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Abstract

The time evolution of quantum states for unstable parti-
cles can be conveniently divided into three domains: the
very short time where Zeno's Paradox is relevant, the inter-
mediate intervai where the exponential decay holds more or
less and the very long time where the decay is governed by =
power law., In this work, we reexamine several questions re-
lating to the deviations from the simple exponential docay
law, On the basis of general considerations, we demonstrate
thit deviations from exponertial decay near t = 0 are in-
evitable. We formulate general resonance models for the
decay. From analytic solutions to specific narrow width

models, we¢ estimate the time parameters 'r1 and T, scparatine the
2

three domains. The parameter T, is found to be much muck iess
thar the life time I, while T, is much greater than the life

time. For instance for the charged pion decay, Tl -~ 10'14/F
and Ty - 150/7. A resolution to Zeno's Paradoax provided by

the present consideration and its limitations are discussed.
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Tuantun mechanies enables us o caleulate the fire cevolu
ti:n of o dynantcal svatenm provided the Hamtltonoan 18 Jefineld
and the amitial state suitably specaified. fhe Hamiltonian
must oanclude all the interactions to which the system 1s sub-
jected, and, an a sense, 1t deals with o closed svaten, saince
even when external fields or forces are cansadered theee s
0o red tinn on them by the system,

partionlardy anteresting class of sestens for which
tire evolution aa. Le studsed are the so-called Taunstable
partscle  wystems. By definition an unstable pastrcie is 3
nanstationary state which underpoes substantal changes in a
time rmuch larger than the aatural time periads associated with
the enerygy of the <ystem.  In this case the "naturu! evolu-
tion in time aml the “decay transition” may be viewed as two
separate hinds of time develonpment; and it would be profitable
to thint of the natural evolution as if it were accnunted for
by an unperturbed Hamiltonian and the decay transition being
braught about by an additional perturbation. Counversely,
given a Hamiltonian with a point spectrum and a continuous
spectrum, we may introduce perturbations which lead to decay*
of the states which belonged to the point spectrum and which
were therefore stationary. In this we can detersine the
precise time development of the system,

On the basis of classical probability t}ziory we would

expect a simple decay process to exhibit a purely exponential

mehaviour with the “Iifetame” beinp given s a fsed parazeter,
By end large quantun Jdecay processes all eahibit <uch a be-
Mavtaur; and it seemy almost essentiad if we are to think of
the "unstable particle” as an autusomous entity.  Such an cx-
sonential lam may be dersved s an approximation to the ac-
tuai time develapment. ahile many careful studiey have been
devoted to this gquestion, the approviration 1< cssentially
the one introduced by ﬂiracl in the calculation of 1he rate
of atemic raditative transitions and treats the continuum of
final states of the decay as heing untounded shove and below,
In “his paper wo reexamine the guestions relating to the
deviation from the caponential decay law of particle decay
process.  Although many studies have beea devored to thas
ques(ion.2'3 we feel such g reexamination 1 stall useful for
the following reasons. Most of the works devoied to this
question focus on the deviation from cxpenentizl decay law at
large time whercas the deviation in the region of very small
time is comparatively neglected. For instaace, though the
bnown works of Khnlfin3 and others provide a very gencral
argument for the necessity of deviation at large times there
seems to be no such general argument in the literature point-
ing to the ncceszsity of deviation from cxponential law in the
region of very small times. One of the objects of this paper
is tn fill this gap by providing & similarly gencral argument
which zhows the necessity of deviavion from exponential decay

law at small time.



A srcond @otivation tar this feceasmination stens fron a
recently foraslated conr:un:-n'l in quantun theory, the quantun
Zenots Faradosn. It says that an unstable particle xbhen
Aomtered ({for 1ts eaxistence) at sufficsentdy =mall intorvals
wf tiar will be found to five Jonger than the particle
avnstored andrequentiv and i the Limtt of vontinuous nunitar:
ing 1! m3l] he found not to decay 2t all. It i ovnlent as
erplasned oo come Jdetasrl o 1a Section D othat the quantus leno's
effedt s patizately telated to the devialion from the oa-
ponentaas Je- av law at amall tine and 3 ~tudy of the latter
aibi prevade a better under<tunding amt o posaible re<olution
wf the Tarmer seenmtngly paradoxtcal conclusion,

Tikind relaved object of this paper 3 to forsulate
eeneral resohance modefn and to estizmale the tine parasclers
It and I: vhich separate the interacdiate regien of fiac,
where ceponential decay law holds to a chozen degrees of ap-
proaination, from the regions of small tiac and larger time
where deviation froa the cxponential 1ax ts iaporvant.
Pinatly, we also orjefdy Jdsscust the resolution of the gqusntus
lenuts Paradox provided by the precent discuscion and the

Ii=stations of <uch a resolutjon.

