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ABSTRACT

Recorded test data are presented for Test S-05-2 of the Semiscale Mod-1 alternate
emergency core coolant (ECC) injection test series. This test is one of several Semiscale
Mod-1 expenments conducted to 1nvest1gate the thermal and hydraulic phenomena
accompanymg a hypothesized loss-ot-coolant accident in a pressunzed water reactor (PWR)
system.

Test S-05-2 was conducted from an initial cold leg fluid temperature of 545 OF and an
initial pressure of 2263 psia. A simulated double-ended offset shear cold leg break was used
to investigate core and system response to a depressurization and reflood transient with. ECC
injection at the intact loop pump suction and broken loop cold leg. A reduced lower plenum
volume was used for this test to more accurately represent the lower plenum of a PWR,
based on system volume scaling. System flow was set to achieve a core fluid temperature
differential of 65°F at a core power level of 1.44 MW. The flow resistance of the intact loop
was based on core area scaling. An electrically heated core with a slightly peaked radial
power profile was used in the pressure vessel to simulate the predicted surface heat flux of
nuclear fuel rods during a loss-of-coolant accident.

The purpose of this report is to midke available the uninterpreted data from Test
S-05-2 for futurc data analysis and test results reporting activities. The data, presented in the
form of graphs in engineering units, have been analyzed only to the extent necessary to
assure that they are reasonable and consistent.
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SUMMARY

Test S-05-2 was performed as part of the Semiscale Mod-1 portion of the Semiscale
Program conducted by EG&G Idaho, Inc., for the United States Government. This test was
part of the alternate ECC injection test series. performed to investigate the response of the
Mod-1 system to alternate ECC injection locations. Hardware configuration and test
parameters were selected to yield a system response that simulates-the response of a
pressurized water reactor to a hypothesized loss-of-coolant accident with subsequent refill
and reflood. The test objective specific to Test S-05-2 was to determine the core and system
response accompanying emergency core coolant injection at the intact loop pump suction.

Test S$-05-2 utilized the Semiscale Mod-1 system, equipped with: a pressure vessel with
intemnals; an intact loop with active pump, steam generator, and pressurizer; a broken loop
* with simulated pump, simulated steam generator, and rupture assemblies; and a pressure
suppression system with header, pressure suppression tank, and a heated steam supply
system. High and low pressure coolant injection pumps and a coolant injection accumulator
‘were provided for each system loop. The flow resistance of the intact loop was based on
core area scaling and a reduced lower plenum volume was used to more accurately represent
the lower plenum of a PWR. :

The electrically heated core consisted of 40 heater rods with a maximum total power
capacity of 1.6 MW. Of the 40 heater rods, four were intentionally unpowered to simulate
unpowered regions of the core of a pressurized water reactor. To yield a slightly peaked
radial power profile, the power level on heater Rods D-4, E-4, and E-5 was increased by 5%
above the remaining 33 heater rods. The resulting total core power was about 1.44 MW,

The test was conducted from initial conditions of 2263 psia (at Spool 4 in the intact
loop hot leg), 545°F (at the intact loop cold leg vessel inlet), and a core fluid differential
temperature of 65°F with a core power level of 1.44 MW at a core inlet flow rate of 142
gpm. The test was initiated with a simulated full size (200%) double-ended offset shear of
the cold leg broken loop piping. The instantaneous offset shear was simulated by
simultaneous (within 10 msec) actuation of the rupture assemblies. After initiation of
blowdown, power to the heated core was reduced in a manner to simulate the predicted
heat flux response of nuclear fuel rods during a loss-of-coolant accident. Blowdown was
accompained by simulated emergency core coolant injection into the pump suction (Spool
8) of the intact loop and into the cold leg (Spool 42) of the broken loop. ' ‘

Test S-05-2 was generally conducted as specified. Conditions which did not conform
to the specified test configuration were considered acceptable for analysis purposes within
the test objectives. The instrumentation used generally functioned as intended. Of 219
measurements attempted, 214 produced usable data.
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EXPERIMENT DATA REPORT FOR SEMISCALE MOD-1
TEST S-05-2

(ALTERNATE ECC INJECTION TEST)
I. INTRODUCTION

The Semiscale Mod-1 experiments represent the current phase of the Semiscale
Program conducted by EG&G Idaho, Inc., for the United States Government. The program,
which is sponsored by the Nuclear Regulatory Commission through the Energy Research
and Development Administration, is part of the overall program designed to investigate the
response of a pressurized water reactor silstem to a hypothesized loss-of-coolant accident
(LOCA). The underlying objectives of the Semiscale project are to quantify the physical
processes controlling system behavior during a LOCA and to provide an experimental data
base for assessing reactor safety evaluation models. The Semiscale Mod-1 program has the
further objective of providing support to other experimental programs in the form of
instrumentation assessment, optimization of test series, selection of test parameters, and
evaluation of test results.

Test S-05-2 was conducted on October 29, 1976, in the Semiscale Mod-1 system as
part of the alternate ECC injection test series (Test Series 5), which was designed to obtain
thermal-hydraulic response data from blowdown, refill, and reflood transients in a simulated
" nuclear reactor with a heated core in such a manner as to study the sensitivity of core and
system to changes in emergency core coolant (ECC) injection location. For this test, the
pressure vessel was equipped with a 40-electric-heater-rod heated core, of which 36 rods
were active (Rods C-3, D-5, F-3, and F-6 were intentionally unpowered to simulate
unpowered regions in the core of a pressurized water reactor). To yield a slightly peaked
radial power profile, the power level on heater Rods D-4, E-4, and E-5 was increased by 5%
above that used for tests with a flat radial power profile. At initial test conditions, heater
Rods D-4, E-4, and E-5 were operated at a peak power density of about 12.1 kW/ft and the
remaining 33 heater rods were operated at a peak power density of about 11.5 kW/ft. The
resulting total core power was about 1.44 MW.

During the blowdown, the core heater power was adjusted to simulate the thermal
response characteristics of nuclear-heated rods prior to departure from nucleate boiling.
Blowdown was accompanied by simulated ECC injection into the pump suction (Spool 8) of
the intact loop and into the cold leg (Spool 42) of the broken loop. At each ECC injection
location, coolant was injected from an'accumulator and high and low pressure injection
pumps.

The purpose of this report is to present the test data in an uninterpreted but readily
usable form for use by the nuclear community in advance of detailed analysis and



interpretation. Section II briefly déscribes the system configuration, procedures, initial test
conditions, and events that are applicable to Test S-05-2; Section III presents the data
graphs and provides comments and supporting information necessary for interpretation of
the data. A description of the. overall Semiscale Program and test series, a more detailed
description of the Semiscale Mod-1 system, and a description of the measurement and data
processing techniques and uncertainties can be found in Referencel.



II. 'SYSTEM, PROCEDURES, CONDITIONS, AND EVENTS FOR TEST S-05-2

‘The following system configuration, procedures, initial test conditions, and events are
specific to Test S-05-2. :

1. SYSTEM CONFIGURATION AND TEST PROCEDURES

The Semiscale Mod-1 system used for Test S-05-2 consisted of a pressure vessel with
internals, including a 40-rod core with 36 clectrically heated rods;.an intact loop with stcam
generator, pump, and pressurizer; a broken loop with simulated steam generator, simulated
pump, and two rupture assemblies; coolant injection accumulator for the pressure vessel and
both the intact .and broken loops; high and low pressure injection pumps for both the intact
and broken loops; and a pressure suppression system with a suppression tank, header, and a -
heated steam supply system. For this test, the volume of the lower plenum was reduced to
0.529 ft° by the addition of a metal filler piece, and the flow resistancc of the intact loop
was based on core area scaling. System configuration information is provided in Reference
1. Figures 1 and 2 provide the system configuration for Test S-05-2.

In preparation for the test, the intact loop, broken loop, and vessel accumulators were
filled with treated demineralized water, drained to the specified initial level, and pressurized
* with nitrogen to 600 psig. The system was filled with treated demineralized water and
vented at strategic points to .assure a liquid full- system. Prior to'warmup, the system was
pressurized to check for leakage, system instrumentation was checked, and transducer
readings were initialized. Warmup to initial test conditions was accomplished with the
heaters in the vessel core. Heatup of the broken loop piping was accomplished with bypass
lines which served to allow circulation through the broken loop..During warmup, the
purification and sampling systems were valved into the primary system to maintain water -
chemistry requirements and to provide a water sample at system conditions for subsequent’ -
analysis. At 100°F temperatute intetvals duting waimup, detector readings were sampled to
allow. the integrity of the measurement instrumentation and the operability of the data
acquisition systems to be checked. '

Prior to establishing the initial core power level, the pressure suppression system was
pressurized to 35 psia with saturated steam from the steam supply system. After the core
power was increased to about 1.44 MW, 1nitial test conditions were held for 17 minutes to
establish equilibrium in the system. At the end of this period all auxiliary systems, including
" the bypass lines, were isoléted' to prevent blowdown through those systems.
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The system was successfully subjected to a simulated double-ended cold leg break
through two rupture assemblies and two blowdown nozzles, each having a break area of
- 0.00262 ft2. Pressure to operate the rupture assemblies and initiate blowdown was taken
~ from  an accumulator system filled with water and pressurized to 2250 psig with gaseous
nitrogen. Immediately (0.02 second) after initiation of blowdown, the lines to the
accumulator were again isolated. The effluent from the primary system was ejected into the
pressure. suppression system, which was vented to maintain a constant pressure 35 psia. At
blowdown, power to the primary coolant circulation pump was reduced and the pump was
allowed to coast down to a speed of 1500 rpm, which was maintained for the duration of
the test. During the blowdown transient, power to the electrically heated core was
automatically controlled to simulate the thermal response ‘of nuclear-heated fuel rods.

For Test S-05-2, the coolant injection systems were arranged to discharge into both
system loops at the cold leg injection points (Spool 8 and Spool 42). Coolant injection
started immediately atter initiation of blowdown with the manual activation of the intact
and broken loop high pressure injection pumps. Coolant injection was initiated from the
intact and broken loop accumulators after the system was depressurized to 600 psig. At
approximately 150 psig, the low pressure injection pumps were also started. Coolant
injection was continued until the test was terminated at 300 seconds after initiation of
blowdown. e

E

2. INITIAL TEST CONDITIONS AND SEQUENCE OF EVENTS

Conditions in the Semiscale Mod-1 system at initiation of blowdown are given in
Tables I and II; the primary system water chemistry prior to blowdown is given in Table III;
and the sequence of events relative to rupture is given in Table IV.



TABLE 1

CONDITIONS AT BLOWDOWN INITIATION

temperature (°F)

Measured[a] Spécified
Core power (MW) 1.456 1.444 + 0,03
Intact loop cold leg fluid temperature (°F) 545 544 + 2
Hot leg to cold leg temperature 65 66 + 1
differential (°F)
Pressurizer pressure (psia) - 2263 2263 + 25
Pressurizer water level (in.) [b] 20.9Lc] 20.7
~ Steam generator feedwater temperature (°F) 440 435 + 10
- Steam generator liquid level (from bottom 116 116 £ 2
of tube sheet) (in.) ,
Fluid temperature in broken 1oop 572 572 minimum
(pump side) (°F) :
Fluid temperature in broken loop 539 Not Specified
(vessel side) (°F)
Intact loop cold leg flow (gpm) 142 [d]
Pressure suppression tank water 47.5 47 +
level (in.)
Pressure suppression tank pressure (psia) 35.0 35.0
Pressure suppression tank water 75 Ambient

[a] Measured initial conditions are taken from process instrumentation
read just prior to blowdown. Those measured conditions which did
not meet the specified initial conditions were considered accept-

able for analysis purposes within the tesl objectives.

[b] Pressurizer water level measured from bottom hemispherical section.

[c] Level shown corresponds to a pressurizer system volume of 0.54 ft3

(including surge line).

[d] Flow is not specified, since it must be adjusted to achieve the

required differential temperature across the core.




TABLE II

PRIMARY COOLANT TEMPERATURE DISTRIBUTION AT RUPTUREL@]

Vessel lower plenum (upper portion) o
Intact Toop hot leg (near vessel)

Intact Toop cold leg (near pump inlet)
Intact 1oop'c01d~1eg (near vessel)
Broken loop cold leg (near vessel)
Broken loop cold leg (near nozzle)
Broken loop hot leg (near vessel)

Broken loop cold leg (near nozzle)

Detector Temperature (°F)
TFV-LP-7 544
RBU-2 608
TFU-10 542
RBU-T4A 541
TFB-20 543
TFB-23 539
TFB-30 604
TFB-42 598

[a] Data taken from final digité] scan 209 seconds before rupture.

