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ABSTRACT

A study of the non]inear saturation by mode coupling of the dissipétive
trapped-ion mode is presented in which both radial and poloidal variations are
considered. The saturation mechanism consists of the nonlinear coupling via
E x B convection of energy from linearly unstable modes to stable modes.
Stabilization is provided at short poloidal wavelengths by Landau damping from
trapped and circulating ions, at short radial wavelengths by effects associated
with the finite ion banaﬁa excursions and at long wavelengths by.ion collisions.
A one-dimensional, nonlinear partial differential equation for the electro-
static potential derived in earlier work is extended to two dimensions and to
third order in amplitude. Included systematita11y are kinetic effects, e.qg.
Landau damping and its spatial dependence due tg magnetic shear. The stability
and accessibility of equilibria are considered in detail for cases far from
as well as close to marginal stability. In the first case three-wave inter-
actions are found to be important when the spectrum of unstable modes is
suffiéiént]y narrow. In the latter case, it is found that for a single unstab]é
mode, a four-wave interaction can provide the dominant saturation mechanism.
Cross-field transport is calculated, and the scaling of results is considered

for tokamak parameters.



1. Introduction

It is well known that microinstabilities involving magnetically trapped
particles can pose a potentially serious obstacle to efficient plasma confine-
ment in toroidal systems [1-12]. Present tokamaks, such as T-10 and the
" Princeton Large Torus (PLT), are expected to achieve high enough temperafures

for both electron and ion orbits to be in the "banana" regime, w > v

Be,i -+

where w are the trapped-electron and ion bounce frequencies and v , are

Be,'i » ¥
the effective electron and ion collision frequencies. For mode frequencies,

w, below w,.,it is predicted that electron collisions can drive drift waves -

Bi®
unstable [1-12]. This so-called trapped-ion mode. can lead to anomalously
large transport [11,12] and has motivated theoretical study of its linear [1-8]
and nonlinear [9-16] properties. This paper considers mode coupling as a
saturation mechanism and extends two earlier one-dimensional studies [10,15].
We will make frequent reference to these earlier studies, but will review
some of their contents in an effort to make the present paper reasonably self-
contained, ‘ | |
| The conventional description of the dissipative trapped-ion.mode 1§
that of a low frequency, quasineutral, electrostatic drift wave propagating
in the electron diamagnetic drift direction. Electron collisions are destab-
ilizing while ion collisions [1,4] and Landau resonances with both circulating
[3,4] and trapped [5] ions are stabilizing. Most of the theoretical treat-
ments cited do not address the issue of the radial mode structure, i.e. the
mode is assumed to be localized in a region small relative to the plasma L
radius but large relative tu the banana width. TIn studies of the nonlocal,
linear radial problem [17,6] it was found that shear exerts a stabilizing

influence. We adopt a point of view similar to that of Gladd and Ross [6],

i.e. all modes are assumed to have flute-like structure along the field Tines
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[d S ky S Cﬂconnection 1ength)']]. In treating the two-dimensional nonlinear
mode stfuctyre orthogonal to the magnetic field, we allow for the presence of
many mode rational surfaces [where k,{r) = 0].

The object of this study is to trace %he nonlinear evolution of linearly
unstable modes which undergo wave steepening as the result of E x B convection
[11,12]. Kédomtsev and Pogutse have estimated a diffusion coefficient at
saturation which is widely accepted as an uppér 1imit, D = Y/k2 (y is the linear
growth rate of the fastest growing mode with wavenumber k). Their physical
arguments give a level of turbu]ence.at saturation equivalent to that sufficient
for local density fluctuations to have gradients comparable to the background
gradient. LaQuey, Mahajan, Rutherford, and Tang (LMRT)[]O]Ainvestigated the
Kadomtsev and Pogutse slab model [11,12]; and demonstrated that the instability
can be saturated by phase-coherent, nonlinear E x B coupling of energy from
unstable long-wavelength modes to short-wavelength modes which are stabilized
by Landau damping arising from trapped-ion bounce resonahces foé weak temper-'
ature gradients: n; = dzn(Ti5/d2n(n0) < 2/3. These kinetic effeéts‘we}é |
heuristically introduced into the fluid model. In the radially local limit
far from mode rational surfaceé, LMRT found coherent saturated states composed
of many Fourier modes. Cohen, Krommes, Tang, and Rosenbluth [15] extended
this study by determining the stability and accessibility of various non]ineaf
equilibria admitted by the LMRT model and by examining the influence of linear
dispersion and ion collisions. Saisson and Wimmel [16] have considered the )
evolution of the Kadomtsev-Pogutse fluid equations by means of direct numeriﬁA
cal integration. In the absence of Landau damping effegts and ignoring wave
steepening along the field line, they observe a saturation which occurs due
to profile modification, but at substantially higher levels of turbulence as

4 {
compared to the Kadomtsev-Pogutse estimate.
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The bresent study deals with a two-dimensional analysis of mode coupling
as a saturation mechanism for the trapped-ion mode. In particular, now we
include the radially nonlocal effects of magnetic shear and hence many mode
rationa]Asurfaces. Nonlinear terms arising from E x B convection and depending
explicitly on radial derivatives are also taken into account. We present a
more fundamental derivation of the nonlinear equation governing the evolution
of the instab11{ty extended to C?(e¢/T)3. The derivation begins as in Ref. 10
with the Kadomtsev and Pogutse fluid equations. Important kinetic effects .
are systematically added to the quasineutrality condition in a perturbative
fashion. When linearized, our fundamental equation is consistent with the
resu1fs of a more exact kinetic theory describing the two-dimensional linear
mode structure of the trapped-ion mode [6].

In the interest of simplicity many potentially important effects are
not considered here, e.g. ellipticity of the torus (5], tproida1 gradient
drifts [7,18], impurities [8] and detrapping {9,13,19]. ~We,wﬂ] establish the
paraheter regihes in which apﬁroximations within our model are seif-tonsfstenf
and describe the scaling of our results with tokamak parameters. A more
general analysis with a wider range of applicability demands a fully kinetic
nonlinear treatment with a realistic collision operator. This formidable
calculation remains an outstanding problem.

