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Abstract

The time evoiution of quantum states for unstable parti­

cles can he conveniently divided into three domains: the 

very *hort time where Zcno'i Paradox is relevant, the inter­

mediate interval v.here the exponential decay holds more or 

less and the* very long time where the decay is governed by  ̂

power law. In this work, we reexamine several questions re­

lating to the deviations from the simple exponential docay 

law. On the basis of general considcrations, we demonstrate 

that deviations from exponential decay near t « 0 are in­

evitable. We formulate general resonance models for the 

decay. From analytic solutions to specific narrow 'I'idth 

models, v>t- estimate the time parameters Tj and T-> r.c-oaratinp t

three don.ains. The parameter T, is found to be mucn much less
* I

thar. the life time r , while T 2 is much greater than the life 

time. F o r  instance for the charged pion decay, Tj - 10 ^ / r  

and 1%2 ■■ l‘.:0/f. A resolution to Zeno's Paradox provided by 

the present consideration and its limitations are discussed.



' u . m ' u n  ^ r c h a n i o s  e n a b l e s  u s  to t a l c u l a t e  the t i~e e v o l u

t : o f  .1 Jyri-irucr.i s vs t e m  p r o v i d e d  t he  Hair, i I ton  i.in t '  J<*f me . i  

.mil t he  s t a t e  s u i t a b l y  s p e c i f i e d .  Mir ilaai 11 on i an

mist  i n c l u d e  a l l  t he  i n t e r a c t i o n s  to «hicli  t h e  s ys t e m  is s u b ­

j e c t e d .  a nil, in a sense*,  it d e a l s  w i t h  a c l o s e d  s v . te n i ,  s i n c e  

i-ioc •»: ' t i n  e t t e r n a l  f i e l d s  o r  l o n . e s  a r e  ton-- i d e r c j  f l . ere  i s 

no re.n t inn on t h e n  by t he  s y s t e m .

*■. i r: i in 1 a r 1 > interesting class of systrns for w h u h  

t ipi- evolution na • he studied are the so-called ".instable 

particle systems. By definition an unr. table p.it i u  If is a 

n oust it l on.irv state which undergoes siihstanti.il i hangcs in n 

t i Ti«* nuch. larger than the natuiai tine periods a ssoc ! a t ed with 

the energy of the system. In this case the "natural" evolu­

tion in tine and the "decay transition" may he viewed as two 

-opaiate Kinds of t mi* development; and it would he profitable 

to thinl of the natural evolution as if it were accounted for 

by an unperturbed Hamiltonian and the decay transition being 

brought about by an additional perturbation. Conversely, 

given a Hamiltonian with a point spectrum anti a continuous 

spectrum, we may introduce perturbations which lead to "dccay" 

of the states which belonged to the point spectrum and which 

were therefore stationary. In this wc can dete*-<aine the 

precise time development of the system.

On the basis of classical probability lf.*ory wc would 

expect a simple decay proccss to exhibit a purely exponential

hfh.iv tour with t h-.* "1 t fet isie” being given as a fixed parameter. 

Hv ,«nd large ijtianlim decay processes all eshil.it such a be*

h.ii uiiir; and it seen> alnost essential if wc are to think of 

the ’‘unstable particle" a s  .m ju'oiioanus entity. Such an e x ­

ponential law pay be deri’.ed as an approx in at ion to the a c ­

tual fine clll. rih > c «.•»»>• c.'i rrf:>'i .studies have been 

devoted to this question, the approximation is essentially 

the one introduced by Pirac* in the c.ilcwl.i:inn of the rate 

of atomic radiative transitions and treats the cunt intuits of 

final state*; <>f the decay as being unh-stirttlcJ above and below.

In *his paper wt reexamine the question*. relating to the 

deviation froai the exponent lai decay law of particle decay 

process. Although many studies have been devoted to this 

quest ior.,2 • ̂  we feel such a reexamination is still useful for 

the following reasons. Most of the works devoted to this 

question fecus on the deviation from exponential decay law at 

large time whereas the deviation in the region of very snail 

time is compactivelv neglected. lor instance, though the 

known works of Khalfin3 and others provide a very general 

argument for the necessity of deviation :»t large times there 

scans to be no such general argument in the literature point­

ing to the necessity of deviation from exponential law in the 

region of very small times. One of the objects of this paper 

is to fill this gap l*v providing h similarly genera* argument 

which shows the necessity of deviation from exponential dccay 

law at small time.
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A second '401 ival ion (or thi-* ri-rijninjt '.on '1c m  s'roa a 

recent l> (orailated conr3u*i*>»* in ijujniua theory, the tpiantuai 

leno's l\iraJo». It says that jn unstable particle rfhen 

soniMri'J i for its oi^idikc) ■>» sufficiently --nail intervals 

of tsar kill be fonnJ to live longer than the particle 

a on. *. ore-.l »n j re.|uont tv and in the Itatt of continuous auditor- 

ini: ti *>11 he (omul not to tire ay at all. tl Is evident a* 

v ». j-1 i me.! .;> .one detail sn Sri! ion - that the .ju.m: mi Ifno'i 

effect i' intiaately lelatet) to the deviation fron the e»- 

po;io:H j.t; ,!r- av law at snail t is*e and a %tudy of the latter 

« i 1 i »Je a better underitending am! t po»»»bl? resolution

»f the f-'frser 'eenmgly parados tt'al i mnlu:.iun.

