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ABSTRACT

An algorithm for finding crdss-sectional areas
of zones in a Monte Cario fransﬁort code is given.
The method is well suited to problems involving
thin shells, and includes the capability of check-

ing for gaps and oveilapé;
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1. Introduction

Monte Carlo codes require é physicist to divide the space of
a problem into "zoﬁes", in which different physical conditions hold.
A Qater pipe being bombarded.by partigles might be describe@ as ;hree
zones, consisting of the outer air, thé pipe itself, and the space in-
side the pipe. These zones could be delineated by giving equaﬁions of
the inner and outer surfaces of the pipe. In a real problem, the zones
are much more complicated. Tﬁere may be up to 200 zones delineated by
up to 100 planes and 100 quadratic or other type surfaces. Various

codes have different limits on the number and type of allowable surfacés.,

TARTNP (4) is such a code. It is in wide use at Lawrence Livermore
Laboratory, being about the fifth largest time consumer among Laboratory
codes. We shall confine ourselves to the surfaces allowed in TARTNP, hop-
ing that others may find the methods described'a useful aid in attacking

similar problems.

Describing the zones is a tremendoﬁs task. In TARTNP, the user may
describe up to 100 planes ax + by + cz = d, and up to 150 conic surfaces
of the form

2 2 2 .2
a(x—xo) + b(y-yo) + c(z—zo) =k

Then, for. each zone, of which there may be up to 200, a description
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is gi?en in the fofm of "JPB's" whiéh are pairs of signed integers.
The second integer tells to which surface is referred (e.g. +6 = conic#6,
;3 ='§lane #3); while the sign of the first integer gives the side of
that surface on which the zone lies. The sign is denoted by J, and J is
positive if, substituting the values (x,y,z) of a point in the zone into
the relation

ax + by + éz < d (if the boundary is a plane)

2

or a(x;xo)z + b(y—yo)2 + c(z-zo)2 £ k7 (if the boundary is a conic)

yields a true statement. Otherwise, J is negative.

The problem is to find the vo;ume of each zone to within some
tolerance, say 1%, and to detect whether any zones overlap or have gaps
between them. Both of these tasks are directed toward helping the physi-
cist be sure the zone descriptions are correct before spending hours of

computer time on the run itself. The method must be of reasonable cost.

The method used in TARTNP has been a hit-or-miss Monte Carlo method
for the general problem, or a direct analytic calculation if the conic
surfaces have a common axis of revolution and the planes are perpendicular

to this axis.

The analytic method is satisfactory, of course, but the Monte Carlo
method is not. It has trouble with zones, such as a pipe, with small

volume but large surface area.
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The meghod tries to check for gaps and overlaps, which is important.

" As each point is chosen, the zone descriptions are checked. If the point

satisfies néne of these or more than one, an error message can be issued.
Any coﬁpeting method must have the ability to detect and analyse such

problems.

An algorithm for calculating these volumes and detecting gaps and
overlapé is described below. An experimental preprocessor and graphics
package based on this idea has been developed and has proven satisfactory
on some real test problems, and will now undergo further testing and
refinement ([1}). Short of analytic solution, which we believe to be
impractical, no method‘can,solve all problems in avreasonable time.
Therefore, our methed requires that it bé used by the problem designer
in an intelligent way, with a knowledge of its methods aﬁd limjitations.
In this context, it seems tq be a practical solution for most real

problems.

2. Overview

Before getting into the details of the calculation, we describe the
overall process. A bhox, XL < x < XU, YL <y < YU, ZL < z < ZU, is given,
and it is desired to find the volumes of the zones described by "JPB's
within the box. Some given number (ZNUM) of z-values are chosen, either

at random from (ZL,ZU) or by a stepping procedure. For each value Z=Zl’
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ﬁhevalgorithm finds the interséction of each given surface with the
plane area Z =2, XL < x < XU, YL< y < YU. A value XNUM is given, and
the segment (XL,XU) is divided.by the points
xkl—l - XL + (2k+1)AX/2, k = 0,1,...XNUM-1, where AX=(XU-XL)/XNUM. .
For each X0 the intersection of the volume ''below" each surface (i.e.
the J = positive region) with the line Z = Zl,X ; Xy is found and
described as a triple ét 1, DT Here we define for'—ﬂ° ﬁ_yl f_yz £ o,
(i,yl, y)) E {315y, | |
(-1,y155,) = (75¥9) = (== y ) U (v5,°)
In computation, Qe use suitable machine numbers for + «, Whether one

considers the intervals open or closed is irrelevant.

We start by aSsuﬁing‘a zone occupies the entire segment (YL,YU) of
the line Z = Zl,‘X = Xk' Using the "JPB"s for the zone, we intersect
the set described by a triple (s,yl, yz) with the current description
of the zone until.the "JPB'"s are exhausted. The triple used is that
( s';yl,yz) associated with the boundary in a JPB, with s = s'*J,

where J is the sign (+ 1) from the JPB. (This adjusts the triple for

whether we want the "inside" or the Y“outside'" of that surface.)