The remainder of the paper is onganized as follows. In Section 2 a
derivation of the nonlinear model equation is reviewed in which a prescrip-
tion is given for the systematic addition to the Kadomtsev-Pogutse fluid
equations of weakly perturbative kinetic effects. In Section 3 tbe radially
local model described in Refs. 10 and 15 is extended to include nonlinear

‘E}x B effects depending on radial derivatives of the potential. These effects

are found to destabilize the radially uniform equilibria previously found to
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be stable to perturbations parallel to the propagation difection of the drift
waves [15]. This motivates construction of new equilibria with hitherto ig-
nored linear and nonlinear, radially dependent physical effects included.

These equilibria are shown to achieve much lower levels of saturated amplitude
provided the waves are not too dispersive. This constraint on dispersion is
necessary for the three-wave interactions to remain effective. Section 4 con-
siders the case very close to linear marginal stability where a single unstable
mode couples with itself by means of a four-wave interaction. A noniinear
frequency shift is induced which allows a balance between linear frequency-
dependent driving and damping forces. In Section 5 the transport of particle
flux is calculated and the scalings of the transport coefficient and the satu-
rated amplitude e¢/T with tokamak parameters are examined. Section 5 concludes
with a brief summary of the conditions under which our model is applicable and

the principal results of our ana]ysis.

2. HModel Equations

In this section we present a derivation of the nonlinear equations needed
to generalize the analysis of Ref. 15. Once again we use the Kadomtsev-Pogutse
fluid equations [11,12] as a starting point. This model utilizes a four-fluid
description consisting of circulating and trapped ions and electrons. In some
sense an average has been taken over the bounce motion of the trapped par-
ticles. This is justified because the mode frequency is much smaller than the

bounce frequencies w << Ui e where wpg = (eTS/ZmS)]/Z/qR, q is the safety
factor, ¢ = r/R is the inverse aspect ratio, and R is the major radius of the
torus.

Wle consider the familiar slab coordinate system (Fig. 1) with uniform
magnetic field in the z direction, density and temperature gradients in the x

(radial) direction, and the diamagnetic drift therefore in the y direétion
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[y = r(s8- £/q), where ¢ and 7 are the poloidal and toroidal angles]. The in-
trinsic inhomogeneity 6f the tokamak magnetic field, which is proportional to
e, leads to a relative fraction 81/2 of magnetically trapped particles. Be-
cause the phase velocity of these modes Ties below the thermal velocity of
the ions, free streaming along the magnetic field lines causes the bulk of
the circulating ions and electrons to respond adiabatically to the wave. The
number densities here are given respectively by the quasi-steady Boltzmann

1/2)

distributions (1 - ¢ Ny exp (+e4/T) for Te = Ti = T and singlyicharged

species. In evaluating the Boltzmann factors we have made a specific choice

of gauge: fd3§¢(§_) = 0.

The effective collision frequencies are enhanced (v_ = ve/e and v = v./e)

+
because small-angle collisions are the dominant process for scattering par-

ticles into and out of the loss cone (v, »> €1/2 v,) [12]. Collisions tend to

relax the trapped particle densities to Boltzmann distributions

eTi ~,e]/2noexp (+e¢/T) over characteristic times v:] . Using the simplest

+
Krook model operator to treat collisions, we find that the momentum equations

n

become

) ST )
nm.[(a/at) + V-9l V =ne (-v¢ + ¥, x BE)-v-P_ + nm EZSIvSS.(yS. V). ()

where s denotes the species, P_ is the pressure tensor, e is the charge, ng is

S
thé number density, ys is the fluid velocity, and Ve is the relative colli-
sion frequency. Temperature perturbations are éonsistent]y neglected. The
usual orderings are assumed: Vv, << w << v_, wps << 2 where 2, 7 are the
cyclotron frequencies. We take the pressure tensor to be isotropic perpendic-’
ular to the magnetic field, which allows v+, + ¥p_ = v(n.T) since 3/5z = 0.
Eq. (1) is then solved perturbatively by expanding ng and !s in power series

as functions of ¢ = e¢/T << 1.
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The lowest order solution of Eq. (1) is given dominantly by
o)

~ } cT/esBrp where rp [d zn(noT)dx]'], and to first order in ¢ by

v}

v < ¢t x tos + worme) (Ve (2)

The polarization drift is smaller by (X w/Qs), and the drift due to collisional
drag is smaller byC?(QS/QS). These as well as the gradient and curvature .
drifts are ignored [7]. The most important effect of weak magnetic shear
appears in the untrapped ion response [6,17] and demands a kinetic description

which we discuss later in this section. At second order in o,

1

(2) . 3 (1) (1) (2) -
ys X CZ X [msyS . gys + (\Zp/n)S ] (eSB) plus smaller terms due to

polarization effects and drag. Hence |y§2)|~« Cj(kvg‘)/gs)vgl).
s (3) _ (1) (2) (2). (1) (3) -1,
Similarly, ys ~ CZ x[msys v ys + msys 'ZYS +(z_p/n)s ](eSB) ; and

|V§3)| ~ C?(kvgl)/ﬂs)z’vél). We have now evaluated the fluid velocities to

/213 (o) (1) (2) (3) : s
CX¢) ’ ys,g !s + ys + ys + ys , and can replace the fluid velocities
appearing in the continuity equations which follow with explicit functions of

dn_.
3 an s

The trapped particles satisfy continuity equations

T T.) = -v_, [ T e]/znoexp (+ ed/T)] (3)

T
Jat +v . (n_ . -
Mg, /8t +T ("e,1 L -+ e,

Because v_ >> w the trapped-electron density is dominantly Boltzmann-like

ng )/ noexp(e¢/T); This is not the case for the ions for which v_ << w .