TABLE ITI

WATER CHEMISTRY PRIOR TO BLOWDOWNL2]

pH

Conductivity (umhos/cm)
Lithium (ppm)

Clorides (ppm)
Fluorides (ppm)

0xygen (ppm)

Total gas (cc/1)
Suspended solids (ppm)

9.35

100.0

5.0

1.6
<0.4[b]

0.023

127.0 .

1.3

[a] Water samp]é taken at a system pressure of 2250 psig ‘and a system

temperature of 540°F (cold leg).

[b] Present analytical methods prevent accurate determination of fluo-~
rides at concentrations of less than 0.4 ppm




TABLE IV
SEQUENCE OF EVENTS DURING TESTLa]

Time Relative

Event To Rupture
Established core power level (min) ' -17
Bypass lines valved out of system (sec) . -2.5
Blowdown initiated (sec) 0

Pump power reduced (sec)

High pressure 1nJect1En system
pumps started (sec)

Steam generator feedwater and d1§charge 1
valves closed (sec)
ECC accumulators valved in (sec)[b] 1
Low pressure injection system _
pumps started {sec)[bl] . 20
Core -power tripped off (sec)lc] 300

[a] A time-controlled sequencer was used to control critical events
during the test.

[b] Injection from ECC accumulators and high and low pressure injec-
tion system pumps does not start until system pressure drops
below accumulator or pump pressure,. respectively.

[c] Core power tripped manually at termination of test.




ITI. DATA PRESENTATION

The data from Semiscale Mod-1 Test S-05-2 are presented with brief comment.
Processing. analysis has been performed only to the extent necessary to obtain appropriate
engineering units and to assure that the data are reasonable and-consistent. In all cases, in
converting transducer output to engineering units, a homogeneous fluid was assumed.
Further interpretation and analysis should consider that sudden decompression processes:
such as those occurring during blowdown may have subjected the measurement devices to
nonhomogeneous fluid conditions.

The performance of the system during Test S-05-2 was monitored by 219 detectors.
The data obtained were recorded on both digital and analog data acquisistion systems. The
digital system was used to process the data presented in this report. The analog system was
used to provide better resolution capability (needed as input to various data analysis codes)
and to provide redundancy. ”

The data are presented, in many instances, in the form of composite graphs to
facilitate comparison of the values of given variables at several locations. The scales selected
for the graphs do not reflect the obtainable resolution of the data (the data processing
techniques are described further in Reference 1).

Figures 3 through 8 and Table V provide supporting information for interpretation of
the data graphs shown in Figures 9 through 311.

Figures 3 through 8 show ‘the relative locations of all detectors used during
Test S-05-2. Table V groups the measurements according to measurement type; identifies
the specific measurement location -and the range of the detector and actual recording range
of the data acqu1s1t10n system; provides brief comments regarding the data; and references
the measurements and comments to the correspondmg figure. Appendix A provides
information explaining posttest data processing for data conversion into engineering units
and data adjustments. Figures 9 through 311 present all of the blowdown and reflood data
obtained. Time zero on the graphs is the time of rupture initiation.
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TABLE V
DATA PRESENTATION FOR SEMISCALE MOD-1 TEST $-05-2

RangelaJ
[a) Data Acquisition (o] [b)
Measurement Location and Comments Detector System Figure Measurement Comments
FLUID TEMPERATURE Chromet-Alumel thermocouples unless
specified otherwise.
Intact Loop 0 to 2300°F 0 to 591°F
RBU-2 Hot leg, Spoo) 2, 46 in. from vessel 0 to 1000°F 0 to.1000°F 9, 10
center (platinum resistance bulb).
TSU-7 Cold leg, Spool 7, 243 in. from 1. 12
vessel center (shielded). . B
TFU-10 Cold leg, Spool 10, 144 in. from 1, 12
. vessel center.
RBU-T4A Cold leg, Spool 14, 43 in. from 0 to 1000°F 0 to 1000°F 1n, 12
vessel center, upstream of cold leg
injection port (platinum resistance
buid).
TFU-148 Cold leg, Spoo) 14, 39 in. from 1, 12
vessel center, downstream of cold
leg injection port.
Broken Loop : 0 to 2300°F 0 to 1017°F
TFB-20 Cold leg, Spool 20, 21 in. from 13, 14
vessel center. .
TF8-23 Cold leg, Spool 23, 91 in. from 13, 14
vessel center, upstream of vessel-
side nozzle.
TFB-30 Hot leg, Spool 30, 16 in. from 15, 16
vessel center.
TF8-37 Cold leg, Spool 37, 276 in. from 15, 16
vessel center along hot leg, dis-
charge of simutated steam generator.
TFB-42 Cold leg, Spool 42, 414 in. from . 15, 16
vessel center along hot leg, upstream
nf pump-side nozzle.
Inlet Annulus 4 in. below cold leg centerline, 0 to 1400°F 0 to 803°F
0.2 in. from vessel wall, Type J
iron-constantan thermocouples.
TFV-ANN-4A 0°. 17, 18
TFV-ANN-4M 180°. 17, 18
TFV-ANN-35A 35 in. below cold leg centerline, 17, 18
0°. .
Downcomer Annulus Centered in annulus, Type J iron- 0 to 1400°F 0 to 803°F
¢onsTantan tneruvtuuples.
TFV-ANN-7NA 70 in. below cold leg centerline, 19, 20
0°.
TFV-ANN-115A 115 in. below cold leg centerline, 19, 20
0°.
TFY-ANR-156A l§6 in. below cold leg centerline, 0 to 591°F 19, 20
: 0°.
Upper Plenum 0 to 2300°F 0 to 1017°F
TFV-UP+13 In upper plenum, 13.5 in. above 21, 22 Y
culd ley centerline at 1009, .
Lower Plenum On fluid thermocouple rack, 1 in. 0 to 2300°F 0 to 1017°F
from vessel center, 45°,
TFV-LP-2 2.0 in. from t;op of lower plenum 23, 24
: filler. -
TFV-LP-4 4.0 in. from top of lower plenum 23, 24
filier.
TFV-LP-7 7.0 in. from top of lower plenum 3 23, 24
filler. '
Core
TFV-CORE-IN In core flow mixer box, 150 in. 0 to 2300°F 0 to 1017°F 25, 26

bolow c0ld lag centerline (a
part of FOV-CURE-1N).

17



TABLE V (continued)

Range[a]
[a) Data Acquisition
Measurement Location and Comments Detector System
Core Barrel
InsuTation Gap
TFV-C16-70A 70 in. below cold 0 to 1400°F 0 to 803°F
leg centerline, 0°.
Vessel Filler
Insulation Gap
TFV-FIG-156A 156 in. below cold 0 to 2300°F 0 to 1017°F
leg centerline, 0°. .
ECC System ’ 0 ta 2300°F N tn RA1°F
TFU ECC 8¢ In EGG linc loading to Gpool O:
TFB-ECC-42 In ECC line Jeading to Spool 42.
N G 0 tn 2200°C Q to §01°r
TFU-SGFY In feedwater line leading to steam
generator. .
TFU-SGSD In steam dome, 129.5 in. from bottom
. of tube sheet.
Pressurizer
TFU-PRIZE In surge line, near pressurizer 0 to 2300°F 0 to 1017°F
* exit, between turbine flowmeter
and pressurizer.
Pressure Suppression 0 to 2300°F 0 to 591°F
System
TF-PS5-33 33 in. from bottom of tank.
TF-PSS-130 130 in. fram hottom of tank,
MATERIAL TEMPERATURE Chromel-Alumel thermocoypies
unless specified otherwise. -
Intact toop, ‘ 0 to 2300°F 0 to 591°F
THU-1T16 Hot leg, Spool 1, top, 1/16 in.
trom pipe 1D, 2Y in. from vessel
center.
THU-15B16 Cold leg, Spool 15, bottom, 1/16 in.
from pipe 1D, 17 in. from vessel
center.
THU-15T16 Cold leg, Spool 15, top, 1/16 in.
from pipe ID, 17 in. from vessel
center. .
Bruken Loup i U to 23U0°F 0 to 591°F
.THB-20B16 Cold leg, Spool 20, bottom, I/16 in.
Trom pipe 10, 21 1A, trom vesisel *
center.
TMB-30T16 Hot leg, Spool 30' top, 1/16 in. 0 Lo IM7°F
from pipc 10, 16 in. from vessel
center.
Vessel Filler Type J iron-constantan. 0 to 1400°F 0 to 803°F
TMV-FI-41 4 in. below cold leg centerline,
116 in. from fitler IND. 1RN".
THV-FI-15A 15 in. below cold leg centerline,
1716 in. from filler 1D, 0°.
TMV-FI-36A 35 in. below cold teg centerline,
1/16 in. from filler 1D, 0°.
TMV-FI-70A 70 in. below cold leg centerline, -
1/16 in. from filler 1D, 0°.
TMV-FI-115A 115 in. below cold leg centerline,
1716 in. from filler 10, 0°.
TMV-FI-156 156 in. below cold leg centerline, 0 to 2300°F 0 to 1017°F
1/16 in. from filler ID, 0°.
Tiv-FO-156A 156 in. below cold leg centerline, . 0 to 2300°F 0 to 1017°F

0.65 in. from filler 0D, 0°.

18

Figure[a]

27, 28

29, 30

3
32,33

34, 35

34, 35

36, 37

38, 39
38, 29

40. &1
40, 41

40, 4.

a2, 43

44, 45
44, 45

44, 45

46, 47
46, 47

48, 49

Measurement Comments

LONG-Term IOt BAlY.

" Thermnrnuple failed,

Thermocouple failed.



TABLE V (continued)

Range[a]
[a] Data Acquisition
Measurement Location and Comments Detector System
Vessel Filler Quter surface of insulator, Type 0 to 1400°F 0 to 803°F
Insulator J iron-constantan thermocouples.
TIV-FO-35A 35 in. below cold leg centerline,
0°.
TIV-F0-35M 35 in. below cold leg centertine,
180°.
TIV-FO-70A 70 in. below cold leg centerline,
0°.
TIv-F0-115A 115 in. below cold leg centerline,
0°.
Core Barrel Type J iron-constantan thermocouples. 0 to 1400°F 0 to 803°F
TMV-CI-70A 70 in. below cold leg centerline,
1/16 in. from core barrel 1D, 0°.
THV-CI-115A 115 in. below cold leg centerline,
1/16 in. from core barrel tu, v°.
TMV-CO-70A 70 1n. below cold leg centeriine,
1/16 in. from core barrel 0D, 0°.
TMV-CO-115A 115 in. below cold leg centerline,
1/16 in. from core barrel 0D, 0°.
Core Housing Filler 0 to 2300°F 0 to 1017°F
TMV-HF-115W On core housing filler, 115 in.

below cold leg centerline, 0.20 in.
from outer surface, 315°.

TMY-HF-127W On core housing filler, 127 in.
below cold leg centerline, 0.20 in.
from outer surface, 315°.

THV-HF-138W On core housing filler, 138 in.
helnw rald tep renterline; {1 2 an
from outer surface, 315°

CORE HEATER Chromel-Alumel thermocouples.
CLADDING TEMPERATURES
High Power Heaters 0 to 2300°F 0 to 2382°F
TH-D4-14 Heater at Column D, Row 4. Thermo-
TH-D4-29 couples 14 in. (270°) and 29 fin.
(315°) above bottom of core.
TH-D5-29 . Heater at Column D, Row 5. Thermo-
couplo 20 in. (225°) above bottom
of core.
TH-E4-09 Healer al Column E, Row 4. Thermo-
TH-E4-28G couples 9 in. (180°}, 28 in. (90°),
TH-E4-28T 28 in. (270°), and 55 in. (0°)
TH-E4-55 above bottom of core.
TH-£5-21 Heater at Column E, Row 5. Thermn-
TH-E5-25 couples 21 in. (180°) and 25 in.
{90°) above bottom of core.
Low Power Heaters N 0 to 2300°F 0 to 2382°F
TH-A4-09 Heater at Column A, Row 4 Thermo-
TH-A4-29 couples 9 n. {105°), 29 in.
TH-A4-39 (240°).,, and 39 in. (300°)
above bottom of core.

TH-A5-29 Heater at Column A, Row 5. Thermo-

TH-A5-45 couples 29 in. (180°) and 45 in.
(255°) above bottom of core.

TH-B3-32 Heater at Column B, Row 3. Thermo-
couple 32 in. {135°) above bottom
of core.

TH-B5-29 Heater at Column 8, Row 5. Thermo-

TH-B5-33 couples 29 fn. {150°) and 33 in.
{45°) above bottom of core.