\ shirt! re].nc.l object of thi» paper is to formulate 

general resonance nodels and to estimate the l l w  parameters 

Tj and !, v h u h  separate the intrrnediale regic*n of line, 

where etponential decay law holds to a chosen degree of a p ­

proximation. froa the regions of snail t l»e and larger t m e  

where deviation fro'* the exponential law is inportatit.

Itnailv. w<; also o n e f l y  discuss the resolution of the quintan 

!eno*s Paradox provided by the present discmsion and the 

Imitation* of such a resolution.

deviation frr-o e*poncnttal dccav law at sa*!! tlae.

!c ii«cuss this <):ie<tion it is necessary to s u r l  with a 

brief recapitulation of the (f.iantun theoretical fotnalisa for

t

descrilunc unstable stales. I,et N denote the Hilbert space 

for&ed by the unstable (undecayed} state* of the syslea as 

well a' the of dec.*? product*. The liar evolution of

this total M M t a  i* then described by the unitary group 

Mj ♦ e **** , where 11 denote' the -srlfjiljoint Itaai} Ionian 

operator of the systea, l-or ticpltetly, wc shs 11 that

there i> e-iaclly one unstable stale represented t.» ’.he rector 

,!■() *>! H. the -.late '*0. bring an unstable state »»*t be 

orthogonal to all bound stationary slates of the llasillonian

II. Hence i"m ) is associated with the continuous spectrua of

11. On physical ground we also suppose that ihe HaaiItunian

II ha» no singular continuous spectrua. {In contrast to this 

simplifying situation in quantue «sechanics,lhe spectrus of 

the l.outville operator of a classical dvnanical systes which 

i% weakly nixing but not nixing aust I.ave a singular cont inuou: 

part.I Thus if denotes the spectral projections of the 

Haftillonian:

H * h 4 f k - /*!»>(* 0 >

then the function ( X I F J m ) i* absolutely continuous and its 

dcr i vativc

(2)



v .in *-c ; n ! ** f ;* f c t <* -i .!'• ! he r n r f ,;.1 J . •»! f ;Si:T •* ! hr

*. l»tc M). t . r . , The <‘tu.»ni i: v

: •  !.•.*♦ ;r-»*>.ikM » r! *' ! h 4 T the energy  e'i ' l.c < ?* ! r  M)  l ; r %  in 

! rtr ;n!».*rv.»i *r f.

t ***• 11' • t * ;  ♦ n t un ' t *'»n . * ' h i' ? °IC >-u x ?>♦* . • ~ 

v n l  ; r »;>c*! jc»:

( l i t[r} . o

: i ', • . 1 * - t s -Jt fr i ft t; : " ! hr n ' r **.»1 ;: 4? i on » »*ft5;

• 1 »n ('! •! v - ;

; !! ! . • * ‘J for * O'l! .i!c ; h<- pet. t of il. Si ia» i-c 

a : in Irfmm,; ;!*c r.nrrgy .! i ••; r t Hi* 1 i on ‘uiu : w n  ,(•» 

I'. -»r h4*.r i'inc jV-ht, kr hast- aV-’'<■ r ̂e-1 I hr cii'*i*»~arv drflvitv 

s>: <!a:e :.i t?**r -sr :J.r p l o w  s;>av'r (aitor * f • * m  **’1.

the i!>o\r r.ent iuned uitiJi! soli' are 'imii- denerat ji>>! 

hold for .iftv state nhich is «rfftogonai fo the bottn,! ' i j t n  

•jf :!. in ’jfJcr lh.it the nay hv identified a' 4:1 utt ■

stable jiarticlc state .ith a characteristic lifetime. its eft’ 

crfty Ji st r if>at ion function should satisfy eertain additional 

conditions. We shall discuss these conditions m  'Jcction 5. 

l*ut th« iliicusston r>{ the present <ectiun *.-11 use i*nlv 

proper tics fiiii) of the energy distribution function.

The n:>ndecay jiroha!)! I 11 0 *ts *•>» the [iroJ-aHi 1 11 v for 

survival) at the irtstjnt t f«*t (he -.in-.taMr state ,*?) is

i 1 ven '-v

o n  I * <M e li!5 'i),1 . ( 'i

Accord m e l  y the decay p r o b a M  I j t v i*iti at t j* 1 ■ CS! '- The 

a n n J r u v  ar.iilttuJe alt; * (X e ’* * X) Ray !>e c a n  iv >ec.*s to 

Sc tfce fVurit'« ;rans:» fn of :h c ciirf^v jist n s u :  1 tft fiiftttion

a i t i  •  < M. c  « / c  ' * I . }M> * / c ' , , f t ( - l d .  . ( 4 )

V.xc cr lehratci! !'a t cv • ii jrftrf throre^.^ then sht'**^ that »! She 

-.jiectftiii of  H is !»<iuru!c4 hrl-.iw that 1. i * i * 0 f*»r * - 0 

tl.cn a i t ;  and K rn cf  ‘}(t> «■ a i t i , '  d c c r c a s o  to 0 as j ■ * 

! t < i  r a c i d l v  than any cjj ' on enS ia l  f u n c ti o n  e Thl> »s e s ­

s e n t i a l l y  i h a l f t n ' s  areuKcnt prov>n<; the n n f j d i y  o f  devia- 

Sjufi itt'f- the rrp-ifjcnt »al d ec ay  l a*  at large S i k c .

