
v

UC 15andUC-32

Issued: December 1976

A Self-Patching Firmware Program

by

* Luciano Stanchi

*LASL Long-Term Visiting Sta'f Member. Euratom Joint Research Center,

Ispra, Italy.

seienliffic laboratory
of the University of California

LOS ALAMOS, NEW MEXICO 87545

i \
ux\ Adirmalive Aclion/Equal Oppcttunily Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

CONTRACT W-T40S-EN3. 36

Reference to a company or product name in this paper does not imply
approval or recommendation of the product by the University of California
or the US Energy' Research and Development Administration to the exclusion
of others that may be suitable.

Printed in the Untied States of America. Available from
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road
Springfield. v \ 22161

Price: Printed Copy S3.5G Microfiche S3.00

fur ilir •rrvrscv r«ntplrir«««*. «• uwfylam at

ha i i i . u » *Butd KM infrmf*

A SELF-PATCHING FIRMWARE PROGRAM

Luciano Stanchi

9w I ' M * SUM
Rnnrch ••# Ctmk
Cfcm |SSj|fc3|SSM.
MtcBti l iMtsn. at

ttfm

Ml*
»or

>f<H
>Dt

tta
•unii). ttf*m of in

M WftlMl «f a«t
ptnorM Smbme. a*

w i t

S*s>tl
it*

M Mi
MO

rw<.

*•

I'M)
*MH
oJ
V b i
at

*n

• u

»nf

• a
••M
MM
**«

Ht

am*

uhr
So

w * .
M «
. *
smn

Mr

of v

n ^*i
•»«•>**»

Mln i
• • > to

i t

oi
XV
e»
»*1

I M

ABSTRACT

A method of branching to an auxiliary program without any hardware
or software modification at the tine the auxiliary program will be writ-
ten is described. Suitable statements in the mail prograra arc already
prepared to accept a future prograo that will be written in machine
lAnguatK. The main program is stored as firmware in PROM ncraory while
the auxiliary program is ioadttd Into RAH acaory. The ctcthod is described
for the Intel 8080 microprocessor but can be generalized for any nicro-
proctaaor or miniconputer that uses ROMs or PROKB.

I. INTRODUCTION

Systems baaed on microproceasori normally have

thoir program stored in firmware (ROMs or PROMs).

Modifications of the program due to new requitreacnts

arc normally awkward. In minicomputer practice, on

tho contrary, it is quite easy to add a naw part

branching to an unused block of memory, if any, be-

cause they normally have provision to alter core

memories) by front panel operation.

!t should be aniasEing to have the sane possibil-

ity with microprocessors but, unfortunately, read-

only memories cannot be partially sodified to insert

tho branch instruction and must be totally tepro-

granmed. In case of R0» no possibility is given.

In case of PROK the meaory can be utilized with the

onerous price of reassembling conplrtely the program

with erasing and successive rewriting.

The problem doserves a Bore accurate attempt tc

search for a general solution. A simpie method of

providing an easy nodification avoiding the need of

changing the read-only memory (ROM or PROM) should

be highly desirable.

ROM: read-only memory.

PROM: programmable read-only memory.

RAH: random access memory.

A haflware approach which provides sooo aodifi-

cation in the circuitry for skipping unwanted

of the prograo and branching to RAM neoorios by

ncana of a 5>rograa interrupt has botT. described.

Here a software method that uses sono codes ir.

tho ROM to provide tho possibility of a future addi-

tion or ;x>dlficatio?) of the $>rogra« is prospnttrd.

This program has boon developed for a systein

based on the Intel 8080 micropro- -ssor, but the

concept can be generalised with soae rearrangement

for use with any device. Therefore, the following

will describe the prograe that has been dcselopeci

for a particular instrur.«nt, hoping ti'it it will te

useful for other designers that will conceive sys-

tems basec*. on any firmware program.

II. CEMERAI, DESCRIPTION

The system has been outlined in a prccodjn*;

report. A more detailed description can bv found in

Ref. 3. The purpose of this report irs to enhance th«j

part of the progras concerning the statodt-ntu used

for "{Hitching" Km firmware as an iteia of gcsiosii!

application. For ihc sake of clarity a short de-

scription of the coeiplete c(tuit>p«i>t ia first pr*-

sentod so thti the p'.'oblea is properly fraacd.

