, taking two cycles per data 
word transmitted. Once it is through the switch, it is then transmitted fully word parallel to the 
memory's, since the reiatively slow TTL logic in the memory's can not handle the high speed of 
the switch. 

The memory is divided into 16 Block Storage Modules (BSMs). The BSMs are interleaved 4 
w~ys on the low order bits of the real address word. When a processor does a read or write, four 
words are transmitted, except in cases where the data is tagged as not cacheable, in which case 
only one word is transmitted. Normally the address is transmitted once and the two low-order bits 
are permuted in order to obtain the addresses of four consecutive words in memory. 

With N processors, the common store resembles an n-port memory because of the interconnection 
network, the structure of which allows. each processor to simultaneously and independently access 
different BSMs. When two or more processors try to access the same BSM, the conflict is resolved 
by the memory contention control logic. This logic ensures that no processor can access a BSM 
twice before another processor desiring access can access it once. This effectively solves the 
deadlock problem which plagues some multiple processor systems, in which a higher priority 
processors locks ou~ lower priority processors for an indefinite period of time. 

Each BSM has its own memory contention logic, the· ii:iputs of which are the request lines from 
each processor and. the outputs of which are the select lines of the interconnection network. The 
request lines are activated by. control logic monitoring the address lines of each processor. In a 
sixteen processor system, four of the address lines would be input to a 4-to-16 line decoder. The 
16 output lines would indicat~ which of the 16 BSMs the processor desires to access. 

As soon as a particular BSM becomes idle, the memory contention logic latches the 16 processor 
request lines for that BSM. It then proceeds to service the queued processors until the memory is 
again idle. The 16 output lines of the latch go to a 16-to-4 line priority .decoder which 
determines which one of the processors is to be serviced first. The output lines of the priority 
encoder are connected to a latch, and to the select lines of the interconnection network, which 
routes the data from the selected processor to the BSM selected. At the end of a memory cycle 
when one processor has been serviced, the latch is released and the request is cleared. 

The priority encoder then elects the next processor to be serviced on the basis of the new data in 
the latches. T.his cycle continues until the latch is empty and all processors have been serviced. 
At this time the MEMORY IDLE line latches the next batch of processor requests and begins· the 
next round of servicing processor requests. 



• 

PkOC e OJ;<9:?4 ... p. n e· 
nrn 0 IH<9: <fi> 

w.oc 1 QIT<A:?• p 1 "1 
n·n 1 JNce: '6> 

""°c 2' 0Jl<ff·2• p 2 .. 2 ,,,.."?. JHC8: <fi> 

PllOC 3 Cllf<9:f'C::. p :J n :J 
nrn 3 JNce: 41> 

Pl>OC < rur<ff:?c p:. "4 
ru·n 4 ]N<9: <fi> 

PROC 6 WT<ff:?C PG "6 
n.n G IH<8: 49> 

r"M'OC 6 Ofl<ff:?•: p 6 "" "'" 6 
IN<9: '6> 

1-""tOC 7 once:?• p 7 PRD:ESSOR-MEMORY ,, 7 
nrn '7 JNU:t: 49> 

l"l>OC B 0.Jl<R:~'" Pe COll1"1U~JI CAT ION n e 
nrn e tNce: 49> 

""°c 9 Qfl<A:?• • p 9 "9 
nrn? JNce: '6> 

f"ROC 10 C.UlcA::--S> p 19 n ie nrn '" JN<8: 49> 

PROr 11 Cllll <&:.;-.> p 11. 
" 11 

.... " 11 ]N<A: 49> 

PROC 12' Ullc8:.!'11 
K nrn "' )NCR: 49> 

p 12 .. 12 

PR<1C 1'.l 0Ulc0: ~: p 13 "13 
nrn 13 ]N<A: '6> 

PROC 14 Oil c 0: :=:-.:· p 14 
" 141 

..-:n 1• JNC9· 41• 

woe 1s OUlcli'::O~· p 16 
,.-n IG JNce: #ff> 

" 16 

Processor-Memory Cross-Bar Switch (PMCOMN). 

p' 
I· ./!! 



• 

• 

p" <8:24> 
PSI e PSO II 

f'SO 8 C8:23> 

p 1 <fll:.?4> 
PSI 1 PSO 1 

r:-..o 1 C.8:?:1> 

p,. C9:?4> 
PSI 2 PSO 2 

PSO? c8:23> 

p 3 <8:24> 
PSI ::J PSO 3 

PSO., f.8:?3> 

p .. t9:?4> 
PSI 4 PSO 4 

PSO 4. c8:2'l> 

p" <8:2'4> 
PSI 6- PSO 6 

PSO S <8:2'3> 

p 6 citt:24> 
IPS1 ~ROCESSOR P'"..O 6 

~·o t. <8:?.3> 

p 7 ce:?4> PSO 7 0):23> PSI" SWITCH PSO 7 

ea <9:?.4> 
IPSI .INTERFACE PSO 8 

rso e <8:?.3> 

p 9 <'111:~4> 
PSO 9 

N:O 9 <8:23> 
PSI., 

p '" 
•9:?.4> 

PSI '" PS0 .. 1 
P!:O 18 <8:?."'J> 

p 11 <9:2'4> 
PSI .. PSO I 

PSO 11 <8:2'3> 

p 12 •9:?4> 
PSI :12 J( PSS 1 

PSO 12 ce:?.3> 

p 13 <9::>4> 
PSI ,3 PSO I 

F'SO 1'.:J <8:2'.b 

p •• <9:2'4> 
PSI "14 PSO I 

rt:O 14 cA:Z"b 

p 16 ce:?.4> 
PSI ·t& PCO 1 

rt;O 15 ce:?~ 

• 
f· . 

• 

PSI e ·PSO II 
...::n e AC:CCSS c 8: 2']> 

PSI e PSO II 

PSI 1 PSO 1 
. rcrt 1 ACcrssce·?.3> 

PSI 1 PSO 1 

PSI 2 PSO 2 
rw=n 2 ACcrssce:?'l> 

PSI 2 PSO 2 

PSI 3 PSO 3 
rc:n 3 AC:crss•e: ?3> 

PSI 3 PSO 3 

PSI 4 PSO 4 
,...." .. ACCCSSc e: ?.']> 

PSI 4 PSO 4 

PSI 6 P'"..O (; 
rcn 6 ACC£SSce:?.'J> 

PSI 6 PSO G 

PSI 6 PROCESSOR PSO 6 
,.-:n 6 ACC£SS<8:2'3> 

PSI 6 SWITCH PSO 6 

PSI 7 MEMORY PSO 7 
rcn 7 ACCl"SS<8:?3> 

PSI 7 MEMORY PSO 7 

PSI 8 SWITCH PSO e ,...n 8 ACCCSS<8:2:t> 
PSI 8 INTERFACE PSO e 

PSI 9 PSO 9 
tC1' 9 ACO"'!;~<e·Z3> 

PSI 9 PSO 9 

PSI Ill PSO 1 
N:ft 18 ACC£~S<A:?'l> 

PSI 1• PSO 1 

PSI 11 PSO 1 
rw:n U ACCFCS<8::1?3> 

PSI 11 PSO 1 

PSI 12 J( PSO • 
rw:n 1:» ACf".FSS<e:?.:n 

PSI 12 J( PSO 1 

I PSI 13 PSO I 
nc:n Ill ACCFSSc":2'3> 

PSI 13 PSO I 

I PSI •• PSO 1 
rcn 14 ACC£SSc'11:23> 

PSJ •• PSO I 

1& PSO I 
nrn 16 ACCCSSC0:?3> 

PSI 16 PSO 1 PSI 

, 

Processor-Memory Communication (PMEMSW) 

"" <&· ..,, 

"1 ce: 49> 

"2 CCi!J:<lf9'> 

"3 C8: 49> 

". ·ce: -6> 

"Ii <8: .,, 

"6 <~: ~> 
n 7 HJ:~> 

n B Ht·"'9> 

n 9 H:!: .,, 

" '" <.8:49> 

n II <0:49> 

" ,,. <.9:49> 

" 1"1 <9:49> 

" .. C9:49> 

,, 1fi <9:49> 

~ 

.. l 
I 
I 



• 

•' 

• 

_,.._" __ e_o_•n-·_~_,_._v_• _____ _, n • 

,..n 1 Oll<ilJ: '49> 

"...-"""-'3~0-"'"='""''-'4""9""> ----'---;; " 31' 

"...-"n"'-4'-"0"-t""-'-'"-'-'4"-Y"->----'---t " 4 
_rc_,, __ ,._o_in_,_,._,_._.,_, ------< " e 
nfn b om <e: .. .,,, " . 
-"'-"~'-"-UJ-•_.,_,_._.,_, ------< n ; 

-'rv'.".M"-'9'-"-0-"l~ ... •-'A"''-'4"-Y"->------t "~ 

n:n 9 DLR• 0: 4?> " .. 
_...-""--'~e--=o"-n""'-'e"',_._.,.,._ ____ -t n • 

-""-"--1-1~0-'-"-"-'-4-"'------<n 11 

nl'"n I? O:•fc9:4~ 

MEf",ORY-PROCESSOR 
CONMUNICATION 

" 

P 8 1-------''-'...oc=-'8"-'1'""""'"""""= N:..:..;> 

P 1 1-------'woc='-'·-''-'''""""'""9"", ,,..,... -.• 

p :? l------'PllOC=~2,_,l'"N"-<"-8"-: N.__> 

p 3 t------'NIOC="-'3"-'J-"N"-<"-8"-: ="4.__> 

P • .,_ ____ _,,,..~OC~4--'-"-'-"-' ""-· _, 

P G t------'""-OC~G~l-N_•_8_, ""-· -' 

p 6 t------'""=OC"'-'6"-'l'"N"-<"-8"-: ..... ,___> 

p 7 1-------''"'=0C"'-'7'-'l""N"-'"-""-' ""'°'· ,_.> 

P 0 1------'""=oc"'-"e"-'1'"H""•"""""' .,,."'-.' 
p 9 1-------'PROC=;:...'>'-'l""H"-<"O._· ?4=.;.> 

p 19.,_ ____ -'PP.=.OC"'--'19"-'l'"N"-<"-8"-'"4:...-> 

p II l------'PPOC"'-'"'---'"'-'''-"H'-'<"8"-' ,.,,..,_., 
p IZl------'PPOC.=.=..-'1?,_._l:.:;H"'<"B"-''""""'"' 
P 

13
,_ _____ ....oc_~-n~•-H-•_e_, .,. ___ , ~"'~".:.....:'~3'-"a'"n"<~e~,~·· ... : _____ _.,: :: 

11Cn , ... OfT•A:4a•. Pt?0C 14 IN•0:2'1> 

_,.._·"--'-~~o-"-'-e-,_4_------~1:_:_: _______ -'-______________ :_:_:;1----~·-~-oc~-'"~'-H-;_e_,""""-' 

Manory-Proc550r Cross-Bar Switch (MPCOMN) 



'"· .. 

" e ce:49> 11$1 • nso e 

"1 <8:49> 
llSI 1 nso 1 

";> (8:49> 
llSI 2 nso 2 

"3 (8:49> 
llSI 3 nso·3 

". <8:49> 
llSI 4 nso 4 

" & 
<8:4Y> 

llSJ & nso i; 

ce: .. 9> 
MEMORY " .. llSI 6 nso 6 

"7 <8:49> 
SWITCH 

llSJ 7 INTERFACE nso 
7 

n B <8:49> 
llSI 8 nso o 

"9 <8: .. 9> ns1 9 nso 9 

" "' <1Pt:49:. 
l'"SI 18 nso 1 

" 11 
ce:49> 

!'SI " nso 11 

"12' <8:49:. r,s1 12 nso 1 

" ,, <8:49:. 
)( 

!'SI 13 nso· 1 

" .. C0:49t 

1

nsl 14 ftSO I 

" 16 •0:4'}• 
16 nso 1 lftSI I 

• 

SCRVIC£. 8 ce:?J> 
ns1 • nso • 

rr.,o e <0:23> 

f>l""RVIC£ 1 c8:2,> ns1 1 ftSO I 
nso 1 C8:2'']> 

OCRVJCC 2· c8:2:t> ns1 2 nso 2 
w-..o 2 ce:?.3> 

srwtcr l <9:23> ns1 ]I nso 3 
~o :J ce::>'J> 

OCRVJO: 4 <e:21> ns1 4 nso • nso • ce:?'J> 

Sf'fo'VJCC 6 <8:?.3> ns1 i; nso r; nso & dt:?:t> 

Sl
0

"""JC( 6 <8:23> 
MEMORY nso 6 • .,;?.]> ns1 6 PROCESSOR nso 

6 
SUIVJC£ ., <9:23> nso 7 <9:?3> ns1 7 SWITCH nso 7 

snNJCE e <8:?.3> ftSO B <8:23> 
ftSI B nso e 

SCRVJCF 9 <0:?3> ns1 9 nso 9 
.,....., 9 <0:?3) 

st·w1c£ 1e ce:?."1'> ns1 1• "'° 1 
nso 1e ce:?.~ 

SfJc'VJC£ " <8:23> ns1 11 "'° 1 
nso ,, c8:?'b 

Sf""JNtcr: 12 <8:2'3> ns1· 12 "'° 1 
nso 12 <8:2'~ 

Sl~Rv1C£ 13 <8:?.'J> 
)( 

rY'....O 13 <8:2'> ns1 13 "'° 1 
!;rPVJC£ •• •e:~3> ns1 •• '60 1 

n~o 14' •8:?:1J, 

srwicr 16 Cff:?.:J> ns1 16 "'° 1 
nso 16 ce:?3> 

Memory-Processor Communication (MPRCSW) 

ns1 • "'°. 
ns1 1 "'° 1 

ns1 2 "'° 2 

ns1 :11 "'° 3 

ns1 4 "'° • 
ns1 i; SWITCH n;o & 

""I 6 PROCESSOR "'° 6 

ns1 ., INTERFACE "'° " 
ns1 er. n;o B 

ns1 9 "'° 9 

ns1 18 nso 

ns1 11 nso i 

ns1 12 nso -
)( 

nu 13 nso 1 

ns1. 14 nso 1 

ns1 1& nso 1 

. . 

Pe ce:2'4> 

p 1 ce:Z•> 

p 2 c8:2' .. > 

P ,. ce::>4> 

P 4 cB:2'4> 

p 6 <8:2'4> 

p #. <8:24> 

p 7 <8:?4> 

p 9 <8:2'4> 

p 9 <8:24> 

P 18 ce:~> 

p 11 <8:24> 

p 12 ce :>•> 

p b •B:24> 

p 14 •8:24> 

p I& •8:24'> 

t 
~· 

,. 

t 
! 



• 

I 
PO 

II e llfOll•·: II 9 <0> PO 
118 

RI 
~ruur:·1 1 <A> 

R I 

II 2 ii 2 

R 3 
RfQllf'":l 3 <0> 

R 3 

R 4 
ih'fr,. . ..- ;.i 4 ce> 

R 4 

R 6 R 6 

Rt. R 6 

A 7 R 7 
PROC l'l>OC 
SLIJlC".H R 8 ::111 ro. R 8 
lHTr~ 

R' 91 
R 19 

wn .. •·~r 9 • A> 

M"Qt.f"ST 18 <fll> 

•T=--ACE 
R 9 

R 19 

R II R 11 

R 1'! R '2 

" R 13 
RfOI.•·..: r 1:1 te> 

" R 13 

R 14 R 14 

R 16 
Pf Ola·: 1 1S ce> 

R 16 

D"" I esn 
Pl Pl. 

PSl 1 18::""4> I 

.. 

PSO 1 <8:23> 

REO£ST 1e <I> 

HtiOtr.sl I <I> 

RIOLCS1 2 C1> 

RI QI.CST :a ct> 

RI OIEST • <" 

RI OIXSl 6 Cl> 

fe-Ol•"ST 6 c"1> 

lo!"""oursr 7 ,,, 

~01.-s1· e ,,., 

fo'!':otrST 9 <1> 

Rl"~ ... ST :Ht <I> 

Rf'QUEST '1 ... 
~CST'12' <I> 

RC0.6.ST 13 <I> 

'Rf:Ot.A:ST l4 <I> 

Rt--OtlEST 16 <I> 

flSnSF.L <9:3> 

,PSJ 2' <9:2<4> 

PO 

....oc 

• 

PSO 2 <0:?.J> 

Rf"Oll'"ST " <2'> 

Rr.otCST I <2> R I I---,----"="'-'"-"-=-

Rraur:sr ?. <2> 

Rf"OU£"!:T 3 <2> 

R 2 -------"'-"'="-"-=­

R 3
1
,. ------=-=-"-'~~~ .. :. 

N1'.ota~s1 • <2> 

Rf"QlJf"ST 6 <2> R 6 I-------"="'-'"-""-'-""'-

Rf'Ollf"ST " <2> 
R6!-------"'-"'~"-~~ 

Jlf0llf"$T 7 (~) 
R 7 !-------"'-"'"'-'"-'-'-= 

RrOUFST 0 <2> 

R'l'"OllfST 9 <2> 
i~!:~ R 0 I 

R 9 ------~~~~~= 

R'lrOU"ST "' <2> R 101~------=='""-'-""-'""'"" 
Rr.ou.:s1 II <2> 

11111------~=~~~~ 

Kour.st 12 <2> R 121------==='-'"'"-=-

RCOlCST 3 <2> X R 131-------==='-'""-:=, 

Pl""OlCST •• <2> R HI-------==='-'"-'--"""-

Rr<M•:sr 16 <2> 

A!;n!;f"L 2 <111:3> esn ;---~--=="""-.,__== 
Pl 

PSI 3 <9:2'4'> 

Procenor Switch Interface 1/4 (PS INT I) 

• 

rt;O 3 ce~?J> 

I 
PO 

R 8 
P50 3<A:?'3> 

RI 
Nf'Q.lf'ST 1 <'3> 

R 2 
Nf"Q.CST 2 <)> 

R3 
Rl-CIEST 3 <3> 

R 4 

R 61 
Rt. 

Rf'.'QEST 6 c 3> 

R 7 
H£QF.ST 7 c)) 

PROC 
SMllCH RB 

RC"Q.1£$1 B <3> 

lHTfACE 
R 9 

Hf"QCST 9 <3> 

R 19 
Nf"OU:ST 19 <3>

0 

R 11 

R· 12 

" R 13 

R"~, ... 

R£Ql.£ST 11 c 3> 

•3•"\ 
J-~----~""~·-u-•.£.s~T~l-3~<3~> 

l------~Rf""-"Q~,£~S~T~·~·-4~•3~• 

P£"01..£ST 12: 

R I& 
Pf"Qlf°ST 15 c'3> 

esn PSJ 3 <8:2~> 

Pl 

• 



• . , 
• .. 

~o 6 •tt:2::1> P~O 6· «8:23> rso 7 co·?."l> .. 

I I 
PO 

A• 
Rl".QUfST 8 <4> 

PO 
A 9 

PO 
R 8 

PO 
Rf"Qlf""ST 8 <7> 

R 8 

At k'f"Oll ~· I <4> 
RI 

Rl~Ot.EST 1 c6> 
Rt 

Rf'"Ql..-ST 1 «6> 
RI 

R£QF.ST 1 <7> 

A2 
R'fQl..-:'H ?. <4> 

R 2 
Rl"Ol.CS1 ,. <6> 

R2 
QlJ£"ST 2 C6> 

R 2 
RrGEST 2 <7> 

A :J 
R{"Qll.'"'T :J <4> 

R :J 
RC"OlCS'T 3 c&> 

A :J 
Rl"Ql£ST «6> 

R :J 
REQCST 3 •7> 

A 4 
kfQllf'•:"f 4 •4> 

R 4 R 4 
Rf'"QlCS 4 C6> 

R 4 
Rf"Q .. ST '4 <7> 

AG 
fft""OICH " <4> 

R G 
Rf"QU[ST 6 c6> 

R 6 R 6 
Rf'"QEST 6 <7> 

A 6 
Nf-"Ql.-ST " <4> 

N 6 A 6 
Rt"Ol..-ST 6 «I» 

R 6 
ttf"QlfST 6 <7> 

A 7 
kf"oe.-:.T 7 <4> 

R 7 R 7 R7 
RFG£ST 7 <7> 

Pl>OC 
$.lo.ITCH AB 

Rt:Ollf ST e <4> 
PROC 
SWJ104 RB 

R'FQIEST 8 t6> PROC 
NJ 1CH RB 

RrQlrst e <6> 
PROC Rl:QCST R «7> 
S&UTOt R 8 

l .. "lf"ACE 
A 'O 

P.'fl'Xlf":;T .. <4> 
JHTFACC 

R 9 
JlfOllCST 9 11.6> 

INTFACX 
R 9 

RCQl.Jf""ST 9 <6> 
INTf-AC:E 

Rt'.:GIEST 9 <7> 
R 9 

A te 
t<'f"Qt •• S'T 18 <4> 

R 18 A 18 R 18 
IX'"Qlf:ST 18 <7> 

R tt 
...... Otl"Sl II <4> 

R II A t1 
R£Ql .. ST 11 <6> 

R 1S 
Rr.OU:ST .. •7> 

A t2 
PrOtCSl" 12 <4> 

R 12 
R'('QUFST 12' c6> 

A 1'! 
RCOl.-ST 12 <6> 

R 12 
RCOl.£.ST 12 •7> 

IC R t:J 
RfOllf"S"T l:J •4> 

IC R 1:J 
R("QUf"Sl t :J t6> 

IC A l:J IC R l:J 
.. Rf:Qlf:ST l'.l <7> 

R 14 

R ,·c; 

~01a·n 14 <4> 

RfQ1!f·~1 IG ... R 14 

R t6 
llCOUFST t& c6> 

R 14 

RI& 

R 141 
RCQlf""S1 14 <7> 

R'fOl.E"Sl 15 •7> 
R 16 

89" 
&!:n~r:L 4 <8:3> esn esnSCL 6 •.e: 3• esn esnsn. " c e: "l> esn RSnfCL 7 C0:3> 

PJ PJ Pl Pl 

PSI ... ·<8:2'4 > PSI 6 c 0:24> I PSJ 6 <8:?4> PSJ. 7 t8:24> I 

' 

Processor Switch Interface 214 (PSINT2) 
;'.> 
j' 



• 

PSI R •0:2'4> 

~OB <R:?'l> 

PO 
W't"Ollf'Sli • •A> 

R e !--------'~~=~~ 
w.·a.a·s• 1 <B> R 1 1--------'"--==-=-'-"'-= 

Rrou·s'I ? <9> 
R 2 I-------'"--=""-=-'-"""-

R'f.:.t•·s'I 3 <A• R :J 1--------'"--==-"-'--"-"'"-= 

IO:f'"i01..a·s1 • <9• R < 1--------'=-==-"-'--'---'= 

R 6 
RC0tr:>1 i; <D• 

R 6 
Pl·Dt1·:-:1 " <A> 

R 7 
...,..°' •. 51 7 •8• 

.. ,.Dir.SI 0 •8> ""°" SWITCH RB 

~Ol..-sl 9 <D> 
JHH"ACC 

R 9 

R _10 
"'·c.1a·s1 "' <D> 

R 11 
RfQlrST 11 <8• 

~'£1111..:sT I? <9> R 1<!1-------"'-'='"""'"'-',.__,_,.~ 

J,.•f.UW:ST 13 <D> >C R 13!------~==~~=-. 
R 1<!.._~~~~-"''-="-""'--'-~-""" 
R 16·~'-------'~~~~~~ 

k'f'"Gl•Sl 1• •0> 

PCVl .... ST 16 •D> 

BSl"ISrL • <&:3> osn r-------===-=--""""-"~ 
Pl 

I PSI 9 ( ft:24> 

PSO 9 <8:23> PSO 10 <~:23> 

I 
PO 

R ., 1---------""~'"'=.-~s_r_a~·~"~' . 
PO 

R 8 
R'fQ9 .. ST 8 <18> 

PO 
·Re 

RC"Oll""ST 8 "10 

R 1 1---------""'~"'=rc_s_r~1-'-"~'. R 1 
JlfOIJfST 1 <UJ> 

RI 
RFOLCST 1 <11> 

R 2 1---------"'~' "'=rc_s_1~2-•-9~•. R <! 
Rr"OUFST 2 < 18> 

R 2 
Rr:QU:S:l 2 ( '1) 

R 3 1-------""""'auc=_,.s.,r_..:J1_•""9""'· R :J 
RC"QICST "] <Ht> 

R :J 
lil'(QU:"!>T <11> 

11 • 1-------""'"-auc=·_,.s.,r_.,4_•;;.o9..._•, R < R < Rf:QU··:a 4 <11> 

R 6 1-------"'11'._lll=f"~S'-'T-"'li-•;;.o'>"'->· R' 6 R'COU'.ST 6 <19> 
R 6 

Rf"OU""ST 6 ( 11) 

R 6 >-------~"" .. '"~O'•S•T~6-'-9~'. R' 6 
J.'f"Oll"~T " C1ff) 

R 6 
lilf"Ot.rST lo <11• 

R 7 t-------"PF._111=0'~S'-'T_..7_•~9~>. R 7 
R'fQtlfST 7 <19> 

"7 
Pf"Ql£ST 7 <ttJ 

l'ROC 
SMJ lCH RB 

PROC 
Sl.IJTOt R 0 

M""QU-ST 8 ,,,. fill'.aur:s1 E ,.,. fc'ro111r!:1 e <10> 
Sl.IU~ R 8 1------~==~~~ 

JNTJ"ACC 
A 9 

JNTf"ACC 
R 9 

WF.OlFST 9 ( 11 > Q:QrST ~ <9> KOllf.ST 9 <19> 
JNT"'="AOC 

1191---------=~~~~ 

R'f'Ol..f""ST 1e .... .. 18>-------~~~~~~ .. 18 
Wt 011·sr 1 .. <19> 

R 18 RfOUrsT "' c 11) 

R 11 

.. 12 

R 11 

.. '" 
Rf"QU("'SJ 11 <11> 

R£ourm 12 <1U 

J!S?!;:f"I. 9 48:3> 

PCOUFST 1E <9> 

Wf'01·.-s1 11 C19> 

Rf:OICST ,~ <19> 
.. 111 

• ·R 12------~=-..--~ 

RCOl£ST 1-· •9• 
)I R t:Jt------==""-''-'-= IC R l:J 

Rf"OU£ST 13 <19> 
IC R El 

WJ"OUJ"ST 1 <11> 

R 1< 

It 16 

",.I 
R 16, 

OUCST 1• .... 
Rf"Ol.EST 1•- .... 

