A

§MN‘) 774)374 | @
9\" Unllmlted Release y,

STABILITY ANALYSIS OF THE VON _NEUMANN-/- |
RICHTMYER DIFFERENCE SCHEME WITH RATE
DEPENDENT MATERIALS RELATIONS,

PART 2. SUBCYCLING AND THE MALVERN RELATION

D. L. Hicks

@ Sandia Laboratories

SF 2900 Q(7-73)

RISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

‘\ V@\



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Issued by Sandia Laboratories, operated for the United States
Energy Research & Development Administration by Sandia
Corporation. .

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Energy Research & Development Adminis-
tration, nor any of their employees, nor any of their con-
tractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of
any information, apparatus, product or process disclosed, or
represents that its use would not infringe privately owned
rights.

Printed i1n the United States ol America
Available from

National Technical Information Service

U. S. Department of Commerce"

5285 Port Royal Road

Springfield, VA 22161

Price: Printed Copy $4.00; Microfiche $3.00



SAND-77—O37)4 R and Devel, nor ”'f‘ United _Stltes. En‘ergy
their employees, nor any of thep , nOT any of

Unlim.ited Release subcontractors, o cantractors,

7 their emp,
warmanty, express Lo employees, makes any
. A or
Printed May 1977 | Bablty 1 responsiin To t aoneecimh A1 legs
usefulness of any inf, - Ys
: Process disclosed, or reprenseicr; PR, Product of

proc . ; ‘
infringe privaely ouned righty, - " " Would not |

Lol

Q
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AND THE yALNERN REIATION :

: ; : D. L. Hicks
Computational Physics & Mechanics Division I - 5162
Sandia Laboratories, Albuquerque, New Mexico 87115

ABSTRACT

Stabillty criteria are develéped for solving préblems ipvolvihg-réte 
dependent material properties in hydrocodes sﬁch as WONDf. 'As»severe
restrictions in the allowable timestep size result for small relaxation
times, subgycling has been introduced té sblfé this_préblem.',That'is,
if the subéycie number (m) is large enough,; then the»timestepAréstriétion
as it exists in WONDY islsﬁffiéient for stability;‘fhis'is,shown herein |
for the'case‘ofla.simble backward difference subcycling'scheme for the
Malvern rate dependent materisl relation. The problem of precisely how
large m must be for a given ratio of the timestep to the relaxation'time,
h = At/T, was studied. Although the form of solution for m as a function
of h is complicated, it can be incorporated easily into WONDY. In the |
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extreme cases of h, very small or large, the solution can be simply
stated: if h is very small, then m = 1 suffices; if h > 2, thenm =2 h
suffices. The fact that the solution reduces tom 2 h for large h is

an elegant and interesting result.
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1. INTRODUCTION

In a previous report [l] the results of stablllty analyses for rate
dependent materlals were presented In that report it was shown that the

stability condition for the WONDY (and CHART D) scheme is

a3(l_)a2 + 2b3'(l)a <1 . (Bl)

where o, a3(1), and by(1) are given in Section 4. (WONDY is based on the
VNR (von Néumann-Richtmyer) scheme.) This. can be a rather severe restric-
tion on the timestep. Moreover, WONDY is programmed to enforce (Bo)

where

aliolas<1r L (B)
a . o

and not programmed to enforce (Bl); Subeycling appears to be the best
way to solve this problem.

- . . . th l‘ - .n :

By subcycllng.m-tlmes in the n ™ cycle (the advance from t ~ to t<),.“

it is meant that the difference equatlon (or equatlons) for the stress
rate are 1ntegrated‘from t to t in m subcycles of tlmestep,s1ze
(% - tn-l)/m. The number m is called the shbcycie number. It may vary . -
“from cycle to cycle and . from zone to zone.

In this report it is shown that subcycllng m tlmes causes (B ) to

modify to (Bm)

agmo® + Zbymk <1 ()

where a3(m) and b

3

subroutine currently in WONDY enforces (Bo) and not (Bl). However, it is

(m) are given.in Section 4. The timestep restriction

not necessary to reprogram WONDY to enforce (Bl) beceuse, as is shown in
Section U4, if (BO) is enforced, then there exists an M such that if m 2 M

then (Bm) is. satisfied.



