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TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY

LASER BEAMS THROUGH

THE ATMOSPHERE: II

Abstract

Various factors that can affect
thermal blooming in stagnation zones
are examined, including stagnation-zone
motion, longitudinal air motion in
the neighborhood of the stagnation
zone, and the effects of scenario
noncoplanarity. Of these effects,
only the last offers any reasonable
hope of reducing the strong thermal
blooming that normally accompanies

stagnation zones; in particular, non-

1. Intro

This is the second report in a
series dealing with the general
problem of time-dependent thermal
blooming of multipulse and cw laser
beams.l Time dependence is essential
for describing the propagation of
laser beams through stagnation zones,
which are created whenever the motion
of the laser platform and the slewing
of the laser beam combine to create
a null effective transverse wind
velocity at some location along the

propagation path. The location cf
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coplanarity should benefit multi-
pulse more than cw beams. The methods
of treating nonhorizontal winds hydro-
dynamically for cw and multipulse
steady-state sources are dilscussed.
Pulse "self-blooming" in the triangu-
lar pulse approximation is discussed
in the context of both single and
multipulse propagation. It is shown

that s2lf-blooming and multipulse
blooming cannot be treated independently.

duction

vanishing transverse wind we shall
call the stagnaticn point, and the
term stagnation zone will refer to
the portion of the propagation path,
extending in both direztions from the
stagnation point, where the trans-
verse wind has not yet had time to
blow complztely across the beam. The
lack of wind at the stagnation point
creates a steadily decreasing density
and a thermal lens whase strength
grows with time. This report wiil
continue the study of stagnation



zones begun in Ref. 1, and discuss
contributions of self-blooming to
multipulse thermal blooming and new
models that have been added to the
Four--D code.

Both pivoted-absorption-cell
measutementsz’3 and detailed numer-
ical calculations of the experimental
arrangementsl'& glve evidence that
the blooming effects of stagnation
zones tend to saturate with time.
Thus the beam characteristics seem
-o approach a kind of quasi-steady
state, which is possibly a result of
the steady reduction in length of the
stagnation zone with time. Despite
the existence of these quasi-steady
statas, calculaclons for high-power
beams show that stagnation zones can
lead to sevey: beam cdegradation.

The notion of a stagnation =one re-
guires :chat che transverse wind veluc-
ity vanish at at least one position
along the propagation path. There
are always present, however, a number
of additional effects that will pre-
vent a completely stagnant wind coax-
dition from occurring at any
position. These effects are:

1. MNatural convection

2. Motion of the stagnation point
with time

3, Longitudinal air motion at
the stagnation point

4, Vertical alr motion due to

noncoplanar scenaric geometry

-2

A realistic appraisal of the influ-
ence of stagnation zones on biam
propagation requires that each of
these effects be assessed and pos-
sibly incorporated into the computa-
tional model.

Natural convec:tion flow at the
stagnation point should be neglfgibla
for practical beam sizes. A 3.8-um
wavelength and a 474~kW beam power,
for example, give a natura! con-
vection velocity of the order of
10 cmis.1 For this flow velocity
and a beam radius of 10 cm at the
stagnation poiut, apjrroximately 2 3
is required for the beam to approach
a steady-state density distribution.
This time is excessive for preventing
or reducing stagnation-zone blooming
effects, which may develop in times
r. :ing from 1 ms to 0.1 5. At a
10,.6-um wavelength the laser heating
rate of the atmosphere 1is somewhat
greater for the same intensity, but
the natural convi:tion velocity
scales only with the cube root of the
absorbed power, Bno flow velocities
would not be significantly above
those for the 2.8~um case, rhere-
fore, we shall not consider the
effects of natural convection
further.

Under most conditions the stag-
nation point is not statiomary but
moves in the same general direction
as the target with a velocity that
is little different from the



target's, The parcel of air that
sees a null wind speed changes with
time and thus does not heat up in
the manner of a stationary parzel.
The influence of this stagnation-
point motion on beam propagation was
found to be minimal for a cw wave-
form example truated in Ref. 1.
Stagnation-point motion d4lso tuzrms
out to be unimportant for a muleti-
pulse scenario examined in this
report, The conclusion is that
stagnation-point motion is unlikely
to have much, if any, effect in
alleviating stagnation-zone blooming,
since, despite the motion, a sub-
stantial propagation path exists over
which wind velocities are negligible.
The existence of a null transverse
wind-velocity component at a stag-
nation point ir no way guarantees a
vanishing magnitude of the wind vec-
tor, because a nonvanishing longi-
tudinal component almost always
exists there. Any air parcel found
within the beam at the stagnation
poirnt will, as a result, exit from
the beam in a finite length of time.
Indeed, In coplanar geometries all
wind-flow trajectories should cross
the beam in two locations: one for
values of z (longitudinal position)
below the stagnation point L and
ihe other for values above 2. The
wind flow may be in either the
positive~ or negative-z direction.
In the neighborhood oi the stsgnation

-3-

point, the wind-flow trajectories
will enter one side of the beam,
reverse direction with the beam, and
exit on the same side.5 The resi-
dence time in the beam for fluid
parcels passing through the beam
center at the stagnatiom point will,
of course, depend on scenario param-
eters, but for some typical beam
siz2s and scenarios this time can be
of the order of 0.5 to 1 s. Longi-
tudinal flow should thus be as
effective as natural convection in
controlling density changes at the
stagznation point. One conseguence
of these re-entrant wind~flow
trajectories is that air densities
for z values greaater than z4 could
be influenced hydrodynamically by
densities for 3 values less than 243
but, for any foreseeable practical
scenarios, the re-entrant times --
except perhaps in the irmediate
neighborhood of the stagnation

point — would be considerably lor.ger
than times of interest. Consequen-
tly, hydrodynamic coupling between
points above wnd below 2, can be
safely neglected in cases of prac-
tical interest.

The existence of a position where
the transverse wind velocity vanishes
presupposes the extremely improbable
coplanarity of the laser beam and
the trajectories of its platform and
the target — a situation that is

clearly a limiting case of real-world



scenarios, which are invariably non-
coplanar. In the more general case of
noncoplarar geometry, only the wind

component along a certain transverse
The

wind vector in tha transverse plane

axls can be expected to vanish.

will rotate and attaia its minimum
magnitude at the stagnation point.
Since this minimum magnitude can
~ever vanish, except in a space of
measure zero, a steady state can
always be defined for the governing
The signif-

icance of this is that, in systems

hydrodynamic equations.

analysis, steajy-state numbers can
always be assigned to stagnation-zone
situations, at least f..r some nominal
degree of norcnplanarity, and these
numbers can bea obtained from simple
and relatively cheap steady-state
caleulations. Truly coplanar
stagnation-zone situations, in con-
traat, require time-dependent cal-
culations that are expensive and
require conuiderable care in
execution.

In the coplanar scenario described
in Ref. 1, for example, if the laser
is given an elevation of 10 m abcve
the plane containing the rarget and
the laser platform, the vertical
component of wind velocity at the
stagnation point takes on the value
of 1 m/s. This is sufficient to
establish a steady state in a time
of tie order of 0.1 s, which is short

compared to times of interest. The

4=

small vertical velocity componeit at
the stagnation point leads to sub-
stantial changes in isointensity c¢on-
tours in the fccal plane, bu% the
average intensity is remarkably close
to the quasi-steady-state value
obtained in a time-dependent calcu-
lation for the cerresponding coplanar
case.

Thus, cmall amounts of non-
coplanarity should not be expected
to greatly improve cw laser perfor-
mance in stagnation-zone situations
but should contribute to ease in
understanding and predicting it.
The case of multipulse heams is
another matter. As pulse-repeticion
frequer:zies are lowered, a small
vertical wind component at the stag-
nation point becomes more and more
effective in sweeping ocut the air
between pulses. The banefits of non-
coplanarity in stagnation-zone
situations should thus be greater for
multipuises beams than for cw beams.

The current status of the Four-»
code 1s summarized in Table 1, and
recent additions to the code are
described in the body of this report.
We have continued to adhere to the
philosophy that the best way to
approach all laser-promagation cal-
culations is through - single,
unified computer code that can be
applied to any problem. The advantages
of this are threefold. First, it

greatly simplifies bookkeepirg (or,



more appropriately, code-keeping),
since a proliferation of limited
special-purpose codes is avoided.
Second, if each type -1 calculation
1g made a subset of a larger calcu-
lational capability, new features

added to the code — such as data-

Table 1.

processing routines, adaptive-lens
transformations, scenario features,
etc. — are available to all types of
Third, real-

istic simulations are possible, since

calculation at once.

a wide range of conditions can be

incorporated into any calculation.

Basic outline of current Four-D propagation code.

Variables

Form of propagation equation

Method of solving propagation
equation

Hydrodynamics {or steadv-state
cw problems

ransonic slewing

2985,
where &, » ar~ transverse coordinares and
z is axzial displacement.

Scalar wave equation in parabslic approxi-
mation

25k 5 -
Svometrized split operator, finite Fovrier
series, fast Fourier transform (FFT)

algorithm

£n+1

X

Uses exact solution to linear hydrodynamic

equations. Fourier method for M < 1.
Characteristic mechod for M > 1. Solves

90 0
Ve Ty TP Ly cy

v v
1 1 _

Cu(v: 3= L ) * !lpl =0,

3 E] 2 . .
(v:c =Yy 5;)({11 - cspi) = - bel

Steady-state calculation valid for all Mach
numbers except M = 1. Code can be used
arbitrarily close to M = 1.

-5~



Table 1 (continued).

Treatment of stagnation-zone
problems for cw beams

Nonsteady treatment of mulii-
pulse density changes

Method of culculiting density
change for individual pulse
in train

Treatment of steady-state
multipulse blooming

Treatment of turbulence

Time-dependent isobaric approximaivion.
Transient succession of steady~-state den~-
sity changes; i.e., solves

3 3p.
1 1 -1
b + v 5 === ol .
“s

Changes 1n density from previous pulses in
traln are calculated with isobaric approxi-
mation using

3p. ap
1 i
5t Y s
—Y~1 -
—e :E th(z,y) [1¢4 tn) .
- n

whera TIy(®,y) is nth pulse fluence. Dea-
sity changes resulting from the same pulse
are calculated using acoustic equaticmns and
triangular pulse shape.

Takes two-dimensional Fourler transform of

where I is Fourier transform of intensity,
and %,, is the time duration of each pulse.
Source aperture should be softened when
using this code provision.