TH B§ 30 Hoator at Column B, Row &. Thermn.
raupla 29 in (4K°) ahnva hnttnm
of core.
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TABLE V (continued)

Measurement

Location and Cornments[a:I

Low Power Heaters (continued)

TH-C2-38

TH-C4-26
TH-C4-53

TH-C5-28
TH-C6-53

TH-C7-07
TH-C7-15

TH-DY-21

TH-02-14
TH-D2-61

- TH-D3-29
TH-03-39

TH-D6-14
TH-D6-25

TH=DY=£0

TH-p8-27
TH.D8-57

TH-E1-21
TH-E1-33

TH-E2-20
TH-E2-33

TH-E3-05
TH-E3-20
TH-E3-24

‘TH-kb-08
TH-£6-28
Tit €6 37

TH-E7-44

TH-E8-14
TH-E8-29
TH-E8-45

TH-F2-07
TH-F2-22
TH-F2-25

TH-F4-14
TH-F4-29
TH-F4-44

TH-F5-20
TH-F5-26
TH-F5-33
TH-FS-53

TH-63-13

Heater at Column C, Row 2. Thermo-
couple 38 in. (225°) above bottom.
of core.

Heater at Column C, Row 4. Thermo-
couples 26 in. (75°) and 53 in.
(300°) above bottom of core.

Heater at Column C, Row 5. Thermo-
couple 28 in. (315°) above bottom
of core.

Heater at Column C, Row 6. Thermo-
couple 53 in. (270°) above bottom
of core.

Heater at Column C, Row 7. Thermo-
couples 7 in. (345°) and 15 in.
(255°) above bottom of core.

Heater at Column D, Row 1. Thermo-
couple 21 in. (330°) above bottom
of core. .

Heater at Column D, Row 2. Thermo-
couple 14 in. (0°) and 61 1in.
(270°) above bottom of core.

Heater at Column D, Row 3. Thermo-
couples 29 in. (150°) and 39 in.
(210°) above bottom of core.

Heater at Column D, Row 6. Thermo-
couples 14 in. (90°) and 25 in.
{255°) above bottom ot core.

ltealer al Culumn D, Ruw F. Theiuu=
couple 20 in. (60°) above bottom
of core.

Heater at Column D, Row 8. Thermo-
couples 27 in. (180°) and 5§7 in. (15°)
abouo bettom of coro, :

Heater at Column.E, Row 1. Thermo-
couples 21 in. {285°) and 33 in. (60°)
above bottom of core. .

Heater at Column E, Row 2. Thermo-
couples 20 in. (210°) and 33 in.
{315°} above bottom of core.

Heater at Column E, Raw 3, Thermn-
couptes 5 in. (15°), 20 in. (165°},
and 24 in. (75°) above bottom of
core.

Heater at Column E, Row b. Ihermo-
couples 8 in. (150°), 28 in. (285°),
and 97 {n: {230°) above bottom
core.

Heater at Column E, Row 7. Thermo-
couple 44+in. {(196°) above bottom
of core.

Heaier ai Cutunn E, Ruw 8. Theru-
couples 14 in. (150°), 29 in. (225°),
and 45 in. (300°) above bottom of
core.

Heater at Column F, Row 2. Thermo-
couples 7 in. 3255°), 22 in. (105°),
and 25 in. (0°) above bottom of core.

Heater at Column F, Row 4. Thermo-
couples 14 in. (90°), 29 in. {165°),
and 44 in. (210°) above bottom of core.

Heater at Column F, Row 5. Thermo-
couples 20 in. {255°), 26 in. (165°),
33 in. {315°), and 53 in. (30°) above
bottom of core.

Heater at Column G, Row 3. Thermo-
couple 13 in. (150°) above bottom
of core.

Range[a]

Detector
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Data Acquisition
System

Figure[a]

76, 77
78, 79
80, 81
82, 83
84, 85
86, 87
88, 89
90, 91
92, 93
84, 83
96, 97
98, 99
100, 101

102, 102

e, s

106, 107

to8, 109

10, M

12, 13

114, 115

16, 117

Measurement Comnents[b]



TABLE V {continued)

Range[a]
i [a] Data Acquisition (2]
Measurement Location and Comménts Detector System figure @
Low Power Heaters (continued)
TH-G4-29 Heater at Column G, Row 4. Thermo- nsg, 19
TH-G4-33 couples 29 in. (300°), 33 in. ’
TH-G4-38 - {225°), and 38 in. (30°) above
bottom of core.
TH-G5-14 Heater at Column G, Row 5. Thermo- 120, 121
TH-G5-24 couples 14 in. {45°) and 24 f{n.
(330°) above bottom of core.
TH-H5-32 Heater at Column H, Row 5. Ihermo- ' 122, 123
. couple 32 in. (45°) above bottem of
core.
PRESSURE
Intact Loop . 0 to 3000 psi
PU-13(F) Cold leg, Spool 13, 54 in. from 0 to 4571 psia 124, 125
vessel center {flush mount).
PU-15L Cold leg, Spootl 15, 16 in. from 0 to 500 psi ., 0 to 553 psia 126, 127
vessel center (low range).
8roken Loop : 0 to 3000 psi
PB-23 . Cold leg, Spool 23, 92 in. from 0 to 4364 psia 128, 129
vessel center, upstream of nozzle
{tee off DP tap).
PB-37 Cold leg, Spool 37, 282 in. from 0 to 4402 psia 130, 131
vessel center along hot leg.
PB-42 Cold leg, Spool 42, 415 in. from 0 to 4832 psia 130, 131
vessel center along hot leg, up- .
stream of pump-side nozzle (tee
of f DP tapg.
PB-HNI Pump-side nozzle, nozzle throat, 0 to 4666 psia 132, 133
419 in. from vessel center alang
not 1ey (cee off DP wap).
PB-CNI Cold leg, Spool 23, vessel-side 0 to 2509 psia 134, 135
nozzle, nozzle throat, 96 in.
from vessel center along cold
leg, 45°.
Vessel
PY-UP+10 in upper plenum, 10 in. above cold 0 to 2500 psi 0 to 3110 psia 136, 137
leg centerline, mounted on standoff,
30°.
PY-LP-166 In upper part or lower pienum, 166 0w 3000 psi 0 Lu 8503 pyia 136, 137
in. below cold leg centeriine,
mounted on standoff, 225°.
ECC System 0 to 750 psi
PU-ACC In intact loop accumulator. 0 to 773 psia 138, 139
PB-ACC ‘In broken loop accumulator. 0 to 746 psia
Steam Generator
PU-SGSD Secondary side Steam dome. 0 to 3000 psi 0 to 1811 psia 140, 141
Pressurizer
PU-PRIZE Pressurizer steam dome. 0 to 2500 psi 0 to 3171 psia 142, 143
Pressure Suppression
Syslein
P-PSS Suppression tank top. 0 to 250 psi 0 to 347 psia 144, 145

DIFFERENTIAL PRESSURE Elevation difference between
transducer taps is zero unless
otherwise specified.

21

Measurement camnents[b]

Transducer failed.



TABLE V (continued)

Range[a:| -

[a] Data Acquisition {a] [b]
Detector System Figure Measurement Corments

Measurement Location and Comments

Intact Loop

DPU-UP-3 Upper plenum 10.5 in. above +50 in. +2.5 psid 146, 147
cold leg centerline at 30° to * water
hot leg, Spool 3, 62 in. from
vessel center. Upper plenum tap
is approximately 2 in. above Spool
3 tap.

DPU-3-7 Across steam generator, hot leg, +500 in. +25 psid 148, 149
Spool 3, 62 in. from vessel center water
to cold leg Spool 7, 231 in. from
vessel center. Spool 3 tap is .
aprenaimntaly 10 fo. alawe Gfend [
7 tao.

pry 7 10 Geam gencrator sutles da pump 160 in. 120:C paid 1505 151
inlet, cold leg Spool 7, 237 in. water -
from vessel center to cold leg

rantar

DPU-12-10 Pump outlet to pump inlet, cold . #50 psi ° 4 50 psid 152, 153

leg Spool 12. 75 in. from vessel -

center to cold ieg Spool 10, 141 * '

in. from vessel center. Spool 10 .

tap is 10 in. below Spool 12 tap.

. . s .

DPU-12-10L Pump outlet to pump inlet, cold +100 in. +5.0 psid . 154, 155 Detector saturated inter-
leg Spool 12, 75 in. from vessel water . mittently prior to t=90 sec.
center to cold leg Spool 10, 141 N
in. from vessel center. Spool 10
tap is 10 in. below Spool 12" tap - i
(1ow range). .

DPU-12-15 Across cold leg injection point, +100 in. +5.0 psid - 156, 157
cold leg Spool 12, 75 in. from vessel water T .
center to cold leg Spool 15, 16 in.
from vessel center.

OPU-15-1 Cold-leg to hot leg, cold teg Spool +500 in. . +25 psid 158, 159
15, 16 in._from vessel center o hot water ) T
leg Spool 1, 31 in. from vessel center.

Spool 15 tap 15 8.5 in. below Spool 1
tap.

pPY-15-1L Cold leg to hot leg, cold leg Spool +100 in. +5.0 psid 160, 161 Detector saturated
15, 16 in. from vessel cenfer to hot  water intermittently prior to
189 Sp6OI 1, 31 1h. TrOm vessal venter. t=Yy s8¢, .
Spool 15 tap is 8.5 in. below Spool 1
tap (low range). - .
DPU-15-1ANN Cold leg Spool 15, 16 in. from - +100 in. +5.0 psid 162, 163
vessel center to inlet annulus, 9 water
in. below cold leg centeriine at
225°. Spéol 15 tap is 9 in. above-
inlet annulus tap.

UPU-PRESLL Pressurizer water level. Eleva- *50 in. +2.8 psid 164, 185-
tion difference between taps is water : .
93 in. Lower tap is 3.5 in. above
pre$surizer exit.

DPY-PR-4 Pressurizer top to Spool 4. Eleva- 41000 psi +1357 psid 166, 167
tion difference between taps is
2 in. Spool 4 tap is 55 in. below
pressurizer exit.

Broken Loop B

DPB-UP-30 Vessel upper plenum, 10.5 in. above +100 in. +2.5 psid 168, 169
rald Yag fenteriine ar 30°  Tn hnt warer
leg Spool 30, 18 in. from vessel
center. Upper plenum tap is 2 in.
above Spool 30 tap.

DPB-21-1ANN Culd ey Spuol 21, 49 in. from +100 1in. +5.0 psid 170, 71
vessel center to vessel inlet water
annulus, 9 in. below cold leg
centerline at 225°. Inlet annulus
tap is 9 in. below Spool 21 tap.

0PB-23-CN1 Cold leq Spool 23, 92 in. from +1000 psi +1336 psid 172, 173
‘vessel center to vessel-side
nozzle throat, 96 in. from vessel
center.

DPB-30-36L Across entire simulated steam gen- 4500 psi +500 psid 174, 175
erator assembly, hot leg Spool 30,
18 in. from vessel center to cold
leg Spool 36 lower tap, 242 in.
from vessel center. Spool 30 tap is - n . . nans
19 in. below Spool 36 tower tap.



TABLE V (continued)

M,Hs[a]
Measurement Location and Ccm'ments[a:| Dete B eten " ig [2] [b]
ctor System Figure Measurement Comments
Broken Loop gconginued! K
DPB-32U-36L Across simulated steam generator +500 psi +500 psid 176, 177

orifice assembly, hot leg Spool 32
upper tap, 73 in. from vessel center
to Spool 36 lower tap, 242 in. from
vessel center. Spool 32 upper tap
is 16 in. above Spool 36 lower tap.

DPB-36L-37 Across nozzle assembly, Spool 36 ° +50 psi +50 psid 78, 179
lower tap, 242 in. from vessel -
center along hot leg, to Spool 37,
282 in. from vessel center along
hot leg. Spool 37 tap is 40 in.
betow Spool 36 lower tap.

DPB-37-38 Across turbine flowmeter and drag +50 in. +3.2 psid 180, 181
disc, cold leg Spool 37, 282 in. water
from vessel center along hot leg to
cold leg Spool 38, 305 in. from
vessel center along hot leg. Spool
37 tap is 23 in. above Spool 38 tap.

OPB-38-40 Across simulated pump, cold leg +1000 psi +1353 psid 182, 183
Spool 30, 305 in. from vessel center .
along hot leg to cold leg Spocl 40,.
365 in. from vessel center along hot

leg.

DPB-40-42 Across elbow leading to spool up- #50 in. +2.5 psid 184, 185 Detector saturated from t=0
stream of pump-side nozzle. Cold water to t=] sec and from t=23 to
leg Spool 40, 365 in. from vessel t=32 sec.

center along hot leg to Spool 4z,
415 in. from vessel center along
hot leg. Spool 40 tap is 40 in.
below Spool 42 tap.

