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SUMMARY 

Two m e l t i n g  processes were i n v e s t i g a t e d  f o r  t h e  d e n s i f i c a t i o n  o f  f u e l  

bundle res idues :  I ndus tos lag  me1 t i n g  and g r a p h i t e  c r u c i b l e  me1 t i n g .  The 

I ndus tos lag  process, w i t h  p r i o r  decontaminat ion and s o r t i n g ,  can produce 

i n g o t s  o f  Z i r c a l o y ,  s t a i n l e s s  s t e e l  and Inconel  o f  a  q u a l i t y  s u i t a b l e  f o r  

r e f a b r i c a t i o n  and reuse. The process can a l s o  m e l t  o x i d i z e d  m ix tu res  o f  

f u e l  bundle res idues  f o r  d i r e c t  s torage.  E u t e c t i c  m i x t u r e s  o f  these 

m a t e r i a l s  can be me l ted  i n  g r a p h i t e  a t  temperatures o f  1300°C. Hydrogen 

abso rp t i on  exper iments w i t h  t h e  z i r con ium- r i ch  a1 l o y s  show the  a l l o y s  t o  

be p o t e n t i a l  tri t iun i  r e s e r v o i r s .  
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CHOP-LEACH FUEL BUNDLE RESIDUES 

DENSIFICATION BY MELTING 

INTRODUCTION 

I n  c u r r e n t  LWR f u e l  reprocess ing  technology,  f u e l  bundles a r e  sheared 

i n  s h o r t  l eng ths  f o r  a c i d  l each  o f  t h e  f u e l  p e l l e t s .  The res idues  f rom 

t h e  a c i d  l each  i n c l u d e  s h o r t  l eng ths  o f  f u e l  c l add ing ,  massive end f i t t i n g s ,  

f u e l  spacer g r i d s ,  assor ted  sp r i ngs ,  gu ide th imb les  and f l o w  channels.  

These res idues  c o n s t i t u t e  a  h i gh  volume waste, amounting i n  we igh t  t o  about 

22% o f  t h e  f u e l  bundle. Wi thou t  d e n s i f i c a t i o n  t hey  c o n s t i t u t e  a  s u b s t a n t i a l l y  

h i ghe r  volume than t he  h i g h  l e v e l  t r ansu ran i c  (TRU) c a l c i n e s  o r  g lasses.  

D e n s i f i c a t i o n  by m e l t i n g  w i l l  reduce t h i s  volume by a  f a c t o r  o f  6. These 

m a t e r i a l s  have a  b u l k  d e n s i t y  o f  about 1.1 kg/&.  As recovered f rom t h e  

d i s s o l v e r  these hardware res idues  rep resen t  about 325 kg/MT o f  uranium, 

and c o n s i s t  o f  70 t o  80 wt% Z i r c a l o y ,  12 t o  22 wt% s t a i n l e s s  s t e e l  (SS) 

and 8  wt% Incone l .  

PNL i s  e v a l u a t i n g  t h e  decontaminat ion and m e l t  d e n s i f i c a t i o n  o f  t h e  

chop-leach f u e l  bundle res idues  t o  m in im ize  waste s to rage .  Decontaminat ion 

o f  t h e  res idues  p r i o r  t o  m e l t i n g  t o  remove TRU element contaminat ion i s  

be ing developed t o  q u a l i f y  t h e  t r e a t e d  meta ls  f o r  s imp le r ,  l e s s  expensive 

waste d i sposa l  ca tego r i es .  The r e s u l t s  o f  two m e l t i n g  processes f o r  t he  

d e n s i f i c a t i o n  o f  u n i r r a d i a t e d  f u e l  bundle hardware m a t e r i a l s  w i l l  be 

d iscussed i n  t h e  f o l l o w i n g  t e x t .  

DESCRIPTION OF THE CHOP-LEACH FUEL BUNDLE RESIDUES 

The head end o f  t h e  f u e l  reprocess ing  stream c o n s i s t s  o f  s h o r t  p ieces 

o f  f u e l  element c l add ing  t oge the r  w i t h  t he  end hardware and spacers, e t c . ,  

which have been neu t ron  i r r a d i a t e d .  The p r i n c i p a l  a c t i v a t i o n  products  

remain ing i n  t h e  Z i r c a l o y  a f t e r  5 and 100 years  c o o l i n g ,  as c a l c u l a t e d  by 

ORIGEN code, a re :  6 0 ~ o ,  5 5 ~ e  , 2 5 ~ b  , 63~i , and 25n1~e. The t o t a l  a c t i v i t y  

i s  900 pCi/g z i r con ium ( Z r )  a f t e r  5 years  and 18 ~ C i / g  a f t e r  100 years .  



