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Abstract 

When the flow rates in the two inlet branches of a lS0°-approach mixing 

tee are greatly different, it is possible that the fluid with the high 

velocity may intrude into the conduit in which the low velocity fluid is 

flowing. It is shown in this report that such an intrusion should not ex-

tend over many pipe diameters. 

However, if the faster flowing fluid is also the warmer, buoyancy forces. 

may be generated through heat transfer. This in turn may lead to density 

stratification in what would normally be the cooler fluid's inlet conduit. 

An extensive eddy develops in this branch of the tee which carries warm fluid 

many diameters in the upstream direction of the cooler fluid. In the laboratory 

such an intrusion of warm fluid in the cool fluid branch yields large tempera-

ture differences between the top and bottom of the pipe. Such behaviour in 

. * prototypic systems could p:roduce deletP.rimJs thermal streeeeo. 

Two mathematical models have been developed to e_stimate the extent of 

this density-driven intrusion. One is an inviscid model which incorporates 

two additional simplifying assumptions to give an initial estimate of the 

significance of the temperature difference and fluid velocity. This estimate 

is an initial step in an iterative procedure for a numerical solution scheme. 

The numerical algorithm has not been tested for computational stability. The 

second method which is presented is a perturbation solution for a low Reynolds 

number flow. The matching of the solution in two regimes will require the 

numerical solution of equations to determine the associated coefficients. 

Once this is done streamline patterns can be drawn for. a variety of Froude, 

Reynolds, and Prandtl numbers. 

* A converse situation occurs if the faster flowing fluid is also the cooler. 
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Nomenclature (App. III not inc_luded) 

A Constant; also height to length ratio 

C Interfacial mixing length 

D Diameter of horizontal pipe 

d Channel width 

F Froude number 

Gr G.rashof number 

g Gravitational constant 

h Cavity height 

k Thermal conductivity 

K Constant 

L Length of horizontal pipe 

N Constant 

n Reciprocal of fraction flowrate in one branch 

Pr Prandtl number 

Q Total flowrate; also (App. I), rate of heat transfer 

Re Reynolds number 

T Temperature 

T (T-TC)/(TH-TC) 

t Intermediate auxiliary variable 

U Speed 

u x component of velocity 

u u/U 

V Velocity vector 

v y component of velocity 

v v/U 



iv 
Nomenclature (Contd.) 

w Plane of ~ and $ coordinates 

X z~plane coordinate 

y z-plane coordinate; also (App. I), elevation 

z Plane of x and y coordinates 

Greek symbols 

a Linear coefficient of thermal expansion 

~ Vorticity in z-direction 

~ Modified vorticity (see Eq. 4.9 ff.) 

n y/d 

K Thermal diffusivity 

t:. x/d 

p Density 

~ Potential function 

$ Stream function 

Subscripts 

C Cold 

H Hot 

o Reference 

S Stagnation point 



1. Intr6duction 

1 

The Intrusion of Fluid .into the Inflow 

Branch of a 180°~Approach Mixing Tee 

The i80°-:approach mixing tee may be used in future power-generating 

systems to mix hot and cold. liquid streams to achieve.the desired fluid 

temperature for subsequent stages of the thermodynamic cycle. Such a tee, 

with inlet branches horizontal, is shown in Fig. 1. Under some.conditions 

of operation the flow of one fluid may be reduced when a large flowrate·of 

the other fluid is wanted from the tee. Under these conditions it has been 

observed in tests at the Argonne National Laboratory (ANL-RDP-33, p. 3.8) 

that the high-flowrate fluid apparently intrudes into the low-flowrate-fluid 

inlet branch. This.situation was concluded to be a possible occurrence when 

the lower surface of the low-flowrate-fluid (hot water) inlet pipe was found 

to be cool (consistent with the temperature of the high-flowrate-fluid, cold 

water), at distances of 75 diameters (D = 10 em) upstream in the hot-water 

branch. 

Such temperature differences between the upper and lower portions 

of the pipe could lead to significant thermal stresses. These stresses could 

affect the useful life of the pipe-tee and adjacent pieces. It is the purpose 

of this report to examine some of the mechanisms by which this intrusion can 

occur. 

