LA-663
nfonglL ort UC-15 and UC-32

Issued: December 1976
¥
W

Vv S

A Self-Patching Firmware Program

by

*Luciane Stanchi

*LASL Long Term Visiting Sta*f Member. Euratom Joint Research Center,
Ispra, italy,

o+

los alamos
scientific laboratory

of the University of Californin
LOS ALAMOS, NEW MEXICG 87545

un Affismative Action/Equal Oppertunity Employer

UNITED STATES
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
CONTRACT W-T403-ENG. 36

Ve

Reference 1o a company or product name in this paper does not imply
approval or recommendation of the product by the University of California
or the US Energy Research and Development Admiinistration to the exclusion

of others that may he suital le.

Printed in the United States of Amenca. Available from
Nstional Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Spangficld, VA 22161
Price: Printed Copy $3.5¢ Microfiche $3.00

This copurt man preparvd os an gexvunt of work « wpearrd
by ihe Uaiied Statrs (gveramens Newiher 1he {astad Riates
AL the Usited S1atrs Yoarrg Ssaratch ard Ivunlapment \48-
wn nar ans of 1heir emplovers, mor any of their 108
sulonitastorse. o0 their emplorors mshes amr

VarrEats eupreeor implid or Ssaumes aat fegal liailits o

A SELF-PATCHING FIRMWARE PROGRAM

Luciano Staachi

ry

- NgTCE
Thn repon wes prpussd 43 30 scomet of wu
wosaemd by e Lniad St Gosrramee! Neihes
O Uaied Saier nor 1 United Sisten fann
Rrerarch snd Duvriopar st Admiasinioe, o 12y f
rmployms. & AP OF (AW CORTEMSS.

o e e . amdn any
wRINAT), CUMNTE of LEPpbeS, Of ABCANY $3) epa

nirsge prvatel) cweed nghis

W) o oaEky for (Be KEWK) . cOMgULIM®
o of amy

Pudest o

. of trpeTmnit het 9 o moukd a0t

ABSTRACT

A method of branching to an auxiliary prograin without

any hardware

or softwarc modification at the time the auxiliary progream will be writ-

ten is described.

Suitable statements in the main program

are already

prepared to accept a future program that will be written in machine

language.

tha auxiliary program is loaded into RAaM acmory.

The main program is stored 3s firmwarc in PROM memory while

The oethod is described

for the Intel BO8BO microprocessor but can be gencralized for any micro-
processor or minicosputer that ugses ROMS or PROMs.

1. INTRODUCTION

Systems based on microprocessors normally have
their program stored in firmware (ROMs or PROMs).
Modifications of the program dus to new requivemcnts
are normally awkward. In minicomputer practice, on
the contrary, it is quite easy to add & now part
branching to an unused block of memory. if any, be-
cause they normally have provision to alter core
memories by front panel operation.

Tt should be amaring to have the same possibil-
ity with microprocessors but, unfortunately., read-
only memories cannot be partially sodified to insert
the branch inatruction and must be totally :epro-
grammed. In case of ROM no possibility is given,
in case of PROM the memory can be utilized with the
onerous price of reassenbling completely the program
with erasing and successive rewriting.

The prodlem doserves a more accurate attempt to
scarch for a general saolution. A simpad mathod of
providing an easy modification avoiding the necd of
changing the read-only memory (ROM or PROM) should

be highly desirable.

ROM: read-only memory.
PROM: programmable road-only memory.

RAM: randum access memory.

A hagzdware approach which provides some modifi-
cation in the circuitry for skipping unwanted parts
of the program and branching to RAM metwries by
mcans of a program interrupt has been dascrxbod.l

Here a software method that uses some codes in
the RCM to provide the possibility of a furure addi-
tion or modification of the program s presented.

This program has been doveloped for a system
bascd on the Intel BOBO micropro” "ssor, but the
concept can be gencralized with sSofw rearrangedent
for use with any device. Thercfore, the following
will describe the pragram that has been deweloped
for a particular instrueont, hoping that it will be
useful for other designers that will cusnceive svs-

tems based on any firmware progras.

