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ABSTRACT 

An algorithm for finding cross-sectional areas 

of zones in a Monte Carlo transport code is given. 

The method is well suited to problems involving 

thin shells, and includes the capability of check- 

ing for gaps and overlaps. 
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Monte Car lo  codes r e q u i r e  a  p h y s i c i s t  t o  d i v i d e  t h e  space  of 

a  problem i n t o  "zones", i n  which d i f f e r e n t  phys i ca l  cond i t i ons  hold.  

A water  p i p e  being bombarded by p a r t i c l e s  might be  desc r ibed  a s  t h r e e  

-zones,  c o n s i s t i n g  of  t h e -  o u t e r  a i r ,  t h e  p i p e  i t s e l f ,  and t h e  space  in- 

s i d e  t he  p ipe .  These zones could be  d e l i n e a t e d  by g iv ing  equa t ions  of  

t h e  i n n e r  and o u t e r  surf .aces  of  t h e  p ipe .  I n  a  r e a l  problem, t h e  zones 

a r e  much more complicated. There may be  up t o  200 zones d e l i n e a t e d  by 

up t o  100 p lanes  and 100 q u a d r a t i c  o r  o t h e r  type  s u r f a c e s .  Various 

codes have d i f f e r e n t  l i m i t s  on t h e  number and type  of a l lowable  s u r f a c e s .  

TARTNP (4) i s  such a  code. It is  i n  wide u se  a t  Lawrence Livermore 

Laboratory,  being about  t h e  f i f t h  l a r g e s t  t i m e  consumer among Laboratory 

codes. We s h a l l  con f ine  ou r se lves  t o  t h e  s u r f a c e s  allowed i n  TARTNP, hop- 

i n g  t h a t  o t h e r s  may f i n d  t h e  methods descr ibed  a  u s e f u l  a i d  i n  a t t a c k i n g  

s i m i l a r  problems. 

Descr ibing t h e  zones i s  a tremendous t a s k .  I n  TARTNP, t h e  u s e r  may 

d e s c r i b e  up t o  100 p lanes  ax  4- by + cz  = d ,  and up t o  150 con ic  s u r f a c e s  

of t h e  form 

2 ,2 
a(x-xo) + b(y-yo) + c(z-z0)2= k  2 

Then, f o r  each zone, of which t h e r e  may be  up t o  200, a  d e s c r i p t i o n  
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is g iven  i n  t h e  form of "JPB's" which a r e  p a i r s  of  s igned  i n t e g e r s .  

The second i n t e g e r  t e l l s  t o  which s u r f a c e  i s  r e f e r r e d  (e .g .  +6 = conic#6,  

-3 =' plane  #3) ,  whi le  t h e  s i g n  o f  t h e  f i r s t  i n t e g e r  g ives  t h e  s i d e  of 

t h a t  s u r f a c e  on which t h e  zone l i e s .  The s i g n  is  denoted by J ,  and J i s  

p o s i t i v e  i f ,  s u b s t i t u t i n g  t h e  va lues  (x ,y ,z )  of a p o i n t  i n  t h e  zone i n t o  

the '  r e l a t i o n  

ax  + by + cz - < d ( i f  t h e  boundary i s  a p lane)  

2 2 2 
o r  a(x-x ) + b(y-yo) + ~ ( Z - Z ~ ) ~  < k ( i f  t h e  boundary is  a conic)  0 -.. 

y i e l d s  a t r u e  s ta tement .  Otherwise,  J is  nega t ive .  

The problem i s  t o  f i n d  t h e  volume of each zone t o  w i t h i n  some 

t o l e r a n c e ,  say  1%, and t o  d e t e c t  whether any zones ove r l ap  o r  have gaps 

between them. Both of t he se  t a s k s  a r e  d i r e c t e d  toward he lp ing  t h e  physi- 

c i s t  be s u r e  t h e  zone d e s c r i p t i o n s  a r e  c o r r e c t  b e f o r e  spending hours  of 

computer t i m e  on the. run  i t s e l f .  The method must be  of reasonable  c o s t .  

The method used i n  TAHTNP has  been a hi t -or-miss  Monte Car lo  method 

f o r  t h e  g e n e r a l  problem, o r  a d i r e c t  a n a l y t i c  c a l c u l a t i o n  i f  t h e  con ic  

s u r f a c e s  have a common a x i s  of r e v o l u t i o n  and t h e  p lanes  a r e  pe rpend icu l a r  

t o  t h i s  a x i s .  