Previous pulses in train are assumed to be
periodic replications of current pulse.
Solves
3p ap, ap

b3 +p 1 1

% Y T

c
8

-1 _
=_.Y_T_rz 8t - %) .
n

Pulse self-blooming is treated as in the
nonsteady-state case.

Uses phase-screen method of Bradley and
Brown with Von Karman spectrum. Phase
screen determined by

-6-
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Table 1 (continued).

Lens transformation and
treatment of lens optics

Treatment of nondiffraction
limited beams

Adaptive lens transformation

) oo

T'(x,y) ='f dk.r exp(ikx)f dky exp(iky)

oo -
1/2
* atk,k) 0 0k

where a is a complex random variable and @,
is spectral density of index fluctuations.

Compensates for a partion of lens phase
front with cylindrical Talanov lens trans-
formation. Uses in spherical case

1 _1

zp =

f

where zf is focal length of lens, zp is
focal length compensated for by Talanov

transformation, and sy is focal length of
initial phase fromt.

L1,
T L

Spherical~aberration phase determined by

oA - E% @ + yH2

or phase-screen method of Hopgge et «l.
Phase determined as in turbulence, only

212 2

TR W
where %, is correlation length and cz phase
varlance.

Removes phase

2
z [ai(:r:i - <Ii>)2 + Bi(.ri - <a:i>)]

=1

through lens transformation and deflection
of beam. Here x] = ®, T2 = ¥, averages are
intensity weighted, @; and B; are calecu~
lated toc keep the intensity centroid at
mesh center, and intensity weilghted r.m.s.
values of r and ¥ are constant with z.



Table 1 (continued).

Selection of z-step

Scenario capabllity

Treatment of multiline
effects

Treatment of beam jitter

Code output

Numerical capacity when used
with CDC 7600 and restricted
to internal memory (large
and small core)

Problem zoning features

Adaptive z-step selection bas-d on limiting
gradients In nonlinear contribution to
phase. Constant z-step over any portion of
range also possible.

General aoncoplanar scenario geometry capa-—
bility involving moving laser platform,
moving target, and arbitrary wind direction.
In coplanar case, wind can be function of

t and 3.

Calculates average absorptiun coefficient
based on assumption of identical field dis~-
tributions for all lines

-0 .2)
z “ifi exp (' ,2)

T

z f; exp(~o,2)
7

o=

where f; is fraction of emzrgy in line % at
z = 0.

Takes convolution of intensity in target
plane with Gaussian distribution:

2 2
- L&yt
Tiieter ffexp 202

xI(e - x',y - y") dz' dy’
where 02 is variance introduced by jitter.

Isointensity, isodensity, isophase, and
spectrum contours. Intensity averaged over
contours. Plots of intensity, phase, den-
eity, spatial spectrum along specific
directions, etc., at specific times.

Plots of peak intensity and average inten-—
sity vs time.

Spatial mesh, 64 x 64, 35 sampling times,
no restriction on number of axial space
increments.

Number of space increments in x and y
directions must be equal and expressible as
a power of 2.

8=



2.

Treatment of Moving Stagnation Zones

in Coplanar Scenarias

The basic coplanar scenario
geometry is depicted in Fig. 1. It
is assumed that the target and laser
platform will collide on the x axis
after a time T, has elapsed. The
point of impact 1s denoted by P and
the position of the laser by L. The
effective tramsverse wind speed Vt

is given by the expression

Target sighted

e

Vt('ra,z) = -sin GT[VT
z
-5 (VT - Vp + Vn cot GT)]
+ VW sin(aw - 919, [¢))]

where VR is the target (receiver)
velocity, VT ig the laser-platform
(transmitter) velocity, Vh’ is the

background wind velocity, R 1s the

Target motion in
straight line

Wind
vector

Vw

Ow

pp—

VT Te

!"\

Fig., 1.

=G

Transmitter motien

Impact point

Diagram of coplanar scenaric model.



range,
Vp = VR cos BR s (2)
and
Vn = VR sin OR. 3)

From simple trigonometry,

o = cot-l [cos Oa + (VT'I.'c - Z)/VRTc]

T sin ea
(4a)
D sin ¢B
R=—sm;— s (4b)

where ea is constant.

The transverse wind speed Vt
depends on T, and hence on time
through the dependence of the
scenario parameters BT and R on time
in Egs. (4a) and (4b). The Four-D
code 1is programmed to calculate
Vt(Tc,z) as a function of T, and
hence of time. The hydrodynamic
equations are solved pumerically by
assuming that Vt is stepwise constant
over each integration time interval
At

The location of a stagnation peint
is determined by setting the right-

hand side of Eq. (1) equal to zero.

Clearly, that point moves with time,
and, as a result, a different parcel
of air undergoes heating under con-
ditions of zero wind velocity at each
instant. In general the stagnation
point will move with a velocity
comparable to that of the target.

The determination of Vt from

Eqs. (1)-(4) for use in the hydro-
dynamic equations permits an accurate
determination of the effect of motion
on the thermal lens in the stagnation
zone. It is more difficult to follow
the irradiance on a moving target,
however, since all equations are
solved in a retirded time frame. It
would be necessary tc <store the
irradiance history for the values of
2 corresponding to the tarpet motion,
Since the relative change of the
range R in a time of interest is
small, it 1is a good approximation to
assume the focal distance and the
range R at which the laser intensity
is monitored to be conmstants in time,
while thz correct variable R 1s taken
into account in the hydrodynamic
portion of the calculation by means
of Eqs. (1)-(4).

3. Propagation of Multipulse Laser Beams
Through Stagnation Zones

The particular scenario chosen
leads to the effective transverse

wind as a function of range fer

T = 0, shown in Fig. 2, vhere T ia
measured from the time the pulse

turns on. The pertinent physical

=-10-



data are the following:

Power, P 53 kW
Runge, R 2.5 km
Focal length, f 4,5 km
Absorption coefficient, a 0.25 km-l
Wavelength, A 10.6 um
Aperture diameter, 2a
(Gaussian at l/ez) 30 cm
Slewing rate, 2 7.44
mrad/s
Pulse-repetition rate, v 10, 25, 50
and 100 s~

These data can be expressed in
terms of the following dimensionless

mmbers:
_ 2
Ny = ka"/f = 2.96,
N = 2afv At = 3.2 x 1072
Yo o * ’
vg = Qf/vo = 3.6,
Ny = af = 1.125,
= 13 NGNANF(Y - 1)E « 100
b 23 o223 '
8% f
where NF’ No, Ns, NA, and ”D repre-

sent respectively the Fresnel, over-
lap, slewing, absorption, and dis-
Although the
chosen power, 53 kW, is rather low,

tortion numbers.

the value of the distertion number
ND is quite high, and the resulting
thermal blooming is about the maxi-~
mum that the code can accommodate.
In any case. the above parameters

Transverse wind velocity = mA

-
(=]

(5]

[~ Stagnation

point
L \

0 -
-5 - .
_‘0 L 1 L 1
0 0.5 1.0 1.5 2,0 25
i Axial distance — km
Fig. 2, Transverse wind velocity as a
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function of axial distance.

are adequate for assessing the
sensitivity of typical multipulse
laser performance to stagnation-zone
motion.

In the present scenario, the
stagnation zone and target move with
a speed of 300 m/s. For a multi-
pulse beam with v = 100 s™1, the
stagnation zone moves 3 m between
pulses, whereas for v = 10 s-l, the
stagnation zone moves 30 m between
pulses. It would be hoped that, in
the case of the lower pulse-
repetition frequency, the greater
movement of the stagnation zone
would lead to a reduced buildup of
stagnant-air density changes. This
effect turns out to be minimal.

The time dependence of the average
intensity on target (averaged over
the minimum half-power area) is
shown for the case of no stagnation-

zone motion in Fig. 3(a) and for the



7 Absorbing atmosphere

0 Vacuum, corrected for linear absorption

K
 2W T
2 I L} 1
1
fa] [a] [a]

§ [s]
S 150
5 15 -1
F3
2
L
2 100~ -
]
>
o
Fa
'5",50[— ]
E
& l(a)

a
g 0 1 ] (b) | {
2 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Time—s

Fig. 3. Area-averaged target intensity as a function of pulse time: six

pulses at v = 10 s™t.
Stagnation-zone motion included.

(b)

{a) Mo stagnation-zone motion included.

Fig., &.
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Table 2. Comparison of multipulse Intensities with and without stagnation-
zone motion.

Time—averaged intensity (W/sz)

Time No _motion _ Motion

(s) Average Peak Average Peak

0.1 168.5 234.0 168.5 234.0
0.2 78.9 117.3 78.7 117.3
0.3 60.7 100.7 60.8 103.3
0.4 53.7 92.5 55.3 96.8
0.5 49.6 88.7 52.4 92.7
0.6 47.3 84.1 50.2 87.5

Maximum increase resulting from stagnation-zone motion: av, 6.1Z%Z; peak, 4.0%.

case with stagnation-zone motion in fluence. The isofluence contours
Fig. 3(b). The calculation is car- for the case with motion are dis-
ried out for six pulses. The isoin- played in Fig. 5. The central
tensity contours for the six pulses fluence peak contains the maximum
are shown in Fig. 4 for the moving value and makes the largest contri-
stagnation zone. The contours in bution to the fluence averaged over
the nonmoving case are so similar the minimum half-~power area.

that they are not shown. The per- Apparently in the no-motion case
formance in the two cases 1s sum- the subsequent pulses ir the train
marized pulse by pulse in Ta»le 2, make a greater contribution in the
where the intensity values have been central region than do the corre-
averaged over the interpulse sponding pulses in the case with
separation time, and the percent motion. This small difference in
improvements in intensity indicated peak and average fluences is of

are for the last pulse in the train.

Surprisingly, the improvements Table 3. Comparison of fluences with
in peak and average fluence go .n and without stagnation-zone
the opposite direction. The peak motion.
and average fluences are actually Fluence (J/cmz)

No _motion Motion
1 h i hi -moti
slightly higher in the no-motion Average Peak Average Peak
case, as shown in Table 3.

30.61 42,1 30,1 40.7

This behavior 1s due to the large
contribution that the first pulse Decrease resulting from stagnaticn-
P zone motion: av, 1.7%; peak, 3.3%.

in the train makes to the total

=13~



40

20

y coordinate - cm

=10

=20

=30

-40 |
«20 =10
x coordinate — cm

20

Fluence contours for case of
v = 10 s~1, motion included.

