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ABSTRACT
Drift orbit diffusion induced by turbulence actiné on trapped
e]ectroés is shown to reduce and broaden the magnetic drift resonance
and produce the dominant nonlinear saturation mechanism for the dissi-
pative trapped electron instability. The fluctuation level obtained
from such a thedry is found to be consistent with present experimental

observations.



I. INTRODUCTION

The existence of drift waves in tokamak-type toroidal confinement
devices has been demonstrated by microwave scattering experiments in the
Adiabatic Toroidal Compressorl and Tokamak Fontenay-aux-Roses? devices.
Because the trapped electron instability is a type of drift wave which
is destabilized by trapped electrons, it is expected that it will be
operative in larger and hotter tokamaks and will persist even in a reac-
tor regime. The anomalous transport due to this instability is generally
believed to be a dominant factor affecting the confinement time of a
high temperature plasma. While there is already a fairly complete pic-
ture (except for the two-dimensional mode structure) for the linear
theory, the nonlinear theory is sti]]lrather primitive. The most serious
attempt so far has been a one-dimensional, resonant mode-coupling pro-
cess,3 which has difftculty in treating the short wavelength part of the
spectrum because of the strong dispersion of the real part of the fre-
quency. In addition, this theory gives a saturation'1eve1 which 1s too
high to be consistent with the experimental value. Other nonlinear sat-
uration mechanisms, such as quasi-linear plateauing of the density or
temperature profiles, have been observed in numerical simulations.* How-
ever, this 1s highly improbable in real experiments because in a tokamak,
enérgy is continuously pumped into the system through ohmic heating or
neutral beam injection.

The nonlinear model we investigate in this paper is based on the
renormalized turbulence theory of Dupree.5 This model is chosen because
it apparently gave satisfactory agreement between theory and drift wave

experiments in Q-machines.® The major difference between drift waves in
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Q-machines and those in tokamaks lies in the complexity of the geometry
involved. Hence, generalizing Dupree's theory> from slab to tokamak ge-
ometry should provide an appropriate nonlinear description for drift waves
in a tokamak.

In the origtnal theory on trapped e1ectroh modes,’ the instability
arises purely due to electron collisions. Energy is exchanged between
the electrons and the waves through the stochastic process of trapping
and detrapping of electrons by pitch angle scattering. Linear stability
is attained if the rate of energy transfer from the e]ectron§ to the wave
is balanced by the rate of radial convection of the wave energy from the
rational surface to regions where the waves are jon Landau damped. In
this theory, the instability does not exist if there are no collisions.

The picture is significantly chahged'if the magnetic drift resonance
is included in the theory. It is now knoWn thét with the inclusion of
magnetic drift resonance, the instability persists even without electron

collisions.® In other words, the trapped electron instability exists in

very collisionless plasmas such as the plasma in a reactor regime. The

energy exchange between the wave and the electrons is no longer through

the random trapping and detrapping of the electrons, but'through a "Landau
type resonance between the trapped electrons and the wave. ‘In the single
particle picture, trapped electrons have banana-orbits bouncing jn poloidal
and toroidal directions. At the same time, their average position (or

the center of the banana) drifts along the toroidal direction due to the
magnetic curvature and gradient. This drift velocity is proportional to
the energy of the electron and is in the same direction as the phase ve-

locity of the wave. Therefore, there is always a small group of trapped



electrons having the correct energy and experiencing a dc electric field
on the average. These trapped electrons can exchange energy with the wave
just as occurs in the wave-particle resonance in the well-known theory of
Landau resonance. The collisions no longer serve as the catalyst of
energy exchange, but rather serve to reduce the strength and broaden the
resonance. In fact, as the effective collision frequency of the trapped
electrons increases to the same order of magnitude as the trapped electron
bounce frequency, the trapped electron destabilizing term in most cases is
reduced to a level that can be stabilized by shear in present experimental
condi’tions.9 In other words, present experiments are not far from the
stability boundary of trapped electron instability.