_An annotated table of contents:

Seétipn 2 is entitled "Notation and Nomenclature"; there,the symbols
apd terminology used are presented.
| Section 3 is gntiﬁlgd "Lemmas'"; there some facts about quadrétic ~
inequalities which are ﬁsgful in Séction 4 are presented.
_ Seétion L is entitled "Results"; the main results of thié study are‘
summérizedlin Resﬁlts #1-7.
‘ Sectioh 5 is'entitlea "Sﬁﬁmary and Conciusiohé";‘it givés an overview

of the report and the implications of its results.
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2. NOTATION AND NOMENCLATURE

-~ Let xf‘be thevmqtiohE'let My t, and x be thefmaterial, temporal, and
spacisl coordinates; x = xf(u;t); x is the position of material point p

at time t.

Let ug, Vg, and p be the specific momentum, specific volume; and mass

f’
density functions; u, V, and p are their evaluations at (u,t); p = 1/V;

u = x/3t; V=x/u. (The f subscript is often suppreESed when the context
allows littlé'éhahce for confusion.) A

Let Ef, 8f, and o, be the specific total energy, specific internal

f
energy, and stress. functions; E; C, and o are their evaluations at -
(u,); B = & + 2 u°.

The conservation laws are expressed by

3 -, ’
ﬂ -+ ———Q—M U = O
at ad .
whefé
T ={u
~ \E
and

The stress-strain relation is taken to be iﬁ4the Malverh rate .

dependent form

/3t + agav/at + (o - deq)/T =0

where a; ccq, and 7 are the acoustic impedance, equilibrium stress;'and

relaxsation time.



Let x? be the numerical approximation to xf(uj,tn) for j = 0,1,2...

N ED, o® etc. Let Au and At
bR R

be the material and temporal increments and let a = gAt/NJ be the CFL

‘and n = 0,1,2..., and similarly define V?’ u

number. Let the artificial viscosity q be given by

where A = 0 is the éoefficient of the artificial viscosity.



3. IEMMAS
In this section the roots of the quadratic

A _2BA+C =0

are being considered in Lemmas 1A and 1B; the constraints on x required
for the quadratic inequélity

Asz +'2Bx <1

to hold are considered in Lemma 2; and Lemma'3 gives a useful fact about
the stability of matrices. The ﬁtility of_theée_lemmas becomes evident

in Section U4,

IEMMA 1A
A o 1/2 2 Lo T :
Let A, =B %D .where D =B - C and B and C are real numbers and

" let {Klmax = max(lx+|,lk_|),

Case (8):- If D > 0 and BZ > 1, then
XL > 1.

Case (b): If D > O and B> s 1, then’
. '[lx{max <1 iff 2|B| = q-+ 1J .
"' Case (c): If D <<O; then
. [IXI'. <1 iff C s'l] .
! max .
Moreover, the result also holds when < is replaced by < inside the square

braéket,

Proof Sketch: Note that if D = O, then

N 2

= |B| +D
max .



Thus in case (a) one can see that |)\|max > 1, In case (b)

B] +pY2 <1

iff
D<1-2|B|+8°
iff
>IBl s1+c¢C .
In case (c) note that |A| - C. End of Proof Jketch.
LEMMA 1B
If

B=1-b (1)
‘and’

C=1-c (2)
wherel

b=20sc¢ (3
then

[Ia,] s1 iff 2b +c <],

Moreover, the result also holds when < is replaced by < inside the square

brackets provided ¢ > 0,

o,

- B

Proof Sketch: Apply Lemma 1A. The intéresting case is case (b) with'
‘ ' ) Gl o ‘
vl

B negative then 4 _ I } _
) -2B <C.+ 1

iff - e

. » . B L ;,-, . .

o : 2o ¥ e <k (L)
End of Proof Sketch. ’



LEMMA 2
Assume A real, B positive and let.
x" = x(B + Dl/z) S » - (5)
where D = B® + A, Consider,the inequality

[Ax® + 2Bx < 11 . _ . (6)

Case (a): If A > 0, then (6) holds provided
(osx’<1]. . ; (7)

Case (b): If -B° <A < 0, then (7) implies (6).
Case (¢): IfA < —Be, then: (6) holds for all real x. Moreover, the

result also holds if the < is replaced with <-inside the square brackets.
- . | . A 5 : . _ /2,1
-~ Proof Sketch: The roots of Ax™ + 2Bx = 1 are given by x, = (B + D/ °) ®
o 1/2y-1"

“'if A f 0. If A = 0, then there is only one roof;x; % (B + D

Cgse (a): Iﬁ ﬁhis cése D >0; x_< b < x+;'ahd (6) holds proviéed
X_ Sx <x_eand this is implied by (7).
Case (b): 1In this case.Duz 0; 0 <x < x_§-and>(6) hélds provided
x < X, and this is'implied by (7).7.
. Case (¢): D < O;.therevgre no real roots; theréforé, A<O implies

(6) holds for all real x.
End of Proof Sketch. .