RfOl.-ST 1• <16'> 

R'f"Ol ... ST 16 <19> 

wrOttf'.!iT 14 op -

HC"GUrsT 16 <11> .. 161------==='-'~=· 

BSn >------~B-S~n~S£~l~6~· "~' -'· osn llSM!;f:L 19 <8:)> EIS11 I nsnso. 11 <9:3> 

P: Pl Pl 

~J '"' <9:24> I ,PS 11 <8:24> 

Processor Switch Interface '3/4 (PSINT~) 



(J..LNISd) .,. aJ~jJ3lUJ 4Jl,MS JOSSa:>OJd 

I 
c.,z=e• "' 1sd 

I 
O•Z=e> Cl IScl 

Id Id Id Id 

<9l =u> '9l .LSJIOM. 

<'9l :e> .. l .LS:flel.M 

C9l=e> 1.l .LS-:m;JO:Rt 

use 

!>I lt 

•I .. 

Cl " 
" -.1 .. 

.... .. 1 .. 

use 

51 " 

. ... Cl " 
" i!I" 

.. .. 
.. ... 

cc=e> •1 ,Jsu:;a 

C .. l!8> 91 lSJtl'J.M 

C .. l:8> •I 1SJU03d 

c"l=e> Cl .is.ino:Mt 

•• =e> ZI lS..JllO:MI 

c.,1:9, .. lS ..,_.,. 
c.,1:e> ... 15.Wlll').Jit 

cC l =v> Sl lSJ"'.:H 

<Cl :9, 8l .lS.lllO..:M 

use cc1u> i!< JSUSl:I . ~a 

91 " <Zl> 'JI .15 ... IO.M 1'.l, l:t 

"'' H· CC!l> •1 :J.SJ'O.Jlf 
1· · .. Cl II 

" 
cZl> Cl .lSJl0..16 

Cl 11 
" 

'" " cZi> ~' .lSJtO:ld IZl .. .... cal> ll .lS.Jl'tO.Jd 
I" " 91 .. 

c~h el .15 •t0.ld 
el .. 

6 .. 
X>tf.JlHl 

6 .. 
3:Jit:H1HI c•l=e> 6 J.SlllDllt 

6 .. 6 .. 
DJJJ..Nl 

C~l> 6 1.S;9llO].IJ 
3:Jt:t.JL .. t 

e" H:>llr15 

"°"" 
e" >01 lftS 

:>OIM 
C .. l:8> e J.S.WWUH: cc1=e• e 15.JJO.Jl:l e" tOlU1~ 

<c:l> 8 .1.S:IUO:MJ B" tOlt"'IS 
~ 

"""" " .. Cl•l :", 
" 

1.s;.-"J.tll " .. " .. <Zl> L. 1.S .. UO.io'j 
"" 9 .. C .. l:8Jo .. 15.1.0.Jd 9" 9" <C:l> 9 .LS.•IO.Jo'I 9" 

'l" c•1=e> 5 1S.;911U;J.li 9 .. 9 .. <c!l> 9 .LS"..lllOM 9 .. 

. .. c•l=e• • 15.MIO:.tH . .. CL l :e> ... 15..llO.JI:: ... <Zl> .. lSJIO.Ri . .. c .. c .. <Cl :e> C lSJrlO.lb c .. CZl> C l.S:l:tO_M!I 
[ .. 

i! .. i! .. CCI =e> a 1SJ10.RI 2 .. c.:L> c: 1SJllO~ 2 .. 

I .. I" cc L =e > l 1s.11WJ.Rt ' .. <4?1> .. iS~lO~ I " 

c~n-e> e IS.lllt:.MI e" Od 
e" 

Od "" " .. Od 
CZl> 8 t.sll•Lld 

Od 

.I I ccz:e> C.1 OSd <(,..?=0 > ~I OOd 

• 

·~ .. 



6!. L 

SI L 

IHTi';Rr"Aci: 
ICOHTROL 

MOR()C1> 
""'-10 

I Nf:AD L.c)h"'()C?b> 

I 
...OWOc27> ila?JlC 
M()Qf)c?ft> 

··"""'° 
""""11C1A:4'~ IUSnHO 

x 

•' 

.... .. 8 

A I 
.. . 

" 2 
P.,. 

• 3 
R "'I ... "4 

• & 
R6 

I: 6 
At. 

"'7 
",. 

ee Q 9 ... " .. 
R 18 • ... 

;::~ 
•13~ 
• 

14 
. R 14 

esn 1-------'""91='"'""'3.-.' 

• 

• 

,.., 
~ 
~ 

z .. en 
C~Lc8~?J> oe l",l96A OD ~1)<8:?3> 

P1<1:?""' l Cl( 
R 

e 2• mT 

\ 
1e1w PO<B: 3> 

.POR 

" HL 

24 en 
oe '"il""" 00 

<24:47 

Cl( 
R 

S< > POR 

TUI L 

PJ;.OC Switch INTFACE (PSWINT) 



•, 

. 

Rf"Ant L 
~·rttn L 

Q' 
Q 2 

• 

UA.l!D 

Rf'nr.T 

\A. IO> 4MORO 
2 

. UAI. mt> 
3 

36 BIT 
18164 COt.,.T 

""'·"° 
T .. 

)( 

z 
6 

z 
6 

z 

=""'~'~o~·~ .. ="°"":=o:'-----12 
~z---------i3. 36 RJT 

18164 Tl-----"'~ 

)( 

z 

2 

H 

" 

• 

I Of" 8 
OCCOOCR 

UU6l 
Sc8:7> l s Q 

)( 

CN90'1 

f. 

i 
C:Ol ... T l Q3 

co 
IOAD L 

lt1 

03 

POii 10f"t6Q:J~ 
DECOOCR O 4 R 

0& R 

36 en O 
6 

l R 6. 

R~nlc9:3> 

LATCH 

1&133 1 .__~o~c~,"~'~"~'~~~·--i 
R 

Q 7 
DI 

)( Q 8 

Q 9 

.. '" 
Q" 

SO> )( 

Q •2 

113 l 
Q t3 ..... R 14 

Q t6 
II 16 

Interface Control (INTCTL) 



PSOel PSOlr ~2r PSO~~ PSOr ~6r PS06r PS07r.· I 

DO DO 00 Ill> DO 00 DO 00 
PSI ft C8:il'"1>'-" 

DI e DI • Of • DI e · DI e DI 8 DI e OJ e' 
PSI I ce;;a3,,A 

DI I DI I Of ' 01 I DI I DI I DI I Dl I 
·-· PSI 2' C8:23>"' DI 2 DI 2 DI 2 Ill 2 DI 2 DI 2 DI 2 DI 2 -

PSJ :t c 8:23>,A 
DI :J DI > DI :J DI :J DI > DI > DI :J DI > .. 

PSI 4 c 8:23>"' Dl 4 DI 4 DI .. DI 4 DI 4 DI 4 DI 4 ·Df 4 - Ii c8;~3>"' DI 6 Di 6 DI 6 DI 6 Dl 6 DI 6 DI 6 DI 6 

PSI 6 ( e: ::--.,"' 
OJ 6 At'OC Dl 6 PROC DI '"PWOe DI 6 Pl!OC DI 6 PROC DI 6 PROC OJ 6 PROC DI 6 PROC 

PSI 7 ce:>3>"' rcn "°' rcn rcn """ rcn. ""'" "°' DJ 7 $1.111Dt Dl 7 SMITC4 Cl ? SUl10I DI 7 sel lOI DI 7 SM11Cll 
I 

OJ 7 SWITOt DI 7 SWllOt Dl 7 SMJTOt 

PSI A c 8: 23>"' -
DI 8 Dl 8 0 • Dl 8 Dl e DI 8 DJ B. DI 8 

PSI 9 <8:2.3>,A 
DI 9 DJ 9 0 • DI 9 DJ 9 DJ 9 DI 9 DJ 9 

' PST te c8·"">'-A 
l 1• I 1e .. I 1e I 1e DJ 1• I 1e I 1e 

PSI ll c8•2''h~ : 
I 11 · DJ 1t DO; " I ti J ti I ti I U I ti I 

PSI 12 <8:23>~ J 12 x DI 12 x 12· x I 12 IC I 12 x I 12 IC I 12 x 12 x 
! 

PSI 1:1 <8:2~>'-.A DJ l:J I t:J - l:J J t:J I l:J I l:J J t:J DI t:J -
PSI ... <8:2"l>'-.A DJ 14 DJ 14 Cl 1.4 DJ 14 I 14 I 14 l 14 DI 14 

PSI 16 <8:2~>~ 
DJ 16 DJ 16 0 •6 OJ 16 I 16 I 16 I 16 

1
m 16 

Ill en. nJ en. I l'Q CTL n1 CTL nJ en. nl CTL n1 CTL i nJ en. .. 

I I ' I I I. 1· I I ,.-" 9 IDL£ ncn I JDLE 

I 
~!J 2 ll!!:f; I nc:n "I: 'I'll c -- 4 1 .... r -:• J; : ftC ..-n 6 Jill.£ ncn 7 JDt.£ 

: 
R£Q1£ST 8 ce:16> : RE9!£ST I •!·!§> ._.,.lES1 2 COh .-. RECLEST-. cllt1: ti> Dl'"QUEST • cA: II:) RE ....... S"'i 6 ce: 6> Dr0l£S1 A ce: u::., R£Q•r" ...... , <8:16• 

.. -· 

Processor Memory Switch 1/2 (PMSW I) 



• •, 
·~ 

~ . 

• 

! ' 

00 DO DO DO DO DO DO DO 
PSI 8 c8::l,>'8 

DI e DI e DI e DI ... DI e DI e DI e DI e 

PSI t <A-23>•" DI t DI 1 DI t DI 1 DJ t DI 1 DI 1 DI t 
PSI :io- c8:<»3>'9 

~I 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 
PS1 ~ C8:23>'9 

DI JI DI JI DI :J DI JI DI :J DI JI DI JI DI :J 
PSI 4 c8;::S03> .A 

DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 

PSI 6 c 8:?.3>'9 
DI 6 DI 6 DI 6 DI 6 DI 6 DI 6 DI 6 DI 6 

PSI ._ c&.:::>:1>,B 
OJ 6 PROC DI 6 PROC OJ 6 PROC DJ 6 PROC DI 6 PA'OC DJ 6 PROC DI 6 Pl!OC DJ 6 PROC 

PSI 7 c A:::io3>'8 ... ... .... ..:.. ..._ .. ... ... rcn 
DI 7 SMJ n:H DI 7 SWJTOt OJ 7SWI10t 01 7 SWJlOt DJ 7 SWITOt OJ 7 SWJTOt OJ 7 SWJTOt DI 7 SWITOI 

Pl::J e ·, e:2'3>'8 
DI e DI 8 DI 8 DI 8 DI 8 DI 8 DI 8 DI 8 

PSI 9 c&.:23>~ 
DI 9 DI 9 DI 9 DI 9 DI 9 DI 9 DI 9 DI 9 

PSI 19 Cill:=>3>'8 I 1e I 1e I te I 1e I 1e I 1e OJ 1e I 18 
PSI ·11 <8:2"1>"8 

DI 11 I II LOI 11 I 11 I II I II I 11 I Ji 
PS• 1::> C8:2'3> .A 

I 12 • I 12 IC I I 12 IC I 12 IC I 12 IC' I 12 • I 12 IC I 12 IC 

-· t1- ica:23,,e I Ill 
I 
,-1 13 I t:J I Ill I t:J I Ill I IJI I Ill 

PSI 14 dJ:2"1>'8 I 
I t4 I t4 DI 14 I 14 DJ 14 I 14 I 14 I t4 .. 

PSI tli <8:23>'8 
OJ 16 :01 16 I t5 DI 16 OJ 16 DJ 16 DI t6 I 16 

nl en. ... CTL .... CTL n1 CTL ... CTL .. . CTL ... CT\. ... CTL 

ncn e JOLC I . l't[ft 9 )1"111 r I re" te Jnt E I re" 11 1DL£ I ,...ft 12 """" r I r£n t"l JDL£ I flF'ft 114 ,..,,. r I r£n 16 JOLI=' 
·1 

DtOlrsy e ce: 16> orO"MrST 9 <8• ,r;;., Rf:IDlt£ST •9 CfiJ:•S::.> . __. .... ~ST • • ce: 6> . .--.... rsy J::> c•: JJ;.> R£Qu£ST •"' c&, t.f;.> R£Ol~ST •4 <8: 16> R£01£ST "' ce, "" 

Processor Memory Switch 2/2 (PMSW2) ~ 
G' 

~ 



n1 

•. 

PNCtTOCOL 
tCTMORK 

x 
nlH 

I 

I 

• 

DI 8 Ht:~)> 

01 , (8:.?.):) 

DI 2 ce:?:l> 

DI J <"':~']> 

DI 4 <0:~)> 

01 6 <8:21:> 

DI 6 cfl:-?.3> 

DJ 7 <8:?:1> 

'" R <8:?.:1> 

DI 9 <8:?.)> 

DI 19 ce:z:u 

DI " <8:2''1> 

DI I? ce:?'l> 

()J 13 te:.?.·o 

DI 14 <8:?)> 

DI 16 <9:2'"1> 

PROC MEM Switch 

~ 
' 
i! 

3 

.. 
6 

6 

7 24 BIT 00 <8-Zl> .. 
e 16"""' J. 

9 

•• 1 

' " ·i 

1i! 

13 

14 
llH 

s 

~ 

(PMSMUX) 



. ' 
' I 

I I 
I 

I 

:JD lD 

• 
CCl81 
t0nn 
.118 .. 

, &~.1 

NlU 

l A..ldO O 

lO 

" . .....,91'81 
IDOO.JN3 Ol&J". 

119.91 

.. 
" • 

~ 

ICl8l 

011~ 91 0 

s 

lN39N3 

• 
IOOO:>:JO 
91 30 ' 

sl----...J 

9'1 

.. 
• 



• 

Switch MEM INTFACE (SWMINT} 

.. 



• .. 

~·r ftSOlr ftm2r ~r nsor 
~6r ftS06r nso7r 

DO I DO DO DO DO 
,. 

DO DO DO 
·ftSJ • (. 22>"' 

DI 8 DI e DI.• DI e DI e DI e DI e DJ e 
ftSJ I c fJ:: ?.2'>'-" 

DI t DI I DI I DI I DI I DI I DI I DI I 

~· 2 <&:??.>"' DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 DI 2 

rist 3 c 9:22'>,A I 
DI :J .DI :J DI ] DI :J DI :J DJ :J DI :J DI :J 

f'tSI 4 c 8:22'>"' 
DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DI 4 DJ 4 

ftSI I:. < 9:22>'-A 
DI 6 DI 6 DJ 6 DI 6 DJ 6 DI 6 DJ 6 DJ 6 

"51 6 c 8:22>,A OJ 6·~ DJ 6 ..en DI 6 l"Crl DI 6 f'En DJ 6 ..en DI 6 PCn DJ 6 l"Crl DJ 6l"Crl 

ns1 ., <&:"'2>"' NOC PQGC AOOC AOOC :J AOOC AOOC ....u: AOOC 
OJ7DU10t DI 7 sw::TCH DI '1' SWJ 1CH OJ 7 :SWITOt DI 7 SWITCH DI 7 SWJTOt DI 7 SWJTOt DJ 7 SWITOt 

ns1 e c e-:22>"' .Pl B DJ B DI B DJ B DI B DI B DI B DI B 

nst 9 c A-:22'>'-" 
DI 9 DI 9 DI 9 DJ 9 DI 9 DI 9 DI 9 DI 9 

tlSJ 18 <e:22>'<.A 
I 19 :>J 18 DI 1• J 1• DJ 1• I 1e DI te I 1e 

ftSJ .. <8:"'2>"' DI 11 :>J 11 I II J 11 DI 11 I 11 I 11 J II 

""' 2 <8:22> ·'°' DJ 12 IC ·:ti 12 IC I 12 IC DI 12 IC I 12 IC J 12 IC I 12 IC DI 12 IC 

nst t3 <8:?.2>,A 
DI l:J I l:J DI IJI I l:J DJ l:J I l:J I l:J J l::J 

"51 14 ce:?..2>,A l 
DI 

, 
DI 14 .;1 14 DI I., J 14 DI 14 J 14 DI 1• 14 

ftSJ 16 C8'!22>'A iDI 
·-

DI 16 OJ 16 11; I 16 DI 16 J 16 I 16 DI 16 
Pl Pl Pl Pl Pl Pl Pl PJ 

es~· e ie:,> I ~1<8·"1> l BSng""t ,. <8!:t> I ~SCl ']: <fh'l> I ~· 4<8-.3> l n::"'SCl. 6 ce~:J> I ~· 6<8:)> l 8~9"'-1. 7 <8:"~ 
\. 

M.emory Processor Switch 1/2 (MPSW I) 



• 

• 

nsoer ~91 nso1•r nso11r "~~r nsonr ~l .. r _nso16r 

DO DO 00 ! DO DO DO DO DO 
ns1 e ce::.;io,'"A 

DI e DJ e DI e DI e DI e DI e DI e DI e 
~ 

"SJ i c 0:22>'8 
DI I DI I DI I OJ I DI I DI I DI I DI I 

..SJ 2 c 8:22>'8 
DI 2 DI 2 DJ 2 DI 2 DI 2 DJ 2 DI 2 DI 2 

ftSt '1 <8:22>'8 
OJ 3 DJ 3 DI 3 DJ 3 DJ 3 DI 3 DI 3 DI 3 

nsr"' <8:22>'9 Dl4 DI 4 DI 4 DI 4 DI 4 DJ 4 DJ 4 DJ 4 

ns1 6 ~ 0:22>,R 
DI 6 DJ 6 DI 6 DI 6 DI 6 DI 6 DJ 6 DJ 6 

m1 6 ce:22>'8 
DI 6 flCft DI 6n£n DI .. ICJI DI 6tten DI "'ncn DI 6 !CO DJ 6 r£n DI 6 rcn I 

ns1 7 c e:>:>>'18 PROC PROC PROC PllOC PROC PROC PllOC PllOC 
DI 7 SWJ TO< DJ 7 mn-04 DI 7SWJ1'0t OJ 7$Ml1CH 01 7 SWJlCH OJ 7 SMllOt DJ 7 SWITCH OJ 7 SMJTOt 

ns1 8 « 8:22>.._B 
DJ 11 DI 8 DI 8 DI 8' DJ 8 01 8 DJ 8 DJ 8 

nsr 9 «Qt::>::>>•.A 
DI 9 DJ 9 DI 9 OJ 9 OJ 9 

1
01 9 OJ 9 OJ 9 

nst 1e «8:22"•'8 OJ 
1• 01 18 DI "' I 1e DI 1• OJ 1• I·,. I 1• 

ns1 II <8·:>2•'8 
1 II I II 

I " 
1 II 1 " I II ,_l 11 ·01 " 

"SI 12 <8:?.~'8 
I 12 >< 01 12 "' DI 12 IC JH >< I 12 IC 1 12 " 1 12 " 01 12 " nsr t"l <8•i!2>'8 
1. 13 1 13 DI I) I ta I IJI I 13 01 13 01 13 

"Sl 1~ <8·?.2->'8 
I 14 DI 1 .. DI 14 I M I 14 I 14 OJ 14 DI 14 

"St 16 <8·?2>~ 
J i6 DI 16 DI 16 I 16 l 16 01 16 I 16 DJ 16 

Pl P: PI Pl Pl Pl Pl I Pl 

~ B <9:,> I . BEftSCL 9 c9•']> I BSr.<n 18 c•:"11> 
l · 

~t. .. ,,.,, I ,..__,..., 12' <9:,> I ~r.L ,,., .... -., I esnsi: t4 C8:3> I R'S"!El. 16 <8:'t> I 

' 

Memory. Processor Switch 2/2 (MPSW2) 

•' 



..... 

• 

~1 

I 

273 

5. Summary 

The LLL Programmable Digital Filter is a high-performance multiprocessor having general 
purpose applicability and high programmability; it is extremely cost effective either in a 
uniprocessor or a multiprocessor configuration . 

The important system.characteristics of the LLL Filter are as follows: 

Multiple (16) identical processors execute independent .instruction streams. 

Every processing element can uniformly address all system memory through a (25-
bit serial) crossbar switch. 

Each processing element has dual private caches to reduce contention for main 
memory, to reduce average memory access time, and to insure that system 
performance does not seriously degrade as more processing .elements (and 
therefore a bigger and slower interconnection network) are added. 

Each processing element can direct an interrupt to any other processing element. 

Munch registers, hardware queues, and read-modify-write memory capability are 
available for synchronization . 

The virtual-to-real memory maps include access mode bits which allow efficient 
sharing of data and instructions. 

The architecture and instruction set of t~ individual processor has been optimized with regard to 
the multiple processor configuration. The important processor architecture features are as follows: 

A very large (228 word) virtual address space to allow each processor to uniformly 
address any system memory of feasible size in the forseeable future. 

Efficient mechanisms for allowing the ~xecu,tive to communicate with user 
processes. 

· A high-level instruction set ideally suited for compilers. 

An instruction set specifically tailored to reduce the frequency of pipeline 
interlocks in a high-performance implementation. 

The capability to perform three-operand instructions through ·the use of a unique 
"T -field" descriptor. · 

Comprehensive floating-point capability, including three rounding modes and the 
option to trap on excess pre- or post-normalizatfon. 

The capability to directly perform operations on operands of 4 precisions: 
quarter-word, half-word, single-word, and double-word. 

Special instructions for dealing with the multiprocessor environment. 



• 

274 

6. References 

Amdahl, G. M. 1967. "Validity of the single processor approach to achieving large scale 
computing capabilities," Proc. AF/PS ./967 SJCC, 30:483-85. 

Ball, J. R. et al. 1962. "On the use of the SOLOMON parallel-processing computer; Proc. AF/PS 
1962 F )CC, 22:137-46. 

Barker, W. B. 1975. "A Multiprocessor Design," Bolt Beranek and Newman, Inc., Report BBN-
3126, October 1975, 284 pp . 

. Carroll, A. B., and Wetherald, R. T. 1967. "Applications of p.arallel processing to numerical 
weather prediction,"/. of the ACM, J4:591-614. 

Flynn, M. ].' 1966. "Very high-speed computing systems," Proc. of the IEEE, 54:1901-9. 