2. Previous Work 

There does not appear to be much published information which is di­

rectly applicable to the problem at hand. A report by Fraser and Oakley(4) 

is discussed in Appendix I of this report. In their work a horizontal cavity 
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is.differentially heated at each end and the resulting circulation is the 

subject of laboratory experiments and an analytical model. There is no 

net mass flux.through the cavity as is the case in the·"cold leg" of a 

* 180°-mixing tee. 

Recent efforts by Cormack, Stone, and Leal(2) and Cormack, Leal, and 

Seinfeld(l) also treat a horizontal cavity which is differentially heated. 

They obtain extensive results-for their model, which also does not have any 

net mass flux. 

The speed of a gravity current that is advancing in an ambient fluid 

was analyzed by Von Karman. (7) ·If one·adopts a coordinate system which is fixed 

with the front of this current, the ambient fluid would appear to flow past the 

intrusion. This would be similar to what is occurring in one of the legs of the 

mixing-tee. Von Karman obtained the speed of the fluid, for a steady phenomenon, 

to be 

U = ~ 2 g (p 2-p
1

) (depth of intrusion) /p 1 •. 

If some numerical values for possible experiments with water are used in this 

result one could calculate a speed of 

U ~2 (32.2) (62.17-60~57) (2/12)/60.57 2 0.45 ft/sec (0.137m/s) 

if the densities of water at 27 and 83°C and a intrusion height of 5 em (pipe 

radius of 5 em) are assumed. This formula by Von Karman is useful for giving 

an estimate of the minimum fluid speed in the conduit, U, for a known density 

difference (p
2
-p

1
) in order to keep the intrusion from progressing unabated 

upste~. This result is for an inviscid non-diffusive fluid, so that actually 

* In this report, the low-flowrate fluid is consistently taken to be the cooler 
I 

fluid, so that intrusion is always into the cold-fluid inlet pipe. However, all 
results are applicable as well, in converse fashion, to the c~se in which the 
hotter fluid is the low-flowrate fluid. 
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the speed .would be less than this value, 

While this information is useful it does not give any infqrmation 

about the length of the intrusion. 

·.Dehler (3) performed some related experiments in a channel in which 

the fluid had a constant, stable, vertical density gradient. He found that 

when the densimetric Froude number, 
u 

(depth) 1 g (density gradient) 

was less than 0~24, there existed a stagnant region of fluid at the top of 

the channel while fluid was flowing along the bottom into a line sink at the 

lower end of the tank. Above this Froude number fluid from the entire 

depth of the tank moved into. the sink. These experiments largely confirmed 

the analytical predictions of Yih. (S) He showed that for values of the 

Froude number near 1/n, 0.317, there would be a vortex in the region above 

the sink. This vortex would become longer as the Froude number was reduced 

toward 1/n. The length wouid become infinite at 1/n, at which point the 

analysis would cease to be valid. In this case, the model adopted by Yih 

was for an inviscid non-diffusive fluid. 

In Sect. 4 of this report a model for an inviscid, but diffusive, 

fluid is developed. The solution is an iterative one with the result of 

the first step being similar to that of Yih's criterion. 

3. Analysis for Constant Density Streams 

Before proceeding to the mechanism which appears to play an important 

role, buoyancy, the contribution of momentum, or inertia, to thephenomenon 

will be as.sessed. This assessment will be made for a two-dimensional flow, 

even though the actual pipe tee is three-dimensional. It is believed that 

the essence of the problem is preserved by the model. Fig. 2 illustrates the 

situation. The problem is similar to several which occur in the literature 



5 

. (6) . . . 
[,Robertson ] and it.can be solved directly by employing the Schwartz-

Christoffel tra~sf0rmation. Fig. 2 also shows the diagrams which are 

·associated with the method of solution. 

