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TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY 
LASER BEAMS THROUGH THE ATMOSPHERE: II 

Abstract 

Various factors that can affect 
thermal blooming In stagnation zones 
are examined, including stagnation-zone 
motion,, longitudinal air motion in 
the neighborhood of the stagnation 
zone, and the effects of scenario 
noncoplanarity. Of these effects, 
only the lose offers any reasonable 
hope of reducing the strong thermal 
blooming that normally accompanies 
stagnation zones; in particular, non-

This is the second report in a 
series dealing with the general 
problem of time-dependent thermal 
blooming of multipulse and cw laser 
beams. Time dependence is essential 
for describing the propagation of 
laser beams through stagnation zones, 
which are created whenever the motion 
of the laser platform and the slewing 
of the laser beam combine to create 
a null effective transverse wind 
velocity at some location along the 
propagation path. The location cf 

coplanarlty should benefit multi-
pulse more than cw beams. The methods 
of treating nonhorizontal winds hydro-
dynamical ly for cw and multipulse 
steady-state sources are discussed* 
Pulse "self-blooming" in the triangu­
lar pulse approximation is discussed 
in the context of both single and 
multipulse propagation. It is shown 
that self-blooming and multipulse 
blooming cannot be treated independently. 

vanishing transverse wind we shall 
call the stagnation point, and the 
term stagnation zone will refer to 
the portion of the propagation path, 
extending in both directions from the 
stagnation point, where the trans­
verse wind has not yet had time to 
blow completely across the beam. The 
lack of wind at the stagnation point 
creates a steadily decreasing density 
and a thermal lens whose strength 
grows with time. This report will 
continue the study of stagnation 

1. Introduction 



zones begun in Ref. 1, and discuss 
contributions of self-blooming to 
inulttpulse thermal blooming and new 
models that Itave been added to the 
Four-D code. 

Both pivoted-absorption-cell 
9 3 

measurements and detailed numer­
ical calculations of the experimental 
arrangements * give evidence that 
the blooming effects of stagnation 
zones tenti to saturate with time. 
Thus the beam characteristics seem 
_o approach a kind of quasi-steady 
state, which is possibly a result of 
the steady reduction in length of the 

3 
stagnation zone with time. Despite 
the existence of these quasi-steady 
states, calculations for high-power 
beams show that stagnation zones can 
lead to severe beam degradation. 

the notion of a stagnation '.one re­
quires ;hat the transverse wind veloc­
ity vanish at at least one position 
along the propagation path. There 
are always present, however, a number 
of additional effects that will pre­
vent a completely stagnant wind con­
dition from occurring at any 
position. These effects are: 

1. natural convection 
2. Motion of the stagnation point 

with time 
3. Longitudinal air motion at 

the stagnation point 
4. Vertical air motion due to 

noncoplanar scenario geometry 

-2-

A realistic appraisal of the influ­
ence of stagnation zones on beam 
propagation requires that each of 
these effects he assessed and pos­
sibly incorporated into the computa­
tional model. 

Natural convection flow at the 
stagnation point should be negligible 
for practical beam sizes. A 3.8-um 
wavelength and a 474-kW beam power, 
for example, give a natural con­
vection velocity of the order of 
10 cm/s. For this flow velocity 
and a beam radius of 10 cm at the 
stagnation point, approximately 2 s 
is required for the beam to approach 
a steady-state density distribution. 
This time is excessive for preventing 
or reducing s::agnation-zone blooming 
effects, which may develop in times 
r. ring from 1 ras to 0.1 s. At a 
10.6-um wavelength the laser heating 
rate of the atmosphere Is somewhat 
greater for the same intensity, but 
the natural conviction velocity 
scales only with the cube root of the 
absorbed power, so flow velocities 
would not be significantly above 
those for the 3.8-iim case, fhere--
fore, we shall not consider the 
effects of natural convection 
further. 

Under most conditions the stag­
nation point is :iot stationary but 
moves in the sanut general direction 
as the target with a velocity that 
is little different from the 



target's. The parcel of air that 
sees a null wind speed changes with 
time and thus does not heat up in 
the manner of a stationary parcel. 
The influence Gf this stagnation-
point motion on beam propagation was 
found to be minimal for a cw wave­
form example treated in Ref. 1. 
Stagnation-point motion JISO turns 
out to be unimportant for a multi-
pulse scenario examined in this 
report. The conclusion is that 
stagnation-point motion is unlikely 
to have much, if any, effect in 
alleviating stagnation-zone blooming, 
since, despite the motion, a sub­
stantial propagation path exists over 
which wind velocities are negligible. 

The existence of a null transverse 
wind-velocity component at a stag­
nation point in no way guarantees a 
vanishing magnitude of the wind vec­
tor, because a nonvanishing longi­
tudinal component almost always 
exists there. Any air parcel found 
within the beam at the stagnation 
point will, as a result, exit from 
the beam in a finite length of time. 
Indeed, in coplanar geometries all 
wind-flow trajectories should cross 
the beam in two locations: one for 
values of z (longitudinal position) 
below the stagnation point z , and 
Lhe other for values above z . The 
wind flow may be in either the 
positive- or negative-s direction. 
In the neighborhood o* the stagnation 

point, the wind-flow trajectories 
will enter one side of the beam, 
reverse direction with the beam, and 
exit on the same side. The resi­
dence time in the beam for fluid 
parcels passing through the beam 
center at the stagnation poiat will, 
of course, depend on scenario param­
eters, but for some typical beam 
sizes and scenarios this time can be 
of the order of 0.5 to 1 s. Longi­
tudinal flow should thus be as 
effective as natural convection in 
controlling density changes at the 
stagnation point. One consequence 
of these re-entrant wind-flow 
trajectories is that air densities 
for z values greater than z could 
be influenced hydrodynamically by 
densities for z values less than z ; 

8 
but, for any foreseeable practical 
scenarios, the re-entrant times — 
except perhaps in the innnediate 
neighborhood of the stagnation 
point — would be considerably logger 
than times of interest. Consequen­
tly, hydrodynamic coupling between 
points above i.nd below z can be 
safely neglected in cases of prac­
tical interest. 

The existence of a position where 
the transverse wind velocity vanishes 
presupposes the extremely improbable 
coplanarity of the laser beam and 
the trajectories of its platform and 
the target — a situation that is 
clearly a limiting case of real-world 
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scenarios, which are Invariably non-
coplarjar. In the more general' case of 
noncoplanar geometry, only the wind 
component along a certain transverse 
axis can be expected to vanish. The 
wind vector in tha transverse plane 
will rotate and attain its minimum 

magnitude at the stagnation point. 
Since this minimum magnitude can 
r.ever vanish, except in a space of 
measure zero, a steady state can 
always be defined for the governing 
hydrodynamic equations. The signif­
icance of this is that, In systems 
analysis, steady-state numbers can 
always be assigned to stagnation-zone 
situations, at least £,r some nominal 
degree of noncoplanarity, and these 
numbers can be obtained from simple 
and relatively cheap steady-state 
calculations. Truly coplanar 
stagnation-zone situations, in con­
trast, require time-dependent cal­
culations that are expensive and 
require considerable care in 
execution. 

In the coplanar scenario described 
in Ref. 1, for example, if the laser 
is given an elevation of 10 m above 
the plane containing the farget and 
the laser platform, the vertical 
component of wind velocity at the 
stagnation point takes on the value 
of 1 n;/s. This is sufficient to 
establish a steady state in a time 
of the order of 0.1 s, which Is short 
compared to times of interest. The 

small vertical velocity componett at 
the stagnation point leads to sub­
stantial changes in isoinrensity tin-
tours in the fecal plane, bu* the 
average Intensity is remarkably close 
to the quasi-steady-state value 
obtained in a time-dependent calcu­
lation for the corresponding coplanar 
case. 

Thus, small amounts of non-
coplanarity should not be expected 
to greatly Improve cw laser perfor­
mance in stagnation-zone situations 
but should contribute to ease in 
understanding and predicting it. 
The case of multipulse beams Is 
another matter. As pulse-repecition 
frequencies are lowered, a small 
vertical wind component at the stag­
nation point becomes more and more 
effective in sweeping out the air 
between pulses. The benefits of non-
coplanaricy in stagnation-zone 
situations should thus be greater for 
multipuisj beams than for cw beams. 

The current status of the Four-D 
code is summarized in Table 1, and 
recent additions to the code are 
described in the body of this report. 
We have continued to adhere to the 
philosophy that the best way to 

approach all laser-pronagation cal­
culations is chrough 'i single, 
unified computer code that can be 
applied to any problem. The advantages 
of this are threefold. First, it 
greatly simplifies bookkeeping (or. 



more appropriately, code-keepi»g), 
since a proliferation of limited 
special-purpose codes is avoided. 
Second, if each type or calculation 
Is made a subset of a larger calcu-
lational capability, new features 
added to the code — such as data-

processing routines, adaptive-lens 
transformations, scenario features, 
etc. — are available to all types of 
calculation at once. Third, real­
istic simulations are possible, since 
a wide range of conditions can be 
incorporated into any calculation. 

Table 1. Basic outline of current Four-D propagation code. 

Form of propagation equation 

where xs > ar-i transverse coordinates and 
z Is axial displacement. 
Scalar wave equation in parabolic approxi­
mation 

2il: || - TJ# + *V - lit . 

Method of solving propagation 
equation 

Hydrodynamics for s t eadv-s t a t e 
cw problems 

Transonic slewing 

Svometrized s p l i t operator , f i n i t e Fourier 
s e r i e s , fast Fourier transform (FFT) 
algorithm 

$ »i+l 
- —< - i ) *** \ ~2P. •'•) 

e x p {--&."!•)* 
X = '•. IK - 1 ) . 

Uses ex3ct solution Co linear hydrodynamic 
equations. Fourier method for M < 1. 
Characteristic method for M > 1. Solves 

"a -S + vy W + P0 h * *1 = °' 
/ to 3i> \ 

= (Y - l)ct7. 

Steady-state calculation valid for all Mach 
numbers except M = 1. Code can be used 
arbitrarily close to M = 1. 



Table 1 (continued). 

Treatment of stagnation-zone 
problems for cw beams 

Time-dependent isobaric approximation-
Transient succession of steady-state den­
sity changes; i.e., solves 

3* • + v 
*1 
dx 

• a l 

Nonsteady treatment of multi-
pulse density changes 

Changes in density from previous pulses in 
train are calculated with isobaric approxi­
mation using 
3p, 3p. 

<̂x £ Tin&.y) «(* V 

Method of cu.lculr.ting density 
change for individual pulse 
in train 

where TIK(<C,I/) is nth pulse fluence. Den­
sity changes resulting from the same pulse 
are calculated using acoustic equations and 
triangular pulse shape. 

Takes two-dimensional Fourier transform of 

where I is Fourier transform of intensity, 
and tp is the time duration of each pulse. 
Source aperture should be softened when 
using this code provision. 