Hamer-Hodges, K. J. 1973. "A Fa1:1lt-Tolerant Multiprocessor Design for Real-Time Control," 
. Comput~r Design, July 1973, 'lb-81. · . 

Kahan, W. 1973. ·"Implementation of Algorithms. Part I.", Technical Report 20, Dep~rtment of 
Computer Science, University of California, Berkeley, California, 1973, 339 pp. 

Kaplan and Winder, 1973. "Cache-based Computer Systems," Computer, March, 1975, 30-36. 

Katz,· J. H. 1970. "Matrix computations on an associative processor," Parallel Processor s,stems, 
Technologies, and Applications, L. C. Hobbs ed., Spartan Books, Washington, D.C., 131-49. 

Minsky, M., and· Papert, S. 1971. "On some associative, parallel, and analogue computations," 
Assoctqrtve Information Techniques, Elsevier, New York, New York, 1971. 

Sedgewick, R. 1975. "Q..uicksort," Report No. STAN-CS-75-492, Stanford University_ Computer 
Science Department; May 1975, 352 pp. · 

. . 

Slt:die, 0. L. 1975. 11M ultiproccsslng comp~ctifying garbagv wlledion," CC1mmt1'nf((1.fl(lri $ nJ tlie 
ACM, September 1975, Vol. 18, No. 9, 495-508 . 

• 

,. 



• 

• 

,... I 

... 

Al. Abbreviations 

Thie is a list of the abbreviations used throughout the design. 

ABS 
ADD 
ADA 

BC 
BOC 
BR 
BZ 
BZC 

c 
CI 
CK 
CLR 
CMP 
co 

· COMPL 
COND 
cs 
CSA 
CTL 
CTR 

DEC 
DEST 
DI 
DIS 
DO 
DP 
ow 
E 
EBO>< 
EN 
ERR 

· EIJAR 
EX 
EXP 

F· 
FA 

.FS 

G 
.GE 

H HIJ .. 

I 
. .I 

IBO)( 
IMMED 
INC 
IND • 

• 

ABSOLUTE VALUE 
ADDER 
ADDRESS · 

BRANCH CONDITION 
BAD ONES COUNT (FLOATING POINT> 
BRANCH . . 
BOTTOM ZEROES 
BOTTOM ZEROES COUNT . 

CACHE 
CARRY IN 
CLOCK 
CLEAR 
COMPARE 
CARRY OUT 

·COMPLEMENT 
CONDI TJON 
CHIP SELECT 
CARRY-SAVE ADDER 

·coNTROL 
COUNTER 

DECREMENT 
DESTINATION 
DATA IN 
DISABLE 

· DATA OUT 
DATA PARALLEL 
DOUBLE-WORD 

E SEQUENCER MICRO INSTRUCTION FIELD 
EXECUTION BO>< · 
ENABLE 
ERROR 
EBOX WRITE ADDRESS REGISTERS 
EXECUTION 
.EXPONENT 

FUNCTION 
FULL ADDER.· 
FROM SWITCH 

GREATER THAN <ZERO), CARRY GENERATE, GUARD 
GREATER THAN OR EQUAL TO <ZERO> 

HIGH <ONE>, HIGH (SIGNIFICANCE> BITS 
HALF-IJORD I 

INPUT. 
I SEQUENCER MICRO INSTRUCTION FIELD 
INSTRUCT ION BOX 
IMMEDIATE 
INCREMENT 
INDIRECT 

\ . 

275 



I ! . 
276 Abbreviations Al 

INSTR INSTRUCTION 
INT INTERRUPT 

. i IR INSTRUCTION REGISTER 
IRS SECOND OR THl'RO WORD OF INSTRUCTION REGISTER 

• 
L LESS THAN (ZERO), LOW (SIGNIFICANCE) BITS 
LE LESS THAN OR EQUAL TO (ZERO> 
LEN LENGTH 

. LRU LEAST RECENTLY USED 
LSB LEAST-SIGNIFICANT BIT 

M MOOE, MIDDLE (SIGNIFICANCE> BITS 
MANT MANTISSA 
MC MICRO-CONSTANT 
MEM MEMORY 
MM MULTIPLEXER MERGER 
MPC MICRO PROGRAM COUNTER 
MUX MULTIPLEXER 

N NEGATIVE (:-

NE NOT EQUAL TO (ZERO> 
NUM NUMBER 
NW NEXT WORD . 

'NZ NON-ZERO 

OE OUTPUT ENABLE 
OP OPERAND 
OVFL OVERFLOW 

p CARRY PROPAGATE 
p P SEQUENCER MICRO INSTRUCTION FIELD 
PA PHYSICAL ADDRESS 
PC PROGRAM COUNTER 
PE PARALLEk ENABLE 
POS POSITION · 
PROC PROCESSOR 
PRIO PnIORITY 

·R REAO 
REG REGISTER 
REL RELEASE· 
REM REMAINDER 
REPT REPITION 
AND ROUND 

'RNM RENAMED 

s SELECT, SUM 
; .. 

SCNT SHIFT COUNT 
SEL SELECT 
SIN SHIFTER INPUT 
SKP SKIP 
so SHORT OPERAND 
SAC SOURCE 
SW SINGLE-WORD 

TRANS ADDRESS TRANSLATION 
T OUTPUT 
TZC TOP ZEROES COUNT ;;. 

a OUTPUT 

• 



Al Abbreviations 277 

·aw .QUARTER-WORD 
• 

UNDFL UNDERFLOW .. 
v OVERFLOW 

"' i VA .. VIRTUAL ADD~ESS 

w WRITE 
WE WR I TE ENABLE· 

x TRANSMITTED 
XBOX EXPONENT BOX 

z I ZERO 

I 

I 
I 
I ; 

I 

I 

; 

• 

• 



,. 
I 
I I . 

278 

A2. Micro-Code Conventions 

S INDICATES THE BEGINNING OF A FIELD DEFJNJTION 1 

i INDICATES THE BEGINNING OF A MACRO DEFINITION 

CJ DELIMIT THE BODY OF A MACRO DEFINITION 

S.EPARATES TERMS IN A MICRO-INSTRUCTION 

ENDS A MICRO-INSTRUCTION OR COMMENT 

• SEPARATES A FIELD NAME FROM ITS VALUE 

INDICATES THE BEGINNING OF A COMMENT WHICH CONTINUES TO THE 
LINE FEED . 

ADD(X,Y> .:ALEG<"X">,BLEG<"Y") 
INDICATES THAT PARAMETER X ANO Y OF ADO MACRO ARE TO BE SUBSTITUTED AS 
PARAMETERS OF THE ALEG ANO BLtG MACRO RESPECTIVELY. 

ALEG <X> :AIN"X" 

INDICATES THAT PARAMETER X OF THE ALEG MACRO IS TO BE DIRECTLY 
SUBSTITUTED AS TEXT AFTER THE STRING "AIN" 

* · INDICATES DEFAULT VALUE OF FIELD SPECIFICATION. 

COMMENT INDICATES. THAT ALL TEXT UNTIL A SEMi COLON JS COMMENTS· 

• 

,; 



• 

• 

.. 

A!J. P-Sequencer Micro-Code Fields 

SDEST REG CTL<0:1> 

REG ADR 
001 

. ADD · 

llBOX START ADR<0:11> 

* 
ILAST START ADR 

* 

.. 1 
;.2 
.3 

.. 0. 

... 0 
.. 1 

SOPS READY WHEN IBOX DONE 

* 
SOUT SEL A 

* ·REG 
CONST 

SOUT SEL B 

* REG 
CONST 

IREG R ADR<0:4> 

* 
SREG W ADR<0:4> 

* 
ISRC REG CTL A<0:1> 

* 

• 

REG ADA 
OD 
ADO 

.. 0 
·1 

· ... 0 

·" 

279 

!OEST REG ADR<0:4> .. "REG AOR<0:4>" 
! " • "IR<14:18>" 

" • "SUM OF ABOVE TWO FIELDS" 

!SELECTS THE SOURCE FOR THE READ-ONLY DATA 
!THE "OUT A" LINES. 

!SOURCE A REGISTER 
!IMMEDIATE CONSTANT OR CACHE ADA IF CADA SEL 
! IS SET 

!SELECTS THE SOURCE FOR THE READ-ONLY DATA 
!THE "OUT. B" LINES. 

!SOURCE A REGISTER 
! I MMEO I A TE CONSTANT OR CACHE ADA IF C ADA SEL 
! IS SET 

!DON'T SET OPERAND 
!SAC (A OR B> REG AQR .. "REG R ADR<0:4>" 

., " .;."OD REG ADR<0:4>" 
· ! " ·SUM OF ABOVE TWO FIELDS 



I 

: i 

280 

SSRC REG CTL 8<0:1> 

* REG ADR. 
OD 
ADD 

SSRC REG OUT SEL 

001 
002 

ISET EWAR 

* 

• 

.. 0 
=1 

. -2. 
.3 

P-Sequencer Micro-Code Fields 

. ·~ 

!DON'T SET OPERAND 
•!SAC lA OR Bl REG ADR="REG R~ ADR<0:4>" 
! " •"OD REG ADR<0:4>" 

" ~SUM OF ABOVE TIJO FIELDS 

!LET THE I SEQ CALCULATE THE 001 ADDRESS 
! n II 002 II 

! SET THE EBOX IJR I TE ADDRESS REG I STER TO THE ·. 
!DESTINATION REGISTER ADDRESS 

AS 



.. 

I 
I . 

i . 
' . I 

: I 

. I 

• 

281 

A4. P-Seguencer Micro-Code Macros· · 

· %A+l 

%A+2 
%A+3 

;,• ' .. 

is 

%8+1 

%8+2 

%8+3 • 

·%D 

%Q.RT(A8) 

%D+N(N) 

%DH 

%DH RT(AB) 

%DH.+N(N) 

%DONE 

%E(A0R) 

XH 

%N(OONJ 

.%R D(AORJ 

%R(AORJ 

%51 

%51 RT(ABJ 

%Sl+N(NJ 

%52 

%5.2 RHABJ 

%S2+N(N) 

(6). 

(7) 

(8) 
CSJ 

(8) 

(9) 

U0J 

CllJ 

. CSET EWAR .. l,DEST REG CTLaODll 
.1,· 

CSET EWAR=l,REG W ADR=ABJ 

CSET EWAR;.1,DEST REG. CTL=AOO,REG IJ ADR·"N"J 

CO,OISABLE EIJAR CMPalJ 

CO RT(ABJ,OISABLE EIJAR CMP·lJ 

CO+N(NJ,DISABLE El.JAR CMPalJ 

CLAST START ADR·lJ 

CIBOX START ADR=ADRJ 

. CO I SABLE EIJAR CMPall 

CSRC REG OUT SELaODNJ 

CR (AORJ ,OONEJ 

COPS READY WHEN IBOX DONE-1,IBOX START ADR·ADRJ 

CSRC REG CTL A·ODJ 

CSRC REG CTL A·REG ADR,REG R ADR·ABJ 

CSRC REG CTL A=ADD,REG R AORaNJ 

CSRC REG CTL B·OO,SRC REG OUT SEL=OOlJ 

CSRC REG CTL B=REG AOR,REG R ADRaAB,SRC REG OUT SELmOOlJ 

CSRC REG CTL BaAOD,REG R ADR·N,SRC REG OUT SEL·ODll 



282 

AS. P .. Sequencer Micro-Code 

!OOl·REG,002 .. REG 

!OEST-QH .SRC 1 .. QHS SRC 2 .. QHS 

Sl ,R <SW SRCl.; !T·8 
0 . '$1 ,R O<NOPJ: 

i. 
Sl RT(A) ,R (SW SRC); !T·l 

0 ,Sl ,R Q(NQP); 

Sl ,R (SW SRCl; !T·2 
0 RT<A> ,Sl RHAl · ,R Q(NOP); 

51 ,R <SW SRCl; !T·3 
0 RT (8)' ,Sl RHB> ,R O<NOPl; 

• 



I . 
i 
i 

AS 
. P-Sequencer Micro-Code 283 

!QD1 .. REG,OD2·REG 
' i !OEST·S SRC laQHS SRC 2mQHS 

• D , Sl ·,R O{?IJ SRC>; · !Ta8 

D ,Sl RT{A) ,R O{SIJ SRCJ; !T·l 

D RT(A) ,Sl ,R O{SIJ SRC); IT·2 

D RHB) ,s1 ,R O{SIJ SAC); . !T·3 

• 
!DEST·S SAC l·D SRC 2·S· 

Sl ,R {SIJ SRC>; !T·8 
D ,Sl+NUl , R 0{NQP) ;· 

Sl RT{A) ,R (SIJ SRCl; !T·l 
D ,Sl RT(A+ll ,R 0(N0Pl; 

· .... : . Sl ,R (SIJ SRCJ; !.T•2 
D RT(A) . . ·~ · ,Sl+NU> ,R 0(N0Pl; : 

' Sl ,R (SIJ SRC); ·!T·3 
0 RHB> , Sl+N U) ,R O(NQP); 

!DEST .. s SRC l=S SRC 2c0 

Sl ~R (SIJ SAC>; !T·8 
D , R 0 (l,J2 REG) : 

Sl RT(A) ,R (SIJ SRC>; !Tal 
D ,R 0(1J2 REG); 

Sl ,R (SIJ SAC>; !T·2 
D RT<A> ,R 0(1J2 REG>; 

Sl ,R (SIJ SAC>: !T·3 
D RHB) ·,A 0(1J2 REG>; 

!DEST .. s SAC lsO SAC 2-0 

Sl ,R (SIJ SAC); !T·8 
D ,Sl+NU> ,R 0(1J2 REG); 

Sl AT(A) ,R (SIJ SAC); !T·l 
D ,Sl RT(A+l> , R 0 UJ2 REG); 

Sl ,R (SIJ SRC) 1 !T·2 
0 RT(A) ,Sl+N U) ,A 0(1J2 REG); 

Sl ,R (SIJ SRCJ; !T·3 
0 RHB> .,Sl+NU) , R D UJ2 REG) ; 

·'I 
: 

• 



------

.. 
284 P-Sequencer Micro-Code A5 

!001-REG,002·REG 

!OEST .. O . SAC 1 .. s ·sRG 2;..s 

O+N U) • Sl .A CSW SAC); ! h0 
0 ,R OCNOP); 

O+N CU • Sl RTCA) ,R CSW .SAC); !T·l 
• 0 ,R OCNOPl; 

0 RT CA+U ,Sl ,R CSW SAC); !T-=2 
0 RTCM ,R OCNOP); 

I 0 RHB+U • Sl ,R CSIJ SAC); !T·3 
0 RHB> ,ROCNOP); 

. !OEST·D SAC J .. n SAC Z=S 

I OH+NU) 'Sl ,R CSW SAC); !T-0 
I . D ,Sl+NU> ,R OCNOP); 
! 
I 

DH+N U) , Sl RTCA) ,R <SW SAC); !T-1 
D ,Sl RTCA+l) ,R OCNOP); 

DH RTCA+l) • Sl ,R CSW SAC): !T·2 
D RTCA> ,Sl+NU> ,A DCNOP); 

DH RT CB+l> • Sl ,R CSW SAC>; !Ta3 
0 RT CB> ,Sl+NUl ,A OCNOP); 

!OEST·O SAC l~S SAC 2=0 

DH+NU) • Sl ,R lSIJ ~Hi.;); !T-=0 
p , A D CW2 REG) ; 

DH+NUl , Sl RTCA) ,R CSIJ SAC): !T1el 
o· . ,R DCW2 REG); • 
DH RTCA+ll • 51 ,A CSW SAC); !T=2 
0 RT CA) ,A OCW2 REG>: 

DH RT CB+l l I Sl ,R CSIJ SAC); !T·3 
D nT CO> ,R nfU? REG}; 

!OEST .. O SAC l=D SAC 2=0 

DH+NU) • Sl ,R CSIJ SRCl ; !Tm0 
0 .Sl+NO> , R D CIJ2 REG) ; 

DH+NUl , Sl RT<Al ,A CSl.I SRCl; ff .,1 -0 ,Sl RTCA+ll ,A 0(1.12 REG>: 

DH RTCA+ll ,Sl ,R CSIJ SAC); !T-2 
0 RT CA> , Sl+N U) ,R OCIJ2 REG>: 

.~ 



• 

r •· 
! I 

: . 
. i 

,, . I 

A5 

!OESTcO 

• 

• 

OH RHB+l> 
0 RT (0} 

SAC 1=4W 

OH+NU> 
0 

OH+NU> 
0 

OH RT(A+ll 
0 A.HA> 

OH RT(B+l) 
0 RHB> 

P-Sequencer Micro-Code · 285 

• Sl ,R (SW SAC>; !T-3 .. 
, Sl+N U > , R 0 (W2 REG); 

SAC 2=0 

51 ,R (SW SRCJ; !T·B 
Sl+NUJ ,R (W2 REG>; · 

,Sl+N(2J ,R ·(NOP>; 
,Sl+N(3J ,RO(NOPJ; 

Sl RT(A} ,R (SW SRCl; !T·l 
Sl RT(A+ll ,R (W2 REG>; 

,Sl RHA+2) ,R (NOP>; 
,51 RT(A+3l ,R Q(NOPJ; 

Sl ,R (SIJ SRCJ; !T·2 
Sl+NUJ ,R (W2 REG>; 

,Sl+N(2l ,R (NOP); 
,Sl+N(3) ,R O(NOPJ; 

51 ,R (SW SRC>; IT·3 
Sl+NUJ ~R UJ2 REG>; 

,Sl+N(2) ,R (NOP); 
,Sl+N(3) ,R 0(N0Pl; 



286 P-Sequencer Micro-Code A5 

. ! 001 cREG' 002 cREG 

!DEST .. 41J SRC l=D SRC 2 .. 0 

DH '51 ,R <SW SRC); !T·0 
D+N CU ,Sl+NU) ,R CW2 REG>; 

. D+N (2) ,R <NOP); 
D+NC3) ,R OCNOP); 

OH , Sl RTCA) ,R CSW SRC); !T .. 1 
O+N CU ,Sl RTCA+l> ,R CW2 REG); 
D+NC2) ,R CNOP); 
D+NC3> · ,R OCNOP); 

DH RTCA) ,Sl ,R CSW SRC); !T·2 
D RT<A+l> ,Sl+NU) ,R CW2 REG); 
D RTCA+2) ,R CNOP); 
0 RT<A+3) ,R OCNOP); 

DH RT<B) ,Sl ·' ,R CSW SRC>; !T·3 
D RT <B+l) , Sl+N Cl) ,R CW2 REG); 
0 RT <B+2) ,R CNOP); 
D RT CB+3) ,R OCNOP)s . 

!DEST·41J SRC 1=4W SAC 2=0 

Sl ,R CSW SAC); !Tc0 
Sl+NU > ,R CW2 REG); 

. OH ,Sl+NC2) ,R <NOP); 
O+N (1) · ,Sl+N(3) ,R CNOP); 
D+NC2> ,R CNOP); 
O+NC3l ,R CNOP); 

Sl RTCA) ,R CSW SRC>; !Tal 
Sl RTCA+l) ,R CW2 REG>; 

OH ,Sl RTlA+2J ,R <NOP); 
O+N CU ,Sl ATCA+3) ,R CNOP); 
O+N(2) .,R <NOP); 
D+NC3l ,R Q(NQP) I 

' Sl ,R (SW SRCl; !T·2 

• Sl+N Cl) ,R CW2 REG); 
OH RT <A> ,Sl+N(2) ,R <NOP); 
Q RT<A+l) , $!-f-NC3l ,R <NOP): 
0 RT (A+2) ,R CNOPJ; 
D RT (A+3) ,R D<NOPJ; . ' 

Sl ,R. CSW SRCJ; !T·3. 
Sl+N U) ,R CW2 REG); 

DH RT <6> _ ,Sl+NC2) ,R (NOP); 
0 RT CB+l) ,Sl+N(3J ,H lNUP i ; 
0 RT<B+2) ,R .<NOP); ,,,. . 

0 RT<B+3) ,R ·O<NOP); 

!OEST .. 41J SRC 1=0 SRC 2 .. 41.J 

Sl ,R (SW SRC); !r .. 0 .•' 
• Sl+NCU ,R <W2 REG);· 



A5 p....,sequencer Micro-Code 287 

DH , S2+N (2) ,R (NOP); 
D+N U) , S2+N (3) ,R (NOP>; 
O+N (2) ,R (NOP>; 

I 
O+N(3) ,R <NOP); 

I Sl AHA) ,R (SW SAC); !Tal -._ i 
. ' Sl RT<A+l) ,R (W2 REG); 

I DH ,S2+N(2) ,R (NOP>; 
D+N U > · ,S2+N(3) ,R (NOP>; 

I D+N(2) ,R (NOP>; 
-· ; I D+N(3) ,R D<NOP>; 

Sl ,R (SW SRC>; IT·2 
Sl+N U > ,R <W2 REG); 

• OH AHA> ,S2+N(2) ,R <NOP); 
D RT(A+l) ,S2+N(3) ,R <NOP>; 
0 RT (A+2l ,R (NOP>; 
0 RT (A+3l ,R D<NOP); 

Sl ,R (SW SRCl; !T·3 
Sl+NUl ,R (W2 REG); 

DH. RT (8) ,S2+N(2) ,R <NOP>; 

• 0 RT (8+1) ., S2+N (3) ,R (NOP>: 
0 RT(B+2) ,R <NOP>; 
0 RHB+3> ,R 0(N0P) I 

:·· 



288 P-Sequencer Mic;ro-Code A5 

!0Dl·R~G,002·GENERAL 

!OEST-=OH SRC l=QHS SRC 2aQHS 

Sl ,R (SW SAC); !Ta0 
0 ,Sl ,A D(NQP); 

Sl RHA> ,A (SW SRC>; !Tal 

• 0 , Sl . ,R 0(NQP) 1 

Sl ,A <SW SAC>; !Tc2 
0 RT (A) ,Sl RHAl ,R O.<NOP); 

Sl ,A (SW SAC): !T .. J 
0 RHB> ,Sl RT(Bl ,R O<NOP>; 

1· 

I 
I 
I . 

I 

. i 

• 

. ,; 



I . 
I 

I 
' l 

I 



. i 290 P-Sequencer MicrO-Code AS 
' 

• 
!001-REG,002·GENERAL 

!OESTcO SAC l=S SAC 2=5 
~ 

O+N Cl> ,Sl ,A CSW SAC>: !T·0 
D Cl l ,0 CNOP>: .. 

• O+NCl) ,Sl RTCA> ,A CSW SRCl: !T=l 
0 Cl) ,0 CNOP>; 

0 RT CA+l) ,Sl ,R CSW S~C>; !T·2 
· 0 RTCA> ,0 CNOPl; 

0 RTCB+l> ,Sl ,R CSW SRCl; !T=3 
0 RTCB> ,0 CNOPJ; 

!DEST .. o SRC 1=0 SRC 2 .. s 
DH+NUJ ,Sl ,A CSW SAC>; !T·0 
0 ,Sl1NUJ ,R orNnP>: 
OH+NU) , Sl RTCA) ,R CSIJ SRC) 1 !T·l 
0 ,Sl RTCA+l> ,R OCNOP>: 

OH RT CA+l) ,Sl ,R CSW SRC>: !T .. 2 
0 RTCA> ,Sl+NCl> ,R DCNOP>; 

DH RT CB+l l ,Sl ,R CSW SRC); !T .. J 
0 ATCBl ,Sl+NCll ,ROCNOP); 

10Es·r .. o SAC 1 .. s SAC z .. o 

OH+N U) ,Sl ,R (SIJ SAC> 1 IT=0 
0 , A 0 UJ2 SAC) I 

DH+N Cl) .Sl ATCAJ ,R CSIJ SAC); !Tal 
0 ,R OCIJ2 SAC>; 

OH RTCA+l) 'Sl ,A CSIJ SRC>; !T·2· 
·o RT CA> , R D CIJ2 SAC> ; 

OH RT CB+l J , Sl · ,R CSIJ SAC>; !T .. J 
D RTCB> ,A OCIJ2 SRCJ; 

!OEST·O SAC 1=0 SAC 2 .. 0 

DH+NU> ,Sl ,A CSIJ SAC); !T-0 
D , Sl+N CU · ,R DUJ2 SAC); 

UH+N U) ,91 RTCA> ,H CSU SRC) 1 11 .. 1 
0 ,Sl RTCA+l) , R 0 CIJ2 SAC) ; .. 

