

COO: 3011-6

RADIOACTIVE FOODCHAINS IN THE
SUBARCTIC ENVIRONMENT

Progress Report

for Period Aug. 15, 1975-Aug. 14, 1976

Jorma K. Miettinen

Department of Radiochemistry
University of Helsinki

May 1976

PREPARED FOR THE U.S. ENERGY RESEARCH AND
DEVELOPMENT ADMINISTRATION UNDER CONTRACT
CH E (11-1)-3011
(until January 18, 1975 AT (11-1)-3011)

MASTER

426 attached

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

OT E (11-1)-3011
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

8ey

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONTENTS

ABSTRACT

Technical Progress Report

List of earlier publications

Preprints of papers completed during the period Aug. 15, 1975 - Aug. 14, 1976

73. Body Burden of ^{137}Cs in Finnish Lapps in April 1976. Tua Rahola, M. Tillander, T. Jaakkola and J.K. Miettinen. Preliminary report.
74. Radionuclides in Plants (1975) and reindeer muscle (1976) from Finnish Lapland. Tua Rahola and J.K. Miettinen. Preliminary report.
75. Whole Body Counting Without Massive Shielding. Evaluation of Accuracy II. Tua Rahola and M. Tillander. Preliminary report.
76. Food Consumption and Intake of Iron and Potassium by Finnish Lapps in 1971 and 1976. Kaija Hasunen and Hilkka Möttönen. Preliminary report.
77. Distribution of Fallout Plutonium in Reindeer. M. Hakanen and T. Jaakkola. Preliminary report.
78. Plutonium in Liver and Lung of Reindeer and Elk. Marja Järvinen, T. Jaakkola, M. Hakanen and J.K. Miettinen. Preliminary report.
79. Plutonium in human tissues in Finland. Helena Mussalo, T. Jaakkola, J.K. Miettinen and K. Laiho. Preliminary report.
80. Retention and Loss of Plutonium in Lichen (Cladonia species) studied after spraying with an Aerosol of Plutonium-236. T. Jaakkola, J.K. Miettinen and Soila Riisiö. Preliminary report.
81. Plutonium in Baltic Sediments. Kristiina Simola, T. Jaakkola and J.K. Miettinen. Preliminary report.
82. Plutonium Foodchains. J.K. Miettinen. 8th Rochester Conference on Environmental Toxicity. June 2 - 4, 1975 (in press).

ABSTRACT

^{137}Cs is accumulated in the foodchain lichen-reindeer-man causing high body burdens in Lapps who have reindeer meat as staple food. A group of Finnish Lapps has been whole body counted for ^{137}Cs annually since 1961. Results of the measurements made in April 1976 show 18 per cent decrease in ^{137}Cs body burdens from the previous year. A dietary study confirmed that there was no mentionable change in the total amount of reindeer meat consumed although winter consumption has slightly decreased and summer consumption increased in recent years.

Plutonium analyses of stockpiled lichen and reindeer samples from 1960-73 were begun in 1973; since then the sampling has continued. Lichen had 200 pCi per kg dry weight in 1963-64, 100 pCi/kg in 1966-70, 20 pCi/kg in 1973-75. Biological half-time of plutonium in lichen is 2 years.

Reindeer liver contained about 20 pCi per kg fresh weight in 1963, 2 pCi in 1973. The ratio of plutonium in liver to its lifelong total intake gave a lower limit to absorption in reindeer, $2,5 \times 10^{-6}$. Of bones, plutonium concentration is highest in teeth, medium high in sternum, vertebra and humerus, and lowest in solid long bones.

Human autopsy samples gave for lungs 0,19, liver 0,02 and bone 0,09 pCi $^{239,240}\text{Pu}$ per kg of wet weight. In future, emphasis will be in analysis of human samples.

TECHNICAL PROGRESS REPORT FOR THE PROJECT
RADIOACTIVE FOODCHAINS IN THE SUBARCTIC ENVIRONMENT

Contract CH E(11-1)-3011

Three-year Period 1973 - 1976

INTRODUCTION

Broad outlines will be given of problems studied and progress made during the last three years. Since the progress of the two first years has been covered in detail in the Annual Reports for 1974 and 1975, emphasis in this Report is on the newest results presented in papers Nos 73-82. The 1974 Report covered papers Nos 58-63, the 1975 Report papers Nos 64-72, titles of which are given in the "list of earlier publications".

The studies carried out can be divided into three groups:

1. ^{137}Cs in the foodchain lichen-reindeer-man.
2. Plutonium isotopes in the above foodchain.
3. Plutonium isotopes in the Baltic Sea.

The main emphasis has been in the area No 2. This is the first year when the capacity of our laboratory for plutonium analyses has reached large numbers. Only part of the analyses performed are included in the five primary reports on plutonium studies presented here, Nos 77-81. Many of the analyses not included were devoted to methodological research (some of these will be published later in several doctoral theses) and to analytical quality control.