Treatment of steady-state 
multipulse blooming 

Previous pulses in train are assumed to be 
periodic replications of current pulse. 
Solves 
8Pj 
3* "x dx 

3PX 

5(* - tj 

Pulse self-blooming i s t rea ted as in the 
nonsteady-state case. 

Treatment of turbulence Uses phase-screen method of Bradley and 
Brown with Von Kartnan spectrum. Phase 
screen determined by 

- 6 -
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Table 1 (continued). 
00 DO 

r(x,a) = / dfcx exp(iy I Sky exp(ifc ) 

where a is a complex random variable and $n 

is spectral density of index fluctuations. 

Lens transformation and 
treatment of lens optics 

Compensates for a portion of lens phase 
front with cylindrical Talanov lens trans­
formation. Uses in spherical case 

where Zf is focal length of lens, z$ is 
focal length compensated for by Talanov 
transformation, and s^ is focal length of 
initial phase front. 

Treatment of nondiffraction 
limited beams 

Spher ica l -aberra t ion phase determined by 

.SA Ir.A . 2 _,_ 2,2 

or phase-screen method of Hogge et at* 
Phase determined as in turbulence, only 

**o ( & \ 

where l 0 i s cor re la t ion length and cr phase 
var iance. 

Adaptive lens transformation Removes phase 

2 

lb (x, -<*.>) + e,<*, - <»,:» 
t = l 

through lens transformation and deflection 
of beam. Here x± = or, x% - y* averages are 
intensity weighted, ot£ and 3^ are calcu­
lated tc keep the intensity centroid at 
raesh center, and intensity weighted r.m.s. 
values of re and y are constant with s. 



Table 1 (continued). 

Selection of s-step Adaptive s-step selection bas'd on limiting 
gradients in nonlinear contribution to 
phase. Constant s-step over any portion of 
range also possible. 

Scenario capability General noncoplanar scenario geometry capa­
bility involving moving laser platform, 
moving target, and arbitrary wind direction. 
In coplanar case, wind can be function of 
t and 2. 

Treatment of multiline 
effects 

Calculates average absorption coefficient 
based on assumption of identical field dis­
tributions for all lines 

Treatment of beam jitter 

£ h "O'C-'V0 

where fy is fraction of energy in line •£ at 
s = 0. 

Takes convolution of intensity in target 
plane with Gaussian distribution: 

jitter •H^ 
<l(x • ,y - y') da1 dy' 

where a is variance introduced by jitter. 

Code output Isointensity, lsodensity, isophase, and 
spectrum contours. Intensity averaged over 
contours. Plots of intensity, phase, den­
sity, spatial spectrum along specific 
directions, etc., at specific times. 

Plots of peak intensity and average inten­
sity vs time. 

Numerical capacity when used 
with CDC 7600 and restricted 
to internal memory (large 
and small core) 

Spatial mesh, 64 " 64, 35 sampling times, 
no restriction on number of axial space 
increments. 

Problem zoning features Number of space increments in a; and y 
directions must be equal and expressible as 
a power of 2. 



2. Treatment of Moving Stagnation Zones 
in Coplanar Scenarios 

The basic coplanar scenario 
geometry is depicted in Fig. 1. It 
is assumed that the target and laser 
platform will collide on the x axis 
after a time T has elapsed. The 
point of impact is denoted by P and 
the position of the laser by L. The 
effective transverse wind speed V, 

Is given by the expression 

7 t(T o,3) = -sin Q?[VT 

where V„ is the target (receiver) 

(transmitter) velocity, V,, is the 
background wind velocity, R is the 

P Transmitter motion 
Impact point 

Fig. 1. Diagram of coplanar scenario model. 
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range, 

Vp = VR cos BR 

and 
(2) 

(3> 

From simple trigonometry, 

"cos 6„ + (V • -if«>Be a -(V g -t>/vJ 
L sin 6 J 

f? = 
0 sin <f> 
sin 0-

(4a) 

(4b) 

where 0 is constant, a 
The transverse wind speed 7.. 

depends on T and hence on time 
through the dependence of the 
scenario parameters 8™ and R on time 
in Eqs. (4a) and (4b). The Four-D 
code is programmed to calculate 
7J.(T ,z) as a function of T and 
hence of time. The hydrodynamic 
equations are solved numerically by 
assuming that V, is stepwise constant 
over each integration time interval 
A*. 

The location of a stagnation point 
is determined by setting the right-
hand side of Eq. (1) equal to zero. 

Clearly, that point moves with time, 
and, as a result, a different parcel 
of air undergoes heating under con­
ditions of .zero wind velocity at each 
instant. In general the stagnation 
point will move with a velocity 
comparable to that of the target. 
The determination of 7, from 
Eqs. (l)-(4) for use in the hydro-
dynamic equations permits an accurate 
determination of the effect of motion 
on the thermal lens in the stagnation 
zone. It is more difficult to follow 
the irradiance on a moving target, 
however, since all equations are 
solved in a ret irded time frame. It 
would be necessary tc store the 
irradiance history for the values of 
z corresponding to the target motion. 
Since the relative change of the 
range R in a time of interest is 
small, it is a good approximation to 
assume the focal distance and the 
range R at which the laser intensity 
is monitored to be constants in time, 
while the correct variable R is taken 
into account In the hydrodynaraic 
portion of the calculation by means 
of Eqs. (l)-(4). 

3. Propagation of Multipulse Laser Beams 
Through Stagnation Zones 

The particular scenario chosen 
leads to the effective transverse 
wind as a function of range for 

T = 0, shown in Fig. 2, where T Is 
measured from the time the pulse 
turns on. The pertinent physical 



data are the following: 

1 
Power, P 53 kW 1 
R<.nge, R 2.5 km ic

ity
 

Focal length, f 

Absorption coefficient 
4.5 km 

a 0.25 km" 1 
1 1 

Wavelength, A 10.6 lim * 
Aperture diameter, Za I (Gaussian at 1/e ) 30 cm ns

vi
 

Slewing rate, !2 7.44 
mrad/s 

Tr
a 

Pulse-repetition rate. \> 10, 25, 50, 
and 100 s"l 

These data can be expressed in 

terras of the following dimensionless 

numbers: 

tip = ka2/f = 2.96, 

!iQ = 2a/vQ&t = 3.2 x 10" 2 v, 

Ns = Rf/VQ - 3.6, 

N. * of ' 1.125, 

U E W L 1>£„ 
"0 2 3p 2 3/a 

a a. ' — 13) 
100, 

where ff_, ff , ff^, JIL, and t?D repre­

sent respectively the Fresnel, over­

lap, slewing, absorption, and d i s ­

tortion numbers. Although the 

chosen power, !>3 kW, i s rather low, 

the value of the distortion number 

AL i s quite, high, and the resulting 

thermal blooming i s about the maxi­

mum that the code can accommodate. 

In any case. the above parameters 

0.5 1.0 1.5 2.0 
Axial distance — km 

2.5 
Fig, 2, Transverse wind velocity as 

function of axial distance. 

are adequate for assessing the 
sensitivity of typical multipulse 
laser performance to stagnation-zone 
motion. 

In the present scenario, the 
stagnation zone and target move with 
a speed of 300 ra/s. For a multi-
pulse beam with v » 100 s -1 the 
stagnation zone moves 3 m between 
pulses, whereas for v = 10 s~ , the 
stagnation zone moves 30 m between 
pulses. It would be hoped that, in 
the case of the lower pulse-
repetition frequency, the greater 
movement of the stagnation zone 
would lead to a reduced buildup of 
stagnant-air density changes. This 
effect turns out to be minimal. 
The time dependence of the average 
intensity on target (averaged over 
the minimum half-power area) is 
shown for the case of no stagnation-
zone motion in Fig. 3(a) and for the 



Q Vacuum, corrected for linear absorption 
a Absorbing atmosphere 

0.6 

Fig. 3. Area-averaged target intensity as a function of pulse time: six 
pulses at V - 10 s~l* (a) No stagnation-zone motion included, 
(b) Stagnation-zone motion included. 

- " - , 
^ > v 

I 

i . I 

I I in | 1 : \ \ 
- i 

M 
1 1 

ii C 

II ! 
iiumi ' } i 

1 

Inn * >)')) 

' i 1 
i 

0.1 s 0.2 s 0.3 s 0 .4s 0.5 s 0.6 s 

Fig. A. Iscintensity contours as a function of pulse time for V = 10 s" 
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Table 2. Comparison of multipulse intensities with and without stagnation-
zone motion. 

Time 
(s) 

No motion 
Time-averaged intensity (W7cm ) 

Motion 
Average Peak Average Peak 

168.5 234.0 
78.7 117.3 
60.8 103.3 
55.3 96.8 
52.4 92.7 
50.2 87.5 

0.1 
0.2 

0.3 
0.4 
0.5 
0.6 

168.5 
78.9 
60.7 
53.7 
49.6 
47.3 

234.0 
117.3 
100.7 
92.5 
88.7 
84.1 

Maximum increase resulting from stagnation-zone motion: av, 6.1%; peak, &.0%. 

case with stagnation-zone motion in 
Fig. 3(b). The calculation is car­
ried, out for six pulses. The isoin-
tensity contours for the six pulses 
are shown in Fig. 4 for the moving 
stagnation zone. The contours in 
the nonmoving case are so similar 
that they are not shown. The per­
formance in the two cases is sum­
marized pulse by pulse in TaMe 2, 
where the intensity values have been 
averaged over the interpulse 
separation time, and the percent 
improvements in intensity indicated 
are for the last pulse in the train. 

Surprisingly, the improvements 
in peak and average fluence go -'n 
the opposite direction. The peak 
and average fluences are actually 
slightly higher in the no-motion 
case, as shown in Table 3. 

This behavior is due to the large 
contribution that the first pulse 
in the train makes to the total 

fluence. The isofluence contours 
for the case with motion are dis­
played in Fig. 5. The central 
fluence peak contains the maximum 
value and makes the largest contri­
bution to the fluence averaged over 
the minimum half-power area. 
Apparently in the no-motion case 
the subsequent pulses ir- the train 
make a greater contribution in the 
central region than do the corre­
sponding pulses in the case with 
motion. This small difference in 
peak and average fluences is of 

Comparison of fluences with 
and without stagnation-zone 
motion. 

Fluence (J/cm2) 
No motion Motion 

Average Peak Average Peak 

30.1 40.7 
Decrease resulting from stagnation-
zone motion: av, 1.7%; peak, 3.3%. 



-20 -10 0 10 20 
x coordinate — cm 

Fig. 5. Fluence contours for case of 
V = 10 s~l, motion included. 

little or no practical importance, 
and is Indicative of the fact that 
stagnation-zone motion plays no 
vital role in determining thermal 
blooming in stagnation zones. 

Figure 6 shows the dependence of 
average intensity on time at the 
target range for different values 
of pulse-repetition rate, V. Each 
curve begins with the time of 
arrival of the second pulse. (The 
first pulse would create a tlme-

2 
averaged intensity of 189 W/cm .) 
It is clear that reducing V 

diminishes the effect of the stag­
nation zone. The reason obviously 
is that for smaller values of v the 
air can be swept out by wind between 
pulses over a greater proportion of 
the propagation path. 

