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1 - ' .
Abstract '

When the flow rates in the two inlet branches of a 180°—approach mixing
.Atee are greatly different, it is possible that the fluid with the high
velocity may intrude into the conduif in which the low velocity fluid is
flowing. It.is shown in this report that such an intfusion should not ex-
tend oﬁer“mény pipe diameﬁers. | |

However, if the faster flowing fluid is also thé warmer, buoyancy forces.
may be generated thfough heat transfer. This in turn may leaa to density
'stratification in what would normally be the cooler fluid's inlet conduit.
An extensive eddy develops in this branch of the tee which carries warm fluid
many diameters in the upstream direction of the cooler fluid. In the laboratory
such an intrusion of warm fluid in the cool fluid brahch yields large ﬁempera—
ture differences between the top and bottom of the pipe. Such behaviour in
prototypic systems could prbduce deleterions thermal stresseo.* |

Two mathematical models haQe been developed to estimate the extent of
this density-driven intrusion.‘ One is an inviscid model which incorporates
two additiomal simplifying assumptions to give an initial es;imate of the
significance of the temperature difference and fluid velocity. This estimate
is an initial step in an iterative ptécedure for a numerical solution scheme.
The numerical algorithm has not been tested for compufational stabiiity. The
second method which is presented is a perturbatiop solution for a low Reynolds
number flow. The matching of the solution in two regimes will require the
numerical solution of equations to determine the associated coefficients.

Once this is done streamline patterns can be drawn for. a variety of Froude,

Reynolds, and Prandtl numbers.

*
A converse situation occurs if the faster flowing fluid is also the cooler,
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Nomenclature (App. III not inéluded)

A Constant; also height to lenéth ratio
C Interfacial mixing length

‘D Diameter of horizontal pipe

d : Channel width |

F Froude number

Gr Grashof number

g Gravitational constant

h Cavity height

k Thermal conductivity

K Constant

L Length of horizontal pipe |

N Constant

n >Reciproca1 of fraction flowrate in one branch
Pr ‘Prandtl number

Q Total flowréte; also (App. I), rate of heat transfer
Re Reynolds number

T - Temperature

T (T-T.)/ (T,~T,)

t Intermediate auxiliary variable

U . Speed

u " x component of velocity

; ~u/U

v Velocity vector

v y component of velocity

>

v/U



v
Nomenclature (Contd.)

" Plane of ¢ and ¢ coordinates

Cx : zfplane-coordihate
y z-plane coordinate; alsé (App. I), elevation
z Plane of x and y coordiqates

Greek symbols

a Linear coefficient of thermal expansion
z Vorticity in z-~direction

; Modified vorticity (see Eq. 4.9 ff.)
n y/d |

K ThermalAdiffusivity'

£ x/d

p Densit?

¢ Potential function

¥ Stream function

v v/Q

v ¥-n

Subscripts

C Cold
H Hot
o Reference

.S Stagnation point
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:The Intrusion of Fluid into the Inflow

Bfaﬁch of a.180°;Approach Mixing Tee

1. Introduction:

The‘180;fapproach mixing tee may be used in future power—geﬁerating
systems to mix hot and cold liquid streams to achieve the desired fluid
temperature for Subsequent stages of the thermodynamic cycle, Such a tee,
with inlet branches horizontai, is shown in Fig. 1. Under some conditions
of operation the flow of one fluid may be reduced when a large flowrate of
.the other'fluid is wanted fromAthe tee.  Under these conditions it has been
observed in tests at the Argoﬁne National Laboratory (ANLéRDPfBB, p. 3.8)
thaf the higﬁ—flowrate fluid apparently intrudes into the low-flowrate-fluid
inlet branch. This situation waé concluded to be a possible occurrence when
the lower gurface of the low-flowrate-fluid (hot water) inlet pipe was found
to be cool (consistent with the‘temperaturé of the high—flowrate—flﬁid, cold
water), at distances of 75 diameters (D = 10 cm) upstream in the hot-water
branch.

Such temperature differences between the uppér and lower portions
of the pipe could lead to significant thermal stresses. These stresses could
affect the useful life of the pipe-tee and adjacent pieces. .It is the purpose
of this report to examine some of the mechanisms by which this intrusion can
‘occur.