A sample calculation for a flow with 1/4 of the flow in one branch 

(n = 4) and 3/4 in the other is included in App~ndix II. The streamlines 

are shown in Fig. 3. The stagnation point at the boundary opposite to that 

in which the sink is located gives an indication of the amount of ''overshoot'' 

or intrusion that can be expected for ~uch a situation. This position can 

be calculated without drawing all the streamlines (viz., Appendix II) and 

the results. are· shown in Fig. 4. These results are interesting because they 

show an "overshoot" of one channel width when less than 5 percent is flowing 

in one branch. This means that the effect of the inertia of the fluid in 

the high-flow branch is small in producing a lengthy intrusion region in the 

low-flow branch. 

These calculations are related to some laboratory observations 

which were made by the author and K. Kasza of the Components Technology 

Division. During isothermal tests with a plexiglas test section, it was 

noted that as long as there was any flow in one of the in-flowing branches, 

the flow from the opposite branch did not appear to intrude into, or influence 

the flow,in the branch with the low flow. It must be added, however, that 

when the flow in one branch was stopped, there were large-scale, random pulsa-

tions in ·the supposedly stagnant branch. Th~se motions may be due to the un-

stable interface between the flowing fluid, which turns through 90°, and the 

stagnant branch. This could result in agitating the fluid at the interface 

as well as producing fluid jets which penetrate into the region. An investi-

gation into the mechanics of the flow when one branch has been completely 

throttled is included in a test plan prepared by K. Kasza for future experiments. 
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4. Analysis with Density Differences 

The present analysis adopts a model that is illustrated in Fig. 5. 

One sees that an impermeable boundary is assumed at x = 0 which has a temp-

erature of TJi· It must be emphasized that the model which is illustrated in 

Fig. 5 has a large hot fluid flow and a small cold fluid flow. This will 

result in a recirculation eddy at the top of the conduit. If instead of this 

arrangement, one has a large flow of a cool fluid and a small flow of a warm 

fluid in a mixing tee, the eddy will appear at the bottom of the branch having 

the low flow. The interchange of TH and TC in Fig. 5b and the location of 

the sink at point C rather than point S will affect neither the details of 

the analysis which follows, nor the results. 

The e.ffects of inertia of the hot stream and its higher temperature 

could be combined to determine the extent of intrusion into the region of 

cool fluid. In this case, the origin for the present analysis could be made 

to coincide with the vertical plane through point E in Fig. 2. Then the 

total intrusion length~ l, would be the sum of l, from the previous section, 

·and l 2 which follows anon. 

The model that was chosen preserved what are thought to be the impor-

tant features of the occurrence that has been observed: 

1. A slowly moving stream at one temperature TC combines with another, 

faster moving, stream with temperature TH in the mixing region of a 180°-approach 

pipe-tee's junction. 

2. The slower moving stream enters this junction through only a por-

tion of the area of the conduit. (This is modeled as the line sink in Fig. 5b.) 

The rem·aining part of the conduit from which the fluid with temperature T c 
issues, is occupied by the fluid.from the opposite side of the tee, with 

temperature TH. (This is modeled by prescribing that the plane x = 0, y 1 0 

have the temperature TH.) Laboratory observations lend credence to this aspect 
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of the model. 

3. The actual confluence of the two fluid streams is highly turbulent. 

Viscous str.esses are undoubtedly minor. In the analysis which follows neither 

viscosity nor turbulent interactions have been taken into account. These 

latter effects would serve as a. source of energy for the buoyant intrusion as 

well as to increase its size in the conduit through turbulent mixing. However, 

the exclusion of turbulence does not vitiate the present work because there 

is some evidence [Dehler (3)] that the limiting criterion for the flow para-

meters which result can be realized in the laboratory to a large extent. ·Tur­

bulent effects are evident in the test results of selective withdrawal [Dehler (
3

)1 

but the actual data trends correspond well with an inviscid theory,; In 

fact, the differences in the analytical and experimental results from those 

tests could well serve as a guide in applying the theoretical conclusionR of 

this section to an actual engineering problem. 

Consequently, the present view is .that the major characteristics of the 

intrusion can be modeled if inertia and buoyancy effects are taken into 

account. (Appendix III contains an analysis for laminar low-Reynolds number 

flow.) Accordingly, the vorticity equation for an inviscid fluid in steady 

flow will be used. This is 

ap 
- g­dX , (4 .1) 

in which the Boussinesq approximation for the density, p, has been used. 