Sample pulse-isointensity con­
tours for v = 100 s are displayed 
in Fig. 7; these should be compared 
with those for V s 10 s" in Fig. 4. 
At the lower repetition rate, the 
beam has divided into two distinct 
spots. At the higher rate, lateral 
peaks are also formed but they are 
much less distinct. The lateral 
spreading of the contours as a 
function of time is shown in Fig. 8. 
The width perpendicular to the wind 

Fig. 6. Space-averaged intensity as 
function of pulse time for 
various pulse-repetition 
rates. 
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Fig. 8. Width of beam in direction 
perpendicular to the wind 
at various pulse-repetition 
frequencies. 



is determined by measuring the 
maximum distance perpendicular to 
the wind direction between 30% con­
tours . 

In conclusion, the performance 
of a multipulse laser under 

stagnation-zone conditions can be 
improved by lowering the pulse-
repetition frequency, but, wic'.i or 
without motion of the stagnation 
point, the thermal blooming is 
likely to be substantial. 

4. Effect of Longitudinal Air Motion on Flow 
in the Neighborhood of a Stagnation Zone 

for Coplanar Scenarios 

We wish to examine the air-flow 
trajectories in a coordinate system 
that moves with the laser beam. 
Take the x axis along the direction 
of motion of the laser platform and 
the y axis perpendicular to it in 
the scenario plane. The unit vector 
§(*) is directed along the rotating 
laser beam, and x" (t) is taken 
normal to §(*) (see Fig. 9). Ac 
any instant of time, 2(t) and x1 it) 

can be expressed in the rest frame 
of the laser platform by means of 
the relations 

2<t) = [cos er(t),sin 8j,(*)], (5a) 

a*(t) > [sin 8j,(*),-cos 6j,(*)],<5b) 

where 
-1 , cos (3 • x). (fi) 

and the angle 6_ Is calculated from 
the scenario Eq. (4a) by substi­
tuting T - t for T . The common 
origin for the rest frames of the 

laser platform and the rotating 
laser beam will be taken at the cen­
ter of the laser aperture. 

The effective wind vect JV in the 
moving coordinate system of the 
laser can be expressed as 

V = V -eff —rel i?(t) a' 
x ta(t) x'it) - x'it) §(*)]. (7) 

Fig. 9. Vector diagram in scenario 
plane; Sit) indicates 
instantaneous direction of 
slewing laser beam. 
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Here V Is the target velocity rela­
tive to the earth's surface, and 

(8) 

laser platform and V^ is the veloc­
ity of the wind. An air test par­
ticle will move in the rest frame 
of the laser platform along trajec­
tories described by 

r(t> £(0) + Y^j* (9) 

These trajectories can be expressed 
in the rotating frame of the laser 
beam by means of the following 
relations: 

x'(t) ' r(fc) • £'<*>, (10a) 

z{t) = r(t) * S(t) . (10b) 

Figure 10 shows sample air-
particle trajectories In the vicin­
ity of a stagnation point for four 
different scenarios of practical 
interest (of the type shown In 

Fig. 1). The target range and stag­
nation point location at t = 0 are 
indicated in Table 4. At time t = 0 

the particles are assumed to be 
located precisely at the stagnation 
point. The origin of the transverse 
coordinate is assumed to be at the 
center of the beam. The ticks on 
the trajectories indicate points 
separated by 0,5 s in time. The 
arrows indicate the direction of air 
flow with increasing time. Also 
shown in Table 4 are the times x 
actually spent in the laser beam by 
a particle that crosses the stag­
nation point at the center of a 
10-ca-radius beam. 

The longitudinal wind speed in 
the neighborhood of the stagnation 
point is roughly equal to V , as 
can be seen from Eq. (7). For the 
scenarios described in Table 4, 
V , is of the order of 10 m/s. For —rel 
these scenarios the longitudinal 
wind component will be of limited value 
in clearing the beam in the vicinity of 
the stagnation point. 

Table 4. Residence time in beam for air particles passing through stagnation 
point. 

Scenario 

Target position 
at t » 0 

(km) 

Stagnation point 
at t » 0 
(km) 

Residence time, 
T 
(s) 

A 1.5 0.844 1.0 
R 1.0 0.379 0.5 
C 2.5 2.33 1.7 
0 1.0 0.295 1.0 
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382r 

Transverse coordinate (x) — m 

Fig. xO. Air-flow t r a j e c t o r i e s in r e s t frame of slewing l ase r beam in the 
presence of a s tagnat ion zone. Ticks on the curves denote 
0 .5-s i n t e r v a l s . (a) Range = 1.5 km, s tagnat ion point a t 
2 = 0.844 km. (b) Range = 1.0 km, s tagnat ion point a t 
z = 0.379 km. (c) Range = 2.5 km, s tagnat ion point a t 
z • 2.33 km. (d) Range = 1 km, s tagnat ion point ac z - 0.295 km. 

5. Calculation of Transverse Wind Velocities 
for Noncoplanar Scenarios 

We shall again assume the 
scenario of Fig. 1, only now we 
shall relax the,assumption that the 
scenario or kinematic plane neces­
sarily coincides with the earth's, 

or the horizontal, plane. The line 
PLP and the wind vector, however, 
will be assumed to lie in the earth's 
plane (see Fig. 11). Again, the x 

direction will be along the direction 

-18-



Transmitter motion 
Impact point 

Fig. 11. Diagram of noncoplanar scenario, 
height h above the platform. 

Laser is now situated at a 

of motion of the laser platform, the 
y direction will be in the kinematic 
plane, and the unit vector normal 
to the kinematic plane will be 
called C The laser aperture will 
be situated at position £', which 
is at a height h abov the line PLP. 

The line LL' defines :he vector li = 
h = fill* which is normal to the 
horizontal plane and makes an 
angle 6 with the vector £. The 

s* H* V Z > scenario parameters Da 

and 0-, are now defined in a plane 
tilted with respect to the horizontal 
plane, but they are related exactly 
the same as before. The distance fl, 
however, no longer has the signifi­
cance of range. The calculation of 

the true range R* is described below. 
In order to follow the wind in a 

frame of reference that moves with 
the laser, it is necessary to intro­
duce an appropriate orthogonal 
coordinate system. Clearly this 
coordinate system will not be 
unique, but a suitable one can be 
defined as follows: 2 is directed 
along the laser beam, 

and 
is^nEr 

r x s 

(lla) 

(lib) 

It Is most convenient to express all 
vectors used In the computation in 
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the kinematic coordinate system. 
Hence vje have 

R' = R (12f) 

VR = (cos 8 f l, sin 8^, 0), 

h = (0, sin 8 , cos 8 ) , 

Vw = (cos 8„, sin 8„ cos 8 , W 

(12a) 

(12b) 

(12c) 

(12d) 

sin 8̂ , sin 8 ) (12e) 

directed along V„, V», and V„, and 
the vectors K = BB and R' are directed 
along lines extending from L and L1, 
respectively, to the receiver 
(target). 

The effective wind seen in the 
frame of reference moving with the 
laser beam is 

yeff(s,*) = (v,, - V " f̂  {[% " <V 9 ) S 1 " l^r - <VS>2]} • < 1 3 > 

The effective wind components along 
&' and p' are then obtained from 

&' , (14a) 

V eff»' (14b) 

The effective horizontal and ver­
tical wind components in Eqs. (14) 
become inputs to the hydrodynamic 
calculation which is described in 
Sections 6 and 7. 

6. Steady-State Solutions of Hydrodynamic 
Equations for Arbitrary Transverse Wind Velocities: 

cw Steady State 

Noncoplanar scenarios create 
effective winds whose orientation 
in the transverse plane vary with 
propagation distance z. All 
symmetry in'the transverse plane 
is lost, and the x axis can no 
longer serve as the wind axis. 
The linearized hydrodynamic 
equations must be recast and 
solved for a wind having an 
arbitrary direction. 

The linearized hydrodynamic 
equations to be solved are 

dp, 
jg- + pQ V v x = 0, (15a) 

"Oli^-l -®i + h w. [ft 
+ ax̂  3 ij1 -1/J' (15b) 

fP, 1) CXI, (15c) 
-20-



where p., y_-, and p- represent the following equation for p.: 
density* velocity, and pressure per­
turbations induced by laser heating, 
r| is the viscosity, and the total 

d 

<L(_d! _ e 2V2 . A _ n 7 2 ) 
d *W x s x 3 p o V 

at = 3i + u x to + ws/ W U 6 ) 

Elimination of p. and V- yields the 

= (Y - 1) aV'l . (17) 

We are interested in the steady state 
or the case in which Eq. (17) becomes 

g 3 
wx 15 +"yty ,, V - i £ r ("xi+^I^Pl (Y - DaHTl, (18) 

3P X 3p, 
(19) 

tic and can be expressed in terms of 
a finite Fourier series representation: 

Pĵ tetJ/) 

= J Pl ( kar'V < a t p t i ( , i * r + V 5 1' two steps: first Eq. (18) is solved 
with p. as dependent variable, and 
then Eq. (19) is solved for p . 

We shall restrict our attention to 
2 2 the subsonic case, where v + V 

2 x & 
< a . In that case Eq. (18) is ellip- The coefficients Q(k^k ) satisfy S 3r y 

(20) 

P (V fc ) = - (Y-l) 1 s'V .2 
^W^4^ 

s{<*4**'^*A-w]-£S^5ii-} 
(21) 

where I(k , k ) is the Fourier trans- means of the fast Fourier transform 
form of I(x,y). The inverse Fourier (FFT) algorithm. The function 
transform of Eq. (21) is evaluated by P.(ic,y) thus obtained then becomes 
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B = 
v A 

B = v A x 2/ 

V 
i< £_ 

1" 1 
1 r 

the source term for Eq. (19), which If we define 
can be solved using the Carlson method 
for integration along characteristics. B = ,;7 ^ , (22a) 
The solution of Eq. (19) is obtained 
by a difference method in configura­
tion space in preference to a Fourier V = • t C. , (22b) 
transform method because the transform 
of p. Or,J/) will have poles whenever 
vk + v k = 0. The evaluation of j' = -r-2-,- * ( 2 2 c ) 

x x y y u 

the inverse transform by the FFT 
algorithm will be troublesome, since the difference equation, satisfied 
these poles must be avoided. by p* • = P 1 CtAa^jA*/) can be written 

pig B 9i-V J-3X 

:or 6 > 1; (23a) 

Ptf-9P«', JW + < 1 - B > p * - i \ 

T^r{&« + e "i-vj-r + ( 1 " s > ^ - H f ] - 1 + ?hM "T« + ^ '"*•-" '-" + ( 1 - S > ^-' -,l f o r 6 < 1. (23b) 

7. Steady-State Solutions of Hydrodynamic Equations for 
Arbitrary Transverse Wind Velocities: 

Multipulse Steady State 

Isobaric density changes induced by multipulse heating are governed by 
the equation 

3p"p 3pf 3P7 v - 1 V 

where T I zty) represents the fluence of the nth. pulse, and x represents 
p n p 
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the pulse width. If "steady-state" pulse. Hence J (x,#) = I(x,y). 

conditions prevail, it can be assumed Taking the Fourier transform of Eq. (24) 
t h a t In d o e s n o t v a r y f r o m P u l s e t o w i t n respect to x and y yields 

3p. 
•mp 

Solving Eq. (25) for p m p at a time £ = p?A£, where m is any integer and At 
is the time interval between successive pulses, gives 

r 
h^kx'krmm = " :LJTA a f ( W 2 expl-inltlk^ + *y>j,)]. (26) 

The exponentials in Eq. (26) corres­
pond to translations of the individual-
pulse fluence distributions in con­
figuration space by wind motion. 