LEMMA 3
- Let G be a p by p matrix. If there exists a positive number T'such' L

that the elements of G(At,k) are bounded for O < At < T and for all k and

11 .



- if all of the eigenvalues of G, with the possible exception of one, lie A

in a circle ingide the unit circle, then the von Neumann condition is
sufficient as well as necessary for stability. That is, if there exists

a constant r such that for all k and all At in (0,T), |Ai| <r <1 for

i=2,...p, then |A,| S 1 + O0(At) is necessary and sufficient for

1
stability.

For proof see [2].



4. RESULTS

Assume ‘that the timeste;; Iis .restricted by

<1 @)
) where aﬂis the CFL ﬁumber, i.e.:
a. = abt/bu . ' | " (2)

Suppose that the integration of c from t" fo tn+} is done in m . subcycles.
First consider the case m = 1 (i.e., no subcycling) then the equations

.are

ey R G R
un+l/2 _ un_--1/2 - Aﬁ(on ; o )/Ag (W)
j i Jr/2 - ty-12E 8
 n+l A ' ' ' . | -
et O w0
where
b= ot/ ‘4‘.»'A, | S ; (6).
.and .
'.A, ) a2(‘-,)31+l/21_ ‘.~. ‘- o ‘A o (7)

Eqn. (5) is just the result of a simple backward differencing of
/3t + aeav/at + (o - Oéq)/T_. - (8)
Next let's consider the case m > 1. Let

s

v _ n+y/m '
= oj+l/2 - Oeq ' (9)

13



for O < v'= m; therefore, the starting value for subcycling is

N e)

s” = °?+1/2 " g (10)

Then for O < v <m - 1 the simple backward difference ‘subcycling scheme
is giveh by

sV = (1 - n/m)s” - b/m . -~ (11)

- The solution tuo (ll)'er VRN X smis
sV = (1 - b/m)”s® + {(2 - n/m)" - 1A - (12)
and in particular for y = m we have

nil - A | S
O’j+l/2‘--0eq = S' . . (13)

From (12) and (13) it follows: that

0?11/2,' ?eq = (1 - Hf(m))(cg+i/2 - ceq) - hf(m)A (1h)
whera
£(m) = [1 - (1 - b/w)™)/n . (15)
Note that
tin £(0) = g(x) - (16)
Bwo o e - o
where
g(h) = (1 - eM)/n . (17)

Observe that O < g(h) < 1 and also notqﬁghatﬂfdr all positive.integer m

and positive h



1 #if(m)->'f(m +1) > gh) >0 .-

Following ‘the notetion used in [1] and (2] let.

w?+1/é = ‘(°§+l/2 - .c-’e'q)/a‘L l(l8)

and

n+l n+l/2
v = u,

;=Y . R .- (19)

n

The next step is to replace vg‘by vn§J ahd»wj+1/2 by wé§d+l/2 where

. E = exp ikM4 = cos kAU + i sin kAu .

Then (k) and (lh)xbecbme

‘n+l

VT = e ' (20)
and
Contl L, ndloocn n,. o ay
W - ipv" f(m) =w (1 - hf(m)) © . (21)
‘where‘.
B = 20 sin(kop/2) . o (22)
Now‘let
- A
w
" to geﬁ‘.
i ttlay U
<1
with o
‘ 1 0
1 = .
~Lo | lipr(m) 1

15



and

1 iB
~ o 1 - nf(m)
It follows that
o g T (23)
where
=1
E - Eﬁ ﬁo
Specifically .
1 i | |
G = .o : " (24)
igf(m) 1E- (BT + h)f(m)
Note that
U ’
det(G ~iAI) =\~ - 2B A + C,, - (25)
where
2 | . '
B, = 1 - (8% + h)f(m)/2 (26)
“ lt”x'-"-'e .
and
, Cu =1 = hf(m) ' (27)
| 1 . :
also lct é ' - ﬁi
8 i i i
| D, =B, -C, .
LR 2
Result #1: T Y

_ i _¢j$3y4 , _
If m=1 or m > h, then a necessary and sufficient condition for

_the stability of G is



Ctm)e® emed 1 (28)

Proof Sketch: In (26) and (27) identify the b of Lemma 1B with
(8° + h)f(m)/2-and the c¢ with hf(m). Recall that the condition for -
|Ai| < 1 was

2b +¢c <l
and note that this is the same as
A Crl2 _
- f(m)[p® + 2n] =
which if true for all B leads to (28). Thus (28) implies | | <12 |A_|. -
To use Lemma.3 it must be showrn that one or the .other of |k+l and,[l_[
is stfictly iesé than one. Consider their product;

AA =Cp=1- hf(p) .