' 
OH RTCA+l) ,Sl ,R CSIJ SAC); !T·2 
D RT CA> ,Sl+N(ll . ,A OUJ2 SRC); 

OH RT CB+l) • Sl ,R ($1J SRCJ; !T·3 '.I 



• 
A5 i>-Sequencer Micro-Code 291 

·O RHB> , Sl+N U) , R 0 UJ2 SRC>; 

!OESTc:D SRC 1=41.J··' SRc· 2 .. 0. 

... Sl ,R (SIJ SAC); !T·0 
Sl+N CU ,R cw2·sAC>; 

DH+NCU ,Sl+NC2) ,R CNOP); 
D ,Sl+NC3) ,A DCNOP); 

Sl RTCA) ,A CSIJ SAC); !T·l 
· Sl RT CA+l l ,R CW2 SACl; 

OH+NU) ,Sl RTCA+2) ,R CNOPl; 
0 ,Sl RTCA+3l ,A DCNOP); 

Sl ,R CSIJ SRCl; !Ta2 
Sl+N U) ,A CW2 SRCl; 

; . DH RTCA+ll ,Sl+NC2) ,R CNOPl; 
I D RT<Al ,Sl+NC3l ,R.DCNOPl; 

! Sl ,R CSIJ SAC); !T·3 
i . Sl+NCU ,R CW2 SRC); 

i DH RTCB+l) ,Sl+NC2l ,R CNOP); 
0 ATCBl ,Sl+NC3) ,R DCNOP); 

: I 

i ; 

' 

• 

• 



292 P-Seq uencer Micro-Code A5 

!001 .. REG,OD2=GENERAL 

!OEST .. 4W SRC 1=0 SAC 2 .. 0 
I 

OH ,Sl ,R . (SW SRCJ; !T=0 
O+N U J , Sl+NU J ,R (W2 SRCJ; 

· . -D+N (2J ,A (NOPJ; 
,.. 

O+N(3J ,RO(NOPJ; 

OH ,Sl RT(AJ . ,A (SW SRCJ; !Ta:l 
O+N U J ,Sl RT<A+lJ ,A (W2 SRCJ; 

• O+N(2J ,A (NOPJ; 
O+N(3J ,RO(NOPJ; 

OH RT<AJ ,Sl ,R (SW SACJ; !T·2 
0 RT <A+l J , Sl+N U J ,R (W2 SAC); 
0 RT (A+2) ,R (NOP); 
0 RT <A+3) ,R O<NOPJ: 

DH RT<BJ , Sl :.'!,· ,R (SW SRCJ; !T·3 
D RT<B+U ,Sl+NUJ ,R (W2 SACJ; 
0 RT (8+2) ,R .. (NOP); 
0 RT (0+3) ,RO(NOPJ; 

!DEST .. 4W . SAC 1=4W SRC 2 .. 0 
• 

Sl ,R (SW SACJ; !T .. 0 
Sl+N U J . ,R (W2·SRCJ; 

OH ,Sl+N(2J .,R ·(NOP); 
D+N U J ,Sl+N(3) ,R (NOP); 
O+N(2) ,R (NOP); 
D+N(3) ,A Q(NOPJ; 

Sl RT (A°) ,R (SW SACJ: !Tal 
Sl RT(A+l) ,A CW2 SAC); 

OH ,Sl RTCA+2) ,R (NOP); 
O+N r 1) ,Sl RT(A+3) ,R (NOP); 
O+N(2) ,R <NOP}: 

• O+N (3) ,R OCNOP); 

Sl ,A (SW SAC); !T·2 
S1+N U) ,A (1.12 SAC>; 

OH RT<Al ,Sl+N(2) ,R (NOP>; 
0 RHA+U ,Sl+N(3) ,R (NOP>; 
0 RT(A+2) ,R (NOP>; 
D RT <A+3J ,R O(NOP); 

Sl ,R (SW SRCl; !T·3 
Sl+N U) ,A (W2 SAC); 

I DH RT (8) ,Sl+N(2) ,A (NOP); I . D RTlB+ll ,Sl+N(3) ,n (NOP) 1 
D RT <B+2) ,A (NOP) ; 
D RT (8+3) ,A O(NOPJ; 

!DESTa:4W SRC 1 .. 0 SRC 2=4W 

Sl ,A <"SW SRC); !TcU ~· 
Sl+NU J ,A UJ2 SAC)~ 

• 

• 



, AS P-Sequencer MicrO-Code ·293 

DH ,N (QOl) ,R (l.J3 SAC); 
D+NU) . ,N (QOl) ,R (l.J3 SAC) s 
D+N<2> ,A <NOP); 
O+N(3) ,A D<NOPl; 

Sl AT<AJ ,A <SW SACJ; !T·l 
Sl AT<A+lJ ,A (l.J2 SAC); 

... OH · ~N (QOl J ,A (l.J3 SACJ; 
. D+N U J ,N(QDlJ ,A <W4 SAC); 

D+N<2J ,A (NOP); 
O+N(3) ,A D<NOPJ; 

Sl ,R (51.J SAC); !T·2 
Sl+NUJ ,A U.J2 SACJ; 

DH AT(A) ,N(QDlJ ,A U.J3 SACJ; 
0 AT<A+lJ ,N (QOl J ,A (1.14 SAC>; 
D RHA+2) ,R <NOP>; 
0 RT<A+3J ,A O<NOPJ; 

Sl ,R (Sl.J SRCJ; !T·3 
Sl+NU J ,A (l.J2 SAC); 

OH RT <Bl ,N<ODlJ ,A (1.J3 SACJ; 
0 RT <B+l J ,N (QDlJ ,A (l.J4 SACJ; 
D RT<B+2) ,R <NOPJ; 
D RT <B+3) ,R D<NOPJ; 

• 

.., 

• 



294 
' 

· P-Sequencer Micro-Code A5 

!OQlsGENERAL,OD2=AEG 

!OEST-QH SAC l=QHS SAC 2 .. QHS 

S2 ,A (SW SAC); !T .. 0 
N(QDl) ,D (Wl SAC DEST) ; 

~-

Sl RT(A) ,R (SW SAC); !T .. 1 
N (001) ,D (SW DEST); 

S2 ,A (SW SAC); !T .. 2 
0 AHA) ,Sl RT(A) ,R D(NQP); 

. ! 
I S2 ,R (SW SAC); !T-3 I. 

• 0 RHB) ,Sl RT(B) ,A 0(N0P); 

• 



• 
A5 P -:Sequencer Micro-Code 295 

!ODl•GENERAL,002aREG 

!DEST·S SRC l·QHS SRC 2-aHs 
S2 ,R O<SW SRC OEST); !T-0 

·-.:. 
. Sl RT (A) ,S2 ~R O<SW OEST>; !T·l 

0 RT(A) ,S2 ,R 0(5W SRC); !T·2 

- D RT(B) ,S2 ,R 0(51J SRC); !T·3 • 

· !DEST·S . SRC l·D SRC 2·5 

52. ;R (SW SRC); !T·0 
.N <001) . ,E (W2 SRC); 
N<OOl) ,0 (WF OEST>; 

Sl RT<Al,52 
., . 

,R (NOP): !T.;1 
Sl RT<A+l) ,R Q(SIJ DEST>: 

S2 ,R (SW SRC): !Ta2 .. 0 RT(A) ,N <001> ,R 0(W2 SRC); 

S2 ,R (SW SRCl; !T=3 
0 RHB> ·,N <001} ,R 0(W2 SRC); 

!OESTmS . SRC. laS SRC 2 .. 0 

S2 ,E (SW SRC); !Tc:0 
I . S2+N U l ,R O<Wl OEST>: 
i 

I 
Sl RT (A) ,52 ,R <NOP); !T·l 
S2+N U l ,R 0(51J OEST>; 

I 
! : 52 ,R (SIJ SRC) 1 !T .. 2 

0 AHA) ,S2+NUl ,R O<NOPl; 

I S2 ,R (SIJ SRC); · !T·3 
' I 

I 0 RHB). , S2+N (1 l ,R O<NOP>; 

!OEST·S SRC 1·0 SAC 2 .. 0 
• 

S2 ,R (St.I SRCl; !T-0 
S2+NU l ,R (t.12 SRC); 
N<OOl l .o UJF OEST>; 

Sl RT (A) I S2 , R (NOP); JT al 
Si RT<A+ll,S2+N(ll,R OCSW OEST>;~ ... 

• 52 ,R (St.I SRCl: .1T .. 2 
0 RT(A) ,S2+NUl , R 0 UJ2 SAC) ; 

S2 ,R (SIJ SRC); !T·3 ., D RT{B) · , S2+N U) ,R 0(1J2 SRC); 



• 

I 
I 
,. 
I 

I 
I 

296 
t 

!OOlcGENERAL,002=REG 

!OEsr ... o SRC l=S 

0 RT (A+l J 
0 RHA>. 

0 RT<B+ll 
0 RHB) 

!OEST·O SRC 1·0 

H 

OH RT (A+l) . 
0 RT<A> 

DH RT <B+l) 
0 RT<B> 

!OEST·D SRC l=S 

01-1' RT (A+l) 
0 RHAJ · 

OH RT <B+l J 
0 RHB> 

!OEST::O SAC 1=0 

H 

P·-seq uencer Micro-Code AS 

SRC 2=5 

S2 ,R <S2 OEST>; !T=0 
0 (WF SRG OEST> ; 

Sl RT(A),52 ,R ·(52 OEST>; !T·l 
0 <WF OEST>; 

,S2 ,R <SW SRC); ·!Ta2 .:. 
,0 (NOP); 

,S2 ,R <SW SRC); !T-3 
,0 (NOPJ; 

SRC 2 .. s 
S2 ,R (SW SRC); !T .. 0 
N <001) '.R <W2 SRC oi=sn : 
N <001 > .o <WF OEST>; 

, Sl RHAJ, S2 ,R (S2 OESTl; !Ta:l 
Sl RHA+l) , N <001 J , R 0 (WF OEST> ; 

,S2 ,R (SW SRC); !Tc2 
,N <001) ,R 0(W2 SRC>; 

,S2 ,R <SW SRC>; rT .. 3 
,N <001) ,R DUJ2 SRC); 

SRC 2=0 

S2 ,R (SW SRC); · !Tm0 
S2+N U J ,R .<IJ2 SAC OEST>; 

o· UJF OEST>; 

Sl RT<AJ,S2 ,R (S2 OEST>;. !T·l 
S2+N (lJ ,R 0 <WF OEST>; 

,S2 ,R (SW SRC) I · !T•2 
,S2+N U J · ,R O(NOPJ; 

,S2 ,R lSIJ l:iACJ; !T.•3 
,S2+N U > ,R O<NOPJ; 

SAC 2·0-

l:i:l ,R <SW snc>; n-0 
S2+N Cl) . ,R (W2 SAC OEST> i 
N <001 J ,0 (WF OEST>; 

, Sl AHA) • S2 ,R (52 OESTI; !T·l 
51 RT<A+ll,S2+N(lJ,R D<WF DESTJ; ,. 

' 



. I 

I 
i 

• 

AS 

• 

!OEST =D 

DH RT CA+l )· 
D RTCA) 

OH RTCB+U 
0 RTCB) 

P-Sequencer Micro-Code 

,S2 ,R CSW SRC>; !T·2 
, S2+NCU ,R DCW2 SRC): 

,R CSW SRC); !Ta3 
,R DCW2 SRC); 

,S2 
, S2+NCU. 

SRC la:4W SRC 2 .. 0 

H 

H 

DH RTCA+U 
D RTCA). 

DH RT<A+l) 
D RTCA) 

52 
. , S2+N CU 

N <001 > 
N <001 > 
NC001 > 

,R C5W5RC); !Tc0 
,R CW2 5RC DEST); 
,R CW3 5RC>; 
,R CW4 SRC); 
, D CWF3 DEST> ; 

Sl RTCA),52 ,R CNOPJ; !T·l 
. 51 RT CA+l), 52+N Cl), R CNOP) ; 

. ,Sl RTCA+2>,NCOD1> ,R (52 DEST>; 
Sl RTCA+3). N coon • R D CWF DEST>; 

52 ,R CSW 5RCJ; IT·2 
52+N Cl l , R CW2 SRC) ; 

, N CODU , E CW3 5RC); 
, N <001> , D CW4 SRC>; 

52 
S2+N Cl> 

,NC.001) 
,NC001> 

,R C5W 5RCJ; !T;.,3 
,R CW2 5RCJ; 
,E CW3 SRC>; 
,D CW4 5RC>; 

/ 

297 



• 

i 298 P-Seq uencer Micro-Code A5 
I• 

' 

!001·GENERAL,002aREG 

!DES.T ... 4W SAC 1 .. D SAC 2•0. 

H ,S2 ,R CSW SAC DEST) ; !T·0 
S2+N CU ,R CW2 SRC . OEST) ; 
N (001) ,E <W3 OESTI;. 
N C001 l ,D <W4 OESTI; 

H , Sl ATC Al, S2 ,R <SW DESTI; !Tml 
Sl RT<A+ll,S2 ,R <W2 DESTI; 
N C001 l ,E <W3 DESTI; 
N C001 l ,D <W4 DEST); 

DH RTCAl ,S2 ·,R CSW SRCl; !T·2 
0 RT <A+l I ,S2+N Ul ,R <W2 SRCl; 
D RT (A+2l , N (001 l ,E <NOPl; 
0 RT<A+3l ,N CODU ,0 <NOPI; 

I 

I OH RT <Bl ,52 ,R <SW SRCI; !T .. 3 
D RT <B+ll , S2+N U l ,R <W2 SRCl; 

.. 0 RT <B+2l ,N COOU ,E <NOPI; 
I 0 RTCB+3l ,NCOOU ,0 <NOP); 

!OEST .. 4W SAC 1=41J SRC2=0 

S2 ,R CSIJ SRCl; !T·8 
S2+N U) ,R (IJ2 SRCI; 
N C001l ,R (IJ3 SRCl; 
N (001 l ,R . <W4 SRCI; 
N (001 l ,E <WF3 OESTI; 
N <001 l ,E CW2 DESTI; 
N (OOll ,E CW3 OESTI: 
N <001 J ,D U.J4 OESTI; 

Sl Rl lAJ .~2 ,R mar>; !T .. 1 

• 51 RT<A+ll,S2+Nll),R <NOPI: 
H ,51 RT<A+2l,NC001l ,A CSW OESTI: 

51 RT<A+3l,N<OD1l ,A CW2 DEST>; 
N C001 l ,E CW3 OEST); 
NC001) ,D CW4 OESTI; 

52 ,R CSW SRCI; !Ta2 
S2+N (1) ,R CW2 SRCl; 

OH RT <Al , N <001 l ;R lW~ SRCJ I 
D RT<A+ll , N <OD2l . ,R CW4 SACl; 
0 RTCA+2l ,E CNOPl; 
0 RT<A+3} ,0 CNOPl; 

52 ,R (SW SRCJ; !Ta3 
S2+N U J ,R cw2 snci; 

DH RT <Bl , N CODll ,A (IJ3 SRCl ; 
0 RT<B+ll , N COD2l ,R CIJ4 SRCJ; 
0 RT <B+2l ,E CNOPJ; 
0 Rl (8+3l ,D <NOP); 

!DEST .. 41.J SAC l=D SAC 2 .. 41.J ,. 



• 

.... 

I 
[. 

I 

: I ... 

A5 

• 

H 

H 

OH RT(Al 
0 RT(A+l) 
0 RT(A+2) 
0 RT(A+3) · 

OH RT (8) 
0 RT(B+ll 
0 RT (8+2) 

• 0 RT (8+3) 

P-Sequenc~r Micro-Code 299 

S2. ,R (SW SRCl; · !T·0 
S2+N U l ,R (W2 SRC); 

,S2+N(2) ,R (WF DEST); 
S2+N(3) ,R (W2 DEST>; 
N (001) ,E OJ3 DEST>; 
N<OOll .o UJ4 OEST>; 

Sl RT(Al,52 ,R (NOP); !Tal 
Sl RT(A+ll,S2+N(ll,R (NOPl1 

, S2+N (2) . , R (SW DEST> ; 
S2+N(3) ,R (W2 OEST>; . 
N(QOl l ,E UJ3 OEST>; 
N(QDl). .o UJ4 OEST>; 

S2 ,R (SW SRC); !T·2 
S2+N U l ,R (W2 SRCl; 

,S2+N(2) ,R (NOP); 
,S2+N(3) ,R (NOP); 

,E . (NOP); 
.o (NOP); 

S2 . ~R (SW SRCl; !T·3 
. S2+N U l ,R (W2 SRC); 
,S2+N(2) ,R (NOP); 
,S2+N(3) ,R (NOP); 

,E (NOP); 
.o (NOP>; 



300 P-Sequencer Micro-Code A5 

!OOlcGENERAL,OD2~GENERAL 

!OEST=QH SAC l=QHS SAC 2~aHs 

E (SW SRC>; !T~0 
N <001 l ,R <SW SRCl; 
N <001) ,R D<Wl SRC DEST); 

Sl RT<Al ,R <SW SRC>1 !T .. 1 
N <001) ,R D<SW SAC DEST); 

E <SW SRCl: !T'!"2 
N <001) ,R <SW SRCl ; 

0 RT(A) , Sl AHA> ,R D(NQP) 

E <SW SRCl; !T·3 
N <001) ,R (SIJ SAC); 

0 RHB> , 51 RHB) ,R D<NOPl 

';: 

• 

• 

• 



AS.· .P-Sequencer Mi~ro-Code 301 

!00l·GENERAL,002aGENERAL 

!DEST=S SAC 1 .. QHS SAC 2 .. QHS 
I 
J ,E (SW SRC): !Ta0 

...: I : N <001) ,A D<SW SRC OEST); 
; i 

I Sl RT(A) ,A D<SW SRCl; · !T•l 

' 
N<001) ,0 (SW DEST) 1 

. I 
£ <SW SRC); !T=2 

D AHA) . ,N<OOU ,R D<SW SRCJ; 

E lSW SRCJ; n .. 3 
D AHBJ · ,N <OOU ,A D<SW SRCJ1 

!OEST .. s . SAC 1 .. 0 SAC 2aS 

E (SW SACJ; !T·0 
N(001 J ,A (SW SRC); 
N (001) ,A (1.12 SACJ: 

• N <001J ,0 <WF OESTJ; 

Sl AT(A) ,A <SW SACJ; !Tal 
Sl AT<A+1J,N(001J ,A O(SW DESTl1 

E <SW SRC>; !T·2 
N <001) ,A (SW SRCJ 1 

D AHA) ,N<001l ,A (1.12 SACl; 

E . (SW SRC); !T·3 
N (001) ,R (SW SRCl; 

D RHB) ,N (001) ;R (1.12 SRCJ 1 

!DESTaS SRC 1 .. s SRC 2a0 

E (SW SRCl; !Ta0 
N (001 J ,R (SW SRCJ; 

R (1.12 SRCJ; 
N (001) ,0 CWl OESTl; 

Sl AT<Al ,R fSW SRC); IT·l 
,R CW2 SAC>; 

N (001) ,0 <SW DESTl: 

E <SW SRCJ; · !T .. 2 
N (001) ,R (SW SRCJ; 

0 RHAJ . ,A DCW2 SRCJ s 

,._ E (SW SRCJ; !T·3 
N(Q01l ,A <SW SACJ; 

0 ATCBJ , A D U.J2 SAC) s 

• !DESTaS SAC 1 .. 0 SAC 2 .. 0 . 
'-> 



• 
302 P-Seq uencer Micro-Code AS 

E <~W SAC); n .. e 
N <001) ,A (SW SAC); 

E <W2 SAC); 
N <001) ,A <W2 SAC); 
N <001) ,0 (WF OEST>; 

Sl RT(A) ,R <SW SAC); !T·l 
Sl AT<A+ll ,A <W2 SAC); 

• N <001.l ,0 <WF OEST); 

E <SW SAC); !T ... 2 
N<OOll ,R (SW SAC); 

E (IJ2 SAC); 
D RT <Al ,N<ODll ,A D<W2 SAC); 

E CSW SAC); !T .. 3 
N<001) · ,R (SW SAC); 

E (W2 SAC); 
D RT<Bl ,N COOll ,A OCW2 SAC); 

I 

. I 

• 



A5 P-Sequenc:er Micro-Code 303 

!00l·GENERAL;002=GENERAL 
. 

!OEST·O SRC l·S SRC 2·S 

E CSW SRC) 1 !T·0 

'" 
NCOOl) ,R CSW SRC DESTJ; 
NCOOl > ,E DCW2 DESTJ; 

I 

Sl ATCA> ,R CSW SRC>; !T·l 
. N coDi> ,E CSW DEST); 

: .. D CW2 DESTJ; 

E CSW SRC>; !T·2 
0 RTCA) ,N CODU ,A CSW SRC>; 
D RTCA+l) ,D CNOP>; 

E CSW SRC>; !T .. 3 
D ATCB> ,NCODU ,R CSW SAC); 
0 RTCB+l> ,D· CNOP>; 

!OEST·O SAC l=D SRC 2·S 

,E CSW SAC>; !T-8 
N CODU ·,A CSW SAC>; 
N CODU ,R CW2 SRC>; 

• N COOl > ,E CWl DESTJ; 
N COOl > ,D CWF DESTJ; 

Sl ATCA> ,R CSW SRC>; !T·l 
Sl RTCA+ll,NCODll,R CS2 DEST> 1 
N COOll ,D CWF DESTJ 1 

E (SW SRC>; !T·2 
OH RTCA+l> ,N COOU ,R (SW SRC) 1 
0 RTCA) ,N COOl) ,R CW2 SRC>; 

E CSW SRCl; !Ta3 

• DH ATCB+l> ,N COOl) ,A CSW SRC); 
0 ATCB> • N.<ODU ,R CW2 SRC>; 

.. 
!OEST .. o SRC lmS . SAC 2=D 

\ 

E CSW SAC); 1t .. e 
I N COOl > ,R CSW SAC); 
I. A CW2 SAC); 

"NCOOl) . ,E CW2 OEST>; 
N <001) ,D CWF DEST>; 

Sl AHA> ,R (SW SAC); !T·l 
A CW2 SRC>; 

··-· NCODl l ,E CS2 'OEST>; 
NCOOll ,D CWF DEST>; 

E CSW SAC) i !T•2 
OH. RT CA+U .• NCOOU ,R CSW SAC>; .. D RTCAJ , R D CIJ2 SRC) ; 



' i 

I ' ' I 

304 P-Seq uencer Micro-Code AS 

• 
E (SW SRCJ; !T·3 

OH RT<B+ll ,N (001) ,R (SW SRCJ; 
0 RT<BJ ,R 0 (1.12 SRC>; 

!OEST .. O SRC i .. o SRC 2=0 

• E (SIJ SRCJ; !T=8 
N <001) ,R CSW SRC); 

E U.J2 SAC); 
N <ODl) ,R (1.12 SRC DEST> : 
N <ODl > ,0 (I.IF DEST>; 

Sl RT (A) ,R (SW SRC); !Tml 
Sl RT(A+l) ,R (1.12 SRC); 
N <001 > · ,E (S2 OEST>; 
NW01> ,0 (I.IF DEST>: 

t l~W SRC); !T"'2 
N <001) ,R (SW SRCJ; 

· OH RT<A+l> ,E (1.12 SRCJ; 
0 RT(A} ,N <OOU ,A 0(1.12 SRC>; 

E (SW SRCJ; !Ta3 
N <001 J ,R (SW SRCJ: 

OH RT<B+U ,E U.J2 SRC>; 
0 RT <BJ , N <001 >. ,R 0(1.12 SRCJ; 

!OESl=D 5RC 1=4W 5RC 2=0 

E CSW SRCJ: !T·0 
N C001 > ,R CSW SAC); 

E CW2 SRC); 
N'<001 J ,R CW2 SRC>; 
N <001 J ,R CW3 SRCJ; 
N com> ,R CW4 SRCJ; 
N (001 > ,E <WF2 DEST>; 
N (001) ,0 Cl.IF DESTI; 

Sl RT(A) ,R <SW SRCJ; !Tel 
Sl RT<A+IJ ,R (1.12 SRCJ; 
51 AT<A+2J,NC001J ,A l52 DEST>; 
51 RT<A+3J,N(001) ,R 0(1.JF OEST); 

E (SW 5RCJ: !T•2 
N C001) ,R <SW SRC); . 