The summation begins with n = 1 
because the isobaric density changes 
created by a given pulse do not have 
time to develop during the pulse 
width, T . The upper limit JUL is 
based on numerical considerations and 
is determined by 

Np « MIK ("input* [HgA*J 

l\"y\**\) • (27) 

where N is the numerical length of the 
mesh used for solving the wave 
equation. 

-23-

In Eq. (27) MTN signifies the min­
imum of the arguments, and the square 
brackets represent the integer part 
of the arguments inside them. An 
input value of N is useful if a true 
stagnation point is encountered along 
the propagation path. In such cases 
the total density change at the stag­
nation point can be kept bounded. 
For example, ̂  t might be set equal 
to the actual number of pulses in a 
given train, in which case a true 
lower bound could be assigned to the 
intensities at the target. 

The remaining arguments in Eq. (27) 
prevent any pulse fluence distribution 
from affecting the density calculation 
if it has been translated by more 
than the minimum (physical) dimension 
of the computational mesh for the 
wave equation, i.e. HIH(iVASj NLy). 



The density calculation itself is 
carried out on a 2N x 2ff mesh-, which 
has a buffer of length N in both the 
a; and y directions. Thus if U„ 

satisfies condition (27), periodic 
"wrap-around" or positional aliasing 

of the density contributions by past 
pulses in the train is avoided. 

The summation in Eq. (26) may be 
aluated directly, an 

expressed in the form 
evaluated directly, and P t can be 

y - * ~?, o ? ( * , . y exp [- i ^ l i Ltfkxvx + kyvy)\ 

sin -§ Ulkv + kv) 
- *-*• aLX- . (28) 

The density p (x,j) Is th-m obtainable 
from Eq. (28) by an ir.verse transform 
operation using the FFT algorithm. 
Equation (28) has been used in a num­
ber of test examples with satisfactory 
results. If the spectrum I(k.k ) is xr y 
particularly rich in high spatial fre­
quencies, Eq. (28) may give rise to a 
ringing behavior in configuration space 
due to the fact that the shift operators 

exp (-intek V J , exp (,-inMk w, ) (29) x x y y 

may not correspond to lattice 
translation operators on the co£pu~ 
tational mesh. In °uch a case 
ringing can be suppressed by express­
ing the solution of Eq. (26) in 
terms of the Interpolations of lattics 
shift operations. 

By means of bilinear interpolation, 
one can express any function T(x,y) 

at positions intermediate to the lat­
tice by means of 

TJ+fxMfy ~ a ' fyy fx Tj+i,k + ( 1 " 4> fy "jMi 

+ V , Vi.fcn + a - V « - 4> rj,k • <30> 

0 < f < 1 , 0 < f < 1 , 
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where ;" and f reprcsc-.t fractional nay thus be represented in the fol-
dlsrances between lattice coordinated, lowing alternative form, which avoids 
and where the numbers T. . represent Che use of nonlaceice shift operators 
values af Tlx,u) sampled at lattice (the notation ( ] signifies the 
points. The summation In Eq. (26) integer part of the argument): 

8 

\ cxp l-inAt(fcrux + *«>'«> i 
;-l 

" Sw 1 - -9 "4 * {\ ( ,V ! | + » + \J\n}) 

h v;exp (: I {\ ( l v* x > + "̂ "v1 + 1}}j 

(*Kv v 1*V v ,J)j + (i - ;* x i - fj «*P g(kx, y , (3D 

where 

y ; At 
1 " " Ay • 

/ x («) ' V » - [ lytl , 

/ » < n ) " V " 'V 1 

(32) 

The summation in Eq. (26) over n can 
be evaluated as a VI x 2A' DFT with 
the aid of the FFT algorithm. For a 
given value of n, the numbers (in], 
!n n] + 1 can each be identified as 
x-coordinires n and the numbers 

x 
In n \ , fn«) + 1 as ̂ -coordinates n 
in the lattice space. Thus each 
exponential in the summation in 
Eq. (31) can be identified vich a par­
ticular lattice point n , n . As the 

x y 
index n is incremented, the appro­
priate bilinear function of /" («) and -25-



/ («) is added to the contents of a 
storage register corresponding to 
coordinates n, « . On completion of 
this operation, a two-dimensional DFT 
of the resultant array will yield the 
desired sum (31). 

The Fourier transform of the 
density can then be expressed as 

"l̂ x'V*" (Y - 1) 

(33) 

Both the options (28) and (29) are 
currently available in the Four-D 
code, and the cases run have produced 
results that are almost indistinguish­
able. 

The shifts and interpolations 
implied in Eq. (31) may, of course, 
be carried out strictly in configura­
tion space. If N is small, this 
procedure may be more economical. 
As .V. becomes large, the Fourier 
transform method becomes more 
economical. 

8. Effect of Noncoplanarity on Propagation of 
cw Laser Beams Through Stagnation Zones 

We shall focus attention on the 
scenario discussed in Ref. 1, in 
which the total propagation dis­
tance is 1.5 km and the stagnation 
point occurs at s " 0,8439 km. The 
initial diffraction-limited beam is 

2 
Gaussian, with 1/e -intensity 
diameter of 70 cm, and is assumed 
to be focused at the 1.5-fcm range. 
The wavelength and absorption coef­
ficient are assumed to be 3.8 urn 
and 0.07 km , respectively. For 
reference the results of the time 
dependent calculations at t = 60 ms 
are given in Table 5. For this 
value of t t the beam properties are 
changing very slowly, and the assump­

tion of a "quasi" steady state is a 
reasonable one. 

In the noncoplanar scenario, on 
the other hand, a true steady state 
is known to exist, and a time to 
establish this steady state can be 
estimated by dividing the beam 
diameter by the magnitude of the 
vertical wind component at the 
stagnation point. The noncoplanar 
results are naturally much cheaper 
to obtain than the corresponding 
coplanar results. 

In Table 6, steady-state results 
are given for the scenario corres­
ponding to Table 5 for a variety of 
elevations of the laser aperture 
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Table 5. Beam properties on target at t • 60 ms. 

Laser power 
(kW) 

500 
500 a 

500 b 

250 
125 
62.5 

Peak In tens i ty 
a t t a rge t 

(kW/cm2) 

Minimum half-
power area 

(cm 2) 

Intensity averaged 
over minimum 

half-power area 
(kW/cm2) 

10.8 33.4 6.72 

9.8 53.5 4.19 

11.0 33.2 6.76 

12.4 13.5 8.34 

17.7 4.42 12.7 

22.7 1.65 17.0 

Focus 100 m beyond range. 
Motion of stagnation zone taken into account. 

Table 6. Steady-state cw beam properties as a function of laser height above 
scenario plane. 

V e r t i c a l u i n d 
Minimum h a l f -

power a r e a Minimum h a l f - Time t o Peak 

I n t e n s i t y 
averaged over 
minimum h a l f -

Laser 
power 

Laser 
e l e v a t i o n 

Cm) 

speed a t 
s t a g n a t i o n p o i n t 

(m/s) 

( s t a g n a t i o n 
p o i n t ) 
(cm*) 

power a r e a 
( t a r g e t ) 

(cm2) 

s t e a d y 
s t a t e 

( s ) 

i n t e n s i t y 
a t t a r g e t 

(kH/cm2) 

power a r e a a t 
t a r g e t 
(kW/cm 2) 

500 5 0 .55 293 37 .7 0.312 11 .0 5 .97 

10 1.1 291 33 .6 .155 12 .0 6 .69 

20 2.2 290 2 9 . 1 .077 14 .0 7.72 

30 3 .3 289 26 .4 .052 1 5 . 9 6 .52 

40 4 . 4 287 23 .6 .039 1 6 . 1 9 .53 

250 5 0 .55 279 13 .7 .303 16 .6 8.2 

10 1.1 278 12 .0 .152 17 .8 9.36 

20 2.2 277 10 .1 .076 19 .5 11 .0 
30 3 .3 278 8.9 .051 21 .6 12 .6 
40 4 . 4 276 7 .88 .038 2 4 . 1 1 4 . 3 

125 5 0 .55 272 4 .66 .300 22 .9 12 .0 

10 1.1 271 4 .04 .150 .-5.3 13 .9 

20 2 .2 271 3 .33 .075 28 .6 19 .5 

40 4 .4 270 2 . 3 1 .037 39 . > 2 4 . 3 

62 .5 5 0 .55 268 1.58 .29 30.6 17 .7 

10 1.1 268 1.37 0.14 34 .3 20 .5 



Fig. 12. Transverse wind velocity as 
a function of axial distance 
for cw beam, (a) x com­
ponent, (b) y component, 
(c) Magnitude. 

above the scenario plane. Figure 12 
shows the variations with z of the 
horizontal and vertical components 
and the magnitude of the transverse 
wind. 

From Tables S and 6, it is evi­
dent that the space-averaged inten­
sities in the focal plane for the 
noncoplanar scenario at 5-m eleva­
tion agree with the corresponding 
average steady-state intensities for 

Time-dependent 
coplanar, quasi-
steady state 

If 
mi 

Steady state, 
noncoplanar, 
h = 10 m 

Fig, 13. Comparison of isointensity 
contours for stagnation-
zone situations in coplanar 
and noncoplanar cases. 



the coplartar scenarios to within 
less than 10%. The peak intensities 
fnr the noncoplanar scenario at 5 m, 
on the other hand, are somewhat 
higher than the corresponding values 
for the coplanar case. There is 
also a substantial difference in the 
appearance of the isointensity con­
tours in the focal plane (Fig, 13). 
As would be expected, performance 
improves with height, although the 
improvement is marginal for the 
elevations considered. In all cases 

a steady-state condition can be 
reached in a tiae small compared with 
times of interest. 

In conclusion., average intensi­
ties for coplanar stagnation-zone 
scenarios can be calculated by 
adding nominal noncoplanar features 
to the scenario and performing a 
steady-state calculation. For 
:w beams,, however, rather 
substantial laser elevations 
must be provided to alleviate 
stagnation-zone effects. 