We are left with a description of the zone as a disjoint union

. k '
(yl,yz)() (y3, ya)\)..kj(ym,ym+1) The total length 21( )vof these

intervals can then be used to estimate the-cross—sectional area of

the zone I with the plane Z = Zlby CI(Zl) ==z:$I(k)_
k
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Also, the descriptions dfréll the zones taken together allow
us to check whether or not there are any gaps or overlaps in the line
X = '

is ‘to test whether

Z = Zl’ YL.ﬁ y <YU. A simple test, which works for most errors,

| % R oym (W-YL) | < (vU-yL) * TOL

for some toleranee TOL. If not, a further investigation can detail the

.difficulty.

We présent the algorithms below as if there was only one zone; in

reality, most quantities are arrays indexed by zone number.

First, we:give the algorithm for finding the triples associated with
each surface and for updating these cheaply from Xy to xk+l' Then we
give the algorithm for intersecting these triples to find the zoﬁe des-
cription. Finally, we diécuss accuracy and cost compared to the Monte

Carlo method.
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3. Tinding and updating boundary triples

Let Z,, XL,XU,YL,YU, and XNUM be given, and let Ax = (XU-XL)/XNUM.

1’

Define Xy = XL + (2k+1)Ax/2, k = 0,1,...XNUM-1.

For a surface given by the equation

2 . 2 . 2 2
a(x—xo) + b(y—yo) + c(z—zo) =r

we want to associatéAa trible (+1, yl,yz) so -that it describes the set
. N 2 2 82,2 |
(*1,y,5Y,) —‘{yld(xj xp) T+ b=y T+ elzy-zp) <x}

for a given x,. First we assume j= 1. There are two cases, b=0 and b#0.

. . _ _ .2 _ 2 o _ 2
First, if b=0, let Sl— T a(x1 xo) c(Z1 ZO) .

The desired triple is (-sgn Sl,yo,yo)-

b l(rz—a(xl—xo)2 - C(Zl-ZO)?)'

It

If b#0, let Sl

1
The desired triple is (sgn b,yo—P, y0+T), where T =(max {O.,Sl}) / .

2 2 2
1 = - - - - * % = 1
Define Sk (r a(xk xo) c(Zl ZO) )/b*, where b b if b#0

T+ Bk = = %(S —
or b 1 for b=0. Then b (Sk Sk—l)

-a( (xk—X6) . (x,_17%g) %)

- Zex, Zeax (x -x, ) )
= mal xex g 2%y

= —a( Ax(x tx, _)-2x) Ax)

= ~a(2(x;~x,)0x +(2k-3) (Ax) %)

using the substitution xj = x1+(j—l) Ax.,
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. As we. compute S

1 thén, we compute and store the quantities

ASl

1t

—2a(xl-xo) Ax/b¥*

AS -a(Ax)z/b* .

5

' Then we can update S = sj to S = sJ+l by setting S = s B = -1 initially

and then performing

‘B: B+ 2

S:

s + Asl + BA82 .

To update the triple for X to the one for X4y we need only check
whether or not b = 0. Thevqﬁantities 85 Cs X 5 Vo5 25 r2, gnd z, need not
be re-fetched.

For piane éurfaces, the process is similar. Let 4= ® be suitaﬁle machine
numbers. 'Suppose the plane is given by

| ax + by + cz = d
We seek (s, yl,yz) 30 that

= : <
(s, ¥ys yz) {ylaxk + by + czg al .

Let b¥ be as above and T, = (d-axl

(sgn h, - o, Tl). If b = 0, the triple we seek is (sgn T, —w, ®), For up-

dating, let AT = -a Ax/b*. Then letting T = T

—czl)/b*.l For b # 0, the desired triple is

1 originally, we update T by

T: =T + AT .
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4. The Intersection Algorithm

Suppose a region‘in the line segment (YL, YU) is described by a di-
joint union (yl,yz) U (ys,yh)\} .o \)(y2m;l’ ygm) of m intervals. We wish
to find the intersection of this union with the set described by the triple
(s, x, y). In the implementation of the algorithm, initially m = 1, y, = YL,
Y, = YU. As new JPB triples are intersected with this deséription, the
number of pieces m may grow, léading to the problem just described. We sup-

pose the values yl, )b, cee Y n to be stored in an array with m stored

2

separately. If this array is Y, we will use y; for Y(i).

Case I: s = +1
For i =1 to m do:

(1) LA maX(yei_l,X)

(2) Wy

(3)

min(y2i,y)

Yoj1' T W

(L) Yoyt ='max(w1,y2) .
It would be useful to test whether x = y before beginning this procedure.

If so, set m = 0 and we are done — the region is empty. Other JPB's can be

ignored for this zone.

Case IlI: s = -1
Let NEW: = 0
For i =1 to m do:
(1) wys = wax(y,; _;5¥)

(2) WQ; = min(yzi,x)
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. > : . = .
(3) 1If Yoi1 > Voo then Yoq.1° mln(wl,yzi)

“and proceed to the next i.