The a n a l y t i c  method i s  s a t i s f a c t o r y ,  of  course ,  b u t  t h e  Monte Car lo  

method is  n o t .  It  has  t r o u b l e  w i t h  zones,  such a s  a p ipe ,  w i t h  sma l l  

volume b u t  l a r g e  s u r f a c e  a r e a .  
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The method t r i e s  to- check f o r  gaps and ove r l aps ,  which i s  important .  

As 'each  po in t  is chosen, t h e  zone d e s c r i p t i o n s  a r e  checked. I f  t h e  p o i n t  

s a t i s f i e s  none of t h e s e  o r  more than one, an e r r o r  message can be i ssued .  

Any competing method must have t h e  a b i l i t y  t o  d e t e c t  and ana lyse  such 

problems. 

An a lgor i thm f o r  c a l c u l a t i n g  t h e s e  volumes and d e t e c t i n g  gaps and 

over laps  is  descr ibed  below. An  experimental  p reprocessor  and g raph ic s  

package based on t h i s  i dea  has been developed and has proven s a t i s f a c t o r y  

on some r e a l  t e s t  problems, and  w i l l  now undergo f u r t h e r  t e s t i n g  and 

ref inement  ([I!). Shor t  of a n a l y t i c  s o l u t i o n ,  which we b e l i e v e  t o  be 

imprac t i ca l ,  no method can ,solve a l l  problems i n  a reasonable  t ime. 

Therefore,  our  method r e q u i r e s  t h a t  i t  be used by t h e  problem des igner  

i n  an i n t e l l i g e n t  way, wi th  a knowledge of i t s  methods and l i m i t a t i o n s .  

I n  t h i s  contex t ,  i t  seems t o  be  a p r a c t i c a l  s o l u t i o n  f o r  most r e a l  

problems. 

2 .  Overview 

Before g e t t i n g  i n t o  t h e  d e t a i l s  of t h e  c a l c u l a t i o n ,  we d e s c r i b e  t h e  

overa1.l process .  A box, XL - < x - < XIJ, YL 5 y ( YI.1, ZL - < z - < ZIJ, i.s gi.ve.n, 

and i t  i s  d e s i r e d  t o  f i n d  t h e  volumes of t h e  zones descr ibed  byt'JPB"s 

w i t h i n  t h e  box. Some given number (ZNUM) 'of z-values a r e  chosen, e i t h e r  

a t  random from (ZL,ZU) o r  by a s t epp ing  procedure. For each va lue  Z=Z 1 ' 



volume Calculation/Monte Carlo 
Page 4 

t h e  a lgor i thm f i n d s  t h e  i n t e r s e c t i o n  of each given s u r f a c e  wi th  t h e  

p lane  a r e a  Z = 
z1 ' XL - < x - < XU, YL< - y - < YU. A va lue  XNUM i s  given,  and 

t h e  segment (XL,XU) i s  d iv ided  by the  p o i n t s  

X 
k t 1  

= XL + (2k+l)AX/2, k = O , 1 ,  ... XNUM-1, where AX=(XU-XL)/XNUM. 

For each , t h e  i n t e r s e c t i o n  of t h e  volume "below" each s u r f a c e  ( i . e .  

t h e  J = p o s i t i v e  r eg ion )  wi th  t h e  l i n e  Z = Z X = x is  found and 
1' k ' 

descr ibed  a s  a t r i p l e  (+ - 1, y ,y  Here we d e f i n e  f o r  -w < 
1 2 -  - Y, 5. Y2 ; w, 

I n  computation, we use  s u i t a b l e  machine numbers f o r  La. Whether one 

cons ide r s  t h e  i n t e r v a l s  open o r  c losed  is  i r r e l e v a n t .  