Zircaloy-2 and -4 usually contain t r a ce  uranium (%I ppm) which wil l  transmute 

t o  T R U  elements o r  f i s s i on  during the i r r ad i a t i on .  Calculations by ORIGEN 

code of the expected TRU contamination, uniformly dispersed in the  metal 

from 1 ppni natural  uranium contamination ( i r r ad i a t ed  in a typical  fuel  

exposure), ind ica te  the  principal isotopes would be about 85 nCi/g of 

2 4 1 ~ u  and 2 nCi/g 2 ? 4 ~ m  in the  Zircaloy a f t e r  5 years cool ing. The balance 

of the  t ransuranics  would be l e s s  than 3 nCi/g t o t a l .  Higher l eve l s  of 

TRU elements would be present i f  i r r ad ia ted  longer. A s imi lar  ca lcula t ion 

of the t ransuranics  generated in the Inconel and s t a i n l e s s  s t ee l  par ts  could 

be made; however, a s a t i s f ac to ry  est imate of the uranium and thorium impuri- 

t i e s  in these a l loys  has not ye t  been obtained. The Zr cladding has been 

estimated t o  contain 100 t o  150 ppni hydrogen of which about 0.03 w t %  i s  

f i s s i on  product t r i t ium.  ( 2  33) 

LWR fuel elements might have a corrosion product layer  u p  t o  50 v thick 

i n  locat ions  of maximum corrosion.  ( 4 )  Impurities (crud) c i rcu la t ing  in the  

reactor  deposi t  on fuel surfaces and can contain transuranics i f  the coolant 

i s  contaminated with uranium o r  plutonium from fuel  ruptures.  The in ternal  

surface of the  Zircaloy-clad fuel develops an oxide layer  of a few microns 

in thickness.  ( 4 )  The ( U ,  P u ) O  fuel has been observed t o  adhere and possibly 

reac t  with t h i s  oxide layer .  (51 Estimates of residual ( U ,  Pu)02 associated 

w i t h  the  fuel cladding a f t e r  leaching a r e  usually s t a ted  as  l e s s  than 0.1 w t %  
of the uranium charged. ( 6 9 7 y 8 )  Analysis of two i r rad ia ted  leached fuel 

cladding pieces has shown considerably l e s s  than 0.1 w t %  residual fuel ; but 

with much higher than expected 3 7 ~ s .  (9, lO) 

CONCLUSIONS 

The Inductoslag process can produce, with p r io r  decontamination and 

sor t ing ,  Zircaloy,  s t a i n l e s s  s t ee l  , and Inconel ingots of a qua1 i t y  su i t ab le  

f o r  re fabr ica t ion  and reuse.  Prior  surface preparation i s  not necessary t o  

produce ingots of these materials  and t h e i r  mixtures f o r  d i r e c t  s torage.  

Zr-containing ingots can a l so  be used as  t r i t ium reservoirs .  The melting 

system i s  nearly f r e e  of r e f r ac to r i e s  and crucible  l i f e  i s  exceptionally 

long. Although the CaF2 or  CaF2-MgF2 slag wil l  r e s u l t  in  a waste stream, 

i t  can be recycled. 



The g r a p h i t e  c r u c i b l e  e u t e c t i c  process can m e l t  a l l o y s  o f  Z i r c a l o y ,  

s t a i n l e s s  s t e e l ,  and Incone l  i n  t h e  range o f  80 t o  85 w t %  Z i r c a l o y  a t  tem- 

pera tu res  o f  1300°C. Decontaminat ion p r i o r  t o  m e l t i n g  cou ld  r e s u l t  i n  a  

low volume, low r a d i o a c t i v e  waste form f o r  d i r e c t  s torage.  These a l l o y s  

cou ld  a l s o  be used as s to rage  r e s e r v o i r s  f o r  t r i t i u m .  The percentage o f  