2. Previous Work

There does not appear to be much published information which is di-

rectly applicable to the problem at hand. A report by Fraser and Oakley(a)

is discussed in Appendix I of this report. In their work a horizontal cavity
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is differentially heated at each end and the reéulting circulation is the
subject of laboratofy experiments and an analytical model. There is no
net'mass'flux'through the cavity as is the case in the ''cold leg" of a

*
180°-mixing tee.
' (2)

Recent efforts by Cormack, Stoné, and Leal and Cormack, Leal, and

Seinfe1d ™) also treatva horizontal cavity which is differentially heated.

They qbtain extensive resultS~for their model, which also does not have any
net mésé flux. | “ |

The speed of a gravity current fhat is advancing in an ambient fluid q
waé analyzed by Von Kérman.(7) "If one adopts a coofdinaté system which is fixed
with the froﬁt'of this current, the ambient fluid would appear to flow.past the
intrqsion. This would be similar to what is occurring in one of the 1égs of the

mixing-tee. Von Karman obtained the speed of the fluid, for a stéady phenomenon,

to be

U= N2 g (pz-pl) (depth of intrusion)/p1 .
1f some numerical values for poSsible‘experiments with water are used in this

result one could calculate a speed of

U A2 (32.2) (62.17-60.57) (2/12)/60.57 = 0.45 ft/sec (0.137m/s)

if the densities of water at 27 and 83°C and a intrusion height of 5 cm (pipe
radius~of 5 cm) are assume&. This formula by Von Karman is useful for giving
an estimate of the minimum fluid speed inlthe conduit, U, for a known density
difference (pé-bl) in order to kéep the intrusibn from progreséing unabated

upsteam. This result is for an inviscid non-diffusive fluid, so that actually

*In this report, the low-flowrate fluiq is consistently taken to be the cooler
fluid, so that intrusion is always into the cold-fluid inlet pipe. However, all
results are applicable as well, in converse fashion, to the case in which the
hotter fluid is the low-flowrate fluid. v



the speed would be less than this value,

Whiletfhis informatién is useful it does not give any information
about the'length qffthe intrusion.

”Desler(3)‘performed some related experimenﬁs.in a channel in which
-the fluid‘hadAé constant,-stablé, vertical density gradient. He found that

when the densimetric Froude number,
U

(depth) 4[g (density gradient)

wasnlesé than 0.24, there existed a stégnant region of fluid at the top of’
the channel wﬁile<fluid was flowing along the bottém into a line sink at the
lower end of tﬁe tank. Above this Froude number fluid from the entire -
depth of the tank moved into the sink. These experiﬁents largely confirmed

the analytical prediciions of Yih.(8)

He showed that for values of the
Froude number near 1/m, 0.317, there would be é vdrtéx in the region above
the‘sink. This Vortex woﬁld becomé.léngér as the Froude number was reduced
toward 1/m. The length would become infinite at 1/w, at which point the

analysis would cease to be valid. In thislcase, the model adopted by Yih

was for an inviséid non-diffusive fluid.

In Sect. 4 of this report a model for an inviscid, but diffusive,
fluid is developed. The solution is an iterative one with the result of
the first step being similar to that of Yih's criterion.

3. Analysis for Constant Density Streams

Before proceeding to the mechanism which appeérs to play an important
role, buoyancy, the contribution of momentum, or inertia, to ﬁhe pheﬁomenon .
. will be assessed. This assessment will be made for é‘two—dimensionél flow,
even though the actuai pipe tee is three-dimensional. It is believed that
the essénce of the pfoblem is preserved.by the model.i Fig. 2 illustrates the

situation. The problem is similar to several which Qécur in the literature



[Rober;sén (6)]'and it can be solved directly By employing the Schwartz-
-Chriséoffél traﬁsfd;mation. Fig. 2 also shows the diagrams which are
'associatédAwith the method of solution.