Because collisions play such an important role in reducing the
trapped electron destabilizing effect, it is natural to expect in a non-
1inear theory that the effective electron collisions caused by the elec-
trostatic turbulence are the dominant mechanism of saturation. This is
the nonlinear effect we investigate in this paper. The turbulence effects
on the fons are ignored for the time being because the orbit diffusion
effect on the ions will change the ion response in such a way that the
radial efgenfunction equation for the mode is modified. Such a modifica-
tion will increase the effective shear and ion viscous damping. If the
effective trapped electraon Coulomb collision frequency is much smaller
than the average trapped electron bounce frequency, the trapped electron
destabilizing term in the dispersion relation is much larger than the
shear and ion collision terms. 'In this case, tha effect of reducing the
trapped electron destabilizing term is more important than enhancing the.

stabilizing shear and {on collision terms.
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In Dupree's turbulence theory of drift waves, a turbulent callision
frequency kED was found, where kr is the perpendicular wave number and
D is the diffusion coefficient. The meaning of kl {s unambiguous in a
hdmogeneous plasma. In an inhomogeneous plasma with gradients perpen-
dicular to the magnetic field, it is not easy to decide which kI we should
use. In particular, in a tokamak with gradients in the radial direction,
it is not clear what combination of kr and ko should appear in ka. The
problem is more complicated if we realize that the eigenmode- in the radial
direction is not a Fourier series but is a sum of parabolic cylinder
functions. The radial wave number can only be defined in an average
sense. In thié paper, we systematically deduce that the turbulent colli-
sion is k%D and find an averaging procedure to obtain this kr'

In Sec. II, we.derive the turbulent response of the trapped electrons
from a bounce averaged drift kinetic equation. The turbulence affects the
trapped electron nonadiabétic response mainly through the turbulent colli-
sions. In Sec. III, the nonlinear dispersion relation is derived and the
turbulent response of the trapped electrons is treated perturbatively.

The calculations show that the inverse of the turning point distance
(ul/2) is the effective radial wave number that is responsible for the
turbulent collisions k%D. Expressions for the particle and energy fluxes
due to the instability are given in Sec. IV. Numerical examples are
compared with experiments and discussions of the validity of the model
are given in Sec. V. In the appendix, a general discussion of the dis-
tinction between strong (or fluid type) and weak turbulence is also pre-

sented.



I1. TURBULENT TRAPPED ELECTRON RESPONSE

We use r, 6, and ¢z to denote the radial, poloidal, and toroidal
variables. Concentric circular flux surfaces are assumed so that (r =
constant) is the equation for a flux surface. Because 6 and ¢ are peri-
odic variables, we can expand any perturbed quantity in a Fourier series
in 6 and . The equilibrium unperturbed system has density and tempera-
ture gradients in the radial direction. We can decompose any well-behaved
radial dependence into a Fourier integral. Thus, the perturbed distribu-
tion function ¥ and electrostatic fluctuating potentiai ¢ can be written

as
[F.61= % J12 K [F,(K)s 6q,(K)]

exp (fwt + fmo - ilg + ikx) , : (1)

where 1 and m are toroidal and poloidal mode numbers, K is the radial waveA
number, x = r - "1m? and "im is the radial location of the flux surface
with safety factor q(r]m) = m/1.

In the linear theory, the radial structure of the mode is determined
by the sﬁear and ion gyroradius effect. The radia] dependence of the
trapped electron contribution to the dispersion relation is either ignored
or-treated by a perturbation technique. We adopt the same approximation
here and assume that in a nonlinear theory. the radial structure is still
determined by the ion response.” Even including non]ineér effects on ions,
the radial eigenmode equation has a parabolic cylinder function as its
solution. The derivation is quite lengthy and will be the subject of

another paper. The most unstable mode has the form



o noexp (1ux2/2) | ‘ (2)

which is the same form as in the 1inear theory. For simplicity and the
reasons mentioned in Sec. I, we assume that the ions do not behave very
differently from those in the linear theory and write u as®