Z i r c a l o y  i n  t h e  chop-leach h u l l s  i s  conven ien t l y  near  t h e  des i r ed  e u t e c t i c  

composi t ion,  thus  e l i m i n a t i n g  t h e  need t o  me1 t a t  t h e  h i g h  m e l t i n g  p o i n t  o f  

Z r ,  ~1850°C.  Spent c r u c i b l e s  cou ld  be burned t o  an ash t o  reduce t h e  waste 

stream. C r u c i b l e  1  i f e  w i l l  p robab ly  be l e s s  than  t h a t  o f  c o l d  c r u c i b l e s  

and r e f a b r i c a t i o n  o f  t h e  i n g o t  would n o t  be poss ib l e .  



MELT DENSIFICATION PROCESSES 

Two m e l t i n g  processes have been i n v e s t i g a t e d  f o r  t h e  d e n s i f i c a t i o n  o f  

f u e l  bundle res idues  : 1  ) I nduc tos lag  me1 t i n g  and 2) g r a p h i t e  c r u c i b l e  

m e l t i n g .  Decontaminat ion o f  t h e  m e l t  s tock  p r i o r  t o  m e l t i n g  can enhance 

m e l t i n g  c h a r a c t e r i s t i c s  and r e s u l t  i n  i n g o t s  w i t h  s to rage  and t r a n s p o r t a -  

t i o n  requi rements t h a t  a r e  l e s s  c o s t l y .  S o r t i n g  by a l l o y  grade c o u l d  

r e s u l t  i n  metal  s u i t a b l e  f o r  reuse i n  a  nuc lea r  f a c i l i t y  when me1 t e d  by 

t h e  I nduc tos l  ag process. 

A l though d e t a i l e d  d e s c r i p t i o n s  o f  decontaminat ion processes a r e  o u t s i d e  

t h e  scope o f  t h i s  r e p o r t ,  t he  development o f  decontaminat ion processes i s  a  

p a r a l l e l  e f f o r t  o f  t h i s  program. Because decontaminat ion methods f o r  n i c k e l  

and i r o n  base a l l o y s  have been es tab l i shed ,  i n i t i a l  e f f o r t s  have been 

d i r e c t e d  t o  t h e  more d i f f i c u l t  t ask  o f  decontaminat ing Z i r c a l  oy sur faces  

w i t h  minimum l o s s  o f  meta l .  The most promis ing process i n v e s t i g a t e d  t o  

da te  has been t rea tment  o f  t h e  Zr02 c o r r o s i o n  f i l m s  i n  Hf-Argon gas a t  

550 t o  650°C which produces f i l m s  t h a t  a r e  removable i n  a  d i l u t e  aqueous 

reagent  developed by Meservey. ) The Hf-Argon gas- t rea ted  res idues  a r e  

heated a t  90°C f o r  1  t o  2  h r  i n  t h i s  s o l u t i o n  which c o n s i s t s  o f  0.4M 

ammonium oxa la te ,  0.16M ammonium c i t r a t e ,  0.1M ammonium f l u o r i d e  and 

0.3M hydrogen perox ide.  Technology such as d i s t i l l a t i o n ,  py rohyd ro l ys i s  

and c a l c i n a t i o n  e x i s t s  f o r  t r e a t i n g  o r  r e c y c l i n g  o f  waste s i d e  streams. 
4  TRU element decontaminat ion f a c t o r s  o f  about  10 w i l l  be necessary t o  

reduce t r a n s u r a n i c s  t o  < I 0  nCi/g.  

INDUCTOSLAG MELTING 

The chemical  a c t i v i t y  o f  Z r  a t  i t s  me1 t i n g  p o i n t  (~1850°C)  r e q u i r e s  

t h a t  i t  be me l ted  i n  vacuum o r  i n e r t  atmosphere. Convent ional  c r u c i b l e  

m a t e r i a l s  r e a c t  v i g o r o u s l y  w i t h  mo l ten  Z r .  For  example, Z r  me1 t e d  i n  g r a p h i t e  

c r u c i b l e s  p i c k s  up excess ive carbon. Consequently, c o l d  c r u c i b l e  processes 

were developed f o r  produc ing Zr .  (") These processes have a l s o  been used 

f o r  r e m e l t i n g  i r o n  , n i c k e l  , and c o b a l t  a1 1  oys. A1 t e r n a t e  c o l d  c r u c i b l e  

m e l t i n g  techniques have been eva lua ted  i n  t h e  c o n t e x t  o f  f u e l  bundle 



r es i due  d e n s i f i c a t i o n .  3, Conclusions f rom t h i s  e v a l u a t i o n  r e s u l t e d  i n  

s e l e c t i n g  t h e  I nduc tos lag  process as the  most p romis ing  process f o r  t h i s  

appl  i c a t i  on. 

