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ABSTRACT 

Drtft orbit diffusion induced by turbulence acting on trapped 

electrons is shown to reduce and broaden th~ magnetic drift resonance 
. . . 

and produce the dominant nonlinear saturation mechanism for the dis.si-

pative trapped electron instability. The fluctuationlevel obtained 

from such a theory is found to be consist~nt with present experimental 

observations. 

1 
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I. INTRODUCTION 

The existence of drift waves in tokamak-type toroidal confinement 

devices has been demonstrated by microwave scattering experiments in the 

Adiabatic Toroidal Compressor1 and Tokamak Fontenay-aux-Roses2 devices. 

Because the trapped electron instability is a type of drift wave which 

is destabilized by trapped electrons, it is expected that it will be 

operat1ve in larger and hotter tokamaks and will persist even in a reac­

tor regime. The anomalous transport due to this instability is generally 

believed to be a dominant factor affecting the confinement time of a 

high temperature plasma. While there is already a fairly complete pic­

ture (except for the two-dimensional mode structure} for the linear 

theory, the nonlinear theory is still rather primitive. The most serious 

attempt so far has been a one-dimensional, resonant mode-coupling pro­

cess,3 which has difftculty in treating the short wavelength part of thP. 

spectrum because of the strong dispersion of the real part of the fre­

quenr.y, In add1t1on, this theory gives il saturatfon level wltkll is too 

high to be consistent with the experimental value. Other nonlinear sat­

uration mechanisms, such as quasi-linear plateauing of the density or 

temperature profiles, have been observed in numerical simulations. 4 How­

ever·, th1s 1s h1ghly improbable in real experiments because in a tokamak, 

energy is continuously pumped into the system t~rough ohmic heating or 

neutral beam injection. 

The nonlinear model we investigate in this paper is based on the 

renormalized turbulence theory of Dupree. 5 This model is chosen because 

it apparently gave satisfactory agreement between theory and drift wave 

experiments in Q-machines. 6 The major difference between drift waves in 
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Q-machines and those in tokamaks lies in the complexity of the geometry 

involved. Hence, generalizing Dupree's theorys from slab to tokamak ge­

ometry should provide an appropriate nonlinear description for drift waves 

in a tokamak. 

In the original theory on trapped electron modes, 7 tne instability 

arises purely due to electron collisions. Energy is exchanged between 

the electrons and the waves through the stochastic process of trapping 

and detrapping of electrons by pitch angle scattering. Linear stability 

is attained if the rate of energy transfer from the electrons to the wave 

is balanced by the rate of radial convection of the wave energy from the 

rational surface to regions where the waves are ion Landau damped. In 

this theory, the instability does not exist if there are no collisions. 

The picture is significantly changed if the magnetic drift resonance 

is included in the theory. It is now known that with the inclusion of· 

magnetic drift resonance, the instability persists even without electron 

collisions.a In other words, the trapped electron instability exists in 

very c.oll isionl ess plasmas such as the plasma in a reactor regime. The 

energy exchange between the wave and the electrons is no longer through 

the random trapping and detrapping of the electrons, but through a ·Landau 

type resonance between the trapped electrons and the wave. ·In the single 

particle picture, trapped electrons have banana·orbits bouncing in peloidal 

and toroidal directions. At the same time, their average position (or 

thP. center of the banana) drifts along the toroidal direction due to the 

magnetic curvature and gradient. This drift velocity is proportional to 

t~e energy of the electron and is in the same direction as the phase ve­

locity of the wave. Therefore, there is always a small group of trapped 
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electrons having the correct energy and experiencing a de electric field 

on the average. These trapped electrons can exchange energy with the wave 

just as occurs in the wave-particle resonance in the well-known theory of 

Landau resonance. The collisions no longer serve as the catalyst of 

energy exchange, but rather serve to reduce the strength and broaden the 

resonance. In fact, as the effective collision frequency of the trapped 

electrons increases to the same order of magnitude as the trapped electron 

bounce frequency, the trapped electron destabilizing term in most cases is 

reduced to a 1 evel that can be stabilized by shear in present exper·imental 

conditions.9 In other words, present experiments are not far from the 

stability boundary of trapped electron instability. 