The instrument is olcroproccissor-basod equip-

ment that operates a continuous monitoring of efflu-

ents frott a nuclear racility. Detectors send data

to the "raicroccmputer" via suitable analog chains.

The CPU (Central Processor Unit) evaluates the data

and take* actions accordingly. During normal opera-

tion the instrument is only watching at the effluimt

without taking any particular action. Only in case

of alarm due to excessive radioactivity or malfunc-

tion discovered by the self-diagnosing capability

does the instrument carry out sose intervention.

In the routine operation it performs only an evalu-

ation that is expected to be within the prefixed

limits. Several variables are accessible to the op-

erator and stored in a RAM oesory. The program is

stored in a 4k byte-PROM taeaory.

The instrument utilizes an Intel single-board

confuter type SBC 30/10. PROM or ROM neoories can

be asseatiled on the board up to a total of 4)t by ten,

and « Ik RAH is already provided by the manufactur-

er. Serial and parallel input/output assembled on

the board are well matching the necessity of the

uysteo.

The instrument has son* degree of complexity

and can presumably reveal sone new requirements wtwm

the facility will be fully operated. Por that pur-

pose a means of easy codification of the program

has been conceived.

III. THE AUXILIARY PROGRAM

Ttut main program has been obtained by means of

a PL/M compiler that operates on a source program

written in PL/K language. The program has tweet de-

veloped as a series of declarations followed by some

executable statements and a series of procedure*

that are called by program interrupt. The concep-

tion is to leave the processor in HALT condition

waiting for external interrupts mainly due to pulses

related to the radioactivity of the effluents or to

clocks determining the various phases.

The interrupts will call the different proce-

dures that will automatically perfona the desired

acticn. Some procedures are connected to the inter-

vention of the operator via a keyboard.

One ot these procedures '.hat can be called by

the operator typing "OPER" on the keyboard or simply

the initial "0" is the object of the present report.

This procedure will allow the operator to writs an

MAIN
PROGRAM

(ROM)

AUXILIARY
PROGRAM

(RAM)

EXECl

INT El

OP
PROC

ITION

RUPT

ER
•DURE/

/

\

EXECUTABLE
CODES

i
INPUT/OUTPUT
INSTRUCTION

(IF ANY)

I
DATA

PROCESSING
(IF REQUIRED)

• t

ADJUST
STACK

OR STOP

Pig. 1. Pictorial show of the auxiliary program
operation.

auxiliary program that will be stored in the RAM olf

the singl«-board computer. Up to Sll bytes can be

written by the operator. When tlvt acquisition is

terminated, the operator type* a slash (/) and 'the

auxiliary program in automatically executed.

Figure 1 shows schematically the operation.

The OPER procedure acquires the auxiliary program as

it will be described. Then, the auxiliary program

is started and performs what it is instructed to do

by its executable codes. Input/output and data pro-

cessing arc performed if requested. The end of the

program can be either a atop or a return to the main

program, havin? suitably loaded the stack before re-

turning.

This auxiliary program can be a test program

written for the setup of a future addition or a

small modification of the hardware that .Joeo not

affect the main program operation. It can also be

used to test some parts of the hardware during the

life of the instrument with the purpose of ascer-

taining the circuit behaviour.

More generally the auxiliary program can be

considered as an intcgratinq part that can b* oper-

ated independently or in conjunction with the main

program, having the sole difference of being stored

into RAM instead of PROM (ROM) aa for the main pro-

gram.

IV. OPERATIVE FEATURES

The operator types a series of hexadecimal

codes corresponding to the bytes in machine lan-

guage. The Intel codes are referred to, but any

other microprocessor will behave similarly. It is

quite generally accepted practice in the micropro-

cessor operation to write codes in hexadecimal form.

In effect the hexadecimal form is more synthetic

than octal for* and well matched to 8-tit bytes.

Unfortunately, input/output terminals are based on

ASCII code that is not particularly suited for hex-

adecimal form.