: A s;mplg calculatién for a flow with 1/4 of the flow in one branch

(n = 4) and 3/4 in the other is included in Appendix II. The streamlines
aré shown iq'Fig.'3. The stagnation point at the boundary opposite to that
in which the sink ié 1oca£ed gives an indication of the amount of "overshoot"
or intrusion that can be expected for such a situétion. This positioﬁ can
be calculated without drawiﬁg all the stregmlines (viz., Appendix II) and
the results, are 'shown in Fig. 4. These results are interesting because they
show an "overshoot" of one channel width when less than 5 percent is flowing
in one branch. This means that the effect of the inertia of the fluid in
the high~flow branch is small in producing a lengthy intrﬁsion regibn in the
low-flow branch.

These calculations are related to soﬁe laboratory observations
which were made by the author and K. Kaéza of the Components Technology
Division. During isothermal tests with a plexiglas test section, it was
noted that as long as there was any flow in one of the in-flowing branches,
the flow from the opposite brangh did not appear to intrude into, or influence
the flow, in the branch with the low flow. It must be added, however, that
when the flow in one branch was stopped, there were large-scale, random pulsa-
tions in the supposedly stagnant branch. These motions may be due to the un-
stable interface between the flowing fluid, which turns through 90°, and the
stagnant branch. This could result in agitating the fluid at the interface
as well as producing fluid jefs which penetrate into the region. An investi-
gation into the mechanics of the flow when one branph has been completely

throttled is included in a test plan prepared by K. Kasza for future experiments.
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4. Analysis with bensity Differences

The present analysis adopts a model.tﬁat is illustrated in Fig. 5.
One sees that an impermeable boundary is asgsumed at x = 0 which has a temp-
erature of~Tﬁ. It must be emphasized that the model which is illustrated in
- Fig. 5 hés a large hot fluid flow and a small cold fluid flow. This will
result in a recirculation eddy at the top of the conduit. If instead of this
arrangement, one haé a large flow of a cool fluid and a small flow of a warm
fluid in a mixing tee; the eddy will appear at the bottom of the branch having
the low flow. The interchange of TH and TC in Fig. 5b and the location of
the sink at point C rather than point § will affect neither the details of
the analysis which follows, nor the results.

The effects of inertia of the hot stream and its higher temperaturé
could be combined to determine the extent of intrusion into the region of
cool fluid. In this case, the origin for the present analysis could be made
to coinéide with the vertical plane through point E in Fig. 2. Then the
total intrusion length, £, would be the sum of £, from the previous section,
"and £2 which follows anoﬁ.

The model that was chosen preserved what are thought to be the impor-
tant féatures of the occurrence that has been observed:

1. A slowly moving stream at one temperature Tb combineé with another,

faster moving, stream with temperature T_ in the mixing region of a 180°-approach

H
pipe-tee's junction.

2. The slower moving stream enters this junction through only a por-
tion of thé area of the conduit. (This is modeled as the line sink in Fig. 55.)
The remaining part of the conduit from which the fluid with temperature Tb

issues, is occupied by the fluid from the opposite side of the tee, with

temperature T (This is modeled by prescribing that the plane x = 0, y # 0 -

q

have the temperature TH.) Laboratory observations lend credence to this aspect
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of the model.
| 3. The acfuél confluence of the two fluid streams is highly turbulent.
Viscous stresses érebundoubtédly'minor. In.phe analysis which follows neither
viséosity nor-turbuieﬁt interactions have been taken int§ account . 'These
lattér effeéts would'sérve-as‘a,source of énérgy féf the buoyant intrusion as
well as to'ihcrease its size in the conduit thfough turbulent mixing. However,
the ex;lusion of turbulence doesbnot vitiate the present work becausé"there

is somelevidehce [Debler.(3)] that the limiting criterion for.the flovaafa—
meters which result can be realized in the laboratory to a 1arge‘expent. “Tur-

(3)]

‘bulent effects are evident in the test results of selective withdrawal [Debler
but the actual data trends correépond well with an inviscid theoryy 1In

fact, the differences in the analytical and experimental results from those
tests could well serve as a guide in applying the theoretical conclusions of
this section fo an actual engineering probleﬁ.

ACoﬁsequently, ﬁhe present view is,ﬁhat the major éharacteristics of the
intrusion caﬁ be modeled if inertia and buoyancy effects are taken into
account. (Appendix III cont;ins an ahalysis for laminar low-Reynolds nﬁmber
flow;) Accordingly,‘the vorticity'equation for an inviscid fluid in steady

flow will be ugsed. This is

Do(u%§-+ v %%) =-g %% . (4.1)
in which the Boussinesq approximation for the density? p, has been used.