(The·density is considered constant in the inertia terms but a variable in 

the gravitation term.) The vorticity in the z-direction is~ and u and v are 

the x and y components of velocity, respectively. A linear equation of state 

will be assumed so that 

p p [ 1 - a (T - T ) ] , 
0 0 

(4.2) 
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in which a is the coefficient of thermal expansion and T is the temperature. 

The vorticity t satisfies the equation 

(4.3) 

in which.the stream function ljJ is a consequence of the assumed two-dimensional, 

incompressible flow~ 

In Eq. 4.1 there are three unknowns, u, v, and p. Because the velocity 

components u and v can be written as u = aljJ/ay and v - aljJ/ax, Eq. 4.1 is, 

in fact, a relationship between the unknowns ljJ and T if Eqs. 4.2 and 4.3 are 

also considered. The second equation which is needed to close the system is 

the energy equation for a steady incompressible flow 

aT ar 2 
u-+~=Kl1T ax ay 

(4.4) 

in which K is the thermal diffusivity. While a solution could, in principle, 

be sought for ljJ and T in the above equations;, di1f.ficulty may be encountered 

because of the non-linearity of the equations. 

One way of obviating this difficulty would be to linearize appropri-

ately the equations in order to obtain a first approximation, ljJ and T , to 
0 0 

the flow. Further approximations could then be generated by an iterative 

scheme, if they are desired. The present method of solution begins by consi-

dering the terms on the left hand side of Eq. 4.1. Here, it will be assumed 

that · 
(4. 5) 

The latter term appears to be small.throughout most of the region since both 

. a av au 
v and a~/ay, ay<ax - ay> for a uniform, inviscid upstream flow, will be small 

except near x = 0. The former term in Eq. 4.5 may not be small, by comparison 

with the latter, because of the coefficient u, which in the present problem 
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is relatively large everywhere, with a magnitude of the order of U, the up-

stream velocity. Thus, if a~/ax and a~/ay are not grossly different in 

magnitude, a reasonable way of including the effects of vorticity transport 

in the problem is to write 

·u a~ le.. 
Po ax.= - g ax (4.6) 

This equation permits ~ to be.written directly as 

~ = + gpoaT + f(y) 
p

0
0 

(4. 7) 

in which f(y) must be determined and Eq. 4.2 for p was employed. As x ~ oo 

we shall assume that we have a uniform stream with velocity U and temperature 

Tc· Thus, ~would be zero at large distances from the origin so that Eq. 4.7 

becomes 0 
__ gaTe 

u + f (y) 

there, with the result that 

~ = .Sa (T - T ) u c (4.8) 

everywhere. 

It is convenient at this point to introduce dimensionless variables 

into the system of equations. 
A T - T (4.9a,b,c) We define T 

c 
TH- TC 

A j= ~ ljl Ud Q 

and 

(x/d, y/d) 

These new variables imply 
A A 

u·= Ualjl/an, v =- Ua~/a~ 

and A A 

u a 2ljl a 2w u .t_·. s = - d <af17 + w> = d £; (4.9d) 

Accordingly, Eq. 4.8 can be written as 

A gd~ ·_. 
l; = U (TH - 'JC ) T. (4.10) 
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" Th~ coefficient of T is the square of the recip~ocal densimet~ic froude 

number, F, or the product of the Grashof number and the reciprocal of the 

square of the Reynolds number. The Froude number will be used in the dis-

cussion which follows; hence, 

(4.11) 

Eq. 4.3 is transformed through the dimensionle~s variables into Eq. 4.9d', 

or 61jl = - e , (4.12) 

in which 6 is the Laplace operator in the dimensionless variables. This last 

equation· can be combined with our result for ~' Eq. 4.10 which approximates 

the vorticity, because of the linearization step. The result is 

. .... T 
6~ = - f7 

The dimensionless energy equation is 
" 

~ a.r. 
u~ 

... aT ~~: ~. 

