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ABSTRACT

Temperature data taken in 13 drill tests around the Valles Caldera are presented. Seven
of these tests were shallow auger holes (< 30 m), 4 were rotary holes of intermediate depth:
(140 m to 170 m), and 2 were relatively deep tests (350 m and 730 m). Heat-flow measure-
ments were obtained in the 4 intermediate drill tests whereas only geothermal gradients were
measured in the remaining tests. Potential ground-water movement, lack of good thermal
conductivity control, and the shallow depth of many of the drill tests makes the heat-flow
pattern in the area uncertain. Two trends appear likely: higher heat flows are to the western
side of the Valles Caldera (as opposed to the eastern side) and heat flows increase rapidly in
approaching the margin of the Valles Caldera from the west. Both observations suggest a
relatively shallow heat source located beneath the western part of the Valles Caldera.
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INTRODUCTION

Subsurface temperature data are presented for 13
drill tests in the Jemez Mountains, a Tertiary and Quater-
nary volcanic field in north-central New Mexico associated
with Valles Caldera (fig. 1). A geologic map of the Jemez
Mountains has been prepared by Smith and others (1970).
Bailey and others (1969) and Doell and others (1968)
presented data indicating volcanic activity may have begun
in the Valles Caldera about 9 m.y.B.P. (Purtyman, 1973).

Following a period of quiesence, catastrophic eruptions of

ash flows resulted in the formation of the Valles Caldera.
The intracaldera domes are dated from 0.4 m.y.B.P. to
1.0 m.y.B.P. (summarized by Purtyman, 1973).

Summers (1965) described hot spring activity in the
Jemez Mountains and related the thermal waters to the
volcanism of the area. Jiracek (1974) summarized geo-
physical studies in the Jemez Mountains area. The immen-
sity of the Valles Caldera and its geologic history suggest
the probable geothermal potential of the area. Conse-
quently, a series of tests were drilled around the Valles
Caldera by the Los Alamos Scientific Laboratory; sub-
surface temperature measurements were made in these

holes by the New Mexico Institute of Mining and Technol- '

ogy in a cooperative effort to sfudy the heat-flow pattem
in the Jemez Mountains. ,

Subsurface temperature gradients were calculated
from in situ, equilibrium temperature measurements taken
at progressively deeper depths in the drill tests. Insitu
temperature data were taken by using resistance thermo-
metry; that is, platinum or thermistor sondes in conjunc-
tion with Mueller Bridge electronics for surface recording.
At 4 locations estimates of the thermal conductivity of the
rocks from the holes were obtained by measurements on
core and fragment specimens. These conductivity measure-
ments multiplied by the appropriate temperature gradients
yield estimates of the heat-ﬂow values at the appropriate
drill sites.

The 13 tests méasured were drilled around the Valles
Caldera near the boundary of the Baca Location No. 1

(fig. 1). Seven of these tests were shallow auger holes

(£ 30 m) and were near the eastern, southern and western
boundaries of the Valles Caldera. Of the 13 drill tests 4
were rotary holes of intermediate depth (140 m to 170 m)
along the western boundary of the Valles Caldera. One '
hole on the eastern flank of the Jemez Mountains was
probed to 350 m. The deepest test (GT-1) in this study
penetrated basement rock to the west of the Valles Caldera
and was probed to- 730 m. Geologic logs are presented for
the 4 intermediate depth rotary tests and GT-1 by Purty-
man (1973).
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Laboratory. F.W. Trainer (U. S. Geological Survey) and
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manuscript and made many helpful suggestions. -
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geophysics with New Mexico Institute of Mining and

_ Technology. Weidman is presently a graduate student in

physics at University of Arizona, Edwards is employed by
the Los Alamos Scientific Laboratories, and Hartman is
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PRESENTATION OF DATA

Subsurface temperature data for the drill tests are
presented in fig. 2. Generally the temperature data taken
from deeper holes are considered more reliable than the
data taken from shallower holes. Data from deeper holes
are more removed from near surface disturbances such as
climatic and vegetation changes, topographic relief and
water-table fluctuations, while shallower holes are more
likely to yield unreliable estimates of undisturbed heat flow

as a result of abstraction of heat by ground-water movement.

" The intermediate and deeper holes (A, B, C, D, GT-1,
and DT5 A) demonstrate interesting temperature profiles.
Hole A has 2 similar, linear temperature gradients, from
70 m to 120 m and from 120 m to 170 m. Holes B and C
illustrate very high geothermal gradients at intermediate
depths, with somewhat lower gradients at shallower and
deeper depths. Temperature gradients in hole D are lower
than in holes A, B, and C. Holes GT-1 and DT5 A both _
. have thermal gradients that decrease with increasing depth
(although GT-1 does show higher temperature gradients .
than does DTS A). The decrease in the geothermal gradient
at the bottom of hole GT-1 suggests potential ground-water
movement near the bottom of the hole. This decrease is
" probably not compensated by a thermal conductivity in-

crease which would yield an equivalent heat flow as esti-

mated for the top of the hole. The erratic nature of the -
. data between 450 m and 650 m is also suggestive of
channeled ground-water movement.