Fig. 5.
little or no practical importance,
and 1s indicative of the fact that
gtagnation-zone mntion plays no
vital role in determining thermal
blooming in stagnation zones.
Figure 6 shows the dependence of

average intensity on time at the
terget range for different values
of pulse-repetition rate, V. Each
curve begins with the time of
arrival of the second pulse. (The
first pulse would create a time-
averaged intenmsity of 189 H/cmz.)
It is clear that reducimg Vv

diminishes the effect of the stag-
nation zone. The reason obviously
is that for smaller values of v the
air can be swept out by wind between
pulses over a greater proportion of
the propagation path.

Sample pulse-isointensity con-~
tours for v = 100 s 1 are displayed
in Fig. 7; these should be compared
with those for v = 10 s L in Fig. 4.
At the lower repetition rate, the
beam has divided into two distinct
spots, At the higher rate, lateral
peaks are also formed but they are
much less distinct. The lateral
spreading of the contours as a
function of time is shown in Fig. 8.

The width perpendicular to the wind

B0

o
o

Intensity - W/cmz
&

N
o

0 1 } 1 I |
0 0.2 9.4 G.6
Time-s
Fig. 6. Space~averaged intensity as a

function of pulse time for
various pulse-repetition
rates.
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0.01s

0.155

Fig. 7. Isointensity contours for pulses sampled from v = 100 s—l train,

Beam width perpendicular to wind - cm

Fig. 8. Width of beam in direction
perpendicular to the wind
at various pulse-repetition
frequencies.
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is determined by measuring the
maximum distance perpendicular to
the wind direction between 30% con-
tours.

In conclusion, the performance

of a multipulse laser under

Stagnation-zone conditions can be
improved by lowering the pulse-
repetition frequency, but, witi or
without motion of the stagnation
point, the thermal blooming is
likely to be substantial,

4, Effect of Longitudinal Air Motion on Flow
in the Neighborhkood of a Stagnation Zone
for Coplanar Scenarios

We wish to examine the air-flow
trajectories in a coordinate system
that moves with the laser beam.
Take the x axis along the direction
of motion of the laser platform and
the y axis perpendicular to it in
the scenario plane. The unit vector
2(t) is directed along the rotating
laser beam, and £'(¢) is taken
normal to 2(t) (see Fig. 9). Ac
any instant of time, 2(t) and £'(%)
can be expressed in the rest frame
of the laser platform by means of

the relations

2(2) = [cos B,(t),91n 8,(t)1, (5a)

2'(£) = {sin GT(t),-cos BT(t)],(Sb)
where

BT = cos-l(ﬁ . 2), (h)

and the angle BT 18 calculated from
the scenario Eq. (4a) by substi-
tuting T t for Toe The common

origin for the rest frames of the

laser platform and the rotating
laser beam will be taken at the cen-
ter of the laser aperture.

The effective wind vect ,r in the
moving coordinate system of the
laser can be expressed as

Wy - Y
v =v R _ =T

eff  ~rel ~  R(D) - &

x [2(t) ' (&) - 2" () 2(t)i. ()

A
(t)
F10) p

Vector diagram in scenario
plane; Z(t) indicates
instantaneous direction of
slewing laser beam,.

Fig. 9.
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Here !R is the target velocity rela-

tive to the earth's surface, and

v v -v (8)

Yre1 " " Ir

where V _ is the veloclty of the

2r

laser platform and is the veloc-

v,
ity of the wind. An air test par-
ticle will move in the rest frame
of the laser platform along trajec-
tories described by

r(z) = x(0) + !relt . 9
These trajectories can be expressed
in the rotating frame of the laser
beam by means of the following
relations:

z'(t) = x(t) « 2'(D), (10a)

z2(t) = r(z) « 8(z) . (10b)
Figure 10 shows sample air-
particle trajectories in the vicin~
ity of a stagnation point for four
different scenarios of practical

interest (of the type shown in

Fig. 1).
nation point location at £ = 0 are
indicated in Table 4. At time £ =20

the particles are assumed to be

The target range and stag-

located pracisely at the stagnation
point. The origin of the transverse
coordinate is assumed to be at the
center of the heam. The ticks on
the trajectories indicate points
separated by 0.5 s in time. The
arrows indicate the direction of air
flow with increasing time. Also
shown in Table 4 are the times T
actually spent in the laser beam by
a particle that crosses the stag-
nation point at the center of a
10-cm~radius beam.

The longitudinal wind speed in
the neighborhood of the stagnation
point is roughly equal to V,

-re
For the

1 3
can be seen from Eq. (7).
scenarios described in Table 4,

Ve 18 of the order of 10 m/s. For

el
these scenarios the longitudinal

wind component will be of limited value
in clearing the beam in the vicinity of

the stagnation point.

Table 4. Residence time in beam for air particles passing through stagnation
point.
Target position Stagnation point Residence time,
at t =0 at t =0 T
Scenario (km) (km) (s)
A 1.5 0,844 1.0
B 1.0 0.379 0.5
c 2.5 2.33 1.2
D 1.0 0.295 1.0

-7~
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Fig, 10, Adir-flow trajectories in rest frame of slewing laser beam in the
presence of a stagnation zone. Ticks on the curves denote
0.5-s intervals. (a) Range = 1.5 km, stzgnation point at
z = 0.844 km. (b) Range = 1.0 km, stagnation point at
a8 = 0.379 km. (c) Range = 2.5 km, stagnation point at
2z = 2.33 km. (d) Range = 1 km, stagnation point at z = 0.295 ka,

5. Calculation of Transverse Wind Velocities
for Noncoplanar Scenarios
We shall again assume the or the horizontal, plane. The line

sceanario of Fig. 1, only now we

shall relax the.assumption that the
scenario or kinematic plane neces-

sarily coincides with the earth's,

-18-

PLP and the wind vector, however,

will be assumed to lie in the earth's
plane (see Fig. 11).
direction will be along the direction

Again, the z



Target motion in

straight line
Y
Wind
vector
Target sighted
rget sig Vi
h
(]
-]
P ?s T < Oy
. L ] Transmitter motion
v N Impact point
frote——— e —— -I-Tc——b'
Fig. 11. Diagram of noncoplanar scenario. Laser is now situated at a

height % above the platform.

of motion of the laser platform, the
y direction will be in the kinenatic
plane, and the unit vector normal

to the kinematic plane will be
called E
be situated at position L', which
is at a height % abov the line PLP.
The line LL' defines :che vector h =
h= hl’;, which is normal to the

The laser aperture will

horizontal plane and makes an

angle Gp with the vector E The
scenario parameters D, 4:8, R, 8,, 1,
and GT are now defined in a plane
tilted with respect to the hecrizontal
plane, but they are related exactly
the same as before. The distance R,
however, no longer has the signifi-

cance of range, The calculation of

=19~

rhe true range R' is described below.
In order to follow the wind im a
frame of reference that moves with
the laser, it is necessary to intro-
duce an appropriate orthogonal
coordinate system. Clearly this
coordinate system will not be
unique, but a suitable one can be
defined as follows: 2 is directed

along the laser beam,

2 x ¥,
Y =T
P =|-§—"—El’ (11a)
and
2 =" x2. (11b)

It is most convenient to express all

vectors used in the computation in



the kinematic coordinate system.

Hence we have

Ty =0, 0, (12a)
;k = {cos OR, sin GR, 0), (12b)
R = (cos 0, sin 8y, 0), (12¢)
k= (0, sin 8,0 €05 6.), (12d)

~

Vy = (cos GW, sin SW cos Sp,

~ sin GW sin Gp) (12e)

R =R-h, az6)

Vps Vi
directed along Yo YR’ and !”, and

the vectors R = RR and R' are directed

~

where V&u

~

are unit vectors

along lines extending from L and L',
respectively, to the receiver
(target).

The effective wind seen in the
frame of reference moving with the

laser beam is

Voee(ai2) = Wy = Yp) - &7 {[!R -

The effective wind components along
#' and ' are then obtained from

Veggrt = Yoge = 2 » (142)
= . Ot
Vegy' = Yoge = 8" - (14D)

W02 - [y - W} a3

The effective horizontal and ver-
tical wind components in Eqs, (14)
become inputs to the hydrodynamic
calculation which is described in
Sections 6 and 7.

6. Steady-State Solutions of Hydrodynamic

Equations for Arbitrary

Transverse Wind Velocities:

cw Steady State

Noncoplanar scenarios create
effective winds whose orientation
in the transverse plane vary with
propagatibg\distance 2. All
symmetry in‘t@e transverse plane
is lost, and the & axis can no
longer serve as the wind axis.
The linearized hydrodynamic
equations must be recast and
solved for a wind having an

arbitrary direction.

The linearized hydrodynami:
equations to be solved are

dp.

1
3 tr Y

=0, (15a)

%

4. . 2
PoaE Y =~ +2; o

o, .
okl LA !1)' (5
k4

d 2
a Py -e;70)) = (v - 1) oI, (150)
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where p,, v;, and p, represent the
density, velocity, and pressure per-
turbations induced by laser heating,
n 1s the viscosity, and the total
derivative %; is defined by

43 4,034, 2
Frl v pye + uy 57 (16)

Elimination of Py and vy yields the

2
‘— 2., 2 -c‘2V2-%H—V2
Po

where
ap ap
h o= —Ltagp L
P =% % vy 9 19

The solution for pl is carried out in
two steps: first Eq. (18) is solved
with él as dependent variable, and
then Eq. (19) 1s solved for .