+ v a~ = ud.- 6T 

(4.13) 

(4.14) 

(\ ~ 

This equation and Eq. 4.13 should be solved simultaneously for 1jJ and .T. 

Instead, T will be approximated in Eq. 4.13 for an approximate solu-

tion of ~. 
~ 

These values of 1jJ then will be used in Eq. 4.14 to determine'!'. 

One could also use these values of ~ to determine u and v and use them in Eq. 

" 4.1, as well as the values of T, to find new values of ~· The sequence of 

steps is now apparent; these refined values of ~ permit a. refinement to the 

values of 1jJ from Eq. 4.3. This will lead to an improvement in the values of 

T in Eq. 4.4. The process can be repeated to obtain the degree of precision 

that is desired, provided that the algorithm produces a convergent process. 

"" "o "o The initial assumption for T is T = 1jJ • 

The reason for this choice is that if K = 0 one knows that y_· grad T = 0, 

from Eq. 4.4, so that l'.itnes of constant temperature are streamlines. This 

assumed, initial value of T allows Eq. 4.13 to be written as 

= - (4 .15) 
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f') !) 

The. bo'undary conditions on $ are $ = 0 at n = o, 1/J = 1 at n = 1, 1/J = n at 

t; ::11 ...;. "" and at t; = 0, n ; o. The solution procedure is facilitated 

"' A 

by setting .lji = ljJ - n· 
."' Then 1/J = 0 at n = 0 and n = 1, 

"' 1/J = 1 - i:l at t; 0, n I 0., and 

"' lji =' 0 at t; = - 00 

Eq. 4.15 and the boundary conditions which have been given allow a solution. 

to be written, _through the use of separation of variables, as 
00 

~ 0 = n + ~) .! exp [ (m2rr 2 - l/F2 ) 
1 

/
2 

t; 1 sin mrrn 
rr~=lm · (4.16) 

In this solution, if F > 1/rr the exponential term will decay the perturbation 

. "' . 
solution, 1/J, so that the conduit flows full at large distances upstream. 

"' Under conditions ofF~ 1/rr.the perturbation solution, 1/J, extends to x - oo 

This would imply that the conditions at x = 0 would. be noticeable at x.=- oo. 

In the present situation, this would mean that the eddy which is· associated 

"' with 1/J would transport heat from the plane X = 0 .to X = - ""· For values of 

F >,1/rr the distance which this heat is transported would be limited through 

the finite size of the eddy. It should. be noted also that for F < 1/rr the 

solution .for ~' Eq. 4.16, also would yield waves in the upstream region of 

the flow. This would invalidate the assumption of uniform flow at x = - oo. 

Hence, the result which has been obtained will be used only for F > 1/rr. 
A 

It should also be observed that the boundary conditions on ljJ which 

Ao A 
were observed for ljJ are not the same as for T. These are 

T = 0 at n = 0 but not at '1 1 

T 1 at t; = 0 and n I 0 

T 0 at t; oo, 
tt 

and aT/ay = o at n = 1 
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This last condition is reasonable, no heat transfer to the wall, for a 

stainless-steel conduit. .Moreover, it allows a change of temperature along 

n = 1 from T = 1 at ~ = 0 to T = 0 at ~ = - oo. Hence, the initial assumption 
A A 

0 0 
ljJ = T has an inconsistancy near n = 1. .This means that while the region of 

the eddy has been found, the temperature distribution must await the next 

stage of the calculation. 

The solution,.Eq. 4.16, has been carried out previously by Yih(S), in 

a different situation. His results show streamline patterns for a variety of 

values of F. 

The results for ljJ which have been obtained at this stage of the itera-

tion can be used to determine the temperature distribution from Eq. 4.14. Here 

the temperature values for the nth stage of the iteration would be obtained 

by solving the Poisson equation corresponding to Eq. 4.14 in which the numeri-

cal values for the left hand side of Eq. 4.14 would come from the available 

values of ljJ and the values fpr the temperature derivatives from the previous 

iteration step. 

The solution for the temperature field would give a distribution 

which would undoubtedly give a different effective length of the eddy, from 

the point of view of temperature stratification. it is not anticipated that 

there would be a significant change in the effective length of the eddy due 

to thermal diffusion; however, there could well be a noticeable increase in 

the effective thickness of the layer. 