E <W2 SRCJ; 
N (001) ,R (1.12 SRCJ; 

DH RT<A+U ,N COOU ,R (1.13 SRCJ; 
0 RT<AJ ,N CO~ll ,R (l.J4 SRCJ; 

E (SW SACJ; !Ta3 -· NCODU ,R (SW SRCJ; 
E (1.12 SRCJ; 

N <001) ,R lW:l SRCJ; 
DH RT<B+l) ,N <ODU ,R UJ3 SRCJ; 

• 0 RT <BJ ,N <ODU ·,R U.J4 SRCJ: "" 





306 · P-Seq uencer Micro-Code· AS 

D RT <A+l J ,N(Q01) ,R <W4 SRCJ i 
· D RT (A+2) ,E <NOP>; 
D RT <A+3) ,0 <NOP); 

E <SW SRCJ; , !T-3 
N <001) ,R <SW SRCJ; 

E <W2 SRC); 
N <001) ,R (IJ2 SAC); .. 

DH RT <B) ,N<ODU ,R (IJ3 SRC); 
D RT <B+l) ,N <OOU . ,R <W4 SRC); 
D RT <B+2J ,E <NOP); 

• 0 RT <B+3) ,0 <NOP> i 

IOESTa4W SRC l=D SRC 2-=41J 

E <SW SAC); !T=0 
N <001> ,R <SW SAC); 

E (IJ2 SRC); 
N<ODlJ ,A (W2 SAC) 1 

~R UJ~ Sf<C); 
('i ,R (IJ4 SAC); . 

N (001) ,E .<IJF DEST> ; . 
N (001 l , E·. (IJ2 OEST> ; 
N <001) ,E <W3 DEST>; 

• N <001 J ,0 <W4 DEST>; 

• $1 RT<AJ ,R <SW SRCJ; !l=l 
Sl RT<A+lJ· ,R (W2 SRC); 

. ,R (IJ3 SACJ: 
,R (IJ4 SRCJ: 

N <001 l ,E <SW OEST); 
NlOOlJ. ,E (IJ2 OEST); 
N (001 l . ,E UJ3 DEST>: 
N <001 J ,0 (IJ4 DEST>; 

E <SW SAC): 1T .. 2 
N (001) ,R (SIJ SRCJ; 

E fW?. SRCJ: 
N <001 l .R <W2 SRCJ; 

· DH RT<A). ,R <W3 SAC); 
D RT <A+l) ,R (IJ4 SRCJ; 
0 RT<A+2) ,E <NOPJ; 
0 RT<Ai-3) ,0 <NOP>; 

E <SW SRCJ; !To:3 
N <001) ,R <SIJ.SRC); 

E (!-12 SAC>; 
N <001 l ,R <W2 SAC); 

OH RT<B) ,R (IJ3 SRC); 
0 RT <B+l) ,R (IJ4 SRC): 
0 RT <B+2J ,E (NOP>; 

I 0 RT <8+3) ,0 <NOPJ; 

.. 
I .. 

• 



A6. I-Sequence~ Micro-Code Fields 

IADD F<0:5> 

* A+0 c:0 
A+l. c:l 
A+B ..12 
A+B+l =13 
A-B-1 =18 
A-B .. 19 
A*2 =24 
A*2+l .. 25 
A-1 · =30 

NA =32 
NA AND B .. 34 
NA AND NB =36 
z a38 
NA OR B =40 
B =42 
A XNOR B .. 44 
A AND B c:46 
NA OR NB =48 
A XOR B =50 
NB =52 
A ANO NB .. 54 
MINUS ONE a56 
A OR B =58 
A OR NB c:60 
A .. s2 

IADD LEG A<0:1> 

* =0 
INDEX REG .. 1 
LSI 11 .. z 

.. 3 

• IADD LEG B<0:2> 

* .. 0 
so .. 1. 
VAR BASE .. 2 
FIX BASE c3 
C BLOCK ADA ..,4 
T .7 

' 
• 

S07 

!ADDRESS ARITHMETIC ADDER FUNCTION LINES. 
.! lF<0> IS THE MOOE CTR, F<1:4> IS THE FUNCTION 
! AND F<5> IS THE CARRY JN) 

!CONTROLS LEG A ON ADDRESS ARITHMETIC ADDER 

!PRE-FETCH PC. USED BY INSTR QUEUE LOGIC 
! INDEX REG FILE . 
!DATA FROM LSI-11 
!WRITE DATA BUS. ONLY USED BY HARDWARE 

!CONTROLS LEG B ON ADDRESS ARITHMETIC ADDER. 

!BRANCH OFFSET FOR SHORT PC RELATIVE BRANCHES 
· !SHORT OPERAND OFFSET 

!VARIABLE BASE OFFSET 
!FIXED BASE OFFSET 
!CACHE MISS BLOCK ADDRESS 
!T REGISTER 



308 

SAOD LOAD IND REG 

* 

SADD RIGHT SHIFT 8 BITS 

* 
. 

SC ADA SE.L 

* 

SJ:: CLEAR HOLD MISS 

. * 

SC FETCH 

* 
SC OPERATION 

SC W CHECK 

* 

SC W SET NUM<0:1> 

* 

I-Sequencer Micro-Code Fields AG 

=0 
=1 ~ !LOAD THE INDIRECT BIT ANO INDEX REGI~TER FIELD 

!FROM THE INDIRECT ADDRESS POINTER COMMING OUT 
!OF THE INDEX REGISTER FILE INTO A SPECIAL 
!REGISTER FOR THEM. 

=0 
=1 !RIGHT· SHIFT THE OUTPUT OF THE ADDRESS 

!ARITHMETIC ADDER BY 8 BITS . 

=0 !ALLOW LONG IMMEDIATE CONSTANTS TO BE USED 
=1 !FEED THE CACHE ADDRESS INTO THE LONG IMMEDIATE 

!CONSTANT FIELD OF THE "OUT A" ANO "OUT B" 

=0 
=1 . 

-0 
.. 1 

=0 
=1 

., ! MULTIPLEXERS . 

!CLEAR THE HOLD.CACHE MISS REGISTER 

!THE CURRENT MEMORY READ IS FETCHING AN INSTR 

! IHI:. CURRENT 1'11CROIN$TRUCION 16 U81NG HIE CACHE 

!CHECK THE CACHE TO SEE IF A WORD IS THERE SO 
!THAT IT MAY BE WRITTEN IN THE FUTURE 

!SPECIFIES A SPECIFIC CACHE SET TO BE WRITTEN 
!INTO. THIS IS ONLY USED BV DIAGNOSTIC PROGRAMS 



t. 

• 



• 

, 

,. 
I 

! . 
! 
I 

310 

. IJNSTR OUT A 

* 

ILQAO AT LAU DECODE RAM 

* 
ILOAD C LAU DECODE RAM 

* 
IMEM R 

* 
SMEM START R 

* 
SMEM START W 

* 
SMIC BR ADR<0:11> 

* 
SMIC BR SEL<0:2> 

STflRT 

* MIL ~R 

IMlC COND SEL<0:2> 

* 

I-Sequencer Micro-Code Fields A6 

... 0. 

.. 1 !SAYS THAT AN INSTRUCTION IS BEING READ 
!OUT OF "OUT A", ANO TO PUT IT IN THE 
!INSTRUCTION QUEUE. 

=0 
.. 1 

=0 
.. 1 

=0 
... 1 

.. 0 

.. 1 !START A MEMORY READ THROUGH THE SWITCH 

=0 
.. 1 

!MICRO BRANCH ADDRESS 

=0 

g;ff !"P IBOX START AOR<0:11>" 
cl !"MIC on AOR(91ll>" 

.. 0 

... 1 



' 

AS I-Sequencer Micro-Code Fields Sil 
• 

IMJC EN INT· 

* -0 
·1 !ENABLE MICRO INTERRUPTS 

". IMIC JSR • 
* =0 

.. 1 !00 A JUMP TO SUBROUTINE 

IOUT SEL<0:1> !SELECTS THE SOURCE FOR THE READ ONLV DATA 
· ! THE "OUT A" OR "OUT B" LINES. 

c .. 0 !DATA.BEING READ OUT OF THE CACHE 

* REG .. 1 !SOURCE A REGISTER 
CONST 11:::2 !IMMEDIATE CONSTANT OR CACHE ADR IF C AOR SEL 

! IS SET 

IREG R AOR<0:4> !REGISTER .READ ADDRESS 

* .. 0 

IREG IJ AOR<0:4> !REGISTER WRITE ADDRESS 

* -0 

IREL INTERPROC INT 

* .. 0 
·1 !INTER PROCESSOR INTERRUPT HAS BEEN SERVICED. 

!ALLOW THE SWITCH TO SEND ANOTHER! 

SRESET INSTR QUEUE 

* =0 
al !CLEAN IT OUT 

ISET C MODIFY BIT 

NO .. 9 !DON'T SET CACHE MOOIFV Bll IF WRITE 

* al 

SSET EWAR 

* =0 
al !SET EBOX WAI.TE ADDRESS REGISTER TO THE 

!ADDRESS OF THE WORD BEING READ OUT. OF THE 
!CACHE Now. 

L 

.. ... 



i 
I ' 

' i 

I 

' I . I 

312. 

SSET OP. 

ISRC REG CTL<0:1> 

* · REG ADR 
001 . 
ADD 

SSRC REG OUT SEL 

* A 
B 

SSWITCH START W 

* 
ST R ADR<0:2> 

* 
ST LJ ADR<0:2> 

* 
STRANs° ADR 

* 

SUPDATE AT LAU BITS 
• 

* 
SUPDATE·C LRU BITS 

* 
SW TRANS 

* 

=0 
-1 

... 0. 
.. 1 

.. 0 

I-Sequencer Micro-Code Fields 

!SET EBOX OPERAND REGI;STER 

!SRC (A OR B> REG ADR="REG R ADR<0:4>" 
! " .. "QDl REG ADR<0:4>" 
! " . ·SUM OF ABOVE Ti.JO FIELDS 

.. 1 !START A MEMORY WRITE THROUGH THE SWITCH. 

!T REGISTER STACK READ ADDRESS 

.. 0 

!T REGISTER STACK WRITE ADDRESS 

.. 0 

=0 !DO A VIRTUAL TO PHYSICAL ADDRESS TRANSLATION 
!ON THE MEMORY ADDRESS 

El !DON'T TRANSLATE THE MEMORY ADDRESS - DO 
!ABSOLUTE MEMORV ADDRESSING 

!UPDATE THE ADDRESS TRANSLATION LRU BITS 

!UPOATE THE CACHE LAU BIT 

!WRITE INTO THE ADDRESS TRANSLATION CACHE 

AS 

-·· 



• 

' 

1· . 
I . 
I . 
I . 

•. . i 

I 

: I 
..... 

. . 

SIS 

A7. I-Sequencer Micro-Code Macros 

iA+B(LEG> 

'XB(LEG> 

'XBR 

'XCR 

'XCR OP+-F(F) 

'XCR OP+-R+F(S,F> 

'XCR QP .. RS (SEU . 
. 'XCR OP+-RS+F (SEL, F) 

'XCR R+-F (F) 

'XCR R+-R m, SJ 

'XCR R~R+F (0, S, F) 

'XCR . R+-RS m, SEU 

·'XCR R .. RS+F(O,SEL,F> 

'XINO REG 

'XINOEK TRANS (SEU 

'XINOEX (SEU 

%REG l.HAOR) . 

'XTR, (S) 

'XTLJ (Q) 

'XTLJR (0, SJ 
' ir ... Fff) ': 

'XT+-R(O,S) 

'XT +-R+F (0, S, F> 

'XT +-RS (0, SEU 

'XT +-RS+F m, SEL,F> 

• 

CADD F=A+B,ADD LEG B .. LEGl 

CADD FaB,'ADD LEG BaLEGJ 

CMIC BR ADR) 

CC_OPERATIONal,UPDATE c LRU BITS-1,0UT SELmCJ 

CCR.SET OPal,INDEX TRANS(TJ,ADD F·B,ADO LEB B·Fl 

CCR,SET.OP=l~REG R ADR=S,INDEX TRANS(TJ,A+B(F)J 

CCR,SET OPml,INDEX TRANS(SEL)J 

CCR,SET OP=l,JNDEX TRANS(SEL>,A+B(F)J 

CCR,REG LJ(D),B(FJ,INDEX TRANS(T)J 

.CCR.REG W (OJ, INDEX TRANS (T), REG R ADR·Sl 

CCR.REG LJ(D),A+B(FJ,INDEX TRANS(TJ,REG R ADR·Sl 

CCR.REG LJ(DJ,JNDEX.TRANS(SEL>J 

CCR,REG LJ(D),INDEX TRANS(SEL>,A+B(F)J 

CADD LOAD IND REG=ll 

[ADD LEG A=INDEX REG, TRANS ADR=l,INDEX REG ADR SELeSELJ 

CADD LEG AalNDEX REG, INDEX REG ADR.SEL·SELJ 

CIBOX REG W=l,REG LJ ADR~ADRJ 

CT R ADR=Sl 

CT W ADR=Dl 

CTW (OJ, TR (S) J 

CTLJ(Q) ,Bff)J 

CTLJ(DJ,INDEX(TJ,REG R ADR~SJ 

CTW m >. A+B (F) , INDEX TRANS ( n • REG R ADA-SJ 

CTLJ(OJ,INDEX(SEL>J 

CTW(DJ,JNDEX(SEL),A+B(F)J 



, 

314 

A8. I-Sequencer Micro-Code 

! EVALUATE A SHORT OPERAND (X.b0) 

· !REGm0,1=0 REGISTER-DIRECT 

SET OP=l,SAC REG CTL=OO,DONE 

!REGm0,l=l REGISTER-INDIRECT 

CR R~RS{Rl,OOJ,TW<Tl>,JND REG,JSR<REG IND OP> 

! REG· .. 1, I =0 SHORT -CONST ANT 

SET OP=l,OUT SEL=CONST,DONE 

!REGsl,Jcl ILLEGAL 

BR-=ILLEGAL OP 

!REG1112 ILLEGAL 

BA ... JLLEGAL OP 

!REGa3-31, 1=0. '.SHORT-INDEXED 

·~ 

CA OP~RS+F<OD,50),DONE 

!REG·3-31,l=l SHORT-INDEXED-INDIRECT 

CR R~RS+F{Rl,00,SO>,JSRCMEM IND OP> 

.• 



I 

: I .. 

AS J;..Sequencer Micro-Code 

!EVALUATE A LONG OPERAND WITH A FIXED BASE cx-1,x1 .. 0,M-0,V=0) 

!REG-:0,la9 REGISTER-DIRECT .. 
CR OP~RS+F(OD,FIX BASE>,DONE; 

!REG=0,1·1 REGISTER-INDIRECT 

CR R~RS(Rl,OD>,TW(Tll,INO REG,JSR(REG IND>; 
CR OP~R+F(Rl,FIX BASE>, INDEX SHIFT,DONE; 

. i ! REG•l, I .. e · LONG-CONSTANT 

• 

SET OP=l,OUT SEL=CONST,IMMED CONST LONG•l,DONE; 

! REG= 1, I • 1 LONG ABSOLUTE ADDRESS I NG . 

CR OP~F(FIX BASE>,DONE; 

!REG·2 ILLEGAL 

• BR=ILLEGAL OP; 

!REG-3-31,1=0 . SHORT-INDEXED 

CR R~RS+F(Rl,OD,SO); 
BR=Ll; !WAIT FOR CACHE READ 

!REG .. 3-31, I =l SHORT-INDEXED-INDIRECT 

CR R~RS+F(Rl,OD,SO>,JSR(MEM.IND>; 

Ll: CR OP~R+F(Rl,FIX BASE>,INOEX SHIFT,DONE; 

315 



• 

• 

I 

. I 

316 I-Sequencer Micro-Code 

!EVALUATE A LONG OPERAND WITH A VARIABLE BASE· (X=l,X1=0,M=0,V=ll 

!REG=0,1=0 REGISTER-DIRECT 

T .. RS+F<Tl,00,VAR BASE>, INDEX SHIFT; 
CR OP .. RS+F <VB REG, Tl, TR<Tl> ,DONE; 

!REG:0,l=l REGISTER-INDIRECT 

CR, R .. RSCRl,00>,TWHll,IND REG,JSR(REG IND>; 
T .. R+F(Tl,Rl,VAR BASE>. INDEX SHIFT; 
CR OP .. RS+F(VB REG,Tl,TR<Tll,DONE: 

!REG:al,1=0 LONG-CONSTANT 

·SET OPa.l,OUT SEL=CONSl, IMMED CONST LONG•l,DONE; 

!REGal,lcl LONG ABSOLUTE ADDRESSING 

CR OP .. RS+F<VB REG.VAR BASE>,DONE1 

!REG .. 2 ILLEGAL 

BR=ILLEGAL OP; 

!REG·3-31,1=0. SHORT-INDEXED 

CR R .. RS+F<Rl,OD,SO>; 
BR=Li; 

!REGe3-31,1=1 SHORT-INDEXED-INDIRECT 

CR R .. RS+FCRl,OD,SOl,JSR(MEM IND>1 

Lli 

• 

• 

i .. R+F<Tl,Rl,FIX BASE),lNDEX SHI~T; 
CR OP .. RS+F<VB REG,Tl,TRCTll,DONE; 

AS 

-• 



• 

I 
i ' 
I i 

AS I-Sequencer Micro-Code 

!EVALUATION OF AN INDIRECT ADDRESS CHAIN WITH THE RESULT PUT IN Rl. 

MEM IND: !GO INDIRECT THROUGH A MEMORY LOC. 
NOP; . 

. CR R~R CRl, Al), TW <Tl>, I ND REG; 
INDRETCRl01,Rll0,Rlll); 

REG .JNO: !GO INDIRECT THROUGH A REGISTER. 
. INDRETCRl01,Rll0,Rlllts 

.. 
Rl01: CR R~RCRl,Rl>,TWCTl>,INO REG; 

·INORETCRl01,Rll0,Rlll);. 

Rll0z CR R~Rs+FCRl,INO,T>,TRCTl); 
RETURN; 

Rill: CR R~RS+FCRl,IND,T>,TRCTl); 
. NOP; 

• 

• 

CR R~R<Rl,Rl),TWCTl>,INO REG; 
INORETCRl01,Rll0;Rlll); 

317 



• 

• 

318 

A9. E-Seguencer Micro-Code Fields 

SA01 SEL<0:2> 

NA 
NA*2 A . 
A*2 

.MINUS ONE 
z 

SA23 SEL<0:2> 

NA*4 
NA*S 
A*4 
A*8 
MINUS ONE 
z 

IAUTO MERGE 

* DIS 
EN 

c0 
.. 1 
=2 
=3 
=4 . 
.. s 

=0 . 
=1 . 
=2 
=3 
=4 
=6 

=0 
=1 

!MMXCTL. CSACTL. SELECT CSA A01 INPUT. 

!MMXCTL. CSACTL. SELECT CSA A23 INPUT. 

!MXMRG2, EN MEANS IBOX CONTROLS MERGE 

!MERGING UNDER EBOX CONTROL 
!MERGfNG UNDER IBOX CONTROL 

. ,; 



i . 

. i 

• 

... 

• 

A9 

SBC SEL<0: 5> · .. 

* 

• 

SW IN BOUNDS 
SW N 
SW Z L 
SW V L 
SW CO 
SW LE 

. FLOAT FIX L 

NEVER 
PRE V L 
POST V L 
EXP N 
EXP V·L 

PAUSE EBOX 
MANT Z L 
MANT V L 
I ALL Z 
F ALL Z 
B ALL Z 
COUNT DONE 

E-Sequencer Micro-Code Fields 

c:8 
,.,9 
c:l0 
c:ll 
=12 
,.,13 
c:l4 
.. 15 

cl6 
=17 
c:l8 
=19 
=20 

... 21 
.. 22 

!EBCMUX. BRANCH CONDITION SELECT 

319 



320 E-Sequencer Micro-Code Fields A9 

SW IN BOUNDS L a32 
SW N L .. 33 
SW Z .,34 
SW V. ..35 
SW CO L -=36 
SW LE L =37 
FLOAT FIX .. 3g 

.. 39 .. 
• ALWAYS =40 

PRE V =41 
POST V. ..42 
EXP N L .. 43 
EXP V =44 

=45 
c46 
=47 

PAUSE EBOX L ;.4g 
MANT 7 =49 
MANT V =50 
I ALL Z L =51 

' F ALL Z L =52 
B ALL Z L .. 53 
COUNT DONE L . =54 

SBR ADR<0:11> !EBXCTL. BRANCH ADDRESS 

* =0 

SBA DEST<0:2> !EBXCTL. BRANCH CONTROL 

RETURN .. 0 
=1 

START .. 2 

* BRANCH =3 
SHIFT ::::4 

• FA -s 
FIXREG a6 
ALU COND =7 

I 
I 

. I 

it 



• 

A9 

SBR NWAY<0: l> . 

* 

·: 2 WAY 
4 WAY 
8 WAY 
16 WAY 

SBYTE PTR PE 

* HOLD. 
LOAD 

ISW CO PE 

* 
HOLD 
LOAD 

SCOND STATUS PE 

* HOLD 
LOAD 

SCOND STATUS SEL 

* 
SD ONE 

·* 

CONO CODES 
MC 

SEBOX CONTROL PE 

HOLD 
LOAD 

IEXP COMPL 

'* 
SEXP SUM PE 

* HOLD 
LOAD 

=0 
=1 

=0 
=1 

E-Sequencer Micro-Code Fields 

!EBXCTL. NUMBER OF BRANCH DESTINATIONS 

!TWO-WAY BRANCH 
!FOUR-WAY BRANCH;. 

·!EIGHT-WAY BRANCH 
!SIXTEEN-WAY BRANCH 

!SHFCTL. LOAQ QW2 ANO QW3 OF R 

!FACTL. LOAD SW CO 

!STATUS. LOAD CONDITION CODES 

!STATUS. SELECT STATUS TO SAVE 

!NORMAL CONDITIONS CODES 
!MICRO-CONSTANT 

!FIXGEN. LAST MICRO-CYCLE 

!EBOX2. LOAD CONTROL BITS FROM .IBOX. 

!EXPBOX. COMPLEMENT EXPONENT 

!EXPBOX. LOAD EXP SUM REGISTER 

321 



322 

SFA A IN SEL<0s3> 

* A 
B 
Q 

MC 
z 
A CO 
B CO 
Q co 
MC CO 
z co 

IFA B 'IN SEL 

* B 
s 

SFA CTL SEL<0:2> 

* • EBOX 
DIV 
AND 
MULT 
SAVED CO 
GUARD 
CO STATUS 

.. 0 

.. 1 
=2. 
... 3 
=4 
=8 
.. 9 
.. 10 
.. 11 
.. 12 

.. 0 
-1 
.. 2 
=3 
=4 . 
.. 5 
.. s 
r::7 

£-Sequencer Micro-~ode Fields 

!31NAOO. SELECT FOR FA A LEG 

!31NAOO. SELECT FOR FA B LEG 

!OP B 
!SUM OUTPUT FROM CSA 

.. !FACTL. SELECT FA CTL SUUHCE . 

!DIVISION 
!ROUNDING 
!MULTIPLY 
!ADO CARRY (SAVED) 
!ADO GUARD 
!ADO CO FROM STATUS WORD 

A9 



• 

,,. 

' 

; 
I . 

i 
I . 

: ' 
I 

•· 

A9 

IFA CTL<0:5> 

A+0 
A+l 
A+B 
A+B+l 
A-B-1 
A-B 
A*2 

* 

• A*2+1 
A-1 

NA 
NA ANO B. 
NA ANO NB 
z 
NA OR B 
B 
A XNOR B 
.A ANO B 
NA OR NB 
A XOR B 
NB 
A ANO NB 
MINUS ONE 
A ORB . 
A OR NB 
A 

IFIXUP EN 

* 

• 

DIS· 
EN 

·E-Sequencer Micro-Code Fields 

.. 0 

.;1 
=12 
=13 
=18. 
=1.9 
-24 
.;.25 
=30 

=32 . 
=34 
..36· 
.;3g . 
=40 . 
=42 
=44 
=46 
=48 
=50 
=52 
.. 54 
=56 
=58 
.. 60 
=62. 