Vessel

DPV-UP-TANN Upper plenum, 10.5 in. above cold +300 in, +16 psid 186, 187
leg centerline at 30° to inlet water
annulus, 9 in. below cold leg eenter-
line at 225°. Elevation difference
between taps is 19 in.

DPV-0-96Q Intet annulus cold leg centerline at 150 in. 2.5 psid 188, 189
90° to 9 in. below cold leg center- water
Tine at 225°. Elevation difference
between taps s 9 in.

DPV-9-26QQ Inlet annulus, 9 in. below cold leg +50 in. +2.5 psid 190, 191
centerline at 225° to downcomer gap, water
26 in. below cold leg centerline at
225°. Elevation difference between
taps is 17 in.

DPV-9-166QQ Inlet annulus, 9 in. below cold leg +300 in. 114.4 psid 192, 193
centerline at 225° ta lower plenum, water
166 in. below cold leg centerline
at 225°. Elevation difference be- .
tween taps is 157 in.

DPV-26-55QM Across part of downcomer, 26 in. #50 in. +2.8 psid 194, 195
(225°) to 55 in. (180°) below cold water
leg centerline. Elevation difference
between taps is 29 in.

DPV-55-110MM Across part of downcomer, 55 in. +100 in. 45.0 psid . 196, 197
(180°) to 110 in. (180°) below water
cold leg centerline. Elevation
difference between taps is 55 in.

DPY-110-156MQ Across part of downcomer, 110 in. +100 in. 5.0 psid 198, 199
(180") Lu 156 in. {225"°) vLelow cold woter
leg centerline. Elevation difference
between taps’ is 46 in.

DPV-166-173QQ Across part of lower plenum, 166 in. +20 in. +1.0 psid 200, 201
(225°) to 173 in. (225°) below cold water
leg centerline. Elevation difference
between taps is 7 in.

DPY-166Q-UP Lower plenum, 166 in. below cold +300 in. +14.7 psid 202, 203

leg centerline at 225° to upper water
plenum, 10.5 in. above cold leg

centerline at 30°. Elevation dif-

fereme Leleeen tups §s 1YY T

23



TABLE V (continued)

Range[a]
[a) Data Acquisition [a) [b]
Measurement Location and Comments Detector System Fiqure Measurement Comments
Vessel {continued) h

DPY-UP-3 Vessel upper plenum, 10.5 in. above #50 in. +2.5 psid 146, 147

cold leg centerline at 30°, to intact water .

Toop hot leg Spool 3, 62 in. from

vessel center. Upper plenum tap is

A2 in, above Spool 3 tap. -

DPB-21-1ANN Cold leg Spool 21, 49 in. from vessel  +100 in. +5.0 psid - 170, 1N “
center, to vessel inlet annulus, 9 in. water :
below cold leg centerline at 225°.

Inlét adnuliis tap 18 Y Th. below Spoodl ‘
21 tap. .
Vessel Core

DPVC-89UW-UP Upper segment of active core region, +500 in. +25 psid T 204, 205 -
83 Iu. beluw wold ey renter1iue waler
{31%%), T0 Lpper plenum Core tube,

10.5 in. above cold leg centerline
{30°). Elevation difference between: .
taps is 100 in. - -

DPVC-89-106W0 In active core region, upper seqment, 50 in. 2.5 psid 206. 207
89 in. below cold leg centerline water o
(215°), to 106 in. below cold leg
centerline (225°). Elevation dif-
ference between taps is 17 in.

DPVC-106-122Qd Across center segment of active core +100 in. #5.0 psid 208, 209
region, 106 in. below cold leg water . ' -
centerline (225°), to 122 in. .
below cold leg centerline (135°).

Elevation difference between taps
is 16 in.

DPVL- 12215000 In active core region, lower segment, iIUU in. 5.0 psid 210, 211
122 in. below cold leg centerline water
{135%), to 140 in. below cold ley
centerline (45°). Elevation dif- .
ference between taps is 18 in. *

ECC SYSTEM : e
oPY AGG TD Top o bottom of intaot loop +100 in, 4.0 paid 12, N2 '
- accumulator tank, ¢levation watcr
qifference between taps 15 108 1n.

DPB-ACC-TB Top to bottom of broken loop +50 in. 45.2 psid Detector failed.
accurulator tank, elevation watey !
difference between taps is 84 in.

Steam Generator "

DPY-SG-SEC Secondary side, differential pressure +100 in. +1.7 psid 214, 215 ¢
taps at 45 in. and 126 in. above water .
bottom of tubc sheet. Elevation
difference between taps is 81 in. r B

DPU-S56-DISC Across venturi tube, 66 in. down- 500 in. 425 psid " . 216, 217
stream from steam generator dis- water . C. .

. Lhurye, : ’ 1
VOLUMETRIC FLOW RATE Turbine flowmeter, bidirectional. ’ R i T
Intact Loop 3-in. Schedule 160 pipe. .

FTU-1 Hot leg, Spool 1, 18 in. from . .. 320 to +400 -,;  *1200 gpm 218, 219 Data acquisition system
vessel center. Tpii . ) 3 . Satiiratéd trom t=Zb to t342
vessel center. } : ©. 'sec.

FTU-9 Cold leg, Spool 9, 154 in. from +80 to +800 +1200 gpm ‘. 218, 219
vessel center. ~ gpm .

FTU-13 Cold leg, Spool 13, 64 in. from +20 to +800 ﬂZOQ gpm "° 220, 221
vessel center. . gpm

FTY-15 Coid leg, Spool 15, 29 in. from | . 20 to +800 +1000 gpm 220, 221
vessel center. gpm

Broken Loop Schedule 160 pipe. R

FTB-21 Cold leg, Spoo'i 21, 58 in. from +20 to +400 +1200 gpm 222, 223 .
vessel center; 3-in. pipe. gpm , -

FTB-30 Hot leg, Spool 30, 25 in. from +20 to +400 +800 gpm . 224, 225
vessel center; 3-in, pipe. gpm



TABLE V (continued)

Range[a]
[a] Data Acquisition (a)
Measurement Location and Comments Detector System Figure a
Broken Loop (continued
FT8-37 Cold leg, Spool 37, 290 in. from +20 to +400 +800 gpm 224, 225
vessel center along hot teg; 2-in. gpm '
pipe.
Core
FTV-CORE-IN Entrance to core, ~I58 in. below +2 to +400 +900 gpm 226, 227
cold leg centerline. gpm
ECC System
FTU-HPIS In line immediately after HPIS 10.75 to #7.5 2 gpm 228, 229
pump for intact loop; 1/2-in. iine. gpm
FTB-HPIS In line immediately after HPIS +0.75 to +7.5 +2 gpm 230, 231
pump for broken loop; 1/2-in. line. gpm
FTU-LPIS In line leading from LPIS pump for +0.75 to #7.5 +10 gpm 232, 233
intact loop; 1/2-in. line. gpm .
_FTB-LPIS In line leading from LPIS pump for +0.75 to #7.5 +2 gpm 234, 235
broken Toop; 3/4-in. linc. gpm
FTU-ACC In Tine immediately after intact +5 to +50 +75 gpm 236, ‘237
Toop accumulator; 1-in. Tine. gpm
FTB-ACC In line immediately after broken +2 to +20 +25 gpm 238, 239
loop accumulator; 1-in. line. gpm
Pressurizer 1-1/2-in. turbine.
FTU-PRIZE _ Surge tine. +5 to 50 +80 gpm 240, 241
gpm
FLUID VELOCITY Turbine flowmeter, bidirectional.
- Doungamer, -
FTV-40A 40 in. below cold leg centerline, +2.5 to 50 50 ft/sec 242, 243
0°. . Tt/sec
FTV-40M 40 in. below cold leg centerline, +2.5 to 50 50 ft/sec 242, 243
180°. . ft/sec
MOMENTUM FLUX . Drag disc, bidirectional.
Intact loop 3-in. pipe.
FDU-1 Hot teg, Spool 1, 29 in. from +200 to +11,500 +23,750 244, 245
vessel center; target size 2 2
0.875 in. ibm/ft-sec Tbm/ft-sec
FOU-5 Hot leg, Spool 5, 10U in. from +1 to +Zuuy +4100 246, 247
vessel center; target size 2 2
1.0 in. 1bm/ft-sec 1bm/ft-sec
FDU-10 Cold leg, Spool 10, 137 in. from +200 to +104,000 *23,750 244
vesse) center; target size 0.875 in. 2 2
1bm/ft-sec 1bm/ft-sec
FOU-13 Cold 1eg, Spool 13, 54 in. from +200 to +14,800  +20,860 248
vessel center; target size 0.875 in. " "
. 1bm/Ft-sec” bm/ft-sec”
FOU-15 Cold leg, Spool 15, 19 in. from +200 to +14,500 +21,800 250
vessel center; target size 0.875 in. 2 2
1bm/ft-sec 1bm/ft-sec
Broken Loop
FDB-21 Cold leg, Spool 21, 53 in. from 4200 to #70,500 27,150 251
vessel center, 3-in. pipe; target 2 2
size 0.875 in. 1bm/ft-sec 1bm/ft-sec
FDB 33 Cold leog, Spool 23, 07 in. from 4200 to #126,000 4134,560
vascal ranter upstream nf 3 )
vessel-side nozzle, 2-in. pipe; 1bm/ft-sec 1bm/ft-sec

target size U.4Ub in.

25

Measurement Comnents[b]

Data acquisition system
saturated from t=31 to t=33
sec.

Data acquisition system
saturated from t=27 to t=3) sec.’

Data acquisition system
saturated at t=0 and t=26 sec.

Data acquisition system
saturated from t=26 to t=30
sec.

Momentum flux reported only
for -6 to 42 sec, except as
noted. Drag disc data may
exhibit significant tempera-
ture dependence. Drag disc data :
should be used only for i
SAOPT-térm transient response.

Long-term plot also presented.

Long-term piot akso presented.
Detector saturated prior to
t=1 sec.



TABLE V (continued)

Range[a]
[a] Data Acquisition
Measurement Location and Comments Detector System
Broken Loop (continued)

FDB-30 Hot leg, Spool 30, 21 in. from +200 to +60,000 +28,000
vessel center, 3-in. pipe; target . 2 2
size 0.656 in. Tbm/ft-sec 1bm/ft-sec

FDB-37 Cold leg, Spool 37, 284 in. from +200 to ¥21,000 +247,200
vessel center along hot leg, steam 2 2
generator outlet, vertical pipe, 1bm/ ft-sec’ 1bm/ ft-sec

. 2-in. pipe; target size 0.406 in.

FUB-4Z Culd ley, Spuul 42, 416 o frum +200 v #116,000 12,400
vesse) cenler aluny ot ley, upe 2 2
stream of pump-side nozzle. down- Abm/ft-sec Tom/ ft-sec
stream of injection point, 2-in,
pipe; target size 0.406 in.

Vessel
. FDV-CORE-IN In.core flow mixer box 150 in. +150 to +450 41235
below cold leq centerline; target 2 ”
size 1.0 in. bm/ft-sec bm/ft-sec”
DENSITY
Intact Loop . 0.1 to 100 0 to 100
* Tom/fe Tom/ 3

GU-1VR Hot leg, Spool 1, 24 in. from
vessel center, vertical.

GU-1HZ Hot leg, Spool 1, 26 in. from

-, - vessel center, horizontal.

GU-5VR Hot leg, Spool 5, 96 in. from
vessel cenler, vertlcal,

GU-10VR Cold leg, Spool 10, 141 in. from )
vessel center, vertical.

8U-13VR Cold leg, Spool 13, 59 in. from
wisdel eenbery wevdisal,

GU-15VR Cold leg, Spool- 15, 23 in. from
vessel center, vertical.

GU-15KHZ Cold leg, Spool 15, 20 in. from

. vessel center, horizontal.
Broken Loop . 0.1 to 100 0 to 100
. Tom/ft3 Tomy £t
6B-21VR " Cold Jeg, Spoa) 21, 49 in. from
vessel ceuler, scitical. :

GB-23VR - Cold leg, Spool 23, 92 in. from
vessel center, vertical.

GB-30VR Hot leg, Spool 30, 18 in. from
vessel center, vertical.

6B-42VR Cold leg, Spool 42, 415 in. from
vessel center along hot leg,
unrtical,

Vessel 0.1 to 100 0 to 100
Tom/ 3 Tom/£t3

GV-COR-150HZ

GVLP-165HZ

GVLP-172HZ

Core flow mixer box, 152 in.
below cold leg centerline,
horizontal, 0 to 180°.

Upper part of lower plenum, 165 in.
below cold leg centerline, 1.724
in. below downcomer exit, RoOri-
zontal, 0 to 180°.