Closure of the flnid equations is obtained by invoking quasi-neutrality.

nl + (- e]/z)noeXp (e¢/T) = n1 + (1‘-e]/2)noexp (-e¢/T) + sn(s), (4)

where én(¢) is defined as the number density induced by the electrostatic
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potential not included in the foregoing fluid model. It is at this point that

we systematically add linear kinetic effects not otherwise contained in the

Kadomtsev-Pogutse mode, e.g. Landau damping, finite banana-width excursions,
and thermal effects which contribute to linear dispersion. In general, the
term 6n is the differencg of the additional ion and electron contributions,
g0 =g§n, - 8N, - |
To determine én we must construct the linear susceptibility xsﬁu,g) for

species s which is defined by the linear relation between the Fourier-Laplace

transformed number density ﬁs(w,k) and electrostatic potential &(w,g):

n(w,k)

-kzxs(w{&) é(w,k)/4wes. (5)

Application of Eq. (5) to Poisson's equation and use of a kinetic equation to
evaluate xs(w,gj lead to a linear dispersion relation for an electrostatic mode.

For the trapped-ion mode in simplest approximation this can be expressed as [6]

1/2, *
0= e(wk) = 1 4% x (wok) = 1400 )72 (2 + < - (e ]
= glw, = + X (w, = + < >
o ST € 9% +iv. T

]/2 * *
£ (w1 -w)(1-b) w0
*o< w Wy + iv+ ’ T + <w-k“V" + iui ) } > (6)

where we*i are the diamagnetic frequencies, Wpe. j are the Doppler shifts

3 ]

arisjng from the curvature drifts, b = (kx2 + kyz) pi2q2/€ << 1, which gives the
Towest order banana-width effects, Py is the ion gyro-radius, Mo E(T/4nnoe2)]/2
is the Debye length, and the subscripted brackets imply that there is an inte-
gration over the magnetically trapped (T) or untrapped (U) region of velocity
space. In dealing with the ion banana-width correction term (1 - b), the

simplest harmonic time dependence of the excursions of the trapped ions in the
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x-y plane away from the magnetic field Tine is assumed [6].

In the usual fluid limit v_>> w >> Vi 2pg -0, b<< 1 and kzxez << 1,

Eq. (6) gives after the ve]ocfty-space averaging

1/2 * 1/2 *
N _2 € we € U)e
elw.k) = (k)\e) 2 + - - - "~ 0, (7)

+
1\)_ w 1\)+

n

. % * -
~where w, = -w; ﬁ”kycT/gBrn, r - [d zn(no)/dx] ] and v, are the effective

n
jon and electron collision frequencies. This gives the same dispersion rela-

tion as produced earlier by the Kadomtsev-Pogutse fluid equations [1,10],

::gl/zwg/Z + 9 [(e]/zw;/z )3_'] - V+J . bur prescription for including
small kinetic corrections to the linear normal mode frequency is then to use
for the Fourier-Laplace transform of the number density sn the expression
on (ws k) = -k 6x(w,k) ¢ (w,k)/4we, where sy ‘is obtained from the difference of

. (6) and (7). We formally perform the inverse Fourier-Laplace transforms

as follows:

sn(x 3 -(2x) '4ff dud® k K2 8x (w,k) n 2T ]e(;(w,k) exp (-1ot + ik © x)

= vzax(ia/at, -iv) noxez¢ (x 3t) (8)

To illustrate the prescription for calculating én(x ;t) we consider the
kinetic contributions to the ion response arising from the finite ion banana-
width excursions, resonant and nonresonant untrapped ions, and resonant
trapped ions. For the banana-width excursion contribution to the suscepti-
bility, Sxg» we obtain from Eq. (6)

2 2 4 4 2 g oi /)

Sxg(0.k) = (k" + K ;

k2>\ : >
e X y wt v T
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Use of Eq. (8), the usual frequency orderings, and krn >> 1 give

GnB(z;t)~ -2n (05%0%/e) (573" P73y (arat) ™ (W Taray) @ (x st),

where V = (e ]/2/2) cT/eBrn is the electron diamagnetic drift velocity re-

1/2

duced by the factor ¢ /“/2. The bounce resonances of the ions lead to dis-

sipation [4,5]:
4/ 3
KO 2oy (wok) m i2A" (1 - 3n/2) < ——Bi
e OXT VL= n wt+iv, T
where n = d anT/d an n, and A'~ ©(20), from which it follows that

-3
Bi

-1

(x5t) = -2n, AT(1 - 30/2) w73 (0%0th) (arat)! @ (xst).

GnT

To insure Landau damping, n< 2/3. We ignore dispersion effects associated with
the trapped ions [5].

Important effects due to magnetic shear arise in the untrapped ion re-
sponse because of the dependence of the resonance w = k,V, upon the q- prof11e,'
i.e. effectively k, = |2q - m| /qR, where m is the poloidal mode number and 2
is the toroidal mode number and integer minimizing |2q - m| [6]. The loca-
tions of the mode rational surfaces are determined by k, = 0. Following the
analysis of Gladd and Ross [6], the untrapped ion response is, in the 'limits
of negligibly small untrapped ion collision frequency and untrapped banane-

width excursion,

w* w w¥- w .*n
—t s = /2, { 2(z) - 2(e%2) + ——-

]

x [z(1 -2y + (22 - 1/2) 2(2)-(e22-1/2) 2 (e]/zz)]} (9)

where Z(z) is the plasma dispersion function and z = w/k"(ZeT/mi)]/z.
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Far from mode rationa) surtaces, where to good approkimation w<<k..(2zf:T/m.)|/Z
i

the plasma dispersion function can be approximated by the first few terms of a

power series: Z(£)~::iw]/2(i - 52) - 2&. Then for the usual orderings, the

untrapped ions provide dispersion and Landau damping:

1/2
kzlezéxu(waklﬁie o [é(] -n) z + 1w]/2 (1 - 3n/2) Z%],

£
w

which for k, ~ 1/2qR and hence Z~A'2w/wBi leads to

dnU(ﬁ;t)g=2no [;8(1 -n)wBi'Z(gz/atz) + 8n]/2(1 - 3n/2)wB;34(83/3t3)]

-1
x (a/at)  (Vi3/3y) o (x;t) .