II. GENERAL DESCRIPTION

The systom has been outlined in & greceding
report.z & more detatled description can boe found in
Ref.). The purposie of this report is to exhance the

part of the program concerning the statelents used
for "patching” the firmmarce as an 1tem of general
rhort do-

application. Yor zhe sake of clarity a

scription of the complote aguipmont is firgt pre-

sented S0 thet the problem is properly framed.

[

-4

The instrument is microprocassor-based equip-
ment that operates a continuous monitoring of effliu-
ents fron a nuclear tacility. Detectors send data
to the "microccmputer™ via suitable analog chains.
The CPU (Central Processor Unit) evaluates the cata
and takes actions accordingly. During normal opera-
tion the instrument is only watching at the effluant
without taking any particular action. Only in case
of alarm dua tc excessive radiocactivity or malfurc-
tion discovered by the sclf-diagnosing capabilicy
does the instrument carry out some intervention.

In the routine opsration it performs only an evalu-
ation that is expected to be within the prefixed
limits.

erator and stored in a RAM memory.

Several variables are accessible to the op~
The program is
stored in a dk byte~PROM memory.

The instrument utilizes an Intel aingle-hoard
computer type S8C 90/10. PROM or ROM memories can
be assemlsled on the board up to a total of 4% bytes,
and a lk RAM is already provided by the manufactur-
er. Serial and parallel input/output assembled on
the board are well matching the necessity of the
gysten.

The instrument has some degree of complexity
and can presunably reveal soms new redquirements whan
the facility will be fully cperated. For that pur-
posc a means of easy modification of the program

has been conceived.

III. THE AUXILIARY PROGRAM

The sain program has been obtained by means of
a PL/M compiler that operates on a $OUICEe Program
writren in PL/K lanquage. The progran has been de~
veloped as a series of declarations followsd by some
oxecutable statemsnts and a series of procedurer
that are called by program intarrugpt. The concep~
tion iz to leavs the processor in HALT condizion
waiting for external interrupts mainly due to pulses
related to the radicactivity of the effloents or to
clocks determining the various phases.

The interrupts will call the diZferent proce~
dures that will autematically perform che desired
action. Some proceduras are connected to the inter~
vention of the operator via a keyhoard.

One of these procedures “hat csn be called by
the cperator typing “OPER” an the keyloard or simply
the initial “O" is the object of the present report.
This procsdure will anoQ the operator to writos an

MAIN AUXILIARY
PROGRAM PROGRAM
{ROM) {RAM)

EXECUTION d
EXECUTABLE
INTERRUPT CODES
| 4
OPER dﬁr INPUT JOUTPUT
PROCEDURE A% INSTRUCTION

{IF ANY)

d
DATA

PROCESSING

{IF REQUIRED)

w

ADJUSTY
STACK
OR STOP

fictorial show of the auxiliary program
operation.

Fig.).

auxiliary program that will be stored in the RAM off
Up to 511 bytes can be
When the acquisition s

the single-board computer.
writton by the cperator.
terminatesd, the operator types a slash (/) and the
auxiliary programs is aytomavically exscutes.
Figqure 1 shaws schesatically the operation.

The OPER procedure acquires the auxiliary program as
it will be described. Then, tho auxiliary program
is atarted and performs what it is instructed to do
Input/output and data pro-
The end of the

by its exscutable codes.
cessing are performed i¥ requasted.
progras can be eithor a stop or a raturn to the main
program, having suitably loaded the stack before re~
turning.

This suxiliary program can ba a test program
written for the setup of a future addition or a
smsll modification of the hardware that Jdoes not
affect the main program operation. It can also be
used to test some pares of the hardware during the

life of the instrument with the purpose of ascer-
taining the circuit behaviour.

More generally the auxiliary program can be
considered as an integrating part that can be oper-
ated independently or in conjunction with the main
prugram, having the sole difference of being stored
into RAM instead of PROM (RCM) as four the main pro-

gram.

IV. OGPERATIVE FEATURES

The operator types a series of hexadecimal
codes corresponding to the bytes in machine lan-
The Intel codes are referred to, but any
It is

guage.
other microprocessor will behave similarly.
quite generally accepted practice in the micropro-
cessor operation to write codes in hexadecimal form.
In cffect the hexadecimal form is more synthetic
than octal form and well matched to 8-Lit bytes,
Unfortunately, input/output torminals are based on
ASC11 code that is not particularly suited for hex-
adecimal form.?