2. Deviation frem oxponential decay law at small tiac,
Te Jiscuss this question 1T 1% necessary o ~tart with a

brief recapitulatian of the gquantun theoretical forzalisn for

desvtibang unstable atates. Lot H donete the Hilbert space
farped by the un-table (undecayed) »tates of the system as
well 3% the =tatcs of decay products.  The time eveliutjon of
thys tofal svalea to then Jescribed by the unitary proup

P c"“'. shere H denotes The sclf-adjoint Hamidtonian
oprratar of the systen, Por <implicity, we »hall asoune that
thete 1> ciactly ane unatable stale reproschled vy the vector
M) of M, The -tale M), being an unsiable <tite sust be
orthogunal to all bound stationary states of the Haziltaonian
H, MHesce [M) 45 arsociated with the continvous spectrun of
H, On physical ground we 3lso supposc that the Hanillonian

# has ro =ingular continuvous spectrus.  {in contrast Yo this
sinplifying ~ituation in quantup mechanics,the spectrua of
the Louiville operator of a claszical dynamical systes which
1+ weakly mixing but not assing sust Lave 3 singular continuou:
part.}  Thus sf ¥, denotes the spoctra) projections of the

Hamiltonian:
Hoe JudE, o [al)Grlds {8

then the function (MIF M) is absolutely continuous and its

derivative

TR CTER T I CTEN EY L (2)



can te gnterpreted ax the earrpe doatrihutsan funition ¢ the

“tate MR od.e., the quantaty

The prabahililv that the eftergy ot The <fate M) lics an

hatien funitian o0 YMae the falliwgng Ler

CfIL proagpeslies:

ube et Sattospondiag To the nrresalization cards
P :

iy vooe U far v o9t e the spectrun of H, U mas be
anted 1030 3n fefainany the easrpy Qartributioss fum T3on L)

11 we hase dine atove, we ave abserbed the vustonars deasgte

facter ar the plase spave factoy il oan Ty,

o
oa,
-
Py
&
.
<

The abnve-neationed (onditians are quite gefteral and
hold for anv «tate which (s netXogaonal e the bound fates
wf H. In urder that the state may be sden?fificd as an un-
stable particle state «3th 3 charactersstic lifetine, 3% o
ergy distribution function <hauld satisfy cortatn additinnal
conditions. NWe shall ditcuss these conditions an Section 3,
Fut the divcussson »f the present cectien w1l use valy
propesties (2-313) of the cnergy distribuljon funition.

The nandecay probahajate it fag the probabilaty faor

survival) at the iastent t for the unstable state (M) 12

given b

. g i bd
otrs v (e ¥ gy 2

Aecerdanely the decay probadifaey Fite at t
Y
nomderay anplitade a1t = (M ¢ i

he the fuurist fransfarn of the carrgy dist

12 1 - QitYy.  The

M) may be casilv scen fo

rikutsn funclton

acts e (e My o e g, ) e je T e L

N

. b .
the velehrated Falev-Rienier throres” then shous that 1f the

spevtieus of B ois bounded helaw so That i}

« 0 for v - @

ther ai%:  amd henve QEE) e a8t 7 Jdevrcades to U oas 1 ov o+

less rapnily than any crioneniaal Yunctien

< . This 1. e

sentially Rhalfin's arpunent proving the ficcessity of Jevia-

Tion fron the copanentsal decay Jas 3t large tTime.