(The ‘density is considered éonsfant in the inertia terms but a variable in
the gravitation term.) The vorticity in the z—direction is £ and u and v are
the x and y components of velocity, respectively. A linear equation of state

will be assumed so that

p=o [l-a@-1)l, f | 4.2)
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in which o is the coefficient of thermal expaﬁsion andiT is the temperature.
The vorticityr'g satisfiesAthe equation. ‘.

- py=-¢ , (4.3)
in whiéh.thg stream function ¢ is a consequence of tﬁe'assumed two-dimensional,
inéom?fessibié flow.

In Eq. 4.1 there are three unknowns, u, v, and p. VBecause.the velocity
compoﬁents u and v can be written as u = 3y/dy and v = - 3yp/ox, Eq. 4.1 is,
in fact, a relationship between the unknowns ¢ and T if Eqs. 4.2 ana 4.3 are
also considered. The second equétién which is needed to close the system is

the energy equation for a steady incompressible flow

2T+ 3T - o a27 (4.4)
9x ay

in which k is the thermal diffusivity. While a solution could, in principle,
be éought for ¢y and T in the above,equations; difficulty may be encountered
becaiise of the‘non—linearity ot the equations.

One way of obviating this diff;culty would be to linearize approﬁri-
ately the equations in order tvobtain a first approximation, wo and To’ to
the flow. Further approximatiopé could then be generated by an iterative
scheme, if they are desired. The present method of solution begins by consi-

dering the terms on the left hand side of Eq. 4.1. Here, it will be assumed

that '
14 3
uz > >> vsg ‘ (4.5)

The latter term appears to be small throughout most of the region since both

v and 3C/dy, 5%—%% - %5) for a uniform, inviscid upstream flow, will be small

except near x = 0. The former term in Eq. 4.5 may not be small, by comparison

with the latter, because of the coefficient u, which in the present problem
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“is reiatively large everywhere, with a magnitude of the order of U, the up-
stream velocity. Thus, 1f 3%/3x and 37/3y are not grossly different in
magnitude, a reasonable way of including the effects of vorticity transport

in the problem.is to write

qdt _ _ 9 .
poU X . 8 9% : : . (4.6)

This equation perﬁits ¢ to be written directly as

r =+ gpoaT
p .U

+ £(y) 4.7)
(o] : ' :

in which f(y) must be determined and Eq. 4.2 for p was employed. As x » «
we shall assume that we have a uniform stream with velocity U and temperature

TaH.

C Thus, C would be zero at large distances from the origin so that Eq. 4.7
b m gaT
ecomes A 0 - C 4 £(y)
[3)
there, with the result that
‘ =_ga -
g U (T TC) (4.8)

everywhere.'

It is convenient at this point to introduce dimensionless variables

into the system of equations.
T-T

. . R
We define T = Er—tjé%_ (4.9a,b,c)
H c
bob_u
ud Q
and
(E,n) = (x/d, y/d)
These new variables imply
A A
u'= Udy/3n, v = - Udyp/ac
and U 32A 32A u £ ,
£ = -5 (§ﬁ¥ + 52%5 =3¢ (4.9d)
Accordingly, Eq. 4.8 can be written as
A dao _ Y
g = &y, - 1) T (4.10)
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. : Y . - .
The coefficient of T is the square of the reciprocal densimetric Froude

number, F, or the.product of the Grashof number and the reciprocal of the
square of the Reynolds number. The Froude number will be used in the dis-

cussion which follows; hence,

C)] (4.11)

F2 = Uz/fgda(TH - T
Eq. 4.3 is transformed through the dimensionless variables in;o Eq. 4.9d,
. . . " : , Co.
“or - : , A AYp = - &, (4.12)
in which 4 is the Laplace operator in the dimensionless variables. This last

vequation‘can.be combined with our result for §, Eq. 4.10 which approximates

the vorticity, because of the linearization step. The result is

AP = - %7 (4.13)
The dimensionless energy equation is
~ 9T ~ 3T _ & - (4.14)
u 3E +v an = Ud AT

This equation and Eq. 4.13.shou1d be solved simultaneously for @ and T.