The quantity dn(xst) is simply given by the sum of the individual contributions,

+ on. + ény. A limit on the magnitude of (én/niT) will be de-

B T,
termined as a by-product of the following analysis.

én{x;t) = én

We now return to the augmented Kadomtsev-Pogutse fluid equations, Egs. (1),
(3), and (4). We have used the momentum equation (1) to solve for the fluid
velocities !s to third order in ¢ . Substituting these solutions for Ve into
the continuity equations (3), expanding Egs. (3) andA(4). also to third order
in ¢, and then solving for neti in terms of an expansion in @ will give a

nonlinear equation of evolution for ¢. As noted in [15] contributions to

v (ns—s) in Eq. (3) from the diamagnetic drift vanish to all orders in ¢ :
_?["S(CB 12 x vp /nses)] = CV o (Z x yps)/BeS = 0. We also determined in [15]
that :

17+ (n O B}~ OMOWAM2 so ) <o o (i)~ @nlley (e |

for parameters typica1 of 1argeAt6kamaks.
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We find that at third order in o

17 ({20 (n{2y Dy 1= o0ri Vg ) <<

.S xny
. n(0)y 3y o (2)y (e 3.3,202, 2y 4 :
and |y_(ns V_,s )/ v (nS, !s ) C?karnkyvk/ns)<< 1.  Therefore
yl ;= cB<]£xg¢, for purposes of expanding the continuity Eq. (3) to 6153),

which become

-1 T T 172 |
[( 3/at) + cB (axcwy - ay¢ax)] N, i =7V 4 [ne,i-e noexp(ﬂb)]. (10)
From the quasineutrality condition Eq. (4) we determine that

N -nl=-sn+2n (1- /%) [o+ &6 +(e) (11)
1 e 0

We subtract Eqs.(]Olfrom one another to obtain an expression for D(ng - nl)/Dt,
where D/Dt = (3/at) + cB_](3x¢§y - ay¢ax), and use Eq. (11) and the frequency
orderings to calculate nl to<3k¢3): ) ‘

0l n 20y (1 0+ 2+ 76) + T ome)2n, (1 -/?) (o +676) -en]

+ (v,/v.) [Zno(cp + <1>3/6) -an] . (12)

We substitute this result into Eq. (3) for nl to obtain

o Tome? [ang(1 - €72 (a+4¥6) - on] + (/00 gznou - /%) (o4 &6)

Sont e (14 o4 2+ ©/6) + (v/v) [2n0(<b+ $/6) - &n]}
+ v, [én0(¢ + @3/6) -56]4= 0 . With the use of 0/Dt = (a/at)

+2 s-]/ZVIY‘n (Bxﬁbay - By LN -n%y), € << 1, and the standard frequency order-
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ings, we reduce this expression to

[(a/at) + VI (3/3y) +v:] (az/atz) - (2n0¢)'] (aan/at) +v+] (¢ + ¢3/6f

o y=1/2 T 2 -1/2 T
+ (1 -n)e V. (3/3y)e” + 2¢ (wo/v_) v*rnr(ay¢axy - ax¢ayyo)

1

T . 3 - T 2 _
-2V, (3/3y)e”/6 + 2¢ = (1 -n)(wo/v_)V*rnr (ax¢ay - ay¢ax)a " =~ 0,

y

(13)
where wy = VI/r. This is our fundamental nonlinear equation describing

the evolution of the dissipative trapped-ion mode in the presence of wave
steepening effects.
The validity of Eq. (13) depends upon many approximations, the most im-

portant of which are e << 1, ¢ << 1, v

FESWY 5 wgs << wps and w << Q

e e,i.
The dependence of the characteristic frequencies and other crucial parameters
which appear here on specific tokamak plasma parameters and profiles has been
considered in some detail in [15]. The neglect here of electrostatic detrap-
ping [9,13,19] determines a more restrictive condition than e¢/T < 1, namely
eo/eT < 1. We will make comparison with this limit in later sections when we
consider appréximate steady-state solutions of Eq. (13). In deriving the non-
linear terms in Eq. (13) we have made use of the lowest order linear dispersion
relation, (3/at) ::-vI(a/ay). The validity of this approximation and the
accurate correspondence of the linear dispersion relation as determined by our
augmenfed fluid theory with that as derived by a rigorous kinetic theory
[4,5,6] set a 1imit on the size ag/zho = (adn/at)/ZnO, viz. | '
|5;/2n0|.<<|VI (3/3y)e] (14a)
~or equivalently

- * .
|xg(0,k) + ep (w,k) + sxylwnk)| << (1 )78 %0 /(0 + iv) | =2 (140)
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In other words, the rate of Landau damping and the size of the linear frequency
shifts due to dispersive effects provided by ion kinetics must be small com- ‘
bared to Rew =~ kyVI .

THe remaining sections ofAthis paper consider approximate solutions of
Eq. (13). Time dependent and steady-state solutions are constructed, and the
stability of nonlinear equilibria is examined where possible. A common feature
of all the equilibria found is that nonlinearity, whether due to three-wave
or four-wave interactions, creates a balance between a linear source term
v:T(az/atz) and linear dissipatiQe terms arising from 6;/(2n0®) and v, for
n < 2/3. As the plasma approaches steady-state the energy flow from the electrons
to unstable modes via electron collisions establishes a dynamic equilibrium with
loss processes via hode coupling of unstable to stable modes. Ultimately energy
flows to the jons via Landau damping and ion collisions [Fig. 2]. Considera-
tion of (non)conservation laws derived from Eq. (13) by calculating, for ex-

ample, d <o 2.>/dt formally demonstrates the different effects produced by the

linear driving and damping forces and the nonlinear coupling.