Thermal conductivity measurements were performed
on rock samples from holes A, B, C and D. Mean thermal
conductivity values multiplied by linear geothermal gradi-
ents of corresponding depth intervals yielded estimates of
the heat flow, or geothermal flux, in that depth interval
(see fig. 1 for sites A, B, C and D). Thermal conductivity
measurements were difficult to perform on many of the
core samples from holes A, B, C and D because of the fria-
bility of the tuff, shale, and clay cores: The large range in
porosity of the tuff and the sandstones (4 percent to 42

© percent), the probable anisotropy of the shales and clays,

. and the uphole sloughing of cuttings in the drill tests will
cause substantial errors in estimating the thermal conduct-
ivity of the fragment samples. In holes A and B the ther-
mal conductivity estimates were made from measurements
performed on cuttings samples corrected for porosity.

This technique is described by Sass and others (1971a).
Porosity estimates are made by comparison with measure-
ments done on similar rock core involving differential
weight before and after vacuum flooding. In holes C and

D several core-sample conductivity values were averaged
with the porosity-corrected fragment values to obtain mean
thermal conductivity estimates for certain depth intervals.
Core samples were vacuum flooded with distilled water
before measurement in an attempt to dupllcate an in situ

saturated condition for the rock.

In holes A, B, C and D, the heat-flow values calcu-
lated for different depth intervals in the same drill hole are -
generally not in good agreement. In hole A the heat-flow
value is 6.7 HFU (1 HFU = 1 heat flow-unit =1 x 10'6

~ calfem? - sec; the world average heat flow is approxi-

mately 1.5 HFU, Von Herzen, 1967) in the upper zone and
6.0 HFU in the lower zone. In hole B, the heat-flow values
for 3 depth intervals going down the hole are 5.1 HFU,
10.1 HFU and 7.0 HFU. In hole C heat-flow values of

4.7 HFU, 9.9 HFU and 7.8 HFU are estimated; in hole D,
the heat-flow values are 4.8 HFU and 3.8 HFU.

" The difference between heat-flow values in different
depth intervals in these drill holes may imply disturbance
of the natural geothermal diffusion gradients in the region,
for example, ground-water transport of heat. Alternatively,

- the difficulty in obtaining accurate thermal conductivity

measurements coupled with the probability that the speci-
mens measured are not repreéentative of entire linear gradi-
ent sections, leaves open the possibility that the discre-
pancies in the heat flow are the result of inadequate esti-
mates of thermal conductivity values. Consequently, it is
difficult to estimate the heat flow at sites A, B, C and D.

If one were to consider heat-flow values for the bottom of
holes A, B, C and D they would be 6.0, 7.0, 7.8 and 3.8

HFU respectively. The heat-flow average on each test is
6.4,7.4,7.5 and 4.3 HFU respectively. These two approaches
give similar qualitative patterns. Values of 5.0 to 5.5 HFU
for holes A, B, and C and ~ 3 HFU for hole D were presented
by Potter (1973).

The depth of the shallow drill tests and the wide
range in character of the near surface material make a com-
parison of the temperature gradients difficult between thie
shallow holes. Holes 1 and 3 demonstrate very high geo-
thermal gradients from about 10 m to 20 m and hole 8
from about 10 m to 16 m. In the bottom of holes 3 and 8
a substantial reduction in the geothermal gradients is ob-
served. Drill tests 2 and 9 demonstrate thermal gradients
intermediate between the 2 gradients in holes 3 and 8.

Hole S has a gradient somewhat less in magnitude than the
other shallow tests. Hole 4 has an inversed geothermal
gradient.



DISCUSSION

With the available data we suggest that geothermal
gradients and heat flows are higher west of the Baca Loca-
tion No. 1 than east. However, this conclusion is based on
biased data coverage, the data to the east being less nu-
merous, shallower, and not as widely spaced as the data to
the west. Data to the west of the Baca Location No. 1
imply that as one goes westward, away from the location
boundary, the geothermal gradients and the heat flows de-
crease. The data also suggest that as one goes northeast-
ward from hole A to holes B and C the geothermal gradi-
ents and the heat flows increase slightly.

The difficulty in obtaining accurate and representative
thermal conductivity measurements makes an explanation
of the heat-flow variations within a well ambiguous and

complicates potential explanations for the heat flow pattern.

Apparently as the sites move from the west closer to Valles
Caldera the heat flow increases rapidly, implying a rela-
tively shallow heat source in the caldera. In approaching
San Antonio Mountain (sites B and C) somewhat higher
heat flows are also observed; consequently the resurgent
domes within the Valles Caldera may be associated with
magmatic heat sources. Higher temperature gradients to
the west may suggest that the main magmatic heat source
is beneath the western part of the Valles Caldera perhaps
associated with Redondo Peak. Alternatively, the heat-
flow pattern and the heat-flow variations within the holes
may be influenced by the disturbing effects of ground-
water movement (Sass, and others 1971b; Reiter and
others, 1975). Data from GT-1 may suggest that ground
water is abstracting heat.
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