The main program allows the operator to type
the hoxadecimal digits consecutively or grouped by
bytes (two-hex digits) intercalazed by spaces, if
desired, for better readability.
aimply ignores the spaces as well as the carriage

The main program

return and line feed so that the cperator can write
the program using the architecture that he likes,
¢.9., with lines of 1¢ adjacent by%es as made by
the Intel compiler or with lines of 16 or. 10 b rtew
with spaces.

If the operator presscs accidentally a key dif-
ferent from onc of the 16 hex digits {P to F) the
program types immediately the message “ILLEGAL
CHARACTER.” and there is no store into memory. The
program can be immediately resumod starting from
the last correct byte.

If the operator recognizes a wrong code in the
byte that he has just typed, he can go back of one
josition by pressing a period (. }. This will
allow the rewriting of the wrong byte over the al-
ready storsd wrong code. Pressing repeatedly the
“." key can be used to go back of some bytes to re-
trace a preceding wrong code. All the successive
bytes have then to be rewritten.

when the series of codes constituting the aux-
iliary program is finished, the operator types a
slash, as stated, and the program is immediately

erecuted. The starting address of the program has
been assigned by the compiler at the hexadecimal ad-
dress 3CF@.

maximum length of the array.

The source program ovnly assigns the

v. DETAILED DESCRIPTION OF THE PROGRAM

Even if the section of the main program dealing
with the acquisition of the auxiliary program is
self-explanatory because vf the comments generously
inserted between statements, a minute guideline is
reported here. To understand this chapter some
knowledge of PL/M languagz is necessary.

Two procedures are used for the acquisition and
start of the auxiliary program:

1} IB (input byte) which acquires the ASCII
characters and composes them two by two into bytes.

2) OPER which forms the program assembling the
bytes in a suitablc array named OFARRAY. The call-
ing of this procedure is made by the operator typing
DPER {or simply O} plun CR {(carriage return).

The two procedures are reperted thoroughly in
Table 1 and Table II from the part of list 1 of the
compiled program that reflects the source program.

The OPER procedure (Table I) sets a pointer S
for the array of bytes to be loaded. S starts from
P and is incremcnted after the acquisition of ecach
pytce. The call of the procedure IB is sismply made
by tho statement “OPARRAY (S)=IB" contained in linc
774. Up to 511 bytes are allowed so thst zhe last
S can reach the value of 510, If this value is ex-
ceeded, there is a call to the "Message 17" (MEL7)
that warns the operator, typing "STRING TOO LONG.™
The operator must stop in this case and reconsider
the program. There is no protection beyond this
limit: the variable S is still incremented and the
operdator can invade the part of oemory assigned to
other variables. Note that S=51) is already too
long because Liic compiler assigned the address of
OPARRAY (P} +511 to another variable. As a matter of
fact, OPARRAY starts at 3CFP and goes up to 3CFB+51@.
I1f S=511 (H#ex 1FF} the obtained value is 3ICF@ +
1FF = }EEF and this address is assigned for a vari-
able in the following "PULSES” procedure. Thus in
case the operator receives the warning of exceeding
length, he must at least go back of one byte before
typing the slash that fixes the end of the acquisi-

tion.

TABLE I

OPER PROCEDURE

#20PER PRCCENURE ALLOWS THE OPERATOR TO WRITE AN FrECUTARLE
PROGRAM IN MACHINE CODE. UP TO 511 BYTES ARE ALLOWFD AND THE

/oFIRST S: S30e/
/OLAST St S=5300/
78STRING TOn LONG®/

A /%, THIS CAUSES A JUMP TO 3ICECH WHIRE THE OPERATOR PROGRAM

007Ta 12

00755 } /8 0N0000NE0000C00000000000000080RRR000RRRRRONRERRRERS By
00763 1

00764 1 7014%) OPER: PROCEDURE ¢

00765 2

00766 2

00767 2

00768 2 PROGRAM IS TERHMINATED By PRINTING A SLASH +/ 4,9/

00769 2:

00770 2 DCL OPARRAY(S11) BYTES

00771 23

00772 2 5308

00773 2 DO wHILE 1>0%

00774 2 OPARRAY (S)=]R3

0877 3 IF S=5]11 THEN

00776 3 CALL PSCRUJMEITILENGYH(MELITI)E

00777 3 c=5+1¢

00778 3 END?