Because collisions play such an important role in reducing the 

trapped electron destabilizing effect, it is natural to expect in a non­

linear theory that the effective electron collisions caused by the elec­

trostatic turbulence are the dominant mechanism of saturation. This is 

the nonlinear effect we investigate in this paper. The turbulence effects 

on the 1ons are ignored for the time being because the orbit diffusion 

effect on the ions will change the ion response in such a way that the 

radial eigenfunction equation for the mode is modified. Such a modifica­

tion will increase the effective shear and ion viscous damping. If the 

effective trapped electron r.oulomb collision frequency is much smaller­

than the average trapped electron bounce frequency, the trapped electron 

destabilizing term in the dispersion relation is much larger than the 

shear and ion collision terms. In this case, the effect of reducing the 

trapped electron destabilizing term is more important than enhancing the. 

stabilizing shear and ion collision terms. 
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In Dupree•s turbulence theory of drift waves, a turbulent collision 

frequency kfD was found, where k1 is the perpendicular wave number and 

D is the diffusion coefficient. The meaning of k1 is unambiguous in a 

homogeneous plasma. In an inhomogeneous plasma with gradients perpen­

dicular to the magnetic field, it is not easy to decide which k1 we· should 

use. In particular, in a tokamak with gradients in the radial direction, 

it is not clear what combination of kr and k
0 

should appear in kfD. The 

problem is more complicated if we realize that the eigenmode in the radial 

direction is not a Fourier series but is a sum of parabolic cylinder 

functions. The radial wave number can only be defined in an average 

gense. In this paper, we systematically deduce that the turbulent colli­

sion is k~D and find an averaging procedure to obtain this kr. 

In Sec. II, we.derive the turbulent response of the trapped electrons 

from a bounce averaged drift kinetic equation. The turbulence affects the 

trapped electron nonadiabatic response mainly through the turbulent colli~ 

sions. In Sec. III, the nonlinear dispersion relation is derived and the 

turbulent response of the trapped electrons is treated perturbatively. 

The calculations show that the inverse of the turning point distance 

(~1/2) is the effective radial wave number that is responsible for the 

turbulent collisions k~D. Expressions for the particle and energy fluxes 

due to the instability are given in Sec. IV. Numerical examples are 

compared with exper.iments and discussions of the validity of the model 

are given in Sec. V. In the appendix, a general discussion of the dis­

tinction between strong (or fluid type) and weak turbulence is also pre­

sented. 
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II. TURBULENT TRAPPED ELECTRON RESPONSE 

We user, e~ and~ to denote the radial, poloidal, and toroidal 

variables. Concentric circular flux surfaces are assumed so that (r = 

constant) is the equation for a flux surface. Because e and ~ are peri­

odic variables, we can expand any perturbed quantity in a Fourier series 

in e and~- The equilibrium unperturbed system has density and tempera­

ture gradients in the radial direction. We can decompose any well-behaved 

radial dependence into a Fourier integral. Thus, the perturbed distribu­

tion function f and electrostatic fluctuating potential ~ can be written 

as 

exp (iwt + ime - il~ + ikx) (1) 

where 1 and mare toroidal and·poloidal mode numbers, K is the radial wave 

number, x = r - rlm' and r1m is the radial location of the flux surface 

with safety factor q(r1m) = m/1. 

In the linear theory, the radial structure of the mode is determined 

by the shear and ion gyroradius effect. The radial dependence of the 

trapped electron contribution to the dispersion relation is either ignored 

or treated by a perturbation technique. We adopt the same approximation 

here·and assume that in a nonlinear theory. the radial structure is still 

determined by the ion response.· Even including nonlinear effects on ions,. 

the radial ei_genmode equation has a -parabolic cylinder function as its 

solution. The derivation is quite lengthy and will be the subject of 

another paper. The most unstable mode has the form 
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( 2) 

wntch is the same form as in the linear theory. For simplicity and the 

reasons mentioned in Sec. I, we assume that the ions do not behave very 

differently from those in the linear theory and write~ as 9 

where 

S1 = (w - w*) r
0
w*n1[r0 + b(ri - r0 )] 