The main program allows the operator to type

the hexadecimal digits consecutively or grouped by

bytes (two-hex digits) intercalated by spaces, if

desired, for better readability. The main program

simply ignores the spaces as well as the carriage

return and line feed so that the operator can write

the program using the architecture that he likes,

e.g., with lines of 16 adjacent bytes as iw'e by

the Intel compiler or with lines of 16 or. 10 b.'tes

with spaces.

If the operator presses accidentally a key dif-

ferent from one of the 16 hex digits (& to F) the

program types immediately the message "ILLEGAL

CHARACTER•" and there is no store into memory. The

program can be isaedlately resumed starting from

the last correct byte.

If the operator recognizes a wrong code in the

byte that he has just typed, he can go back of one

position by pressing a period { .). This will

allow the rewriting of the wrong byte over the al-

ready stored wrong code. Pressing repeatedly the

"." key can b« used to go back of some bytes to re-

trace a preceding wrong code. All the successive

bytes have then to be rewritten.

When the series of codes constituting the aux-

iliary program is finished, the operator types a

slash, as stated, and the program is inaediately

executed. The starting address of the program has

been assigned by the compiler at the hexadecimal ad-

dress 3CF0. The source program only assigns the

maximum length of the array.

V. DETAILED DESCRIPTION OF THE PROGRAM

Even if the section of the main program dealing

with the acquisition of the auxiliary program is

self-explanatory because of the contents generously

inserted between statements, a minute guideline is

reported here. To understand this chapter some

knowledge of PL/M language is necessary.

Two procedures are used for the acquisition and

start of the auxiliary program:

1) IB (input byr.e) which acquires the ASCII

characters; and composes them two by two into bytes.

2) OPER which forms the program assembling the

bytes in a suitable array naned OI-ARRAY. The call-

ing of this procedure is made by the operator typing

OPER (or simply O> plun CR (carriage return).

The two procedures are reported thoroughly in

Table I and Table II from the part of list 1 of the

compiled program that reflects the source program.

The OPER procedure (Table I) sets a pointer S

for the array of bytes to be loaded. S starts from

0 and is incremented after the acquisition of eac'n

byte. The call of the procedure IB is simply made

by the statement "OPARKAV(S)»IB" contained in line

774. Dp to Sll bytes are allowed so that the last

S can reach the value of S10. If this value is ex-

ceeded, there is a call to the "Message 17- (KE17)

that warns the operator, typing "STRING TOO LONG."

The operator must stop in this case and reconsider

the program. There is no protection beyond this

limit: the variable S is ntill incremented and the

operator can invade the part of memory assigned to

other variables. Note that S-511 is already too

long because liic compiler assigned the address of

OPARRAY((9)*511 to another variable. As a matter of

fact, OPARRAV starts at 3CF0 and goes up to 3CF0+S10.

If S-511 (Hex IFF) the obtained value is 3CF0 +

IFF • 3EEF and this address is assigned for a vari-

able in the following "PULSES" procedure. Thus in

case the operator receives the warning of exceeding

length, he must at least go back of one byte before

typing the slash that fixes the end of the acquisi-

tion.

l:
007A? 1
00763 It
00764 1
00765 2«
00766 2
00767 ?.
0076* 2
00769 ?!
00770 2
00771 2S
00772 2
00773 2
0077* 2
00775 3
00776 3
00777 3
00776 3
00779 2!
007*0 2
007*1 15
007*? I
007P3

007*5
007*6
007*7
007ft*
007*9
00790
00791
0079?

TABLE I

OPES PROCEDURE

/ • ••••••»•••••«••••••••••••••••••••••••••••••••••••• • /

/•»*•/ OPER« PROCEDURE!

/•OPER PROCEDURE. ALLOWS THE OPERATOR TO WRITE AN F«ECUTABLE
PROGRAM IN MACHINE CODE. UP TO Sll BYTES ARE ALLOWFD AND THE
PROGRAM IS TERMINATED BY PRINTING A SLASH •/•••/

OCL OPARRAYlSll) BYTE I

S»0*
DO MHILE 1>OI
OPARRAV(S)«IR< /"FIRST S* S»0»/
IF S«S1I THEN /»LAST St S»510»/

CALL P<»CRI.MEl7tLENGVH<ME17MI /'STRING TOO LONG*/
S*S*U
EN0»