The I nduc tos lag  me1 t i n g  process (F igu re  1  ) , developed by C l  i t e s  and 

~ e a 1 1  (14 '15)  o f  t h e  U.S. Bureau o f  Mines i n  A1 bany, Oregon, uses i n d u c t i o n -  

hea t ing .  The me1 t i s  i n s u l a t e d  from a  s p l i t ,  water -cooled c r u c i b l e  by a  

l a y e r  o f  f r o z e n  s lag .  M e l t i n g  takes p l ace  i n  s t a t i c ,  o n e - t h i r d  atmospheric 

pressure hel ium. A pool  o f  Z i r c a l o y - 4  and CaF2 i s  me l ted  on a  " s t a r t i n g  s tub "  

and subsequent charge m a t e r i a l  v i b r a t o r i l y  f e d  i n t o  t h e  t o p  o f  t he  c r u c i b l e  

as t h e  i n g o t  i s  e x t r a c t e d  o u t  t h e  bottom o f  t h e  c r u c i b l e .  

Z i r c a l o y - 4  f u e l  c l add ing  chopped i n t o  2.5-cm p ieces  and etched by t he  

ammonium oxa la te ,  c i t r a t e ,  f l u o r i d e ,  perox ide  ba th  s i m i l a r  t o  t h a t  used i n  

t h e  decontaminat ion process was used as feed  m a t e r i a l  t o  t he  I nduc tos lag  

process t o  produce an i n g o t  10-cm d iameter  x 75-cm l ong  and weighing 

41 kg. 6, The sca l loped  appearance o f  t h e  i n g o t  s i dewa l l  shown i n  F igu re  2  

i s  a  r e s u l t  o f  t h e  s p l i t  copper c r u c i b l e  des ign.  The f i n e  g ra ined  area a t  

t h e  t o p  o f  t he  l o n g i t u d i n a l  c ross  s e c t i o n  i s  t h e  l a s t  meta l  t o  f r eeze  and 

rep resen ts  t he  e x t e n t  o f  t h e  mo l ten  pool  d u r i n g  t h e  m e l t i n g  process. Power 

i n p u t  d u r i n g  m e l t i n g  was 95 kW, r e s u l t i n g  i n  a  m e l t i n g  r a t e  o f  19 kg /h r .  

Chemical analyses and hardness t e s t i n g  o f  t h e  i n g o t  showed i t  t o  be 

w i t h i n  nuc lea r  grade s p e c i f i c a t i o n .  Carbon and hydrogen d i d  n o t  inc rease .  

N i t r ogen  inc reased  ~ 3 0  ppm and oxygen ~ 3 0 0  ppm. F l u o r i n e  increased ~ 1 6  ppm; 

no ca l c i um inc rease  was de tec ted .  The average hardness was 180 B r i n e l l .  

P o r t i o n s  o f  t h e  i n g o t  were ex t ruded  and r e f a b r i c a t e d  by a  commercial 

c l add ing  tube  manufacturer  i n t o  a  c l add ing  tube s i z e  o f  11.2 mm OD x  0.74 mm 

w a l l .  Standard au toc lave  t e s t i n g  o f  t h e  r e f a b r i c a t e d  c l add ing  tube showed 

normal we igh t  g a i n  and b lack  l u s t r o u s  sur faces.  (9,161 

Clean 304 SS, Incone l  718, and a  2 : l  by we igh t  m i x t u r e  o f  304 SS and 

Incone l  have been me l ted  by  t h e  I nduc tos lag  process. Successive 10-kg 

m e l t s  were made one on t o p  o f  t h e  o t h e r  t o  form a  three-component i n g o t .  