9. Effect of Noncoplanarity of Propagation of 
Multipulse Beams Through Stagnation Zones 

We turn our attention again to 
the scenario of Section 3. All 
problem parameters are the same, 
except that the laser is now assumed 
to be elevated 10 m above the 
scenario plane. Figure 14 shows the 
vertical and horizontal components 
of transverse wind velocity as 
functions of propagation distance. 
Figure 15 shows the isointensity 
contours in the target plane for the 
various repetition rates. 

Table 7 compares laser perfor­
mance on target as a function of 
pulse-repetition frequency for the 
coplanar scenario and the noncoplanar 
scenario with a laser elevation of 
10 m. In the absence of complete 

steady-state data for the coplanar 
case, we have used in Table 7 inten­
sity values corresponding to the 
final time-J exhibited in Fig. 6 for 
a given value of v. Thus the 
improvements due to noncoplanarity 
shown in Table 7 are conservative 
estimates. 

It is seen from Table 7 that 
improvements of at least a factor 
of 2, conservatively estimated, are 
possible for all values of V. In 
the case of v B 10 s~ the laser 
performance is even better than it 
would be in a vacuum. The reason 
is that for this pulse-repetition 
frequency the overlap number at the 
stagnation point is only 2, and for 



0.5 1.0 1.5 2.0 
Axial distance —km 

2.5 

Fig. 1A. Transverse wind velocity as 
a function of axial distance 
for multipulse beam, (a) x 
component, (b) y component. 

overlap numbers in the range 1-2 
such enhancement effects for multi-
pulse beams are well known. 

Fig. 15. Changing shapes of isoin-
tensity contours as a 
functioti of pulse-repetition 
rate for noncoplanar scenario; 
laser at 10-m elevation. 

To summarize: there is clearly 
some hope of minimizing stagnation-
zone blooming for multipulse beams 
by a combination of elevating the 
laser aperture above the scenario 
plane and lowering the pulse-
repetition frequency. 
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Table 7. Comparison of multipluse beam properties for coplanar and non­
coplanar scenarios. Power - 53 kW, range " 2.5 ka, X - 10.6 lot, 
elevation h • 10 n, and vertical wind speed at stagnation point 
- 0.61 m/s. 

Minimum 
Intensity 
averaged 

Intensity 
averaged 

half-power Tine to Peak over over 
area steady Overlap Peak intensity ainlnun mlnicua 

Pulse (utagnation state nuaber at intensity at target half-power half-power 
repetition point. (non- stagnation at target (non­ area area (non­
fruquuncy, noncoplanar coplanar point (non­ (coplanar coplanar (coplanar coplanar 

scenario) scenario) coplanar scenario) scenario) scenario) scenario) 
(a"1) (cm"2) (8) scenario) (W/cn2) (W/c*2) (W/CB2) (tf/cm2) 

10 m 0.19 1.9 85.5 C 287* 52.0 C 181 b 

25 116 0.18 4.49 :«.5 C 116 32.5 C 65.6 
50 104 0.17 8.49 28.7 d 70.9 17.8 d 42.3 
100 HO 0.19 19.0 30.4 d 49.0 13.2 e 30.3 

vacuum beam has value 2*J8. 
Vacuum bean has value 170. 

c t = 0.6 s, steady state has not been reached. 
t ° 0.32 s, steady state has not been reached. 
V = 0.2 s, steady state has not been reached. 

10. Single-Pulse Thermal Blooming in the 
Triangular Pulse Approximation 

The isobaric approximation for 
changes in air density is invalid 
for a single laser pulse whose dura­
tion Is comparable to or less than 
the transit time of sound across the 
beam. In this time regime — referred 

3 
to as the t -regime because of the 
time dependence of density changes 
arising from an applied constant 
laser-energy absorption rate — the 
air-density changes must be deter­
mined from the complete set of time-
dependent hydrodynamic equations, 
Eqs. (15) 1,7 

At late times in the pulse, t 

thermal blooming tends to reduce the 
on-axis intensity relative to what 
it would be if the beam were propa­
gating in vacuum. This reduction 
increases with time, and for suf­
ficiently late times a depression 
appears in the center of the beam. 
Energy added to the pulse at later 
times will contribute only margin­
ally to the on-axis fluence. Thus, 
for a specific peak pulse 
intensity, the on-axis fluence 
appears to saturate as the pulse 
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duration is stretched out more 
and more. 

These properties are best illus­
trated by a numerical example. Let 
us consider a beam that is Gaussian 

2 at z •* 0 with 1/e -intensity radius 
25 or. The beam, which is focused 
at 2,5 km, is assumed to be 2* dif­
fraction limited (X-scaled) with 
X m 10.59 gm and ct = 0.3 * 10" cm" . 
The pulse is souare-shaped in time 
and lasts 100 ys. The choice of a 
square-shaped pulse is convenient 
because a single calculation con­
tains the complete information for 
all square pulses of duration 
shorter than the one chosen. 

Figure 16 shows the on-asis 
intensity at 3 = 2.0 km, obtained 

100 

Fig. 16. On-axis intensity as i 
function of time. The pulse 
is taken to be square-shaped 
in time. Thermal blooming 
reduces on-axis intensity 
to a negligible value after 
a sufficiently long tine. 

by detailed numerical solution of 
Eqs. (15). The on-axis intensity 
clearly drops to a negligible value 
before the end of the pulse, and* 
as a consequence, the on-axis 
fluence saturates as the pulse width 
increases, as can be seen in Fig. 17. 
The detailed temporal evolution of 
the spatial shape of the beam is 
shown in Figs. 18 and 19. Figure 18 
is a three-dimensional plot of the 
laser intensity as a function of 
time and radius. Figure 19 shows 
the radial intensity profiles for 
increasing values of time. The 
opening up of a hole in the back of 
the pulse is clear from both 
Figs. 18 and 19. 

Calculations of the type repre­
sented in Figs. 17-19 become 
impractical if one is treating a 

Fig. 17. Saturation of on-axis fluence 
due to strong pulse thermal 
blooming. 
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Fig. 18. Three-dimensional plot of 
intensity as a function of 
time and radius corresponding 
to Figs. 16 and 17. 

Fig. 19. Intensity as a function of 
radius fcr increasing time 
in pulse corresponding to 
Figs. 16 and 17. 

multipulse beam. The determination 
of nonisobaric contributions to the 
density is greatly simplified by the 
triangular pulse approximation, in 
which the dependence of the laser 
intensity on time is represented as 
an isosceles triangle with base 
equal to 2 T . The density is 
required only at time t = T , since 

—sp , Pi = -<Y 
OTT 

1) 

the laser intensity is assumed to 
vanish for t = 0 and t ^ 2 T . P 

The density change at t - T can 
be evaluated analytically in tencs 
of a finite Fourier series represen­
tation of the laser intensity. The 
Fourier transform of the noniso-
baiv.ally induced density change is 

] r J \ i m 4 2 - 2 ) i 2 

p\ x y I J J 

(34) 

where I is the spatial Fourier transform of the intensity. The corresprnding 
density changes at the grid pointfa are given by the discrete Fourier transform 
(DFT) expression 

„.-2 \~ ~sp /Tim , im\ /, Jxj + nk\ 
!A) z pi ( r ' -) e x p \2m-*m—)' 

(35) 
m, n=-N+l 



where the basis functions are 
periodic on a square of side 2L. 
This allows for a buffer region that 
extends an additional distance L in 
both the x and y directions from the 
region of interest. 

Comparison of the triangular 
pulse approximation and detailed 
pulse thermal-blooming calculations 
for Gaussian-shaped pulses in time 
have shown good agreement between 
the calculated fluences for weak or 
moderate thermal blooming 

250 

25 50 
Pulse length -

Fig. 20. On-axis fluence as a function 
of pulse length, as calcu­
lated with triangular pulse 
approximation (x's) and by 
detailed numerical solution 
of hydrodynamic equations 
for a square pulse in time 
(solid curve). The tri­
angular pulse approximation 
breaks down as saturated-
fluence condition sets in 
at T -- 1.5* . Erratic 
behavior is 3ue to develop­
ment of spikes in the 
intensity pattern as a 
function of transverse 
position. 

25 50 
Pulse length -

Fig. 21. Fluence averaged over 
minimum area containing one 
half of total beam energy, 
as a function of pulse 
length. Solid curve is 
detailed calculation for 
square pulse, x's represent 
triangular pulse approxi­
mation. 

Figure 20 shows the on-axis fluence 
calculated for the previous example 
with the triangular pulse approx­
imation (x's) and the detailed 
solution of Eqs. (15) for square 
pulses in time (solid line). 
Despite the difference in assumed 
pulse shapes, the agreement between 
the two types of calculation is very 
good up until time t RJ 50 us, which 
is velJ above the saturation time 
t = 38 us predicted by the pertur-

8 bation theory of Ulrich and Hayes 
9 

based on the work of Aitken et at* 

Above 55 us, or approximately 1.5* , 
the beam abruptly develops spikes 
in its transverse spatial dependence; 
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this clearly signals the breakdown 
of the triangular pulse approxima­
tion » which must obviously fail when 
strong saturation behavior sets in. 

Figure 21 shows the fluence 
averaged over the minimum half-
energy area (the area within the 
one-half peak energy contour) cal­
culated with the triangular pulse 
approximation and with the detailed 
solution of Eqs. (IS) for square 
pulses. Both calculations increase 
initially, reach a maximum, and then 
turn over with increasing time. 
This is in part due to the increase 
of the area within the one-half peak 
energy contour with time. There is, 
however, no point in believing the 
triangular pulse approximation 
beyond the time when the average 
fluence curve has reached a maximum, 
which also coincides with the onset 
of erratic behavior in the on-axis 
fluence (Fig. 20). 