END O^ERI

/•OPER HAS AN INFINITE LOOP THAT IS INTERRUPTED BY TYPING
A •/•. THIS CAUSES A JUMP TO 3CECH WHERE THE OPERATOR PROGRAM
«lLL START. THE OPERATOR PROGRAM I IF NOT AN INFINITE LOOP
ITSELF* WILL RETURN TO PROCEDURE RECO IF A RET STATEMENT
IS FOUND. OP ANYWHERE IF IT CONTAINS A SUITABLE STATEMENT
FOR JUMP OR FOR ALTERING THE STACK.
ESCAPE FROM A TEST LOOP CAN BE DONE WITH POWER OFF.*/

The IB procedure (Table II) is somewhat more

complicated. In the program it appears before the

OPER procedure. It contains an "Iterative Do" made

of two steps that is used to acquire two ASCII char-

acters and to combine Chen together into a byte.

The character obtained calling procedure IC

(input character-call contained in line 715 of

Table I') is first recognized and then one of the

following actions is taken:

a) If the character is a CR (Carriage Return)

or LF (Line Feed) or 20H (ASCII value for space) no

action is taken. The stack pointer is increased by

2 is for a return from a call and an absolute jump

to the calling point of the IB procedure in the

OPER procedure is performed. This neans that any

one of the above characters is considered as not

occurring, and the string can continue undisturbed.

b) if the character is not one ot the above

mentioned and lies outside of the groups listed on

line 726, the action is again irrelevant as befortt,

but here a aessage "ILLEGAL CHARACTER" is typed.

The listed groups contain the hexadecimal digits

"t" to "9" and "A" to "F" plus two auxiliary

characters that have been chosen as "." and "/" for

the only reason that they are listed in the ASCII

table immediately before the value of "0" and there-

fore can be easily grouped

c) If the character is "." (ASCII value 2E, see

line 733). the action is to go back in the array

assigned to the auxiliary program. This is the only

action that is taken before returning to the calling

point as for point a . The Acquisition is not per-

formed. The useful action due to this character is

used for correcting wrong codes going back of as

many bytes as dots are typed.

d) If the character is "/" (ASCII value 2F,

line 742). the acquisition is terminated. The con-

trol is given to the auxiliary program that starts

at address 3CF0 and is imaediately executed.

e) If the character is a hexadecimal number

(line 744), the "Iterative Do" performs the acqui-

sition and assembly of two characters into one byte.

The characters have to be stored as binary numbers

so the ASCII value must bc> decreased accordingly.

Numbers "0" to "9" contain an addition of 30H in

ASCII value so this value is subtracted. Number*

TABLE II

IB PROCEDURE

00697
0369ft
00699

00691 l:
0069? 1

00694 1
00695 2:

2
2
2
2
2

00701 2:
0070? 2
00703 C
00704 2
00705 2:
00?0(S 2
00707 2:
00708
00 7(19
00710
00711
0071?
00713
00714 ?:
00715 2
007)6 3
00717 3
0071R 4
00719 4
007?0 3
007?l 3S
007?? 3
0!>7?3 3
00»?4 3
007/>5 3:
0fl7?fe 3
00727 ••
007?8 4
007?9 S
,00730 5
00731 5
0073? 4J
00713 4
007^4 4
00735 5
00736 5
00737 5
00738 4S
00739 4
00740
00741
00742 4
00743 4:
00744 4
00745 4
00746 4
00747 4
00748 4t
00749 4
00750
00"»M
00752 2:
00753 2
007S4
00755
00756
00757 1
007SH 1

2
2
2

2
2

4
4:

3:
3

2
2
l:

••••••• •/

/•13*/ IB: PRQCEOURE BYTE!