S2 = (w- w*}(r
0 

- ri} - w*ni[ri - r0 }] 

m CT a ln N 
~ = reB ar 

ni = d ln Ti/d ln N l 

rj = exp (-b)Ij(b) 

v. = (2T /M ) 1/ 2 
1 i i 

P; = (Ti/Mi} 112!n1 

L$1 = r(dq/dr)/Rq2 

Mi is the mass of ions, Ti is the ion temperature, 

I; is the modified Bessel function of order i, and 

B is the magnitude of the magnetic field. (3) 

Then for given 1 and m, the radial wave number spectrum is known: 

(4) 

For the trapped electrons, we can write the bounce averaged drift kinetic 

equation as 
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lf. + L (a¢ L _ !t !_\f - vo L (f - .;if\ = c(f) (5) 
at rB ar ae ae ar) r al; 1 J -

where f and f are the total and ensemble averaged trapped electron dis­

trt5utfon functions, respecttvely, and 

(6) 

ts the drift velocity of the trapped electron in the l; direction. The 

function H in Eq. (6) 1s the G(K) defined ~Y Kadomtsev and Pogutse 1 u and 

depends on 5oth the shear and· the pitch angle variable of the trapped 

electron. When d ln q/d ln r ~ 1, His roughly a constant very close to 

unity. So we ·are satisfied with taking v0 ~ v2 q/{2ner). In Eq. (5), we 

have kept only the important terms of the problem. The second term on 

the left side is the E x B drift, and the third term is the drift of the 

trapped electrons due to magnetic curvature and gradient. A similar 

equation has been derived by Waddell.ll 

If we write f = f + f and f = L f k, where k denotes the wave vector 
k 

with fixed 1, m, and K and L denotes the sum over 1, m, and the integral 
k 

over K, then the equation for fk is 

Next, we define the nonadiabatic response for the trapped electrons gk 

and use a Krook collision model in such a way that collisions relax the 

perturbed trapped electron distribution to the adiabatic response, 
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wnere v is the effective collision frequency for trapped electrons. Then 

we obtain for gk 

(
a vo a \ c · (acpk a aek a \ -
aT - r af;Jgk = rB .ao ar - ar- as} f 

e a -
- vgk - T at {cpkf) (7) 

-
We assume the ensemble average distribution function f to be a local 

Maxwellian 

f = N(r) [me/2rrT(r)]3/2 exp (-mev2/2T) 

Equation (7) can then be written as 

(
a · vo a \ ( ) _ ( T) ecpk -ar - r·af;) gk exp vt - i w - w* T f exp (vt) (8) 

wnere w! = (-m/r)(CT/eB)(a ln f/ar). In linear theory, Eq. (8) can be 

solved by integrating the right side along unperturbed orbits of the 

average position of the trapped electrons (bana11a center). It is easy 

to snow that Eq. (8} gives the usual linear nonadiabatic trapped electron 

response. Using the renormalized turbulence theory of Dupree,s the non-

1 inear trapped electron response ·is obtained by direct analogy with the 

results in Ref. 5, 

. T e<hm(K) -..roo .. 
glm(K) = 1(w - w*) T fJo dT exp [(1w - v)T 

- ik·r] U(T) exp (ik·r) (9) 
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where we have used k•r to denote formally the expression Kx +me - 1~, 

and U(T) ts the ensemble averaged propagator which satisfies the equation 

( a vo a ) c f:& a a~\ ( ) ar- r ~ u(t) ~ H~ \ae ar- -aa;u t (lo) 

Introducing the propagator U 1s equivalent to taking into account the 

effect of the fluctuations on the trapped electron orbits. The problem 

now reduces to finding the value of U(T) exp (ik~r). This is achieved by 

operating Eq, (10) on exp (ik•r) and taking the ensemble average, 

(~t -;o ~~) (u ( t) exp ( ;](. rl) _ c ~ a a<P a ~ - - ) 
-\rs ae C3r - ar as 

U(t)' e_xp (ik•r)) ( 11) 

wfiere <A> denotes the ensemble average of A. Equation (11) has the 
-same form as the equation for f, namely 