137

¹³⁷Cs has been mainly studied to confirm the earlier results. For this purpose the same group of Finnish Lapps that has been whole body counted yearly since 1962 was still recounted this spring. Even their food consumption which was carefully studied in 1962 and 1971, was checked again. Measurements of the last few years give a better material for forecasting future long range trends in the whole body burdens of the reindeer consuming populations than would have been possible on the basis of the earlier years' measurements, in which there was a considerable contribution from fresh fallout. Annual variations are still considerable: activity of reindeer meat depends on the availability of lichen in that particular winter, while the body radioactivity of Lapps depends on the radioactivity and availability of reindeer meat. All these factors depend on weather conditions during the winter which vary considerably causing in Lapps body burdens variations of about $\pm 10\%$ from the expected value. In the future, Lapps will not be recounted every year, because new scientific knowledge cannot be expected from frequent recounts. Yet, we plan to recount them occasionally, by 2- or 3- year intervals, and even promptly if a new fallout situation arises.

The third group of studies, those on plutonium isotopes in the Baltic Sea samples, is a kind of spin-off from the main project.

The first analyses of aquatic samples, which were reported already last year (paper No 70), were carried out as a thesis work by Miss Marja Järvinen, M.Sc. They are briefly treated also in the review article presented in this report (paper No 82). The work has been continued as part of a doctoral thesis work by Mrs Kristiina Simola, M.Sc., who is studying plutonium in Baltic sediments (paper No 81). The study is being carried out in collaboration with the Institute for Marine Research which is taking the sediment core samples by its research vessel Aranda and which also provides expertise of marine research. The costs to the project of this research are minimal.

This sediment study on plutonium is not important from the point of the nuclear power reactors being built along the coasts of the Baltic. These reactors are not likely to release significant amounts of plutonium. Rather, the study belongs to the realm of basic research giving information on the environmental (aquatic) behaviour of the fallout plutonium. Since this area is very poorly known, a contribution from the Baltic Sea is useful. As discussed in papers Nos 81 and 82

only few laboratories have reported plutonium results on marine sediment cores and the number of analyses reported is still quite low.

As for the main area of our study, plutonium in the terrestrial food-chain lichen-reindeer-man, a large number of analyses on different organs of reindeer have now been performed. Many of these analyses belong to the doctoral thesis work of Mr Martti Hakänen, M.Sc. On the basis of these results it begins to be possible to evaluate the role of inhalation and dietary absorption to the total intake of plutonium by the reindeer. However, this study is only half-way, so far.

The first analyses of human tissue samples are now available. We have organized collaboration with the Department of Forensic Medicine of this University, and the Ivalo Hospital in Lapland. The former takes autopsy samples from normal subjects who have died in accidents in Southern Finland. These represent subjects with "normal" diet. In Lapland fatal accidents are rare because of the small size of the population. We can get, however, whole placentas of Lapps giving child birth in the Ivalo Hospital, and teeth from the local dentists curing Lapp children. By comparison with corresponding samples from the Southern Finland, where we can determine also the total body burden of some subjects by post mortem analysis as mentioned above, we hope to be able to evaluate Lapps' body burden of plutonium. The human material will be in the focus of the study during the next three years. So far, lichen and reindeer have been in the focus. The human material will be analysed by Miss Helena Mussalo, M.Sc., who has a doctoral thesis on the subject under preparation.

Plutonium studies have been carried out under this project during two years. Much of the attention has been on the methodology. The capacity of our laboratory has been built up and the personnel trained in. We hope that the project will continue because in the next few years the results will accumulate.

1. COMPLETING THE STUDIES ON ^{137}Cs IN THE FOODCHAIN LICHEN-REINDEER-MAN.

The main factors leading to the abnormally high accumulation of ^{137}Cs in Laplanders were elucidated during the 1960s' already. By counting about 60-100 Lapps annually it was found that in the male reindeer herders who had the greatest reindeer meat consumption the body burden was 40 to 50 times higher than in the northern hemisphere populations in general. Females of the reindeer herding families had about half, children about one quarter of men's body burden, even when expressed per kg body weight of per g potassium.

During the 1960s' there was a great seasonal variation, maximal body burdens being measured in the spring (April), minimal ones in the autumn (September). This variation was caused by the high radioactivity of reindeer's organs in the spring - after 9 months' feeding on lichen - and the high consumption of reindeer meat by the Lapps throughout the winter. In summer reindeer feeds almost solely on grass and perennial shrubs and its body radioactivity decreases sharply.

The dietary study of 1971 proved that about one third of the Lapps households were now able to use deepfreezers and extend the consumption of the highly radioactive winter-slaughtered meat later to the summer. A similar study was carried out this spring to find out if there were further changes in Lapps' diet. So far, only figures on reindeer meat consumption have been calculated of this study. In paper No 76 they are compared with the results of the 1971-study. It turned out, that there had been very little change in the total consumption of reindeer meat, particularly among the reindeer herders, but there was less difference between their winter and summer consumption than earlier, thanks to the increased availability of deepfreezers. This change has had an increasing effect on their body radioactivity. While their ^{137}Cs body burden decreased between 1965-69 by a half-time of 3-4 years, it decreased between 1969-76 by a half-time of 5-6 years (Fig 1). The average body burden in April 1976, 121 nCi ^{137}Cs per person, was 82 per cent of the 1975-value for the same

subjects (paper No 73). The decrease of the radioactivity of reindeer muscle from last year, 19 per cent, was almost similar (paper No 74). All subjects were also counted with a small (3" x 3") NaJ-crystal using the "lap geometry" without a massive shield (paper No 75). The result was similar to that with the regular counter. The better geometry of the lap counter compensates to the smaller crystal size and higher background effect. This "lap geometry" would be a simple but quite satisfactory method for large scale emergency measurements.