/• Ifl ST»igOs F O P INPUT B Y T E •/
/•ONE RYTE IS »<~QuIRED MKEN THIS PROCEDURE IS CALLFD BY O=»E».
THE OPERATOR TyPES •/• AFTER THE FINAL BYTE AND OOF" WILL GIVE
CONTROL TO THE FIRST EXECUTABLE CODE STORED AS 0P*R»*Y(0).•/
/•ASCII C H A P A C T F R S ARp TRANSFORMED INTO HEX CHARACTERS.*/

OCL I BYTFI
OCL PINC(?> BfTE!
OCL PALL B-TEI

00 1=0 To If /•START ITERATIVE DO*/

T-^EN

/•OPERATOR «*Y TYPE C R . L P WHEN E H O OF A LINE IS RE'CHEO.
OBVIOUSLY A ?-C"*f»ACTER BYTE CANNOT 8E DIVIDED.*/
/•OPERATOR CAN TYPE A SPACE BETWEEN 3VTES BUT THIS IS NOT COH-
PULSORY. SPACES "ILL BF NEGLFCTED. IP 0PEPAT09 TYPES A WRONG
LEGAL CODE* HE CAN IMMEOIATFLY TYPE * PERIOD <•••) AT THE END OF
THF BYTE TO GO HACK OF ONE «vTE AND COR»ECT TM£

IF <CHAR(I|:sIC)*CR OR CH A P (I » S L F OR CM*B«I)«2
DO I
STACKPTP=SI*CKPTR»2I
GOTO 9*RM| /»THF«E IS CALL I B * /
ENL>3

ELSE not /»START ELSE DO*/

/•ACCEPT ONLY T'<E 16 HEXADECIMAL CHARS *LUS ->.* Ann •/• •/
/•IF THE FIoST OS THE SECOND CHAR OF A HVTE ARE ILLEGAL THERE IS NO
STORE. THEN OPfATO" CAN CONTINUE WITH CORRECT BYTFS*/

(CHA3MO39H AND CHAR(1><MH> OR CMAB«I)>46H

/'ILLEGAL CHARACTERS*/

If CMAR(H<?FM
THEN D0»

CALL PSC"C.*«E?3,LENGTH!ME?3»H
STACKPTP*STACKPTR«?t
GOTO 9ABHI /»THF»E IS AGAIN CALL IB»/

END i
IF CHAR«2FH THEN OOl

5«S-1I
STACKPTR*STACKPT"*2I
GOTO <)6BH| /*THI«0 CALL IB*/
END I

/•THE ABOVE »D0* IS STARTED RY A •.• AND CAUSES Tn GO 8AC<(OF ONE
PLACE IN THE OPARRAY AND TO CORRECT THE WRONG CODF.*/

If CHARx?FH THEN GOTO 3CF0HI /•?FHz*/+,CLOSE PROGRAM*/

IF (CHARI!) >=30H) AND <CHAP(I) <*39H)
THEN PlNC«n«CH»R«n-30HI /*STORF 0 TO 9 Nu««»EPS*/

IF (C"AR<!> >=41H) AND (CHAR(I> <>46H>
THEN PlNC(I)xCMARlD-37HI /*STORE A TO F CHAOS*/

END I

END I

/•FNO ELSE OO*/

/•END ITERATIVE DO*/

PALL * »OL«PINC(O).*»»PlNC(l)l
RFT PALL«

END IB|

/•PALL IS RETURNED TO OPER. WHEN CHAR IS •/* THERF IS NO RETURN.
THE STORED PROGRAM IS EXECUTED IMMEOIATfcLV.*/

"A" to "F" have values "41H" to "46H." The value to

be subtracted for this second group is "37K," e.g.,

A » 41H - 17H - 10. The subtraction i« evident

using binary notation

4111) 0101 9991 -

37H) M i l gill -

19) (TOW 1910

If the iterative do is completed and no absolute

jump is requested, the array of two character* list-

ed as PINC(O) and PINCU) is composed into the byte

PALL that is returned to the call point in procedure

OPES and assembled in the OPARRAY.

VI. USE OF TOE ABSOLUTE 00 TO STATEICNTS

The jumps listed .in procedure IB and explained

at tiie points a) , b), c), and d) of the preceding

chapter are set into effect both for the first or

for the second character (of the bytes) typed by the

operator.

The use of absolute 00 TO statements instead of

00 TO label car. be surprising, tn effect. 00 TO

label is used in the main program as CO TO EXIT

where EXIT is before -declared as label.2'3 The op-

portunity of using GO TO labs! also here should have

been great, particularly for two factsi

1) Oaring the development of the program, the

corrections or additions to the preceding statements

were changing the following addresses so the abso-

lute GO TO statement had to be replaced at each

modification.