The perturbation theory alluded 
8 9 

to earlier * describes the on-axis 
fluence saturation for a b> <am that 
is Initially Gaussian in shape and 
for a pulse shape that is square in 
time. In this theory, the expression 
for the on-axis intensity is 

J(t) = a ' 
t < t 

(36) 

where XQ{z) is the on-axis intensity 
for a Gaussian beam propagating in 
vacuum, or 

JT0(0) . 
(37) 

Here a is the absorption coefficient 
and 

oos, = H ) 2 + te ) 2 ' (38) 

where / is the focal distance and a 

is the radius of the original 
Gaussian beam. The saturation time 
t at on-axial position s is given 
by 

2tHY - 1) cus S e 

37ra6Z>2(3) T 

-1/3 
(39) 

t > t , 
s * 

where N is the refractivity, E is 
the pulse energy, and r is the 
pulse duration. Since the fluence 
cannot be increased for pulses 
longer than £ , it can be argued 
that nothing is accomplishad by 
making the pulse longer than t . 
The fluence must be maximized 
instead by maximizing the product 
r_(3) t or, equivalently, by 
maximizing •*"«(»)• The maximum 
allowable value of J Q(») at point s 
is normally determined by the con­
dition that it not exceed the break­
down intensity, or 
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max J Q( S) = J B D (40) 

This maximum allowable intensity in 
turn determines a critical input 
pulse energy at z = 0 given by 

*crit ̂  ̂ V H D * ^ 0 " (41) 

where Eq. (37) has been made use of, 

and where t i s calculated from 

2/7 (Y - 1) eta J t t 

3a*V(z) 

-1 /3 

(42) 

If one is dealing with a multipulse 
laser with pulse-repetition fre­
quency V, Eq, (41) can be used to 
define a critical input power with 

*= va2vt8ImD{z)eaz . (43) 

The self-consistency of the 
triangular pulse approximation, on 
the other hand, prevents the on-axis 
intensity from ever becoming 
negative, but, as previously 
remarked, the triangular pulse 
approximation breaks down for pulse 
energies greater than the value that 
maximizes the space-averaged target 
fluence. For this pulse energy, the 
average and on-axis fluences should 
be saturated, and further increases 
in pulse energy would give no return. 
Figures 22 and 23 have been calcu­
lated with the data on which 

1.00 

u 0 0.5 1.0 1.5 2.0 2.5 
Normalized input-pulse energy 

Fig. 22. On-target fluence from t r i ­
angular pulse approximation 
averaged over area contain­
ing (1 - 1/e) f r ac t ion of 
t o t a l beam energy. Range 
= 1.5 km» Jop = 1.6 
* 106 W/cm2. 

0 0.5 1.0 1.5 2.0 2.5 
Normalized input - pulse energy 

Fig, 23. On-target space-averaged 
fluence and i n t e n s i t y as 
functions of input pulse 
energy for t r i angu la r pulse 
approxima t ion. Range 
= 2 km, J B D = 3 x i o 6 w/cm 2. 
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Figs. 16-21 are based, buC with the 
following differences: the ranges 
for Figs. 22 and 23 are 1.5 km and 
2.0 km respectively; the values 
assigned (somewhat arbitrarily) to 
J n at these ranges are 3 * 10 W/cm' 
and 1.5 x 10 6 W/cm 2. 

Both the on-target space-averaged 
fluence and intensity (Fig. 23) are 
plotted as functions of the input 
pulse energy normalized to E . 

given in Eq. (42), The space 
averaging is over the area contained 
within the lie energy contour. The 
indicated maxima of the average 
fluences in both Figs. 22 and 23 
occur at an input pulse energy equal 
to 1.72? . • The space-aversged crit 
fluence curves in Figs. 22 and 23 
are smoother than those displayed 
in Fig. 20 because the former are 
averaged over larger areas. The 

The propagation of a given pulse 
in a train is influenced by both the 
nonisobaric density changes 
discussed in the previous section 
and by the isobaric density changes 
due to heating by previous pulses 
in the train. But can the self-
blooming and multipulse blooming 
effects be treated independently? 

scaling implications of the pertur­
bation theory described in 
Eqs. (36)-(42) are apparently valid 
for the triangular pulse approx­
imation, although the maximum useful 
pulse energy predicted hy the latter 
is about 50% greater than that 
predicted by the perturbation 
theory. 

In summary: the triangular pulse 
approximation should provide reason­
ably accurate fluence results for 
pulse energies up to the values 
where strong thermal blooming 
saturates the on-axis fluence. The 
breakdown of the approximation will 
be indicated by the development of 
spikes in the transverse spatial 
dependence of the beam intensity as 
well as by a sharp falloff in the 
fluence averaged over some area as 
a function of pulse energy. 

If so, the results and discussion 
of the previous section suggest 
that, as time-averaged laser power 
is increased by lengthening the 
duration of the constituent pulses 
in the train, the time-averaged 
intensity on target should saturate 
at a value that is predictable from 
the saturation fluence for a single 

11. Multipulse Thermal Blooming in the 
Triangular Pulse Approximation 
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pulse. If <T> represents the time-
averaged Intensity, the maximum 
achievable value of <J> for a given 
pulse-repetition rate should be 
expressible as 

(44) 

saturation fluence. 
In order to test the hypothesis 

of the independence of self and 
multipulse blooming, a set of cal­
culations has been carried out with 
the following set of parameters: 
Start beam shape Gaussian, truncated 2 at 1/e radius 
Range, R 2.5 km 
Focal length/ 
range, FIR 1.0 and 1.2 

Wavelength, X 10.6 um 
Absorption 

coefficient, a 0.25 km" 
Aperture diameter, 

-1 

2a (Gaussian at 
lie2) 21.2 cm 

33-1/3 and 50 s 
Pulse-repet i t ion 

r a t e , V 
Maximum pulse 

intensity at 
2 receiver, I 4.9 MW/cm 

* max 
Overlap number, 

1,0, 1.5 

Figure 24 shows the space-
averaged single-pulse intensity I 
for V = 33-1/3 s" 1 and NQ = 1, with 

FfR -1.0 and 1.2, calculated as a 
function of input time-averaged power 
<P> = VFp. The curves have been cal­
culated with and without the effects 
of pulse self-blooming. The curve 
without self-blooming for F/R = 1.2 
rises slightly with input power 
because of a very slight amount of 
pulse overlap. It is clear from 
Fig. 24, in any case, that thermal 
blooming is due almost entirely to 
self-blooming effects. The corres­
ponding curves for space- and time-
averaged target intensities <J> are 
displayed in Fig. 25, where 

<J> = J T V (44) 

It is seen that <J> with self-blooming 
rises initially, reaches a peak, and 
then falls. From the analysis of the 
previous section, we interpret the 
peak values of <I> as the saturated 
values. 

Figure 26 shows J as a function 
of <P> for v = 50 s _ 1 and AL = l.*, 
with F/R = 1.0 and 1.2. Above <P> = 
=0.5 MW, and an enhancement effect 
sets in that is greater in the case 
of the defocused beam. The corres­
ponding curves for space- and time-
averaged target intensities are shown 
in Fig. 27. 

A comparison of Figs. 25 and 27 
is summarized in Table 8. It is seen 
that at V = 50 s~ the power <P> 

at which saturation of <I> occurs is 
-38-
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i 1 1 
(a) 

1 1 ' 1 
Without self-blooming 

/ 
-

- With self-bloom 
7\ 
ng ^ s . 

-

-
i ! 1 1 1 1 

" " - ^ ^ 

With self-blooming 

0.5 1.0 1.5 
Time-averaged transmitter power —MW 

2.0 

Fig. 24. Space-averaged Intensity on target as a function of time-averaged 
power at transmitter: v •= 33-1/3 s-1, Nn = l (a) FIR = 1 0 
(b) F/R = 1.2. ° 
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8 

Time-averaged transmitter power —MW 

Fig. 25 . Space- and time-averaged i n t ens i t y on t a rge t as a function of t ime-
averaged power a t t r ansmi t t e r : V = 33-1/3 s - 1 , nQ = 1. (a) FIR = 1.0. 
(b) FIR = 1.2. 
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(a) 

2 -

Without seif-blooming _ 

With self-blooming 

0.5 1.0 1.5 
Time-averaged transmitter power — MW 

2.0 

Fig. 26. Space-averaged intensity on target as a function of time-averaged 
power at transmitter: V = 50 s _l, KQ = 1.5. (a) F/R = 1.0. 
(b) FIR = 1.2. 



1 1 1 r 
(a) 

Time-averaged transmitter power — MW 

Fig. 27. Space- and tirae-averaged intensity on target as a function of time-
averaged power at transmitter: V = 50 s~l, NQ = 1.5. 
(a) FIR - 1.0. (b) FIR = 1.2. 
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Table 8. Saturation of time- and 
space-averaged target 
intensity due to self-
blooming. 

is'1) P/R (MM) (kW/cm 2 ) 

33 1/3 1.0 1.0 2 . 4 

33 1/3 1.2 1.2 2 . 5 

50 1.0 1 .75 2 . 7 

50 1.2 2 . 0 3 . 5 

higher for both values of F/B chan 
it is at v = 33-1/3 a" 1. The cor­
responding saturation intensity 
values <J> are also greater at 

_ i 5 a t _1 
v = 50 s than at V = 33-1/3 s \ 
If effects of self-blooming are not 
included, on the other hand, values 
of <I> are always greater at a given 

The authors are indebted to C. H. 
Woods for the calculations of the ef­
fects of laser elevation on cw laser 

value of <P> in the case of 
v = 33-1/3 s" 1. 

Unfortunately, we have no guide 
to the accuracy of the triangular 
pulse approximation in the overlap 
case as ve do in the nonoverlap case. 
But ^he above results strongly sug­
gest that the contributions of iso­
baric and nonisobaric density changes 
to thermal blooming of multlpulse 
beams are interrelated, and that 
time-averaged saturation intensities 
based on single saturation fluences 
may not be applicable for overlap 
numbers somewhat above 1. In fact, 
overlapping isobaric density patterns 
may in certain situations actually 
override the effects of single-pulse 
nonisobaric density changes. 

performance in Section 9 and for the 
effects of pulse thermal blooming on 
multipulse propagation in Section 11. 

Acknowledgment 

-43-



References 

1. J. A. Fleck, Jr., J. R. Morris, and M. Feit, Time-Dependent Propagation 
of High Energy Laser Beams Through the Atmosphere, Laurence Livermore 
Laboratory, Rept. UCRL-51826 (1975); UCRL-77719 (1976) to ba published 
in Applied Physios. 

2. R. T. Brown, P. J. Berger, F. G, Gebhardt, and H. C. Smith, Influence 
of Dead Zones and Transonic Slewing on Thermal Blooming, United Aircraft 
Research Laboratory, East Hartford, Conn., Rept. N921724-7 (1974). 

3. P. J. Berger, F. G. Gebhardt, and D. C. Smith, Thermal Blooming Due to 
a Stagnation Zone in a Slewed Beam, United Aircraft Research Laboratory, 
East Hartford, Conn., Rept. N921724-12 (1974). 

4. P. J. Berger, P. B. Ulrich, J. T. Ulrich, and F. G. Gebhardt, "Transient 
Thermal Blooming of a Slewed Laser Beam Containing a Regime of Stagnant 
Absorber," submitted to Applied Optics. 

5. The possibility of such curved flow trajectories in the neighborhood of 
the stagnation point was pointed out to one of the authors by B. Hogge, 
private communication. 

6. J. Wallace and J. R. Lilly, "Thermal Blooming of Repetitively Pulsed 
Laser Beams," J. Opt. Soc. Am. 64_, 1651 (1974). 

7. P. B. Ulrich and J. Wallace, J. Opt. Soo. Am. 63_, 8 (1973). 
8. P. B. Ulrich and J. N. Hayes, U.S. Naval Research Laboratory, 

Washington, D.C., unpublished internal report (1974). 
9. A. H. Aitken, J. N. Hayes, and P. B. Ulrich, "Thermal Blooming of Pulsed 

Focused Gaussian Laser Beams," Appl. Opt. 1£, 193 (1973). 