We shall restrict our attention to
the subsonic case, where vi + v2

< cz. In that case Eq. (18) is ellip-

3
x ox Y

fallowing equation for pl:

2
af_a 2,2 4 _n 2
El L p -V -2 275
at\ ;2 P17 % " 17375, 1)

=(y-D 1. an

We are interested in the steady state
or the case in which Eq., (17) becomes

C | E 2
+v, 5l = 0 - eI, a®

tic and can be expressed in terms of

a finite Fourier series represemtation:
Py (1)

=D Bylyk) emlitez + Kyl
kx’ky
e

The coefficients D(km’ky) satisfy

~ 2 2
aI(kz,ky) (K, * k)

D __fy1)
l(kz’ky) - 2

-]
] 2 2 5
{(kx + ky)[l + 3

where T(kw’ky) is the Fourler trans-
form of I(x,y). The inverse Fourier

transform of Eq. (21) is evaluated by

[

Pneg

2
e
&

n !uxkz + vk )2
(u.rk:c + vyky) -

(21)

means of the fast Fourier tramsform

(FFT) algorithm. The function
Bl(z,y) thus obtained then becomes

=-21-

»



the source term for Eq. (19), which If we define

can be solved using the Carlson methodl

for integration along characteristies. 8= ;1—23 R (22a)
The solution of Eq. (19) is obtained Ty

by a difference method in configura- »

tion space in preference to a Fourier i’ = Iv:cl . (22b)
transform method because the transform x

of pl(:c,y) will have poles whenever »

v:ck:c + vyky = 0. The evaluation of Jjt = ﬁll- 4 (220}
the inverse transform by the FFT ¥

algorithm will be troublessome, since the difference equation satisfied
these poles must be avoided. by Psg = pl(iA'c,jAy) can be written

. 1 -
s - s s £ >1;
Piit gmi? + (1 B) DL.J_J} for B > 1; (23a)

D,;j =3 pi-i',j—j' +(1-8 pi-'i',j
__AL 0 5 0 for B<1 (23b)
. . - . . <1.
Yoo 1% T E Prar,gegt T AT B Ogage pfor B

7. Steady-State Solutions of Hydrodynamic Equations for
Arbitrary Transverse Wind Velocities:
Multipulse Steady State

Isobaric denmsity changes induced by multipulse heating are govermed by
the equation

mp

TP 30 ™™

1 -1 e SR &2 § 2 - 24

3 T e YUy 202 ey 80 - @0
B n

vwhere TpIn ‘z,y) represents the fluence of the nth pulse, and ‘I.'p represents
-22-



the pulse width. If "steady-state"
conditions prevail, it can be assumed

that Ih does not vary from pulse to

Yo

1
9t
g

. ~mp _ _ Y -1 7 -
* ilok, + v,k F = ar Tl k) Zé(t £
n”

pulse. Hence In(x,y) = I(x,y).
Taking the Fourier transform of Eq. (24)
with respect to & and y yields

(25)

Solving Eq. (25) for ETP at a time t = mA¢, where m is any integer and At

is the time interval between successive pulses, gives

N
14

By Gk ymt) = - 3:;—1 o Tk ok, ) 2 expl-indt (R0, + 0]

8 n=1

The exponentials in Eq., (26) corres—
pond to translations of the individual-
pulse fluence distributions in con-
figuration space by wind motion,

The summation begins with n = 1
because the isobaric density changes
created by a given pulse do not have
time to develop during the pulse
width, Tp' The upper 1limit Nb is
based on numerical considerations and

is determined by

NAx

Np = MIN\ e [vxlAt] ’

Ay
0,182 || »

where N is the numerical length of the

Q@n

mesh used for solving the wave

equation.

~23-

(26)

In Eq. (27) MIN signifies the min-
imum of the arguments, and the square
brackets represent the integer part
of the arguments inside them. An
input value of Nn is nseful if a true
stagnation point is encountered along
the propagation path. In such cases
the total density change at the stag-
nation point can be kept bounded.

For example, Ninput might be set equal
to the actual number of pulses in a
given train, in whick case a true
lower bound could be assigned to the
intensities at the target.

The remaining arguments in Eq. (27)
prevent any pulse fluence distribution
from affecting the demsity calculation
if it has been translated by more
than the minimum (physical) dimension
of the computational mesh for the
wave equation, l.e. MIN(NAz, NAy).



The density calculation itself is
carried out on a 2¥ X 2N mesh, which
has a buffer of length N in both the
x and y directions, Thus if NP
satisfies condition (27), periodic
"wrap-around” or positional aliasing

of the density contributions by past
pulses in the train is avoided.

The summation in Eq. (26) may be
evaluated directly, and Ei can be
expressed in the form

. N+1
>. PN Siarl - - B
pl(kx’ky) 02 aI(k:,ky) exp [ —= At(kzv: + kyvy)]

8

The density pl(:,y) is then obtainable
from Eq. (28) by an .nverse transform
operation using the FFT algorithm.
Equation (28) has been used in a num-
ber of test examples with satisfactory
results, If the spectrum I(kﬁ?ky) is
particularly rich in high spatial fre-
quencies, Eq. (28) may give rise to a
ringing behavior in configuration space

due to the fact that the shift operators

exXp (-inAtk:vx), exp (—inAtkyvy) (29)

N
2
sin 5 At(krvr + kyvy) 28

At
sin =5 (k:v: + kyvy)

may not correspond to lattice
translation operators on the cospu-
tational mesh. In =such a case

ringing can be suppressed by express~
ing the solution of Eq. (26) in

terms of the interpolations of latrtic:

shift operatioms.

By means of bilinear interpolatiom,
one can express any function T(x,y)
at positions intermediate to the lat-
tice by means of

Tirfpierf, = O 0P Sa Tpna* A= £ 5y T en

+ frfy Tj+1,k+1 + (- fy)(l - f.'l.‘) Tj,k ,

0<fS1,0<f <1,

(30)
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where J': and f, reprzsent fractional oay thus be represented in the fol-
digrances between lattice coordinates, lowing alternative form, vhich avoids

and where the numbers '.7‘1. ;, represent the usc of nonlattice shift operators
Jak

vialues of 7(x,y) sampled ar lactice (the notation | } signifies the

points. The summacion in Eq. (26) integer part of the argument):

;‘ip

z exp |-€nl‘:t(;c:u: + kyuy)',

n=l

4
P . -
. .
- F.(1 -5 expli ,—{r:. {{nn) + 1) + n,_ {nnj
rgl x Y ( o EoTE ky Y f)

+ _r‘y(l - _.-*y; exp (i % {nk:lnxn) + ”ky”"y"] + 1)})
7 }‘

s = + + n +1
* I, exp ( : {nkxtlnxn] n rky([nynl ) )

$ QA= 7)a -5 e (1: 3 {nkxin:n] + "Lyi"y"]}) = glk),  OD

where The summation in Eq. (26) over 7z can
b be evaluated as a 28 x 2¥ DFT with
n = int . the aid of the FFT algorithm. For a
given value of n, the numbers [nz_n].
o At (n‘tn] + 1 can each be fdentified as
n, = _% . #-coordinites 5, and the numbers

\ 32) [nyn], myn] + 1 as y~coordinates ny
in cthe laccice space, Thus each
exponential in the summation fin

Eq. (31) can be identified with a par-
ticular lactice point Ros ny. As the
index n is incremented, the appro-
priate bilinear function of f:(") and

~25-
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j;(n) is added to the contents of a
storage veglster corresponding to
coordinates nos ny. On completion of
this operation, a two-dimensional DFT
of the resultant array will yield the
desired sum (31).

The Fourier trransform of the

density can then be expressed as

~ . . (-1
Dl(kz,xy,mAt) 2
8

* allkak ) Gk . (33)

Both the options (28) and (29) are
currently available in the Four-D
code, and the cases run have produced
results that are almost indistinguish-
able.

The shifts and interpolations
implied in Egq. (31) may, of course,
be carried out strictly in configura—
tion space. If Np is small, this
procedure may be more economical.
As N
tran;form method becomes more

becomes large, the Fourier

economical.

8. Effect of Noncoplanarity on Propagation of
cw Laser Beams Through Stagnation Zones

We shall focus attention on the
scenario discussed in Ref., 1, in
which the total propagation dis-
tance is 1.5 km and the stagnation
point occurs at 2 = 0,843% km. The
initial diffraction~limited beam is
Gaussian, with 1/e2-intensity
diameter of 70 cm, and is assumed
to be focused at the 1,5-km range.
The wavelength and absorption coef-
ficient are assumed to be 3.8 um
and 0.07 km-l, respectively. For
reference the results of the time
dependent calculations at £ = 60 ms
are given in Table 5. For this
value of £, the beam properties are

changing very slowly, and the assump-

tion of a "quasi" steady state is a
reasonable one.

In the noncoplanar scenario, on
the other hand, a true steady state
1s known to exist, and a time to
establish this steady state can be
estimated by dividing the beam
diameter by the magnitude of the
vertical wind component at the
stagnation point. The noncoplanar
results are naturally much cheaper
to obtain than the corresponding
coplanar results.

In Table 6, steady-state results
are given for the scenario corres-
ponding to Table 5 for a variety of

elevations of the laser aperture

-26-



Table 5. Ream properties on target at t = 60 ms.

Intensity averaged

Peak intensity Minimum half- over minimum
Laser power at target power area half-power area
(kW) (kW/em?) (em?) (kW/em?)
500 10.8 33.4 6.72
500% 9.8 53.5 4,19
500° 11.0 33.2 6.76
250 12.4 13.5 8.34
125 17.7 4,42 12.7
62.5 22,7 1.65 17.0

%Focus 100 m beyond range.

bMotion of stagnation zone taken into account.

Table 6. Steady-state cw beam properties as a function of laser height above
scenario plane.

Latenaity
Minimum half- averaged over
Verrical wind power area Minimum half- Time to Peak ninimum half-
Laser Laser speed at {stagnation power area steady intensity power area at
power elevation stagnation point point) (target) state at target target
(k) () (w/a) (cu?y (em2) [ (e fem?) (ei/en?)
500 5 0.55 293 37.7 0.312 11.9 5.97
10 1.1 291 3.6 <155 12,0 6.69
20 2.2 250 29.1 -077 14.0 7.72
3o 3.3 289 26.4 052 15.9 8.52
40 4.4 287 23.6 .039 16.1 9.53
250 5 0.55 279 13.7 <303 16.6 8.2
10 1.1 278 12.0 «152 17.8 9.36
20 2.2 277 10,1 .076 19.5 11.0
30 3.3 278 8.9 .051 21.6 12.6
40 4ub 276 7.88 .038 24,1 14.3
125 5 0.55 272 4,66 .300 22,9 12.0
10 1.1 271 4,04 W150 2543 13.9
20 2.2 271 3.33 .075 28.6 19.5
40 4.4 270 2,31 037 39.% 24.3
62.5 5 0.55 268 1.58 .29 30.6 17.7
10 1.1 268 1.37 0.14 34.3 20.5
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above the scenario plane. Figure 12
shows the variations with 2 of the
horizontal and vertical components
and the magnitude of the transverse
wind.