Because o f  t h e  lower  m e l t i n g  range o f  these m a t e r i a l s ,  a  e u t e c t i c  m i x t u r e  

o f  48 wt% CaF2-52 wt% MgF2 i s  used as t he  s lag .  The e u t e c t i c  m e l t s  a t  
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FIGURE 1 . Inductosl ag Me1 ti ng Process. Cl i tes and Beall , A1 bany 
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1000°C, w h i l e  t h e  CaF2 a lone m e l t s  a t  1360°C. E i g h t y - f i v e  t o  95 kW produced 

a  m e l t i n g  r a t e  o f  28 kg /h r  f o r  t h e  304 SS and 15 kg/hr  f o r  t h e  2:1 m i x t u r e  

and t h e  pure  Incone l  718. F i gu re  3  shows t ransverse  etched i n g o t  sec t i ons  

o f  these m a t e r i a l s .  The 304 SS and Incone l  i n g o t s  a r e  o f  a  q u a l i t y  t h a t  

i s  s u i t a b l e  f o r  d i r e c t  s to rage  o r  r e f a b r i c a t i o n ,  w h i l e  t h e  m i x t u r e  w i t h  

unmel t e d  304 SS i s  s u i t a b l e  f o r  d i r e c t  s to rage  o n l y .  

Conso l i da t i on  by m e l t i n g  of f ue l  bundle res idues  w i t h o u t  p r i o r  c lean-  

i n g  o r  decontaminat ion may be d e s i r a b l e  f o r  m a t e r i a l s  t o  be s t o r e d  o n l y .  

Induc tos lag  m e l t i n g  o f  o x i d i z e d  f u e l  bundle res idues  has been accomplished. 

Z i r c a l o y - 4  c l add ing  has been o x i d i z e d  by au toc lave  a t  500 t o  525"C, 200 p s i  

f o r  40 t o  48 h r .  Th i s  r e s u l t e d  i n  a  t o t a l  oxygen con ten t  o f  t h e  Z i r c a l o y  

rang ing  f rom 1200 t o  10,000 ppm, an oxygen con ten t  es t imated  t o  be p resen t  

i n  f u l l - t e r m  i r r a d i a t e d  h u l l s .  The m e l t i n g  c h a r a c t e r i s t i c s  o f  t h i s  m a t e r i a l  

appeared t o  be n e a r l y  i d e n t i c a l  t o  those o f  c l ean  h u l l s .  The h i g h  

(1  0,000 pprn) oxygen m a t e r i a l  produced some s p l a t t e r i n g  and smoke d u r i n g  

m e l t i n g ,  b u t  m e l t i n g  was n o t  i n h i b i t e d .  M e l t i n g  a t  85 kW r e s u l t e d  i n  a  

m e l t i n g  r a t e  o f  20 kg /h r .  ( I 7 )  The e x t e r n a l  appearance and t h e  etched 

sec t i ons  shown i n  F igu re  4  a r e  n e a r l y  i d e n t i c a l  t o  those o f  t h e  low oxygen 

i n g o t  ( F i g u r e  2 ) .  

The hardness o f  Z r  increases w i t h  increased oxygen con ten t .  Th i s  

m a t e r i a l  ranged f rom 175 Br ine1  1  a t  1200 ppm O2 t o  375 a t  10,000 ppm. 

Equipment m a l f u n c t i o n  d u r i n g  one o f  t h e  au toc lave  runs r e s u l t e d  i n  some 

Z i r c a l o y - 4  w i t h  an oxygen l e v e l  i n  t h e  20,000 t o  40,000 ppm range. 

I nduc tos lag  m e l t i n g  o f  t h i s  m a t e r i a l  produced excess ive s p l a t t e r  as t he  

c o l d  charge en te red  t he  mo l ten  poo l .  M e l t i n g  was stopped when i t  was 

ev iden t  t h a t  t h e  amount o f  s p l a t t e r  was beyond any reasonable m e l t i n g  

p r a c t i c e .  ( I 8 )  T h i s  i s  p robab ly  due t o  t h e  hydrogen con ten t  o f  t h e  h i g h l y  

o x i d i z e d  m a t e r i a l .  Premel t  heat  t rea tment  o f  t h e  h u l l s  would reduce t h e  

hydrogen l e v e l  t o  a  range compat ib le  w i t h  me1 t i n g .  