-44-



Appendix A: Adaptive Lens Transformation 

One key to the successful implementation of a laser-propagation code 
is finding a coordinate transformation that keeps the laser beam away from 
the calculational mesh boundary and at the same time prevents the beam from 
contracting to an unreasonably small fraction of the total mesh area at the 
focus. If one is solving the Fresnel equation by the finite Fourier trans­
form method, one may alternatively view the problem in terms of comple­
mentarity: one wishes to find a transformation that simultaneously keeps 
the beam intensity small on the mesh boundaries in configuration space and 
keeps the Fourier spectrum small on the mesh boundaries in ft-space. If 
these two conditions are met, one knows from sampling theory that the 
numerical solution is highly accurate. 

The Four-D code uses an automated procedure that is designed to keep 
the intensity centroid at the center of the mesh and the intensity-weighted 
r.m.s. values of x and y constant with propagation distance z. These con­
ditions can be written 

is <xi>1' °> ( A l a ) 

| - <(x. - <x,>)2> = 0 , I = 1, 2 , (Alb) 

x. = x, x. = y 

I-
"'J-

dx dy I(x>y)u 
(Ale) 

dx dy I(xay) 

Hereafter* all averages will be assumed to be intensity-weighted, and the 
subscript I will be dropped. 

Conditions (Al) also apply to the adaptive coordinate transformation 
Al of Bradley and Hermann, which differs from the one employed in the Four-D 

L. C. Bradley and J. Hermann, "Change of Reference Wavefront," 
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, 
Mass., unpublished internal report. 

-45-



code only in that it is preceded by a transformation to the coordinates of 
an arbitrary Gaussian beam propagating in vacuum. It should be evident, in 
any cat a, that such adaptive transformations are restricted to steady-state 
problems, since for time-dependent problems no single transformation will 
apply to all time values. To solve time-dependent problems one must employ 
a Talanov transformation that is optimized to all time values. This 
optimization is accomplished by s. combination o£ trial and error and 
intuition. 

The splitting algorithm employed in the Four-D code can be written 
formally as 

g**1 = exp ( - ^ v ^ e x p f l M ^ e x p Z - ^ v i ) ^ <*, 

X = k2(n2 - 1) , 

where the middle exponential on the right-hand side of Eq. (A2) contains the 
changes in phase resulting from hydrodynamic changes in ctnsity, turbulence, 
etc. Immediately after this step in the calculation, a quadratic reference 
phase front is determined and is removed from 8 by means of a Talanov 
transformation and a deflection of the beam coordinates. These operations 
are ca ried out as part of the vacuum propagation step. During vacuum 
propagation the solution is advanced by solving 

2ik H = V l a • (A3) 

Equation (Al) can be written 

<#.> - p /da^ dx^ ^ U ^ , ^ , ^ ) ! 3 (A4a) 

* / * i (te2 xZ^6(xx,xvz)\2 , i = 1, 2 (A4b) 

where P i s the beam power given by 

P = I d i^ ix2 \g{xltx2)\2 . (A5) 
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By differentiating Eqs. (A4a) and (A4b) with respect to z and making 
use of the Fresuel equation (A3), one obtains the following relations: 

k**** ~ ~ h J **,_ ixz\S{xvx2,z) | 2 x . -jf-; d.Cor^Xj.a), ( A 6 a ) 

l z < x i > = ~Ta I ^ d e 2 | # ( a r 1 , a 2 , a ) | 357 • ( * 1 » * 2 ' ; s ) ' ( A 6 b > 
•> i 

where the phase (JKx., £9* z^ i s ^ e ^ ^ n e ^ by 

i f (x 1 , x 2 , 3 ) = I m [ l n < ? ( x 1 , x 2 , a ) ] . (A6c) 

In k-space one can similarly derive 

3s ^ i ' kP 

3_ 2 2_ 
9s xi ~ fcP 

/ / dKx dK2 ^^(^,^,3) | 2 = -ji- , (A7a 

Im / / d^ dK2 K ^ I ^ C ^ . ^ . S ) ! 

x S^'W^ • < A 7 b > 

where ̂ (KJ.K,,a) is the Fourier transform of «f(Xj,x ,s), and 

*(KJ_,K 2,B) = Im[ln^'(K1,K2,s)] . (A8) 

We now wish to determine a phase front that will preserve the following 
conditions: 

k < x i > = 6 < < A 9 a ) 

k < ( * -<*i>)2>= 0 > i = 1, 2. (A9b) 
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Equation (A9b) i s equivalent to 

I? <^ 2 > - 2<xi> h<xi>= °- ( A 9 c ) 

From Eqs, (A9) and (A6) one obtains 

3 

Thus the reference phase front must satisfy 

<4*>-° 

(AlOa) 

h<xi>m-•&?*£-*) - ° • ( M O b ) 

(Alia) 

(xi - <xi>> at: y = ° • ( A l l b ) 

Let us define a new phase variable: 

2 
+ £ [^(^ -<xi>)2 + ^ ( ^ -<K i>)] , (A12) 

4=1 
where ̂ o^i ̂ ^^K-rt' represents the phase ̂ fe.K-.s ̂ , ) at s^, before the 
vacuum propagation operator has been applied, and where «• and [3. are 
determined so as to make conditions (Alia) and (Allb) hold for the phase 
front f ( i . x , s ^ ) . From Eq. (Alia) we obtain 

(£: *'<»i'*2'W) - 2ai ^ " *«>> + h 

+(i~ •o(*L'«2'W) »» 
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h"-(s; *$•"-£ 
From (Allb) we obtain 

(ft ~ <*i» •&: *'<*v'v*n*y - 2ai(<xi - <**»* ) 

(A14) 

Equations (A13) and (A14), which determine the desired reference 
phase-front parameters (A12), can be shown to be completely equivalent to 

Al the relations used by Bradley and Hermann, 
If the optimal phase front (j>* is now substituted for the original 

phase front <f>„ at zM+u» the phase increment 

* 0 - *• = - £ [ c ^ - <xf)2 + 3 ^ - <ar €»] CA15) 

must be compensated for in some way in order to preserve the original field. 
The quadratic contribution in (A15) is compensated for by a generalized 
Talanov transformation, which involves a rescaling of «f,the mesh, and As, 
according to 

<£(#,*/,s) = 

' ( r i T * - ) - [ ' « ( ^ (A16a) 
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•#(K„,K .a) = &(.< ,K, .3 - As) exp 
x y x y 

z l ~ 1 - (As/s^) 

3 2 1 - (Aa/a ) 

1 x 
2iT" + 3i 2fc * ) 

, (A16b) 

(A16c) 

<A16d) 

The generalized focal lengths z and a are determined by combining the 
x y 

reciprocals of the current focal lengths, 

< • *V* 

(A17a) 

(A17b) 

with those remaining from previous propagation steps (see argument of expo­
nential in Eq, (A16a)). 

The linear term in (A15) corresponds to solving Eq. (A3) in a coor­
dinate system that has been rotated in x-y-z space. If this rotation is 
assumed to be small, it can be represented by a net deflection in the x and 
y coordinates given by 

Sx = -(Bj/Wa 

&y - -(B2/fc)a 

(A18a) 

(A18b) 

The contribution E, 6-(.x- - <x.>) must also be added to <j>n before the vacuum 
propagation calculation, but this operation may correspond to a translation 
of the Fourier transform i ( K _ , K ) by a nonintegral number of steps on the X y 
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fc-space mesh. In order to avoid this, 3,/AK and 3«/AK are both rounded r l x 2. y 
off to the nearest integer, and ^ ( K .K ) is then translated on its mesh in 
the x and y directions by the corresponding number of steps. 

The numerical implementation of Eqs. (A13) and (A14) requires the 
following computations, where 3 and k represent the numerical coordinates 
of the mesh points: 

3,k 

((x - <x>) 2} = § £ *jl«%fc|2 " * 2 . (A19) 
J,fc 

2. «,•!*«! 

% / 

<i>- c2*"®"1 i n S <*# - *j-i,*>t4k +4-i,# 
3,k 

((.x - <s>) ||^ = (ZteE)-X 

0,k 
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The computations involving the variable y are carried out in an 
analogous manner. In the calculation of the average phase derivative, the 
phase derivative is monitored at each point and limited in nmgnitude to a 
fraction of TT. This prevents rapid phase fluctuations near the mesh 
boundary, where intensities may be weak, from contributing disproportionately 
to the average. 
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Appendix B: An Adaptive Algorithm for Selecting the 
Axial Space Increment 

Tt i s des i rab le to have the code s e l e c t the next ax i a l space increment 

As at a given a x i a l pos i t ion on the basis of requirements for numerical 

accuracy in the solut ion of the wave equation. The numerical acquracy of 

the vacuum propagators in the symmetrically s p l i t so lu t ion opera tor , 

<? - exp 

is independent of As if the solution is based on a discrete Fourier trans­
form. The imposition of the phase front, 

A* = - | f , <B2> 

at z ~ s o , which is equivalent to passing the beam through a lens, will 
make the solution meaningless if any of the transverse zone-to-zone phase 
differences violate 

0 < f <1 . 

It will always be necessary then to restrict the value of As so that con­
ditions (B3) are met. While violating conditions (B3) destroys the numerical 
integrity of the solution, satisfying them does not completely guarantee 

2 accuracy, since errors can also result from the noncommutation of Vj_ and 
X» and from upgrading x t o ° infrequently. These errors must be controlled 
externally by inputting a maximum allowable value of As. 

In practice, part of the effect of the phase front (B2) is removed by 
the adaptive lens transformation. It would therefore be too restrictive to 
limit As on the basis of conditions (B3). As an alternative one can restrict 
the value of As so as to control transverse gradients in the phase variable 
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i=l i 

which is that part of the nonlinear phase front at 3 ., that cannot be 
removed by the adaptive lens transformation. The next spacial increment 
Ass" J is then chosen in terms of the current value As by means of the 
relation 

T>f'l 3> 

The arguments of the maximum function in the denominator of expression (B5) 
are restricted to those mesh points where the intensity is greater than a 
certain fraction /"' of the maximum intensity. The final value of As 7 , 
however, must satisfy the additional constraints: 

(B6) 

As . < Aa" < As , (B7) 
min — max 

W 2 / » (B8) 

2/n + 
D k[ ((x - <*» 2).+ <(y - <y>)2>] 

with (B6) taking precedence over (B5), (B7) over (B6), and (B8) over (B7). 
In Eq. (B8), fD «s 0.005 is an input fraction and S™ = min(|s |, |« | ) . 
Condition (B8) is designed to reduce As near a focus, where the geometric-
optics scaling of the mesh by the Talanov transformation may result in an 
excessive shrinkage of the mesh. By updating the Talanov transformation 
sufficiently often, one can usually avoid a geometric-optics catastrophe. 