, 1/2

%o Vi (3,

WP 25,/ i

H = fg

where

S; = (w - w,) Pow*ni[ro + b(ri - Fo)] ,

S2 = (w = w*) (PO = ri) = w*ni[Ti = FO)] ’
. mCTrainN -
“ T TreB T oar b = kepy
n; = d1n Ti/d InN _ Lgl = r(dq/dr)/Rq? ,
T, = exp (-b)I.(b)

i j s Qi =‘eB/MiC )

vi = (eTym/z
p'l = (T_I/Mi)l/z/ﬂi s
ke =m/r ,

M

is the mass of ions, Ti is the ion temperature,
I. is the modified Besse1 function of order i, and
B 1s the magnitude of the magnetic field. (3)

Then for given 1 and m, the radial wave number spectrum is known:

byn(K) = (2min)"1/20, exp (1k2/20) . 0

For the trapped electrons, we can write the bounce averaged drift kinetic

equation as
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of L C (203 _ 900 \e_ D3 (r_8F)-c(f) 5
3t B (5_ 8~ 96 or b T U c(f) (5)

where f and f are the total and ensemble averaged trapped electron dis-

tribution functions, respectively, and

-

Qr

- Vol (6)
e .

YD
is the drift velocity of the trapped electron in the ¢ direction. The
function H in Ey. (6) 1is the G(k) defined by Kadomtsev and Pogutse!V and
depends on both the shear and the pitch angle variable of the trapped
eleciron. When d Tn g/d In r ~ 1, H s roughly a constant very close to
unity. So we are satisfied with taking vp = v2q/(29er). In Eq. (5), we
have kept only the important terms of the problem. The second term on
the left side is the E x B drift, and the third term is the drift of the
trapped electrons due to magnetic curvature and gradient. A similar
equation has been derived by Waddell.1l

It we write f=f + fand ¥ = Z:fk, where k denotes the wave vector
with fixed 1, m, and K and E:denoteg the sum over 1, m, and the integral

k

over K, then the equation for fk is

of . {9, . ¢, . - v ed, _

Thpe (Pka ks )z YD S 2 .

At * v (ar 26 ~ 39 ar) fF-vx (;k "7 f) = e (fy)

Next, we define the nonadiabatic response for the trapped electrons gk
and use a Krook collision model in such a way that collisions relax the

perturbed trapped electron distribution to the adiabatic response,



= _ & r
(fk) = ‘V(fk T ¢’k f) s
where v is the effective collision frequency for trapped electrons. Then

we obfain for 9k

o e, so (ke ko)
3T~ r oz)% B \ae or ~ 3r 736

- vy - T (00 (7)

We assume the ensemble average distribution function f to be a local

Maxwellian

f = N(r) [m/2nT(r)13/2 exp (-m v2/2T)

Equation (7) can then be written as

(28 o o -t Frem o . @

where wI = (-m/r)(CT/eB)(3 In f/3r). In linear theory, Eq. (8) can be
solved by integrating thé rigﬁt side along unperturbed orbits of the
average position of the trapped e]e;trons (banana center). It is easy

" to show that Eq. (8) gives the usual 1inear nonadiabatic trapped electron
response. Using the renormalized turbulence thebry of Dupree,5 the non-

Tinear trapped electron response "is obtained by direct analogy with the

results in Ref. 5,

_ed, (K) _ ]
9p(K) = 10 - wl) —1— 7 dr exp [(iw - V)t

- ik-¥] U(1) exp (iK'F) (9)
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where we have used I-r to denote formally the expression Kx + mé - 1z,

and ﬁ(r) {s the ensemble averaged propagator which satisfies the equation

> D3 . _3_723_ -2
Introducing the propagator U {s equivalent to taking into account the
effect of the fluctuations on the trapped electron orbits. The problem

now reduces to finding the value of U(t) exp (if;?). This is achieved by

operating Eq. (10) on exp (ik-¥) and taking the ensemble avcrage,

v > - ~'
(B - #%) o o0 (@7 (5 &% B 5)
u(t) exp (ike r)> , (1)

where <A> denotes the ensemble average of A. Equation (11) has the

same form as the equation for ?, namely

v ~ -~
o _ D3 \r_c /%903 _ 33
(Tt' r a;)f rB <ae or  or 96 > . (12)
Therefore, U(t) exp (i?-?) and f satisfy the same equation. Substituting