I nduc tos lag  m e l t i n g  o f  m i x tu res  o f  au toc laved  h i g h  oxygen Z i r c a l o g y  

w i t h  304 SS and Incone l  o x i d i z e d  by h o t  r o l l i n g  has been performed. These 

composi t ions cons i s ted  o f :  







1 .  Zircaloy-4 with 3000 to 8000 ppm O2 with 4 w t %  oxidized Inconel 718 

2. Zircaloy-4 with 3000 to 8000 ppm O 2  with 10 w t %  oxidized Inconel 718 

3. Zircaloy-4 with 3000 to  8000 ppm O2 with 10 w t %  oxidized 304 SS and 

5 w t %  oxidized Inconel 718. 

These mixtures represent a range of par t ia l ly  segregated fuel bundel residues 

and were melted using 48 w t %  CaF2-52 w t %  MgF2 slag. The mixtures form the 

low me1 ting eutect ic  and resu l t  in unmel ted metal potted in the eutectic 

matrix. Figures 5 and 6 are typical of these alloys.  The ingots are f ree  

of voids and suitable for  d i rec t  storage; however, they are  subject to  

cracking induced by severe thermal gradients. (1  7) 

The low temperature molten pool i s  slow in dissolving the feed material, 

causing excessively slow melting rates.  A power input of 85 kW resul ts  in 

melting rates  of 5 t o  8 kg/hr. Efforts are  currently under way to  increase 

the melt ra te  of these alloys. 

A1 uminum oxide pel l e t s  have been added to these materi a1 s durina me1 ting 

to  simulate the insulator pel le ts  in the fuel bundle residues. They do n o t  
interfere  with melting and occur as "potted" unreacted inclusions in the 

ingot. 

GRAPHITE CRUCIBLE MELTING 

Graphite crucible melting, although n o t  as versat i le  as Inductoslag 

me1 t ing,  gave good resul ts .  While Zr me1 t s  a t  %1850°C, binary mixtures 

of Zr with iron, nickel and chromium form low melting eutectics that  can 

lead to simp1 i f ied  me1 ting processes. ( I 9 )  Figure 7 shows the binary equi- 

librium diagrams of Zr with iron, nickel, and chromium. Fortunately the 

low melting eutectics occur a t  the approximate composition of the fuel 

bundle residues. Decontamination of the residues prior to  melting will 

provide clean metallic surfaces for  diffusion, resulting in liquid formation. 

Melting point determinations were made on pre-alloyed 150 g ingots of 

Zircaloy-2 with 10, 15 and 20 w t %  316 SS. These were performed under vacuum 

in graphite crucibles heated by a tungsten resistance element. All three 









composit ions s t a r t  m e l t i n g  a t  about 925°C. The 15 and 20% a l l o y s  complete 

m e l t i n g  a t  about l l O O ° C ,  whereas me l t i ng  i s  incomplete f o r  the  Z i rca loy-2 ,  

10 wt% SS a l l o y .  (20 

Scale-up of t h i s  work t o  8.2 kg heats was performed w i t h  a 50 kWy 

3000 c y c l e  vacuum i n d u c t i o n  m e l t i n g  furnace. The c r u c i b l e  and c o i l  assembly 

a re  o f  t he  t i lt type. A g r a p h i t e  susceptor heats an o u t e r  g raph i te  c r u c i b l e  

which i n  t u r n  heats t he  i n n e r  o r  m e l t i n g  c r u c i b l e .  M e l t i n g  s tock was c lean 

sheet chopped i n t o  2.5-cm squares. The 14.0-cm diameter c r u c i b l e  was charged 

w i t h  l a y e r s  o f  t h e  304L SS-Inconel m ix tu re  between l a y e r s  o f  Z i rca loy-2 .  The 

heats were s t a r t e d  a t  5  x  T o r r  chamber pressure w i t h  a power s e t t i n g  

of 5  kW and g radua l l y  increased t o  10 kW. The pour ing  temperature was 

reached i n  approximately 2.5 t o  3 h r ,  h e l d  f o r  30 min, and poured i n t o  an 

8.9-cm diameter x  30.5 cm deep s p l i t  g raph i te  mold. F i v e  8.2-kg heats 

made t o  date have been poured i n t o  t he  same mold and no mold r e a c t i o n  has 

been observed. (10,21 ) 

F igure  8 shows the  85 w t %  Z i rca loy-2 ,  10 w t %  304L SS, 5 wt% Inconel  

718 i n g o t  t h a t  was poured a t  about 1300°C. A s l i g h t l y  h igher  pour ing  tem- 

pe ra tu re  o r  a preheated mold would reduce the  s k i r t  a t  t he  top  o f  t h e  i ngo t .  