The fol loving {iroposit jon that Qtl 1 ciist deviate

fr.<tt the eminent lal dccay at sufficiently s»atl • tac lot>. 

let the s p e d  run of H be hounded beta* and assuaic further that 

the energy r a t  i«n value for the state JV) i» j inite

/ H-I -id'. • * (J)

then '.’ill • c' * for stiff tc tent ly snail 1 .



It cuy bo oraph.iNiieJ that > c r a i of H is c.s>en-

tial for the proof. For otherwise wc may con*j«ler the energy

distribution function v ( M  *- ^ for which
< * A*

if'*' * i ̂ t •■{ 
alt) • ; J c- ill * e , (6)

1 ♦ v*

and (’(t> coincides with the e*;K>nent ial function c * *• for 

al! t • 0. He sha! I assume, wit noil t loss of generality thal 

the spectrum ot' II i ■ confined in the positive -.entasis 10, •» |.

To prove the proposition it is s«fftclent to show that 

t}(tl i> Ji f ferent iable and

<i(0) - • - r  <r • <») . ( ' )

He shall in fact show that

0(0) • 0 . (81

In vict> of the po»itiv:ty of the operator II. the energy dis­

tribution function s(*l * 0, (or ‘ 0. Thus the condition

(S) m p l  set. that this function U l O  i' absolutely m t e g r a h l c .

Iron this it follows thal

alt) * /e .

is differentiable for aii t and the derivative

4 (t ) • Je *k * (- i > )<r (> )<1>

is continuous. %ow

a * (t ) * at-t)

so that

Since Qi.t ) ■> a(t )»•(? ),

/,Q(t)!l,s • at-s)i(s) - a (s)»(•s)

In particular

<5(0) - 4(0.) - 4(0.) * 0 

since •»!«) • 1 anJ 4 ft I is continuous so that 4(0.)

(1 0) 

< 11 ) 

(1 2 )

(13)

( 14)

( 1 5 )  

• 4(0.).



1 he preceding proposition shows that at uifficiontlv 

snail tine the nondecay probability Cj(t) falls off less 

rapidly th.'.n it wguld he expected on the h.isis of exponent t;i 1 

decay law. Thus if the unstable system is monitored for its 

existence at sufficiently small intervals of tine, it would 

appear to he longer lived than if it were monitored at inter­

mediate intervals where decay la* is exponential. The quantum 

Zeno’s para'ox states that in the limit of continuous monitor­

ing the particle will be* found not to decay at all. This 

conclusion in the present special case of a one-dincn?ional 

subspace of undecayed (unstable) states follows in fact as an 

immediate corollary of the preceding proposition, following 

the discussion of |A), it can be easily seen that if the 

system prepared initially in the unstable state ,M) i s  

(selectively) monitored on its survival at the instants

0,t/n , .... (n-Dt/n, t, then the probability for its survival 

is r iven by

< > "  •

Since Qft) is continuously differentiable and <5(0) - 0, it 

can be easily shown that

li» Q(^)n * 1 
n

(16)

10

independent of I . It is evident that the survival probability 

under discrete but frequent monitoring will be close to 1 

provided r)>;»t t/n is sufficiently small, so that the departure 

fron exponential decay law remains significant. It is thus 

important to estimate the time scale for which The small time 

deviation from exponential decay law is prominent.

3. t.csonancc models for decay amplitudes.

To estimate the parameters Tj and T, which separate the 

intermediate time domain where exponential decay law holds 

from snail and large time dom-iins where deviations are 

prominent, wc need to make more specific assumption about 

the energy distribution function 4'(X) of the unstable state 

iM>. In fact so far we have assumed only very general proper­

ties of •»(>.) that arc not sufficient to warrant the identifica­

tion that ]M) represents an unstable state which behaves as a 

more or less autonomous entity with a characteristic lifetime.

To formulate this resonance requirement wc shall rewrite 

the nondccay amplitude as a contour integral. To this end, 

wc consider the resolvents R{:) ; (II - :!) * of the llami 1 Ion­

ian M. They fora a (bounded) operator-valued analytic function 

of : on the whole of complex plane except for the cut along 

the spectrue of It, which we take to be the real half axis 

S0,— 1. tinder nild restriction on the state !M), for instance.
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under the condition that jM) lies in the domain of IP, we 

have the formula

e ' ,Ht!M) * c ' lilR(;)|M>d: . (17)

where C is the contour shown in fig. I.6 Ihe nondecay 

probability has then the representation

a(t) - . (18)

where

tJCJ * <M| R(: I |M) . (19)

The function tJ(:) is unii|uely deteimined by the energy dis­

tribution function i (. >) of iM) through the formula

S C )  * /  d\ . (20)
*0

and in turn determining tfte distribution function through

the formula

i(\) • lim j-— ; | :}(>•» it ) • ? ( » - it) | (21)
f 0 (‘ 1

The function S U )  is analytic in the cut plane and is free of 

leroii there. Ke snav thus introduce

12

r(z) ■ . (2’.)