< r =
(H) If y,; < Wy, then y,, max(w2 )

Yoi-1
and proceed to the next i.
(5) If neither (3) nor (4) pertains:

(a) If x = y, exit routine

(b) NEW:

(c)

NEW + 1

Yo(meNEW)-1' = "1

(d) ¥p (mengw)® = Yoi
(e) yp3 = v, -

After completing this loop, m: = m + NEW. (a) is done to prevent wasted
time and storage since (-1, x, x) = (-, ®),

When the process described in this section is completed for all JPBS,
m
for a particular X then we have QI(k) = .2%- (y2i - y2i—l)
1:
Thus far, we have found m does not .exceed 5 in practice.



Volume Calculations/Monte Carlo

Page 10

5. Comparison with Monte Carlo

Let B be a zone contained in the box XL < x < XU, YL Ly <Y,

ZL < 2z < ZU. Let XU -XL=a, YU - YL =">b, 2U - XL = ¢c. Let Volume (B)

= p*V, 0 < p <'1, where V abe.

Using the hit or miss Monte Carlo method, we choose N points in the

box in a uniform random manner. We then estimate Volume (B) by
V. = V-N*¥/N
e

wvhere N¥ is the number of points found to lie in B. Ve is a random variable

with'expected value'<Ve> =V < N¥/N > = Vp = Volume (B), and Variance
. 2
(1) - var V_ =V p(1-p)/N .

. Let us examine an alternate procedure. Suppose we sample M points zi
from the line segment (ZL,ZU). For each zi so chosen, suppose we can find
the cross-sectional area C(zi) of BN {(x,y,z)]|z = Zi}' Let A(z) = C(z)/ab,

the proportion of C(z) to the rectangular area ab. Define

y M
v, = (v/™) igl A(zi)
Then .
M . VAl
<V > = (V/M) Z <A(z)> = (V/M)~M-f A(E) (1/c)ag
i=1"

4L

ZU 7U .
Ve f (c(g)/abe)dg = f Cc(&) a& = Volume (B).
ZL , 7L, ‘

We are assuming that B has been produced by the kinds of intersections

described in this paper so that C(z) is at least piece-wise continuous.
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We find the variance of V_ to be

| var <V~<i§lA(zi)/M>>

2 !
(2) var VC

1}
<
<
®
=
/\
M=
2
)
.
g
~=
I
<
<
©
=
g
N
<
=

Let us assume that. the labor required per point for the two methods are

Ll and L2 respectively. We would expect L

whate?er method is presumably more work than discovering whether or not a

< L, since to find A(zi) by

1 2

point is in B.
Hammersley ([ 3]) defines the relative efficiencies of two estimators

2
requiring labor TLl and TL2 and producing variances in the estimator Ol and

2 2 ) .
0, to be p = (TLl)Gl/(TL2)02 - Thus, for V_ and V?’
2
(MLE) V™ var A(z)/M .
p = 5 = (L2/Ll)(var A(z)/p(1-p))
(NL ) V" p(1-p)/N
Theorem. var A(z) / p(1-p) < 1
Proof. Note that ' . g
ZU
<A(z)> = J[ A(z) %.dz - XQLE%E_LEL =

L

Thus, var A(z) - p(1-p) = [E((A(z))2) - pg] - (p—pg)

o=

U
‘[ -A(z)(2 - A(2))dz < 0, since O < A(z) <1 .
ZL ' .
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" The result follows.

The table below shows the values of the ratio var A(z) / p(l-p) for
various B contained in theé box -1 < x,y,z < 1. The definitions of these

volumes are:

Bl: A slab, = -p<z<p, 0<p<l1
B2: A sphere, x2 + y2 + 22 <1
. 2 2
B3: A cylinder, x +y <1, -1 <z<1
B (8): A shell of width 6, (1-6)° f_xe TS <1

TABLE 1
Zone ) P var A(z) var A(z) / p(l-p)
By P p(1-p) 1.00
B, ' .52 T 5.k x 10"2 .22
B3 .79 0 0.00
Bh(qs) u6 ‘ 3.1 x 1072 .12
Bh(.l) .1k . 6.7 x 10'h 5.49 x 1073
Bh(.Ol) 1.55 x 1072 8.1 x 1077 5.26 x 10'5

A value for L2/Ll is prbblem dependent and dependent on the method used
to find A(z). For our algorithm, we are estimating A(z) so the above
analysis is nét exact. We estimate that for a typical TARTNP problem
(L2/Ll) is on the order of XNUM, the number of x slices. Note that if
we are doing all the zones.at once we are obliged to choose N and M large
enough to get the most difficult zone's volume accurately. One thin shell

is all it takes to make the second method a big winner.
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Zone B, illustrates the virtues of making the sample from (ZL,ZU)

1
a stratified sample. We divide the segment (ZL,ZU) into n pieces, and
, n
choose n. points in the ith piece, where Z: n. = M. The .estimates Vc
i=1

are found in each piece separately apd then summed to get a total volume.
If the variance of A(z) within each piece is less than the variance of
A(z) between the pieces, substantial increases in accuracy can be obtained.
See [3; p.55]. Thus, if thefe are ﬁatural planes z = zg in the problem,
we should break the problem into pieces at these boundaries.

For related reading, we refer the reader to [2].
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