From Tables S and 6, it is evi-
dent that the space-averaged inten-
sitfes in the focal plane for the
noncoplanar scenario at 5-m eleva-
tion agree with the corresponding

average steady-state intensities for

Time~-dependent
coplanar, quasi-
steady state

Steady stcte,
noncoplanar,
h=10m

Fig. 13. Comparison of isointensity
contours for stagnation-
zone situations in coplanmar

and noncoplanar cases.



the coplanar scenarios to within
less tham 10%.

for the noncoplanar scenario at 5 m,

The peak intensities

on the other hand, are somewhat
higher than the corresponding values
for the coplanar case. There is
also a substantial difference in the
appearance of the isoiniemsity con-
tours in the focal plane (Fig. 13).
As would be expected, performance
improves with height, although the
improvement is marginal for the

elevations considered. In all cases

a steady~state condition can be
reached in a time small compared with
times of interest.

In conclusion, average intensi-
ties for coplanar stagnation-zone
scenarios can be calculated by
adding nominal noncoplanar features
to the scepario and performing a
steady-state calculation, For
w beams, however, rather
substantial laser elevations
must be provided to alleviate

stagnation-zone effects.

9. Effect of Noncoplanarity of Propagation of
Multipulse Beams Through Stagnation Zones

We turn our attention again to
the scenario of Section 3, All
problem parameters are the same,
except that the laser is now assumed
to be elevated 10 m above the
scenario plane. Figure 14 shows the
vertical and horizontal components
of transverse wind velocity as
functions of propagation distance.
Figure 15 shows the isointensity
contours in the target plane for the
various repetition rates.

Table 7 compares laser perfor-
mance on target as a function of
pulse-repetition frequency for the
coplanar scenario and the noncoplanar
gcenario with a laser elevation of

10 m. In the absence of complete

~29~

steady-state data for the coplanar
case, we have used in Table 7 inten-
sity values corresponding to the
final times exhibited in Fig. 6 for
a given value of v. Thus the
improvements due to noncoplanarity
shown in Table 7 are conservative
estimates.

It is seen from Table 7 that
improvements of at least a factor
of 2, conservatively estimated, are
possible for all values of v. 1In
the case of v = 10 s~ the laser
performance is even better than it
would be in a vacuum. The reason
is that for this pulse-repetition
frequency the overlap number at the
stagnation point is only 2, and for
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overlap numbers in the range 1-2
such enhancement effects for multi-

pulse beams are well knovn.6

=30~

°4
Q

Fig. 15. Changing shapes of isoin-
tensity contours as a
functiou of pulse~reperition
rate for noncoplanar scenario;
laser at 10-m elevation,

To summarize: there is clearly
some hope of minimizing stagnation-
zone blooming for mulcipulse beams
by a combination of elevating the
laser aperture above the scenario
plane and lowering the pulse-

repetition frequency.



Table 7.
coplanar scenarios.

Comparison of multipluse beam properties for coplanar and non-
Power = 53 kW, range ~ 2.5 km, A = 10,6 um,

elevation % = 10 m, and vertical wind speed at stagnation point

= 0.61 m/s.
Intensity Intensity
Hinfnum averaged averaged
half-power Time to Peak over over
arca uteady Cvarlap Peak intensity oinimum minimum
Pulse {stagnatfion scate number at intensity at carget half-pover half-power
repetition point, {non~ stagnstion at target {non- area area (non-
frequency, noncoplanar coplanar point (non- (coplanar coplanar (coplanar coplanar
\ scenarlo) scenario) coplanar scenario) acenario) scenario) scenario)
(O} (cu=2) (s) scenerio) (W/ea?)  (Wemd)  (Wemd) (R/cu?)
10 131 0.19 1.9 85.5° 287" 52.0¢ 181"
25 116 0.18 4.49 e.5° 116 32.5¢ 65.6
50 104 .17 8.49 28,79 70.9 17.8¢ 42.3
100 140 0.19 18%.0 30.~’cd 49.0 13.2¢ 30.3

AVacuum beam has value 238,

qucuum beam has value 170.
<

d

05 = 0.2 3, steady state has not been reached.

¢t = 0.6 5, steady state has not been reached.
¢ = 0.32 s, steady state has not been reached.

10. Single-Pulse Thermal Blooming in the
Triangular Pulse Approximation

The isobaric approximation for
changes in air density is invalid
for a single laser pulse whose dura-
tion is comparable to or less than
the transit time of sound across thc
beam. In this time regime — referred
to as the t3-regime because of the
time dependence of density changes
arising from an applied constant
laser-energy absorption rate — the
air-density changes must be deter-
mined from the complete set of time-
dependent hydrodynamic equations,
Eqs. (15).1’7

At late times in the pulse, t3
thermal blooming tends to reduce the
on-axis intensity relative to what
it would be if the beam were propa-
gating in vacuum. This reduction
increases with time, and for suf-
ficiently late times a depression
appears in the center of the beam.
Energy added to the pulse at later
times will contribute only margin-
ally to the om-axis fluence. Thus,
for a specific peak pulse
intensity, the on-axis fluence

appears to saturate as the pulse
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duration is stretched ocut more
and more.

These properties are best illus-
trated by a numerical example. Let
us consider a beam that is Gaussian
at z = 0 with 1/ez-in:ensity radius
25 crn  The beam, which is focused
at 2,5 km, is assumed to be 2x dif-
fraction limited (A-scaled) with
X = 10.59 ym and a = 0.3 x 107> cm L.
The pulse is souare-shaped iIn time
and lasts 100 us. The choice of a
square-shaped pulse is convenient
because a single calculation con-
tains the ccmplete information for
all square pulses of duration
shorter than the one chosen.

Figure 16 shows the on-axis
intensity at z = 2.0 km, obtained

3.5 T T

“w
T

2.5 b

2,01 b
1.5 1

Intensity — MV”/crn2

—_
.~
(=
1

0.5 4

0 L
0 25 50 7t 100

Time — us

Fig. 16. On-axis intensity as 4
function of time. The pulse
is taken to be square-shaped
in time. Thermal blooming
reduces on-axis intensity

to a negligible value after

a sufficiently long time.
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by detailed numerical solu:ion1 of
Eqs. (15).
clearly drops to a negligible value

The on-axis intensity

before the end of the pulse, and,

as a consequence, the on-axis
fluence saturates as the pulse width
increases, as can be seen in Fig. 17.
The detailed temporal evolution of
the spatial shape of the beam is
shown in Figs. 18 and 19. Figure 18
is a three-dimensional plot of the
laser intensity as a function of
time and rvadius.
the radial inteasity profiles for

Figure 19 shows

increasaing values of time. The
opening up of a hole in the back of
the pulse is clear from both
Figs, 18 and 19.

Calculations of the type repre-
sented in Figs. 17-19 become

impractical 1f one is treating a

ISOF
g 125}
g
o~
£ E1oof 1
£ S
E l 75+ B
E g
o ¥ 50 ]
5 2 %
°
- 25_ 4
) |
[i] L A .
o] 25 50 75 100
Time — us
Fig. 17. Saturation of on-axis fluence

due to strong pulse thermal
blooming.
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Fig. 18, Three-dimensional plot of Fig. 1Y9. 1Intensity as a function of
intensity as a function of radius fer increasing time
time and radius corresponding in pulce corresponding to
to Fips. 16 and 17. Figs. 16 and 17.
multipulse beam. The determination the laser intensity is assumed to
of nonisobaric contributions to the vanish for ¢ = 0 and ¢ 2 ZTP.
density is greatly simplified by the
triangular pulse approximation,l in The density change at ¢ = Tp can
which the dependence of the laser be evaluated analytically in terms
intensity on time is represented as of a finite Fourier series represen-
an isosceles triangle with base tation of the laser intensity. The
equal to ZTD. The density is Fourler transform of the noniso-
required oniy at time t = Tp, since ba:>.ally induced density change is
[ 1/2
= 211
olT sin” |F e, T (k + K )
2 s
P e -y -1 —F 41 - 2 (a6

ol e glzee)

where T is the spatial Fourier transform of the intensity. The corresprading
density changes at the grid points are given by the discrete Fourier transform

(DFT) expression
N
PGy = o072 S B (E ) exp (i), (3%
myn=-N+1
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where the basis functions are
periodic on a square of side 2L.
This allows for a buffer region that
extends an additionmal distance I in
both the x and y directions from the
region of interest.

Comparison of the triangular
nulse approximation and detailed

pulse thermal-blooming calculations
for Gaussian-shaped pulses in time

have shown good agreement between
the calculated fluences for weak or

moderate thermal blooming.l

250 T
e% "

200 |- —
>
:-; 150~ - —
g
= 100~ B —
%
o
& S50~ b
(o]

1 i ]

0
0 25 50 75100
Pulse length — us

Fig. 20.
of pulse length, as calcu~-
lated with triangular pulse
approximation (x's) and by
detailed numerical solution
of hydrodynamic equations
for a square pulse in time
(solid curve). The tri-
angular pulse approximation
breaks down as saturated-
fluence condition sets in
at t_ < 1.5¢_. Erratic
beha@ior is due to develop-
ment of splkes in the
intensity pattern as a
function of transverse
position,

On-axis fluence as =z function

125 T T T
E
£ g 00f g
E > asn P
]
£ 75 -~
s 8
g B
$ B sof 4
< 2
]
5 :E 25 =
<
0 1 | 1
0 25 50 75 100
Pulse length — ps
Fig. 21. Fluence averaged over

minimum area containing one
half of total beam energy,
as a function of pulse
length. Solid curve is
detailed caleulation for
square pulse, x's represent
triangular pulse approxi-
mation.

Figure 20 shows the on-axis fluence
calculated for the previous example
with the triangular pulse approx-
imation (x's) and the detailed
solution of Eqs. (15) for square
pulses in time (solid line).
Despite the difference in assumed
pulse shapes, the agreement between
the two types of calculation is very
good up until time ¢ % 50 us, which
is well above the saturation time
ts = 38 ps predicted by the pertu;—
bation theory of Ulrich and Hayes
based on the work of Aitken et aZ.9
Above 55 us, or approximately 1.5t8,
the beam abruptly develops spikes

in its transverse spatial dependence;
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this clearly signals the breakdown
of the triangular pulse approxima-
tion, which must obviously fail when
strong saturation behavior sets in.
Figure 21 shows the fluence
averaged over the minimum half-
energy area (the area within the
one-half peak energy contour) cal-
culated with the triangular pulse
approximation and with the detailed
solution of Egqs, (15) for square
pulses. Both calculations increase
initially, reach a maximum, and then
turn over with increasing time.
This is in part due to the increase
of the area within the one-half peak
There is,

however, no point in believing the

energy contour with time.

triangular pulse approximation
beyond the time when the average
fluence curve has reached a marimum,
which also coincides with the onset
of erratic behavior in the on-axis
fluence (Fig., 20).