The fallowing praposition shaws That (41 »ust Jeviate

fron the ecepancntial Jecay 3t «uffciently
fet the spectran of H be bounded below and

the raergy eepeciatlion vaiuc for the sfale
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Then QU1 - ot for sufficiently snall ¢,

snall Tize tao.
assuae further that
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It may be emphasized that scmiboundedness of H ois essen-

tial for the proof. Ffor otherwise we may consider the energy

distribution function v{3) « -} 5 Tor which
« ¢ 2°

. it et
a(t) = }}' R L O A R (6}
A

B 2N for

and Q(t) coincides with the cunonential function o

atl t » 0. We sha!l assume, witnout loss of gencrality thar

the spectrum of H i confined in the poxitive ~emiaxiy [0,~].
To prove the proposition 1t 1~ sufficient to show that

Q) 1s Jifferentiable and
Qor - ‘,"io(nn‘_o v oer (- 3

We shall 1n fact shom that
deo)y ~ 0 . (8)

In view of the positivity of the operator H, the cnergy dis-

tribution function (i} = 0, for »+« 0, Thus the cendition

(S) implies that this function gy} t« absolutely integprable,

P
K
—

Jivie(a)dl - =

from this it follows that
alyy = fe e, (19}
is differentiable for aii t and the derivative
A(t) = Je Vi (1)
is <ontinuous. Yow
a*f{r} =~ at-t}) , (12}
so that
Savil,, ¢ gvai,., =rates) 13)
Since Qi) ~ a{t)a®(ey,
fetn L, s atsae - amEes (14)
In particular

(o) - a(o)) - 3(0) = 0O t15)

<ince a(f) » 1 and A(t) i» continuous so that 3(0 ) « A(0 ).



The preceding proposition shows that at ‘uffrcicntly
small time the nondecay probability it} falls of € less
rapidly than it would be expected on the hasis of exponential
Jdecay law. Thus if the unstable system is monitored fer its
existence at sufficiently <mall intervals of time, it would
appear to be longer lived than if it were monitored at snter-
mediate intervals where decay lawm is exponential. The quantum
Zeno's paralox states that in the limit of continuous nonitor-
ing the particle will be found not to decay at all. This
conclusion in the present special case of a one-dimensional
subspace of undecayed (unstabie) states follows in fact as an
imrediate corollary of the preceding proposiiton. flollowing
the discussion of {3), it can be casily seen that if the
system prepared initially in the unstable state (M) as
{sclectively) monitored on 1ts survival at the instants
o,t/n, ..., (n-1)t/n, t, then the probability for 1ts survival
is given by

DIESLEN
Since Q(t) is continuously differentiabic and §(0) = 0, it

can be casily shown that

vim q(H)" -1 (16)

ne= v

10

tndependent of t. It js cvident that the survival probability
under discrete but frequent menitoring will be close to 1
provided that t/n is sufficiently small, so that the departure
from caponential decay law remains significaat. It is thus
important to estimate the time scale for which the smoll time

deviation from cxponential decay law is prominent.

3. lesonance models for decay amplitudes.
To cstimate the paramcters Tl and T2 which separate the
intermediate time domain where exponential decay 1aw holds
from smull and large time domains where deviations are
prominent, we need to make more specific assumption about
the eaerpy Jdistribution function #(1) of the unstable state
iM), In fact so far we have assumed only very genesal proper-
tics of ¢ (3) that arc not sufficient to warrant the identifica-
tion that [M) represents an unstable state which behaves as a
more or less autonomous entity with a characteristic lifetime.
To formulate this resonance requircaent we shall rewrite
the nondecay amplitude as a contour integral. To this end,
we consider the resolvents Ri:z) = (H - :U'1 of the Hamilton-
ian H. They form a (bounded) opcrator-valued analytic function
of : on the whole of complex plane except for the cut along
the spectrur of H, which we take to be the real kalf axis

[a,=]. tlinder mild restriction on the state (M), for instance,



11
under the condition that M) lies in the domain of MZ, we
have the formula

-iHt -i2
ety . H‘;J e PRy, (17)
C

0

where € ts the contour shown in fig. 1. the nondecay

probability has then the representation

-

a(e) = (Mje My . ;—1—{] e Flugaya: (18)
e

where

g0z = (M{R(zHIM) . {19)

The function 3(z) is uniquely deteimined by the energy dis-

tribution function »(3) of M) through the formula
s < Lo, (20
0 :

and in turn determining the distribution function ¢ (1) through

the formula

. 1 . -
iy} = lim 53 (2eie¢) - F(i-1)] (21
E_0'2":