~If D, <0, then 0 <C, < 1. IfD, >0, then the case that must be’
considered is f(m)(a2 +'h/2) = 1; in this case (1 - h/m)m =C, = f(m)DzzA- h/é]
and it can be seen that - | |
0<C, <1 o (29)
provided m. > h. It follows ‘that (28) iﬁblieS".
Pa <o L (30)
In case m = 1 then f(m) = 1 and (28) implies h < 1 and thus (30) follows. .
Hence, Result #1 follows from Lemmas 1B and 3. End of Proof Sketch.
Result #2:
If ae = 0 < 1, then ‘there exists an M such that m 2 M implies

Cem)@® +mf2) 1. o (28)

17



18

Proof Skefch:A'Inequality'(28) becomes
f(m)(8 + h/2) <1 .

Multiply by h and observe.that as m - o the last inequality becomes

0.< H(h)

where
H(ﬁ) - h + (8 +.h/2)'(e-h - 1) ;

Observe that

'H(0) =0
:'H'(h5-=‘%’¥;e-h(l/2 - ﬂ/é -98)

H’(b) S0 |

H'(n) = e n - 2(1 - ))/2

therefore if H’ evaluated at h = 2(1 - ) is = O, then H is positive for
all h. One can show that if § < 1, then H'(2(1 - 8)) > O and therefore

H(h) > O for all h > 0. End of Proof Sketch.:

. Remark: 'The reason Reéulté #2 and #3 are of interest is‘bécause
WONDY already has a fiméstep restriction of the’fo:m @ <.9 bﬁilﬁ“in.,
If we cen show that the current tiﬁéstep restriction foﬁtine in WONDY does
not have to be altered but'thafz%or-d < .9 all that is necessary is to
choose m iargé enough’and stabiiity follows, then we can avoid the
rewriting of the WONDY timestep:resﬁriqtién:routine.
Now let's investigate how big'm‘ﬁ;sé be to satisfy (28) when d <1l. .

let's split into three cases: case (1) is with m = 1; case (2) is with



0<h <‘a2 + 1/2; and case (3) is with h'z,ae + 1/2. 1In case (1) check
to see if

a2 + h/2 <1

is satisfied. For example in WONDY a S 9 s0 a2 < .81 and thus if

h < .38, then m = 1 suffices. Thus case (1) says that for 0sh<2(1-a )
one need not subcycle.

Case (2): (2(2 - a2) <h < a;f) Observe that for this case to be

nonvacuous requires 1 < 212; if not, then case (1) covers case (S)..

Note that
I 2 2\ '
A 3 o - A ,
£(m)@® + n/2) =a® + n 229 + & ) o) (31)
_ _ _ 2 - 2mjJ . S
where the'o(hg) term is positive in case (2). Requiring the RHS of Egn.

(31) to be less than or equal to unity and dropping the O(hz) term leads.

to -

— P ( h.')
T | . 2\Z-n

as the requlrement for m in case (2) One can see that if S 9, then

'm need never be larger than about 5 in case (2)

Case (3) jh 2 If g.z 1, then_-
e‘l<1‘-'1/u>i <(1- 1M
holds. Tt follows that if hlé'h; theﬁ
f(m) > [i‘-:e-h(l'- h/ﬁ)h]/h" ': (32)
and that (28) is satisfied‘prdvidéd

eh[l - h/(a2'+ h/2)] < (1 - h/m)h .



20

Note that the last inéquality is satisfied if m > h because then the RHS
is positive and the LHS is negative in case (3), Let's summarize the

foregoing cases (1), (2), and (3) in the following

Result #3:
Assume that a <0 < l
Case (1): If 0 s h < 2(1 -a ), then m = 1 satisfies (28)

Case (2): If 2(1 -a ) <'h < a; , then

2 .
Q h
1 - a2 2 -h

m =2

satisfies (28).