- ~-+ -
Therefore, U(t) exp (i~·r) and f satisfy the same equation. Substituting 

Eq. (9) into the right side of Eq. (12) and performinq .the ensemble 
-average, we obtain for f 

(~t -;o ;~)f = (~ ~r rD ~r + ~ ;,, rG) f ,. ( 13) 

where 

D = lm (~~) 2 
l$1m 12 (2alpp-I 1..: dKR( -K) (14) 

G = 1~m (~) f!'!-l$1mJ• (2aH )-' j_: dKR(-K) (15) 

R(K) = fa00

dT exp [iw - v)L - ik•r] U(T) exp (ik·r) (16) 
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In deriving Eq. (13}, we have explicitly evaluated the ensemble average 

by a spatial average 

< > = (2'1T)-2(2a)-1 J_; de ,[;dr, 1! dx 

where a is the typical radial extent of the mode. For drift waves in 

general, the mode is h.eavt-ly damped spatially by ion Landau damping when 

the distance from the rational flux surface is larger than x1, which is 

defined by k6X1/Ls = w/V1, the _separation between the point where parallel 

phase velocity of the mode is equal to Vi and the rational surface. We 

will take a~ x1 in the following calculation. It has been shown by 

Weinstock12 that when the ensemble averaged quantities change slowly in 

space and time compared with the fluctuating quantities, the random phase 

average of the fluctuation is equivalent to the spatial average we intro­

duced. Other approximations we have used in deriving Eq. (13} are in 

performing the x integration 

1! dx exp ( 1Kx) ~ ~~ dx exp ( iKx) = 2m)( K) 

because the average K satisfies Ka >> 1. 
·- -+-+ 

From the discussion above, U(t) exp (ik•r) satisfies the same equa-

tion as f: 

= (l .L rD .L + l !._ rG) r ar dr r ar 
- -+ -+ 
U exp (ik·r) ( 17) 

This equation can be solved by neglecting the slow radial derivatives, 

i.e., operating with aJar on the fluctuation length scale only. The 

solution is then 
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U(t) exp (ik·~) = exp (ime - i1~ + 1Kx - i~ v0t 

+ tKGt - K2Dt) ( 18) 

Substituting Eq. (18) into Eqs. (9) and (14) through (16), we have R(K) 

= i[w- w0 +KG+ i(K2D + v)]-1, 

. (w - wr) e¢1m(K)/T _ 
91m(K) = ~ w - w

0 
+ KG + f(K2D + v) f ·• ( 19) 

o = l~m (~~)" ~~lml2 {u(h2 + G2 + 4Dv)!aJ~/h 
X [(40W)2 + (h2 + G2 + 4Dv)2]1/2} (20) 

G = -,~m (~~) ~ {u l$1ml
2 

(fi2 + G2 + 4Dv)!aJ~Jn 
X [(40W)2 + (h2 + G2 + 4Dv)2]1J2} (21) 

where 

h2 = [(G2 + 4Dv) 2 + 16(Dr)2]1/2 

-w =w-w D 

Equation (19) gives the nonlinear response of trapped electrons in terms 

of a diffusion coefficient D and a phase shift G. They are coupled to­

gether and related to the turbulent spectrum. The interesting point about 

the present result is that only the radial wave number appears explicitly 

in the nonlinear response. The effective collision frequency due to the 

turbulence is K2D instead of k~D or (k~ + K2 )D as previously thought. 

Besides the effective collision frequency, the turbulence also introduces 

a nonlinear phase shift to the mode frequency, as first pointed out by 
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Weinstock.13 However, tn our case the phase shift tenn can be safely 

neglected because KZD/KG ~ K(d ln N/dr)-1 >> 1. When G is taken to be 

zero, Eq. (20) can be used to solve for D self-consistently. The result 

is 

2 ['rr lcj> 2[v + (v2 + w2) 1/2]1/2 
Q3/2 -~ (me) lm 

." :::~ 17m. rB 8 a llj (v2 + il?)l/ 2 (22) 

From Eq. (22) we can calculate D directly if the turbulence spectrum is 

known. Integrating Eq. (19) over all K, we obtain 

where 

glm Q -(w - wr) ecj>im f (2Tiill)-1/2 

(+= dK exp [i(K2/2u) + iKx] 
1~ w - w

0 
+ t(K20 + v) (23) 

The K integration in Eq. (23)· cannot be evaluated without further approxi-

mation. We assume that the numerator is the most rapidly varying function 

of K in the integral and ,evaluate it by the method of steepest descent. 

