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ABSTRACT , 

Earth penetration, design. and hardening of structures t o  explosive or 

earthquake-induced ground shock .effects, rapid excavation, and -- in s i t u  pre- 

paration of coal, shale, or geothermal deposits are representative problems 

in which accurate constitutive descriptions of the geological medium are 

required to provide meaningful predictions. The rock o r  rock masses involved . 
undergo complex, f i n i t e  amplitude deformation during I t h e  process of transient 

amic loading, and \ 

normally used t o  provide much of the necessary data base. Strain rates ty-pi- I 

1 5 c a w  range between 10 /s and 10 /s in the problems of Interest, however, and 

. further studies are required t o  determine the iqor tance  of ra te  dependence 

Sn the mechanical constitutive behavior of rock. Material response at the 

ated with impact .generated s t ress  waves 

en about'10 /s t o  10 /s can be achieved* 

er  s t ra in  rates can be inve 

where controlled s t ra in  rates b 4 7 

shock wave, ramp wave, and tensi le  fracture studies. Experimental results on 

s ' a e  select crustal s i l i ca t e  and carbonate rocks show that  s t ra in  ra te  depen- 

dence and the processes of phase transformation, compressive yielding, and - 
- -  .- - , 

fracture are important features in the dynamic constitutive response. 
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INTRODUCTION 

There are a. number of pressing engineering and geophysical problems in- 

f i n i t e  deformation of rock and'rock masses. An interesting 

and representative example is a borehole dril led into a geological formation 

which i s  packed with explosives 
. .  

n t  medium for  the.purpose of -7 i n  s i t u  resowce recovery: The explosive 

e rock near the borehole perimeter and the i n i t i a l  

e on the order of 5 GPa. The disturbance is propa- 

gated away from the borehole as a large amplitude deformation wave which 

attenuates w i t h  radial  distance, eventually reaching a level  for  which material 
. .  

response i s  purely elastic. Wave propagation and attenuation t o  th i s  level  

is complex and depends on the dynamic material response of the zone affected. 

Such response can involve compressive shear yielding, phase transitions, and 

tensi le  fracture. 5 I Strain rates typically'range between about 10 /s during 
1 early time response to about 10 /s during l a t e  t h e  response. 

The calculation of an event such as the borehole detonation problem 

requires constitutj-ve models which accurately describe the dynamic deformation 

of the rock medium involved. 

' these models is generated w i  

Much of the data base currently used t o  develop 

it is  becoming recognized that such data me  not sufficient because of pos- 

y of rock deformation and dyn testing methods 

m u s t  be employed t o  supplement quasi-static testing. 

. Planar impact techniques have achieved some success i n  t h i s  regard. With 

planar impact methods controlled stress waves wi th  loading strain rates  bet- 

4 7 .-ween about 10 /s t o  10 /s can be generated and used t o  investigate the response 
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Ln t h i s  paper, experimental methods currently used t o  conduct and analyze 

experiments w i l l  be described. Some recent results on select  
.. 

rocks w i l l  be presented t o  i l lus t ra te  the 'various methods. 

results relating t o  s t ra in '  ra te  dependence. and processes o f  dynamic yielding, 

Lastly, some 

e, and phase trans during kock deformation w i l l  be considered. 

EXPERlMENTAL METHODS AND mPICAL RESULTS 

The general method for  ing s t ress  waves by *act loading is  i l lus -  

trated by the particular experimenth assembly shown schematicaUy i n  

Figure 1. A projectile, Ge l l ' ed  by a l ight  gas gun, i s  allowed t o  impact . 

the target assembly containing the rock sanrple. An impactor material, with 

known mechanical properties, is  mounted on the face of t h e  projecti le and 

provides the i n i t i a l  input stress pulse. This pulse propagates through t h e  

, rock sample and evolves according t o  t h e  material characteristics of the t e s t  

e selected so that  a condition of uniaxial 

s t ra in  persists during the time of interest. Material response (usually s t ress  

or par t ic le  velocity) is subsequently measured a t  sdme Lagrangian (material) 

. point downstream from the -act interface. Velocity interferometry"' ' i s  the 

experimental technique i l lustrated i n  Figure 1. Alternatively, such methods 

e t i c  par t ic le  velocity gage,s"' or quartz P I  . asmanganin 9 

P I  gages may be used. The entation sele on experimental 

requirements and properties of the material und 

Planar impact experiments are not llmited t o  compressive, step loading 

configurations, Methods have been developed t o  achieve s ta tes  of tensi le  

.---stress and t o  control the ra te  of s t ra in  during dynamic campressive or  ten- 

si le loading. These methods w i  be discussed subsequently. 



The wave profiles measured i n  planar impact experiments contain consider- 

rmation about the dynamic constitutive properties of the rock under > 

t es t .  Frequently the dynamic stress-strain response must be determined from 

the wave profile data t o  acquire the constitutive property information 

required. 

reviewed . 
The methods available for  achieving t h i s  end have been recently 
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Compressive shock waves: The term shock wave here refers t o  the b p u t  

stress pulse only. 

achieved In st ress  wave studies a t  the amplitudes of interest  here ( H 0-5 GI%). 