Eq. (9) into the right side of Eq. (12) and performing the ensemble

average, we obtain for f

> palz_[1s 9 .13 <
(ﬁ-?—ﬁ)f—({;wr‘DW.‘-TTrG)f » (13)
where '
2
D-12 (’"C> ,¢1m| (2a|, /+°° dKR(-K) (14)
,m
- ew
G—]’m<) 1¢lm2(2a|‘ )7L [ akr(-k) (15)

= /O“dr exp [fw - v)1 - iker] U(t) exp (ik-r) . (16)
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~ In deriving Eq. (13), we have explicitly evaluated the énsemble average
by a spatial average

< > = (2m)"2(2a)"1 j[g»de ;de; j(: dx
where a is the typical radial extent of the mode. For drift waves in
general, the mode is heavily damped spatially by ion Landau damping when
the distance from the rational flux surface is larger than Xi’ which is
defined by keXi/LS = w/Vi, the‘separation between the point where parallel
phase velocity of the mode is equal to Vi and the rational surface. We
will take a = X1 in the following calculation. It has been shown by
Weinstock!2 that when the ensemble averaged quantities change slowly in
space and time compared with the fluctuating quantities, the random phase
average of the fluctuation is equivalent to the spatial averagé we intro-
duced. Other approximations we have used in deriving Eq. (13) are in

performing the x integration
J[: dx exp (1Kx) z_[ﬁ: dx exp'(TKx) = 2m8(K)

because the average K satisfies Ka >> 1.
From the discussion above,Aﬁ(t) exp (TE-?) satisfies the same equa-

tion as f:

v
5 'Da - > (13 3 .13
3t 7 s Ut exe (Tker) '<r§f“°—+r3ﬁ”’>

or
k1)

U exp (i (17)

-This equation can be solved by neglecting the slow radial derivatives,
i.e., operating with 3/or on the fluctuation length scale only. The

solution is then
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a(t) eXp (TE:F) = exp (imd - {1z + iKx - 1%-th

+ iKGt - K2Dt) . (18)

Substituting Eq. (18) into Eqs. (9) and (14) through (16), we have R(K)
= {[w - wp * KG + i(K2D + v)]-1,

(0 - 0f) ey, (K)/T

: g]m(K) ST e- wp * K& + T(K2D + v) f. * (19)
_ mc\?2 .
D = ]%% <F§ ¢1m 2 {n(h2 + G2 + 4Dv)/a,ulh
x [(4DB)2 + (hZ + G2 + 4Dv)2]1/2} (20)
_ mc\ ew ‘
G = '12% (?E) T"{” ¢1m 2 (h2 + G2 + 4Dv)/a'u|h
x [(4Dw)2 + (k% + G2 + 4Dv)2]1/2} (2m)
where
h2 = [(62 + 4Dv)2 + 16(Dr)2]}/2
(:) = w - UJD ’
wy " 1vD/r

Equation (19) gives the nonlinear response of trapped electrons in terms
of a diffusion coefficient D and a phase shift G. They are coupled to-
gether and related to the turbulent spectrum. Tﬁe interesting point about
the present result is that only the radial wave number appears explicitly
in the nontinear response. The effective collision frequency due to the
turbulence is K2D instead of ng or (kg + K2)D as previously thought.
Besides the effective collision frequency, the turbulence also introduces

a nonlinear phase shift to the mode frequency, as first pointed out by
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Weinstock.13 However, in our case the phase shift term can be safely
neglected because K2D/KG ~ K(d 1n N/dr)=! >> 1. When G is taken to be

zero, Eq. (20) can be used to solve for D self-consistently. The result

is

7 (s o200 + (w2 + G2)1/271/2

p3/2 = po-y g1/2 a|u| V2 + 32)172 . - (22)

From Eq. (22) we can calculate D directly if the turbulence spectrum is

known. Integrating Eq. (19) over all K, we obtain

edy . _.
91 = (0 - wh) —% f (2min)-1/2

_/4w dK exp [i(K2/2p) + 1Kx] (23)
=~ T w-up * (KD FV) _

wheré
40 .
9m =L,° dK g]m(K) exp (iKx)

The K integration in Eq. (23) cannot be evaluated without further approxi-
mation. We assume that the numerator is the most rapidly varying function

of K in the integral and .evaluate it by the method of steepest descent.