!FACTL. ·FA MOOE/FUNCTION CONTROL 

!FIXREG. ENABLE FIXUP IF DONE 

323 



324 E-Sequencer Micro-Code Fields A9 
I 

. SFIXUP REG SEL<0:3> !FIXREG. SELECT FIXUP REGISTER INPUT 

* NEVER · .. 0 
AU.JAYS c:l 

=2 
PRE V .=3 
MANT V .. 4 

·sw z =5 
SW IN BOUNDS =6 
FLOAT FIX ,,.7 

-8 ... 
=9 
.. 10 
.. 11 
=12 
.. 13 
=14 
.. 15 

SFIXUP REG TEST !FIXREO. ENADLE TESTING OF. FJXUP RF.r.TSTER·s 

* NO REG =0 
REG .. 1 

SF I XUP REG0 CLK EN · !FIXREG. ENABLE SETTING FIXUP REG 8 

* DIS .. 0 
EN .. 1 

SFIXUP REGl CLK EN !FIXREG. ENABLE SETTING FIXUP REG 1 

* DIS -0 
EN .. 1 

SFIXUP REG2 CLK EN !FIXREG. ENABLE SETTING FIXUP REG 2 

• * DIS w:P,I 
EN =1 

SFI XUP REG3 CLK EN !FIXREG. ENABLE SETTING FIXUP REG 3 

* DIS =0 
EN .,1 



• 

.. 

, ! · . 

• 

• 

A9 

IG SEL<0: 3> · 

BZC 
ADD 
POST 
DIVIDE 
z 

* HOLD 

SINTERRUPT IBOX 

'* 
IJSR 

* 

NEVER 
NO FIX 

ILOGICAL SHIFT 

* 
IMC CON0<0:3> 

* 
SMC EXP<0:11> 

* 
IMC REPT<0:7> 

* 
SMC SHIFT<0:5> 

* 
SMC<0:35> 

* 
IMERGE EXP 

* 

a0 
·al 

·' 

.. 0 
al 

=0 

.. 9 

·0 

c:0 
al 

[-Sequencer Micro-Code Fields 

!ROUND. SELECT GUARD BIT INPUT ANO MODE. 

!USE BOTTOM ZEROES COUNT <EG. IN PRENORM> 
!FLOATING ADD 
!POSTNORMALIZATION 
!FLOATING DIVIDE 
!CLEAR 
!HOLD 

!FIXGEN. 

! IFF NO FIXUP 

!EBXCTL. JUMP TO SUBROUTINE 

!JMP OR RET. 
!JSR 

!SHFCTL. LOGICAL/ARlTHMETIC SHIFT 

!DRAG BIT IS SHIFT SIGN 
!DRAG BIT IS SIGN OF SHIFT A IN 

!STATUS. CONDITION MICRO-CONSTANT 

!EXPBOX. EXPONENT MICRO-CONSTANT 

!REPT. REPTITION MICRO-CONSTANT 

!SHFCTL. SHIFT MICRO-CONSTANT 

!3INADD. EBOX MICRO-CONSTANT 

!MXMRGl. FOR EXP USE <MM SEL OR 1) 

325 



326 E-Sequencer Micro-Code Fields A9 

IMERGE LEN !MXMRG2. aw OR HW MERGE. 

* aw =e 
HW .. 1 

IMERGE awe !MXMRG2. FOR awe USE (MM SEL OR 2) .. , 
* ... 0 

.. 1 

IMERGE QWl !MXMRG2. FOR awl l)SE (MM SEL OR 2> 

* . =0 
=1 

I IMERGE QW2 !MXMRG2. FOR aw2 USE (MM SEL OR 2) I : 

* ·0 
.. 1 

' .; 
I "· IMERGE QW3 I 1"1><1'1RG2 • FOR QW3 us~ CMM SC:L on 2) 

* =0 
' .. 1 • i 
I 

SMM EN !MXMRGl. ENABLE MUX MERGER OUTPUT 

DIS =0 

* • EN ·1 

IMM SEL<0:2> !MXMRGl. SELECT MUX MERGER 

•* FA c0 
.. 1 

SHIFT .. 2 . 
EXP =3 

• FA/2 =4 
MUL =5 
DIV =6 

=7 

IMULT EN !MMXCTL. ENABLE MULTIPLY OPERATION 

* DIS =;0 
EN !!;1 !Q REGISTER CONTROLS 3-INPUT ADDER 

IOP A ADR<0:4> !ERFCl. EBOX A REG,ISTER ADR 

* z .. 0 !GARBAGE REGISTER 

... 



..•. 

.. 
... 

• 

. I 

I 

I 
I 
I ' 

~· I 

' 
' 

I 

: I 
: I 

·• I 
i 

• 

A9 

SOP B ADR<0:4> 

* z 
SOP W ADR<0:4> 

* z 
IPOST MAX PE 

* 
SPRE EN 

* 

HOLD 
LOAD 

DIS 
EN 

SPRE MAX PE 

* HOLD 
. LOAD · 

.. sa MOOE<0: 2> 

* LOAD 
RIGHT 1 
LEFT 1 
HOLD 
RJGHT.4 

IRECOMP A01 · 

* 
IRECOMP A23 

• 

.. e 

..0 
=1 

E-Sequencer Micro-Code Fields 

!ERFCl. EBOX B REGISTER ADA. 

!GARBAGE REGISTER 

!ERFCl. EBOX WRITE REGISTER ADA 

!GARBARGE REGISTER 

!STATUS. LOAD MAX POSTNORM AMOUNT 

!SHIFTR/SHFBOX. ENABLE PRENORMALIZATION 

.!STATUS. LOAD .MAX PRENORM AMOUNT 

!Q. CONTROL LINES TO Q REG 

!PARALLEL LOAD 
!SHIFT RIGHT 1 
!SHIFT LEFT 1 
!HOLD 
!SHIFT RIGHT 4 

!CSACTL. COMPLEMENT A LEG OF CSA 

!CSACTL. COMPLEMENT B LEG OF CSA 

327 



, 

328 

IREPT CTR MOOEc0~1> 

LOAD 
DEC 

* HOLD 

IREPT CTR SEL 

FA 

* MC 

SRESULT SEL 

ALWAYS 

.* 
NO BRANCH . 
NEVER 
DONE 
NO FIX 

IRLSB PE 

* 
HOLD 
. LOAD 

IRND MODE<0:1> 
STABLE . 
CEILING 

* · FLOOR 

SSHI FT A I~ SELc0: 1> 

* A 
z 
RAOZM SIGN 

SSHIFT B IN SELc0:2> 

* B 
A 
Q 
z 
GB 
GA 
GQ 
r::z 

I-Sequencer Micro-Code Fields 

.. 1 
=2 
.. 3 

=0 
=1 
=2 
=3 
=4· 

.. 0 
·1 . 

.. 0 
=2 
·3 

=0 
=1 
=2 
=3 
=4 
=5 
c6 
... 7 

!REPT. REPITITION CTR MOOE 

!REPT. SELECT FA CTR OR MC CTR 

!FA CTR 
!MICRO-CONSTANT CTR 

!FIXGEN. CONTROL X RESULT SIGNAL 

!RESULT ALWAYS READY 
!RESULT READY IFF NOT BRANCH 
!RESULT NEVER READY 
! RESULT READY I FF DONE ANO NOT FI XUP . 
!RESULT READY IFF NOT FIXUP 

! ROUND. LOAD LS BIT OF R<0: 35> 

!ROUND. ROUNDING MOOE 

!SHFBOX. SELECT SHIFTER A INPUT 

!A INPUT GETS A OP 
!A INPUT GETS ZERO 
!A INPUT GETS BAQZM SIGN 

!SHFBOX. SELECT SHIFTER B INPUT 

!MERGE GUARD BITS 
!MERGE GUARD BITS 
!MERGE GUARD BITS 
ll'IERGE GVARD BITS 

A9 

.. 

.. 



I 
, I 

I 

. ' 

A9 E-Sequencer Micro-Code Fields 

ISHIFT CTL<0:6> 
FZC =0 

* z ~16 
C20 BYTE LEN =18 
C20 BYTE POS =20 
C20 B. QW3 .. 20 
EXP SUM =22 
RIGHT 1 =24 
MC =26 
B BYTE LEN =28 
B BYTE POS =29 . . B QW3 =29 
DEST =30 

IZC =32 

36-C20 BYTE LEN =50 
36-C20 BYTE POS =52 
36-C20 B QW3 =52 
36-EXP.SUM a54 
36-B BYTE LEN =60 
36-B BYTE POS =61 
36-B QW3 c:6l 

POST 

ISHIFT SIGN 

* 
STEST STICKY EN 

DIS 

* EN 

STEST WRONG BRANCH 

* . DJS· 
EN 

STRANS A SEL<0:1> 

* SW 
FLOAT 
aw 
HW 

=0 
.:.1 

.. 9 
=1 

!SHFCTL. SELECT SCNT SOURCE 

!001 0000 
!001 0010 
!001 0100 

!001 0110 
!001 1000 
!001 1010 
!001 1100 
!001 1101 

!001 1110 

!010 0000 

!011 0010 
!011 0100 

!011 0110 
!011 1100 
! 011 1101 
!011 1101 

!100 0100 POSTNORMALIZE. 

!SHFCTL. DRAG BIT FROM EBOX MICRO-CODE 

!DRAG BIT=0 
!DRAG Bilal 

!STICKY. TEST BZC~36-LSHF-2 

!WRONGB. TEST WRONG BRANCH TAKEN 

!EREGF. A OP TRANSLATION SELECT 

!STRAIGHT THROUGH 
!SIGN EXTEND FLOATING POlNT 
!CW TRANSLATION . 
!H~ TRANSLATION 

329 



330 E-Sequencer Micro-Code Fields ·A9 

ITRANS B SEL<0:1> !EREGF. B OP TRANSLATION SELECT 

* SW =0 !STRAIGHT THROUGH 
FLOAT ·1 !SIGN EXTEND FLOATING.POINT 
aw m2 ! aw TRANSL An ON 
HW mJ !HW TRANSLATION 

• SUSE· I A OP !EREGF. USE IBOX A OP INSTEAD OF R 

* 
' . .. 0 !USE R 

.. 1 !USE IBOX OP .,. 

SUSE B OP !EREGF. USE IBOX B OP INSTEAD OF R 

* .. 0 !USE R 
·1 !USE IBOX OP 

·sxsox A SEL<0:1> !EXPBOX. SELECT XBOX ALU A LEG 

A EXP .. 0 . ';· ! LOAD A EXP 
l:'.><P SUM c.l !LUAU EXP SUM 

* ,HOLD ·2 !HOLD 

• 

.. 



A9 E-Sequencer Micro-Code Fields 331 

SXBOX ALU CTL<0:5> !EXPBOX. EXPBOX ALU MODE/FUNCTION 

A+0 =0 
A+l =1 
A+B ... 12 

_.. A+B+l =13 
A-B-1 =18 
A-B =19 

.·A*2 =24 
A*2+1 =25 

, .. A-1' .. 30 

NA =32 
NA AND B =34 
NA ANO NB =36 
z =38 
NA OR B =40 
B =42 
A XNOR B. i;:44 
A ANO B =46 
NA OR NB =48 
A XOR B =50 
NB =52 
A AND NB =54 

• MINUS ONE =56 
A OR B =58 
A OR NB =60 

*· A a62 

IXBOX B SEL<0:1> !EXPBOX. SELECT XBOX ALU B LEG 

B EXP. .. 0· !LOAD B EXP 
SCNT/MC =1 !LOAD EXP SUM 

* HOLD =2 !HOLD 

SXBOX SCNT SEL<0:1> !EXPBOX. XBOX SCNT REG SELECT 
• MC =0 !LOAD MC 

SCNT =1 !LOAD SCNT 
* • HOLD c2; !HOLD 

I . 

I 
I , 
i ' . i 



• 

332 

. AIO. E-Sequencer Micro-Code Macros 

%AUTO MERGEC 

• SHIFT<A,Z,DEST>, 
FA.<Z,B,B), 
AUTO MERGE ENB,MM SELc:FAJ 

%BR NZ DEC<CTR,ADR> C 
"BR DEST=BRANCH 
BC SEL=COUNT DONE L, 
BR ADR="ADR'', · 
REPT CTR SEL="CTR", 
REPT CTR MODE=DECJ 

%BR Z DEC<CTR,ADR> C 
BR DEST=BRANCH 
BC SEL·COUNT DONE, 
BR AQR .. 11 ADR", . 
REPT CTR SEL="CTR", 
REPT CTR MODE·DECJ 

%BR<COND,AOR) C 
BR DEST=BRANCH, 
BR SEL·"COND", 
BR ADR="ADR 11 J 

%CHECK BOC <R) C 
. CSA A IN A*2,CSA B IN Z, 

FA(A,S,A+B), 
FIX SAVE{SW Z, 11 R11 )J 

~r.SA f A , B , C I ) [ 
A01 SEL= 11 A11

, 

A7~ SH ="B" 
. FA A IN SEL="Cl 11 J 

%DONE <COND> C 
OP W ADR=IW, · 
BR DEST=START, 
BR SEL= 11 COND 11

, 

OONE=ll 

%FA SEL<SOURCE) C 

FA CTL SEL= 11 SOURCE 11 J 

%FA<A,B,C) C 
F.A I N ( II A II • II B" ) • 
FA CTL· 11 C11 l 

!MERGE BACK aw OR HW 
!SHIFT A LEFT AS PER ADDRESS 
!PUT B THROUGH FA 
!MERGE A INTO B 

!REPT. BRANCH NOT ZERO AND DEC 
!SET UP BRANCH ADDRESS MUX 
!BRANCH IF COUNT NOT DONE 
!TO BRANCH ADDRESS 
!SELECT COUNTER OUTPUT 
!DECREMENT SELECTED COUNTER 

!REPT. BRANCH NOT ZERO AND DEC 
!SET UP BRANCH ADDRESS MUX 
!BRANCH IF COUNT DONE 
!TO BRANCH ADDRESS 
!SELECT COUNTER OUTPUT 
!DECREMENT SELECTED COUNTER 

!BRANCH TO ADR IF CONO IS TRUE 
!SET UP BRANCH ADDRESS MUX 
!SET UP BRANCH CONDITION MUX 
!INPUT TO BRANCH ADDRESS MUX 

!CHECK FOR POST BAO ONES COUNT 
!CSA GIVES <A*2) XOR A 
!A*2 IS ON A LEG, A IS ON Cl LEG 
!FIXUP TO R IFF . 
! A+(tA*2) XOR A>·0 

!SELECT CSA A, B, ANO Cl LEGS 
!A01 SEL.CONTROLS THE A LEG 
!A23 SEL CONTROLS THE B LEG 
!rA A iN SEL CONTROLS THE er LEG 

!DONE IFF COND 
!MAKE SURE IW IS WRITE ADDRESS 
!SELECT START AOR ON ADR MUX 
!SET UP.BRANCH CONDITION MUX 
!DONE IFF COND 

!SELECT SOURCE OF FA CTL 

!SELECT FA A JN, FA B IN, FA CTL 



.... 

-1- . 

I 
I 
i . 

i 
, I 

• 

AIO E-Seq uencer Micro-Code Macros. 333 

%FIXUP INITC 
FIXUP REG SELcNEVER, 
FIXUP REG0 CK EN=l, 
Fl XUP REGl CK EN=l, 
FIXUP REG2 CK EN=l, 
FIXUP REG3 CK EN=ll 

%FIXUP SAVECCOND,R> C 
FIXUP REG SEL="COND", 
FIXUP REG"R" CK ENJ 

%FIXUPCREG?,COND,ADR) C 
BR OEST=ST ART, 
BR ADR="ADR", 
FJXUP REG SEL="COND", 
FIXUP REG TEST·"REG?", 
FIXUP EN=ll . 

%FLOAT SW OUT CR, FIX R,AOR) C 
OPS (J wt II R II ' z) ' ,:. 
XA CA-B), 
SHIFTCA,Z,Z),R ... SHIFT,MERGE EXP•l, 
FACA,B,A+0),LOAD COND, 
FIXUP SAVECFLOAT FIX,"FIX R"), 
FIXUPCREG,FLOAT FIX,"ADR"), 
OONECALWAYS),RESULTCNO FIX)J 

%FLOAT SW POSTCA,B,FIX R> C 
• SHIFT C"A", "B", POST>, R ... SHIFT, 

CHECK BOCC"FIX R"), 
G SEL=POST, 
XBOX SELCEXP SUM,SCNT/MC,SCNT)J 

'XHOLO CO C 

ii AC 
iIB C 

ire c 
%10( 

%11JC 

CO COND PE·HOLOJ 

21 
31 

41 

51 

21 

!CLEAR ALL.FIXUP REGISTERS 
!SELECT FIXUP MUX TO CLEAR 

"!ENABLE REG 0 CLOCK 
!ENABLE REG 1 CLOCK 

. ! ENABLE REG 2 CLOCK 
!ENABLE REG 3 CLOCK 

!SAVE FlXUP COND IN FlXUP REG R 
!SELECT FIXUP COND 
!ENABLE CLOCK OF FlXUP REG R 

!FIXUP TO ADR IFF COND (OR REG) 
!SELECT START ADR . 
!ADA.IS FIXUP ADDRESS 
!SELECT FIXUP CONOITJON 
!CONDITIONALLY TEST FIXUP REGS 
!ENABLE FIXUP 

!OUTPUT SW FLOATING RESULT 

!ADJUST EXPONENT BY SHIFT CNT 
!MERGE EXPONENT INTO SHIFT OUT 
!TEST MANTISSA CONDITIONS. 
!SAVE FLOAT FIX CONDITION 
!FIXUP ON REGS OR FLOAT FIX 
!RESULT lFF NO FIX 

!POSTNORMALIZE A:B, USE FIX R 
!POSTNORMALIZE BY FZC 
!CHECK BAD ONES COUNT 
!RECOMPUTE GUARD BITS 
!SET UP FOR EXPONENT ADJUST 

!HOLD CO IN CO REGISTER 

!REG ADR FOR A OP FROM IBOX 
!REG ADR FOR B OP FROM IBOX 

!REG ADR FOR C OP FROM lBOX 

!REG ADR FORD OP.FROM lBOX. 

!LAST INSTR MUST ~RITE IW 



• 

i . 

. . 
I 

I 

. I 

334 E-Sequencer Micro-Code Macro~· AIO 

iJSR<COND,ADR) C 
BR DEST.,BRANCH, 
BR SEL="40ND", 
BR ADR.,"ADR", 
JSR=lJ 

%LOAD BYTE PTR C 
BYTE PTR PE=LOADJ 

%LOAD CO C 
SW CO PE=LOAOJ 

%LOAD'CONDC 
COND STATUS SEL .. COND CODES, 
COND STATUS PE.,LOADJ 

%LOAD CONTROL C 
. EBOX CONTROL PE·LOAOJ 

%LOAD REPT<CNT> C ·· 
REPT CTR MODE=LOAD, 
MC REPT .. "CNT"1 

%MERGE<LEN> C 
MERGE LEN="LEN", 
AUTO MERGEJ 

%MULTIPLY C 
TRANS A SEL=FLOAT, 
MULT EN=l, 
FA(B CO,S,A+B>:,FA. SEL<MULT),' · 
Q MODE=RIGHT 41 

ioPS(W,A,8) [ 
OP W ADR=;,W 11

, 

OP A AOR="A", 
OP B ADR="B"J 

%RESUL T<CONDl C 
RESULT. SEL="COND"l 

%RET <CONDl C . 

• 

• 

BR DEST=RETURN, 
BR SEL•"COND"l 

. . 
!JSR TO AOR IFF COND 
!SET UP BRANCH ADDRESS MUX 
!SET UP BRANCH COND MUX 
!INPUT TO BRANCH ADDRESS MUX 
!ENABLE JSR 

!SET UP EXTERNAL BYTE PTR REG 

!LOAD CO 
!ENABLE LOADING OF CO REGISTER 

!LOAD CONDITION STATUS 
!SELECT COND STATUS INPUT 
!ENABLE LOADING OF COND STATUS 

!LOAD CONTROL BITS FROM IBOX 

!REPT. LOAD REPITION COUNTERS 

!MERGE OPERAND INTO R 
!OW OR HW MERGE 
!ENABLE AUTO MERGE 

!SET UP MULTIPLY CYCLE 
!TRANSLATE MULTIPLICAND 
!ENABLE MULTIPLY CONTROL OF CSA 
!SET UP FA TO MULTIPLY 
!SHIFT MULTIPLIER RIGHT 4 

!SET UP THREE REGISTER ADAS 
!WRITE REOISTEn ADDRESS 
!READ REGISTER ADDRESS A 
!READ REGISTER ADDRESS B 

!SET RESULT ON THREE CONUS: · 
!ALWAYS, NEVER, OR IFF NO FIXUP 

!RET IFF COND 
· !SET UP BRANCH ADDRESS MUX 

!SET UP BRANCH COND MUX 



• 

~- I 

! 

AIO E-Sequencer Micro-Code Macros 335 

'XR+-SHI FTC . 
MM SELaSHJFTJ 

'XSHIFT<A,8,C) C 
SHIFT A IN SEL="A", 
SHIFT B IN SEL .. "B", 
SHIFT CTL="C 11 l 

%START aw HWC 
. TAKE, 

SAVE CONTROL, 
FI XUP I NI TJ . 

%TAKE AC 

%TAKE s'c 

'lTAKE C 

USE I A OPalJ 

USE I B OP·ll 

TAKE A, 
TAKE BJ 

%TEST BOUNOS(CONSTANT)[ 
MC=-"CONSTANT", 
FA(MC,B,A+B)J 

'XTRANS(LEN> C 
TRANS A SELa"LEN", 

· TRANS. B SEL..,"LEN"J 

'XXA (C) C 
><BOX ALU CTL .. "C"J 

'lXBOX SEL(A,B,S> C 
><BOX A SEL="A", 
><BOX B SEL•"B", 
><BOX SCNT SEL•"SCNT 11 J 

!R OUTPUT GETS SHIFT 
!SELECT SHIFT ON MUX MERGER 

!SHIFT AB CONTROLLED BV C 
!SELECT SHIFTER A LEG 
!SELECT SHIFTER B LEG 
!SELECT SHIFTER CONTROL 

!START aw OR HW INSTRUCTION 
!TAKE A ANO B OPS FROM IBOX 
!SAVE CONTROL SIGNALS FROM IBOX 
!ALWAYS INITIALIZE FIXUP REG 
!TAKE ~ OPERAND FROM IBOX 

!TAKE B OPERAND FROM IBOX 

!TAKE A ANO B OPS FROM IBOX 

!SET UP TEST FOR MC>X~0 
!SET MC=-CONSTANT 
!ADO MC TO B YIELDING B-MC 

!TRANSLATE A ANO B 

!CONTROL EXPONENT BOX ALU 

!SELECT EXPONENT BOX ALU INPUTS 
!SELECT A INPUT 
!SELECT B INPUT 
!SELECT SCNT INPUT 



!· 
I 
I 

336 

AH. E-Sequencer Micro-Code 

!ADD Q, ADD H 

'******************************************************************************* 
ADD C: 

OPS < 4 , Z , Z ) , 
START aw HW; 

OPS <S ;I A, I B> , TRANS <OW>, 
TAKE A, 

. FA <A, B, A+B>, LOAD COND, 
FIXUP SAVE<SW V,0); 

OPS ( I U , 6 , Ii) , 
· MERGE <OW) , 

OONE<ALWAYSl,RESULT<ALWAYSl, 
PIXUP<REG,NEVER,INT OVFL); 

" '' 

!SET UP TO WRITE DESTINATION INTO A4 
!START aw HW INSTRUCTION 

!TRANSLATE OPERANDS 
!TAKE DESTINATION INTO 4 
!ADD AND SAVE STATUS 
!SAVE FIXUP CONDITION 

!MERGE RESULT INTO DESTINATION 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF OVFL 

'******************************************************************************* 
ADD H: · 

OPS < 4, Z, Z > , 
'START aw HW; 

OPS<S,IA,IB>,TRANSCHW), 
TAKE A, . 
FA<A.B.A+Bl,LOAD COND, 
FIX SAVECHW V,0); 

OPS < I W, 5 , 4 ) , 
Mi;:RGE CHI.I) , . 
DONE<ALWAYSl,RESULT<ALWAYSl, 
FIXUP(REG,NEVER,INT OVFL); 

!SET UP TO WRITE DESTINATION INTO R4 
!START aw HW INSTRUCTION 

!TRANSLATE OPERANDS 
!TAKE DESTINATION INTO 4 
!ADD AND SAVE'STATUS . 
!SAVE FIXUP CONDITION 

!MERGE RESULT INTO DESTINATION 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF REG OVFL 

... _ 

, .. 