A very  m i l d  c r u c i b l e  r e a c t i o n  was noted. 

A m i l d  c r u c i b l e  r e a c t i o n  was a l s o  noted i n  t h e  80 wt% Zi rca loy-2,  

13.4 w t %  304L SS, 6.6 wt% Inconel  718 i n g o t  poured from 1315°C (F igure  9 ) .  

The i n g o t  had sur face  cracks. The cracks were e l im ina ted  when the  m e l t  

was a l lowed t o  cool i n  t he  c r u c i b l e  (F igu re  10); however, excessive c r u c i b l e  

r e a c t i o n  bonded t h e  i n g o t  t o  t he  c r u c i b l e .  

F igu re  11 shows the  90 wt% Z i rca loy-2 ,  6.7 wt% 304L SS, 3.3 w t %  Inconel  

71 8 i n g o t  poured from ~1415°C.  Higher pour ing temperatures would be requ i  red  

t o  success fu l l y  pour t h i s  composit ion. A severe c r u c i b l e  r e a c t i o n  was 

observed. 

An example o f  a  t y p i c a l  m ic ros t ruc tu re  i s  g iven  i n  F igure  12 o f  t he  

as-pol ished 85 w t %  Z i rca loy-2,  10 wt% 304L SS, 5 wt% Inconel  718 a l l o y  

showing th ree  major  m ic rocons t i t uen ts  and t h e i r  approximate composit ions 

as determined by microprobe analyses. 













Concentrat ions of  major m e t a l l i c  elements of  t h e s e  hea t s  agreed reason- 

a b l y  well  wi th  t h e  des ign  compositions.  Carbon, hydrogen, oxygen and n i t rogen  

va lues  f o r  the melt ing s tock  and t h e  r e s u l t i n g  hea t s  a r e  l i s t e d  i n  Table  1.  

TABLE 1 .  Chemical Analyses of I n t e r s t i t i a l s  (10)  

Composition of Ingots ,  ppm 
90% Zr-2 

Heat 85% Zr-2 Alloy A1 loy  80% Zr-2 A1 loy 
N O .  8-29-74 9-5-74 9-1 2-74 9-1 8-74 9-26-74 

H 2 4 14 8 60 80 

0 1060 1010 980 980 870 

N 380 120 200 180 70 

Brine11 Hardness 

Me1 t Stock Composition, ppm 

Heat 304L Inconel 
No. Zi rcaloy-2 S t a i n l e s s  S t ee l  71 8 

Carbon pickup from mel t ing  i n  t h e  g r a p h i t e  c r u c i b l e  i s  minimal. The 250 ppm 

carbon l eve l  was t h e  r e s u l t  of  a high pouring temperature  (1415OC). The 

melt ing o f  pure Zr i n  g r a p h i t e  a t  temperatures  of 1820 t o  1920°C w i l l  r e s u l t  

i n  carbon con ten t s  a s  high a s  3000 ppm. ( 5 )  Hydrogen and oxygen showed 

l i t t l e  o r  no i n c r e a s e  a f t e r  mel t ing and n i t rogen  was s l i g h t l y  r a i s e d .  



Brine11 hardness values of the as-cast i ngo ts  range from 294 t o  377. 

Ingots  have been success fu l l y  hack sawed w i t h  h igh  speed t o o l  s t e e l  blades 

and water so lub le  o i l  coolant .  

The m e l t i n g  experiments described above show t h a t  mixtures of c lean 

sheet composed o f  80 t o  85 w t %  Z i r c a l o y  balance s t a i n l e s s  s t e e l  and Inconel 

can be mel ted and poured a t  temperatures about 1300°C us ing  g raph i te  c r u c i -  

b les  and molds. A1 though s l i g h t  c r u c i b l e  reac t i ons  do occur, the  c r u c i b l e s  

are  reusable. I n g o t  surface q u a l i t y  and dens i t y  appear adequate f o r  d i r e c t  

storage. Con t ro l l ed  mold coo l i ng  may be requ i red  t o  e l i m i n a t e  sur face 

c rack ing  o f  the 80 w t %  Z i r c a l o y  composit ion. 