The result is

o = - m g (v - w)) exp (-iux/2) |
m T w - wy + i[v+ (xu . : (24)
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III. NONLINEAR DISPERSION RELATION

We observe from Eq. (24) that besides the x dependence from $1me
the nonadiabatic trapped electron response Im also depends on x through
the turbulent collision term. In order to bg self-consistent, this x
dependence must be treated perturbatively. After the ion response is

taken into account, the final dispersion relation reduces to

1+ (1 - ro) - w*/m[l‘1 - Fo)]

= 4(%‘:-)”2 o yedy exp (-y2)
LT e ()], (25)

Where T = Te/TT’ y = v/ve, and € = r/R 1s the inverse aspect ratio. The
left side of Eq. (25) 1s due to the adiabatic response of electrons and
the lowest order ion response, while the first term on the right side is
the trapped electron nonadiabatic response and the second term is the
shear stabilization term. The x integral in the trapped electron con-
tribution is the result of the perturbation calculation. We again ap-
proximate the integral because of the difficu]ty of analytic evaluation.
Treating the x dependence in the denominator as stowly varving compared
with exp (-iux2), we substitute a typical value for x (namely, u"1/2)
into the denominator. The eigenmode frequency obtained by treating both
the trapped electron term and the shear term as small can then be written

as
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w, = w*[fo + nTb (I’T - Po)]/[T + (1 - Fo)] s
and

110 = {xm(-ff-)” T Ive dy exp (2)

(6 - wh)I/Tw - up + 10w + uD)] - |2

%%‘(0102)1/2}
D+ (1 -1 . (26)

Equations (22) and (26) constitute the basic equations of our nonlinear

theory. In the linear phase of the instabilitfes, ‘¢1m is so small that

puD is much less than v. Then Eq. (26) gives us the linear growth rates.
As the linearly unstable modes grow, D also increases until it is large
enough that the growth rate of the most unstable mode is reduced to zero.
A shortcoming of our theory is that the fluctuating spectrum cannot be
determined within the framework of this theory. In order fo re]ate D and
the fluctuation level through Eq. (22), we must assume the shape for the
turbulence spectrum. /

Taking m = 1q, which is the condition for the relevant modes? and
changing a variable to b, we can rewrite the summation in Eq. (22) into

an integral:
TT o _
D3/2 = %rfz Wr"é db'bl/Z,O(b)lz x(sz/sl)l/z R

where
o(b)

ed(b)/T

e
AZ = [v + (v2 +&2)1/2]/(v2 + 32) . ) (27)
When &(b) 1is known we can perform the integration in Eq. (27) and obtain

D. With D known, we can then find the nonlinear growth rate from Eq. (26).

Conversely, if we assume the instability to be stabilized by the turbulent
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collisions of the trapped electrons, we can determine D from Eq. (26)
such that the most unstable mode has a zero nonlinear growth rate. With
the knowledge of D, we can use Eq. (27) to find the fluctuation level for
an assumed shape of spectrum and then find the particle and heat fluxes
due to trapped electron instability using the expressions given in Sec.

IV.

IV. PARTICLE AND ENERGY FLUXES
The cross field electron particle and energy fluxes, Pe and Qe’ can

be written as

T, = <§ ﬁx%-;ﬁe > , -~ (28)

my, v2

Q, = (§ Mxvor r[dv £ > : (29)

It is easy to show that onty the nonadiabatic trapped electron

response contributes to Eqs. (28) and (29). We obtain from Eq. (28)
= / , +eo Ao - . el ™
Ta \% L, dl’\[co dk” Tkg(e/B) ¢_q_,(K7) dv gy, (K)

exp L1(K + K*)x])