The result is 

(24) 
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III. NONLINEAR DISPERSION RELATION 

We observe from Eq. (24) that besides the x dependence from ¢lm' 

the nonadiabatic trapped electron response glm also depends on x through 

the turbulent collision term. In order to be self-consistent, this x 

dependence must be treated perturbatively. After the ion response is 

taken into account, the final dispersion relation reduces to 

+ ·L ( 1 - r 
0

) - (l.l*/tl.l[r 1 - r 
0
)] 

= 4(rr~c)l/2J"'o f'dy exp (-y'L) J+oo.dx (w- w!t exp (·i1Jx2) 
~ w- w0 + i·v + (x~)2D] 

(25) 

where T a Te/Tt' Y = v/Ve, and£= r/R is the inverse aspect ratio. The 

left side of Eq. (25) fs due to the adiabatic response of electrons and 

the lowest order ion response, while the first term on the right side is 

the trapped electron nonadiabatic response and the second term is the 

shear stabilization term. The x integral in the trapped electron con­

tribution is the result of the perturbation calculation. We ~q~in ap­

proximate the integral because of the difficulty of analytic evaluation. 

Treatin~ the x dep~ndence in the denominator as slowlY va.rving compared 

with exp (-i~x2 ), we substitute a typical value for x (namely, ~- 1 1 2 ) 

into the denominator. The eigenmode frequency obtained by treating both 

the trapped electron term and the shear term as small can then be written 

as 

w ~ w + ij 
0 

where 
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J/w
0 

• {rm4(;•)' 12~m [y2 dy exp (-y2) 

(w- wi}]/[w- w0 + l(v +~D)]- ~; ~ (0102)1/2) 

[1 + T(l - r )]-1 
0 

(26) 

Equations (22) and (26) constitute the basic equations of our nonlinear 

theory. In the linear phase of the i'nstaon i'tfes, j cf>lm 11s so small that 

~D is much less than v. Then Eq. (26) gives us the linear growth rates. 

As the linearly unstable modes grow, D also increases until it is large 

enough that the growth rate of the most unstable mode is reduced to zero. 

A shortcoming of our theory is that the fluctuating spectrum cannot be 

determined within the framework of this theory. In order to relate D and 

the fluctuation leveJ through Eq. (22}, we must assume the shape for, the 

turbulence spectrum. 

Taking m ~ lq, which is the condition for the relevant modes, and 

changing a variable to b, we can rewrite the summation in Eq. (22} into 

an integra 1 : 

where 
~(b) = ecf>(o}/Te 

A2 = [v + (v2 + w2)112]/(v2 + w2) (27} 

When ~(b) is known we can perform the integration in Eq. {27) and obtain 

D. With D known; we can then find the nonlinear growth rate from Eq. {26}. 

Conversely, if we assume the instability to be stabilized by the turbulent 
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collisions of the trapped electrons, we·can detennfne D from Eq. (26) 

such that the most unstable mode·has a zero nonlinear growth rate. With 

the knowledge of 0, we can use Eq. (27) to find the fluctuation level for 

an assumed shape of spectrum and then find the particle and heat fluxes 

due to trapped electron instability using the expressions given in Sec. 

IV. 