The perturbation theory slluded
to earliers’9 describes the on-axis
fluence saturation for a b-am that
is initially Gaussian in shape and
for a pulse shape that 1s square in
time. 1In this theory, the expression
for the on-axis intensity is

tj
Io(z)(1 - —;) t <t
I = e
(36)
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where Ib(z) is the on-axis intensity
for a Gaussian beam propagating in

vacuum, Or

ENG) Pl

Gy - 37

Io(z) =
Here a is the absorption coefficient

and

2 2
Pz = (1 - 5) + (—z—) .38
2 7 o2

vhere S 1s the focal distance and a
is the radius of the original
Gausgian beam. The saturation time
ta at on-axial position z 1is given

by

[zrlw - azZEpe—az]-IIB
t = (39)
8 L 3mz602(z) T J

where ¥ is the refractivity. E% is

the pulse energy, and 7. is the
pulse duration. Since the fluence
cannot be increased for pulses
longer than ta, it can be argued
that nothing is accomplishad by
making the pulse longer than ts.

The fluence must be maximized
instead by maximizing the product
lb(z) ts or, equivalently, by
maximizing Io(z). The maximum
allowable value of In(z) at point z
is normally determined by the con-
dition that it not exceed the break-

down intensity, or



max Io(z) = IBD . {40}

This maximum allowable intensity in
turn determines a critical input
pulse energy at z = 0 given by

E

' oz
pie = Tt IgD (2)e , (41)

where Eq. (37) has been made use of,

and where ts is calculated from

Wy - 1) azzIBD -1/3
¢ =l . D)
8 3a"D(z2)

1f one is dealing with a multipulse
laser with pulse-repetition fre-
quency v, Eq. (41) can be used to
define a critical input power with

On~target fluence —
arbitrary units
e
o
=]
|
J

-

=}

)

2
{

0 1 ) ) )
0 0.5 1.0 1.5 2.0 2.5

Nomnalized input-pulse energy

Fig. 22, On~target fluence from tri-

angular pulse approximation

averaged over area contain-
ing (1 - 1l/e) fractiom of
total beam energy. Range

= 1.5 km, Ipp = 1.6

x 106 w/cmz.

~36-

Pcrit = vEcrit

Tavt T ()™ . (43)

8 BD

The self-consistency of the
triangular pulse approximation, on
the other hand, prevents the on~axis
intensity from ever becoming
negative, but, as previously
remarked, the triangular pulse
approximation breaks down for pulse
energies greater than the value that
maximizes the space-averaged target
fluence. For this pulse erergy, the
average and on-axis fluences should
be saturated, and further increases
in pulse energy would give no return.
Figures 22 and 23 have been calcu-
lated with the data on which

& 1.00
§ n
< 20,75 -
§E
o >
Q
§g_ 0.50— )\ —
2%
,6'3 lnrensit>\
210,25 / Fluence X
g
i
O 0 1 1 l 1
0 0.5 1.0 1.5 2.0 2.5
Nomalized input - pulse energy
Fig. 23. On-target space-averaged

fluence and intensity as
functions of input pulse
energy for triangular pulse
approximation. Rangg

=2 km, Ipp = 3 x 10° w/cm?,



Figs., 16-21 are based, but with the
following differences: the ranges

for Figs. 22 and 23 are 1.5 km and

2.0 km respectively; the values
assigned (somewhat arbitrarily) to
IBD at thesesrange; are 3 x 106 W/cm2
and 1.5 % 10° W/em™.

Both the on-target space-averaged
fluence and intensity (Fig. 23) are
plotted as functions of the input
pulse energy normalized to Ecrit
42).

averaging is over the area contained

given in Eq. The space
within the 1/e energy contour. The
indicated maxima of the average
fluences in both Figs. 22 and 23
occur at an input pulse energy equal

to 1'7Ecr' . The space-averaged

it
fluence curves in Figs, 22 and 23
are smoother than those displayed
in Fig. 20 because the former are

averaged over larger areas., The

scaling implications of the pertur-
batlon theory described in

Eqs. (36)-(42) are apparently valid
for the triangular pulse approx-
imation, although the maximum useful
pulse energy predicted by the latter
1s about 50% greater than that
predicted by the perturbation
theory.

In summary: the triangular pulse
approximation should provide reason-
ably accurate fluence results for
pulse energies up to the values
where strong thermal blooming
saturates the on-axis fluence. The
breakdown of the approximation will
be indicated by the development of
spikes in the transverse spatial
dependence of the beam intensity as
well as by a sharp falloff in the
fluence averaged over some area as

a function of pulse energy.

11. Multipulse Thermal Blooming in the
Triangular Pulse Approximation

The propagation of a given pulse
in a train is influenced by both the
nonisobaric density changes
discussed in the previous section
and by the isobaric density changes
due to heating by previous pulses
But can the self-
blooming and multipulse hlooming

in the train.

effects be treated independently?

=37~

If s0, the results and discussion
of the previous section suggest
that, as time-averaged laser power
is increased by lengthening the
duration of the constituent pulses
in the train, the time~averaged
intensity on target should saturate
at a value that is predictable from

the saturation fluence for a single



pulse, If <I> represents the time-
averaged intensity, the maximum
achievable value of <I> for a given
pulse-repetltion rate should be
expressible as

<I> = VF

max sat * (4%

where f;ac is the single-pulse
saturation fluence.

In order to test the hypothesis
of the independence of self and
multipulse blooming, a set of cal-
culations has been carried out with
the following set of parameters:
Start beam shape Gaussian, truncated

at l/‘e2 radius

Range, R 2.5 km
Focal leagth/

range, F/R 1.0 and 1.2
Wavelength, X 10.6 um
Absorption

coefficient, & 0.25 k™1
Aperture diameter,

2a (Gaussian at

1/e%) 21.2 em
Wind velocity, u 10 m/s

Pulse-repetition
rate, v 33-1/3 and 50 871
Maximum pulse

intensity at

receiver, I 4.9 MW/cm2
max
Overlap number,
yy = Za\)/v0 1.0, 1.5

Figure 24 shows the space-
averaged single-pulse intensity I

for v = 33-1/3 s™1 and Ny =1, with

FIR = 1,0 and 1.2, calculated as a

function of input time-averaged power
<p> = VEp. The curves have been cal-
culated with and without the effects
of pulse self-blooming. The curve
without self-blooming for F/R = 1,2
rises slightly with input power
because of a very slight amount of
pulse overlap. It is clear Erom
Fig. 24, in any case, that thermal
blooming is due almost entirely to
self-blooming effects. The corres-
ponding curves for space- and time-
averaged target intensitiles <I> are

displayed in Fig. 25, where
<I> =TJtv . 44)

It is seen that <I> with self-blooming
rises ipitially, reaches a peak, and
then falls.

previous section, we interpret the

From the analysis of the

pcak values of <I> as the saturated
values,

Figure 26 shows I as a function
of <P> for v = 50 s™T and 8y = 1.5,
with F/R = 1.0 and 1.2, Above <P> =
= 0,5 MW, and an enhanceuent effect
sets in that 1s greater in the case
of the defocused beam. The corres-—
ponding curves for space- and time-
averaged target intensities are shown
in Fig, 27,

A comparison of Figs. 25 and 27
is summarized in Table 8. It is seen

that at v = 50 s‘l the power <Ebsa

t
at which saturation of <I> occurs is

=38~
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Fig. 24. space-averaged intensity on target as a function of time-averaged
power at transmitrer: Vv = 33-1/3 s~1, N, = 1, <(a) F/R = 1.0.
(b) F/R = 1.2. Te
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(a) F/R = 1.0,
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Table 8. Saturation of time- and
space-averaged target
intensity due to self-
blooming.

Yl <P>sat <I>sat
™ F/R sy (kW/en?)
33 1/3 1.0 1.0 2.4
33 1/3 1.2 1.2 2.5
50 1.0 1.75 2.7
50 1.2 2.0 3.5

higher for both values of F/R than
it is at v = 33-1/3 s~L. The cor-
responding saturation intensity
values <I> are also greater at
_lsat -1
v =>50s "~ than at v = 33-1/3 s ~,
If effects of self-blooming are not
included, on the other hand, values

of <I> are always greater at a given

value of <P> in the case of
v = 33-1/3 s~

Unfortunately, we have no guide
to the accuracy of the triangular
pulse approximation in the overlap
case as we do in the nonoverlap case.
But -he above results strongly sug-
gest that the contributions of iso-
baric and nonisobaric density changes
to thermal blooming of multipulse
beams are interrelated, and that
time~-averaged saturation intemsities
based on single saturation fluences
may not be applicable for overlap
numbers somewhat abave 1. In fact,
overlapping isobaric density patterns
may in certain situmations actually
override the effects of single-pulse

nonisobaric density changes.
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Appendix A: Adaptive Lens Transformation

One key to the successful implementation of a laser-propagation code
is finding a coordinate transformation that keeps the laser beam away from
the calculational mesh boundary and at the same time prevents the beam from
contracting to an unriasonably small fraction of the total mesh area at the
focus. If one is selving the Fresnsl equation by the finite Fourier trans-
form method, one may alternatively view the problem in terms of couwple-
mentarity: one wishes to find a transformation that simultaneously keeps
the beam intensity small on the mesh boundaries in configuration space and
keeps the Fourier spectrum small on the mesh boundaries in k-space. If
these two conditions are met, one knows from sampling theory that the
numerical solution 1s highly accurate.

The Four-D code uses an automated procedure that is designed to keep
the intensity centroid at the center of the mesh and the intensity-weighted
r.m.s. values of z and y constant with propagation distance 2. These con~

ditiugs can be written

3 -

55 <%;> =0, (Ala)
I

2 e, ~<ad =0 i=1,2 (A1b)

o2 % 3 >_r > > c

where

fdx dy I(x,ylu
(Ale)

<u>I = —_—
fdx dy Ifz,y)

Hereafter, all averages will be assumed to be intensity-welghted, and the
subscript 7 will be dropped.