Lower plenum, 172 in. below cold
leg centerline, 8.729 in. below
downcomer exit, horizontal, 90
to 270°.

26

Figurel®]

252

253

256, 257

258, 259

258, 259
260, 261

260, 261

- 264, 265

264, 265

266, 267

266, 267

268, 269

270, 27t

272, 273

272, 2713

Measurement Comnents[h]

Long-tevm plot wlse prcacited:

Detector FDV-CORE-IN saturated
at 500 1bm/ft-sec? for forward
flow measurements.

The positive spike occurring in
the data at rupture is caused by
mechanical vibration of the .
detectar system and dnes nnt

represent system density.

Dctcctor system failcd.



TABLE V (continued)

Range[a] -
[a) Data Acquisition [a) (b
Measurement Location and Comments Detector - System Figure Measurement Comments
Pressurizer . N
GU-PRIZE . Surge line. 9.1 to 100 0 to 100 274, 275
Toay £t Tom/ 23
MASS FLOW RATE Mass flow rate obtained by com- Range for mass flow is determined from
bining density {gamma attenuation range of individual detectors used in
technique) with volumetric flow calculation.
rate (turbine flowmeter) or
momentum flux (drag disc). . .
Intact Loop
FOU-1, GU-1VR 276, 277
FTU-1, GU-TvR . "ot leg, Spool 1. 278, 279
FDU-5, GU-5VR Hot leg, Spool 5. 280, 281 Detector FOU-5 saturated until t=]
“sec.
FTU-9. GU-10VR Cold leg, Spool 9. 282, 283
FDU-10, GU-10VR Cold leg, Spool 10. 284 Short-term plot only.
N FOU-13, GU-13VR 285 Short-term plot only.
FTU-13, GU-13VR Cold leg, Spool 13. 286,287
FDU-15, GU-15VR ¢ 288 Short-term plot only.
FTU-15, GU-15VR Coid Teg, Spool 15. 289, 290
- Broken Loop
FDB-21, GB-21VR 291 Short-term plot only.
FTB-21, GB-21VR Cold Teg, Spool 21 292, 293
fDB-30, GB-30VR 294 Short-term plot only.
FTB-30, GB-30VR Hot Teg, Spool 30. i 295, 296
Vesset
isy}gg?s;mi Entrance to core. 299, 300
Pressurizer
259;;3? Pressurizer surge line. 301 . Short-term plot only.
CORE CHARACTERISTICS
. PWRCOR T-1 Core power. 1600 kW 302, 303
' PWRCOR T-2 Core power. . 1600 kW 302, 303
VOLTCOR T Core voltage. 0 to 200 Vde 04, 305 >
AMPCOR-T Core current. 0 to 10,000 A 306, 307
PUMP CHARACTERISTICS
PUMPU-RPM Pump speed. 0 to 3600 rpm- 308, 309
PUMPU-CUR Pump current. 0to25A 310, 3N

[a] Statements at the beginning of a measurement category regarding location and comments, range, and figure apply to all subsequent measurements
within the given category unless specified otherwise.

[b] Detectors which were subjected to overrange conditions during portions of the test were capable of withstanding these conditions without change
in operating or measuring characteristics when the physical conditions were again within the detector range.
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FLUID TEMPERATURE (0EG F)

FLUIDO TEMPERATURE (DEOG F)
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Fig. 9 Fluid temperature in intact loop hot lea (RBU-2), from -29

to 300 seconds.
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Fig. 10 Fluid temperature in intact loop hot leg (RBU-2), from -6

to 42 seconds.
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FLUID TEMPERATURE (DEG F)

FLUID TEMPERATURE (DEG F)
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Fig. 11 Fluid temperature in intact loop cold leag (TSU-7, TFU-10,
RBU-14A, TFU-14B), from -20 to 300 seconds.
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Fig. 12 Fluid temperature in intact loop cold leg (TSU-7, TFU-10,
RBU-T4A, TFU-14B), from -6 to 42 seconds.
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FLUID TEMPERATURE (DEG F)
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Fig. 13 Fluid temperature in broken loop, vessel side (TFB-20, TFB-23),

from -20 to 300 seconds.
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Fig. 14 Fluid temperature in broken loop, vessel side (TFB-20, TFB-23),

from -6 to 42 seconds.
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FLUID TEMPERATURE (DEG F)
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Fig. 15 Fluid temperature in broken loop, pump side (TFB-30, TFB-37,

TFB-42), from -20 to 300 seconds.
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Fig. 16 Fluid temperatufe in broken Toop, pump side (TFB-30, TFB-37,

TFB-42), from -6 to 42 seconds.
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FLUID TYEMPERATURE (DEG F)
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Fig. 17 Fluid temperature in downcomer annulus (TFV-ANN-4A, TFV-ANN-4M,
TFV-ANN-35A), from -20 to 300 seconds.
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Fig. 18 Fluid temperature in downcomer annulus (TFV-ANMN-4A, TFV-ANN-4M,
TFV-ANN-35A), from -6 to 42 seconds.
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Fig. 19 Fluid temperature in downcomer annulus (TFV-ANN-70A, TFV-ANN-115A,
TFV-ANN-156A), from -20 to 300 seconds. '
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Fig. 20 Fluid temperature in downcomer annulus (TFV-ANN-70A, TFV-ANN-115A,
TFV-ANN-156A), from -6 to 42 seconds.
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FLUID TEMPERATURE (DEG F)

FLUIC TEMPERATURE (DEOC F)
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Fig. 21 Fluid temperature in upper plenum (TFV-UP+13), from -20 to
300 seconds.
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Fia. 22 Fluid temperature in upper plenum (TFV-UP+13), from -6 to
42 seconds.
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FLUID TEMPERATURE (DEG F)

FLUID TEMPERATURE (DEG F)
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Fig. 23 Fluid temperature in lower plenum (TFV-LP-2, TFV-LP-4,
TFV-LP-7), from -20 to 300 seconds.
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Fig. 24 Fluid temperature in lower plenum (TFV-LP-2, TFV-LP-4,
TFV-LP-7), from -6 to 42 seconds.
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FLUID TEMPERATURE (DEQ F)

FLUID TEMPERATURE (DEG F)
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Fig. 25 Fluid temperature in core inlet (TFV-CORE-IN), from -20 to
300 seconds.
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Fig. 26 Fluid temperature in core inlet (TFV-CORE-IN), from -6 to
42 seconds.
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FLUID TEMPERATURE (DEG F)
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Fig. 27 Fluid temperature in core, barrel insulation gap (TFV-CIG-70A),

-20 to 300 seconds.
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Fig. 28 Fluid temperature in core, barrel insulation gap (TFV-CIG-70A),

-6 ta 42 seconds.
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FLUID TEMPERATURE (DEG F)

FLUID TEMPERATURE (DEJ F)
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Fig. 29 Fluid temperature in filler insulation gap (TFV-FIG-156A),

from -20 to 300 seconds.
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Fig. 30 Fluid temperature in filler insulation gap (TFV-FIG-156A),

from -6 to 42 seconds.
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Fig. 31 Fluid temperature in intact loop ECC injection line (TFU-ECC-8C),

from -20 to 300 seconds.
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Fig. 32 Fluid temperatufe in broken loop ECC injection line (TFB-ECC-42),
from -20 to 300 seconds.
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Fig. 33 Fluid temperature in broken loop ECC injection line (TFB-ECC-42),
from -6 to 42 seconds.
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FLUID TEMPERATURE (DEG F)

FLUID TEMPERATURE (DEOG F)
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Fig. 34 Fluid temperature in steam generator (TFU-SGFW, TFU-SGSD),

from -20 to 300 seconds.
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Fia. 35 Fluid temperature in steam generator (TFU-SGFW, TFU-SGSD),

from -6 to 42 seconds.
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FLUID TEMPERATURE (DEG F)

FLUID TEMPERATURE (DEG F)

X

TFU-PRIZE

600.

575.
|

550.

S00.

L o1

T

475,
-s0. 0..

50.

100. 150.
TIME AFTER RUPTURE (SEC)

200.

250.

Fig. 36 Fluid temperature in pressurizer surge line (TFU-PRIZE), from

-20 to 300 seconds.
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Fig. 37 Fluid temperature in pressurizer surae line (TFU-PRIZE), from

-6 to 42 seconds.

42



FLUID TEMPERATURE (DEG F)

FLUID TEMPERATURE (DEG F)
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Fig. 38 Fluid temperature in pressure suppression tank (TF—PSS-33;
TF-PSS-130), from -20 to 300 seconds.
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Fig. 39 Fluid temperature in pressure suppression tank (TF-PSS-33,
TF-PSS-130), from -6 to 42 seconds.
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MATERIAL TEMPERATURE (DEG F)
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Fig. 40 Material temperature in intact loon (TMU-1T16, TMU-15B16,
TMU-15T16), from -20 to 300 seconds.
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Fig. 41 Material temperature in intact lcop (TMU-1T16, TMU-15B816,
TMU-15T16), from -6 te 42 seconds.
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Fia. 42 Material temperature in broken loop (TMB-307T16), from -20 to

300 seconds.
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Fig. 43 Material temperature in broken loon (TMB-30T16), from -6 to

47 seconds.
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Fig. 44 Material temperature in vessel filler (TMV-FI-4M,
TMV-FI-35A), from -20 to 3J0 seconds.
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Fig. 45 Material tempcrature in vessel filler (TMV-FI-4M, THV-FI-15A,
TMV-FI-35A;, fron -6 to 42 seconds.
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Fig. 47 Material temperature in vessel filler insulator (TMV-FI-115A,
TMV-FI-156A), from -6 to 42 seconds.
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Fig. 48 Material temperature in vessel filler (TMV-FD-156A}, from -20-

to 300 seconds.
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Fig. 49 Material temperature in vessel filler (TMV-F0-15647), from -€
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F'a. 50 Material temparature in vessel filler insulator (TIV-F0-35A,
TIV-FG-35M, TI1V-FO-70A, TIV-FO-115A}, from -20 tc 300 seconds.
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Fig. 51 Material temperature in vessel filler insulator (TIV-FO-35A,
TIV-FC-35M, TIY-FO-70A, TIV-F0-115A), from -6 to 42 seconds.
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Fig. 52 Material temperature in core barrel (TMV-CI-70A, TMV-CI-1154),
from -20 to 300 seconds.
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Fig. 53 Material temperature in core barrel (TMV-CI-70A, TMv-CI-115A),

from -6 to 42 seconds.
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Fig. 54 Material temperature in core barrel (TMV-CO-7CA, TMV-CC-115A),
from -20 to 300 seconds. '
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Fig. 55 Material temperature in core barrel (TMV-{0-70A, TMY-CO-113A),
from -6 to 42 seconds.
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Fig. 56 Material temperature on core housing filler (TMV-HF-115,
TMV-HF-127W, TMV-HF-138W), from -20 to 300 seconds.
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Fig. 57 laterial terperature on core housing filler (TMV-HF-115W,
TMV-HF-1274, TMV-HF-138), from -6 to 42 seconds.
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CORE HEATER TEMPERATURE (DEG F)
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Fiq. 58 Core heater temperatura, Rcd D-4. (TH-D4-14, TH-D4-29), from -20
to 300 seconds.
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Fig. 59 Core heater temperature, Rod D-4 (TH-D4-14, TH-D4-29), from -6
to 42 seconds.
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Fig. 60 Core heater temperature, Rod D-5 (TH-D5-29), from -20 to
300 seconds.
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Fig. 61 Ccre heater temperature, Rod D-5 (TH-D5-29), from -6 to
42 seconds.
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CORE HEATER TEMPERATURE (DEG F)
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Fig. 62 Core heater temperature, Rod E-4 {TH-E4-09, TH-E4-28G, TH-E4-23 .
TH-E4-55), from -20 to 30N seconds.
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Fig. 63 Core heater temperature, Rod E-4 (TH-E4-09, TH-E4-28G, TH-E4-28T,
TH~E4-55), from -6 to 42 seccnds.
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CORE HEATER TEMPERATURE (DEG F)
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Fig. 65 Core heater temperature, Rod E-5 (TH-25-21, TH-E5-25), from -6

to 42 seconds.
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CORE HEATER TEMPERATURE (DEG F)
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Fig. 66 Core heater temperature, Rod A-4 (TH-A4-09, TH-A4-2%, TH-A4-39),

from -20 to 300 seconds.
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Fig. 57 Core heater temperature, Rod A-4 (Tli-A&-09, TH-A4-29, TH-A4-39),

from -6 to 42 seconds.
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Fig. 68 Core heater temperature, Rod A-5 (TH-A5-29, TH-A5-45), from -20
to 300 seconds. ‘
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Fig. 69 Core heater temperature, Rcd A-5 (TH-A5-29, TH-A5-45), from -5
to 42 seconds.
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Fig. 70 Core heater temperature, Rod B-3 (TH-E3-32), from -2C to
300 seconds.
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Fig. 71 Core heater temperature, Rod B-3 (TH-B3-32), from -6 to
42 seconds.
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Fig. 72 Core heater temperature, Rod¢ 3-5 (TH-B5-29, TH-B5-33), from

-20 to 300 seconds.
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Fig. 73 Core heater temperature, Rod B-& (TH-B5-29, TH-25-33), from -6

to 42 seconds.
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Fig. 74 Core heater temperaturé, Rod B-6 (TH-86-29), from -20 to.