2) The program has been tested in two differ-

ent Banners before being assembled into PROK. Plrst.

the prograa has been tested with a software simula-

tion using the INTERPB simulator. Secondly, a soee

conprehensive hardware simulation was perfomed us-

ing the Intel Monitor that compels the addresses

foreseen for the program and for the M M locations

to move. The same addresses unfortunately were not

accepted by the sisulatotr. As a result, c«ch time

it was necessary to pass frost sinulator to monitor

or vice versa, all the absolute GO TO statoMnts had

to bo changed.

The GO TO label should be very convenient, but

unfortunately this is not allowed by the PL/H lan-

guage itself. As an example, if the three GO TO

9E8 were replaced by three 00 TO BYTLAB statements,

where BYTLAB is th<t label far the call IB procedure,

the program should have been written as follows.

First, declaration of the label

DCL BYTIAB LABEL)

Then the GO TO BYTLAB in IB procedure and finally

line 7?4 should have been indicated as the destina-

tion for the jump (GO TO BYTLABi writing

BYr.J=iH: OPARRAY - IB:

This should have been valid if the successive state-

ments: ECL BYTLAB LABEL, CO TO BYTLAB, BYTLAB:...,

were all contained in the group of eracut&ble state-

ments of the proqram or in the same procedure

Unfortunately, the 00 TO statement* are in 18

procedure, and the destination in in OPES procedure.

So the label declaration must be at the beginning

with the series of declaration for the main program.

Sut writing BYVLAB:... in the OPES procedure is

taken by the PL/H compiler as an implicit label

declaration. The label declaration at the beginning

of the prognn fails to bo continuous and is valid

for all the program vith the Hole exception of OPER

procedure, which is the only place where the label

should be used. The compiler assigns a second ad-

dress for the label SYTLAB in the procedure OPER,

but this address is unknown by the external world,

and the GO TO statement in effect does not know

whet,- to 90. The compiler assigns an address

8YTLAB-0 corresponding to the first declaration, and

the GO TO statement is compiled as a JUMP to zero.

But no statements are made in the source program

for the label outside the OPER procedure, where on

the contrary there is the correct statement, but it

is unreachable without a modi fiction of the cow-

piled progran.

Instead of modifying the compiled program, an

absolute GO TO number statement has been written in

the source program, with the consequence of many

tedious replacements.

VII. CONCLUSION

The main program is now located in PROMs and

so became invariant. Even if the PROHs can be

ersoed and rewritten, they are considered as firm-

ware that should normally not be altered. Even

mere, if a series of equal instruments has to be

produced, file program can be stored in Nonerasable

ROMs so that no future modifications are possible.

The self-patching statements are stored as an

integrating part of the main prcjrea. Future

addition:* or n o d i f i c a t i o n s can be performed by the

a u x i l i a r y prograis.

The jssrt dea l ing with t h i s feature la not re -

lat«d In any manner to the e f f l u e n t aon i tor ing *y»-

teio, for which i t has oeen developed so t i n t i t can

be qcnaraliziK). Any program t l u t w i l l h* v r i t t v n

for an Inte l UOSO nicroiirocosaor by means o f th*

S'l/M ian<{u<i<3u can u«e tho l i s t e d procedures and

al low jxttclum; of an a u x i l i a r y program.

(toru g e n e r a l l y , any program using firmware can

U»L- a nimilar s e c t i o n in the main prograa wr i t t en in

any lam)ua<jc- xxi perfore tht* &aae task of avoiding

orasimi and rewrit ing of the IT&Ma.

RETKREtlCES

),. T. Travis , "Patching a Program i n t o a ROW,"
E l e c t r o n i c s Design 2±, Mo. IS , 98 (Sept. 1976) .

2 . L. Stanchi , "Effluent Monitoring Tor Nuclear
Safeguard" t o be published in IEEE Trans, tiucl.
S c i . 2* , Ho. 1 (February 1977} .

) . L. Stanchi and H. Vasey, "Effluent and Sanitary
S«ver Monitors," UOSJ Mnrrjs S c s e n t K i c Laixra-
loty report Uk-6633-M (19771.

4 . L. Sc*n--r5i, "1» ASCII Code Old?" t o be p u b l i s h -
ed .