We now consider that there is no need to continue the ^{137}Cs whole body measurements next year. The results of the whole body measurements of the last few years as well as the two dietary studies will subsequently be written up to publication form and sent to scientific journals.

2. PLUTONIUM ISOTOPES IN THE FOODCHAIN LICHEN-REINDEER-MAN

Plutonium is usually considered to be an inhalation risk to man, in occupational as well as general environmental conditions. This may be usually true, but not always. The foodchain lichen-reindeer-man is one exception. Particularly the reindeer obtains today the bulk of its plutonium burden from its fodder. The Lapps who consume large amounts of reindeer meat and especially reindeer liver may also get a small but not insignificant part of their plutonium body burden from their diet.

The study of this foodchain under this project was started about two years ago. During the first two years the emphasis has been on methodological problems and on analyses of lichen and reindeer samples stockpiled since 1960.

Results on lichen analyses are presented in Fig. 2. As can be seen, Cladonia alpestris lichen contained in 1964 ca 200 pCi, in 1971 ca 100 pCi, and in 1974 ca 20 pCi per kg dry weight. There exists some correlation between plutonium activity in lichen and in air (paper No 82). Plutonium isotope ^{238}Pu was also measured. The ratio $^{238}\text{Pu} : 239,240\text{Pu}$ in lichen increases from 0,03 to 0,08 during 1960-74 (see paper No 82).

A large number of plutonium analyses on reindeer tissues have been performed during the last year. They are reported in two papers, Nos 77 and 78.

Paper No 77 reports on a study in which all tissues in the same reindeer are analyzed in order to calculate the total body burden of the animal. Four animals of different ages have been acquired for this study, but only two have been analyzed so far. In this paper the methods adopted in our laboratory for plutonium analysis are described in some detail, too. The paper contains a number of results on different bones in the same animal. These show that the highest plutonium concentration is found in the teeth, medium concentrations in sternum, vertebrae and humerus, while the lowest concentrations are found in the long bones, particularly the solid parts. The ratio of ^{238}Pu to $^{239,240}\text{Pu}$ in skeleton is $6,4 \pm 0,8 \times 10^{-2}$. The ratio of the total body burden of a 13,5 year male to that of a 4,5 yr female was $9,0 \pm 0,9$, almost the same as that of their estimated life-time intakes of plutonium in feed. This suggests a very slow rate of elimination. The gastrointestinal absorption is estimated to be about 2×10^{-5} , ie. considerably lower than we estimated in the previous year on the basis of a small number of analyses. In paper No 77 our results on reindeer tissues are compared with those of cattle from nuclear test sites in the USA. When the ratio of plutonium concentrations in lung and liver of cattle was compared with the distribution of $^{239,240}\text{Pu}$ in a 13,5 year old male reindeer, it was noticed that inhaled plutonium locates mainly in lungs and bones and the plutonium taken via food locates mainly in liver and skeleton (see paper No 77).

Results on plutonium in organs of reindeer slaughtered between 1963-1975 are presented in paper No 78. The highest $^{239,240}\text{Pu}$ concentration so far measured, 55,6 pCi/kg fresh wt, was found in the liver of a 12-15 year old reindeer slaughtered in December 1973. The highest average concentration was found in animals slaughtered in 1967-68. Liver and lung of reindeer and elk were compared, too. Plutonium concentration in the lungs of both animals was about the same but in the liver of reindeer 10-50 times higher concentrations were measured than in the liver of elk (paper No 78). The ratio of plutonium in liver to the total dietary intake in life-time was calculated for 45 reindeer analyzed: it was $2,5 \pm 1,7 \times 10^{-5}$. This gives the lower limit for the absorption of plutonium from the

diet. The value is in reasonable agreement with the corresponding value for absorption in man given by the ICRP, 3×10^{-5} to 10^{-6} .

Only a few bone analyses have been made, so far. In bones we hope to analyze the ^{90}Sr , ^{210}Pb and, eventually, ^{210}Po concentrations, too. ^{90}Sr will be a good indicator of the total man-made fallout, ^{210}Pb of the natural fallout to which the animal has been submitted. We do not have yet a suitable low level counter for the beta samples, however.

3. PLUTONIUM IN TISSUES OF SOUTHERN FINNS

Analyses of human samples have been started by analyzing today's post mortem samples from Southern Finland (paper No 79). We consider these results to be useful as comparison with Lapp tissues, which are more difficult to obtain. Since only lung and liver of two subjects have been analyzed so far, the results do not warrant much discussion. It is interesting to note, however, that our lung results are in relatively good agreement with the earlier results from Europe, but the two values of liver samples are considerably lower than those given in the literature. Our lung/liver ratio is 13,6, those in the literature vary from 0,23 to 1. WE do not yet understand the cause of this difference.