00779 2@

007R0 2 Enp OVERS

007R) 1

007R2 1 JROPER HAS an INFINITE LNOP THAT I3 INTERRUPTED By TYPING
007R3)

007R4) wILL START, THE OPERATOR PROGRAM (IF NDY AN INFINITE LOOP
oeTRs 1 ITSELF) witL RETURN TO PROCEDURE RECO TF A RET STATEMENY
0aT7Re 1 1S FOUNDs Op ANYWHERE IF 1T CONTAINS A SUITABLE STATEMENT
onrar 1 FOR JUMP OR FOR ALTERING THE STACK.

007”8 1 ESCAPE FROM A TESY LOOP CAN RE DONE wlTH POWER OFF,®/
0N789 1:

onT90 1t

00791)¢ N
20792 1 /8 000a0002000008000000800800800800008000000000000000000 oy

The IB procedure (Tabls II) is somevhat more
complicated. In the program it appears before the
OPER procedure. It contains an “Iterative Do" made
of two steps that is used to acquire two ASCII char-
acters and to coambine them together into a byte.

The charvacter obtained calling procedure IC
(input character-call contained in line 715 of
Table I”) is first recognized and then one of the
following actions is taken:

a) If the character is a CR (Carriage Raturn)
or LF (Line Feed) or 2dH (ASCII value for space) no
action is taken. The stack pointer is increased by
2 &8 for a return from a call and an absolute jump
tu the calling point of the IB procedure in the
OPER procedure is performed. This means that any
one of the above characters is considered as not
occurring, and the string can contfinue undisturbed.

b} If the character is not one of the above
mentioned and lies outside of the groups listed on
line 726, the action is again irrelevant as beforw,
but here a message "ILLEGAL CHARACTER" is typed.
The listed groups contain the hexadecimal digits

“g" to "9” and “A" to “F" plus two auxiliary

characters that have been chosen as “.” and “/* for
the only reason that they are listed in the ASCII
table immediately before the value of "§° and there-
fore can de ecasily groupe..

c) If the character is "." (ASCII value 2E, sce
line 733), the actiocn is to go back in the array
assigned to the auxiliary program. This is the only
action that is taken before returning to the calling
point as for point a . The acquisition is not per-
formed. The useful action due to this character is
used for correcting wrong codes going back of as
many bytes as dots are typed.

d) If the character is "/" (ASCII value 2F,
line 742), the acquiasition is terminated. The con-
trol is given to the auxiliary program that starts
at address 3CF@ and is immediately exacuted.

e) If the character is a hexadecimal number
(line 744), the "Iterative Do"™ perforas the acqui-
sition and assembly of two characters into one byte.
The characters have to be stored as binary nuabers
s0 the ASCII value must be decreased accordingly.
Numbers “"@" to "9" contain an addition of 3§H in

ASCIT value so this value is subtracted. Numbers

00691
00692
0003
00694
00695
0n%96
00687
09698
00699
00700
00701
00702
007603
00704
06705
00706
00707
on708
onTNY
00710
[T XAR
0072
00713
00714
00715
00716
oo717
0071R
on7i9
00720
00727}
00777
09723
00774
on72s
0n72e
onre?
00728
00779
90730
007731
00732
00713
9072
0n73s
00736
00737
00738
00739
00740
00741
00742
007463
00744
00745
00746
onyser
00748
00749
00750
00751
00752
008753
00754
00755
00756
00757
0075A

.

JUNP I WWWWW LW O LW WNNNNNNRNNNNNALI AN AN NN N R A = o -

eliadiadi I I R I PSR VORY S R B P S NP Y B R N R Y N T B S -

TRBLE II
IB PROCEDURE
/K 000000 NB00Y0 0000007000000 0050000080800%00000008080800%8 8y

sel3ey 18: PROCEDURE BYTE1

/e 18 STANDS FOR INSUT BYTE ey
780NE AYTE Is ACGUIRED wrEN THIS PROCEOURE IS CALLFD RY OPER.
THE OPERATOR TyPES */¢ AFTER THE FINAL AYTE AND OPFR wILL GIVE
CONTROLL TO THE FIRST EXECUTABLE CODE STGRED AS OPARRAY(0).®/
/BASCI1 CHARACTERS ARF TRANSFORMED INTO HEX CHARACTERS,®/