The function 8(:) is analytic in the cut plane and s free of

zeros there. We mav thus introduce

(D = gy (22)

which is analytic and free of zerons in the cut plane. The
nondecay probability is that given by

ait) = i.] e (23)
¢ n). w(z)

The above representation for a(t) is quite general and
does not yet incorporate the important resonance conditic
alluded to earlier. The resonance condition may be formulated
as the requirement that the analytic continuation of ¥(z) in
the sccond shiet posscsses 3 zero at z = Eg - %; with
By »o T > 0. Under this condition the above representation
for a{t) shows that it will have a dominant contribution
e PRI/ pon the zero of y(2) in the secoad sheet and
certain correction terms to the exponential Jdecay law arising
from a “background” integral. An investigation of the cor-
rections to the cxponential decay law then amounts to an in-
vestigstion of the background integral in (23). This approach
to studying the deviation from c-porential decay law has been
adopted in the past.7 Here we inves*izate the detailed prop-
ertics of the background integral by making spucific choice
for v(2).

To facilitate the choice and to relate our results to

investigations on the Lee modcl8 and the related Friedrichs
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=alel,  ws finte fhatl one van atile csustable o subtracteds e

persion relutions for ().

tor anstance, 1f ,{2) has the aevaptotic hehaviour

ez e e ? RN
=1th n iothen
o :
s1th
. 2 1 . "
fo) " sy i [rsa) - b (2n)
Y L
L]

On the other hand 1f (2} sarisfies (241 with 0 ¢ n - 1, then
1(2) satisfies the once subtracted dispersion relation.  Waith

che subtraction at = = L,

‘ (z - L) gn TEN 3 .
Ehe e b b e e JL (z?:vrxlt;w ar e

It may be noted that the form (2533 for v(2) is the onc
obtained in viarious model theoretic Jescription of unstable
states. 89 A1 wach deserptions picture the unstable state
IM) as o normalited stationary state of an unperturbed

Hamiitonian My associated <ith a4 pont spectrun of N,y enbedded

13

in the continuous spectrum,  The Jdecay transition s casused
sojely by a4 perturbation ", under suitable assumption about

Ho, for instance that the transition amplitude of "l from

l.
the states assoc ated with the continuous spectrun of H,y inte

themvelves may be neglected in the evaluation of a(t). The

nandecas anplrrude can he ~howtt te be given by (.3, and (25)

or .7 whete
PELy]s . AQIEIFRE ) 2 (28}

with .} being the continuun caigenkets of Hy,.

Neal define

K o :1/- e!’f‘ (29)

and write
O I (S I S TR W TS WS L1 TR ¢ U

with resonance poles as stated carlier at
1 and zeetMigg e 0 on

M Lﬂ

In the k-plane they are at
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where in - L; o ’. ‘o ﬁl!'u T 21"

Substitutang (300 tnte (23) ane deforming the contour we mav

wTitle
L;t R
a ! v 2hdh .
alt) :;JL (1’i.? A a,(t) s 4t n:(t) iy
with
X
1 . shnt sl .
I D O . - - = ) 134
. LY
R :
- b 4 -~
TR I e ¥y L ‘!I t.-i': Tk, sk
1 )RR Y IY AAE R EORNIY LH¥

A ALt a centribution whaoh o Jan be Jdrepped Bue to suatable

canvellatsen,  These thive mart= are associated =ith the Jde

toraed contour

yllustrated gn Sy, 2.0 Sote that we Jdo not have to fake anv

vontribution rrom b,

To proceed further sae has 1o nabe the <prottac cheices

for  iht.  A¢ mav aowm restate oGr problen gn the fellosing

fashiion.  aven an aapl:tude of the form (335 wmath 4 <urtable

chotee far 2, ham JJaes the decay pretability hehave as g
. 1

“ s Ihee Tay.
ul/:

4

functron of frac?  Khat are the character:stic times Il and
T, tor the systea’™ iio% ~epsitive are these conclusioas in
relation to the wpecifiy forms assumed for £7  In the follow-

g section, we take up s study of these questions.

3. specific decuy models and a reselution to Ieno's Paradox.

fn the Appendiy, two specific choices of & are consadered.
PJ .

tor model 1,

L - 2L T S {A-1)

This Jeads to a dispersion relaiion of the form of hq. (27).

for aodel 1L,

A Hl/l (
A A S ¥ 2 St U o 4193y
T U AN LD

This leads to the dispersion relatien aof the rm of Eq. (25).
The deta:ls of both solutiens are given 1n the Appendix. We

prececd ta look a4t seveyal aspects of these solutions.