which is analytic and free of zeros in the cut plane. The 

nondecay probability is that given by

a ;t) . ^  j : (25)

The above representation for a(t) is quite g e n e r a l  and 

does not yet incorporate the important resonance conditir 

alluded to earlier. The resonance condition may be formulated 

as the requirement that the analytic continuation of Y ( z )  in 

the second sh.et possesses a zero at r * Eg - 

cQ >' T > d. Under this condition the above representation 

for a(t) shows that it will have a dominant contribution 

e ‘ ‘ ! from the :cro of y(z) in the secoid sheet and 

certain correction terms to the exponential decay law arising 

from a "background" integral. An investigation of the cor­

rections to the exponential decay law then amounts to an in­

vestigation of the background integral in (23). This approach 

to studying the deviation from o/por.ei.’iial decay law has been 

adopted in the past.^ Here wc investigate the detailed prop­

erties of the background integral by making specific choice 

for y (r).

To facilitate the choice and to relate our results to

8
investigations on the I.ee model and the related Friedrichs



ruicl, *- nnitf f U.\\ ont* can « m c  - ‘■uit-iM »* **ui'" r .n. i o-.J ■ t *• 

;»crsion ri'Utton^ for »(:).

lor 3fu‘«*, if ♦(:) h4' tht* .»•.vnpt ot i e

■ C !  ■ :• ..M,

with n • 5 then

. . »f* . t e a
0 -Jn : . z, m  - z • II c m

-ith

f ( •  J * • X  1 in I f ( • • i - ) • f ( •  - t - >3 • (-f>)

dn the other hand if i(") 'ai i<ftov u-Ji with o ' n • I, then 

i C )  satisfies the onto niht ractc>J dispersion relation. Kith 

the subtraction ,it : * I.,.,

i t : i  • ;  ■ r. ^ • f ( l . s ) • - 5  J  ( V - O t V t .  1  d l  * “ 7 1

It nay be n oted  that the Coro ( 2 S )  for » ( l )  is the one 

o b t a i n e d  in v a r i o u s  model t h e o r e t i c  d e s c r i p t i o n  o f  u n s t a b l e

t e n
■states. All such desciplions picture ihe unstable state

|M)  as a n o r m a l i s e d  s t a t i o n a r y  s t a t e  o f  an u n p e r t u r b e d

Han i i tor. i an ll(j a s s o c i a t e d  with  a point  spec t run o f  H () embedded

n

m  ! fit- tout imm u <  spec t run. Ihe decay transition is caused 

soielv *>> n perturbation llj. under suitable assumption about 

Hj , for instance that the transition amplitude of Ilj fron 

the s t a t e s  assoc'ated Kith ihe Continuous spectrins of lî  intr 

t h c * a s e l v e s  nay he neglected in the evaluation of a(t!. The

n.mdt-i.it .irip!;sude can be >hot>n to be n v c n  bv (..>), ,md (’>1 

nr iJ *) fchere

ifiwr - us)

with .*) being the continutm ci£enkets of H (J. 

Nejtt define

k •  « ‘ ? ' 4 ( 2 9 )

and *irite 

,(i) • U k )  » c ' , r n  ;k-»<,)(k k K ( k )  , (30) 

with resonance poles as stated earliet at

!.„ - y  and :  - c Zr>iV.0 * j- . ( 3 1 )

In the k p l an e  they a r c  at

■k0 * 4 . (32)



i:.

where k(l * t.̂ ' "o' *, ‘ * l*/ "e 1 ’ with ■ j^i.tSee i i >; • - 1

1 1 H
Mi hst  i tut itJw ( U M  i n t o  t-j ) .1111. i!c f o r m  n c tin* a >n ; « i l t  we  a.» >•

,(n ’ i d  t v i . i r l - v n a i  v “ * V M  » « »

te I ( h

4 'tl - . A  , ' C ”i!‘ «' l/‘ t >41
1 k * stnt t / - 

•„ C ‘ “

•» 2

f *  f  k ' ! : u i  > f "  v r ?  : k d k ( . , 241
4,1 tt T  v . r a v v T U U  r - J .  k : f U n

0

O S  I

.iru! j ,: r i .i «. o!it r l luit t on  wi-.-ih .‘.in in* d r o p p e d  d u e  in s u i t a b l e  

). .ii:«. c 1 1 .«t «i>!i. T h e s e  l*i ter j-.ir!" a r e  . I ' w t u J t J  w i t h  t h e  d e  

!»': ~i‘.l cont our

t ’ • - s _ • s T • s ,

i l l u s t r a t e d  t it ft*. '. Si>!c th.it w e  J o  n ot h a v e  t o  t a k e  j n v

i. 'fit r J t>uJ i on trur. Ii .

to p r o c e e d  f u r t h e r  -.isic h a s  to a.iVe t h e  ' p a c i f i c  c h o i c e s  

!*>r i i : . »e ft.iv n o w  r c % t a l r  o u r  probjrra in t he  S<JI l o k i n j  

f ,i s!i i ->ii. '.i v o n  an 4 T *pl: tu de o f  t h e  f o r a  !?t) w i t h  .i s u i t a b l e  

. h o u r  f o r  . h o *  J o e s  ! !c J e c a v  p: oi'ab; 1 i ! v Si-(-..»» e 4 % 4

(unt.: ion of t i av ’ Kh.il .ire fh>.< r'i.ir.ic t o r : s t i c t i rsos I j  anti 

f, (or the vy'U'a’ Hex* M ‘itsnivc are these c o i k I u m m s  in 

relat lull to the -.pec I ( H  forms .is Mined for P.? In the follow- 

itiK section, we take up a study of these quest ions.