.. 
• 

.. ' 

• 

Ail E~Seq uencer Micro-Code 337 

!ADD S, ADD D . 

'******************************************************************************* 
ADD S: 
OPS<IW,IA,IB>,TAKE, 
FA.(A, B, A+B>, LOAD COND, 
DONE <ALWAYS), RESUL l <ALWAYS>, 
Fl~UP<?W V,INT OVFL>; 

!TAKE BOTH OPERANDS FROM IBOX 
!ADO ANO SAVE STATUS 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF SW V 

'******************************************************************************* 
ADO 0: 

%MSA 
'XMSB 
%LSA 
%LSB 

CI Al 
Cl Bl· 
CI Cl 
CIOl 

OPS<LSA,MSA,MSB>,TAKE; 

OPS<G,LSA,LSB>,TAKE,­
FA<A,B,A+B>,LOAD CO, 
RESULT (ALWAYS); 

OPS (J W, MSA, MSB), 
FA(A,B,A+B>,FA SEL<SAVEO CO), 
LOAD COND, 
DONE<ALWAYS>,RESULT<ALWAYS>, 

-FIXUP<SW V, INT OVFU; 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD OF OPERAND B 
!LEAST SIGNIFICANT WORD OF OPERAND A· 
!LEAST SIGNIFICANT WORD OF OPERAND B 

!TAKE MOST SIGNIFICANT PARTS FIRST 

!TAKE LEAST SIGNIFICANT PARTS 
!ADO ANO SAVE CARRY 
!DELIVER LEAST SIGNIFICANT RESULT 

!ADO 
!SAVE STATUS 
!ALWAYS DELIVER A RESULT 
!FIXUP IFF SW V 



• 

I 
I 

338 . E-Seq uencer Micro-Code All 

! I NC Q, INC H 

'******************************************************************************* 
l~C Q: 

OPS(Z,Z.Zl, 
START aw HW; 

OPS(4,IS;zl,TRANSCQWl, 
· FA(A,Z,A+ll,LOAO CONO, 

FIXUP SAVE<SW V,0); 

OPS (I W , 4 , I A) , 
MERGE (QW), 
OONE{ALWAYSl,RESULT{ALWAYSl, 
FIXUP<REG,NEVER,INT OVFL); 

J ·~ . t 

!START aw HW INSTRUCTION 

!TRANSLATE OPERANDS 
!INCREMENT ANO SAVE STATUS 
!SAVE FIXP CONQITION 

!MERGE aw INTO OUTPUT 
!ALWAYS DELIVER THIS RESULT. 
!FIXUP IFF OVFL 

'*************************************************~**************•lfOtC******•• 
INC H: 

OPSCZ,Z,Zl, 
START QW HW; 

OPS(4,IB,Zl,TRANS<HWl, 
FA{A,Z,A+ll,LOAO CONO, 
FIXUP·SAVE<SW V,0); 

OPS CI W , 4 , I A ) • 
MERGE <HW), 
DONECALWAYSl,RESULT<ALWAYSl, 
FIXUP<REG,NEVER,INT OVFLl: 

'· 

!START aw ~w INSTRUCTION 

!TRANSLATE OPERANDS 
!INCREMENT ANO SAVE STATUS 
!SAVE FIXUP CONDITION 

!MERGE HW INTO OUTPUT 
!ALWAYS DELIVER THIS.RESULT 
!FIXUP IFF OVFL 

... 

... 

.. 



• 

• 

A 11 E-Seq uencer Micro-Code 339 

! INC S, INC 0 

'******************************************************************************* 
INC S: 

OPS<IW,IA,Z),TAKE A, 
FA(A,Z,A+ll,LOAO CONO, 
DONE (ALWAYS), RESUL T<ALWAYS), . 
FI XUP <NO REG, SW V, I.NT OVFU; 

!USE ONLY OPERAND A 
!INCREMENT ANO SAVE STATUS 
!ALWAYS DELIVER THIS RESULT 
!FIXUP IFF SW V 

'******************************************************************************* 
. INC 0: 

%MS 
'XLS 

CIBJ · 
CSJ 

OPS(LS,Z,MS),TAKE B; 

OPS(Z,Z,LS),TAKE 8, 
FA(Z,B,A+B+ll,LOAO CO, 
RESULT <ALWAYS); 

OPS ( IW, MS, Z) , 
FA(A,B,A+0),FA SEL(SAVEO CO), 
LOAD CONO, 
OONE<ALWAYS),RESULT(ALWAYS), 
F"IXUP<NO REG,SW V,INT OVFL); 

!MOST SIGNIFICANT WORD 
!LEAST SIGNIFICANT WORD 

!TAKE MS AS THE B OPERAND 

!TAKE LS AS THE B OPERAND 
!lNCREMENT LOW HALF ANO SAVE CARRY 
!ALWAYS DELIVER THIS RESULT 

!USE THE SECOND HALF OF THE OPERAND 
!ADD THE SAVED CARRY OUT 
!SAVE THE STATUS 
!ALWAYS DELIVER THIS RESULT 
!FIXUP IFF OVFL 



I 
I ; 

. I 
I 

340 E-Seq ue~cer Micro-Code All 

FADD FR S: 

%SMALL £41 
%1 A+IB £51 · 
%POST £61 

%PRE £01 
%BOC Cl] 
%FF IX £21 

OPSCZ,IA,IB>,TAKE, 
XBOX SELCA EXP,B EXP,HOLO>,XA<A-8), 
EXP SUM PE=LOAO, . 
FJXUP INJT; . 

OPS<SMALL,JA,IB>,TRANSCFLOAT,FLOAT>, 
· PRE EN=l, SHI FHZ, B, 36-EXP SUM), R+-SHJFT, 

FIXUP SAVECPRE V,PRE), 
G SEL=BZC, 
BR<EXP N,FAOO FR S A SMALL); 

OPSCIA+IB;IA,SMALLl,TRANSCFLOAT,FLOAT), 
FA(A,B,A+B>,FA SELCGUARO), 
G SEL=ADO, 
XA<Al,EXP SUM PE·LOAO; 

FAOO FR S JOIN: . 
OPSCPOST,IA+IB,Zl, 
FLOAT SW POSTCA,Z,BOC); 

FLOAT SW OUTCPOST,FFIX,FAOD FR S FIX>; 

FAOO FR S A SMALL: 

OfSCIA+IB,SMALL,JBl,TRANSCFLOAT,FLOATl, 
FACA,B,A+B), . 
XA<B>,EXP SUM PE=LOAO, 
G SEL,,,AOO, 
BRlALWAYS,FAOD FR S JOJN)1 

!SMALLER OF IA ANO 18 
!INITIAL RESULT IA+IB 
!RESULT OF POSTNORMALIZATION 

!PRE OVERFLOW FIXUP REGISTER 
!BAO ONES COUNT FIXUP REGISTER· 
!FLOAT FIX FIXUP REGISTER 

· !SUBTRACT EXPONENTS 
!SAVE EXPONENT DIFFERENCE 
!INITIALIZE FJXUP REGISTERS 

!PRENORMALIZE SMALLER 
!CHECK PRENORM OVERFLOW 
! SAVE GUARD BITS 
!BR ON EXP DIFFERENCE SIGN 

! I B IS ·SMALLER 
!ADO IA AND IB WITH GUARD BITS 
!SAVE THE RECOMPUTED GUARD BITS 
!SAVE THE LARGER EXPONENT 

!COME HERE IN BOTH CASES 

!POSTNORMALIZE 

!OUTPUT FLOATING RESULT POST 

! IA IS SMALLER 
!ADD IA AND IB 
!SAVE THE LARGER EXPONENT 
!RECOMPUTE GUARD BITS 
!RETURN TO FINISH FADO 



• 
. 1· 

• 

~: 

• 

A 11 E-Seq uencer Micro-Code 341 

FADD SR S: 

%SMALL · C4J 
%1A+IB [51 
%POST C61 
%ROUND C71 

%PRE C0J 
. %BOC ClJ 

%FFIX C2J 
%AND V C31 

OPS(Z,IA,IB>,TAKE, 
XBOX SEL(A EXP,B EXP,HOLO>,XA(A-B>, 
EXP SUM PE=LOAD, 
FIXUP INIT; 

OPS(SMALL,IA,IB>,TRANS<FLOAT,FLOAT), 
PRE EN=l,SHIFT<Z,B,36-EXP SUM>,R~SHIFT, 
FIXUP SAVE<PRE V,PRE>, 
G SEL=BZC, 
BR<EXP N,FADD SR SA SMALL>; 

· OPS (I A+ 1B, I A, SMALL> , TRANS (FLOAT, FLOAT> , 
FA (A, B', A+B), FA SEL (GUARD>, 
G SEL=ADD, 
XA<A>,EXP SUM PE=LOAD; 

FADD SR S JOIN: 

OPS(POST,JA~IB,Z>, 
FLOAT SW POST(A,Z,BOC); 

OPS<ROUND,POST,Z>, 
FA(A,B,A+B>.FA SEL(RND>,RND MODE=STABLE, 
FIXUP SAVE(MANT V,RND V); . 

FLO.AT SW OUT<ROUND,FFIX,FADD SR S FIX>: 

FADD SR S A SMALL: 

OPS(IA+IB,SMALL,IB>,TRANS<FLOAT,FLOAT>, 
FA(A,B,A+B>, . 
XA<B>,EXP SUM PE=LOAD. 
G SEL=ADD, 
BR(ALWAYS,FADO FR S JOIN); 

!SMALLER OF IA AND IB 
! IN I Tl AL RESULT I A+ IB. 
!RESULT OF POSTNORMALIZATION 
!RESULT OF ROUNDING 

!PRE OVERFLOW FIXUP REGISTER 
!BAD ONES COUNT FIXUP REGISTER 
!FLOAT FIX FIXUP REGISTER · 
!ROUNDING OVERFLOW FIXUP REG 

!SUBTRACT EXPONENTS 
!SAVE EXPONENT DIFFERENCE 
!INITIALIZE FIXUP REGISTERS 

!PRENORMALIZE SMALLER 
!CHECK PRENORM OVERFLOW 
!SAVE GUARD BITS 
!BR ON EXP DIFFERENCE SIGN 

! IB IS SMALLER 
!ADD IA AND IB WITH GUARD BITS 
!SAVE THE RECOMPUTED GUARD BITS 
!SAVE THE LARGER EXPONENT 

!COME HERE IN BOTH CASES 

!POSTNORMALIZE 

.!PERFORM STABLE ROUNDING 
!CHECK ROUNDING OVERFLOW 

!OUTPUT FLOATING RESULT ROUND 

! IA IS SMALLER 
! ADO I A AND IB 
!SAVE THE LARGER EXPONENT 
!RECOMPUTE GUARD BITS 
!RETURN .TO FINISH FAOO 



342 E-Seq uencer Micro-Code All 

FMULT FR S: 

%MPCNO CIAl 
%MPYR CIBJ 
%PROO C4l 
%POST CSJ 

%BOC C0J 
%FFIX ClJ 

OPS(Z,MPCNO,MPYR),TAKE 
SHIFT(A,Z,Z>,R~SHIFT, 
Q MODE=LOAO, 
XBOX SEL<A EXP,B EXP,HOLD},XA<A+B), 

. EXP SUM PE=LOAD; 

OPS<PROO,MPCNO,Z}, 
XBOX SEL<EXP SUM,SCNT/MC,NC>,MC EXP-128, 
XA<A-B>,EXP SUM PtcLOAO, 
LOAD REPT (5) , 

.MULTIPLY; 

FMUL T FA S L1 : 

OPS <PROD, MPCNO, PROD> , 
MULTI PLY, 
BR NZ OEC<MC,FMULT FR S Ll>; 

OPS. <POST, PROO, Z) , 
FLOAT SW POST <A,·a, BOC>; 

FLOAT S.W OUT<POST,FFIX,FMULT FR S FIX>; 

• 

! MULTI PLI CANO 
!MULTIPLIER 
!PRODUCT REGISTER 
!PRODUCT AFTER POSTNORMALIZE 

!BAD ONES COUNT FIXUP REGISTER 
!FLOAT FIX FIXUP REGISTER 

!PUT MULTIPLIER ON SHIFTER OUT 
!LOAD Q REGISTER WITH MULTIPLIER 
!ADD EXPONENTS 

!CORRECT EXPONENT SUM 

!SET UP COUNTER 
!00 ONE MULTIPLY CYCLE HERE 

!DO ANOTHER MULTIPLY CYCLE. 
!REPEAT MULTIPLY CYCLES 

!POSTNORMALIZE A:Q 

!OUTPUT FLOATING R~SULT POST 

I . 



:,.r. 

' i 

• 

• 

A 11 E-Seq uencer Micro-Code 

FMULT SR S: 
%MPCND CIAl 
%MPYR .• CIBl 
%PROO · C4J 
%POST C5J 
%ROUND C61 

%BOC C01 
%FFIX. ClJ 
%ANO V C3J 

OP~(Z,MPCNO,MPYR>,TAKE 
SHIFTCA,Z,Z>,R~SHIFT, 
Q MOOE .. LOAO, 
XBOX SELCA EXP,B EXP,HOLD>,XACA+B>, 
EXP SUM PE .. LOAO: 

OPSCPROO,MPCND,Z>, . 
XBOX SEL<EXP SUM,SCNT/MC,MC> ,MC EXP .. 128, 
XACA-B>,EXP SUM PE=LOAO, 
LOAD REPT (5), 
MULTIPLY: 

FMULT FR S Ll: 

OPSCPROO,MPCNO,PROO), 
MULTIPLY, . 
BR NZ DEC<MC,FMULT SR S Ll>: 

OPSCPOST,PROO,Z), 
FLOAT SW POSTCA,Q,BOC>; 

OPS<ROUNO,POST,Z>, . 
FA(A,B,A+B>,FA SEL(RND>,RND MODE=STABLE, 
FIXUP SAVE<MANT V,RND V); 

FLOAT SW OUT<ROUND,FFIX,FMULT SR S FIX>; 

!MULTIPLICAND 
!MULTIPLIER 
!PRODUCT REGISTER 
!PRODUCT AFTER POSTNORMALIZE 
!RESULT OF ROUNDiNG 

!BAD ONES COUNT FIXUP REGISTER 
!FLOAT FIX FIXUP REGISTER 
!ROUNDING OVERFLOW FIXUP REG 

!PUT MULTIPLIER ON SHIFTER OUT 
!LOAD a REGISTER WITH MULTIPLIER 
!ADD EXPONENTS 

!CORRECT EXPONENT SUM 

!SET UP COUNTER 
!DO ONE MULTIPLY CYCLE HERE 

!DO ANOTHER MULTIPLY CYCLE 
!REPEAT MULTIPLY CYCLES 

!POSTNORMALIZE A:a 

!PERFORM STABLE ROUNDING 
!CHECK ROUNDING OVERFLOW 

!OUTPUT FLOATING RESULT ROUND 



.. 344 E-Seq uencer Micro-Code Ai 1 

!INC (SKIP,JUMP>, DEC (SKIP,JUMP> 

'******************************************************************************* . , ' 

I NC (SK I P , JUMP) : 

OPS(4,IA,Z>,TAKE, 
LOAD CONTROL, 
FA(A,B,A+l.>, 
RESULT (ALWAYS); 

. OPS ( I W , 4 , I B > , 
. FA (A, B, A-8), 

LOAD COND, 
TEST WRONG BRANCH=EN, 
DONE_(SW V U; 

BR(A~WAYS,INT OVFL>; 

!TAKE OPl AS A OPERAND 
!SAVE BRANCH CONDITION ETC 
! INCREMENT OPl 
!ALWAYS DELIVER OPl+l 

!COMPARE OPl+l WITH OP2 

!TEST WRONG BRANCH 
!DONE IFF NOT OVFL 

!NOT DONE SO GO TO OVERFLOW-

'*******************************************************************************" 
DEC <S~I P, JUMP>: 

OPS(4,IA,Z>,TAKE, 
LOAD CONTROL, 
FA(A,B,A-1>, 
RESULT(ALWAYS); 

OPS (J W, 4 , 18) , 
FA (A, B, A-B), 
LOAD COND, 
TEST WRONG BRANCH=EN, 
DONE (SW V U; 

BR(ALWAYS,INT OVFL); 

!TAKE OPl AS A OPERAND 
!SAVE BRANCH CONDITION ETC 
!DECREMENT OPl 

· !ALWAYS DELIVER OPl-1 

!COMPARE OPl-1 WITH OP2 

!TEST WRONG BRANCH 
!DONE IFF NOT OVFL 

!NOT DONE SO GO TO OVERFLOW 

• 



• 

I 

• I 

I 

A 11 E-Seq uencer Micro-Code 345 

!SKIP a, SKIP H, SKIP S, SKIP D 

'******************************************************************************* 
SKIP a: 

OPS € Z , Z , Z > , . · . 
START aw HW; 

OPS<IW,IA,IB>,TRANS<aW>, 
FA (A, B, A-B>, 
TEST WRONG BRANCH=EN, 
DONE (ALWAYS>; 

!RECEIVE aw OPERANDS 

!TRANSLATE aw OPERANDS· 
!COMPARE 
!TEST WRONG BRANCH 
!NO RESULT 

'******************************************************************************* 
SKIP H: 

OPS(Z,Z,Z>, 
START aw HW; 

OPS(IW,IA,IB>,TRANS<HW), 
FA <A, B, A-B>, 
TEST WRONG BRANCH=EN, 
DONE (ALWAYS); · 

!RECEIVE HW OPERANDS 

!TRANSLATE HW OPERANDS 
!COMPARE 
!TEST WRONG BRANCH 
!NO RESULT . 

'******************************************************************************* 
SKIP S: 

OPS (I W, I A, 1B > ·, TAKE, 
LOAD CONTROL, 
FA<A,B,A-B>, 
TEST WRONG BRANCH=EN, 
DONE (ALWAYS>; 

!TAKE BOTH OPERANDS 
!LOAD BRANCH CONDITION ETC. 
!COMPARE 
!TEST WRONG BRANCH 
!NO RESULT 

'******************************************************************************* 
-SKIP D: 

'XMSA 
.%MSB 
'XLSA 
%L~B 

CI Al 
CIBJ 
CI CJ 
Cl DJ 

OPS<LSA,MSA,MSB>,TAKE, 
LOAD CONTROL; . 

OPS(6,LSA,LSB>,TAKE, 
FA<A,8,A-B>,LOAD CO; 

OPS< I W, MSA, MSB>, 
FA ('A, B, A-B>, FA SEUSAVEO COJ, 
TEST WRONG BRANCH=EN, 
DONE <ALWAYS);. 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD OF OPERAND B 
!LEAST SIGNIFICANT WORD OF OPERAND. A 
!LEAST SIGNIFICANT WORD OF OPERAND B 

!TAKE MOST SIGNtFICANT PARTS FIRST 
!LOAD BRANCH CONDITION ETC. 

!TAKE LEAST SIGNIFICANT PARTS 
!SUBTRACT ANO SAVE CARRY 

!SUBTRACT 
!TEST WRONG BRANCH 
!ALWAYS DELIVER A RESULT 



346 E-Seq uencer Micro-Code A 11 

!ANO SKIP <Z,NZ> a, ANO SKIP <Z,NZ> H, ANO SKIP <Z,NZ> S 

'*******************************************************************************' 
AND SK I P { Z, NZ) a: . 
OPS { Z , Z ~ Z > , 
START aw HW.; 

OPS<IW,IA,18),TRANS{QW), 
FA {A, B, A ANO B > , 
LOAD CONO, 
TEST WRONG BRANCH=EN, 
DONE CALWAYS) ; 

• ! : 

!RECEIVE aw OPERANDS 

!TRANSLATE aw OPERANDS 
!AND THE OPERANDS 

!TEST WRONG BRANCH 
!NO RESULT 

'*~***************************************************************************** 
AND SKIP <Z,NZ) H: 

OPS < Z, Z, Z) , 
START OW HW; 

.OPS(IW,IA,18),TRANS<HW), 
FA (A, B, A AND B) , 
LOAD tONO, 
TEST WRONG BRANCH=EN, 
DONE <ALWAYS>; 

!RECEIVE HW OPERANDS 

!TRANSLATE HW OPERANDS 
!ANO THE OPERANDS 

!TEST WRONG BRANCH 
!NO RESULT 

'******************************************************************************* 
. ANO SK I P t Z, NZ> S:. 

OPS (J W, I A , 18 ) , TAKE , 
I OAD CONTROL, 
FA(A,B,A ANO BJ, 
LOAD CONO, 
TEST WRONG BRANCHZ=EN, 
DONE (ALWA VS) ; 

!TAKE BOTH OPERANDS 
!LOAD BRANCH CONDITION ETC. 
!ANO THE OPERANDS 

!TEST WRONG BRANCH 
.!NO RESULT 



Al.I 

ANO SKIP Z 0: 

%MSA CIAJ 
%MSB . CIBJ ·. 
%LSA CICJ 

,'.',_; 'XLSB . CIOJ 

OPSCLSA,MSA,MSB>,TAKE, 
LOAD CONTROL, 
FA (A, B, A AND 8 > ; .. 
OPSC6,LSA,LSB>,TAKE, 
FACA,8,A ANO 8), 
8R<SW Z,ANO SKIP Z 0 Ll>; 

OPS <I W, Z , Z> , 
I FA<A.B,MINUS ONE>, I LOAD CONO, 
i . TEST WRONG 8RANCH=EN, 

DONE <ALWAYS>;· 

AND SK I P Z 0 Ll : 

OPS <I W , 6 , Z ) ~ 
FACA,8,A), 
LOAD CONO, 
TEST WRONG 8RANCH=EN, 
DONE (ALWAYS>; 

I. 

E-Seq uencer Micro-Code 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD OF OPERAND 8 
!LEAST SIGNIFICANT WORD OF OPERAND A 
!LEAST SIGNIFICANT WORD OF OPERAND 8 

!TAKE MOST SIGNIFICANT PARTS FIRST. 
!LOAD BRANCH CONDITION ETC. 
!ANO THEMOST SIGNIFICANT PARTS NOW 

l l~~E,T~~ACJA~} G~: b~ T~~~A~~R~~RTS 
!BRANCH IF <MSA ANO MSB>=0 

!PUT A 1

NON~ZERO OUTPUT ON THE FA 

!TEST WRONG BRANCH 
!NO RESULT 

.. ! CMSA ANO MSB> =0 

!READ BACK <LSA ANO LSB> 
!PUT OUT <LSA ANO LS8"l ON THE ·FA 

!TEST WRONG BRANCH 
. !NO RESULT 

!H7 

c 



348 

AND SKIP NZ D: 

%MSA 
%MSB 
%LSA 
%LSB 

CI Al 
CIBJ 
CICJ 
CIOJ 

OPS<LSA,MSA,MSBl,TAKE, 
LOAD CONTROL, 
FA (A, B, A AND BI ; 

OPS<6,LSA,LSBl,TAKE, 
FA (A, B, A AND BI , 
BR<SW Z L,ANO SKIP NZ D LlJ; 

:. OPS < I W , Z , Z J , 
FA (A, B, ZEROJ, 
LOAD CONO, 
TEST WRONG BRANCH=EN, 
DONE <ALWAYS); 

ANO SKIP NZ D Ll: . 

OPS .<I W, 6, ZJ , . 
FA<A,B,AI, 
LOAD COND, 
TEST WRONG BRANCH=EN, 
DONECALWAYSI; 

.. 
~i 

E-Seq uencer M lcro-Code 

!MOST SIGNIFICANT WORD OF OPERAND A 
!MOST SIGNIFICANT WORD ·oF OPERAND B 
!LEAST SIGNIFICANT WORD OF OPERAND A 
!LEAST SIGNIFICANT WORD OF OPERAND B 

!TAKE MOST SIGNIFICANT PARTS FIRST 
!LOAD BRANCH CONDITION ETC. 
!AND THE MOST SIGNIFICANT PARTS NOW 

!TAKE LEAST SIGNIFICANT PARTS 
!AND THE LEAST SIGNIFICANT PARTS 
!BRANCH IF <MSA AND MSBJ-0 

!PUT A ZERO OUTPUT ON THE FA 

!TEST WRONG BRANCH 
!NO RESULT 

! <MSA AND MSBJ-0 

!READ BACK <LSA ANO LSBI 
!PUT OUT <LSA AND LSBJ ON THE FA . 