1.1 The large t power Janw snhd 1te geametric interpretation.
From 1A-12) aad {A-33), the large t-hehavior of the

sutvival anplitude for both nodels 1x piven by



Gito Lot s . in g

Y sismer then capeonential Jecav v, as mentioned on Sectinn O
1 eapectid from genvral argument of Mhalfsn theugh 10 could

R - 372
e fike cepr €0 T, Oa the orher hand, the specitin ? /

{an
teonct onls o partreuler propesty of these specisl Tosdels bat

poreflection of the Xiaesatics o the Jecay jrocess,  he =an

) .

e this s tolloas,  Be o wtitye fii . 0" rei t b, aherse
i 1s the phase space weight factar.  Then drom (23 and (26,
s : [
n.'f)-_l] i -"“-, e it [ )
Q] vifer )T
i/t K 2
5! di [RELES . oltie ¥
[§] ‘yf!-u;"
1/t
. .lj JE ot e e
b
e Ft
Howi sige ! (38)
Q]

for very larpe tines, becsuse of the rapid variation of the
phase factar, provided the functiens f(F) and v (i»1v ) behsve
vently near ctero.  The phase <pace factor ok} hac a paver

law hehavicur in the aegghborhood of the origin.  For a non-

*
relativistic system }o» A/ 200,

RO (19)

[ T
while for a relativistye systen | o= .4‘ e m, as E « Q,

APy v S~hMfemy ~ LT (340}

Heace, in hoth cases we mav recognize {(18) to behave like

-
&
o
—~

I‘.N..‘T. e MU 2'3/: Ddur’ﬁ e Y
¢ 0
Thus the anverse cube dependence of the prabability of non-
decay Q(t) may be relared to the structure of the phase space
factor, provided the form factor ?(ll s gently varving.

Thiv power law dependence has a samnle peometrical mean
ing . the "upstable parlecte’ as such is net a3 new state but
4 certagn superposition of the decay products.  These latter
states have a contantum of concrygy cigenvalues. The precise
manner $n which the superposition 1s constituted Jdepends on
our def . mition of the uastable particie: and the develeopment
of this wave packet a< & function of time depends on the dy-
namics of the system. But eventually the packer spreads sco
that the Jdecay products separzie sufficiently far to be oat-
sule each ethers’ influence.  Once this stage is reached the
further capansion is purely kinemutic, the amplitude decreas-
tag inversely as the square root of the <ube of vime. Conse-
quently the overlap amplitude a(t) also bhechaves thus. The

requirenent of gencle variation of the form €2 .tor is precisely



1y

that the corresponding interaction becomes negligible beyond
some large but finite Jistance.

In view of this pgeometric interpretation we expect that
any unstable system with well-behaved interactions would ex

hibit such a power law rather than an eaponential law,

1.2 Tao t pes of t dependence near v o= 0,
The short time behasior of the prohability Q(t) given by
twe models are guite ditferent.  for modes [, trom (A-17}) aad

[ N

atey - i - Lﬂl\\t‘t‘lq/x !i/z ' {42)

whivh Teads to the decav rate as t - 0,

Qi) as L e W, (18

tor model 11, tfrom (A 34} and (A-30),

anroe ] I ovonst-? constee H ) Y‘/; £33)

and

(AT S RN S A F49)

(%]
(3

Model 11 1s an example o€ the proposition considered in
Section 2, where the energy expectation vaiue for the resonance
“tate (MIH|M) is finite. ¥rom general arguments, we alrecady
concluded that as t » 0, the decay rate should approach 0.

Lq. 145) 1s ip agreement with this conclusion. On the other
hand, 1f (M M) does not exist, such as in model I, as t + 0,
the rate of decay is undefined. 50 the e«ponential law again
Jovs not hold. We see that in no case could the exponential
law hold to arbitrarily small values of t. The conclusion
that we have arrived at only depends on the basic notions of

quantum mechantcs; 1t s therefore quite general.