Until now viscous effects and turbulence have been neglected. No 

doubt the flows will be such that the turbulent mixing will increase the 

effective size of the eddy over the value given by the model under discussion. 

Experiments with selective withdrawal problems by Dehler (J) show·;: that the 
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eddy size is about 10% thicker than the values predicted by equations similar 

to Eq. 4.16. 

It is not proposed to extend the calculation scheme to higher approxi-

mations at this time. However, use of the values of T which result from the 

.solution of Eq. 4.4~ and 1JJ from .Eq. 4.3, would allow a numerical solution for 

I;; from Eq. 4.1 at each point in the desired regime. These values, in turn, 

could be reinserted in Eq. 4.3 to refine the values of !p. Only the question 

of convergency of the procedure remains. Thus, a sample calculation should 

prove enlightening. This iteration procedure has been programmed in Fortran 

for execution on an IBM 360 digital computer. Numerical experiments are 

planned so that the numerical stability of the algorithm can be tested. 

5. Experimental Correlation with Theoretical Model 

It was mentioned in Sect. 3 that the confluence of two streams in 

a plexiglas, 180°-approach mixing tee was observed for a variety of flowrates 

in the two inlet branches. As long as there was some flow in a branch there 

was no observable tendancy for the fluid from the second branch to intrude into 

the first branch. 

No laboratory experiments have been conducted, until now, to test the 

accuracy of the criterion for significant upstream intrusion which came from 

the analysis of Sect. 4. There exist some data (Argonne National Laboratory 

report, ANL-RDP-33, p. 3.8), however, which bear upon this problem. A hori­

zontal, 180°-approach, 10 em dia. pipe tee was operated with a warm water flow­

rate in one inlet leg of 11 l/min while 95 t/min of colder water were 

flowing in the other intet leg. The temperature difference of the fluid 

streams was 55°C .. This would imply that the densimetric Froude number in the 

warm-water branch was (refer ·.to Eq. 4.11) 
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F (3/450)/[(~/~)~~1 - . 
132.2(1/3)(10-4)(1~- 0 · 27 

Because this calculation gives a Froude number·which is less than 0.317 one 

might expect that there would be an extensive upstream instrusion of the re-

circulation eddy. During the experiments that are cited in the ANL report, 

ANL-RDP-33, it was noted that there was a major temp_erature gradient, trans-

verse to the flow direction, ·at a position in the horizontal pipe 60-75 

diameters upstream of the pipe junction. It was surmised that an upstream 

intrusion of the colder water into the warm water "leg" of the test loop was 

responsible for this temperature differential. Thus, in this case, the pre-

diction of upstream intrusion through the densimetric Froude number agrees 

with the actual occurrence in the laboratory of a phenomenon which could 

reasonably have been due to upstream intrusion. Clearly it would be desirable 

to have more information to assess the merits of thP. criterion of Sect. 4. 

6. Conclusions 

Experimental observations and a potential-flow calculation support 

the opinion that the intrusion of one stream into the inlet region of the 

second stream of a 180°-approach thermal mixing tee is not due to the inertia 

of the faster stream. This is true as long as there is some flow in both 

pipes. 

The intrusion that has been observed is, no doubt, buoyancy driven. 

·A two-dimensional, inviscid model has been developed for one branch of the 

pipe-tee. An assumption was made which allows an initial estimate to be 

given concerning the extent of the upstream intrusion. Subsequent refinement 

of this estimate could be achieved through detailed numerical computation. 

The'perturbation solution for small Reynolds number that was carried 

out in Appendix III should give a superior description of the flow when the 

numerical solutions are executed. It would be of interest to compare the 
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.result of the inviscid model and the low Reynolds number solution. 

The inviscid criterion was used with the data of one experiment in 

which upstream intrusion was suspected. The theoretical criterion for a 

major upstream intrusion was satisfied. 
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APPENDIX I 

Comments on the report, "Turbulent Free Convection Heat Transfer 

Rates in a Horizontal Pipe", by J.P. Fraser and D. J. Oakley (Knolls Atomic 

Power Laboratory report, KAPL-1494, dated 28 February 1956). 