•S. Specific decay nodels and a resolution to Zeno's Paradox.

In the Appendix, two specific choice? of .ire cons id<? red. 

!or node I I ,

l:) • 1 . (A -1)

This leads to a dispersion relation of the form of t.q. (17).

Io r node I II,

■ K1/2
U l  * • * f / v .... l/2~ f A - J Q-i J

• ( B • 21. ' )

this leads to the dispersion rel ation  of the ra of f.'q. (25). 

The detail* of both solutions arc given in the Appendix. We 

proceed to look at several aspects of these solutions.

1.1 The l-ir^c t power law and its ^co.-nct r ic i nt erprot J»t ion.

1 roa iA-12) and the large t-hehavior of the

sut \ iv41 .inplitudc for both noJcls i> >;iven l>y



\  ' i o - e r  rh.in e x p o n e n t i a l  J ft . i v  i v ,  j s  nrnt  j » n r J  4n Sci t i o;> ' ,  

i'. 'Mjifv t?tl frorp g e n e r a l  . ir^imont  o f  K h . i l f i n  t h e n ^ h  it u m l d  

V*  I ;*t* r 1 * ?>n rhc  of h e r  H . m J ( t.*u* ■»pi,c j J r.  ? i.J*

i s not <>nl / u p r o p r r j v  <>!' ! M * \ r  s p c ^ i j l  r o w l v l ' *  *•<»*

» r e f l a t i o n  o f  t he  h n r a i u ;  o :  t h e  oei . iy  ; « p k  <*«»*. * c  

• vk’ ? h i -» j s t.»I 1 o» , . ’a«* w j 11 c i11 ■ ' ? • I » - ' I . . -h*1 ri*

■ i  ̂ j i > the  ;»h.*!*•<.* s p a c e  f . u t o f  . Then : r o s i  t . M  ) .i«i! ( J  6 ,

• “/  .» ;i,c « r
'■I

'■i:

!/.

» . i i • i ) '

I / * ' ' 1 , /  j  ‘r  i * . | j
1 1 Jf • • ’■ • .  -M! i r  ■’

' U  j y ( ! • n  I J ;

1 1 1/! .1! M i  -f !i '

I f *+i\
M i l t  111 I SSI

for verv larjic t i a e v ,  b c c o u ' c  o f  t lie rapid  v a r i a t i o n  of  the 

phase f a c t o r ,  p ro vi de d  the f un c t i o n s  f < f- > *n d  y (t*l>  ) behave 

n ent ly  near  : c r o .  The p ha se  space f a i i n r  i ( f . )  hat .1 power 

law b e h av i ou r  in the ne i Rhhorhood of  the or I K i n .  f:or a non-

7
rrl.vtnisnc *y*re» ) * b~/2n.

* ‘' ^ j r  'T
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---- 1
h};i}<' foi .1 rt'i .if lv i sf 11 sy steei I r- • m“ m, .is i: • 0,

•11) ’ 4-K(I -a) .T . (40)

Hence, in both ca>e< we ssav recognize l.'S) to behave like

f  vit..T e l1'* - t , /: /  dti.u e 111 (41)
J0

Thus the inverse cube dependence of the probability of non- 

decay <J(t ) wav be related to the structure of the phase space 

(.utnr, provided the torm factor f(!j is centlv varying.

rhi>. power law dependence has a simple ceomctric.il mean 

itti:- the "iir; t abie particle'' as such is not a new *tate but 

a certain superposition of the decay products. These latter 

'•tali". have a continuum of energy e i penvn Ities . The precisc 

nanner in which the superposition is constituted depends on 

<nsr def.mtion of the unstable particle; and the development 

of thiv wave packet as a function of tlac depends on the d y ­

namics of the system. But eventually the packet spreads so 

that the decay products separate sufficiently far to be oat - 

sule each ethers' influence. Once this stajic is reached the 

further expansion is purely kincnutic, the amplitude Jecreas- 

int: invtT'ely as the sijuare root of the cube of time. Conse­

quently the overlap amp!itude a(t) also behaves thus. The 

requirement cf ^entl*; variation of the form fs .tor is precisely



that the coi i espond m g  interaction becomes negligible' beyond 

some large but finite distance.

In view of this geometric interpretation we expect that 

any unstable system with well-behaved interact ions would ex 

hibit such a power law rather than an exponent i.il law.

i y

1.- I-;'' t pes of t dependente iumi t =1*.

Ihe short time beha.’ior of the probability Q(t) given by 

two models ate unite Jilfeient. for R-.odv> / .  I t i n  ( A - 1 7 )  z n J  

( \ 1 S t ,

alt) • I - Lonst-e1 t 1^' . (42)

which leads to the decav rate as t • 0.