4. EXPERIMENT ON RETENTION AND LOSS OF ^{236}Pu SPRAYED UPON LICHEN (CLADONIA SPS.)

An experiment was started in July 1974 to study the residence time and distribution of plutonium-label on lichen. The first results of this experiment were reported last year (paper No 71). More results are reported in paper No 80. It can be estimated from these results that the biological half-time of ^{236}Pu in lichen (Cladonia) is short, 1-1,5 years. This estimation is in agreement with our results for fallout-plutonium in lichen, half-time ca 2 years. Longer half-times (4-6 years) are reported from Sweden for fallout-plutonium (see discussion in paper No 80). The tracer, ^{236}Pu , was sprayed as a freshly neutralized solution of plutonium nitrate. On lichen the tracer may have been oxidized to PuO_2 , since it seems to behave very similarly with fallout plutonium in

longer time. The experiment will be continued.

5. PLUTONIUM IN BALTIC SEDIMENTS

Study on plutonium in aquatic samples from the Baltic was started last year in form of a thesis work (paper No 70; see also No 82). It showed that fish (ruff, flounder and cod) contain 0,04 - 0,14 pCi $^{239,240}\text{Pu}$ per kg fresh wt, brown algae 5 pCi, and the top layer of bottom sediment 1,68 mCi/km². The fish values are somewhat higher than those in the North Atlantic. The study has been continued by analyzing sediment cores in sections. Two cores were taken from aerobic coastal areas, one from the central Baltic Sea, from a deep basin area the bottom of which is anaerobic. The integrated values of the three cores were: 3,3 and 2,5 mCi per km² in the coastal samples, 2,4 mCi per km² in the open sea sample. These results are rather similar with those reported by Noshkin from Buzzard's Bay (41°N, 70°W; see paper No 81), 2,3 mCi per km². There was considerable difference between our three profiles: in the anaerobic deep sea core a rather sharp maximum was found at the depth 2-6 cms, while the oxygenated coastal sediments had a broader maximum between 0-8 cms, evidently because of bioturbation and other disturbance. The study will be continued in collaboration with the Institute of Marine Research, Helsinki.

SUMMARY

The final measurements of ^{137}Cs in the body and diet of reindeer herding Lapps are reported. They confirm earlier results. The decrease of Lapps' body burdens has slowed down its apparent half-time being now about 5-6 years instead of 3-4 years in the 1960s.

The studies are now considered to be complete unless a new fallout situation will arise. The focus of the project will shift now completely to transuranium elements.

Large numbers of analyses of lichen and soft tissues of reindeer have now been completed and they give a comprehensive picture on these types of samples. The bone analyses have been delayed because we hope to analyze also ^{90}Sr as marker of man made fallout and ^{210}Pb as marker of natural

fallout but for this purpose we need one new instrument, a low background beta counter.

Collection of human tissue samples of southern Finns (accidentally died healthy adults) and of Lapps has now been organized and systematic studies have been started. It will take two to three years more to have a full picture on the distribution of plutonium in the body of southern Finns, Lapps and reindeer. The study will be widened to cover also ^{241}Am . We believe that this project will give valuable information on the absorption and distribution of these transuranium elements in fully natural conditions after chronic uptake in natural diets.