The above report presents heat transfer ·rates for turbulent free 

convection in a 3 m length of horizontal pipe that contains sodium. In 

addition~ a formula is derived for making predictions about such flows. In 

this sestion the results of the report are compared with the work of Cormak, 

Stone, and Leal*( 2) who have modeled the problem using a laminar model and 

perturbation techniques for the mathematical analysis. 

** (4) 
The result of Fraser and Oakley's analysis gives for the rate 

of heat transfer, Q, 

(Pr)(Gr) 1
/

2 (L/D) 3
/ 2 

in which 

Pr = Prandth number = v/k, 

Gr Grashof number 

L 
0 = length to diameter ratio, and 

Re = Reynolds number = UD/v. 

The constants A and N are free to be chosen while C is an interfacial 

mixing length. Finally, 

Q = ~4 2 k (T2 - T3) 
cond 1 

*This paper will be subsequently referred to as C.S.L. 

**This paper will be subsequently referred to as F.O. 
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and T2 - T3 is the temperature difference between thermocouples plac:ed near 

the top and bottom of the 8-inch diameter pipe. 

Because of ·this definition of Q d' the heat transf~r, Q, is pre-. · con 

dieted to.vary primarily as (T2 - T3) 3/ 2 and, if one accounts for the various 

L/D ratios in the complete result, the effect of L/D will be slight for large 

values of L/D. As L/D approaches small values, Q should vary as the square 

root of this parameter. This derived formula for Q is compared with the ex-

perimental results in the report and the 3/2-power variation of Q with ~T is 

a reasonable representation. One set of data for the temperature distribution 

along the pipe is also provided and for this case there is a nearly constant 

temperature gradient of 7°C/m. 

These results will now be compared to those from the analysis of C.S.L. 

This work was done for a horizontal cavity which is two-dimensional. A laminar 

solution was achieved. However, some extension to a turbulent flow was 

attempted in the paper using turbulent Prandtl numbers, etc. 

The "no-slip", insulated-cavity case treated. by C.S.L. gives a temp-

erature distribution in the.middle po:r;tion as 

in which A is the height to length ratio, Gr is a Grashof number based on 

(TH - Tc), the temperature difference between the hot and cold ends of the 

cavity, and K1 and K2 are constants. In particular 

The Nusselt number, Nu, is 

Nu =A+ 2.86 x lo-6 (Gr) 2 (Pr) 2A3 +terms of high order 

so that 

(TH - Tc)k 6 2 3 Q = [A + 2.86 x 10- (Gr) (Pr) 2A ] 
L 
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Now the equation for the temperature distribution given by C.S.L. allows one 

to calculate the temperature· difference between two points of different ele-

vation, Y2 and Y3• at the same station, x, along the cavity. This would be 

. 2 { (Y2)5- (Y~l_s + } 
(T2 ~ T3) = (TH- TC)(Kl )(Gr)(Pr)A2 120 h5 .... 

Becasue the Grashof number, Gr, contains (TH ~ TC) it appears that (T2 - T3) 

varies as (TH- TC) 2, as a first approximation, if K1 is nearly constant. 

This coefficient does, in fact, depend on G . An estimate of G. can be made 
r r 

using the data of F.O. 

G (Case 3) = 32.3 (1.45 x lo-6) (38.5) (8/12)3 = 2. x 109 
r [0.29 (10-3)/56]2 

The Prandtl number is about 0.004 and A3 = (0.66/10) 3 =0.0003. 

This means that K1 can be calculated to be 

K1 = 1- 180 (10) 3 

From this it would appear that the data of F.O. may be such that the theory 

of C.S.L. does not apply due to the large value of, what was intended to be, 

higher-order terms. An alternate conclusion appears to be that K1 is relatively 

independent of (T2 - T3) for large values of h/L but could depend on (T2 - T3) 2 

for moderate h/L and large Grashof numbers. The latter would appear to be 

the case for the experiments reported by F.O. For small h/L,T2- T3 ~ (TH- 1C) 2 

and for moderate h/L, T2 - T3 ~ (TH- TC)6. This means that, since 

Q ~ (TH- Tc) 3, Q ~ (T2 - T3) 3/ 2 for small h/L a~d Q ~ (T2 - T3) 1 / 2 for larger 

values of this ratio. 