Instead, T will be approximated in Eq. 4.13 for an approximate solu-

tion of @. These values of @ then will be used in Eq. 4.14 to determine'&.
One could also use these values of @ to determine ﬁ aﬁd v and use them in Eq.
4.1; as'&ell as the values of %, to find new values of z. The sequence of
steps is now apparent; these refined values of ¢ permit a refinement to the
values of ¢ from Eq. 4.3. This will lead to an improvement in the values of
T in Eq. 4.4. The process can be repeated to obtain the degree Qf precision
that'is desired, provided that the algorithm producesla convergent process.
The initial assumption for % is %o = &o.
The reason for this choice is that if x = 0 one knows that V- grad T = O,
from Eq. 4.4, so that lines of constant temperature afe'streamlines. This

assumed, initial value of T allows Eq. 4.13 to be writﬁen as

ap° = - %g@° . : (4.15)
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. A _ N . U n '
- The.boundary conditions on § are y = 0O at " =0, y =1l atn=1, ¢y =n at
£ =< and at £ = 0, n # 0. The solution procedure 1is facilitated
Y ~ -
by setting ¢ = ¢ - n.

Then § = 0 at n = 0 and n = 1,

=0 at & = = o,

Eq. 4.15 and the boundary conditions which have been given allow a solution.

to be written, through the use of separation of variables; as

_ﬁ;o =7n + %g -1 -‘:ll'—l exp[ (m2n2 - l/Fz)llzg]’sin mmn (4.16)

-

In this solution, if F > 1/7 the exponential term will decay the perturbation
solution, w, éo that the conduit flows full at large distances upstream.’

4V
Under conditions of F < 1/m the perturbation solution, Yy, extends to x = - =,

This would imply that the conditions at x = 6 would be noticeable at x = - =,
In the present(situafion,'this would mean that the eddy wﬁich is associated
with w woﬁld transport heat from the plane x = 0 to x = - =». For values.of
F > 1/7 the distance which this heat is transported would be limited through
the finite size of the eddy. It should be noted also that for F < 1/m the
solution for w, Eq. 4.16, also would yield waves in the upstream region of
the fiow. This would invalidate the assumption of uniform flow at x = - .
Hence, the result which has been obtained will be used only for F > 1/m.

It should also be oBserved that the boundary conditions on @ which

were observed for ¥ are not the same as for T. These are

T =0 at n = 0 but not at R =1
T=1 at E=0andn # 0
T=0at¢s=- o,

and a%/ay =0at n=1
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This last condition is‘reasénable, no heat transfer to the wall, for a
stainless—steel condqit. Moreover, it allows a change of temperature along

n f 1 from % = 1 at £ = 0 to % =0 at £ = - =, Hence, the»initial assumption
&o = %o has an inconéisfancy near ﬁ = 1. .This means that wﬁile”the region of
the eddy has been fOund; the temperature distribution must await the next

stage of the calculation.

The solution, Eq. 4.16, has been carried out previously by Yih(s), in

a.different situation. His results show streamline patterns for a vériety of
values of F.

The results for i which have been obtained at this stage of the itera-
tion can be used to determine the temperature distribution from Eq. 4.14. Here
the temperature values for the nth stage of the iteration would be obtained
by solving the Poisson equatiori corresponding to Eq. 4.14 in wﬁich the numeri-
cal values for the left hand side of Eq. 4.14 would come. from the available
values of & and the values for the temperature derivatives from the previous
iteration step. |

The solution fér the temperature field would give a distribution
which would ﬁndoubtedly give a different effective length of the eddy, frqm
the point of view of temperature stratification.. it is not anticipated that
there would be a significant change in the effective iength of the eddy due
to thermal diffusion; however, there could well be a noticeable increase in
the effective thickness of the layer.

Until now viscous effects and turbulence have been neglected. No
doubt the flows will be such that the turbulent mixing will increase the

effective size of the eddy over the value given by the model under discussion.