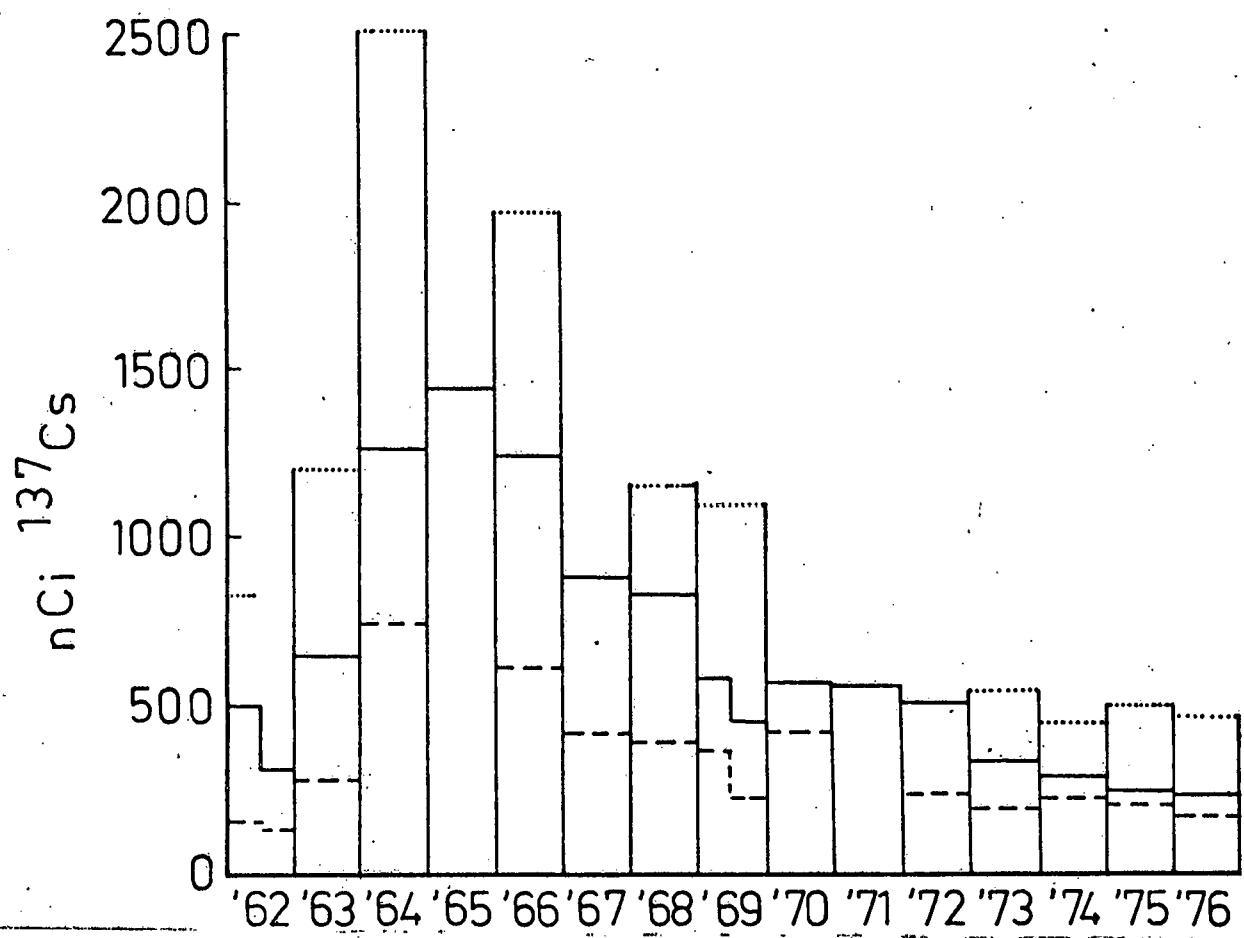


Fig. 1. ^{137}Cs body burden (nCi) in male reindeer-herders, 1962-76.
 Mean values _____; maximal value; value of a man with
 a low body burden-----. In 1962 and 1969 both spring and
 autumn values are marked.