Conditions (AL} also apply to the adaptive coordinate transformation
of Bradley and Hermann,Al which differs from the one employed in the Four-D
Al, L, C, Bradley and J. Hermann, "Change of Reference Wavefront,"

Massachusetts Institute of Technology, Lincoln Laboratory, Lexington,
Mass,, unpublished internal report.

=45=



code only in that it is preceded by a transformation to the coordinates of
an arbitrary Gaussian beam propagating in vacuum. It should be evident, 1in
any case, that such adaptive transformations are restricted to steady-state
problems, since for time-dependent problems no single transformation will
apply to alil time values, To solve time-dependent problems one must employ
a Talanov transformation that is optimized to all time values. This
optimization is accomplished by -~ combination of trial and error and
intuition.

The splitting algorithm employed in the Four-D code can be written
formally as

[}

d

& - exp (— %ﬁﬁ Vf) exp (— %Aci i) exp (— Z'% Vi) 8, (A2

2,2
x=k@& -1,
where the middle exponential on the right-hand side of Eq. (A2) contains the
changes in phase resulting from hydrodynamic changes in censity, turbulence,
etc. Immediately after this step in the calculation, a quadratic reference
phase front is determined and is removed from & by means of a Talanov
transformation and a deflection of the beam coordinates. These operations
are ca ried out as part of the vacuum propagation step., During vacuum
propagation the solution is advanced by solving
. 38 _ o2
21k i Vl 8. (A3)
Equation (Al) camn be written
<> =1 Vdn ax, 2 |6 2,2 |2 (Aba)
A P 1 ™27 172 ?

2 1 2 2 .
<z o = —lsfd:vl dr, :cilé(::l,:cz,z” , =1, 2 (a4b)

where P is the beam power given by

P= f day dmy (Bl |7 (45)
46~



By differentiating Eqs. (A4a) and (A4b) with respect to z and making

use of the Fresiel equation (A3), one obtains the following relations:

LI S 2 2., 8

LR j dry dz, |6z, ,2,,2) |7 2, 52; #2522, (A62)
9 1 2 3

ST = - 5 [ dz; d.-czlé‘(zl,zz,z)l -3—1_? by, 75,2) (A6b)

wherc the phase ¢(::1, Z,s z) is defined by

¢(:cl,:z:2,z) = Im[lné’(:rl,:r .2)] . {A6c)

In k-space one can similarly derive

P 1 ~ 2 _<Kg>
9 <> = TP g, dr, Kiig‘(l(l,,ltz,z)' =5 (A7a)
3.2 __2 o~ 2
Sz >~ In f[ de; de, Ki|é°(n<1,n<2,z)|
X e YK LK, ,2) (A7b)
aki 12727

~
where é“(Kl,KZ,z) is the Fourier transform of é“(::] ,zl,z), and
Yliyakp,2) = Im[lng(xl,lcz,z)] . (48)

We now wish to determine a phase front that will preserve the following

conditions:
_a__< >=0 (A9a)
3z <71 ’ A%a
-0 i=1,:2 (A9b)
92 A ’ [
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Equation (A9b) is equivalent to

3 2 ) _
—Z-E<“’i > - 2<zi> g <e> = o, (A9¢)

From Eqs, (A9) and (A6) one obtains

N g_zqis = - 72—<% > =0, (Al0a)

-g;<m§>=--%m.3£—.> =0. (A10b)
T

<% 4> =0, (Alla)
i _

- <z;>) -52—- ¢)=0. (Al1b)

Let us define a new phase variable:

0" (215p52,0) = 9g(@y,Tp:3,0,)

2
2
+ Z o, (z; - <z;)° + B,(z; - <z , (a12)
=1
where 1\0(:171,::2,3”#2) represents the phase ¢(a:l,a:2,zn+!i) at zn-k!: before the
vacuum propagation operator has been applied, and where Oci and Bi are
determined so as to make conditions (Alla) and (Allb) hold for the phase
front ¢'(a:l,mz,zn+s2). From Eq. (Alla) we obtain

] = -
<F:E_.' ¢’($1’xz’zn+‘f)> = 2o @y > By

+ '3‘_2; ICREREIS)! a13)
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or

From (Allb) we obtain
- i ’ = - 2 .
(Ii <Ii>) axi ¢ (xl’IZ’znPg) 2ai<(xi <Ii>) )
+ Bi«ci - <Ep>> = 0

or

a. = 5 =1, 2, (Al4)
vo2 4:’:{ - <:c£>)2>

Equations (Al3) and (Al4), which determine the desired reference
phase~front parameters (Al2), can be shown to be completely equivalent to

the relations used by Bradley and Hetmann.Al

1f the optimal phase front ¢' is now substituted for the original

phase front ¢0 at zn+%, the phase increment

2
by = 0 = = D Layey - <z’ + Byley - <zp)] (a2s)
i=1

must be compensated for in some way in urder to preserve the original field.

The quadratic contribution in (Al5) is compensated for by a generalized
Talanov transformation, which involves a rescaling of &, the mesh, and Az,

according to

1
]
(1_éi (1 Lz
2 z
x &

2 2
x{,"( 2z Newl ik ¥ Y (arem
xX

&(x,y,2) =
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where

2 2

- - NENS Z,K

Bk, 8) = B,z - 0a) exp |l + S || e
2 o % (Al6c)
1 1- (Az7zw) ’ c
o = z Aled
2T T-EEy (a16d)

The generalized focal lengths 2, and zy are determined by combining the

reciprocals of the current focal lengths,

zz = 2a,/k , (Al7a)
2% = 20, /% (A17b)
Yy 2"

with those remaining from previous propagation steps (see argument of expo—
nential in Eq, (Al6a)).

The linear term in (Al5) corresponds to solving Eq. (A3) in a coor-
dinate system that has been rotated in x-y-z space. If this rotation is
assumed to be small, it can be represented by a net deflection in the x and

y coordinates given by

bz = -(B,/k)= , (A18a)
Sy = —(lek)z . (Al18b)

The contribution Zk Bi(mi - <zi>) must also be added to ¢0 before the vacuum
propagation calculation, but this operation may correspond to a translation

of the Fourier transform g(Km,Ky) by a nonintegral number of steps on the
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k-space mesh. In order to avoid this, BI/AK:J: and BZ/AKy are both rounded
off to the nearest integer, and &(Kx,Ky) is then translated on its mesh in
the x and y directions by the corresponding number of steps.

The numerical implementation of Eqs. (Al3) and (Al4) requires the
following computations, wherz j and kX represent the numerical coordinates

of the mesh points:

F= z |25l%

7.k

1 2
<a>=z z “’jl"gjkl ,

j’k
<(ac - <.r>)2>=-;",— z :c;[é'jklz - 22, (a19)
ik
> kil
K. 8-
3 Jeik
=N
Fx ok

3 -1 ot 2 A
<33>= @en™ 1n Y (o - G0 Gt doy w0
dk

<(.'c - <z>) %3>= a5t

- St Gy <> (&)
o .zk 55 G~ G 0 €+ g g0 - <= G-
Js
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The computations involving the variable y are carried out im an
analogous manner. In the calculation of the average phase derivative, the
phase derivative 1s monitored at each point and limitced in magnitude to a
fraction of M. This prevents rapid phase fluctuations near the mesh
boundary, where intensities may be weak, from contributing disproportionately

to the average.
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Appendix B: An Adaptive Algorithm for Selecting the
Axial Space Increment

It is desirable to have the code select the next axlal space increment
Az at a given axial position on the basis of requirements for numerical
accuracy in the solution of the wave equation. The numerical acquracy of

the vacuum propagators in the symmetrically split solution operator,
N+l idz 2 1Az 2\ ihz 2} o
& = exp (- 77 v1°) exp {~ T X} exp (- 77 Vo] &, (31)

is independent of Az if the solution is based on a discrete Fourier trans-

form. The imposition of the phase front,

(82)

at 3 = zn+%, which is equivalent to passing tle beam through a lens, will
make rhe solution meaningless if any of the transverse zone-to-zone phase

differences violate

(6,0 < fm , (83)
CHENES L
0<f<1l.,

It will always be necessary then to restrict the value of 43 so that con-
ditions (B3) are met. While violating conditions (B3) destroys the numerical
integrity of the solution, satisfying them does not completely guarantee
accuracy, since errors can also result from the noncommutation of Vl? and
X, and from upgrading X too infrequently. These errors must be controlled
externally by inputting a maximum allowable value of Az.

In practice, part of the effect of the phase front (B2) is removed by
the adaptive lens transformation, It would therefore be too restrictive to
limit Az on the basis of conditions (B3)., As an alternative one can restrict

the value of Az so as to control transverse gradients in the phase variable
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2
w ) 2 _kd ,n
[:] 2 ai(a:i - <a:i>I) 3 3 Az Py s {B4)
=1

which is that part of the nonlinear phase front at z s that cannot be

#

removed by the adaptive lens transformation. The next spacial increment
n+l . <

Azn 1 is then chosen in terms of the current value Azn by means of the

relation

Az"+1 - T faz"n
max {|6 . - 6.1, 8. = 8.1
Sk+L k' +1,k gk LS fY
J J J d I&l>f Imax

. (B5)

The arguments of the naximum function in the denominator of expression (B5)
are restricted to those mesh points where the intenmsity is greater than a
certain fraction f' of the maximum intensity. The final value of Azn+l,

however, must satisfy the additional constraints:

0.802" < A7 < 1.2 A7, (86)
by < o™ <na : (B7)
“ 2f
z \[ D
2™ < 7 i (8)

3
,,21“ il
p* k[ <(x - <a:>)2>.+ <(y - <y>)2>]

with (B6) taking precedence over (B5), (B7) over (B6), and (B8) over (B7).
In Eq. (B8), f,, =~ 0.005 is an input fraction and z, = min(|z, |, |zy|).
Condition (B8) is designed to reduce Az near a focus, where the geometric-
optics scaling of the mesh by the Talanov transformation may result in an
excessive shrinkage of the mesh. By updating the Talanov transformation
sufficiently often, one can usually avoid a geometric-optics catastrophe.