The necessary experimental br&gement provides for  nearly instant aneous loading 

at  the impact interface t o  some predetermined stress amplitude. 

-actor plate  is used so that  the sample is  subject t o  subsequent s t ress  

unloading within the time that  conditions of one-dimensional s t ra in  are maintained. 

By this method, the sample is subject t o  a single dynamic s t ress  loading and 

unloading cycle. Results obtained from experiments conducted in th i s  manner 

on O a k h a l l  limestoneL6' are shown in Figure 2. The input profile was a square 

wave. Subsequent wave profiles were measured in separate experiments a t  

increasing distances from the impact interface. 

wave structure during both loading and unloading vividly i l l u s t r a t e  complexity 

The conditions required t o  sustain a shock wave are seldom 

. -  
Usually-a thin 

Features which evolve in the 

*in constitutive response of t h i s  rock type. 

Compressive ramp waves: When direct  impact such as that  i l lustrated i n  

Figure 1 is used and near instantaneous loadhe  is achieved, it is  d i f f icu l t  

t o  assign a loading ra te  or s t r a  

such kmwledge is desired t o  model the material or t o  correlate with lower 

ate t o  the dynamic experiment. Frequently, 

._--strain ra te  experiments. Methods for controlling the ra te  of s t ra in  in planar 

One technique is t o  precede the rock sample impact experiments are available. 
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. .  
(in F i g b e  1 )  with a predetcllmined t 

e las t ic  properties of fused s i l i ca  are such that  an i n i t i a l  input step wave 

fused SjJica. The nonlinear _*  . .  . “  

spreads into 8 ramp ,wave during propagation thraugh the fused s i l ica .  

rise time of the ramp wave ‘dipends on the distance propagated. 

ramp wave is used a s ’ th  

can be controlled quite accurately. 

experiments on Blair d 

s t ra in  ra te  achieved i 

of magnitude below that  usually occurring i n  direct  impact experiments. 

The . .  - 
When such a 

., 
nput t o  t h e  rock spechen, the r a t e  of straining 

Particle velocity profiles obtained from 

od are shown i n  Figure 3. m e  

, 

,eE7’ by t h i  

se t e s t s  was 3 x 10 4 /s, nearly two orders 

._ Tensile Waves: Planar *@&t methods can also be used t o  generate.states 

of tensi le  stress. Dynamic tensi le  loading is  achieved through the inter-  

action of two opposing relief waves within the test specimen. The production. . 
and timing of such re l ie f  waves is accomplished through choice of dimensions 

.. and mechanical impedance of the materials selected for  the -actor plate  and 

window plate backing the rock simple. 

- Interaction of the re l ie f  waves results i n  both forward and backward 

facing tension waves and, if the tensi le  strength of the rock is exceeded, 

.corresponds t o  the i n i t i a l  compressive wave transmitted through the s q l e  pr ior  -. 

t o t e n s i l e  loading. The reduction in part ic le  velocity and wave structure 
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. 
between about 0.7 and 1.2 ps carries t h e  information on maximum tensi le  stress 

. 
between about 0.7 and 1.2 ps carries t h e  information on maximum tensi le  stress 

. .  
r e  during the dynamic fracture process. 

velocity profiles corresponds t o  reverberations of 

Subsequent 

s t ress  waves trapped 'in the sample piece separated by the fracture process. . .  

. DYNAMIC RESFONSE OF ROCK 

Wave profiles measured in  planar impact studies such as those shown in 

es 2 through 4 sugg a remarkable complexity i n  the dynamic behavior 

i n  planar impact studies such as those shown in 

s t  a remarkable complexity i n  the dynamic behavior 

of rock. It is  clear that  models developed t o  describe such behavior m u s t  . .  
accurately describe the processes of yielding, fracture, and phase transit ions 

occurring i n  the dynamic compression process. .. 

Dynamic yielding: Yielding and subsequent flow during uniaxial com- 

pressive loading of rock represents a deviation from e las t ic  response and pro- 

vides a mechanism fo r  dispersion of the wave prof i le  and dissipation of energy 

during the propagation process. 

must be treated with care i n  the constitutive modeling. 