IV. PARTICLE AND ENERGY FLUXES 

The cross field electron particle and energy fluxes, re and Qe, can 

be written as 

re = (~ nxv~·;Ne ) , . (28) 

m v2 
Qe = <~ nxV~·r jdv f -t-) (29) 

It is easy to show that only the nonadiabat1c trapped electron 

response contributes to Eqs. (28) and (29). We obtain from Eq. (28) 

re = ( 1~ /:dK/:dK" ik6(c/O) ~ .. l-m(K") dv glm(K) 

\ 
exp li(K + K~)xJ) 

I 

After carry1ng out the ensemble average and expressing the sum over 1 and 

111 as an fntegra 1 over b, w~ get 

7T cT e r {«> (sl)l/2 / ) / 
re=-·2eB2piJodb s2 4>(b22 

(30) 
I 

and 
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(31) 

wnere A ts deftned following Eq. (27). In g~neral, Dis a function of 

electron energy because A ts a functton of electron energy. 

For simplicity, we ignore the energy dependence of D by replacing 

the electron energy in A ~Y its thermal energy and rewrite Eq. (27) as 

D3f2 ·;, l r-r2(T;/Mi) ~~ foaJdb b1/ 2 I(b) 

A
0

(S2/S 1 )1/2 (32) 

where ~~(b)l 2 = ~~ l(b), with Max(I) = 1 and A
0 

= A(V = ve). 

Equations (30) and (31) can then be simplified to 

(33) 

(34) 

where 
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w = t:.l/ 2v /Rq o e 

and o = D(Ln/Lp1)2 (T1!M1)-1/2 /Ls ts the normalized D. 

From Eqs. (33) and (34), we observe that ooth re and Qe are propor­

ttonal to D. Thts is con!tstent wtth our previous notion that D.is the 

nonlinear spatial diffusion. The collision frequency dependence of re 
" (or Qe) is contained in 0~ 1 (or 0~2 }. From the numerical calculation in 

" Sec. V, it is seen that Dis roughly constant in the·low collision fre-

quency limit. In the same limit, ~· 1 and ~2 are also approaching constant 

values. Thus, the anomalous transport associated with the dissipative 

trapped electron mode persists even in collisionless regimes. 

V. NUMERICAL EXAMPLE AND DISCUSSION 

The theory described in Sees. 2-4 is illustrated by the following· 

example in which we numerically evaluate the nonlinear trapped electron 

growth rate 1n Eq. (2o). as D increases from zero. 

In Fig. 1, we have plotted the nonlinear growth rate due to trapped 

electrons for different values of D against the peloidal mode number 

parameter b = (k8p 1 }~ in a solid line. The shear contribution to the 

damping rate is plotted separately in a dashed line. The total growth 

rate is therefore the difference between the solid line and the dashed 

line. The relevant parameters used in this example are: ne = n; = 1, 

£ = 0.15, Ln/R = 0.25, q = 2, T = 1, Ln/Ls = 0.05, and v* = 0.01. All 

the growth rates shown in Fig. 1 are normalized by (Ti/M.) 1/2;L . 
1 n 
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When D is zero or much smaller than v*' the trapped electron con­

tribution to the growth rate is the same as that given by linear theory. 

There is a peak in the growth rate around b ~ 0.2. As D increases from 

zero, the peak growth rate due to trapped electrons becomes smaller and 

the curve is broadened at the same time. The location of the peak in 

this particular case happens to. remain about the same. This indicates 

that as the turbulence grows, the most unstable mode reduces its growth 

rate by turbulent collision damping. However, modes at larger bare de­

stabilized. We conclude that the free energy available for the insta­

bility is spread out in k8 space by the broadening effect of turbulent 

collisions. When D i,s larger than 0.2, the trapped electron growth rate 

is smaller than the shear damping rate for all k8, and the instability 

is completely stabilized. 

Critics of the renormalized turbulence theory will argue at this 

point that as D increases, more and more modes are stabilized by shear 

and their fluctuation amplitudes decay in time until finally only the 

most unstable mode is left. Such a final state is not consistent with 

the turbulent assumption of the theory. Several answers to this question 

are possible. The first possibility is that due to the broadening effect 

of the t~rbulent collisions, the modes near the most unstable mode have 

very slow damping rates, so that their fluctuation amplitudes change only 

a little during the lifetime of the plasma. This effect will provide 

enough stochasticity to the system. Another possibility is that initially 

there are many unstable modes in ·the system, so that it can be correctly 

described by turbulence theory until very close to marginal stability 

where only a few unstable modes are left. Then some form of mode coupling 
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scheme must be developed to determine the final saturated state. In that 

case, the renormalized turbulence theory should still give a fairly good 

qualitative description of the saturated state. Finally, the recent clump 

theory of Dupree14 extends the renormalized turbulence theory to include 

two-particle correlations as a source term in the dispersion relation in 

such a way that the single mode final state can be avoided. However, re­

finement of our theory to include clumps is beyond the scope of this pa-

per. 