The adaptive s-stej> algorithm just described adds greatly to the con­
venience of running problems; it often improves problem running time, and 
avoids large nonlinear phase changes that can invalidate the calculation. 
It should not, however, be regarded as a panacea. For sufficiently high 
beam power and strong enough thermal blooming, the criteria (B5)-(B8) can 
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be s a t i s f i e d and yet the problem s t i l l goes bad. In such cases , l a rge non-
quadrat ic t ransverse zone-to-zone phase d i f ferences can accumulate over many 
s - s t eps . 
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Appendix C: Treatment of Multiline Absorption 

The treatment of multiline absorption in the Four-D code follows the 
CI method of Hogge. The basic assumptions are that all lines operate with 

the same transverse mode structure in the laser and that the line frequen­
cies are near enough to each other so that the field for each line will be 
affected in the same way by the atmospheric density distribution. Thus at 
each position zt for the tth line <§"-(s) a <£"(3), and the field will be com­
pletely characterized by the fractions fA.z) of the total power P(s) that 
are found in each line. 

At z ~ 0 one has 

p.(o) = j\(0) p(0) , (ci) 

and at position z 

P.(z) = P.(0) e'V , 

Hz) = £ pi<a> = p<°> 2 / i ( 0 ) e (C2) 
-a.z 

fAO) e 

I f{W 

Thus, 

I.(.a) = f.(a) l(z>> CC3) 

and the energy-deposition rate per unit v< lume is given by 

CI. C. B. Hogge, "A Comparison of Several High Energy Laser Systems with 
Emphasis on Propagation Aspects," in laser Digest, AFWL-TR-75-140 
(May 1975). 
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£w«) = *»> IVi ( s> - < c 4 ) 

i % 
in which 

£«£/*<«) * 5(a) CC5) 

can be interpreted as an average cross section throughout the calculation. 
Tables CI and C2 show values for cc(s> as a function of z for the DF 

line data found in Ref. C2, Clearly, for DF the effect of including all 
line absorption details leads to a very small correction even at 10 km. 

Table CI, Line-by-line absorption-coefficient, data. 

Absorption 
Line frequency Fraction of total p'jwer coefficient 

Line ID (cm-1) 3 = 0 3 = 1.0 km (km-1 ) 

4-3,7 — 0.01040 0.01006 0.06000 
3-2,10 2496.77 .00590 .00636 .04920 
4-3,6 — . 02130 .02060 .06000 
3-2,9 2521.81 .01330 .01632 .03620 
4-3,5 — .01040 .01006 .06000 
3-2,8 2546.42 .04750 .05401 .04380 
3-2,7 2570.51 .06380 .06108 .06100 
2-1,10 2580.10 .00910 .00813 .06790 
3-2,6 2594.25 .08970 .11944 .02800 
2-1,9 2605.80 .03180 .03786 .03920 
3-2,5 2617.44 .05630 .07960 .02200 
2-1,8 2631.06 .08450 .10460 .03530 
2-1,7 2655.85 .09040 .05918 .09900 
2-1,6 2680.17 .13040 .12864 .05800 
1-0,9 2691.61 .03230 .02557 .08000 
2-1,5 2703.99 .04000 .05300 .02850 
1-0,8 2717.54 .06440 .03629 .11400 
1-0,7 2743.00 .08740 .08434 .06020 
1-0,6 2767.97 .08370 .06178 .08700 
1-0,5 2792.43 0.02740 0.02310 0.07370 

C2. R. K. Long, F. S. Mills, and G. L. Trusty, Calculated Absorption 
Coefficients for DF Laser frequencies, Ohio State University Electro-
Science Laboratory, Rept. RADC-TR-73-389. 
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Table C2. Mean absorption coefficient as a function of distance. 

Mean Remaining 
Propagation absorption power 
distance coefficient fraction 

(km) (km - 1) in beam 

0 0.06001 1.00000 
1 0.05931 0.94209 
2 0.05862 0.83815 
3 0.05793 0.837B7 
4 0.05726 0.79097 
5 0.05660 0.74720 
6 0.05594 0.70632 
7 0.05530 0.66811 
8 0.05467 0.63236 
9 0.05404 0.59891 

10 0.05343 0.56758 
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Appendix D: Characterization of 
Nondiffraction-Limited Beams 

In the absence of detailed a priori information regarding the exact mode 
concent of a beam, several models of nondiffractlon-limited beam behavior can 
be applied with the Four-D code. 

The simplest of these, which requires no special coding, is wavelength 
scaling, wherein the laser wavelength is multiplied by a number equal to the 
beam quality factor. Wavelength scaling gives the correct vacuum peak 
intensity, although it may incorrectly represent the vacuum focal-spot size. 
It represents, in any case, a prescription whose accuracy needs to be evaluated 
ad hoc for each specific application. While It has been useful in a variety 
of applications, it does not properly account for discrepancies between cal­
culations and stagnation blooming experiments in vertical absorption cells. 

Agreement between measured data and calculations for these experiments 
is improved, on the other hand, by adding spherical aberration to the initial 
beam in such a way thac the vacuum focal-spot size is correctly reproduced 
(see Fig, Dl). The spherical aberration contribution to the initial phase can 
be represented as 

,SA 27T/1 , 2 , 2.2 ,_,. 
<t> = — j (x + ij ) , (Dl) 

a 
iC 

where A represents the number of waves of aberration at radius a , 
X D2 

A third model of nondiffraction-limited behavior is due to Hogge et at. 

This model is based on the assumption that the initial beam can be represented 
by 

6(x>y,0) =SQ(x,y) eiHx*y) , (D2) 
where the phase aberration <K;c»y) is a Gaussian random variable, arising from 
laser-medium inhomogeneities, mirror imperfections, etc. If it is assumed 
that the correlation function for phase fluctuations is 

Dl. J. A. Fleck, Jr., J. R. Morris, and M. D. Feit, Time-Dependent 
Propagation of High Energy Laser Beams Through the Atm~:phere, 
Lawrence Livermore Laboratory, Rept. UCRL-51826 (1975). 

D2. C, B. Hogge, R. R. Butts, and M. Burlakoff, Appl. Opt, 33, 1065 (1974). 
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CJ*) = °* e xP 
'• " o ) 

(D3) 

2 2 2 2 where r = x + y , 0 , is the variance of <J>, and Z is the phase coherence 
length, then the spectrum of the phase fluctuations is given by 

C'ACO 
2,2 

exp (.is). <D4) 

— — • " - • Unbloomed 
— — Calculated 

" — " - — • Calculated with A/25 spherical 
aberration 

Experiment 

8 = 0 . 1 7 8 rad/s 

x = 0.48 
£• 0 . 

£ 0. 

0.10 
Time-

Fi b, Dl. Intensity on target after passing through stagnation zone. Com­
parison between experiment and calculation with and without spherical 
aberration. (Data from P. J. Berger, F. G. Gebhardt, and D. Smith, 
Thermal Blooming Due to a Stagnation Zone in a Slewed Beam, United 
Aircraft Research Laboratory, East Hartford, Conn., Rept. N921724-12 
(1974).) 
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Using the method of phase screens, one can obtain the Fourier trmsfonn of 
the phase $(xay) to be used in Eq. (Dl) in the following form: 

*(V "( "V *j %W- (D5) 

where a' and a" arb Gaussian random variables with variance 1, and where 

* ' V = *'<-**> 

a"(^) = -*"(-Ĵ ) . 
<D6) 

Equations (D5) and (D6) were originally included in the Four-D code for 
simulating turbulence. The phase-screen model of nondiffraction-limited 
beams utilizes the same subroutines. 

The following parameters were the basis of an example for comparing the 
difference between the wavelength-scaling and the phase-screen models of non-
diffraction-limited behavior: 

Beam shape Gaussian 
Aperture size, 2a 80 cm 
Range 2,5 km 
Absorption coefficient, a 0,07 km" 
Transverse wind speed, V 10 m/s 
Focal distance, f 2.5 km 
Beam is 2x diffraction limited 
Wavelength, X 5.7 Um 
Scaled wavelength, X 11.4 ym 
Phase correlation length, Z n 5,0 cm 

Phase standard deviation, o\ 1.177 (rad) 
Number of phase-screen calculations 

for ensemble average 10 
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Table Dl gives a comparison of peak intensities in the focal plane for propa­
gation in vacuum and air. Also included are results for a uniformly illumina­
ted aperture of radius a. » 2a, which can likewise be used as a model of a 2* 
diffraction-limited beam. 

Table Dl. Comparison of peak intensities in the focal plane. Beam propagates 
in vacuum (linear) and air (nonlinear). Case: Gaussian diffraction-
limited beam, a uniformly illuminated aperture (top hat), Gaussian 
wavelength scaled (2* diffraction limited), and a Gaussian beam 
with a phase screen adjusted to 2* diffraction limited. 

Model 

Linear 
Gaussian, X 
Gaussian, 2\ 
Top hat 
Phase screen 

Nonlinear 
Gaussian, 2A 
Top hat 
Phase screen 

The nondiffraction-limited beams all give roughly one quarter of the 
focal-plane intensity of the diffraction-limited beam when propagated in 
vacuum. For propagation in a real absorbing atmosphere both the scaled wave­
length and the top-hat beam calculations result in twice the peak intensity 
of the phase-screen model calculation, which is based on an ensemble average 
taken over 10 independent phise screens. Figures D2 and D3 show respectively 
the beam intensity as a function of position along the x-axis and along a line 
parallel to the y-axis passing through the point of maximum Intensity along the 
x-axis for the wavelength-scaled beam. Figures D4 and D5 show the same plots 

Peak 
focal 

intensity in 
plane (kW/cm ) 

63, .8 
15. .9 
17. .4 
17. .7 

5. ,94 
5. 47 
3. 03 
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Fig. D2. Wavelength scaling for 
2* diffraction-Limited beam. 
Intensity on target as a 
function of x along x-axis. 

Fig. DA. Phase-screen model of 2* 
diffraction-limited beam 
averaged over 10 independ­
ent realizations. Inten­
sity on target as a 
function of x along x-axis. 
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Fig. D3. 

0 
y — cm 

10 

Wavelength scaling for 2* 
diffraction-limited beam. 
Intensity on target as a 
function of y along a line 
parallel to y-axis and 
passing through point of 
maximum intensity along the 
x-axis. 

for the ensemble averaged phase-
screen calculation. In the case of 
the wavelength-scaled calculation, 
thermal blooming leads primarily to 
a broadening of the beam. In the 
phase-screen calculation, thermal 
blooming is accompanied by con­
siderable scattering of energy to the 
far reaches of the mesh. 

From these calculations it can 
be concluded that different models 
of nondiffractlon-limited beam 
behavior can lead to qualitatively 
as well as quantitatively different 
thermal-blooming behavior. Which 
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model is best must be determined for 
each specific situation. In the last 
analysis there is no substitute for an 
accurate experimental characterization 
of the beam for each specific laser. 

Fig. D5. Phase-screen model of 2* 
diffraction-limited beam 
averaged over 10 independ­
ent realizations. Inten­
sity on target as a 
function of y along a 
line parallel to y-axis 
and passing through point 
of maximum intensity 
along the x-axis. 

GS/11/mm/edas/la 

-64-