C’tti - • » i-iw

f o r  n ^ d c i  I I ,  t’ rom (A >4) a n d  i A - 3 0 ) (

** i * ' -i s ̂
.1 > t • l i u i n < f :  i * list • e t

! 44 )

and

i,' i t i • ■ t 1 ‘ • c 145)

Model II is an example - r the proposition considered in 

Section , where the energy expectation vaiue for the resonance 

state is finite. I'rom general arguments, we already

concluded that as t • 0, the decay rate should approach 0.

|.(|. M S )  js in agreement with this conclusion. On the other 

hand, i I' does not exist, such as in model I, as t » 0,

the rate of dccay is undefined. So the exponential law again 

does :iot hold. he see that in no case could the exponential 

law hold to arbitrarily small values of t. The conclusion 

that we have arrived at only depends on the basic notions of 

quantum mechanics; it is therefore quite general.

4.^ Repeated measurements m  short lime and long time limits.

from above discussions, we are led to two possibilities 

regarding the leading term behavior of t}(t) as t * 0 :

(,'it, • 1 5," and Q (t) . -it*'"1, where £ S 1 (46 J

Since I) ■ Q ! t I ■- QfO), i - 0 and -• 0 f wc are not consider-
y

in[, nonpo 1 ynoroia 1 dependencies like t‘ flog t) ), the ranges 

.*■ - 1 and t ■ 1 behave quite differently. In one case the 

rate is becoming larger as t • 0, and in the other case it 

is vanishing.

Sow consider as in Section 2, the n measurements at 

times i/n. Jt/n, ..., t. In the limit of n • the time
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interval t/n tends to zero. Hence, for arbitrarily small t as 

n-*»,

j 1 S>1

Qn (t) ■* C1 ' * i (47)

{ 0 8<1

The first case corresponds to Zeno’s Paradox in Quantum Theory.

In the second case the limit as n -• “> does not exist and the

Paradox does not obtain: continuous observation is forbidden.

It is also interesting to ask what happens in the long

time limit. We have seer, that with reasonable dynamics, the

asymptotic form is purely kinematic. What about repeated

measurement? The wave packet has expanded beyond the range

-3/7
of interaction in accordance with the t " amplitude law: 

the measurement collapses this packet to the size of the 

original packet we call the unstable particle, and the time 

evolution begins again. We then have the behaviour (jjO 

We attenuate the unstable particle amplitude by repeated ob­

servation. Naturally there is now no question of continuous 

observat ion.

4.4 Laboratory observations on unstable particles and a 

possible resolution to the Zeno's Paradox.

In these discussions we have dealt with the uninterrupted 

time development of an unstable particle. What can we conclude
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from this about laboratory observations on unstable particles? 

Is it proper to apply these considerations for particles that 

cause a track in a bubble chamber?

The uninterrupted time evolution was, we saw above, 

characterized by three regions: (i) 0 < t < T j , the small 

time region where Q(t) ~ 1 - g-t®, 6 > 0; (ii) Tj < t < 

the intermediate region where an exponential law holds;

(ni) t > T^ the large time region where there is an inverse 

power law behaviour. Out of these the intermediate region 

alone satisfies the simple composition law

Q(t1)Q(tz) = Q(tj + t2) . (48)

In this domain, therefore, a classical probability law 

operates and the results for the two-step measurement are the 

same as for the one-step measurement.

On the other hand, if the particle is making a track or 

otherwise interacting with a surrounding medium and is thus 

an open system, the considerations we have made do not apply. 

Instead we would have to account for the interpretation of 

the evolution by the interaction and a consequent reduction 

of the wave packet. The nondecay probability is now defined 

by the composition law:

Q(tj,t2 .....tn ) = Q(t1)Q(t2)...Q(tn) . (49)
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Hence, if tj - t, = ... = tn = t we can write

Q(nt) = (Q(-).n (50)

so that for times large compared with r the dependence is es­

sentially exponential, independent of the law of quantum 

evolution Q(t).1^ If the interruptions do not occur at equal 

intervals but are randomly distributed the behaviour would be 

more complex but this has been considered by Ekstein and 

Siegert*1 and furthered by Honda et al.12 The pure exponen­

tial behaviour is somewhat altered but the power law dependence 

of the long time behaviour of the uninterrupted time evolution 

is no longer obtained.

We wish to call particular attention to this result: 

the long rime behaviour of the closed and open systems are 

essentially different! Classical probabilistic notions do 

not apply to the closed system. The reason is not far to seek: 

classical intuition is related to probabilities which are 

the directly "observed" quantities. But probabilities do 

not propagate: propagation is for the amplitude! Despite 

this, it is difficult if not impossible to observe the dif­

ferences between the two. To be able to see the difference 

wr must reach the third domain t > T 2 , but since T 2 is much 

mu'-!' larger than the mean life time, by the time this domain 

is reached the survival probability is already many orders

24

of magnitude smaller than unitv. For both models considered, 

we found

1 E0 3 E a
T 2 . f-lnf— ) + j?ln( 5  InjJi) . (A-1SJ

Take the example of the decay of a charged pion, it ■* pv

T = (3 x io'8 sec)'1

and Eg = - m = 34 MeV = (2 * 10 ^  sec) 1

This leads to T 2 - 190/r. So by the tine the power law is 

operative, Q(t) < 10'80. Clearly this is outside of the 

realm of detection.