After carrying out the ensemble average and expressing the sum over 1 and

m as an fntegral over b, we get

T, ='7e—B'2p Adb() I@(b)2

J&¥ (w - u) 07172 5F (30)

2

and
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‘ cT
er %
Qe a - g-gg—'fa; Jﬁ db (S,/S,)1/2 ’¢(5)lz
_/av —%—— (w - w,) D72 Af (31)

where A 1s defined following Eq. (27). In general, D 1s a function of
electron energy because A 1s a function of electron energy.
For simplicity, we 1ghore the energy dependence of D by replacing

the electron energy in X by its thermal energy and rewrite Eq. (27) as

D3/2 = T rr2(Ty/M;) @2 jg“db b1/2 1(b)
Ay(S2/51)1/2 (32)

where ’¢(b)’2 = ¢g I(b), with Max(I) = 1 and Ao = Alv = v.).

e
Equations (30) and (31) can then be simplified to

cT |
= (o, 2\frr. — e dN
Te = (pgts/Li)0ees o gqr | - &)
~ cT : :
Qg = (pylg/L2)Drg, 2 M, ED
where |

£ =- *]5_0 S db b1/21(b) (5,/57)1/2

J& (@ - o) Mo,
£ =- %o [“ab b2/21(b) (5,/5,)1/2
mev2 R
Jav S (0 - D) Moy

X - {v* + [vg + P (é/wb)zll/z}y3/[\’5 £y (@)
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Ve = V(v = Vg wg = el/2v /Rq

and D = D(L /tp4)2 (Ty/M{)73/2 /Lg 1s the normalized D.

From Eqs. (33) and (34), we observe that both I, and Q, are propor-
ttonal to D. This is consistent with our previous notion that D is the
non]ineér spatial diffusion.” The collision frequency dependence of re
(or Qe) is contained in ﬁgl (or 652). From the numerical calculation in
Sec. V, it is seen that ﬁ is roughly constant in the low collision fre-
quency limit. In the same limit, & and &, are also approaching constant
values. Thus, the anomalous transport associated with the dissipative

trapped electron mode persists even in collisionless regimes.

V. NUMERICAL EXAMPLE AND DISCUSSION

The theory described in Secs. 2-4 is illustrated by the following-
example in which we numerically evaluate the nonlinear trapped electron
growth rate in Eq; (26) as D increases from zero.

In Fig. 1, we have plotted the nonlinear growth rate due to trapped
electrons for different values of B agéinst the poloidal mode number
parameter b = (kepi)2 in a solid 1ine. The shear contribution to the
damping rate is plotted separately in a dashed 1ine. The total growth
rate is therefore the difference between the solid 1ine and the dashed
line. The relevant parameters used in this example are: My =Ny = 1,
e=0.15 L /R=0.25, =2, t=1,L/Ls =0.05 and v, = 0.01. Al
the growth rates shown in Fig. 1 are normalized by (T1/M1)1/2/Ln.
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When D is zero or much smaller than v, the trapped electron con-
tribut{on to the growth rate is the same as that given by linear theory.
There is a peak in the growth rate around b = 0.2. As D increases from
zero, the peak growth rate due to trapped e]ectrqns becomes smaller and
the curve is broadened at the same time. The location of the peak in
this particular case happens to remain about the same. This indicates
that as the turbulence grows, the most unstable mode reduces its growth
rate by turbulent collision damping. However, modes at larger b are de-
stabilized. We conclude that the free energy available for the insta-
bility is spread out in ke space by the broadening effect of turbulent
collisions. When D is larger than 0.2, the trapped electron growth rate
is smaller than the shear damping rate for all ke, and the instability
is completely stabilized. |