We can obtain sets of curve~ similur to Fig. 1 for different values 

of v*. As a result, the value of D needed to stabilize the instability 

for a given s-hear strength, De, can be obta tned as a function of v*. 

This function is plotted in Fig. 2 for a few values of the shear parameter 
"' Ln/L5. We observe from this figure that De is fairly constant over low 

values of v* and drops to zero rapidly when v* is large enough that the 

Coulomb collision alone is able to stabilize the instability . 
. •. 

Having D~; known, we c~n find ~0 from Eq. {32). The equation relating 

fie and ~0 can be written as 

In Eq. (35), the v* dependence of ~0 is contained in Dc 3/2/s0. For an 

assumed turbulence spectrum I(b) peaked around the most unstable mode, 

I(b) = exp [-{b - b
0

) 2], where b
0 

is the· location of the most unstable mode; 

this quantity is plotted in Fig. 3 for the same parameters used in Fig. 1. 

It is seen that 53 /2/~j, or ~0 , starts from .zero near v* "" 1, increases 

quickly to its peak value at a s·lightly lower collisionality, and then 
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d,rops back to an asymptotic value at low v*. For tne parameters used in 

Ftg. 1 and further assuming Pt = 0.2 em and Ln = 20 em, we get from Eq. 

(35) ~~ ~ (0.019)2 Dc3/2/~0 . When fic3/ 2/~ ~ 0.1, it gives ~0 ~ 0.6%, 

whtcn is not far from the values observed experimentally. 

The particle and energy fluxes can be calculated from Eqs. (33) and 
A A A 

(34). Tne v* dependences of re and Qe' rand Q, namely the factors Dc~l 
A o 

and Dc~2 , are plotted in Fig. 4. For the parameters used, Eqs. (33) and 

(34) also give diffusion coefficients consistent with experimental values. 
A 

For comparison, the neoclassical r is also plotted in Fig. 4. 

VI. CONCLUSION 

We have shown that turbulence-induced collisions acting on trapped 

electrons are very significant in the nonlinear saturation of the dissi­

pative trapped electron instability, particularly when the plasma is deep 

in the banana regime. When the shape of the fluctuation spectrum is 

assumed to be similar to those observed in experiments, i.e., peaked 

around k8pi ~ 1, the fluctuation level and diffusion coefficients obtained 

from the theory are consistent with the experimental values. 
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APPENDIX 

Weak versus Strong Plasma Turbulence 

For completeness, in this appendix we briefly comment on the concepts 

of weak and strong turbulence, i.e., on the relationships between 11 Stan­

dard11 weak plasma turbulence and Navier-Stokes fluid turbulence theories. 

(An illuminating review can be found in a recent paper by Montgomery.lS) 

It is to be noted that we are not concerned here with the potential merits 

of the large subset Ot papers dealing With var1ous aspects of renorma11za­

tion in a weak plasma turbulence. 

The equations of motion of either a plasma or a fluid can be written 

in the matrix operator form 

(Al) 

where L is a linear operator on f and N is a nonlinear (bilinear) operator 

on f. The column matrix f stands for either particle distribution func­

tions (plasmas); velocity, pressure, and magnetic fluids (magnetohydrody­

namics); or velocity field (incompressible Navier-Stokes fluids). The 

relevl)nt boundary and/or initial conditions are assumed to be given. 

In linear theory, one assumes 

(A2) 

introduces, for example, Fourier transforms, and then proceeds to solve 

(~t + il)f(o) = 0 = (-wl + L)f(o) (A3) 

as an eigenvalue problem, under the given conditions. I is the identity 

operator. After finding the spectrum of the operator (-wi + L), one finds 
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the required solution f(o) by summing over the point spectrum {w~o), 
w~o), ... }and tntegrating over the continuous spectrum contributions. 