3. Equi]ibrié Established by Three-Wave Interactions
3.1 Radial Instability of One Dimensional Equilibria
This section considers the nonlinear dynamics of the trapped-
ion modes when the conditions for effective three-wave interactions prevail.
Three-wave interactions will occur if the frequency mismatch aw, given by

Aw = w3 = Wy T Wy is less than the characteristic rate for the three-wave

process. Here the frequencies wys & T 1,2,3, satisfy the linear dispersion

relation, ;(ml, kz) = 0; and the corresponding wave numbers satisfy the con-

dition that ky = ky + ko. Refs. 10 and 15 examine this limit and consider the

one-dimensional case in which radial variations are ignored. 1In the limit
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that three-wave interactions are effective, thec7(¢3) terms can be discarded.
Far from mode rational surfaces (k. z:]/ZqR),Eq. (13) can then be written in

nondimensional units as

2 4 2 2 3 2
Y 3V 9 Y 9 ) 9 9 Y
X4 + o + P+ 6 + Y +E )~ b =
3t 362 ‘ 354, Bog (apz agz) Uag3 )
AR -
dE 3p3¢g ap 2 ~ .
13
where t = wgt/v_, £z (y- VIt)/r, pilx[r,¢ z 51/2 (1 - n) (v_/wo) o,

5

o =C(40) (1 - 3n/2) (\)_/wo) (uoo/uuB1

)39 v = \)+V_/w02a (SB = (V_/wo) (912q2/€r2)9

s, = 8(1 - n) (v_/u) (u/ug)%, and 82 201 = n)™" (wy/v ) (r /1),

A similar equation, but without dispersion (GB =9y = 0), was the subject of
a preliminary investigation by Lovelace and Tang [14].

In Ref. 15 the stabi]ity and accessibility of one-dimensional equi]ibria.
were studied using Eq. (15) with (3/3x) =« (3/3p) = 0. In particular, attention
was focused on a class of "two-mode" equilibria in which an unstable mode with -
puloidal mode number L couples to its stable harmonics 2L, 3L, ... These
equilibria were found to be stable to perturbations in the same direction as

2,5 0.7. In this section we find that the

the wave propagation for 0.6 < ol
inclusion of an x-dependent variation in the perturbation of the one-dimensional
equilibria is always destabilizing for a sufficjent]y ]érge values of erLs.

It is useful to define the linear operator W, which is simply related to

the Tocal growth rate and linear oscillation frequency,

=] (3/2,) I (07/0t%) + (2n0)7! (asn/ot) -v,, | (16a)

whose Fourier transform in y and Laplace transform in t gives
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~ . . T 2 .
W (w,ky,]B/BX;X) z - 1k‘y Vet w' /v - v, - 1w(6xB +6xT +<SXU)/ 2 (16b)

Far from mode rational surfaces, the local value of W with 3/ox = 0 is given

simply by W= -imwo.[] - (wo/v_) 6m2] + (woz/v_) (m2 - am4 - v), where to

lTowest order w/mo:z m = kyr and § 68 + GU. In Ref. 15 the authors found one-

dimensional equilibria Yo Eg;anL exp [inL(g - ut)] + c.c. with amplitudes and
group velocity u given by

ay = - (sL% + u)/2 + iy /2L
2,07 = - vy 6L+ WP - vy /A o= -ar] (17)
and

u=- oLt 8y + vy ) vy *+ 2v)>
)

2(] - am

where Y, = <y = (v_/woz) Rel.

Finite dispersion can give rise to drifting or convecting steady states
with larger saturated amplitudes than for nondispersive two-mode equilibria
which are stationary (u = §= 0) in the electron diamagnetic drift frame [15].
For sufficient dispersion the saturated amplitudes are large enough to make
suspect the neglect of the four-wave processes. The dispersion produces a
frequency mismatch aw whose phase-mixing influence over the time scale of the
harmonic generation, viz. (ZYL)'], becomes sufficient to cancel the energy
transfer from the unstable mode to stable modes. Ref. 15 concluded that three-

1/2

wave interactions would not occur for this reason if §>>a , and made this

condition quantitative for the case of ion banana-width dominated dispersion. -
However, for typical large tokamak parameters and profiles, there is a sub-
stantial fraction of the plasma cross-section for which 6B/a]/2‘< 1 [15].

For the case where linear dispersion is provided dominantly by untrapped
172 )]/2. In order to guarantee the validity

ions,one finds that &,/ -(v_/wBi
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of our model equations the inequalities (14) must be satisfied. This together
with the facts that v, ~ (me/mi)]/zv_/Z and for instability 1/4a > v tends to
restrict parameter choices to v_/w81~467(1) [15]. Hence our model is valid
only in a small region of parameter space for which the effectiveness of three-
wave coupling is probably marginal due to the relatively significant degree of
dispersion 8y As we approach linear marginal stability 1/4o -v> 0, any dis-
persion whatsoever will render three-wave coupling ineffective since the fre-
quency mismatch Aw = § will greatly exceed ZYL + 0, the characteristic rate of
the harmonic generation. This motivates the detailed consideration of the
@(¢3) terms in Eq. (13), which is discussed in Sec. 4.

We point out that in both Refs. 10 and 15 appears the unfortunate use of
the terminology "near marginal stébi1ity” to describe plasma parameter choices
for which « is not too small i.e. 10-2_§,a < 1, which is consistent with
v-/mBi"“Cy(]) and v, << w << v_. The intent was to indicate that for finite
rather than infinitesimal o there are not too many unstable modes ('va"]/z)
and that the maximum growth rate is not too large (~'w02/4av;). -However, it
was assumed in both [10] and [15] that the maximum growth rate was nevertheless
well above thresho]d: Im o = (1/4a -v) ~ 1/ba >> V. A stricter definitioni
of linear marginal stabi]ity js that the linear growth rate of the most un-
stable mode approaches zero (threshold), 1/4a =CA{v), and is the definition we
use throughout the present discussion.