Critics of the renormalized turbulence theory will argue at this
point that~as D increases, more and more modes are stabilized by shear
and their fluctuation amplitudes decay in time until finally only the
most unstable mode is left. “Such a final state is not consistent with
the turbulent assumption of the ‘theory. Several answers to this question
are possible. The first possibility is that due to the broadening effect
of the turbulent collisions, the modes near the most unstable mode have
very slow damping rates, so that fheir fluctuation amplitudes change only
a little during the lifetime of the plasma. This effect will provide
enough stochasticity to the system. Another possibility is that initially
there are many unstable modes in -the system, so that it can be correctly
described by turbulence theory until very close to marginal stability

where only a few unstable modes are left. Then some form of mode coupling
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scheme must be developed to determine the final saturated state. In that
case, the renormalized turbulence theory should still give a fair]ymgood
qualitative description of the saturated state. Finally, the recent clump
theory of Dupreel“ extends the renormalized turbu]encevtheory to include
two-particle correlations as a source term in the dispersion relation in
such a way that the single mode final state can be avoided. However, re-
finement of our theory to include clumps is beyond the scope of this pa-
per.

We can obtain sets of curves similar to Fig. 1 for different values

of v,. As a result, the value of D needed to stabilize the instability
for a given shear strength, ﬁc’ can be obtaifned as a function of v,.
This function is plotted in Fig. 2 for a few values of the shear parameter
Ln/LS. We observe from this figure that Bc is fairly constant over low
values of v, and drops to zero rapidly when v, is large enough that the
Coulomb collision alone is able to stabilize the instability.

Having BC known, we can find 0 from Eq. (32). The equation rclating

5C and ¢ can be written as

‘

3 1/4 1/2 § 3/2 '
oz = 4(01 T5/1»,€M_1 E§E§_> E&;
v o Ln Mg r \Rq go . (35)

In Eq. (35), the v, dependence of 2, is contained in ﬁc3/2/£0. For an
assumed turbulence spectrum I(b) peaked around the most unstable mode,

I(b) = exp [-(b - bo)z], where bo is the Tocation of the most unstable mode;
this quantity 1s plotted in Fig. 3 for the same parameters used in Fig. 1.
It is seen that ﬁ3ﬁ2/£j, or s starts from zero near v, ~ 1, increases

quickly to its peak value at a s1ightly Tower collisionality, and then
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.drops back to an asymptotic value at low v,. For the parameters used in
Fig. 1 and further assuming Py = 0.2 c¢cm and Ln = 20 cm, we get from Eq.
(35) 92 ~ (0.019)2 603/2/go. When D_3/2/g ~ 0.1, {t gives o, ~ 0.6%,
which is not far from the values observed experimentally.

The particle and energy fluxes can be calculated from Egs. (33) and
(34). The v, dependences of Ty and Qo> T and a, namely the factors”ﬁcgl
and ﬁcgz,vare plotted in Fig. 4. For the parameteré used, Eqs. (33) and
(34) also give diffusion coefficients consistent with experimental values.

For comparison, the neoclassical I' is also plotted in Fig. 4.

VI. CONCLUSION

We have shown that turbulence-induced collisions acting on trapped
electrons are very significant in the nonlinear saturation of the dissi-
pative trapped electron instabi]ity,.particu1ar1y when the plasma is deep
in the banana regime. When the shape of the fluctuation spectrum is
assumed to be similar to those observed in experimehts, i.e., beaked
around kep1 = 1, the fluctuation level and diffusion coefficients obtained

from the theory are consistent with the experimental values.
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APPENDIX

Weak versus Strong Plasma Turbulence

For completeness, in this appendix we briefly comment on the concepts
of weak and strong turbulence, i.e., on the relationships between "stan-
dard" weak plasma turbulence and Navier-Stokes fluid turbulence theories.
(An i1luminating review can be found in a recent paper by Montgomery.15)
It is to be noted that we are not concerned here with the potential merits
of the large subset ot papers dealing with various aspects of renormaliza-
tion in a weak plasma turbulence. |

The equations of motion of either a plasma or a fluid can be written

in the matrix operator form

(—gf+1'L>f=Nf , - (A1)
where L is a ljgggr_operatorvon f and N is a nonlinear (bilinear) operator
on f. The column matrix f stands for either particle distribution func-
tions (plasmas); velocity, pressure, and magnetic fluids (magnetohydrody-
namics); or velocity field (incompressib]e Navier-Stokes fluids). The
relevant boundary and/or initial conditions are assumed to be given.