- 

It is, therefore, a material behavior which 

\ 

Blair dolomite is a representative competent c h s t a l  rock which has 

. received considerable attention regarding its compressive response. Both 

r7,lOI 
quasi-static uniaxial s t ra in  compression* studies'g1 and plsnar impact studies 

- at several rates of s t ra in  ucted on t h i s  rock. Comparison of 

quasi-static compression ( 'C - lo-4/s) 
nces both in the  yield stress level  and 

ock compression ( 

results indicate signif 

flow stress subsequent t o  yielding. A yield s t ress  of approximately 0.25 GPa 

is measured i n  the quasi-static experiments. 

of about 2.5 GPa is achieved before yielding proceeds; nearly B factor of ten 

Under shock load-, a s t ress  ' 

. -__ 
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strength of crystalline dolomite. 'lo' Ramp wave studies have also been con- 

4 gure 3) and loading s t ra in  rates of about 10 /s, 

nearly two deca 

wave results we%e found t o  be in  essential  agreement with the ear l ier  shock 
. .  

ults and s t i l l  diffe  if icantly from the quasi-static results. 

The compressive s 

2 which dynamic response relaxes t o  quasi-static response is  between about 10 /s . .  
* 3  -arid 10 /s. 

Dynamic tensi le  fracture: The process of dynamic fracture is not instan- 

taneous but has been observed t o  depend in  a complicated way on t h e  peak tensi le  

s t ress  achieved and the ra te  a t  which the material is carried into tension. 

In  Figure 4, 

tensile fracture experiments conducted on Arkansas novaculite subject t o  planar 

impact with a thin disc I of PMMA (polymethylmethacrylate). 

measured a t  the bzck interface between t h e  novaculite and a 

material. Through an impedance 

(pullback wave) can be used t o  d 

C8 3 

ar t ic le  velocity histories' were shown which were obtained from 

The profiles were 

laser  window 

ne the stress-time history in the nova- 

Such s t ress  time histories cor- t e  adjacent t o  the FMMA window material. 

nding t o  the par 

The stress histories shown in i t i a t e  a t  

through the maximum tensi le  s t ress  achieved and conclude upon arr ival  of the 

first reflected wave from the d 

indicated in FQke 6 . &'~~~e~tnaximUm .. '.. t ens i le  s t ress  achieved i n  the  damage 

stress level, continue 
i 

. .  - -- . 

alculated from the i 
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arr ival  of the first reflected wave assuming zero thickness of the damage zone. 

The s t ress  profiles i l lus t ra te  several f d x r e s  pertaining t o  the dynamic 

fracture process : 

of the wave out of the damage zone, (2) the maximum tensile s t ress  depends 

on the rate  of tensi le  

the tensile stress pul 

loading or the m 

(1) tensi le  s t ress  attenuation occurs during propagation 

tensile s t ress  achieved during i n i t i a l  tensi le  loading, 

.. 
ness of the damage zone. * 

It appears that  the dyrhnic fracture i n  b r i t t l e  material i s  a gradual, 

rate-sensitlye process and there are indications t h a t  the Griffi th cr i ter ion.  

for f’ra6ture may not be s t r i c t l y  applicable a t  the high loading rates achieved. C83 - 

Calculations have shown that  a sinrple ra te  independent tensi le  fracture cri terion 

Models based on CUI .. is inadequate ih modeling ‘the dynamic fracture process. 

B contlnuum description of fracture nucleation and subsequent accumulation of 

void volume or damage, 

observed response. 

however, have had some success i n  predicting the 113,143 

mase transitions: The influence of phase.transitions i n  calci te  rock 

has been found t o  markedly increase the complexity of the constitutive response 

in th i s  mater id  as i lexi ty  of the .wave prof i le  structure 

Both the calci te  I-II and asured i n  Oakhall limes hown i n  Figure 1. 

11-111 transitions are active i n  producing the t o t a l  response 

first break in  t h e  load 

release profile are produced by onset snd reversion of the calci te  1-11 transi-  

profile and the rarefaction shock wave in the 
.. . .  

--.-tion. A study of t h e  Oakhall limestone results has shown that  the stress- 

s t ra in  response through the I-II transit ion is  nonlinear and reversible t o  
\ 

. .  
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approximately 2.0 GPa;  consistent with a reversible displacive polymorphic phase 

change.. C63 

The calcite 11-111 transition in i t ia tes  under dynamic loading at  a stress 

approximately 2.0 GPa;  consistent with a reversible displacive polymorphic phase 

change.. C63 

The calcite 11-111 transition in i t ia tes  under dynamic loading at  a stress 

of appr0ximatel.Y 2.4 GPa is  responsible for  the more subtly loading and _ _  

release structure t h e  uppe 

dynamic 11-111 transit ion i s  more characteristic of a slower, reconstructive 



. 
and displays a r i e n e s s  in  constitutive response tha t  few other materials can 

equal. 

rock deformation and preclude the use of quasi-static models in many dynamic 

applications. 

yield, and dynamic fracture must also be incorporated t o  obtain a complete 

It is becoming clear t ha t  strain ra te  effects cannot be ignored i n  

Material processes such as phase transitions, compressive 

constitutive description of rock behavior. . 
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FIGURE CAFTIONS 
. .  

Fig. 1 Plap-ar impact target configuration including impacting pro Sect i le ,  

d holder assembly, and near target velocity inter- 

ferometer optics. Target . .  configuration and interferometry tech- 
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