4.3 Hepeated measurements in short time and long time limits.
From shove discussions, we are led to two possibilities
regarding the lrading term behavior of Q{t) as t - 0:

e, e 1 2T oand Qe - Y, where & 401 (46)

Since 0 - Qrt)y < Q(0j, v - 0 and & - 0 {we are not consider-
&

ing, nonpolynomial dependencies like t7(Jog t)Y), the ranges

“ 31 and # - ! behave quite d:fferently. In one case the

rate 1~ becoming larger as t - 0, and in the other case it

15 vanishing.
Sow consuder as an Section 2, the n measurements at

times t/n, t/n, ..., t. in the lamit of n - =, the time
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interval t/n tends to zero. Hence, for arbitrarily small t as

n-o’),

Jl 8>1
(1) » (1 - F(HH" - l (47

The first case corresponds to Zono's Paradox in Qusntum Theory.
In the second case the limit as n + = does not exist and the
Paradox does noat obtain: continuous observation is forbidden.
It is also interesting to ask what happens in the long
time limit. We have seen that with reasonable dynamics, the
asymptotic ferm 1s purely kinematic. What about repeated
measurement? The wave packet has expanded beyond the range
of interaction in accordance with the t-J/Z amplitude law:
the measurement collapses this packet to the size of the
original packet we¢ call the unstable particle, and the time
evoluticn begins again. We then have the behaviour (%)-Snlz.
We attenuate the unstable particle amplitude by repeated ob-
servation. Naturally there is now no question of continuous

observation.

4.4 Laboratory observations on unstable particles and a
possible resolution to the Zeno's Paradox.
In these discussions we have dealt with the uninterrupted

time development of an unstable particle. What can we conclude

22

from this about laboratory observations on unstable particles?
Is it proper to apply these considerations for particles that
cause a track in a bubble chamber?

The uninterrupted time evolution was, we saw above,
characterized by three regions: (1) 0 < t < Tl’ the small
time region where Q(t) = 1 - & BB > 0; (1) T, <t <T,
the intermediate region where an exponential law holds;

(111) t > T2 the large time region where there is an inverse
power law behaviour. Out of these the intermediate region

alone satisfies the simple composition law
Qe )Q(ty) = Qlty + ty) . (48)

In this domain, therefore, a classical probability law
operates and the results for the two-step measurement are the
same as for the one-step measurement.

On the other hand, if the particle is making a track or
otherwise interacting with a survounding medium and is thus
an open system, the considerations we have made do not apply.
Instead we would have to account for the interpretation of
the evolution by the interaction and a consequent reduction
of the wave packet. The nondecay probability is now defined

by the composition law:

Qe ,tysenaty) = QUEIQE,)...QUL) . (49)
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Hence, if t, - t, = ... = t_ = 1 we can write
1 & n

Q(ny) = {Q(z).," (50)

so that for times large compared with r the dependence is es-
sentially exponential, independent of the law of quantum
evolution Q(t).lc If the interruptions do not occur at equal
intervals but are randomly distributed the behaviour would be
more complex but this has bcen considered by Ekstein and
Siegert11 and {urthered by Fonda et al.12 The pure exponen-
tial behaviour is somewkat aitered but the power law dependence
of the long time behaviour of the uninterrupted time evolution
is no longer obtained.

We wish to call particular attention to this result:
the long time behaviour of the closed and open systems are
essentially different! Classical probabilistic notions do
not apply to the :losed system. The reason is not far to seek:
classical intuition is related tc probabilities which are
the directly "observed" quantities. But probabilities do
not propagate: propagation is for the amplitude! Despite
this, it is difficult if not impossible to observe the dif-
ferences between the two. To be able to see the difference
we must reach the third domain t > Tas but since T, is much

murb larger than the mean life time, by the time this domain

is reached the survival probability is already many orders

24

of magnitude smaller than unitv. For both models considered,

we found

X s, Fo 3 Ep
T, - Fln(f;—) + F1n(5 Ing=) . (A-15)

Take the example of the decay of a charged pion, » + pv

r= (3 x108 secy’!

23 1

and E, = m_ - mLl = 34 MeV = (2 x 10~ sec)

0 n
This lzads to Ty - 190/r. So by the time the power law is
operative, Q(t) < 10780 Clearly this is outside of the
realm of detection.