.. We s t a r t  by assuming a zone occupies  t h e  e n t i r e  segment (YL,YU) of 

t h e  l i n e  Z = Z X = X Using the  "JPB1's f o r  t h e  zone, we i n t e r s e c t  
1 ' k ' 

t h e  s e t  desc r ibed  by a t r i p l e  ( s , y l ,  y2)  w i t h  the  c u r r e n t  d e s c r i p t i o n  

of t h e  zone u n t i l . t h e  "JPBt's a r e  exhausted. The t r i p l e  used is  t h a t  

( s l , y  ,y  ) a s s o c i a t e d  wi th  t h e  boundary i n  a JPB, w i th  s = sl*J,  1 2  

where J is  t h e  s i g n  (+ - 1) from t h e  JPB. (This a d j u s t s  t h e  t r i p l e  f o r  

whether we want t he  " inside" o r  t h e  '!outsideu of t h a t  s u r f a c e . )  

We a r e  l e f t  with a d e s c r i p t i o n  of t he  zone as a d i s j o i n t  union 

( Y ~ , Y ~ )  u ( Y ~ ,  y 4 ) V . .  ~ J ( Y ~ , Y ~ ~  . The t o t a l  l eng th  LI(k)  of t h e s e  

i n t e r v a l s  can then  be used t o  e s t i m a t e  t h e  c ros s - sec t iona l  a r e a  of 

ehe zone I w i t h  the plane Z = Zlby C1(z1) = 1 fi.I(k). 
k 
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Also, the descriptions of all the zones taken together allow 

us to check whether or not there are any gaps or overlaps in the line 

X , =  xk, Z = Z YL < y <'YU. A simple test, which works for most errors, 
1' -- - 

.' . 
is .to test whether 

(YU-YL) I 5 (YU-YL) * TOL 
I 

for some tolerance TOL. If not, a further investigation can detail the 

difficulty. 

We present the algorithms below'as if there was only one zone; in 

reality, most quantities are arrays indexed by zone number. 

First, we .give the algorithm for finding the triples associated with 

each surface and for updating these cheaply from x to x k k+l Then we 

give the algorithm for intersecting these triples to find the zone des- 

cription. Yinaliy, we discuss accuracy a ~ i d  cost  compared to thc Monte 

Carlo.meohod. 
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3. Finding and updat ing boundary t r i p l e s  

Let I, XL,XU,YL,YU, and XNUM be g iven ,  and l e t  Ax = (XU-XL)/XNUM. 

Define x = XL + (2k+l)Ax/2, k = @,1, ... XNUM-1. 
k+l 

For a s u r f a c e  given by t h e  equa t ion  

we want t o  a s s o c i a t i ,  a t r i p l e  (21, y ) s o  t h a t  i t  degc r ibes  t h e  set 
1 'Y2 

f o r  a given x F i r s t  we assume j= 1. There a r e  twu c a s e s ,  b=G and b#O. 
j' . . 

2 2 9 

F i r s t ,  i f  b=O, l e t  S = r - 
1 a(xl-x0) - c("-"0). 

The d e s i r e d  t r i p l e  is  (-sgn S ,y , y  ). 1 0 0  
.-1 2 2 2 

r f  b#O, l e t  S1 = b ( r  -a(x -x ) - c (Z1-Zo) ) 1 0  
/ 

The d e s i r e d  t r i p l e  is (sgn b ,yo-r , y O H  ) , where =(,ax 10. 9 ~ ~ 1 )  

2 
Define Sk = (r -a(xcxo) 

2 2 - c(Z1-Zo) )/b*, where b* = b i f  bfO 

2 2 
o r  b* = 1 f o r  b=O. Then b*(Sk-Sk - = -a (  (xk-xO) -X 1 1 --(\-I 0 

= -a ( A x ( % + x ~ - ~ , ) - ~ x ~  AX) 

2 
= -a (2 (xl-xo)Ax +(2k-3) (Ax) ) 

us ing  t h e  s u b s t i t u t i o n  x = xl+(j-1) Ax. 
j 
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A s  we compute S then,  we compute and s t o r e  t h e  q u a n t i t i e s  
1 , 

Then we can update S = S t o  S = S by s e t t i n g  S = Sly 6 = -1 i n i t i a l l y  
5 J +l 

&d then performing 

To update t h e  t r i p l e  f o r  5 t o  t h e  one f o r  Xk+l we need only check 

whether o r  not  b = 0 .  The & a n t i t i e s  a ,  c ,  xo, yo, 
2 

z r , and z need not  
0 1 

be re-fetched. 

For plane surfaces ,  t h e  process i s  s imi la r .  Let 4 a be s u i t a b l e  machine 

numbers. Suppose t h e  plane i s  given by 

W e  seek ( s ,  y1,y2) so t ha t  . 