Case (3): If h 2 212, then m > h satisfies (28).
Proof Sketch: Was given prioi to the statement of the result..

Reﬁark3 Result #3 shows that if the q coeff1c1ents .are zero, then the -
timestep restrlctlon routlne in WONDY need not be- altered the subcycle'
number can be chosen. large enough to satisfy the stabillty condition
provided av<~l; the WONDY t1mestep restriction insures that a < .9. The_
next question,that arisés is‘"What if the q coéfficients are not zero?"

The timeétep resfription‘in WONDY. is @’ < .9 where'a’ =al)\/a +'dl +.(k/a)21
and \ is the viscosity céefficienti_ Thus the,queétion is "Dées theré exist

a subcycle humbér large ehough fo£ sﬁabil&fy provided a’ s gt The next_ ~
step.is to investigaté-tﬁis question.

The artificial viscosity q is of the form

qE Mg (3)



with A 2 0. The addition of this artificial viscous stresé to o in Eqn.
(4) results in

n+l/2 _ n-1/2  cem . ~n L
us =uy C At[oj+l/2 03_1/2]/ZH (35)

where
~n o_om . n-1/2
9541/2 i+1/2 T Y+1/2

and thus Eqn. (20) becomes .

oo ) 4 1™ (36)
where

5 = bA(6t/on) sin®(u/2) . (37)
Then H_becomes
. ~0 _

1-6 i 7

Ho=| -

~ L o 1-nf(m)

.and g beqomes

1-5% ip
S= L L2
- [(l +8)ipf(m) 1- (B + h)f(m)]

and B* becomes

o
1]

p=1- Do (8« memY e

and C* becomes

Q
il
=

€, =1 - [6(1 - hi(m) + he(m)] . C(39)
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Identify b with 1 - B, and ¢ with 1 - C in Lemma 1B. Recall that

1- hf(m) = (1 - h/m)m therefore 1 - hf(m) = O provided m = h, Aséuhing

.m 2 h, then ¢ 2 0 follows and Lemma 1B can be applied to yield

: 2(1 -B,)+(1-c¢,) s 4

as the stability éondiﬁion.' In more detail this becomes

R aem sy o)
" where
| ;3<m) - #(n) - Mu/(a‘?'r.) ﬂ S ()
and |
o) = ek dut()/(her) . (%)
Also let | - | |

A 2
d3(m) -vb3(m) + a3(m) .
Now we have the folloﬁiné;

Result #4:

A necessary and sufficient condition for G to be stable is (40).
Proof Sketch: The proof parallels the. proof of Result #1.

‘Remark: in [L] where'the>casevm = 1 was considefed, it was assumed
that the restriction’d3(l) 20 wgs.imposed; Lémma 2 has been extended to
cases (b) and (c) in order to take care bfAthe‘case a3(m) < 0 for -

m = 1,2,3... This leads to the following.



‘ Result #5: _
et eg(m) = by(m) + aym)/? ana 0’ = o ey(m).
Case (a): If a3(m) > d, then (L40) holds provi@ed
0sa’s1; ‘ | . (43)
Case (b): If -bg(m)'s 33(@) < 0, then (L3) implies'(ho);
Cagg (¢): 1If a3(m) < -bg(m), then (4O) holds for all a.
Proot Sketch: ‘Appl& Lemma 2.

Result #6:

Let

z = \a + ‘/(A/a)2 + 1.

if
az=0<1 (W)
then thére'exists an M sﬁgh that‘for:m > M inegu@lity (40) is satisfied.
‘Préof Skeﬁcﬁ; Séiit.(hd) infoA

2

a4 2

o>

a=-8, <o )

Tem) -1 - /0B e Bs1ae L (1)

Note that (45) follows from (h4). On (46), multiply by h and take the

limit as m - = to get the requirement that

0 < H(h)

23



2L

for h > O where

H(n) = n(1 + 2 (n- 2)a) + (a2 + g) (e™-1).

Note '_that.
H(0) =
"and
H'(h) _%+ 22 (h- 1)+ e'h(% e - g)
and .
ﬁ’(o) -1- 6, >0 .
Sinée ,

H”(h) aax/a

o+

e Bn - 201 - a?)1/2
it follows that if

h 2(150,2).

4

then H'(h) = 0; thus if H'(2(1 - qa)) > 0, then H(h) > 0 for all h > 0.