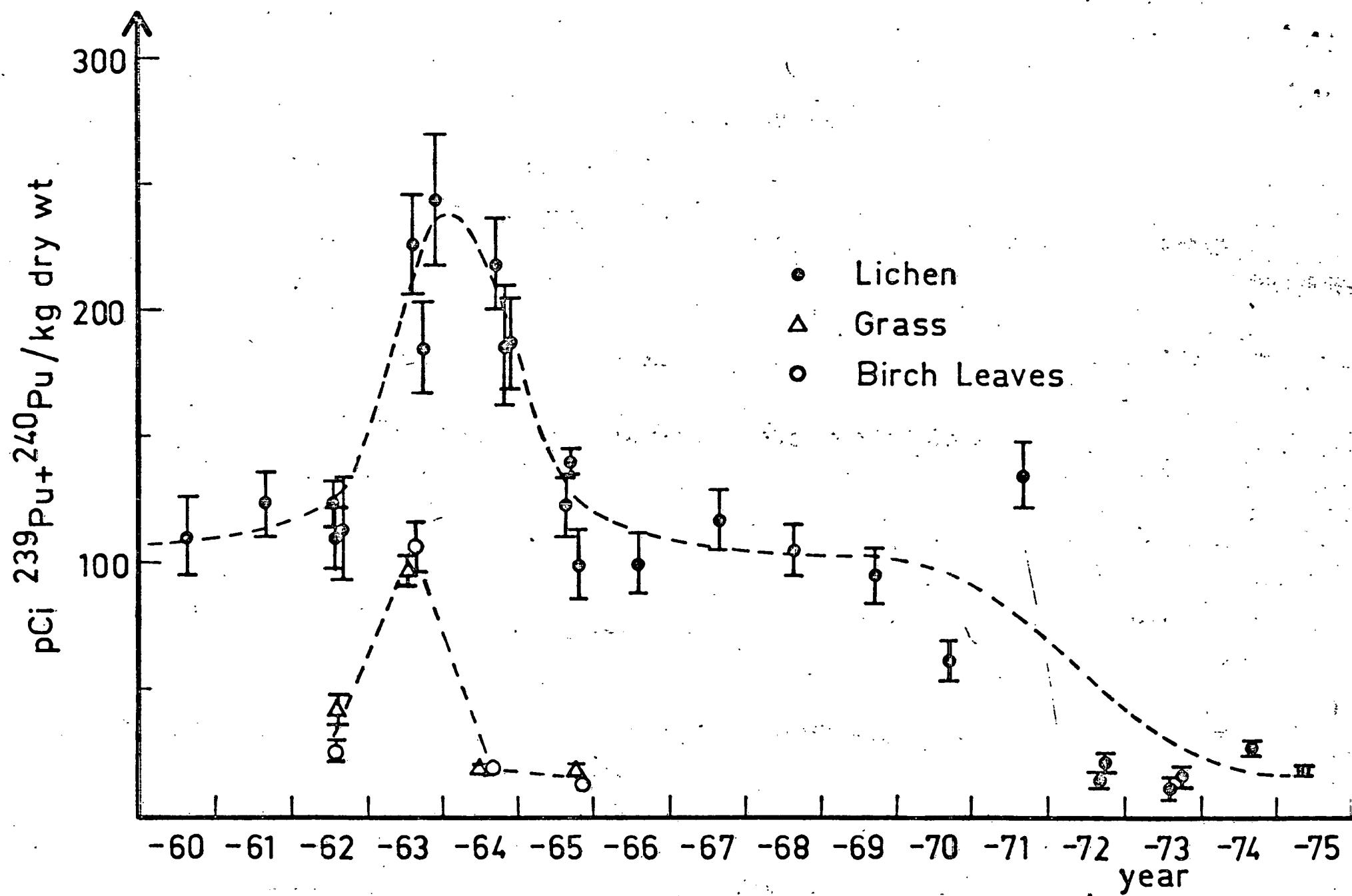


Figure 2. $^{239} + ^{240}\text{Pu}$ concentrations in lichen, grass and birch leaves in Finland during 1960-1975. Standard deviation of the radioassay ($\pm 2\sigma$) is indicated.

PUBLICATIONS OF THE US AEC PROJECT AT (30-1-3446 AND
FROM JAN. 18 1975 THE US ERDA PROJECT CH E (11-1)-3011
RADIOACTIVE FOOD CHAINS IN THE SUBARCTIC ENVIRONMENT

1. Investigations of Radioactivity in Man and His Environment in the Finnish Lapland, J.K. Miettinen, Proc. Ann. Acad. Sci. Fenn., (1965) pp. 245-258.
2. ^{137}Cs in Finnish Lapps and Other Finns in 1962-65, J.K. Miettinen and E. Hässinen. Radioecological Concentration Processes, Symposium in Stockholm, April 1966, pp. 221-232.
3. Concentrations of ^{137}Cs and ^{55}Fe through food chains in arctic and subarctic regions, J.K. Miettinen. Reporter's paper at the International Symposium on Radioecological Concentration Processes, Stockholm, April 1966, pp. 267-274.
- (4. Results of Project Lapland at the beginning of 1966, reported as Data Sheets at the International Symposium on Radioecological Concentration Processes, Stockholm, April 25-29, 1966.)
5. ^{55}Fe and Stable Iron in Some Environmental Samples in Finland, T. Jaakkola. Radioecological Concentration Processes, Stockholm, April 1966, pp. 247-252.
6. Microelement Levels in Environmental Samples, T. Jaakkola, H. Puumala and J.K. Miettinen. Radioecological Concentration Processes, Stockholm, April 1966, pp. 341-350.
7. Enrichment of Radionuclides by Foodstuffs and Man in Arctic Nutrient-Deficient Regions, J.K. Miettinen, Seventh International Nutritions Congress, Hamburg 1966, pt. IV, 1051-1060 (1968).
8. Radionuclide Contents of Population Groups in Finland. J.K. Miettinen, Proceedings of the Fourth Northern Meeting for Clinical Physics, Hanko, Finland, Sept. 1966, pp. 117-119. Edited by A. Ryttilä and E. Spring.
9. Enrichment of Radioactivity by Lapps and Reindeer, J.K. Miettinen, International Congress Environmental Radiation Protection, Toulouse, France, 1968, pp. 333-347.
10. Enrichment of Radioactivity by Arctic Ecosystems in Finnish Lapland, J.K. Miettinen, Second National Symposium of Radiology, Ann Arbor. Mich., May 1967, pp. 23-32.
11. Gamma Emitting Radionuclides in Subarctic Vegetation during 1962-64, by E. Hässinen and J.K. Miettinen, Nature 212, pp. 379-382 (1966).

(12. ^{55}Fe in Lapps and Southern Finns and their Diet, Timo Jaakkola. Preliminary Report, presented at the IVth Radioactivity in Scandinavia Symposium, Oslo 1967.)

(13. Iron-55 in Organs of Reindeer, Elk and Fish and in Vegetation Analyzed during 1967 and 1968. Timo Jaakkola and Jorma K. Miettinen. Preliminary Report.)

(14. ^{137}Cs in Man, Animals and Plants in Lapland and in Southern Finland. Tua Rahola and J.K. Miettinen. Preliminary Report, presented at the IVth Radioactivity in Scandinavia Symposium, Oslo 1967.)

15. ^{137}Cs and ^{90}Sr in Blood and Urine of Lapps and Southern Finns Compared with the Total Body Burden of ^{137}Cs and the Estimated Dietary Intake of ^{90}Sr . Timo Jaakkola, J.K. Miettinen, Erkki Hässinen and Håkan Romantschuk. *Radiochimica Acta* II, pp. 214-216 (1969).

(16. Body Burden of ^{137}Cs in Finnish Lapps in Spring 1968. Jorma K. Miettinen and Tua Rahola. Preliminary Report.)

17. On Whole-body Counter Measurements of Potassium and Its Biological Half-time in Some Male Subjects. Tua Rahola and Matti Suomela, *Scand. J.Clin.Lab.Invest.* 21, Suppl. 101, pp. 97-98, 1968.