!TEST WRONG BRANCH 
!NO RESULT 

A 11 

Cr \J_, 



ii· 

, 

• 

,. . 

. , .. 

A II E-Seq uencer Micro-Code 349 

!SHIFT LEFT La, SHIFT LEFT L'H 

'******************************************************************************* { ·~ . . 

SHIFT LEFT L a: 

'XO Cl Al 
'XSCNT CIBJ 

OPS ( Z , Z , Z ) , 
START aw HW;. 

OPS(4,0,SCNT),TRANS(aW) 
SHJFT(A,Z,B QW3), 
TEST BOUN05(9),FJX SAVE(SW IN BOUNDS,0); 

· OPS ( I W, 4 , Z ) , 

!DATA 
!SHJFT·COUNT 

!SHIFT DATA 
!SAVE 9>SCNT~0 JN FIX REG 0 ' 

MERGECaW), !MERGE aw INTO R 
DONECALWAYS),RESULHNO FIX), !DELiVER RESULT IFF NO FIX 
FIXUPCREG,NEVER,SW LOGIC ZERO); !FIXUP IFF SCNT NOT IN BOUNDS 
'******************************************************************************* 
SHIFT LEFT L H: 

%0 CIAJ 
'XSCNT CJBJ 

OPS(Z,Z,Z), 
. START aw HW; 

OPS(4,D,SCNT),TRANS(HW) 
SHIFT(A,Z,B aW3), 
TEST BOUNDSC18),FIX SAVECSW IN BOUNDS,8)1 

OPS ( I W, 4 , Z) , 
MERGE (HW),. 
DONE (ALWAYS), RESULT CNO FIX),' 
FI XUP (REG, NEVER. SW LOGIC ZERO) 1 

!DATA 
!SHIFT COUNT 

!SHIFT DATA 
!SAVE 9>SCNT~0 IN FIX REG 0 

!MERGE HW INTO R 
!DELIVER RESULT IFF NO FIX 
!FIXUP IFF SCNT NOT JN BOUNDS 



I 

• I . I 

350 E-Seq uencer Micro-Code A II 

!SHIFT LEFT L S, SHIFT LEFT L D 
'*************************~***************************************************** 

SHIFT LEFT L S: 

%0 
%SCNT 

Cl Al 
CI BJ 

OPS(JW,D,SCNTl,TAKE, 
SHJFT(A,Z,B QW3), 
OONE<ALWAYSl,RESULT<NO FIX), 
TEST BOUNDS (36), 
FJXUP<SW IN BOUNDS,SW LOGIC ZERO); 

!DATA 
!SHIFT COUNT · 

!SHIFT DATA 
!DELIVER RESULT IFF NO FIX 
!TEST 36>SCNT~0 
!FIXUP IFF SCNT NOT IN BOUNDS 

'******************************************************************************* 
SHI FT LEFT L D: 

%00 
~SCNT 
%01 
%005 

CI Al 
CIBJ 
CI CJ 
(5) 

OPS(Dl,Z,IBl,TAKE, 
TEST BOUNDS <72), 
LOAD BYTE PTR; 

OPS<D0S,Dl,Zl,TAKE A, 
SHIFT<Dl,Z,B QW3), 
BR(SW IN BOUNDS L,DW LOGIC .ZERO), 
RESULT<NO BRANCHY;. 

OPS ( JW, D0, 01>,. 
SHJFT(00,Dl,C20 B QW3). 
DONE <ALWAYS>, RESULT <ALWAYS>; 

!DATA WORD 0 <MOST SIGNIFICANT) 
!SHIFT COUNT 
!DATA WORD 1 <LEAST SIGNIFICANT> 
!D0 SHIFTED 

!PREPARE TO ACCEPT· JC 
!TEST 72>SCNT<?:0 
!SAVE SCNT FOR LATER 

!ACCEPT JC 
! CREA TE LOW ORDER WORD . 
!GIVE ZERO IF SCNT NOT IN BOUND 
! RE.SULT I FF SCNT IN BOUNDS 

!SCNT IS IN BOUNDS 
!CREATE HIGH ORDER WORD 
!ALWAYS DELIVER A RESULT 

... 



.. , 

All E-Sequencer Micro-Code 351 

!LBYTE, .DBYTE 

'***********************************************~******************************* 
LBYTE: 

%BW 
·%BP 

CI Al 
CIBl 

OPSC4,BW,BP>,TAKE, 
·SHIFTCA,Z,B BYTE POS>,R~SHIFT; 

OPS C I W, 4, BP> , 
SHIFTCZ,A,B BYTE LEN>,R~SHl~T. 
OONECALWAYS>,RESULTCALWAYS>; 

!BYTE IJORO 
!BYTE LEN, BYTE POS 

!LEFT JUSTIFY BYTE 

!SHIFT BYTE INTO RESULT WORD 
!ALWAYS DELIVER RESULT 

'******************************************************************************* 
DBYTE: 

%OW. 
%BP 
%BW 

CI Al 
CIBJ 
[4) 

OPSC6,0W;BPJ,TAKE, . 
SHIFTCA,A,B BYTE POS>,R~SHIFT, 
LOAD BYTE PTA; 

OPS CS, 6, BP>, · 
SHIFTCA,A,B BYTE LEN>,R~SHIFT; 

OPSC7,4,5),TAKE A, 
SHIFT<A,B,36-C20 BYTE LEN) ,R~SHIFT; 

OPS C I W, 7, Z > , 
SHIFTCA,A,36-C20 BYTE POS>,R~SHIFT, 
OONECALIJAYS>,RESULTCALIJAYS); . 

• 

. I 

!DESTINATION WORD .. T:E:B 
!BYTE LEN, BYTE POS 
!BYTE WORD = C:D:X 

!X=E, D=T, C=B 

!SET UP TO ACCEPT D 
!R6 ~ E:B:T 
!LOAD BYTE PTA REG FOR LATER 

!RS ~ B:T:E 

!R4 ~ BYTE WORD C:01X 
!R7 ~ X:B:T 

!RESULT ~ T:XaB 
!ALWAYS DELIVER A RESULT 



352 .. E-Seq uencer Micro-Code A 11 

.LBYTE INC: 

%BW CI Al !DATA WORD 
%BP CI Bl !BYTE.LEN, BYTE POS 

.%BL [4] !BYTE LEN 
%BA CSJ !BYTE POINTER ADDRESS -J) %LR . [6] !LBYTE RESULT 
%NBP [7] !NEW BYTE POINTER 
%Tl ·cs1 !POS+2~EN 
%T2 (9] !36-POS+2*LEN 
%T3 £10] !BA ROTATED LEFT 6 
%NBA Clll !NEW BYTE POINTER ADDRESS 

OPS.(LR, BW, BP), TAKE, !BEGIN LBYTE INTO LR 
SHIFT(A,Z,B BYTE POS>,R~SHIFT; !LEFT JUSTIFY BYTE · 

OPS (LR, LR, BP>, 
SHIFT£Z,A,B BYTE LEN>,R~SHIFT, !SHIFT BYTE INTO LR 
RESULT (ALWAYS); ! ALWAYS DEL I VER A RESULT . 

OPS (Bl, Z, BP> , 
SHIFT£Z,B,MCJ,MC SHIFTm27, !ALIGN BYTE LENGTH AS aW3 
FA<Z,B.ZJ,MERGE aW3=1; !CLEAR awe, awl, aw2 

•. OPS <T 1. BL , BP> , TAKE H, !BA~ BYTE.POINTER ADDRESS 
CSA<A*2,Z,BJ,FA(B CO,S,A+B); ! Tl ~ POS+2~EN 

OPS <T2, Z, TU, 
FA(MC,B,A-BJ,MC=36; !T2 ~ 36-POS+2~EN 

OPS (NBP, BL, BP>, 
FA <A, 8, A+B>, . !NBP ~ POS+LEN 
BR(SW N,BVTE POS OVFL>; !BR IF POS+2~EN>36 

OPS CNBP, NBP, BP>, 
SHIFTCA,Z,Z>,FACZ,B,B>,MERGE QW3=1, !MERGE POS+LEN INTO BP QW3 
RESULT <ALWAYS); !ANO DELIVER NEW BYTE PTR 

OPS <I W, BA, Z) , 
FA(A,B,A> ,· !PASS BACK ADDRESS UNCHANGED 
OONE<ALWAYSJ,RESULTCALWAYSJ; 

BYTE POS OVFL: !BYTE POSITION OVERFLOW 

OPS£NBP,Z,9P), 
SHIFT CZ,Z,Z> ,FACZ,B,B).,MERGE aw3 .. 1, !MERGE 0 INTO BYTE POS aw 
RESULT (ALWAYS> ; !DELIVER NEW BYTE PTR 

I OPS <T3, BA, Z>, 
I SHI FHA, A, MC>, MC SHI FT .. s,R~SHIFT; !ROTATE BA TO LEFT JUSTIFY 
I 

1· OPSCNB~.Z.T3), 
FA (MC, B, A+B>, MC=256;. !ADO 4 TO BA 

OPS ( I W, NOA, NBA) , 
SHIFTCA,B,MC),MC SHIFT=30,R~SHIFT, !ROTATE NEW ADDRESS 
DONE (SW V U, RESUL I lALWAYSI; !PASS ADDRESS. DONE IFF NOT OVFL 

~' 
OPS Cl W, Z, Z) , 



A 11 E-Sequencer Micro-Code 353 

FA<MC,B,A>,MC~BYTE PTA TRAP, 
DONE <ALWAYS) , TRAP; ! ADDRESS OVERFLOW. TRAP • 

• 
:_,, 

, .. 

• 



. 354 E-;Sequencer Micro-Code A 11 

!DATA 

.MSBI T: 

%0 
%BP 

CI Al 
[JB) !BYTE LEN.BYTE POS 

OPS(4,0,BP>,TAKE, 
SHIFT(A,Z,BYTE POS>,R~SHIFT; 

OPS(S,4,Z), 
FA (A, B, A+0), 
MM SEL= I ZC; . 

OPS ( I W, 5, Z > , 
FA(A,B,A+l>, 
OONE(SW N L>,RESULT(OONE); 

OPS (I W , Z •. Z ) , 
FA(Z,B,A>, 
OONE(ALWAYS>,RESULT(ALWAYSl; 

• 

!LEFT JUSTIFY BYTE IN DATA WORD 

!SET UP TO TEST BYTE SIGN 
. !RS ~ IZC 

! INCREMENT I ZC 
·!IF BVTE~0 THEN DELIVER IZC+l 

!BYTE<0 

!DELIVER 0 RESULT 



• 

-· 

• 

! 
I 
I' 

I 
I 
I 

355 

A12. Low-Level Macro Drawinis 

• 



.. 

T 

AC8> DIN 

IHI> .... 211 .. 1 
A(2> A• ...... 
A<)> A2 

~C4> 
A::J 

Acfil IM OOUT 
T 

Act1.> A6 

Ac7>- A6 R 

Ace,. A;I 

A<'9> AB 
A9 WE C8 

QT l:.!i I; l 
·,...' 

• 
1B X IK RAM 2110-1 (IKRAM) 

-~ • -. 



(IOl:>VW) 
• 

<!• 

( >9 

<6>" 

c , 
CQ>lr 

C4'>9 

<<:• C4::>• 

<9> c •• 

( •<l C9U• 

,., ... 
c , 

c .. 
c • 
c . c 

•• 

c •9 

c . c •• 

( 
• 

••• <fl>lr 

· ... 



c 8:6: 

Dlc~"!!'> 

"8 IC llC -211~11 
A 

:JB X 1C -2119-1 

c 

"8 JC U< -211 ... , 

II 

D 

T 

T 

. IOB X IK EBOX Control Store Cell (ESCEL2) 

.. 

<8: ) 

<7 

I .. ! 

• 



711 X 1K --1 .211 ... 1 
T~ -1 

A 

' IL CS 

vv 
IC8~6> 

OS l 

1e1••' , 
• 

'.JB X UC -. -1 211 ... 1 n-- -
c 

A "" cs v <> 

tc7'1r9> 

Aco..-9> ':,::' r I c ' 

CS<J> L 

18181 
c 2 

CS<;!> L 

unes 
c 

:J 

C"f:c I> I 

CS<-!!I> L 

• 

711 X 1K 711 X 1K - -211 ... 1 ,_ 
-~ 

211 ... 1 

II E 

A IL ' .. A I cs 
<> <> 

W£ L 

1•11•' , 
4 

.. 

- x 11( 38 x 1• - -211~1 n-- -~ 
Z119-1 

D G 

A OS CS A .... cs 
v.v v <> 

':,:!r)' 
's 

18181 

' 
c . 

6 

IOB X 4K RAM 2110-1 (IOBX4K) 

"8 X 1K -,_ -1 211 ... 1 

F 

A l.E 
<> 

:m X UC -,....._ .......... 1 Zl19-I 

" 
A l.E 

v 

j 1ese1 ,, -

,_ 

' 

-

,_ 

s 

'J•• •~v-u• 

,. 

1'C'7•G) 

(_L 
Vj ,, 



• 

.. 

A<8:3> 

cei > 

At4·?1' 

A< 

( 2::1 ) 

16 Bit CMP (16CMP) 



(ldWJ91) NldWJ lJtl 91 

. '" 

' .. 
•• 

c ·8> 



• 

~ 
"-' 

68 X .IK -J(8·6> i!'li~I ,, ..... 
• 

A .. cs 
C~· c> 

68 X llC -)<""':•U> 211&-t ,, ........ , 

A ' ca 

' 
,.... . . . . ,,.' , ., 
..,. 

:iht•' , .. 
I 

38 ·= ... , -'< '>-•4> 21-l T 
T(I ,_••) 

"' 
A -cs 

·~ Q 

l8 >< 'IK -1<1&:•7> 211~1 
T 

T<1§;17> 

:I 

' 
A ..,. ~ 

vv 

A<8:9> :e 8lT 
._1Et1•:i / 
• c 

18B X IK RAM 21'10..I (ISBX IK) 

--------------------------------------------~-------------- -



(M)ll 9.91) SD O/M 1-0lll WV~ )II X 981 

J,. 
9 :i( 

1918~ 
I.IO 81 

c6=1ifltf 

<'> A 

I 
9:) 3" .. 

I: 

c(:' 90J. l 
, ... "~ <£1 :9\>.1 

..... >II)( m: 

(') A 
s::i 3" .... 

a 

...... • l 
l , ... ,,z C~l~l>I 

..... )U )( 8C 

.. J 
ene& 

' ' 3" 

r,' •"> 
9:) 3" 

,. 

' Cu•9>1 l 1-e11a CU•9>1 
..... JU X: 89 

<'> • ) 
9:) 3" .. 

• 
C5•e>1 

l 1-eua c9:v>1 

-
JU X 89 



78 IC• -1<8·6:! 211•1 T 
T<8:A> 

• 
A IE cs 

<> C> 

"8 X &II -1<7:\:1• 2tl.9-I T 
TC7!t:I> 

I 

I I ~ 

) ":~ 
' I 9' L 

.. 
A " 

IE L 
l•!tl• 

r 
a I I , 

:a~ 11C -1tt~:l6J 21':18-1 T 
'I ct.,..•"-> .. 

It 

A JL cs 
·.J·v 

:ID IC UC. - _I 1<17: 19> 2119-1 T<•7:t9> 

:J 

A IE C8 
<.,) <.,) 

A<•:9> 

~·::') 
-c 

• 

208 X IK RAM 2110-1 (20BX lK) 



(}U· XUOZ) 1-011 Z WV~ )If. X 9:0~ 

<8>S:> 

01 
3" 

I 
<6!8>tf 

s:> 3" 
" 

• 
<6 =e•1 l 1-eu~ 

._ 
>llX~ 

I I 
. A A I 

<•>;i;..., 

·- s:> .ll"I 

" 
' l t-enz ._ 

>n >C BR 

I [ 
AAI 

, «Z>S:> 

s:> 3't 
" ;r 

l 
, ... "~ ._ 

)II >C -.z 
. I I 

}., }., 1 
, <l:>S:> 

s:> 3't 
" I: 

l , ..... ,~ -C61=8>1 
._ 

)llJC~ 



• 

• 

I<!·'.!4> H 48 BIT <B· • ' 2EROCS c 
c&:::J9> I COUHTER 

·!!!§ / z z 

L Cl( 

CK L 

• 
35 Bil Top Zeroes Counter (TZC) 



A< 

sc· ·7> 

e-120: ( :7> 

Ac· • 9> A<B I> 

7> •19> 

<8: 1> A<e: > 

P.G3 P 0 GI 

CARRY LOOIC ~ tet"9 C.ARRT LOGC AtCAD 19179 

Ot+4 t-----CN Ot+•t----' 
A a 

P.GI Ot+2 P.G2 P.G3 P 0 GI 

CARRT LOOK Ate.AD 181:1'9 

Ot+4 t-----CN Ot+ •I----'"' 
c D 

P.G 

36 Bit ALU 10181 (36ALU) 



l•!P 

!· ::14> 

z:n> 

l•;E> 

1<2!> 

I<!!> 

1<29> 

·c29,. 

""•~7> 

I<~• 

I<!::§> 

IC~> 

~c~:;e 

]<i:i:? 

l'l!> 

l<l!> 

l<J9> 

~<J8> 

!<JZ• 

1<1f:> 

J<Ji> 

l<J:4> 

l<J;!> 

l<JI> 

l<Jp 

l•llP 

1<9'1o 

gee> 

I<~ 

1•6> 

l<i> 

I•::!> 

l<J> 

I<~> 

l<J> 

ace> 

I! 
H 

!! 

!! 

IMI I <tu 

IMI 1<1> 

IMI lCi:> 
...., 1c]:> 

...., ic4> 

...., I<§> 

!!!!! zc&;>' 
...., IC7> 
...., !'Ii!> 

IMI Jc9> 

Rfe1."1'1!~ 

IMI l<JJ> 

RWl·Jt]~> 

...., l<J;;J> 

!!!!! l 4 J:P 

I!!!! ICJ§> 

!!!!! l<Jfa> 
...., l< 1Z• 

!!!!! l<Jl!J 
...., le J9> 

I!!!! ICl:!? 

!!!!! l'i:J• 

I!!!! I'm 
!!!!! 1c;:;p 

I!!!! I'&::!> 
...., l'if:> 
...., 

I'~, 

...... l'i2> 

!!!!! I'~, ...., JC~) 
!!!!! zc;!!> 

!!!!! 1'2J> 

!!I!! J<1;B> 
...., l';!i!> 

...., 
JC~> 

...., I c ;!i> 

...., !•;!tt,. 

...., Jc:Pl 

...., 1'2!P 

...., I<;!!• 

3E Bit Bottom Zeroes Counter (BZC) 

4981T <·> 
ZE.OOEa c~-==«­
CQ..NTDI 

z 
Cit 

CIC L 

• 

z 



• 

()llXa&> 1-011iwv"M)ll xa~ 

1-euz 

-
)ll >C. Sl 

. ' 
1~uz 

-'" )( 81 

• 
1-4llZ 

-
)U X 81 

, s~ 

(-l>. 

.., 



• 

• 

• 

4 Bit CMP (4CMP) 



ce: > 

A< 2:35> 

A< , ... 

P,Ge P.G:J P,Ge 

CARRY LOO< AHEAD 191:79 
c Cit+ 4t-----<lM 

A 

P,G 

P,Ge Ctt.-2 P.G2 P.G3 

CARRY LOOK~ 181"9 

c 

P,G 

40 Bit ALU 10181 

A<8:1 > 

<8:1 > 

c ?:Ut> 

P.G3 

CAARY LOOK AHCAO 18179 

P,Ge 

(40ALU) 

8 

P,G 

Ott2 P.G2 

C1¥1RY LOOK Al£l4> 18179 

0 

P,G 

.. ..._.. 

A<8:3> · 

<8:3> 

P.G3 

CH+4t----' 



.. 

fy 8 !Ill rAST 
Piii D OCOOCR 

v 
I 

18166 
AH\' 1<8:::>> r---D 

• II 

QC ' 0 
2 

:J 
:J BIT -
BIUI ,.,,.:.::::> 

T 
4 

" 5 

B BIT rAST 
PRID EHCOOER 6 

18166 
AH\' )(8•16> :..·-;-D 

I II 

QC 

~> 

-· 
). 

8 BIT FAST 
PllJO DICClllDI 

It •.o1.~ 2'11> 
teUa5 _., 

D 
2 II 

Cl< 

<> 

I 
8 811 FMT 

PRI 0 DCDOCJI 

.,,, ....... , 1•166 
AH\' 

a 
J II 

~ 

H 
QC )... 
<> 

-. .. -, .... ~, 
/ B BIT 

H PllJO CNCODEll - 19166 ,.,., " 
) 

'"«"•2> A II 

L Q( 
e an F"ASl H 

PRJD 'DICOOER ~ 
~> 

111166 -.. -, ..... , ........... , AH\' 
a ~ 4 II 

oc 

? 
OC L Cl< L • 

40 Bit Zeroes Counter (ZC) 

-



.. , 

ct> 

C4> 

.e!!.;.9) 

~ 

CSL 

18 X UC -211 ... 1 

:I 

A 

I 
18 )( IK -L 211&-1 

4 1 cs 

18 )( UC -2'18-1 

6 

A 

I 

L 

A 

L. 

A 

T 

18 IC UC -2118-1 

• 
oE cs 

TI 
18 )( , .. -211 .. , 

18 k UC -

_J T<•> 

T 

·, 

211 .... I Tl !<2> 

2 

!<6> 

6B X IK RAM 2110-1 (GBXIK) 

,..._,.. 

{b 

tj 



• 

• 

•8• 

•I> 

18 JC 1K -211 .... 1 

4 

R ME cs 

18 )(UC -2118-1 

i; 

A ME cs 

18 )(UC -
T 

A 

18 XII( -211 ... I 

• 

18 XII( -211 ... 1 

18 )(UC -211&-I 

2 

18 )( IK -

Tee> 

T 
c) 

c) 

211 .. 1 Tl-~~~~~~~~~.....!.:...i:. 

:a 
A ME 

'6> Tc > 211&-1 

• 
A 

cs 

';BX IK RAM 2110-1 (7BXIK) 

(v 
"-1 
-f:... 



(OI~d.:1) Japo:>U] OJJd lS~.:f ll9. 8 

, lO 

l lO 
c: 

! 
(~).J 

9 
C9>•] 

~ 9 Cc>O <9>•.1 

... d 
·• . C~>. Clo>V 

.... IC 
CL>• C8>0 

.,.. ill 
Cc>O 

99&•1 
' ,. C1o>(I 

• 
1 

C,.->"" 

9 

.. ,., -

A-. ( tMel8l 
\ 



• 

18 X II( -ice>· 
211 ... I 1 

T,8> 

• 
A llf cs 

I 99 
r 18 X IK 
• -)(.1) 

211 .. l l 
T<U 

I .. 
A llf cs 

i 99 
18 )( llC -1•2>" 
211e-1 l 

T<2> 

2 

A ..c ~ 

I Y7? 
IB X UC -..... 211 ... 1 l 

,.,,> 

JI 
..... 

A ..c cs 

-! I 
9\ 

UI X IK - T,4> 
,, .. , 2ue-1 T 

4 

A llf ~ 

IY9 
18 )( IK -]<&> 

211.-1 l 
. 1C6> 

6 

A ME CS 

- l y y 
18 )I 11C - ,., .... , 

[<6> 
2119-1 l 

6 

A llf cs 
i "? 9 

.. 
18 )(UC. -1<7> 
zue-1 1· 

T<7> 

7 I 

A<&:9· 

llf l 

CS·\ 

83 X lK RAM 2110-1 (SBX IK) 



(G910l W) G9101 W 

i~ 
~ 13 

on 

13 "3 

c/>n 
"" <9 .. Q ... .. <9>0 
"" 

0 
C~>S 

·c.,>O co e 
cr"•O .... c &>S 

<.Z>O 
911 3 

<'>0 9" 0?9'9' 
<8>9 

<8>0 
"" 

, 



~7f 

DISTRIBUTION 

0 Group Files (5) . L-75 

TIO (15) 
TIC J27) 

The Naval Systems Divi5ion 
Office of Naval Research 
Arlington, Virginia (5) 

.' . 

·. 



... 

Technical Information Department 
LAWRENCE LIVERMORE LABORATORY 
University of California I Livermore, California I 94E 50 