(s ,  yl, Y 2 )  = { Y I ~  + b y  + cz < d l  . 
1 

Let b* be a s  above and T = (d-ax -cz )/b*. For b # 0,  t h e  des i red  t r i p l e  i s  
1 1 1  

( s e n  h, - T~). Tf b = 0,  t h e  t r i p l e  we seek i s  (sgn T - . For up- 1 ' 
dat ing,  l e t  AT = -a h / b n .  Then l e t t i n g  T = T o r i g i n a l l y ,  we update T by 

1 
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'4. The In te r sec t ion  Algorithm 

Suppose a region i n  t h e  l i n e  segment (YL,  YU) i s  described by a d i -  

j o i n t  union (yl ,y2) Ll ( Y ~  ,y4 U e e g U 9 Y~~ ) of m i n t e r v a l s .  We wish 

t o  f i n d  t h e  i n t e r s e c t i o n  of t h i s  union with t h e  s e t  described b y ' t h e  t r i p l e  

( s ,  x ,  y ) .  I n  t h e  implementation of t h e  algori thm, i n i t i a l l y  m = 1, yl = YL, 

y2 = YU. A s  new JPB t r i p l e s  a r e  i n t e r s e c t e d  with t h i s  desc r ip t ion ,  t h e  

number of pieces m may grow, leading t o  t h e  problem j u s t ' d e s c r i b e d .  We sup- 

pose t h e  values y l~ Y23 - - *  
'2rn 

t o  be s to red  i n  an a r r a y  with m s to red  

separately.  I f  t h i s  .array i s  Y ,  we w i l l  use y f o r  ~ ( i ) .  
i 

Case I: s = +1 

For i = 1 t o  m do: 

It would be use fu l  t o  t e s t  whether x = y before beginning t h i s  procedure. 

I f  so ,  s e t  m = 0 and we a r e  done - t h e  region i s  empty. Other JPB's can be 

ignored f o r  t h i s  zone. 

Case 11: s = -1 

Let NEW: = 0 

For i = 1 t o  m do: 
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> w then y2i-l: = m i n ( ~ ~ , ~ ~ ~ )  (3) If Y2i-l'- 2' 

and proceed to the next i. 

( 4 )  If yei - < wI, then y2i: = max(w ,y ) 2 2i-1 

and proceed to the .next ' i . 
(5) If neither (3) nor (4) pertains : 

(a) If x = y, exit routine 

(b) NEW: = NEW + 1 

After completing this loop, m: = m + NEW. (a) is done to prevent wasted 

time and storage since (-1, x,  x) E (-00, w). 

When the process described in this section is completed for ali JPBS, 
m 

for a particular - 5, then we have kI(k) = 1 (yZi Y2i-1) . 
i=l 

Thus far, we have found m does not .exceed 5 in practice. 
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5. Comparison wi th  Monte Carlo 

Let B be a , z o n e  contained i n  t h e  box XL < x < XU, YL < y < YU, - - - .- 

ZL < z < ZU. Let XU - XL = a ,  YU - YL = b ,  ZU - XL = c.  Let Volume ( B )  - - 
? . 

= p*V, 0 < p < 1, where V = abc. - 
Using t h e  h i t  o r  miss Monte Carlo method, we choose N p o i n t s  i n  t h e  

box i n '  a uniform random manner. We then es t imate  Volume ( B )  by 

where N* i s  t h e  number of po in t s  found t o  l i e  i n  B. V i s  a random v a r i a b l e  
e 

. . with expected value '<v > = V < N*/N > = Vp = Volume (B)  , and variance 
e 

2 
var  V = V p ( 1 - p ) / ~  . 

e 

Let us examine an a l t e r n a t e  procedure.' Suppose we sample M po in t s  z 
i 

from t h e  l i n e  segment ( Z L , Z U ) .  For each z so  chosen, suppose we can f i n d  
i 

t h e  cross-sec t ional  a r e a  ~ ( z . )  of ~ ~ { ( x , , ~ , z ) l z  = zi j .  Let ~ ( z )  = ~ ( z ) / a b ,  
1 

t h e  proport ion o f .  ~ ( z )  t o  t h e  rec tangular  a r e a  ab. Define 

Then 

zu 
= V *  / ZU ( ~ ( S ) / a b c . ) d <  = / ~ ( 6 )  dS = Volume (B). 