300 seconds. :
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Fig. 75 Core heater temperature, Rod E-6 (TH-B5-29), from -6 to

£2 seconds.
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Fig. 76 Cor2 heater temperature, Rod C-2 (TH-C2-38), from -20 to
300 seconds.
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Fig. 77 Core heater temperature, Rod C-2 (TH-C2-38), from -6 to
42 seconds.
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Fig. 78 Core heater temperature, Rod C-4 (TH-C4-26, TH-C4-53), from -20
to 300 seconds.
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Fig. 83 Core heater temperature, Rod C-6 (TH-Ch-53), from -6

to 42 seconds.
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Fig. 84 Core heater temperature, Rod C-7 (TH-C7-07, TH-C7-15), from -20
to 300 seconds. -
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Fig. &5 Core heater temperature, Rod C-7 (TH-C7-07, TH-C7-15), from -6
to 42 seconds.
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Fig. 86 Core heater temperature, Rod D-1 (TH-D1-21), from -20
300 seconds.
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Fig. 87 Ccre heater temperature, Rod D-1 (TH-D'-21), from -6
42 seconds.
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Fig. 88 Core heater temperature, Rod D-2 (TH-D2-14, TH-N2-61), from -20
to 300 seccnds.
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Fig. 89 Core heater témperature, Rod D-2 (TH-D2-14, TH-D2-61), from -6
tc 42 seconds.
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Fig. 90 Core heater temperatura, Rod D-3 (TH-D3-29, TH-D3-39), from -20

to 300 seconds. :
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Fig. 91 Core heater temperature, Rod D-2 (TH-D3-29, TH-D3-39), from -6
to 42 seconds. .
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Fig. 92 Core heater temperature, Rod D-6 (TH-D6-14, TH-D6-25), from -20
to 300 seconds.
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Fig. 93 Core heater temperature, Rod D-6 (TH-D6-14, TH-D6-25), from -6
to 42 seconds. '
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Fig. 94 Core heater temperature, Rod-D—7 (TH-D7-20), from -20 to
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Fig. 96 Core heater temperature, Rod D-8 (TH-D8-27, TH-D8-57), from -20

to 300 seconds.
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Fig. 97 Core heater temperature, Rod D-8 (TH-D8-27, TH-D8-57), from -6

to 42 seconds.
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Fig. 100 Core heater temperature, Rod E-2 (TH-E2-20, TH-E2-33), from -20
to 300 seconds.
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Fig. 101 Core heater temperature,

to 42 seconds.
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from -20 to 300 seconds. :
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Fig. 103 Core heater temperature, Rod E-3 (TH-E3-05, TH-E3-20, TH-E3-24),

from -6 to 42 seconds.
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Fig. 104 Core heater tempnerature, Rod E-6 (TH-E6-08, TH-E6-28, TH-E6-37),
from -20 to 300 seconds.
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Fig. 105 Core heater temperature, Rod E-6 (TH—E6-08, TH-E6-28, TH-E6-37),
from -6 to 42 seconds.
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Fig. 106 Core heater temperature, Rod E[-7 (TH-E7-44), from -20 to
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Fig. 107 Core heater temperature, Rod E-7 (TH-E7-44), from -6 to
42 seconds.
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Fig. 108 Core heater temperature, Rod E-8 (TH-E8-14, TH-E8-29, TH-E8-45),
from -20 to 300 seconds.
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Fig. 109 Core heater temperature, Rod E-8 (TH-E8-14, TH-E8-29, TY-E8-45),
from -6 to 42 seconds. ’
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Fig. 110 Core heater temnerature, Rod F-2 (TH-F2-07, TH-F2-22, TH-F2-25),
from -20 to 3C0 seconds. :
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Fig. 111 Core heater temperature, Rod F-2 (TH-F2-07, TH-F2-22, TH-F2-25),
from -6 to 42 seconds.
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Fig. 112 Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, TH-F4-44),
from -20 to 300 seconds.
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Fig. 113 Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, TH-F4-44),
from -6 to 42 seconds.
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Fig. 114 Core heater temperature, Rod F-5 (TH-F5-20, Th-F5-26, TH-F5-323,
TH-F5-53), from -20 to 300 seconds.
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.Fiq. 115 Core heater temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-F5-33,
. TH-F5-53), from -6 to 42 seconds.
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Fig. 116 Core heater temperature, Rod G-3 (TH-G3-13), from -20 to

300 seconds.
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Fig. 117 Core heater temperature, Rod G-3 (TH-G3-13), from -6 to

42 seconds.
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Fig. 118 Core heater temperature, Rod G-4 (TH-G4-29, TH-G4-33, TH-G4-38),
from -20 to 300 seconds.
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Fig. 119 Ccre heater temperature, Rod G-4 (TH-GA-29, TH-G4-33, TH-G4-38),
from -6 to 42 seconds.
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Fig. 120 Core heater temperature, Rod G-5 (TH-G5-14, TH-G5-24), from -20

to 300 seconds.
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Fig. 121 Core heater temperature, Rod -5 (TH-G5-14, TH-G5-24), from -6

to 42 seconds.
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Fig. 124 Pressure in intact locp, Spool 13 [PU-13(F)], from -20 to
300 seconds.
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Fig. 125 Pressure in intact loop, Spool 13 [PU-13{F)], from -€& to
42 seconds.
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Fig. 126 Pressure in intact ioop, Spool 15 (PU-15L), from -20 to
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Fig. 127 Pressure in intact loop, Spool 15 (PU-15L), frem -6 to

4?2 seconds.
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Fig. 128 Pressure in broken loop, Spool 23 (PB-23), from -20 to

300 seconds.
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Fig. 129 Pressure in hroken loop, Spool! 23 (PB-23), from -6 to

42 seconds.
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Fig. 130 Pressure in troken loop, near break (PB-37, PB-42), from -20
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Fig. 131 Pressure in broken loon, near break (PB-37, PB-42), from -6
to 42 seconds. '
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Fig. 132 Pressure in broken loop, pump-side nozzle (PB-HN1), from -20

tc 300 seconds.

2500.

X

PB-HN1

2000.

1000.

500.

5.

0

10.0

TIME AFTER RUPTURE (SEC)

15.0

20.0

25.

0

30.

[}

38.0

“wo.

us
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Fig. 134 Pressure in brcken loop, vessel-side nozzle (PR-CN1), from -20
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Fig. 135 Pressure in broken loop, vessel-side nozzle (PB-CN1), from -6

to 42 seconds.
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Fig. 137 Pressure in vessel (PV-UP+10, PV-LP-166), from -6 to

42 seconds.
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Fig. 138 Pressure in accumulator (PU-ACC), from -20 to 300 seconds.
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Fig. 139 Pressure in accumulator (FU-ACC), “rom -€ to 42 seconds.
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Fig. 140 Pressure in steam gererator, secondary side (PU-SGSD), from -20
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Fig. 141 Pressure in steam generator, secondary side (PU-S5SD), from -6
to 42 seconds.
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Fig. 144 Pressure in pressure suppression tank (P-PSS), from -20 to
300 seconds.
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Fig. 145 Pressure in pressure suppression tank (P-PSS), frori -6 to
42 seconds.
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Fig. 147 Differential pressure in intact loop (DPU-UP-3), from -6
to 42 seconds.
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Fig. 148 Differential pressure in intact lcop (DPU-3-7), from -20

to 300 seconds.
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Fig. 149 Differential pressure in intact lcop (DPU-3-7), from -6

to 42 seconds.
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Fig. 150 Differential pressure in intact Tocp (DPU-7-19), from -20
to 300 seconds.
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Fig. 151 Differential pressure in intact locp (RPU-7-10), from -6
to 42 seconds.

99




DIFFERENTIAL PRESSURE (PS1D)

DIFFERENTIAL PRESSURE (PSID)

30.0

b3 DPU-12-10

25%.0

20.0

e

!

|

-5.0 L

-50. 0. 50. 100. 150. 200. 250. 300.
TIME AFTER RUPTURE (SEC)

Fig. 152 Differential pressure in intact loop (DPU-12-10), from -20
to 390 seconds.
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Fig. 153 Differential pressure in intact loop (DPI-12-10), from -5
to 42 seconds.
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Fig. 154 Differential pressure in intact lcon, low range (DPU-12-10L),
from -20 to 320 seconds.
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101



DIFFERENTIAL PRESSURE (PSID)

X

DPU-12-15

S

-2.0 .
-50. 0. 50. 100. 150. 200.
TIME AFTER RUPTURE (SEC)

25%0.

300.

Fig. 156 Differential pressure in intact loop, (DPU-12-15), from -20
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Fig. 157 Differential pressure in intact lcep, (DPU-12-15), from -€
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Fig. 158 Differential pressure in intact loop, (DPU-15-1), from -20

to 300 seconds.
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Fig. 159 Differential pressure in intact loop, (DPU-15-1), from -6

to 42 secconds.
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Fig. 160 Differential pressure in intact loop (DPU-15-1L), from -20
to 300 seconds.

S.0 - T
Tt X DPU-15-1L '\L I Jd‘
2.5
0.0
i
/
/f
-2.5
n\ IR
-5.0 l

-10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 %0.0 45.
TIHME AFTER RUPTURE (SEC)

Fig. 161 Differential pressure in intact loop (DPU-15-1L), from -6
to 42 seconds. .
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Fig. 164 Differential pressure in intact Toop (DPU-PRESLL), from -20
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Fig. 166 Differential pressure in intact loop (DPU-PR-4), from =20
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Fig. 167 Differential pressure in intact loop (DPU-PR-4), from -6
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Fig. 169 Differential pressure in broken loop (DPB-UP-30), from -6

to 42 seconds.
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Fig. 170 Differential pressure in broken loop (DPB-21-IANN), from -20
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Fig. 172 Differential pressure in broken loop (DPB-23-CN1), from -20

to 300 seconds.
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Fig. 173 Differential pressure in broken loop (DPB-23-CN1), from -6

to 42 seconds.
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Fig. 174 Differential pressure in broken loop (DPB-30-36L), from -20
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Fig. 175 Differential pressure in broken loop (DPB-30-36L), from -6
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Fig. 177 Differential pressure in broken loop (DPB-32U-36L), from -6

to 42 seconds.
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Fig. 178 Differential pressure in broken loop (DPB-36L-37),

to 300 seconds.
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Fig. 179 Differential pressure in broken loop (DPB-36L-37), from -6

to 42 seconds.
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Fig. 180 Differential pressure in broken loop (DPB-37-38), from -20
to 300 seconds.
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Fig. 181 Differential pressure in broken loop (DPB-37-38), from -6
to 42 seconds. ‘
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Fig. 182 Differential pressure in broken loop (DPB-38-40), from -20

to 300 seconds.
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Fig. 183 Differential pressure in broken loop (DPB-38-40), from -6

to 42 seconds.
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Fig. 184 Differential pressure in broken loop (DPB-40-42), from -20
to 300 seconds.
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Fig. 185 Differential pressure in broken loop (DPB-40-42), from -6
to 42 seconds.
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Fig. 186 Differential pressure in vessel (DPV-UP-IANN), from -20

to 300 seconds.
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Fig. 187 Differential pressure in vessel (DPV-UP-IANN), from -6 to
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Fig. 188 Differential pressure in vessel (DPV-0-9G0Q), from -20
to 300 seconds.
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Fig. 189 Differential pressure in vessel (DPV-0-9GQ), from -6
to 42 seconds.
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Fig. 190 Differential pressure in vessel (DPV-9-26QQ), from -20 to

300 seconds.
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Fig. 191 Differential pressure in vessel (DPV-9-26QQ), from -6 to
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Fig. 192 Differential pressure in vessel (DPV-9-166Q0Q), from -20 to

300 seconds.
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Fig. 193 Differential pressure in vessel (DPV-9-166QQ0), from -6 to

42 seconds.
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Fia. 194 Differential oressure in vessel (DPV-26-550M), from -20 to