OCL 1 BYTF
OCL PINC(2) BYTE?
DCL PALL RvTES

DO 1=0 Tn 11 /OSTART [TERATIVE DD/

/o0PERATOR uAy TYPE CRJLF wHEN END OF A LINE §S REACHED,
0ByIQUSLY A 2=CARACTER RYTE CANNOT BE CIVIDED.e,

/8QPERATOR CAN TYPE A SPACE RETWEEN BYTES BUT TMIS IS NOT CON-
PULSORY. SPaCES WILL BF NEGLFCTED. IF OPERATOR TYPES A WRONG
LEGAL CODEs HE CAN [MMEDTATFLY TYPE A PERIOD (e,+) AT THF END OF
THE BYTE TO GO YACK OF ONE AYTE AND COR2ECT THE ConE,.ey

IF (CHAR(]):=1C)sCR O0R CHAR(I)=LF OR CHAR([)=2¢H T-Ev

Do
STACKPTR=STACKPTIRe2S
GNTO 9.AH} /®THERE IS CaLL [Be/
ENL3
ELSE nog /¢START ELSFE DOe/

/7%ACCEPT ONLY THE 16 HEXADECTMAL CHARS @LUS *,* AND ¢/ oy
701F THE FlesT OR THE SECOND CHAR OF A BYTE AQE ILLEGAL THERE IS NO
SYORE. THEN NPEYATOR CAN CONTINUF wlTH CORRECT 8YTeSey

IF CHMARCIIC2FH OR (CHAR(I)>I9H AND CHAR(IICAIHY DR CHAR(])>66M
THEN DO

CALL PSCR(MEZ34LENGTH(ME?D)53 /*ILLEGAL CHARACTEARS®/
STACKPTRZSTACKPTRS 2}
G6nT10 96RHY /STHFRE 1S AGAIN CALL IRe/
ENDS
IF CHAR=2Em THEN D013
SzS=11
STACKPTR=GTACKPTR 21
GOTO 96B8MI /®THIRO CALL I8e/
ENDS

ZOTHE ABOVE ¢DO* IS STARTED Ry A e¢,¢ AND CAUSES Tn GO BACK OF ONE
PLACE IN THE OPARQAY AND TO CORRECT THE WRONG CODF ,.®/

IF CHAR=2FH THEN GOTO JICFOHS 702FHze/*4CLOSE PRNGRAMS
IF (CHAR(T) »>=30H} AND (CHAP(I) <339H)
THEN PINC(1)=CHAR([)=30MHS /7oSTORF 0 TO @ NUMRERSe/
tF (CHAR(1) >=641H) AND (LHAR(TI) <246H)
THEN @INC(]I)zCHaR(E1=37HY /eSTORE A TD F CHARSS/
END1 7oEND ELSE DOe/
END: /7°END 1TERATIVE DO®/
PALL = ROL(PINC(0)+@)*PINC(1)
’FT PALLI
END 183

7oPALL 16 RETUFNEN TO OPER. WHMEN CHAR 15 /¢ THERF IS NO RETURN,
THE STORED PROGUAM IS EXECUTED IMMEDIATELY.e/

“A" to "F" have values "41H" to "46H." The value to
be subtracted for this second group is "3I7K," e.q.,
A= 41H - JI7H = 1C. The subtraction is avident
using binary notation

414) gs g -

I} ga11 gl1) =

19) P30 1919
If the iterative do is completed and no absolute
jump is requested, the array of two characters list-~
ed as PINC(O) and PINC(}1) is composed into the byte
PALL that is returned to the call point in procedure
OPER and assembled in the OPARRAY.

VI. USE OF THE ABSOLUTE GO TC STATEMENTS

The jumps listed in procedure IB and explained
at the points a), b), c¢), and d) of the preceding
chapter are set into effect both for the first or
for the second character (of the bytes) typed by the
operator.