(3)

Experiments with selective withdrawal problems by Debler show: that the
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eddy size is about 10% thicker thaﬂ the values predicted'by equations similar
to Eq. 4.16;'
| Iﬁ is‘nof proposed to exténd thevcalculgtion scheme'to higher approxi-

‘mations at this time;i However, use of the valﬁeé of T which result from the
"solution ofAEq: 4.4;.an&.w from'Eq..4.3, would allow a‘numerical solution for

¢ from Eq. 4.1 at each point in the desired regime. These values, in turn,
could be reinserted in Eq. 4.3 to refine the values of V. .Only the question

of conQergency of-the procedure'remains. Thus, a samplé calculation should
4prove enlightening. This iteration procedurelhas been programmed in Fortran
for exécution on an IBM 360 digital computer. Numerical experiments are

planned so that the numerical stability of the algorithm can be tested.

5. Experimental Correlation with Theoretical Model

It was mentioned in Sect. 3 that the confluencg of two streams in
a plexiglas, 180°-approach mixing tee waé observed for ; variety of flowrates
in the two.inlet branches. AAs long as there was éomelflow in a branch there
was no observable tendancy for the fluid from the second branch to intrude into
the first branch.

No laboratory experiments have been conducted, until now, to.test the
accuracy of the criterion for significant upstream intruéion which came from
the analysis of Sect. 4. There exist some data (Argonne National Laboratory
report, ANL-RDP-33, p. 3.8), however, which bear ﬁpon this problem. A hori-
zontal, 180;—appr6ach, 10 cm dia. pipe tee was operated with a warm water flow-
rate in one inlet leg of 11 £/min whiie 95 %/min of colder water were
flowing in thg other inlet.leg. The temperature diffgrence of the fluid
streams was 55°C. . This would imply that the densimetric Froude number in the

warm-water branch was (refer..to Eq. 4.11)
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eGSO _ o,y
©V32.2(1/3) (107%) (10%) :

Beéause this éalqulétion:giveé a Froude number -which is less than O.3i7 one
might ekpecf ﬁhat there wﬁuld be an extensive upstream instrusioﬁ of the re-
circulation eddy. Duriné the experiments that are cited in the ANL report,
ANL;RDP—33, it was noted that there was a major temperature gradient, trans-
verse to the flow direétion,'at a position in the horizontal pipe 60-75
diameters upstream of the pipe junction. It was.surmised that an upétfeam
intrusion éf the coldef water into the warm water "leg" of the test loop was
responsible for this temperature differential. Thus, in this case, the pre-
diction of uéétream intrusion.throughbthe densimetric Froude number agrees
with the actua; occurrence in the léboratory of a phenomenon which could
reasonably have been due to upstream intrusion. Clearly it would be desirable
to have more informatioﬁ to assess the merits of the criterion of Sect. 4.
6. Conclusions

Experimental observations and a potential-flow calculation support
the opinion that the intrusion of one stream into the inlet region of the
second stream of a 180°-approach thermal mixing tee is not due to the inertia
of the faster stream. vThis is true as long as fhere is some flow in both
pipes.

The intrusion that has been observed is, no doubt, buoyancy driven.
‘A two~dimensional, inviscid model has been developed for one branch of the
pipe-tee. An assumption was made which allows an initial estimate to be
given concerning the extent of the upstream intrusion. Subsequent refinement
of this estimate couid be achieved through detailed numerical computation.

The perturbation solution for small Reynolds number that was carried
out in Appendix III should give a superior description of the flow when the

numerical solutions are executed. It would be of interest to compare the
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result of the inviscid model and the low Reynolds number solution.
The inviscid criterion was used with the data of one experiment in
which upstream intrusion was suspected. . The theoretical criterion for a

major upstream intrusion was satisfied.
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APPENDIX I

Comments on the report, "Turbulent Free Convection Heat Transfer

Rates in a Horizontal Pipe', by J. P. Fraser and D. J. Oakley (Knolls Atomic

Power'Labora;ory‘report, KAPL-1494, dated 28 February 1956).

The abové report presents heat transfer rates for turbulent free
~convection in a 3 m length ofAhorizontal pipe that contains sodium. In
addition; a formula is derived for making predictioﬁs about such flows.“ In
this séétibn tﬁe results of the reportlare compared with the work of Cormak,

(2)

Stone, and Leal* who have modeled the problem using a laminar model and
perturbation techniques for the mathematical analysis.
: . £ 1] 4
The result of Fraser and Oakley's analysis( ) gives for the rate

of heat transfer, Q,

_Q . 8c2yt/2 (pr) (6r) /2 (w/p)3/?