(18. ^{137}Cs and ^{210}Po in Arctic Fauna. P. Kauranen and J.K. Miettinen Preliminary Report.)

(19. ^{210}Po and ^{210}Pb Concentrations in Fish. Pentti Kauranen and Jorma K. Miettinen. Preliminary Report.)

20. Analysis of ^{55}Fe Produced by Nuclear Tests and its Enrichment in Finnish Lapps, Timo Jaakkola, *Ann.Acad.Sci. Fennicae*, Ser.A, II, 150, Helsinki 1969 64 p.

(21. Present situation regarding accumulation of ^{137}Cs and radiation burden in Finnish Lapps. Proceedings of "Symposium International de Radioecologie" pp. 1039-1053, Cadarache, (1969).)

22. The Present Situation and Recent Developments in the Accumulation of ^{137}Cs , ^{90}Sr and ^{55}Fe in Arctic Foodchains in Environmental Contamination by Radioactive Materials, pp. 145-151, Vienna, IAEA, (1969).

(23. ^{210}Po and ^{210}Pb Concentrations of Some Water and Fish Samples from Finland, Pentti Kauranen. Preliminary Report.)

(24. Stable Lead and Radiolead (^{210}Pb) in the "Arctic" Food Chain, P. Kauranen, T. Jaakkola and J.K. Miettinen. Preliminary Report.)

25. ^{210}Po and ^{210}Pb in the Arctic Food Chain and the Natural Radiation Exposure of Lapps. P. Kauranen and J.K. Miettinen, *Health Physics* 16, pp. 287-295 (1969).

26. Polonium and radiolead in some Land animals in Finland, P. Kauranen, J.K. Miettinen and E. Pulliainen, Symposium on the Biology and Ecology of Polonium and Radiolead, Sutton, April 30 to May 1, 1970.
27. Polonium and Radiolead in some Aqueous Ecosystems in Finland, P. Kauranen and J.K. Miettinen, Symposium on the Biology and Ecology of Polonium and Radiolead, Sutton, April 30 to May 1, 1970.
28. Environmental γ -radiation Dose Rate in Finnish Lapland and Southern Finland, T. Jaakkola and P. Kauranen, 2nd International Congr. of Radiation Protection Assoc. (IRPA) Brighton, May 1970, 2/p. 197.
29. Body Burden of ^{137}Cs and the Radiation Dose of a Population Group in Finnish Lapland, Tua Rahola and J.K. Miettinen, 2nd International Congr. of Radiation Protection Assoc. (IRPA) Brighton, May 1970, 2/p. 195.
30. Chemical and Radioactive Environmental Problems in Finland, Jorma K. Miettinen. Lecture held at the Dept. of Radiobiology, Institut Badan Jadrowych, Warsaw, Aug. 1969, and at the Nuclearni Institut Jozef Stefan, Ljubljana on August 26, 1969.
31. Radionuclides in Plants and in Reindeer Meat in Lapland. Tua Rahola and J.K. Miettinen. Preliminary Report.
32. Stable Lead and Radiolead in Air Filters, Pentti Kauranen and Marja Länsimäki. Preliminary Report.
33. Body Burden of ^{137}Cs in Finnish Lapps in March, 1971, Rahola, T. and Miettinen, J.K. - Preliminary Report.
34. Accumulation of ^{137}Cs in Finnish Lapps, Rahola, T. and Miettinen, J.K., to be presented at the Second International Symposium on Circumpolar Health, Oulu, Finland, June 22-26, 1971. - Abstract.
35. Radionuclides in Plants (1970) and Reindeer Meat (1971) in Lapland, T. Rahola and J.K. Miettinen. - Preliminary Report.
36. The Present Situation Regarding the Accumulation of ^{137}Cs in Finnish Lapps, Tua Rahola, Tuulikki Hattula and J.K. Miettinen, Actes du Symposium International de Radioecologie, Cadarache, 8-12 September 1969.
37. Radionuclides in Lichen, Reindeer and Man from Tests of Nuclear weapons, J.K. Miettinen. A Review summarizing ten years investigations of the Food Chain Lichen-Reindeer-Man in Finnish Lapland, Kemisk Tidskrift 83, NO 4, 52-61, (1971).
38. Polonium-210 and Lead-210 in some Terrestrial Animals in Finland, Pentti Kauranen, Jorma K. Miettinen and Erkki Pulliainen, Ann.Zoo.Fennici. 8, 1971, pp. 318-323.