TRITIUM ABSORPTION AND STORAGE IN ZIRCONIUM ALLOY INGOTS 

The m e l t i n g  o f  f u e l  hardware i n t o  i ngo ts  w i l l  re lease absorbed hydrogen 

and t r i t i u m .  Consequently 100 t o  150 ppm of hydrogen and t r i t i u m  evolved 

can be reabsorbed i n t o  another i ngo t .  The absorpt ion r a t e  and e q u i l i b r i u m  

pressure o f  hydrogen over Z i r c a l o y  and Zr-(Fe, N i  , Cr)  a1 l o y  i ngo ts  me1 ted  

i n  g raph i te  were i nves t i ga ted  a t  rep resen ta t i ve  gas pressure and concent ra t ion  

(F igure  13).  The absorpt ion temperature was f i x e d  h igh  enough ( 7 0 0 " ~ )  t h a t  

Z r  would d i sso l ve  i t s  own oxides and n i t r i d e s  which would otherwise impede 

absorpt ion.  ( I 6 )  A  1  arge temperature g rad ien t  was imposed over the  l eng th  

o f  t he  absorp t ion  specimen t o  increase the  capac i ty  of the  i n g o t  f o r  

hydrogen w h i l e  keeping e q u i l i b r i u m  gas pressure down. Absorpt ion r a t e s  f o r  

Z i r ca loy -2  and 85% Z i rca loy-2 ,  10% Type 304 SS, 5% Inconel 718 specimens 

w i t h  g r i t  b las ted  sur faces were compared. I n  general, the  e q u i l i b r i u m  

pressures were c o n t r o l l e d  by the  Z r  concentrat ion.  The r a t e  o f  absorp t ion  

favored t h e  Z i rca loy-2 .  The re -hyd r id ing  of the Z r  a l l o y  always r e s u l t e d  

i n  f a s t e r  subsequent absorpt ion ra tes  even though the  hydrogen was removed 

before  the  second absorpt ion.  This  suggests the development o f  a  p re fe r red  

pa th  f o r  absorp t ion  and d i f f u s i o n .  Both the  a l l o y  and Z i rca loy-2  absorb 

hydrogen r a p i d l y  enough t o  be use fu l  f o r  storage o f  the hydrogen and 

t r i t i u m  removed from the  d e n s i f i e d  h u l l s .  
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FIGURE 13. Hydrogen Pressure Versus Time at 700°C ( 1 6 )  



FUTURE WORK 

Fu tu re  work w i l l  be aimed a t  t h e  f o l l o w i n g :  

Determine t h e  e f f e c t i v e n e s s  o f  t h e  g r a p h i t e  c r u c i b l e  e u t e c t i c  

process i n  me1 t i n g  o z i d i  zed m a t e r i  a1 . 
Determine mechanical and c o r r o s i o n  p r o p e r t i e s  o f  t h e  c a s t  m a t e r i a l s .  

Improve t h e  I nduc tos lag  m e l t i n g  r a t e  o f  Zr ,  s t a i n l e s s  s t e e l ,  

Incone l  a1 1 oys . 

M e l t  smal l  samples o f  i r r a d i a t e d  m a t e r i a l  and determine t h e  

e x t e n t  and mechanism o f  decontaminat ion, and t h e  e f f e c t  o f  t h e  

CaF2 and CaF2-MgF2 s l ags  on TRU l e v e l s .  

Cold mock-up o f  I nduc tos lag  me l t i ng .  

I n - c e l l  o p e r a t i o n  o f  t h e  I nduc tos lag  m e l t i n g  process. 

Seek reuse a p p l i c a t i o n s  i n  nuc lea r  f a c i l i t i e s .  

Mon i t o r  and compare t h e  economic f e a s i  b i  1  i ty  o f  t h i s  waste 

t r ea tmen t  process w i t h  o t h e r  proposed waste t r ea tmen t  methods. 
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