The use of absolute GO TO statements instead of
GO TO label can be surprising. In effect, GO IO
label is used in the main program as GO TO EXIT
where EXIT i3 before Jdeclared as ubol.z" The op-
portunily of using GO TO labsi also here should have
been griat, particularly for two faots:

1) During the development of the prograa, the
corréctions or additions to the preceding statemsnts
were changing the following addressss so the abso-
lute GO 70O statement had to be repiaced at sach
modification.

2) The program has been tested in two differ-
ent manners before being assembled into PROM. Pirst,
the program has been tested with a software simuls-
tion using the INTERPB simulator. Secondly, a more
comprehensive hardware simvlation was performed us-
ing the Inte) Monitor that compals the addresses
foruscen for the program and for the RAM locations
The same lra‘duaus unfortunately were not
As a result, esch time

to sove,
accepted by thoe simglator.
it was necessary to pass from simulator to sonitor
or vice versa, all the absolute GO TO siatewants had
to be changed.

The GO TO label should be very convenient, but
unfortunately this is not allowed by the PL/M lan-
guage itself. As an example, if the three GO TO
9EB were replaced by three (O TO BYTLAB statemants,
where BYTLAB is the label far the call IB procedure,
the program should have been written as follows.

6

First, declaration of the lakel

DCL BYTLAB LABEL;
Then the GO TO BYTLAB in IP procedure and finally
line 774 should have been indicated as the destina-
tion for the jump (GO 70 BYTLAB) writing

BYT Afi: OPARRAY = IB;
This should have been valid if the succassive state-~
mants: GCL BYTLAB LABEL, (O TO BYTLAB, SBYTLAB:...,
were all contained in the group of erecutable state-
mants of the progqram or in the same procedurc.

Unfortunately, the GO TC statements are in I8

procedure, and the destination is in OPER procedure.
So the label declaration must be at the beginning
with the series of declsaration for the main program.
Sut writing BYJTLAB:... in the OPER procedure is
taken by the PL/M compiler as an impllcit labmil
The label declaration at the beginning

of the program fails to bo continuous and is valid

declaration.

for all the program ‘«ith the mole exception of OPER
proecedure, which is the only place wherc the label
should be used.
dress for the label BYTLAB in the procedure OPER,
but this address is unknown by the external world,
and the GO TO statement in effect does not know
where to go.
BYTLAB={ corresponding to the first declaration and
the GO TO statement is compiled as & JUMP to zero.
But no statements arce made in the source program
for the label outside the OPER procedyre, whers on
the contrary there is the corrsct statement, but it
is unreachable withcut a modifi_ %ion of the com-

The compiler assigns & second ad-

The compiler aasigns an address

piled progrsm.

Instead cof modifying the compiled program, an
absolute GO TO number statement has been written in
the source program, with the consequence of many

tediour replacemants.

VIXI. CONCLUSION

The main progrim is now located I(n PROMs and
Even if the PROMS can be
eraced and rewritten, they are considered as firm—

80 became invariart.

ware that should norsally not be altersd. Even
more, if a series of equal instrumants has to be
produced, rhe program can be stored in nonerasable
ROMs so that no future modifications are possible.
The seif-patching statements ars stored as an

integrating part of the main prcgram. FPuture

addfitions or modificationa can be performed by the
auxiliary progras.

The part dealing with this feature is not re-
lated in any manner to the ¢ffluent monitoring sys-
tem, for which it has peen developed 50 that it can
be qenaralizod. Any progran that will bhe written
for an Inteci GOBO microprocessor by means of the
/M language can uhe the Jisted procedures and
allow patching of an auxiliary progras.

More generally, any program ueing firmware can
use a similar section in the main program written in
any language to perform the sase task of avoiding

crating and sowriting of the FROMs.

REFERENCES

3.

2.

T. Travis, “Fatching a Program intc a ROM,”
Electronics Degign 24, ®o. 18, 98 (Sepr. 1976).

L. Stanchi, “Effluent Monitoring for Nuclear
Safequard” to be published in IEEE Trans. tucl.
Sci. 24, No. 1 (Fehruary 1277},

L. Stanchi and M. Vasey, “DYfluent and Sanitary
Gewer MORILors,.” Lo Alamon Scientific Laktra-
oty report LA-6638-M (1977} .

L. Stanzhi, ~I1s ASCII Cade Ol47™ ta be publish-
ed.