Let

6 (8,2) = K'(2(1 - 0®))

. where o is replaced with 6/z. The breblemnis'to show that Gl(e,z) >0

for z > 1 and A < 1; note that in regard to e}thelworet case is f = 1;
therefore, consider G (l z), let Gz( )_= Gl(;,z).' The problem has now
reduced. to showing G,(z) > 0. for z 21, Iet 1-x-= l/z2 and

G (x) = G, ( }; then



the problem is now to show G3(x) =0 for 0 < x <1. Note that

G3(o) =0
’ » . '2 X : !
_G3<g) e F o1+ x G3(O) =0
” _ _ '2x " A_ :
G3(x) =4 ' ?g , 93(0) =2
GZ(x) = ke X > 0 for all x>0

Therefore G,(x) > O for all x > O and this proves that H(h) > 0 for all

3( '
h > 0. End of Proof Sketch.

. Now let's investigate how big m must be to satisfy (40) when (k4i4)
holds. If A =0, then use Result #3; for the folldﬁing cases assume
A > o. | o

“Case (1): Ifm=1, then‘f(m) =1 and (40) becomes
Du/(ePn) 0P ¢ 2lou/(ham) s 1 -8 ()

where

ot +'2§G=9 <8<1l.

Assume o is givep; then one may evaluate 61 and theALHS'df (47) and check |
to see if (47) is satisfied.

Onevéah appiy‘Lemma 2 tb‘(ﬁ7j to féduce Lhe quadraﬁic inequ&lity“to
a.linear inequality by i§¢ntifying A with -AAQ/[(lA- el)a2¢] and BAWith;
A/ - B, )bar]. |

If‘(h7) is not satisfied, khen m ; 1 will nét suffice; tb find a
sufficiently large m go to caée (2), (3), or (4) depending on the size of

h.
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Case (2): (h < 212) Notice that (4O) can be written as
2 A .
f(m)[a® + h/2] + " (2 -h)a<1.

Using'(3l) leads to the requirement that

a2 h

S T (48)

" Case (3):. (axz,s h < 2)' Using the -expansion

f(m) = '1' - me;ll p oo {m= 16)(2“‘" 2) y2 + o(h3)
me -

where O(h3) is negative ‘and using Lemma 2 one arrives at the condition

m/h = by + ‘/ bi + g o (49)

where

oy = 2/(3n)
and
2, = (12 + (1~ m}2)n
and | | | |

o
n=(g-%)ﬁ+zu-egu-nk>.

Cuse (4): (L =2) Using (32)“ieads‘to;thé requirement thet
fl1-(1+ (n- 2)‘%d)h/(a2 +h/2)] < (1 - h/m)P

which is seen to be satisfied providéa m=2h = 2.

The previous cases are summarized in the following.

R



Result #7:

Assume that az = 0 < 1 where ”4 ‘
T S
I Z-=E+ l+(7\/a)

Then m > M is sufficient for the stability'oflg where M is given in the .

following cases.

Case (1): =1 sufflces prov1ded (h?) holds.
Case (2)i If h < 22, then M 2 o® o n uffice
ase : n T-0, 2 — s S.

Case (3): If ax sh< 2, then M is glven by (h9)

ééséu'h':' If. h =22, then M = h suffices.’

~ Proof Skéﬁch:t Waé givén before the statement of the result.
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5. SUMMARY AND CONCLUSIONS

If a stress rate relation of the Malvern form is used with the VIR -
scheme (in WONDY and CHARTD) without subcycling, then the timestep.

restfigtion for stability is
2 A '
(e + n/2) + Y (2 -h)a s1 (1)

and this timestep restriction can be rather severe. Recall that a is the .
CFL number, A is the viscosity coefficient, h = Ab/T, and T is the
relasation time, It subeyrling Ls used, then the stability condition -

becomes
£(n) (a2 + n/2) + L -npsa (@)
where _ '
£(m) = [1 - (1 - b/m)™)/n @
end m is the number of subcycles. If |

a2+9%qsﬁ<1 (1)

(this is the timesteﬁ restriction enforced in.WONDY and CHARTD with

A = .9) then there exists an M such that’if m 2:M, then (2) is satisfied.
Therefore the timestep restriétidn‘subruutine currcntly existing in WONDY
and CHARTD need not be reprogrammed to enforce (1) providéd m is chosen‘
large enough. ﬁesult #7 givés ;pééific prescriptions for howllérgé to -

choose m.
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