It should be noted that F.O. find that their data are reasonably 

correlated by 3/2 power on (T2- T3). Also, in their model, it is implicit 

that the length is very large compared to the diameter, because no end effects 

are included. It is such end effects which lower the exponent on (T2 - T3) 
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when using the approach of c.s.L. 

Because the formulation of the result in C.S.L, is in terms of 

TH - 'JC , it· appears to be the more useful.· It would appear also that the 

form of their expression is appropriate to use for natural convection in. 

long horizontal conduits.: This requirement for a long conduit may also 

serve to control the type of flow,. laminar, since surface friction will play 

a dominant role in the process. 

The work of C.S.L. contains an informative bibliography of related 

worK.· The investigati~n by Gill (S) is concerned with the large Grashof 

number regime but it also is limited to short, and relatively. full cavities. 

As such, the flow model does not appear to be directly applicable to strati-

fication observed in mixing-tees. 
. (2) 

In the related publication of Cormack, Leal and Seinfeld a series 

of numer.ical experiments have been performed in which the parameter 

(G )2 A3, A= height/length, 
r 

was varied. These results indicate that as this parameter increases, " ••.. 

the numerically determined Nusselt numbers deviate considerably from the 

asymptotic value". Such a deviation appears already.at values of G 3A2 
. r 

The data of F.O., for their Case 3, give values of this parameter of 

In view of this .result it appears that the correlation of heat trans-

fer, Q, with temperature difference (T2 - T3) to the 3/2-power appears to have 

been fortuitous in the report of F.O. It would seem that a higher power 

might be appropriate and the data in their figure could be equally well re-

lated by the third power on the temperature difference~ rather than the 3/2 

power that is associated with their brief analysis of the problem. 
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APPEND IX II 

Mathematical-Analysis for Sect. 3. 
. . 

The solution of the flow in a two-dimensional channel with a sink 

located in one boundary and unequal flows proceeding toward the sink from 

each.end is presented below. 

The diagrams associated with the transformations to solve this problem 

are given in Sect. 3 of the body of this report. The mathematical statements 

of these transformations are as follows 

z = x + iy = ~ ln(t), 

and 

w <I>+ itjl = - _g_ ln(t ~~1-). 
1T · 1 n . t 

In these expressions 

x and y are the coordinates of the problem, measured from the sink; 

d iG the width of the channel; 

<1> and tjJ are the potential and stream functions, respectively; 

t is an i~termediate, auxiliary variable; 

and 1/n is the fraction of the flow in one of the halves of the channel. The 

variable t can be eliminated between the two equations so .that 

rr~ = _ ln { :::;:n- 1 j 
The real and imaginary parts of this equation can be equated so that one will 

find 

tjJ =·Q [!arctan (B/A) + Y (1/2- 1/n)] 
1T d 

with A 
1T X 1T v 

(sinh- -)(cos- L) 
2 d 2 d 

1TX 1TV' 
and B = (cosh Zd)(sin 2 d) 
It is convenient to write~= ~ . and Y = n in what follows. 

d . d 
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. If one chooses various values· for £;. and n he ca:n ·readily compute ijJ 

at these points. Frdm these values it is possible to interpolate to obtain 

curves of ljJ = constant. This was the .procedure that:was used to produce 

Fig. 3 in the main body of the report. 

I~ Fig. 3 the stagnatio~ point was determined by the array of values 

for ljJ that was produced. The location of this stagnation point on the upper 

boundary can be found directly by requiring that u = 0 = 'OljJ/ay. For th.e prob-

lem at hand .one obtains, for n = 1, the stagnation point E;s from the relation-

ship 

tanh 

Fig. 4 shows that E; does not become excessively large even for moderately 
s 

large values of n. 
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APPENDIX III 
.. 

Outline for Perturbation Analysis 
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