ZL ZL 

We a r e  assuming t h a t  B has been produced by t h e  kinds of i n t e r s e c t i o n s  

described i n  t h i s  paper so t h a t  ~ ( z )  i s  a t  l e a s t  piece-wise continuous. 
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We f i nd  t h e  variance of V t o  be 
C 

Let us assume t h a t .  t h e  labor  required per  point  f o r  the  two methods a r e  

L and L respect ively .  We would expect L < L s ince  t o  f i nd  A(zi) by 
1 2 1 -  2 

whatever method i s  presumably more work than discovering whether o r  not a 

point i s  i n ,B .  

Harnmersley ( 3 ) defines t h e  r e l a t i v e  e f f i c i enc i e s  of two est imators 1 1  
2 

requir ing labor  TL and TL and producing variances i n  t h e  est imator 0 and 
1 2 1 

( M L ~ )  v2 var A ( Z ) / M  
P = 2 = (L2 /~1 ) (va r  A ( z ) / P ( ~ - P ) )  . 

( N L ~ )  v ~(1-P)/N 

Theorem. var ~ ( z )  / ~ ( 1 - p )  < 1 . - 

Proof. N o t e  that 

< A ( z ) >  = 
, JZY 

1 
~ ( z )  - dz = 

Volume ( B )  - 
C v - P  . 

[ 2 2 
Thus, var A ( Z )  - ~ ( l - ~ )  = E ( ( A ( z ) )  - pi] - (p-p 
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The r e s u l t  fol lows.  

The t a b l e  below shows t h e  va lues  of t h e  r a t i o  v a r  ~ ( z )  / p(1-p)  f o r  

va r ious  B .contained i n  t h e  box -1 - < x , y , z  < 1. The d e f i n i t i o n s  of  t h e s e  - 
volumes a r e  : 

B1: A s l a b ,  - p L z L p ,  O < p c 1  - 
2 

B2: A sphere ,  x + y2 + z2 - < 1 

2 
B ~ :  A cyl inder . ,  x + y2 - < 1 , -1 - < z - < 1 

2 2 
~ ~ ( 6 ) :  A s h e l l  o f  width 6 ,  (1-6) - < x + y2 + z 2  - < 1 . 

TABLE 1 

A va lue  f o r  L / L 1 i s  problem dependent and dependent on t h e  method used 
2 

t o  f i n d  ~ ( z ) .  For our  a lgor i thm,  we a r e  e s t ima t ing  ~ ( z )  so  t h e  above 

Zone P v a r  ~ ( z )  va r  A(z )  / ~(1-P)  

a n a l y s i s  i s  no t  exac t .  We e s t i m a t e  t h a t  f o r  a t y p i c a l  TARTNP problem 

( L  /L ) i s  on t h e  o r d e r  of XNUM, t h e  number of  x s l i c e s .  Note t h a t  i f  
2 1 

1.00 

.22 

0.00 

.12 

we a r e  doing a l l  t h e  zones at once we a r e  obl iged  t o  choose N and M l a r g e  

~(1-P) 

5.4 x lo-2 

0 

3 .1  x 

B1 

B2 

B 
3 

B4(.. 5 ) 

enough t o  g e t  t h e  most d i f f i c u l t  zone ' s  volume accu ra t e ly .  One t h i n  s h e l l  

P 

-52  

79 

.46 

i s  a l l  it t a k e s  t o  make t h e  second method a b i g  winner. 

6 .7  x lo-' 5.49 

8 .1  x lo-' 5.26 x LO-' 

B4( -1) 

B4(.01) 

. 1 4  

1.55 x lo-8 
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Zone B i l l u s t r a t e s  t h e  v i r t u e s  of making t h e  sample from ( Z L , Z U )  
1 

a s t r a t i f i e d  sample. We divide  t h e  segment ( Z L , Z U )  i n t o  n p ieces ,  and 
rn 
L A  

choose n po in t s  i n  t h e  ith piece ,  where 1 ni = M. The -es t imates  V 
i c 

i=l 
a r e  found i n  each piece  separa te ly  and then summed t o  get  a  t o t a l  volume. 

I f  t h e  variance of ~ ( z )  within each piece i s  l e s s  than t h e  variance of 

~ ( z )  between t h e  p ieces ,  s u b s t a n t i a l  increases  i n  accuracy can be obtained. 
I 

See [3; p.551. Thus, i f  t h e r e  a r e  n a t u r a l  planes z = z i n  t h e  problem, 
i 

we should break t h e  problem i n t o  pieces a t  these  boundaries. 

For r e l a t e d  reading,  we r e f e r  t h e  reader  t o  [ I. 
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