In linear theory, one assumes

.IlLf(O)ll NETTIC (A2)

introduces, for example, Fourier transforms, and then proceeds to solve

at

(3— * 1‘L>f(°) -0 = (-l + 1)) (A3)

as an eigenvalue problem, under the given conditions. I is the identity

operator. After finding the spectrum of the operator (-wl + L), one finds
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(o)

the required solution f(o) by summing over the point spectrum {w; /,
w§°), ...} and fntegrating over the continuous spectrum contributions.
This immediately leads to the concept of a "linear dispersion relation"

for jth

with w = w§°)(g). The real part of w§°)(k) is called the "fre-
quency" of the jth wave and it is classified as "stable" or "unstable"
"depending on the sign of the imaginary part of wgo)(k).

In Navier-Stokes turbulence, the linear operator iL = k2vl, where v
is the kinematic viscosity. Now in the region of interest, v << 1, so
<< [INFll

that HILfl That is, there is no meaningful linear theory

NeS NeS®
to give rise to "dispersion relations," "waves," "instabilities," etc.

It should be noted that the E x B drift approximation to the Vlasov equa-
tion is equivalent to the two-dimensional, inviscid, incompressible Navier-
Stokes equation, and so the above remarks apply to purely two-dimensional
plasma drift turbulence as well. It 1§ thus of interest to note that just
as the random phase approximation leads to unphysical resultsl® in fluid
turbulence, so also does this approximation applied to purely two-dimen-
sional plasma drift turbulence (see Cook's comments!? on the Taylor-
Thompson theoryle). Thus from the outset, Navier-Stokes turbulence is a
nonlinear problem. The major breakthrough was achieved by'Kraichnan,i9

who obtained a closed set of integro-differential equations (the "direct
interaction approximation"). This closed set of equations is of such for-
midable complexity that no significant analytic consequences can be derived
from them, and this is for the simplest geometry possible (a large cubic
box, assuming periodicity). The importance of Kraichnan's equations is
that their subsequent numerical solution2® gave remarkable agreement with

experiment. (Nevertheless, some unsatisfactofy features were found and
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this has led to more complicated generalizations; see, for example, a
review by Krafchnan.2l) It is of interest to note that this approximation
has been applied by Montgomery!S to a one-dimensional electron plasma
with an immobile 1on background with periodic boundary conditions. The
resulting closed set of equations appears at the present time to be
numerically unmanageable.

Now in plasma physics, the linear problem in Eq. (A3) docs yicld
nontrivial and significant results. = In particular, it yields a "linear
dispersion relation," “particle-wave interaction," etc. The question then
arises as to the outcome of a particular linear instability (derivéﬂ from
the linear dispersion relation). The weak plasma turbulence approach is
to assume that to include the relevant nonlinear effects one needs only
to modify the linear theory appropriately. Quasi-linear theory treats
the nonlinear term Nf as a perturbation on the linear term iLf. However,
this theory leads to time secularities. Dupree then introduced the con-
cept of renormalization by including the relevant part, say N,f, of the
nonlinear term to modify 1Lt and then treating the nonlinearity (N - N;)f
perturbatively. The advantages of this theory are that one can rely
fairly heavily on modified linear instability intuition via a "nonlinear
dispersion relation," "broadened particle-wave resonance," etc. One of
the chief drawbacks is that the resulting Dupree equations are not a
closed set. For example, we had toassume the structure of the turbulent
spectrum [see Eq. (27)] to obtain the closure needed to investigate non-
linear saturation of the mode. The standard mode-mode coupTing theories
also belong to the weak ‘turbulence category because they suitably modify

the linear problem by perturbation techniques. The strong plasma
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turbulence approach assumes that the resulting turbulence from the linear
instability s such that 1inear theory concepts are no longer épp]icab1e
(cf. Navier-Stokes turbulence). Little proéress has been made in this
area (however, see, for example, Ichimaru22).

It is hoped that for low 8 plasmas, the fesu]ting thrbu]énce can be
treated in the Dupree format, while for high B plasmas, strohg (Navier-

Stokes type) turbulence can be expected to ensue.
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