In the small time domain we have other physical con­

siderations that may prevent the conditions for Reno's 

Paradox from manifesting. This is ultimately to be traced 

to the atomic structure of matter and therefore our inability 

to monitor the unstable system continuously. For example, in 

our model II, when’ the Zeno's Paradox is operative, in the 

Appendix one finds Tj - 10'14/r m o ' 21 sec for charged pion decay. 

On the other hand, we have checkpoints at interatomic dis­

tances, a time of the order of 10 8^3 * 101(̂ )- 3 * 10 sec.

We have no way of monitoring the natural evolution of a system 

for times finer than this. A sequence of frames filming a
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flvinr arrow on a movie camera could hardly furnish Zeno mate­

rial for contemplation!

This resolution of Zeno's Paradox is quite satisfactory 

as resolutions go in modern physics, but it raises a more 

d i s l u r M n g  question: Is the continued existence of a quantum

v.orld unveri fiable? Is t'le sum total ;f experience (of the 

quantum world) a sequence of still frames that we insist on

endowing with a continuity? Such a world view is startling

but a time-honoured view of the Buddhists1^. Is this then the

resolution of Zeno's Paradox?

20

Appendix

Model I.

Consider the case,

C(k) = 1 (A-l)

Now (30) reads

iir(k) = (k-k+)(k-k_) ,

or from (29), (51) and (32),

y(E) = E - (E0 + A) ♦ 2i/Ea . (A-2)

We assume the analytic continuation of y (E) is given by

y(z) = ; , i’̂) + 2/-ZA . (A-3)

One finds y (z ) satisfies the once subtracted dispersion rela­

tion,

_  -  (z+E0> 2V^ ~
Y(z) - z - {\/E^ ♦ VA) ♦ ---- ------- | dE 7P fr

ir •'g (E z) (E=E0)

where the subtraction is at z = -Eq . This is in accord with

(27).



From C 54 J . f o r  t h e  p r e s e n t  c a s e  t h e  p o l e  t erm is  g i v e n

S'

-in„t - rt/ 2
a (t) = e u (A-5)

*0

From (55),

(A-6), lt , . i : " 2ke'r t  , , „ 2 6k . ..
I ~ 7 n 1 "7  ̂ ) 11K
1 -nJ-~ lk"-k“)) k"-k‘

1 4
To evaluate a^it), we use the identity

f d\ = f\ - „/£ eat erfc(/at) . (A-7)
J q a ♦ a ¥ z

Quantities "erf" and ”erfc" are*-5 respectively the error func­

tion and complementary function; with

? ty .-2
erfc(y) = 1 - erf(y) and 3rf(v) = —  I e ' dx . (A-8)

rtJ0

After some algebra we get.

al (t) " V t l 1 * 2pZt)ep t erfc(p/tJ - 2p J±] , (A-9)

where p - k0 = e ' in/4 EQ 1/2.

The complementary error-function has the asymptotic ex- 
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pans ion,
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,2
crfiz(y] = ---- (l - - 1-, + £ * . . .  J (A-10)e y I, 1 . 3 1  

----j 1 - — .

/ri y 2y‘

Substituting (A-10) into (A-9), to leading order in the in­

verse power of t, it gives

<S i _1
( A - 1 1 )

This approximation is reasonable typically for |p/t| > y^ - 5. 

Notice the form or (A-ll) is in agreement with our general 

result in the text. Dropping factors of the order of iinity, 

(A-ll) gives

.2

la,! - (^-.)5/2 — l- m  • for 1 s Ti 5 ir (A~12)
1 Eo (rti ' x fco

At T^, the ratio of this background contribution to the pole 

contribution is given by

R r T T J  ' ^ 7  • (A'13}
coyi

where r << Eg was used. Take the example of a .narged pion. 

It decays into the pv t>tate. Here

E = m - m = 3 4  MeV = (2 x io'23 sec)'1
U IT U

r = (3 - 10'8 sec)'1 , and 10'15
t0



1 .  f  ^ *  * M * c  . \ T  T h i ' '  r i o n c i i t  R  If) * ,

* t>

Due to the e x po n e n t i a l  f a l l - o f f  o f  the pole term a » J  the

- \ / ’
t ' '  fall  o f f  o f  the hack g r o u n d . a f t e r  a c r r t a ; n  lo:i>: i iac 

intrrv.il ha> e l a p s e d .  K wi l l  e v e n t u a l l y  bo conpar.it>It- to 

' jrntv.  Bevomi t hi s  point  , >;iy I * T , ,  the b ac kground ion-

T r > !'•.>! 1 or. * i ; 1 ijti! 1.11 y .lota i n.i t e . M a k i n g  tis*' <■ j r ■< i (l.

V Si n J i ! J I It-.11] I o

s, 1n > 1 (.
T, jr In (jr- 1  • p lnts In — ) . (A * 1 -»I

‘ or a charged p m n .

f, 180/' . f A  - 15)

-on .xn
At this lj the aapl i ti;dc i * down by c 10 ‘ .

for t Tj , one can expand (A-Sj and (A-9) in powers 

of y • p/t. tiling the identity*^

erf (v) * ‘i- 11 ) , (A- lft)
r. 3

we arrive at

K  a  >1/z
alt) : a It) • a.ftj . I - I if, ft- * 1 ■ Ze!r' ---- /t" .1 / * /?