In the small time domain we have other physical con-
~iderat:ons that may prevent the conditions for Zeno's
Paradox from manifesting. This is ultimately to be traced
to the atomic structure of matter and therefore our inability
to monitor the unstable system continuously. For example, in

our model II, where the Zeno's Paradox is <perative, in the
21

Appendix one finds T, - 10-14/Y ~10"°" sec for charged pion decay.

On the other hand, we have checkpoints at interatomic dis-

tances, a time of the order of 10‘843 » 1010)= 3 x 16719 sec.
We have no way of monitoring the natural evolution of a system

for times finer than this. A sequence of frames filming a



flyinr arrow on a movie camera could hardly furnish Zeno mate-
rial for contemplation!

This resolution of Zeno's Paradox 1s quite satisfactory
as resolutions go in modern physics, but it raises a more
dicsiurhing question: Is the continued existence of a quantum
world unverifiable? Is the sum total :f expevience (of the
quantum world) a seguence of still frames that we insist on
endowing with a continvity? Such a world view is startling

but a time-*onoured view of the Buddhistsls. Is this then the

resolution of Zeng's Paradox?
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Appendix
Model 1.
Consider the case,
£(k) = 1 (A-1)

Now (30) reads
iy(k) = (k-k,)(k-k) ,
or trom (29), (31) and (32),
y(E} = E - (EOOA) + 2ivER . (A-2)

We assume the analytic continuation of Y(E) is given by

—

y{z} = = (,0>A) + 2/-z8 . (A-3)

One finds y(z) satisfies the once subtracted dispersion rela-

tion,
(2+Eg) f‘” MAE
—_——— dE

=z - (VE; + V212 + S —
Y(z) = z - (VEy + va) (F 20 (EEy)

v 0

where the subtraction is at z = -Ep. YThis is in accord with

(27).



from (34}, for the present case the pole term 15 given

hy
k -iB,t - Tt/2
- o
att) = e (A-5)
0
From (35),
k’?
P S 5
apitr = A e e (A-6)
- (k7-kp) k°-k
0
. ) H 3 13
o evaluate ullt), we use the identity
@ -\t 1/2 r=
]u WS AT T e erfe (/AT . (A7)

N hl .
Quantities "erf" and “erfc"” are1 respectively the error func-

tion and complementary function; with
- . ey L2
eric(y) =1 - erf(y) and orf(y) = ::] e~ dx . (A-8)
/%0
After some algebra we get,

2 .
al(t) = =2 {(1 » szt)ep t erfc(p/t; - 2p /%J s (A-9)

i
P
where p = e'iﬂ/l kO - e-in/d 501/2.

The complementary error-function has the asymptotic ex-

s 15
pansion,
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2
-y

erfely) = & — j1 - 5 21 (A-10)
/iy 2y y

Substituting (A-10) into (A-9), to leading order in the in-
verse power of t, it gives
§i 1
a, - — (A-11)
1 /#_;I t3}Z

This approximation is rcasonable typically for |p/t] > y, = 5-
Notice the form or (A-11) is in agreement with our general
result in the text. Dropping factors of the order of unity,

(A-11) gives

3
r.s/2 1 > 2 1
la, !« (g2 —377 > for t 2 T, 2 =~ (A-12)
! Y (Tt) 1 0
At Tl’ the ratio of this background contribution to the pole

contribution is given by

1! r (A-13)

where [ << E, was used. Take the example of a .narged pion.

It decays into the pv state. Here

-23

E, = m - m, = 34 MeV = (2 x 10 sec)-1

r= (3108 sec)’t, and g - 10°



|.)
" "1 14 -2
hoody £ NI R ! HU ! SeC. 3 this monment R 1o
fo

Due to the eaponential fall-off{ of the pole term and the
372
t fall off of the background, after a certasn lony time
interval has clapsed, ® wi1ll eventually be conparable to

unsty.  Bewvond thi< poant, say t = T, the barhground con-

Tribution will guildly domainate. Mabang use of T oo b,
PVU3s aad oV 1) dead to
T, ; in (;ﬂt . ; In(¢ In ;E) . 1A-13)
For 4 charpged paon,
I, 1g0/° . {(A-15)
-90 10739,

At thas 7, the amplitude is Jown by ¢

For t -« Tl‘ one can expand (A-5) and (A-2) in powers

of ¥ = p/t. Using the ldcntityln

. 2
erfly) = :E (Y., (A-16)
we¢ arrive at
pnid 81/2
ate) - a fty ¢ a, () .1 - zmﬁ =1 . 2777 el St
. 1 " Ve
¥

(A-17)

in turn as t o+ i

Q) i% taj? /= 133 . (A-18)
t

Moded 11.