Uond T [N +% %g%% + 265 c2)1'/2

A

in which

Pr = Prandth number = v/k,

Gr = Grashof number gBD3(T2 - T3)
—z

= length to diameter ratio, and

ol

Re = Reynolds number = UD/v.
The constants A and N are free to be chosen while C is an interfacial

mixing length. Finally,

= Ip2 (T2 - T3)
Qcond ZD k (2 1 3

*This paper will be subsequently referred to as C.S.L.

*#*This paper will be subsequently referred to as F.O.
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and Ty - T3'is.the femperatdre difference between thermocouples placed near
thé'top and béttom of the 8-inch diameter pipe. -
ﬁecause of ‘this defiﬁition of Qcond’ the heat transfer, Q, is pre-
‘dicted to vary primariIQHas (T, ~ T3)3/2 and, if one accounts for the various
L/D ;atios in the comﬁlete result, the effect of L/D Qill be slight for large
values of L/D. As L/D approaches smallAvalues, Q should vary as the square
root of this'p;raméter. This derived formula for Q is‘compared with the ex-
perimental results in the report and the'3/2-power variation of Q with AT is
a reasonable representation. One set of data for the temperature distribution
along the pipe is‘also provided and for this case there i1s a nearly constant
temperature gradient of 7°C/m. |
| These resglts will now be compared to those from the anaiysis qf C.S.L.
This work was done for a horiZOntal.cavity which is two-dimensional. A laminar
solutioh was achieved. However,.sqme extension to a ;urbulent flow was
attempted in the paﬁer using turbulent Prandtl numbers, etc.
The '"mo-slip", insulated-cavity case treated by C.S.L. gives a temp-
erature distribution in the middle portion as
T-T

T. - T

= Kyax + K 2(6r) (Pr)a2[(D)5/120 - )4/48 + €)3/72] + K,
HoC | :

in which A is the height to length ratio, Gr is a Grashof number based on

(T, - TC), the temperature difference between the hot and cold ends of the

H

cavity, and K; and K; are constants. In particular
Ky =1- 3.48 (10-%) (6Gr)2(Pr)2A3 + terms of higher order.
The Nus§elt number, Nu, is
~Nu = A ; 2.86 x 10~° (Gr)2(Pr)2A3 + terms of high order

so that

Ty - T¢

Q = ( Tk [A+2.86 x 10-8 (Gr)2(pr)2a3]



22

Now the equation for the temperature distribution given by C.S.L. allows one
to calculate the temperature difference between two points of different ele-
vation, y; and y3, at the same s;ation, X, along the cavity. This would be

' | ¥2)%~ (y1)5
(Tz = T3) = (Ty - T,C)(K;?-)gcr)(Pr)A2 {’ { gizo o Ly ....:}

L]

Becasue the Grashof number, Gr’ contains (TH - TC) it appears that (T, - Tj3)
varies as (TH - TC)Z, as a first approximation, if K; is nearly constant.
" This coefficient does, in fact, depend on Gr' An estimate of.Gr can be made

using the data of F.O.

(1.45 x 10°%)(38.5)(8/12)3 _ .
[0.29 (10-3)/56]}% = 2. x 10

'Gr (Case 3) = 32.3

The Prandtl number is about 0.004 and A3 = (0.66/10)3 = 0.0003.

This means that K; can be calculated to be

K; = 1 - 3.48(10-%) (4 x 1018) (7 x 10-3)(3 x 10-%)

K] = 1 - 180 (10)3
From this it would appear that the data.of F.0. may be such that the theory
of C.S.L. does not apply due to the large value of, what was intended to be,
higher-order terms. An alternate conclusion appears to be that K; is relatively
indepenaent of (T, - f3) for lgzgg_vaiueS'of h/L but qould depend on (T, - T3)2
for moderate h/L and 1argé Grashof numbers. The latter would'appear to be
the case for the experiments reported by F.0. For small h/L, Ty - T3 « (TH - 'I'C)2
and for moderate h/L, Tp - T3 « (T, —~ﬂc)6. This means that, since
Q= (Ty - T3, Q= (Tp - T3)%/2 for small h/L and Q « (T, - T3)1/2 for larger
values of this ratio.