This immediately leads to the concept of a "linear dispersion relation" 

for jth with w = wj 0 )(5). The real part of wj 0 )(~) is called the "fre­

quency" of the jth wave and it is classified as "stable" or "unstable 11 

depending on the sign of the imaginary part of wj 0 )(k). 

In Navier-Stokes turbulence, the linear operator il = k2vi, where v 

is the kinematic viscosity. Now in the region of interest, v « 1, so 

that IILfiiN•S << IINfiiN·s· That is, there is no meaningful linear theory 

to give rise to "dispersion relations," "waves," "instabilities," etc. 

It should be noted that the g x ~ drift approximation to the Vlasov equa~. 

tion is equivalent to the two-dimensional, inviscid, incompressible Navier­

Stokes equation, and so the above remarks apply to purely two-dimensional 

plasma drift turbulence as well. It is thus of interest to note that just 

as the random phase approximation leads to unphysical results 1 6 in fluid 

turbulence, s·o a 1 so does this approximation applied to purely two-dimen­

sional plasma drift turbulence (see Cook's commentsl 7 on the Taylor­

Thompson theory18 ). Thus from the outset, Navier-Stokes turbulence is a 

nonlinear problem. The major breakthrough was achieved by Kraichnan, 19 

who obtained a closed set of integra-differential equations (the "direct 

i'nteraction approximation"). This closed set of equations is of such for­

mtdable complexity that no significant analytic consequences can be derived 

from them, and this is for the simplest geometry possible (a large cubic 

Box, assuming periodicity). The importance of Kraichnan•s equations is 

that their subsequent numerical solution20 gave remarkable agreement with 

experiment. (Nevertheless, some unsatisfactory features were found and 
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this has led to more complicated generalizations; see, for example, a 

review by Kraichnan. 21 ) It is of interest to note that this approximation 

has been applied by Montgomeryls to a one-dimensional electron plasma 

with an immobf 1 e ·ion background with periodic boundary conditions. The 

resulting closed set of equations appears at the present time to be 

numerically unmanageable. 

Now in plasma physics, the lineur problem in Eq. (A3) docs yield 

nontrivial and significant res-ults.· In particular, it yields a 11 linear 

dispersion relation, 11 11 particle.:..wave interaction,~~ etc. The question then 

arises as to the outcome of a particular linear instability (derived from 

the linear dispersion relation). The weak plasma turbulence approach is 

to assume that to include the relevant nonlinear effects one needs only 

to modify the linear theory appropriately. Quasi-linear theory treats 

the nonlinear term Nf as a perturbation on the linear term ilf. However, 

this theory leads to time secularities. Dupree then introduced the con­

cept of renormalization by including the relevant part, say N1f, of the 

nonlinear term to modify ilf and then treating the nonlinearity (N - N1 )f 

perturbatively~ The advantages ·of this theory are that one can rely 

fairly heavily on modified linear instability intuition via a ~~nonlinear 

dispersion relation, 11 11 oroadened particle-wave resonance, 11 etc. One of 

the chief drawbacks is that the resulting Dupree equations are not a 

closed set. For examp1e, we had to:assume the structure of the turbu1ent 

spectrum [see Eq. (27)] to obtain· the closure needed.to investigate non­

linear saturation of the mode. The standard mode-mode coupling theories 

also belong to the weak turbulence category because they suitably modify 

the linear problem by perturbation·techniques. The strong plasma 
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turbulence approach assumes that the resulting turbulence from the linear 

instability is such that linear theory concepts are no longer applicable 

(cf. Navier-Stokes turbulence). Little progress has been made in this 

area (however, see, for example, Ichimaru22). 

It is hoped that for low ·e plasmas, the resulting turbulence can be 

treated in the· Dupree format, while for high S plasmas, strong (Navier­

Stokes type) turbulence can· be expected to ensue. 
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Fig. 1. Nonlinear trapped electron growth rate for 
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