Constder the parameterication

rik) = K2 (A-19)

This will lead to the form of the Lee model, provided

y - 74
¢ =b+28 and bo=Be T, (A-Z0)

where B 1s a parameter chosen to be real and positive. For

the complex variable z, {(A-19) can also be written as

5 . gt/?

z -
£(z) = — T\ L ANEN S

(A-19a)

The (k-b)-factor so specified gives rise to a "virtual state”
-inf2 .. . .

at L »e B. Since we are interested in the -esonance de-

cay problem, we will push this virtual state far away from

the real axis. So whenever needed we will only specialize

to the case

RCE . (A-21)



for pre-ent T, (31 leads to and define
T N VT ST ST A (00 Aty s oan (1) s oa, (€] (A-20)
TR - A (b2 1 1 ! 1 ;
. 2eibibelty o b oA )
WL PR Y8 S R S P FD (\-212) where 2
o ‘ v T e Mt 21h
.alu) - ‘_[ 5 s 1o 37T db
- « (kY-kp) LR 4
ur 9 0
- [ 38
© 2k 28 24k
. 1/ J](f)'al,,f (’3 LR R 3 - gidk
.’{lo e e (B e BT - - !).*.ga; k‘-k‘;
TR B (!.“ e N e BN} 17y i-7% - -
O G e R AR A iy, Tk
and 4y (e s=I e 9 T e 5774 )dk
- - (k'-l;’) kik-b} Rk
(A 23)
This esprension can he tearitlen a- from {A-0) and {(A-9),
p P, 172
. « 2t o {4t v JHITTiNE di , . 2
veloow s L S A l] N X 1 agit) - ';‘i(l « cptue? Y oerfcipsty - Sp_//El . EASIT)
0 (e B e 2500 0 ¥
YA L. »
(A 23 shere p s ¢ t "'h( e et /41-,”’.
) 0
1 oagfeeacni with the general forn of (25, for a, tera, w=e use n!cnhh‘“
fram 34, for the present case the pole term 1s piven
- X . .
Yy I rfg”"'- dr o« 63 erfetdat) {A-28)
0 T (ieay va
Ryocothety R ..
A 'i! e O Tt (A 25) Te leading order in  /kyi. 1t paves
o i, 2, .
To evalaate 4!-:27. we afite nln) -'p- cP erfc(p/t} . (A-29)
L ohedd N 2 o R R
k "’-‘b' e 1 L% tor "I‘ ters, again te leading order an ‘/in . We write



P
-t

‘1“ - .jg'if I ~rt { \l L 11 +di
‘{AU b~y 9., i'-ka - onv
N 2 2
. H-‘Q [!¢p t erfepsT) :ep)! erfoip ¢T3 1A-30y
(b¥ep®} P 11 1 ‘

-/ /4 'y
where & « ! /'h ) c’ / Hx’“. Combining (A-27), (A-29) and

M -

i ¥ - —
|:'!‘ * ;‘[‘Jp'f‘licp t crfc’pfl) . Zp' 2l
Yh:" : Z
o DL 1P erfeipety - L eP Y erfeipst)
T 3 n p 1
(h¥ep™) 1 y

{A-31)
Substituting ‘A 10y anto (A-313, to lecading order an 1/t onpe

finds

! LS (A-32)

we assume, a4 discussed ecarlier, B iO' Dropping a factor

of the order of unsty (A 32) gives

>

. r.ss2 i . ¥y
LA (] - T wpa . for ¢t 2T, - . LA-33)

1 N () T 1

.Y
this t= sdentical to the result of zodel 1. Apain Tl 10 a

At this moment R . l5l’.
For t -~ ?1. from (A-18), [(A-25) and {A-31) we arrive at

At~ - 4t ART .o S IRV Ly
Vo u

This leads to
Q)
and
Q)

as t

1

.0,
2
Se3t g, e Bt

(A-35)

(A-36)
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Figure Captions

The countour for the al(t) integral in (23).

Contours defining the integrals (34) and (35),
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