I; should be noted that F.0. find that their data are reasonably
corFelated by 3/2 power on (T, - T3). Also, in their médel, it is implicit

that the length is very large compared to the diameter, because no end effects

are included. It is such end effects which lower the exponeht on (T, - T3)
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wheﬁ gsing‘the approach of C:.S.L.

Becausé ﬁhe formulation of the result in C.S.L. 1s in terms of
iH - Q:, it.appehrs.tb bé thelmore useful.- It would appear also that the
© form of their expreésioﬁ is appropriate to_gsé for ngtural,convection in
long horizonta; conduitél: This requiremeﬁt for a loﬁg-conduit.may also
serve to-control the type of fiow,,iaminar, since surfaée friction will play
a dominant role in the proceés.

The work of C.S.L. confains an informative bibliography of related

(5)

workK. The investigatidn by Gill is concerned with the large Grashof

number regime but it also is limited to short, and relatively full cavities.
As such, the flow‘model does not éppéar éo be directly applicable to stréti—
fication observed in mixing-tees.

In the related publicationiﬁf Cormack, Leai and Seinfeld(z) a series
of numerical experiments have been performed in which the pargmeter

(c;r)2 A3, A = height/length,
was varied. These results indicate that as this parameter increases, "....
the numerically determined Nusselt numbers deviate considerably from the
asymptofic value". Such a deviation appears already .at values of Gr3A2 = 10°.
The data of F.0., for their Case‘3, give values of this parameter of
(2 x 10%)3(.066)2 = (8 x 4/9) (1025).

In vigw of this.fesult it appears that the correlation of heat trans-
fer; Q, with temperature difference (T, - T3) tolthe 3/2-power appears to have
been fortuitous in ‘the réport of F.0. It would seem tﬁat a higher power
might be apﬁropriate and the data in their figure could be equally well re-

lated by the third power on the temperature difference, rather than the 3/2

power that is associatedeith their brief analysis of the problem.
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APPENDIX II

Mafhematiéal-Analysis for'Séct;.3.
The solution of thé flow in a two~dimensional channel with a sink
located in one boundary and unequal fiows‘procéeding toward the sink from
each end is‘presented'beldw. .
| The'diggrams'assoéiated'with the transformafions‘to solve this problem
are given in Sect. 3 of the body of this feport. The mathematical statements

of these transformations are as follows

z =x+ iy =‘%-ln(t),

and .
RRRREE -2 ;n(f—i7%).

In theée expressions '

x and y are the coqrdinates of the problem, measured from thé sink;.

d i; the width of the channel; |

¢ and ¢y are the potential and stream functions, respectivély;

t is an intermediate, guxiliary'vgriable;
and 1/n is the,fraétion of the fiow in one of the halves of the channel. The
variable t can be eliminated between the two equations so .that
ez1r/d -1

— = = 1n
) ezn/dn

" The real and imaginary parts of this equation can be equated so that one will
find

Y ='Q [%'arctan (B/A) +-§ (1/2 - 1/n)]

. - X ry
with A (sinh 2 d)(cos 2 d)

- T Xyeein LYy
and B (cosh > d)(51n 2 d)

It is convenient to write =g " and §-= n in what follows.

X
d
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f_,ff oﬁe chooses'varioﬁ34vélues'for £ and n he~can :ead11yvcomputeip
_at‘thése'poingé. 'Ff&m these values it is §OSsib1e to»iﬁterpolate to obtain
cﬁrves-of 1] =-éonstant.' This}was'thgfprocedufe thatjw;s QSed tb‘produce
Fig. 3’in ;he.main:body éf fhe report. .
Ih Fig. 3 tﬁe stagnafidn ﬁoint was determined By the array of values
* for Y that was produced.' The location of fhis stagnation point on the upper
boundafy qanlbé féund directly by requiriﬁg that u = 0 = a¢/ay. For the prob—‘
Lem at hand one obtains, for n.= 1, the stagnation poinf&s‘ from the_relation;
ship |
tanh (Jg) = -2 [1/2 - 1/n].
Fig.Aé shows tﬁgt Es does not become excéssively lérge eveﬁ for moderately

large values of n.
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. APPENDIX III

Outline for Perturbation Analysis
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