To demonstrate instability of the one-dimensional equilibria subject to
perturbét1ons with x-dependent variation, it is sufficient to consider the 4

simplesl case of no dispersion. The equilibrium Yo satisfies the equation

3y 2

82 34 0 ( )
+ a + v lb + = 0 N -‘8
(352 ag4 > 0 13

with amplitudes a_ , n = 1,2 given by Eq. (17) in the § = O limit. The per-

nL?
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turbation &y= exp(-iQT) exp(ierp)}: a exp [i(mtn“L)g] + c.c. satisfies

. mtn~
" n-L

the linearized equation

2
, 2 4 2 3 Y
3 . 9 3 3 4 873w _ 38y o\ _
+ + o + v aw+2-—(waw) ( b - = 0.
(a'r 2)52 3&4 ) 9 Y0 . 3E "093p3¢ dp 3&2
We Laplace transform this expression %¥-+ - iQ, where |q| << (v_/w0)|m+n‘L|,
and obtain .

) 4
[~ig - (m + nL +n~ L) + a{m + nL +n L) +v] 5am+(n+n’)L

-'IZ 4 2 s (]9)
2[m + (n#n” )L] + erg[(nL) - nL(m+n"L)] 3880’ L,
where n = z1, +2, n’ =0, +1, +2, ... and a_ = anz .

Eq. (19) constitutes an infinite matrix equation. Fo]]owfng the example
of Ref. 15,we use the fact that modes with large poloidal mode number suffer
severe Landau damping and contribute neg1igi51y to the perturbation eigen-
functions. This justifies truncation of the set of perturbed Fourier modes to
only the m, m:L, m+2L modes. The stability problem is therefore reduced to the
calculation of the eigenvalues of a 5 x 5 matrix whose elements are given by
Eq. (19). Figs. (3a), (3b), and (3c) display the results for Q/L2 as function
of erLs with parameter choices L = 8,m = 1, and uL2 = .56, .64, and .72 re-
spectively. For erLB > 0 we recover exactly the quantitative results of the
one dimensional analysis in [15] and find that the two-mode equilibria are
~stable to perturbations with y variation for 0.6 < al? < 0.7. For |erLB| > 0.1
there is instability. Direct numerical integration of Eq. (15) has quantita-'
tively confirmed these results. The numerical integrations employed the tech-
nique described in [15] with the addition of an x grid and difference operator

af /ax - [f(x +ax) - f(x - ax)1/2ax. The instability of the one-dimensional
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two-mode equilibria to perturbations with transverse (radial) variation moti-

vates us to investigate the nonlocal, fully two-dimensional mode structure of

the trapped-ion instability.

3.2 Two Dimensional Equilibria Established by Three-wave Interactions
Linear calculations of the radial mode strucfure have shown that,
of the many effects arising from the radial variation of the plasma parameters,
current, and magnetic field, magnetic shear can have the.most pronounced in-
fluence [6, 17]. Untrapped ions can provide strong Landau damping if

]/2. Since effectively O<k, =|2q(r)-m|/q(r)Rg 1/2gR, there is a

~

w/k” \Ti/mi)
strong variation of the Landau damping of the trapped-ion mode with respect to
the radial separation from the mode rational surface where k,(r) = 0. The

]/Z,Wherek..z 1/2qR

circulating ions respond adiabatically, w/k, << (Ti/mi)
very far from the mode rational surface. There is severe Landau damping in a
layer fairly close to the rational surface, and then again weak damping for
w/ky >> (Ti/m].)]/2 at the rational surface,where the circulating. ions, respond
hydrodynamically. For monotonic q profiles the separation between rational
surfaces is given approximately by Ars = 1/2q = r/m. Hence, for moderate]y
large poloidal quantum number m, the characteristic length over which the un-
trapped ion response de varies dramatically is much shorter than any of the
characteristic radial lengths over which other coefficients in Eq. (13) vary.
This motivates us to discard all radial variation of coefficients in Eq. (13)
except for that arising from GXU'(w,K}X)- |

Gladd and Ross [6] have found that the strong dependence of &x, on radial
separation from the rational surface generaT]y produces reflection and strong
dissipation in the vicinity of k"‘= 0. They also find that otherwise X is

fairly constant in most of the region between rational surfaces. The net
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effect is to cause radial nodes in the waveform fairly close to the mode
rational surfaces for a given mode. As a useful theoretical "ansatz" which
allows us to make considerable analytic progress in finding relatively simple
nonlocal solutions of Eq. (13), we also take GxU to be independent of x by
setting k., = 1/2qR but require the spontaneously excited unstable modes to
have vanishing amplitude at their mode rational surfaces.

We will construct steady-state solutions of

2 2
 u_ Ty 4 2 2 9, 870 3 3% ) _
V- W+ g VT s(ag b 203C " 3¢ aéz > 0, . (20)

where W = v_W/wg [see Eq. (16a)]. As before, solutions are considered in which
a single linearly unstable mode couples with itself to generate linearly stable
modes. The total disturbance ¢ will then vanish at the mode rational surfaces
of the single unstable mode, w(x = 0) = y(x = Ars) = 0, and is periodic in y,
wly + 2mr) =u(y).

We expand the potential in ascending powers of the wave amplitude of the
unstable mode: ¢ = w(]) + w(z) + ... where w(])=sin(kp)[a]]exp(iLg) +c.c.],

)(2

Yo S o sinln : : ~
y = zzlann,s1n(n ko) exp(inLg) + c.c., and k = nr/ar & k. In general,

n,n
.there-can be a poloidal drift at steady state, 3/3t -~ -ud/3g. To second order
in Ia]1|we obtain

» 2
[-u (3/05) + W) - (a/ae)wl1)? -‘s(gg-w“)sés;w(])' %E¢(])§;?"w(])> (21a)

and

2, (1) (1) 2 (2) (2) 2 (1) (1)
y/ 1) 3%y e 37y (1)
X g_gap T 2 T e 2 ):] » ¥ > < H; Z”>’

oL 9E

(2)

‘ -1 2n Ars/r
where we define an inner product <f,g> = (2wArS/r) _)r dg}f do f g. (21b)
0 0
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The orthogonality of sin{2x) and sin(mk), 2# m, on the interval [0,n]
can then be used to Fourier expand the r.h.s. of Eq. (2la) and determine the

Fourier coefficients anﬁ’ for w(z). We find that

2 2 -1
302 = KL78layy " oy
R
a5y = (16/3n)1La1] (wz]»- i2Lu) (22a)
3, = -(16/151)iLlay- 2(Hyn- i2Lu)”]
23 17 (W3

and similarly

(Wu-iluday, =ia, [(16/3n) ayy - (16/15n)ay,] - 28kL% (22b)

\
a3 2 23] 11%2 Yoo

‘ - 1 -1 =1 . .
where wnn, z w(w,ky = nLr ', kX = n nArS ) as defined in Eq. (16b).