300 seconds.
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Fia. 195 Differential pressure in vessel (DPV-26-55QM), from -6 to

4?2 seconds.
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Fia. 196 Differential pressure in vessel (DPV-55-110MM), from -20 to
300 seconds.
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Fig. 197 Differential pressure in vessel (DPV-55-110MM), from -6 to
42 seconds.
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Fia. 198 Differential pressure in vessel (DPV-110-156MQ), from -20 to
300 seconds. .
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Fig. 199 Differential pressure in vessel (DPV-110-156MQ), from -6 to
42 seconds.
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Fig. 200 Differential pressure in vessel (DPV-166-173QQ), from -20 to
300 seconds.
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Fig. 201 Differential pressure in vessel (DPV-166-173QQ), from -6 to
42 seconds.
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Fig. 204 Differential pressure in vessel core (DPVC-89W-UP), from -20

to 300 seconds.
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Fig. 205 Differential pressure in vessel core (DPVC-89W-UP), from -6

to 42 seconds.
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Fig. 206 Differential pressure in vessel core (DPVC-89-106WQ), from -20
to 300 seconds.
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Fig. 207 Differential pressure in vessel core (DPVC-89-106WQ), from -6
to 42 seconds.
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Fia. 208 Differential pressure in vessel core (DPVC-106-122QJ), from -20
to 300 seconds. .
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Fig. 209 Differential pressure in vessel core (DPVC-106-122QJ), from -6
to 42 seconds.
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Fig. 210 Differential pressure in vessel core (DPVC-122-140J4D), from -20
to 300 seconds.
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Fia. 211 Differential pressure in vessel core (DPVC-122-140JD), from -6
to 42 seconds.
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Fig. 213 Differential pressure in vessel accumulator (DPU-ACC-TB),

from -6 to 42 seconds.
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Fig. 214 Differential pressure in steam generator secondary (DPU-SG-SEC),
from -20 to 300 seconds.
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Fia. 215 Differential pressure in steam aenerator secondary (DPU-SG-SEC),
from -6 to 42 seconds.
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Fig. 216 Differential pressure across steam generator outlet orifice
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132



VOLUMETRIC FLOW (GPM)

VOLUMETRIC FLOW (OPM)

1250.
X FTU-1

A FTU-9

1000.

750.

[

L

500.

250.

I

-250.

-500.
-50. 0. S0. 100. 150. 200. 2s0. 300.

TIME AFTER RUPTURE (SEC)

Fig. 218 Volumetric flow in intact loop (FTU-1, FTU-9), from -20 to
300 seconds. .
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Fig. 219 Volumetric flow in intact Toop (FTU-1, FTU-9), from -6 to
42 seconds.
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Fig. 220 Volumetric flow in intact loop (FTU-13, FTU-15), from -20 to
300 seconds.
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Fia. 221 Volumetric flow in intact loop (FTU-13, FTU-15), from -6 to
42 seconds.
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Fig. 222 Volumetric flow in broken loon (FTB-21), from -20 to 300 seconds.
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Fia. 223 Volumetric flow in broken loop (FTB-21), from -6 to 42 seconds.
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Fig. 224 VYolumetric flow in broken loop (FTB-30, FTB-37), from -20

to 300 seconds.
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Fig. 225 Volumetric flow in broken loop (FTB-30, FTB-37), from -6

to 42 seconds.
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Fig. 228 Volumetric flow in intact Toon hiah pressure injection line
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Fig. 229 Volumetric flow in intact loop hiah pressure injection line

(FTU-HPIS), from -6 to 42 seconds.
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Fig. 232 Volumetric flow in intact loop low pressure injection line
(FTU-LPIS), from -20 to 300 seconds.
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Fig. 233 Volumetric flow in intact loop low pressure injection line
(FTU-LPIS), from -6 to 42 seconds.
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Fig. 236 Volumetric flow in intact loop accumulator discharge line
(FTU-ACC), from =20 to 300 seconds.
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Fia. 237 Volumetric flow in intact loop accumulator discharae line
(FTU-ACC), from -6 to 42 seconds.
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Fig. 238 Volumetric flow in broken loop accumulator discharge Tine
(FTB-ACC), from -20 to 300 seconds. .
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Fig. 239 Volumetric flow in broken loop accumulator discharae line

(FTB-ACC), from -6 to 42 seconds.
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X

FTU-PRIZE

S0.

100. 150.
TIME AFTER RUPTURE (SEC)

200.

250.

300.

80.

n

FTU PRIZE

70.

60.

S0.

“0.

30.

20.

-0

10.0 15.0 20.0 2s.

TIME AFTER RUPTURE (SEC)

144

0

30.

335.0

0.

us.



FLUID VELOCITY (FT/SEC)

" FLUID VELOCITY (FT/SEC)

| x  FTV-40A

- s FTV-40M
0.

¥

Il fq ik ! '
-10.
-20.
-30.
-40.

-50. 0. 50. 100. 150. 200. 250. 300.

TIME AFTER RUPTURE (SEC)

Fig.” 242 Fluid velocity in vessel (FTV-40A, FTV-40M), from -20 tq

300 seconds.
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Fig. 243 Fluid velocity in vessel (FTV-40A, FTV-40M), from -6 to
42 seconds.
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Fia. 244 Momentum flux in intact loop (FDU-1), from -20 to 300 seconds.
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Fig. 245 Momentum flux in intact loop (FDU-1), from -6 to 42 seconds.
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Fia. 246 Momentum flux in intact loop (FDU-5), from -20 to 300 seconds.
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Fig. 247 Momentum flux in intact loop (FDU-5), from -6 to 42 seconds.
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Fig. 248 Momentum flux in intact loop (FDU-10), from -6 to 42 seconds.
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Fia. 249 Momentum flux in intact loop (FDU-13), from -6 to 42 seconds.
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Fig. 250 Momentum flux in intact loop (FDU-15), from -6 to 42 seconds.
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Fig. 251 Momentum flux in broken loop (FDB-21), from -6 to 42 seconds.
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Fia. 252 Momentum flux in broken loop (FDB-30), from -6 to 42 seconds.
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Fig. 253 Momentum flux in broken loop (FDB-37), from -6 to 42 seconds.~
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Fig. 254 Momentum flux in brokenr1oopﬂ(FDB-42), from -20 to 300 seconds.
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Fig. 255 Momentum flux in broken loop (FDB-42), from -6 to 42 seconds.
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Fig. 256 Momentum flux in core entrance (FDV-CORE-IN), from -20 to
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Fig. 257 Momentum flux in core entrance (FDV-CORE-IN), from -6 to

42 seconds.

152

. e5.

0

30.

35.

40.

5.0



DENSITY (LBM/FTee3)

DENSITY (LBM/FTe*=3)

70.
X GU-TVR
A GU-THZ
60.
S0.
40.
30. -
0.
10.
\ A,
s »\r Y
0. :
-50. 0. 50. 100. 150. 200. 250. 300.
TIME AFTER RUPTURE (SEC)
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Fig. 259 Density in intact loop (GU-1VR, GU-1HZ), from -6 to
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Fig. 260 Density in intact loop (GU-5VR, GU-10VR), from -20 to
300 seconds.
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Fig. 262 Density in intact.loop (GU-13VR), from -20 to 300 seconds.
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Fig. 263 Density in intact loop (GU-13VR), from -6 to 42 seconds.
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Fig. 264 Density in intact loop (GU-15VR, GU-15HZ), from -20 to
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Fig. 267 Density in broken loop (GB-21VR, GB-23VR), from -6 to

42 seconds.
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Fig. 268 Density in broken Toop (GB-30VR), from -20 to
300 seconds.
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Fig. 269 Density in broken loop (GB-30VR), from -6 to
42 seconds.
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Fig. 270 Density in vessel (GV-COR-150HZ), from -20 to 300 seconds.
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Fig. 271 Dehsity in vessel (GV-COR-150HZ), from -6 to 42 seconds.
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Fig. 272 Density in vessel (GVLP-165HZ, GVLP-172HZ), from -20 to

300 seconds.
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Fig. 273 Density in vessel (GVLP-165HZ, GVLP-172HZ), from -6 to

42 seconds.
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274 Density in pressurizer (GU-PRIZE), from -20 to 300 seconds.
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Fig. 275 Density in pressurizer (GU-PRIZE), from -6 to 42 seconds.
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Fig. 276 Mass flow in intact Toop (FDU-1, GU-1VR), from -20 to 300 seconds.
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Fig. 277 Mass flow in intact loop (FDU-1, GU-1VR), from -6 to 42 seconds.
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Fig. 278 Mass flow in intact loop (FTU-1, GU-1VR), from -20 to 300 seconds.
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Fig. 279 Mass flow in intact loop (FTU-1, GU-1VR), from -6 to 42 seconds.



15.0
x  FDU-b, GU-SVR
A

10.0
o
? 5.0 l
z k 1
2 |
= 4 4
(=]
by 0.0 X i TN
73] T
wn e
<
I

-10.0
-50. 0. 50. 100. 150. 200. 280. 300.
TIME AFTER RUPTURE (SEC)

Fig. 280 Mass flow in intact loop (FDU-5, GU-5VR), from -20 to 300 seconds.
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Fig. 281 Mass flow in intact loop (FDU-5, GU-5VR), from -6 to 42 seconds.
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Fig. 282 Mass flow in intact loop (FTU-9, GU-10VR), from -20 to
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Fig. 283 Mass flow in intact Tloop (FTU-9, GU-10VR), from -6 to
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Fig. 284 Mass flow in intact loop (FDU-10, GU-10VR), from -6 to
42 seconds.
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Fig. 285 Mass flow in intact loop (FDU-13, GU-13VR), from -6 to
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Fig. 286 Mass flow in intact loop (FTU-13, GU-13VR), from -20 to

300 seconds.
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Fig. 287 Mass flow in intact loop (FTU-13, GU-13VR), from -6 to

42 seconds.
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Fig. 288 Mass flow in intact loop (FDU-15, GU-15VR), from -6 to

4?2 seconds.
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Fig. 291 Mass flow in broken loop (FDB-21, GB-21VR), from -6.to
42 seconds. ‘
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Fig. 293 Mass flow in broken loop (FTB-21, GB-21VR), from -6 to
42 seconds. )
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Fig. 294 Mass flow in broken loop (FDB-30, GB-30VR), from -6 to
42 seconds. '
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Fig. 295 Mass flow in broken loop (FTB-30, GB-30VR), from -20 to
300 seconds. .
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Fig. 296 Mass flow in broken loop (FTB-30, GB-30VR), from -6 to
4?2 seconds. : a ‘ ,
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Fig. 297 Mass flow in vessel (FDV-CORE-IN, GV-COR-150HZ), from -20
to 300 seconds.
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Fig. 298 Mass flow in vessel (FDV-CORE-IN, GV-COR-150HZ), from -6
to 42 seconds. '
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Fig. 299 Mass flow in vessel (FTV-CORE-IN, GV-COR-150HZ), from -20
to 300 seconds. . ‘ .
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Fig. 300 Mass flow in vessel (FTV-CORE-IN, GV-COR-150HZ), from -6
to 42 seconds.
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Fig. 301 Mass flow in pressurizer surge 1ine (FTU-PRIZE, GU-PRIZE),
from -6 to 42 seconds.
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Fig. 302 Core heater rod total power (PWRCOR T-1, PWRCOR T-2), from
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Fig. 303 Core heater rod total power (PWRCOR T-1, PWRCOR T-2), from
-6: to 42 seconds. .
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Fig. 304 Core heater voltage (VOLTCOR-T), from -20 to 300 seconds.
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Fig. 305 Core heater voltage (VOLTCOR-T), from -6 to 42 seconds.
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Fig. 306 Core heater total current (AMPCOR-T), from -20 to 300 seconds.
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Fig. 307 Core heater total current (AMPCOR-T), from -6 to 42 seconds.
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Fig. 308 Primary pump speed (PUMPU-RPM), from -20 to 300 seconds.
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Fig. 311 Primary pump torque (PUMPU-CUR), from -6 to 42 seconds.
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APPENDIX A
POSTTEST ADJUSTMENTS TO DATA FROM SEMISCALE MOD-1 TEST S-05-2

Many of the transducers used in the Semiscale Mod-1 system exhibit significant
sensitivity to one or more spurious inputs. Strain gage bridge circuits used in pressure
transducers, differential pressure transducers, and drag discs are sensitive to'changes in
ambient temperature. Differential pressure cells are also sensitive changes in system pressure.
Photomultiplier tubes used as gamma ray detectors in the density transducers are sensitive
to temperature changes, as well as to random variations in the locations of the radiation
sources. Core power measurements depend on a cahbrated resistor, which changes in value
as a function of time and power level as it heats up.