The adaptive z-step algorithm just described adds greatly to the con-
venience of running problems; it often improves problem running time, and
avoldes large nonlinear phase changes that can invalidate the calculation.
It should not, however, be regarded as a panacea. For sufficiently high

beam power and strong enrough thermal blooming, the c¢riteria (B5)-(B8) can
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be satisfied and yet the problem still goes bad., In such cases, large non~-
quadratic trancverse zone—to-zone phase differences can ascumulate over many

a=steps.
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Appendix C: Treatment of Multiline Absorption

The treatment of multiline absorption in the Four~D code follows the
method of Hogge.C1 The basic assumptions are that all lines operate with
the same transverse mode structure in the laser and that the line frequen-
cles are near enough to each other so that the field for each line will be
affected in the same way by rthe atmospheric density distribution. Thus at
each position z, for the Zth line é%(z) « &(z), and the field will be com-
pletely characterized by the fractions fi(z) of the total power P(z) that
are found in each line.

At 2z = 0 one has

I

P,(0) = £,(0) P(O) , (€

and at position 2z

P,(2) = P,(0) %%
- .2
Pa) = D Pya) = BO) D0 °, )
-uiz
f:(0) e
fi(z) =TT ozt
Z Fi e *
i
Thus,
Ii(Z) = fé(z) I€a), (c3)

and the energy-deposition rate per unit w.lume is given by

Cl. C, B. Hogge, "A Comparison of Several High Energy Laser Systems with
Emphasis on Propagation Aspects,”" in Laser Digest, AFWL-TR-75-140
(May 1975).
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ZaiIi(z)

z

7z zaifi () > (c4)
Z
in which

a(z) (C5)

ft

Zaifi(z)

3

can be interpreted as an average cross section throughout the calculation.
Tables C1 and C2 show values for a(z) as a function of z for the DF
line data found in Ref. C2, Clearly, for DF the effect of including all

line absorption details leads to a very small correction even at 10 km.

Table C1, Line-by-line absorption-coefficlent. data.

Absorption
Line frequency Fraction of total power coefficient
Line ID (en—1) z =0 z = 10 kn 1)
4-3,7 ~ 0.01040 0.01006 0.06000
3-2,10 2496,77 .00590 .00636 .04920
4-3,6 -~ .02130 (2060 .06000
3-2,9 2521.81 .01330 .01632 .03620
4-3,5 -~ .01040 .01006 . 06000
3-2,8 2546.42 . 04750 .05401 .04380
3-2,7 2570.51 .06380 .06108 .06100
2-1,10 2580,10 .00910 -00813 .06790
3-2,6 2594.25 .08970 .11944 .02800
2~1,9 2605,80 .03180 .03786 .03920
3~2,5 2617, 44 .05630 .07960 .02200
2-1,8 2631.06 .0845G .10460 .03530
2~-1,7 2655.85 .09040 .05918 .09900
2~1,6 2680,17 .13040 .12864 .05800
1-0,9 2691,61 .03230 02557 .08000
2-1,5 2703,99 .04000 .05300 .02850
1-0,8 2717.54 .06440 .03629 -11400
1-0,7 2743,00 .08740 .0B434 .06020
1-0,6 2767.97 .08370 .06178 .08700
1-0,5 2792.43 0.02740 0,02310 0.07370

C2. R. K. Long, F. 5. Mills, and G. L., Trusty, Caleulated Absorption
Coefficients for DF Laser Frequencies, Ohio State University Electro-
Science Laboratory, Rept. RADC~TR-73-389.

=57~



Table C2. Mean absorption coefficient as a function of distance.

Mean Remaining
Propagation absorption power
distance coefficient fraction
(km) (km=1) in beam

0 0.06001 1,00000

1 0.05931 0.94209

2 0.05862 0.88815

3 0.05793 0.83787

4 0.05726 0.79097

5 0.05660 0.74720

6 0.05594 0.70632

7 0.05530 0.66811

8 0.05467 0.63236

g 0.05404 0.59891

10 0.05343 0.56758
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Appendix D: Characterization of
Nondiffraction-Limited Beams

In the absence of detailed a priori information regarding the exact mode
content of a beam, several models of nondiffraction~limited beam behavior can
be applied with the Four-D code.

The simplest of these, which requires no speclal coding, is wavelength
scaling, wherein the laser wavelength is multiplied by a number equal to the
beam quality factor. Wavelength scaling gives the correct vacuum peak
intensity, although it may incorrectly represent the vacuum focal-spot size.

It represents, in any case, a prescription whose accuracy needs to be evaluated
ad hoe for each specific application, While it has been ugeful in a variety
of applications, it does not properly account for discrepancies between cal-
culations and stagnation blooming experiments in vertical absorption cells.Dl

Agreement between measured data and calculations for these experiments
is improved, on the other hand, by adding spherical aberration to the initial
beam in such a way thav the vacuum focal-spot size is correctly reproduced
(see Fig., D1), The spherical aberration contribution to the initial phase can
be represented as

¢SA - gg% (32 + y2)2 s o1
Ux
where 4 represents the number of waves of aberration at radius O,

A third model of nondiffraction-limited behavior is due to Hogge et al.D2
This model 1s based on the assumption that the initial beam can be represented
by

£.4,0) = 8@y oY) ©2)

where the phase aberration ¢(x,y) is 2 Gaussian random variable, arising from
laser-medfun inhomogeneities, mirror imperfect.ons, ete. If it is assumed

that the correlation functlom for phase fluctuations is

pl.” J. &. Fleck, Jr., J. R, Morris, and M. D, Feit, Ti{me-Dependent
Propagation of High Energy Laser Beams Through the Atm. .phere,
Lawrence Livermore Laboratory, Rept. UCRL-51826 (1975).

D2, C. B. Hogge, R, R, Butts, and M, Burlakoff, Appl. Opi. 13, 1065 (1974).
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where z'2

c¢(z=) = °$ exp |- — (D3)

a:2 + y2, cé is the variance of ¢, and Z0 1s the phase coherence

leugth, then the spectrum of the phase fluctuations is given by

0212 ZZ k2
Cylky) = 22 exp |- —(2’—¢ . (04)
1.0 /( T T T T T T . T
I’ = == wme Unbloomed
" ¢ Calculoted 7]
! wee = = Calculated with A/25 spherical
0.84— : aberration —
] e=—Ommm= Experiment
| -
! Q = 0,178 rod/s
: x = 0,48

Relative intensi

Time—s

Fi,. D1, Intensity on target after passing through stagnation zone. Com-

parison between experiment and calculation with and without spherical
aberration. (Data from P. J. Berger, F. G. Gebhardt, and D. Smith,
Thermal Blooming Due to a Stagnation Zone in a Slewed Beam, United
Aircraft Research Laboratory, East Hartford, Conn., Rept. N921724-12

(1974).)
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Using the method cf phase screens, one can obtain the Fourier trunsform of
the phase ¢(x,y) to be used in EG. (D1) in the following form:

ot ((k)+w':LL
ky) —

Vz

(D5)

where a' and a" are Gaussilan random variables with variance 1, and where

a'(5¢)

L]
—~
~

=

a'(k,) = ~a"(—g¢) .

LT

(D6)

Equations (D5) and (D6) were originally included in the Four-D code for

simulating turbulence, The phase-~screen model of nondiffraction-limited

beams utilizes the same subroutines.

The following parameters were the basis of an example for comparing the

difference between the wavelength-~scaling and the phase~screen models of non-

diffraction-limited behavior:

Beam shape

Aperture size, 2a

Range

Absorption coefficient, a
Transverse wind speed, v
Focal distance, f

Beam 1s 2% diffraction limited
Wavelength, A

Scaled wavelength, A

Phase correlation 1length, ZO

Phase standard deviation, g

Number of phase-screen calculations

for ensamble average

Gaussian
80 cm
2.5 km
6.07 km
10 m/s
2.5 kn

1

5.7 Um
11.4 um
5.0 em

1.177 (rad)

10



Table D1 gives a comparison of peak intensities in the focal plane for propa-
gation in vacuum and air, Also included are results for a uniformly illumina-

ted aperture of radius g, = 2a, which can 1ikewise be used as a model of a 2x

0
diffraction-limited beam.

Table D1. Comparison of peak intensities in the focal plane. Beam propagates
in vacuum (linear) and air (nonlinear). Case: Gaussian diffraction-
limited beaw, a uniformly illuminated aperture (top hat), Gaussian
wavelength scaled (2x diffraction limited), and a Gaussian beam
with a phase screen adjusted to 2x diffraction limited.

Peak intensity in

Model focal plane (kH/cmz)
Linear

Gaussian, A 63.8

Gaugsian, 2} 15.9

Top hat 17.4

Phase screen 17.7
Nonlinear

Gaussian, 2A 5.94

Top hat 5.47

Phase screen 3.03

The nondiffraction-limited beams all give roughly one quarter of the
focal-plane intensity of the diffraction-limited beam when propagated in
vacuum. For propagation in a real absorbing atmosphere both the scaled wave-
length and the top-hat beam calculations result in twice the peak intensity
of the phase-screen model calculation, which is based on an ensemble average
taken over 10 independent phise screens. Figures D2 and D3 show respectively
the beam intensity as a function of position along the x-axis and along a line
parallel to the y~axis passing through the point of maximum intensity along the

x-axis for the wavelength~scaled beam. Figures D4 and D5 show the same plots
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Fig. DZ. Wavelength scalins for
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Fig. D4. Phase~screen model of 2x
diffraction-limited beam
averaged over 10 independ-
ent realizations. Inten-
sity on target as a
function of x along x-axis.

-63-

- kW/em2
[ rs ™

Intensi
~N

—_

Wavelength scaling for 2x
diffraction-limited beam.
Intensity on target as a
function of y along a line
parallel to y-axis and
passing through point of
maximum intensity along the
x-axis.

for the ensemble averaged phase-
screen calculation., 1In the case of
the wavelength-scaled calculation,
thermal blooming leads primarily to
a broadening of the beam. In the
phase-screen calculation, thermal
blooming is accompanied by con-
siderable scattering of energy to the

far reaches of the mesh.

From these calculations it can
he concluded that different models
of nondiffraction-limited beam
behavior can lead to qualitatively
as well as quantitatively different

thermal-blooming behavior. Which



1.2~

1.0}

e @
o w
| —

Intensity — kW/cm2
<)
B
L

0.2t~

0
-20 =10

65/11/mm/edas/1a

y—cm

Y

model is best must be determined for
each specific situation. In the last
analysis there is no substitute for an
accurate experimental characterization
of the beam for each specific laser.

Fig. D5, Phase-screen model of 2x
diffraction-limited beam
averaged over 10 {-depend-
ent realizations. Inten-
sity on target as a
function of ¥ along a
line parallel to y-axis
and passing through point
of maximum Intensity
along the x-axis.