As noted earlier the formation of an equilibrium depends on the nonlinear
stabilization of the linearly unstable mode by means of mode coupling. To
justify truncation of y-at qualllz)ﬁ]] the Fourier modes in Eq. (22a) must be
linearly damped, Re\:Jmn < 0. Furthermore, the subsequent couplings of w(])
with ¢(2), etc. generate higher order modes which must a]éo be linearly stab]e.'
Examination of the linear mode structure determined by Eq. (16) allows the
identification of the relevant energy sinks. At ky = 0 the modes are damped

']/2, the

by ion collisions. At very short.poloidal wavelengths, m = kyr >> g
modes are linearly stabilized by ion Landau damping provided ny < 2/3. For
increasing effective radial wavenumber'er,the modes are stabilized in a
“monotonically increasing fashion [6]. This effect arises as a consequence of
the finite ion banana-width reduction of the mode frequency = kip?ng_]

and its subsequent influence on the growth rate, which involves the frequency

dependent electron driving term and the ion Landau damping terms.
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To provide for the lowest order finite ion banana-width effects

2 2 1

(ki p

x 1.qze- << 1) in the Tinear dispersion relation, we perturbatively include

a freqdency correction in evaluating the w-dependent terms in ﬁ, i.e.

- T 2,2 2,2 2 _ 22 . . 2
w N.kyv* (l kxbi - kybi where bi =059 /e in evaluating w /v_,éxT, and
axU. For simplicity in constructing an equilibrium, we hypothesize plasma

-1/2

parameters such that the Fourier mode with kyr ~ (2a) and er = nr/ArS =

ngyr is unstable, but the mode with er = Zﬁr/Ars and the same ky is stable

(Fig. 4). The studies of Eq. (15) appearing in [14] did not have an energy

sink at short effective fadia] wavelengths. Therefore the waveforms could

be expected to undergo continued fluid steepening in the radial (x) direction

without saturating. |
Reduction of Egs. (22a) and (22b) can be made by substitution of the am-

plitudes determined in (22a) into (22b):

(W

ey o 2 2,0 iop iyl 2 2, oy
jp- i) = - (16L/37) lag 1 “(Wyq - T2Lu)™" - (T6L/15m) |ayq | (Wyg - i2Lu)

L2422 2n -1 .0
- 2kLT8 Ay [T, L

which gives the approximate expression

. ) ] S -
Ia]]I%z © (Wyq-iLw) [(16L/3w)2 (Hyy - i2Lu) L 2k2L432w0;] | (23)

upon truncation of smaller terms.

The real and imaginary parts of Eq. (23) determine two equations for
\

Ia]]!2 and u>whose simultaneous solution gives

w+aul Fbutc = 0, (24)

2

: . | -1 2
where a -‘-(I]]+ 12])L s b= [}2](4I]1+ 12]) + Ryy - (2R11+ RZ])d ] (4L7)

2 2 -1 = palY

_ 12452 -1 -
C:[l111121“R21I11 + (RyqIyy*IqRyy)d }a d=2(3n/16)
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and Imn = Imﬁmn. From the standard discriminant for cubic equations one can
determine under what circumstances there are one, two, or thfee real solutions
for u. For a given vé]ocity u satisfying Eq. (24), |a”|2 can be determined
from either the real or the imaginary parts of Eq.-(23) and must be positive

definite for an équi]ibrium to exist. The real part of Eq. (23) gives

lag; %= (3n/16L)%(1 - dRZ])"{[-R]]RZ] +1”12]+'\2L2u2 Lu(2r, + 12])] (25)

We have used the imaginary part of Eq. (23) to provide an g]ternative deter-
mination of la]]Iiand thus check the consistency of specific numerical eva]ué—
tions of u and la]]lz. |

To make qualitative connection with the one-dimensional two-mode equili-
bria, we compare Eq. (25) to Egs. (17). Rmn corre;péﬁds to a linear growth/
damping rate . If we set d « kg = 0 and ignoreAAiépersion, Imn = 0, thenu =20
and ]anl2 = -(3n/8)2R]]R2]/4L?L This aarees with Eqs{17) in the nondispersive
1imit except for the geometfica] factor (31’7/8)2 which is due to the reduction
in coupling efficiency caused by the sin(kp) radial mode structure. For - .
typical large tokamak parameters and choice of modes for which R1] < 0 and

R,, > 0, dispersive equilibria with single real-valued solution for u as well

21
as nondispersive equilibria with u = 0 exist. Dispersion tends to increase
the saturated mode amplitude, 11{12], 2L2u2 > 0; but this is compensated by
the amplitude reduction provided by the increased coupling wheng # 0. For
typical parameters.and a choice of modes such that R21 < 0, then |dR2]| >>1;
and Ia]]lg as estimated by Eq.(25) can be significantly smaller than the one-_?
dimensional result Eqs. (17).

The mode amplitudes approach steady state in a manner much the same as

described for the one-dimensional two-mode configurations [15]. The mode am-

plitude of the fundamenta11§]), presumed to be thermally excited at an
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at an initially small amplitude, grows at an exponential rate inen by Re Q,
By beating with itself it generates the damped modes comprising w(2) at ah
exponential rate 2Re N1] until just before saturation,at which time the growth
of both w(]) and w(z) diminishes rapidly.