Although the errors introduced into the data by spurious secondary inputs generally
do not exceed the speciﬁed error ranges of .the transducers, significant improvement in
measurement accuracy can be achieved if the secondary sensitivity can be identified and
removed. In the case of the drag discs, corrections are absolutely necessary since the signal
due to temperature fluctuations can exceed that due to flow by several hundred percent.
‘Since the exact values of the spurious inputs to which different transducers might be
sensitive cannot often be easily predicted and are sometimes inconvenient to measure,
secondary effects have been accounted for by correcting the data after the test rather than
by using elaborate real time programs in the data acquisition system cor'nputer The methods
and results of the posttést data correction analysis for Test S- 05 2 are presénted in the
following paragraphs and tables.

I. PRESSURE MEASUREMENTS

Corrections to -pressure transducer measurements in the main systém loop are based
on data taken from the standard reference (Heise) gauge at Spool 4, taken 15 seconds before
initiation of blowdown and at 300 seconds after initiation of blowdown. The pressure
readings are adjusted to account for pressure variations around the main loop, using the
readings of nearby differential pressure cells. A lincar correction is then applied to the
pressure data to match the data to the calculated reference data at the two specified time
points.

"Correction of the steam generator secondary pressure (PU-SGSD) measurément’ s
. doné in- the' same manner as for the main loop pressures’ usmg a Hexse gauge 1nstalled

expressly for this purpose. -~ -7

-~ Pressure measurement corrections are performed usirig the data acqulsltlon system
(DAS) computer using the following equation:
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Fr(t) = ¢+ ¢ [F(t)]

where
F'(t) = corrected data
F(t) = raw data
C, = offset (see Table A-I)
¢ = scaling factor (see Table A-I).

-TABLE A-I

CONSTANTS FOR PRESSURE MtASUREMEN|
CORRECTIONS (TEST S-05-2)

Dgtgctor. C C

Identification 0 1
PU-13(F) -27.7 0.9865
PU-SGSD 32.0 1.1554
PV-UP+10 - 2.9 0.9967
PU-PRIZE 11.7 ' 1.0008
PB-CN1 -26.0 0.9875
PB-23 -7.5 0.9903
PB-42 -12.6 0.9906
PB-HN1 11.8 0.9843
PB-37 10.2 0.9870

PV-LP-166 -6.0 0.9939

2. DIFFERENTIAL PRESSURE MEASUREMENTS

Pressure sensitivity in:the differential pressure cells in the main system loop is
determined from the pretest system pressure check. Digital data are recorded for all
measurements at ambient temperature, with no system flow, at pressures of ambient, 200,
500, 1000, 1500, 2000, and 2250 psig. The output of the differential pressure cells is
plotted against system pressure, with the resulting plots used to describe the pressure
response of the transducers. :
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The response of the differential pressure cells due to ambient temperature is
determined from a digital data scan taken at SOOCF and 1750 psig, with no system, flow.
The measured transducer outputs are corrected for pressure and compared with the values
calculated due only to the density difference between the water inside the loop (S00°F) and
outside the loop in the sense lines (80 to 100°F).

The difference between the measured pressure corrected value and the calculated
value is the thermal drift. After the data scan at SO0OF is made, no more opportunities exist
to obtain data with the pump stopped and the systern full of liquid; therefore, for lack of
later data, the thermal drift calculated from the SOOPF data is assumed to be constant
throughout the test.

For some differential pressure measurements, the data scan at S00°F cannot be used
as a reference for thermal drift; so other réferences are used. The liquid level measurements
in the vessel accumulator (DPV-ACC-TB) and pressurizer (DPU-PRESLL) are referenced to
calculated values based on geometrical considerations at the time when gas flow from the
respective vessel is first noted. The reading from-the steam generator discharge venturi
(DPU-SGDISC) is shifted to.read zero after:flow is stopped. The steam generator secondary
liquid level measurement (DPU-SG-SEC). is "shifted to match . the output of the process
instrumentation prior to blowdown.

In correctmg dlfferentlal pressure data for pressure sensitivity, the correctlons are
calculated for various times during the test by referrmg to nearby system pressure
transducers. The thermal drift correctlon is. then added to each pressure sensitivity
dorrection and the combined value is added to the raw data using a computer program that
linearly intérpolates the.correctionis between the specified time points. The corréctions are
performed according to the following equations: . -

F'(t)J; KF(t) + C] for t < t] or when: no ti are listed.
For time points. t, where t; <t < t,
' Tt -t

P _ : 1 .
F (t) = KF(t) -+ C +'t—+]——t— <C]- + _Cfi> for t. <t<t,

where i takes on values 1 to n-1

F'(L) = KF(L) f C, for t>t,
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where

t = time

F'(t) = corrected data

F(t) = raw d'ata

K - = scaling factor

Cjandt; = | corrections and time points.

The exact values of the constants are given in Table A-II.

TABLC A-II

CONSTANTS FOR DIFFERENTIAL PRESSURE .
MEASUREMENT CORRECTIONS (TEST S-05-2)

Detector

188

Identification _~ G 04 C2 t Cy ts
DPU-UP-3 1 0.013 , ‘
DPU-3-7 1 0.293 0 0.213  0.01  0.073 30
NPLI-7-10 1 -0.027 0 -0.021  0.01  -0.007 30
DPU-12-10 ] 0.523 0 0.443 0,01 0,293 30
DPU-12-10L 1 0.047 0 0.054  0.01  0.066 3u
DPU-12-15 1 0.045
DPU-15-1 1 0.393 0 0.313°  0.01  0.193 30
DPU-15-1L ] -0.027 0 0,013 0,01 0,033 30
DPU-15-TANN 1 0.053 0 0.038  U.01  0.011 30
DPU=PRESLL 1 -0.015 0 0.020  0.01  0.025 30
" DPU-PR-4 1 -13.91 0 -12.51 0.01 -10.21" 30
DPB-UP-30 1 0.033 0 0,025- 0,01  0.012 30
DPB-21-IANN 1 -0.047 0 -0.027 0.0  0.013 30
DPB-23-CN1 -1 -2.395 0 -0.895  0.01  0.405 30
DPB-30-36L 1 4.865 0 2.965  0.01  0.165 30
DPB-32U~36L 1 4.071 0 2.377  0.01  1.729 30
DPB-36L-37 1 -0.236. O -0.136  0.01  0.064 30



TABLE A-II{continued)

Detector
Identification

DPB-37-38
DPB-38-40
DPB-40-42
DPV-UP-IANN
DPU-0-9GQ
DPV-9-26QQ
DPV-9-166QQ
DPV-26-55QM
DPV-55-110MM
DPU-110-156MQ
DPV-166-173QQ
DPU-LP-UP
DPVC-89W-UP

- "DPVC-89-106WG
DPVC-106-122Qd
DPU-ACC-TB
DPU-SGDISC-

— emd = ed e e eed e ) et e emd ad eed edd

..]-

1

.023
.010
.140
.835
.126

0.035

0.530 -
125
.051
.009
026 -
0.053:"
0.655

0.083 -
144
.800
.500

+
—

OO0 O 0O OO0 000 OO0 0. o o

:01'

2 3
0.023  0.01 -0.002 30
~ -5.510  0.01 -3.210 3
-0.117 . 0.01 -0.070 30.
-0.865 0.01 -0.925 30
-0.08 ° 0.01 -0.056 30
0.026 0.01  0.010 30
0.390  0.01  0.120 30
-0.055  0.01 - 0.065 - 30
-0.036  0.01 -0.011 30
-0.909  0.01 -0.709 30
-0.019  0.01 -0.008 30
. .0.050  0.01  0.043 30
0.805 0.01  1.065 30
0.095 0 -0.123 30

3. MOMENTUM FLUX MEASUREMENTS

(DRAG DISCS)

The temperature sensitivity of drag .discs is determined from pretest warmup data
taken at 200 and 500°F with no system flow. The temperature sensitivity is removed before
the data are converted to momentum flux. The temperature of each transducer is taken
from the signal of a nearby fluid or metal temperature thermocouple. Slight corrections for

errors in setting the transducer output to zero at ambient condrtlons are also made at -this

time. Corrections are made Using the following equatlons

F'(t) = F(t) + Dy
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where

F'(t) = corrected data

F(t) = raw data

T(t) = temperature daté from the transducer used for temperafure correction
sensitivity

D, = ambient offset

D, = temperature sensitivity.

Values of the constants are given in Table A-III.

TABLE A-1I1

CONSTANTS FOR MOMENTUM FLUX
MEASUREMENT CORRECTIONS (TEST S-05-2)

Idegigigzgzion Dy D] T(t)[a]
FDV-CORE-IN -0.06 0.0000483 TFV-LP-7
FDU-10 (1. 0002471 TMU-1T16
FDU-13 ' 0.056 0.0009091 TMU-15B16
FDB-21 -0.0006077 TMB-20B16
FDB-42 . -0.0007846 TFB-42

FDU-1 0.05 -0.0005269 TMU-1T16
FDU-15 . -0.0013000 TMU-15B16
Fuu-5 -0.097 -0.0001148 TMU-1T16

ok C, t C, t, C; .ty

FDB-30 1 0.464 0 0.427 20 0.416 42

[a]

T(t) is the temperature data used for temperature sensitivity cor-
rection. The symbols listed identify the thermocouples from which
the data were obtained.
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The drag discs,:EDB-30 and FDB-37, were partially ‘filled with subcooled water during
blowdown, giving them an unpredictable temperature response. However, corrections were
performed .to the data ‘from FDB-30. The data from FDB-30 were set to zero prior to
blowdown when no flow was.present in the broken loop. The required data adjustment for
zero flow was considered to be a result of detector temperature sensitivity and, in spite of
the unpredictable temperature ‘response, it was felt that for a short period of time following
blowdown initiation a closer approximation to the real physical conditions being measured
could be obtained by adjusting the data using fluid temperature data from TFB-30.
Adjustments were made using . the same time-based "equations used for the differential
pressure correctlons described in Sectlon A-II- 2 Values of the constants are glven in Table
A-111. :

4. DENSITY MEASUREMENTS

‘Density calculations are-based on the voltage output of the photomultiplier tubes in
the gamma-attenuation densitometer assemblies. The equation used for convertmg voltage
to den31ty is as follows:’

o = (1/0) n [D;Af[A F(t) +B}

-where
‘6 =  the density in tbom/ft3 ’
é = | é.coﬁfstaﬁt based én tﬁe length of tﬁe @m?na beam l;ath
D = a theoretical-voltage for zero:attenuation inside the vessel
A = an amplification factor
'B‘ = ‘a bi'aSir_lkgl «'fa'clt(’)’r :
F(t) =  the transducer voltage outp}if.,

Constants A and B are adjusted .to match the ‘final data to density values calculated
- from measured pressure and temperature values at- the preblowdown and postdrain
conditions, effectively giving the data an in- place calibration. The values 6f the constants for
various transducers are given in Table A-IV.

The density measurement GVLP-172HZ uses an amplifier which pfeéélculates the
logarithm function, and hence has a simpler conversion formula:

o = -1.15 - 1.4488 [F(t) —26]

1o



TABLE A-IV

CONSTANTS FOR DENSITY MEASUREMENT
CONVERSIONS TO ENGINEERING UNITS (TEST S-05-2)

Detector

Identification A B C D

GV-COR-150HZ 0.9983 '0.238 0.014 3.86
GB-30VR 1.1110 -0.6703 0.0095 6.45
GU-1VR 1.0758 -0.2401 0.0095 3.43
GU-THZ 1.2449 -1.2683 0.0095. 5.32
GU-BVR , 1.1836 -1.0994 0.0095 6.07
GU-10VR 1.1726 -1.0729 0.0095 6.78
GU-13VR © 1.2408  -0.6777  0.0095  2.88
GU-15VR v_ 1,1162 -0.8011 0. 0095 7.25
GU-15HZ : 1.0447 -0.0578 0.0095 1.74
GB-21VR 1.0384 -0.1988 0.0095 6.34
GB-23VR 1.0847 -0.6098 0.006 7.56
GU-PRIZE 1.0476 -0.0664 0.0095 1.74
GVLP-165HZ 0.7226 2.1371 0.014 7.67

5. CORE POWER MEASUIREMENI'S

Corrections to core power readings are determined from the core voltage and core:
current readings, with a slight adjustment for the power lost in setting the core radial
peaking factor. The adjustments are as follows:

PWRCOR T-1: F'(t) = 0.9864 F(t) -1.34

[(.vo]ts) (current) (0-974)]

PWRCOR T-2: F'(t) = 0.9917 F(t) +4.39

where

[(volts) (current) (0.974)]

EF'(t) core power in kilowatts

F(t) the raw core power reading.
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