(A-17)
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in turii a-, t » i; ,

O f 1) lal“ -‘/ x  T7T ’ (.'-18)

M o d e  1 i 1.

C o n s n ' c r  the p a r a m e t e r i z a t i o n

f.(k) ■ j^| . (A-19)

Tins will load to the form of the I.ee model, provided

-1 tt/4
c h » 25 and b > B e  , (A-ZC)

where B is a parameter chosen to be real and positive. For 

the complex variable z, {A -19} can also be written as

r-: . „l/2
f, (z ) » ---------rjj------T / 2 ’ ' (A - 19a)

»^T - IB * 2Al/<:)

The (k-b)-factor so specified gives rise to a "virtual state”

- i TT / 7
at t * e B. Since we are interested in the -esonance de­

cay problem, we will push this virtual state far away from

the real axis. So whenever needed we will only specialize

to the case

(A - 21)
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for j’ rc'-c’Ht ( lot Jc j U v lo

t t I k > - (k k .  U K  V. I ^ * fll.J-Jl

: i | ii {t . >: !  i • k \  | 

i* • (.M.* • k.k ) . x a.'*:*',’ | W *M

:ir • • ;b • .'. ’hi\:.xtm
, * .-K! - : ■ U  •

ia :>)

T ' n ’. c •;>:«••• s ion t .in he t o r  it ten

I f *  : ! i ll * ‘ * * S i ‘ J < •-! > 1 7 ‘  .1!

- :i, ‘ ’ ' ’ -J i.
'ii [i • i . B  |*| U  I

t A  :i)

:n j£rti->rni » i t h  the f;rner.ii : 'orn of

r r-s- 1 >■« f , for the prc%c«i' the pole Tern is  ̂tven

k  i li * ’ I k  .

4 : t ; •  - • * c " " 1 e tA-.’ Sl
*.-1. k,

To evjIa.ilo 4j{t). *<• iiiic

i k , : *  : * b  

\'b ' * 1 k IfV-Vi

•itiJ ileiine

j j {I I ;i j (t ) • .1 j (t ) • a , (t I

v h r r c

:kc

>

a - -K.1

v :t

2'rv
J

k“l
■ 1

(k“
-ll0 i

J j  u  )

•iiiJ .i( (tt • I ■ i ( ‘  *’ J d  '  . 5- l»*fc

( rota {A ■ 6 J a m !  ( A - 9 )  ,

L f~
3jlt) * *-*((! ■ rp'tic5* 1 crfclp.'t. • -I>/Il

where [> .  c ' W \ ,  ■ c ‘ ' / 4 !-.‘ / *\ 

for  a , Cera, *c  m e  i J c n l >Iv

(1 • •  - - e al e r f c  ( / a t )

•aj
/ -t •

17?---
D • ' * < > .

To lea.ltnt; oriler in '/kpl. it k >v c s

a l *1 ) *p c crfc (p/i )

(A-lb)

s \ •: *)

f A - 2 R j

( a -:«>)

f o r  .1 j t e r n .  »n to  l e a d i n g  o r d e r  m  • * c  w r i t e



• * f ' , r 1 1 I llI , . t * ^--T I *' I  ̂ <) ■ 1  ̂ I dfc
1 -{»• h'J *- • X* -k' k-

4  f^e*' 1 vrfctp-'i) i®*'3* t* r fc I p ./O' (-i - ̂  n j 
l b‘»p* > »* 1 1 1

»hcrc p « c l ^'b » C o n b i n m K  (A-2*l, (A-29) and

,;;tr •.

i , ' ;  1 * 1_ [ i 2 p “ t 1 I c^1 * e r fc ' p. l ) • 2p * |

• | *c** 1 erfc(p»T) • 1 c'’i ! erfcip/tl)
fb--p*> ** I’, 1

(A-M )

Subt t 11  t i t  i n (; 'A 1 0 ) into ( A-S l i .  to l e a d i n g  o r J c r  in I / 1 one 

: iniî

a , 1 I -t • \-i x/2 (A - 3 2 )
.'* p* p* b* t

*> asitinc, .i« discussed earlier. B ’ 1^. Ilroppins a factor 

of the order of unify (A-32) »;ivcs

[a. - -X r* . for t : T , - U  . IA SS)
1 l0 [ t i )  * 0

.  2 1
th»;i 1% identical lo thr result of sodrl t. A^ain Tj 10 

At this aoccnt R JO1’.

For t "  Tj , fro* ( A-Hj, f A - 25* and (AJ1) we arrive at

at t) ■* 1 • tu.n * 2VfiI - ) t -jL c 1_/1 • i/: (I • :U tV ‘\
JV*

fA I

sec .

34

Thi s  loads to as t

Q(t) t,;o
B < t (A-35)

and

Q(t) (t B) t
i n (A-36)
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figure Captions

Fig. 1. The countour for the a(tj integral in (23). 

F i r . 2. Contours defining the integrals (34) and (35).
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