39. ^{210}Pb and ^{210}Po in some Aqueous Ecosystems and Food Cains, Pentti Kauranen and Jorma K. Miettinen, Submitted to a periodical.
40. The Biological Half-time of ^{137}Cs and ^{24}Na in Man, E. Häsänen and Tua Rahola, Report TKK-F-A 133 (1970), Manuscript, submitted to a periodical.
41. Comparative Whole-Body Counter Measurements of Total Body Potassium and its Biological Half-life, Tua Rahola and Matti Suomela. Manuscript, submitted to a periodical.
42. The Enrichment of Iron-55 in Finnish Lapps, T. Jaakkola, to be presented at the Second International Symposium on Circumpolar Health, Oulu, Finland, June 22-26, 1971. - Abstract.
43. Accumulation of ^{137}Cs in Finnish Lapps, Rahola, T. and Miettinen, J.K., Second International Symposium on Circumpolar Health, Oulu, Finland, June 22-26, 1971.
44. Body burden of ^{137}Cs in Finnish Lapps in March 1972, Rahola, T. and Miettinen, J.K. - Preliminary report.
45. Radionuclides in plants (1971) and reindeer muscle (1972) from Finnish Lapland, Rahola, T. and Miettinen, J.K. - Preliminary report.
46. The decrease rate of ^{55}Fe in the food chain lichen - reindeer - man in Finnish Lapland, Jaakkola, T. - Preliminary report.
47. Biological half-times of ^{210}Po and ^{210}Pb in some marine organisms, Kauranen, P. and Järvenpää, T. - Preliminary report.
48. Specific activity of ^{210}Pb in the environment, Kauranen, P. and Miettinen, J.K. - Preliminary report.
49. Uses, emissions and analysis of lead, and its level in foodstuffs and diet, Miettinen, J.K., to be presented at the 16th Session of the Joint FAO/WHO Committee of Experts of Food Additives; Geneva, 4-12 April, 1972.
50. Body burden of ^{137}Cs in Finnish Lapps in March 1973, Tua Rahola, Timo Jaakkola and Jorma K. Miettinen. - Preliminary report.
51. Whole-body counting without massive shielding. Calibration, Tua Rahola and M. Tillander. - Preliminary report.
52. Radionuclides in plants (1972) and reindeer muscle (1973) from Finnish Lapland, Tua Rahola and J.K. Miettinen. - Preliminary report.
53. The biological half-life of ^{137}Cs and ^{24}Na in man, E. Häsänen and T. Rahola. Annals of Clin. Res. 3(1971) 236-240.

54. Accumulation, distribution and decrease rate of iron-55 in reindeer in Finnish Lapland, Timo Jaakkola. Paper presented at the First International Reindeer/Caribou Symposium, University of Alaska in Fairbanks 9-11 Aug. 1972. To be published in the Journal of Mammalogy.
55. Accumulation of ^{137}Cs in Finnish Lapps, Tua Rahola and Jorma K. Miettinen. Arch. Environ. Health 26, No. 2(1973)67-69.
56. Specific activity of ^{210}Pb in the environment, Pentti Kauranen and Jorma K. Miettinen. Submitted for publication in Int.J. Environ. Anal. Chem.
57. The occurrence of ^{137}Cs in the biosphere evaluated with environmental and metabolic studies, Erkki Häsänen, Report Series in Radiochemistry 2/1972. (Thesis).
58. Fallout Levels of ^{137}Cs in Finnish Lapland During 1966-1973 in the Food-Chain Lichen - Reindeer - Man. Tua Rahola and J.K. Miettinen. - Preliminary report.
59. Body Burden of ^{137}Cs in Finnish Lapps in March 1974. Tua Rahola, T. Jaakkola and J.K. Miettinen. - Preliminary report.
60. Radionuclides in Plants (1973) and Reindeer Muscle (1974) from Finnish Lapland. Tua Rahola and J.K. Miettinen. - Preliminary report.
61. Whole-Body Counting Without Massive Shielding - Calibration. Tua Rahola and M. Tillander. - Preliminary report.
62. Plutonium in Lichen in Finland During 1960-1973. J. Tulikoura, T. Jaakkola and J.K. Miettinen.
63. Plutonium in Reindeer Liver in Finnish Lapland During 1964-1973. Helena Mussalo, T. Jaakkola and J.K. Miettinen. - Preliminary report.
64. Body burden of ^{137}Cs in Finnish Lapps in April 1975. Tua Rahola, T. Jaakkola and J.K. Miettinen. - Preliminary results.
65. Whole-body counting without massive shielding - evaluation of accuracy. Tua Rahola and M. Tillander. - Preliminary report.
66. Radionuclides in plants (1974) and reindeer muscle (1974-1975) from Finnish Lapland. Tua Rahola and J.K. Miettinen. - Preliminary reports.
67. Body burden and distribution of ^{137}Cs in a reindeer. Tua Rahola and T. Jaakkola. - Preliminary report.
68. The plutonium foodchain lichen-reindeer-man. T. Jaakkola, J.K. Miettinen, J. Tulikoura and Helena Mussalo, Presented to the Third European Congress of the International Radiation Protection Association, Amsterdam, The Netherlands, 13-16 May 1975.

69. Plutonium in tissues of reindeer in the Finnish Lapland.
T. Jaakkola, M. Hakanen and Liisa Silakoski. - Preliminary communication.
70. Plutonium isotopes in aquatic foodchains in the Baltic Sea.
J.K. Miettinen, T. Jaakkola and Marja Järvinen. - Preliminary communication.
71. Experimental labelling of reindeer lichen by spraying with an aerosole of plutonium-236. T. Jaakkola, Soila Riisiö and J.K. Miettinen. - Preliminary communication.
72. Uptake of soluble plutonium from seawater plant, Enteromorpha ahneriana, Soila Riisiö, J.K. Miettinen and T. Jaakkola.