AWe observe that the equilibrium we have approximately constructed in
Eqs. (23), (24), and (25) has no explicit evidence of the energy sink at
large kx. However, implicit in the analysis is a truncation of the Fourier .
: modes at third order and higher in |a]]|,ﬂhich requires tﬁat modes at large
kx be linearly stable or damped. There has a]so'been a truncation of the
Fourier expansion of sinz(kp), j.e. sin-z(kp) =~ (8/3n) sin(ko) - (8/15%)
x sin(3kp).In fact,. because in the calculation of |a]1|2the square of these
Fourier coefficients enters, only the first term of the preceding expansion is
actually saved in Eq. (23). These approximations are responsible for small
errors in the equilibrium which fortunately are not too important for the
overall scaling of the sa£urated amplitude and associated anomalous transport.
However, a stability analysis of these equilibria, similar to that described
in Sec. 3.1, may be quite sensitive to these errors and give misleading or
totally erroneous results.

We have undertaken a linear stability analysis of the equi]ibfium
' Yo" a]]§in(kp) exp[iLl{g- ut)] + aozsin(ka) + a,ysin(ko) exp[i2L(g - ut)] +
é.c., where the amplitudes and group veiocity u are given by Egs. (22a), (23),
and (24). We find frequency eigenvalues giving instability, which are much
larger in magnitude than (v_/wO)L. This violates our approximate use of
.Q Q;KyVI (- kib? - k§b§) jn evaluating ﬁ(w,ky,kx). Hence, the perturbative-
approach used here formally brgaks down. However, this should not ncessarily
diminish the value of our approximate equilibria calculation which may never-

theless give an accurate approximation of the correct scaling of the satur-

ated mode amplitudes and transport. For example, in Ref. 15 it was deter-
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mined that even when the simple one-dimensional two-mode equilibria were un-
stable, the energy and transport of the numerically obtained asymptotic spectra
were bounded and scaled in agreement with the two-mode theory.

The lack of dependence of our approximate equilibrium solutions upon the

details of the energy sink at short effective wavelengths in the radial direc-
tion, although perhaps troublesome for the stability analysis, is an advantage
in other respects. We are able to deduce the approximate scé]iné of the satu-
rated amplitude and transport without demanding a precise calculation of the
]iﬁear radial mode structure and its effects upon the linear mode frequency. -
Consider the approximate expression for Reﬁ(w,g) given by the Taylor series ex-

pansion.

~ T
aRel (u = koVas k)

Jw

ReW(w,k) ~ ReW_(w = k V), k) +

o y Sw +..., (26)

~

where wo is given by the local Tlimit of Eq. (16b) with i3/sx - kX and g, =
T 202 o 12 '
'kyv*(kxbi + ky

bi). It is straightforward to demonstrate that in the fodel nor-
Tinear equilibria described by Eqs. (21-25), stabilization (Reﬂd < 0) of modes"

with ky = L/r and kx = nn/AE, n> 2, requires kX2b12'~19f1) for the case that‘

the single unstable mode (ky = L/r and kX = ﬂ/Aréz “ky) is well above linear
marginal stability and has nearly maximal linear growth rate. The implicit
violation (for n > 2) of the conditions that kxzbi2 << 1 and that |sw| << kyVI
indicates the weakness of the weakly perturbative addition.of kinetic effects
to our fluid model. We point out, however, that these conditions are fairly ;:
well satisfied by the modes explicitly retained in these equilibria. The next
section describes a calculation appropriate for plasmas very close to marginal
stability, in which the assumptions made by our model equations are very well

justified.



-25-

4. Two Dimensional Equilibria Near Marginal Stability
4.1 Equilibria Establishediby Four-wave Insteractions
Near linear marginal stability the electron driving term in
the linear dispersion relation is inearly cancelled by the damping terms pro-
duced by ion co]]isions.and ion Landau damping. We specialize our study to
the case of a single weakly unstable mode and consider the linear dispersion

relation given by Egs. (16) in the local limit:

2, 2 2, 2
bi - ky b.

- : = 0o+ ipel = Lk T
w =@ * iy | = - ImW + iReW = kyV* []-kx ;

R S/ RS I o

1/2

where v o = (1 = 30/2) (w/ug;)? wlA”(w/ug.) + Br (kva/wBi) 1, A =&(20),

and to good approximation mzkyVI on the r.h.s. The effective poloidal wave-
number of the single marginally stable mode is determined by dYL/dky =0

and by a consistency relation between o and ViY| (moz/v._')(m2 -'am4 -v) =0,
where m = kyr. These give am2 =1/2 aﬁd dvo = 1. We set k* z'ﬁky for'this:
mode in the spirit of our earlfer arguments and those of Ref. 6.

The single unstable wave grows at first from some initial value, which is -
assumed small, at its linear growth rate Y- The coupling of the mode with
itself through ihe nonlinear terms in Eq. (13) drives to finite.amp1itude its
harmonics which would otherwise be thermally excited to much smaller ampli-
tudes. Harmonics will be generated at all orders in the amplitude of the fun-
damental and with ygruwth rates given by the corresponding integral multiples -
of the growth rate T [15].

The preceding arguments concerning nonlinear effects tacitly assume that

. phase matching conditions are satisfied, i.e. the sum or difference of the

wavenumbers and corresponding Tinear normal mode frequencies of the weakly
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coupled modes must nearly equal the wavenumber and frequency of another normal
mode. When there is a mismatch Aw in the frequencies, the effectiveness of the
coupling process is reduced; and coupiing virtually ceases because of the loss
of phase coherence when Aw greatly exceeds the characteristic rate of the pro-
cess; Because harmonic generation has a characteristic rate scaling as an
integral multiples of Y s any finite frequency mismatch will be sufficient to
completely inhibit coupling as Y| is decreased to zero at marginal stability.
For Tinear normal modes with dispersion re]atién given by Eq. (27), all three-
wave interactions have a finite mismatch frequency and are therefore ineffec-

tive for systems near marginal stabi]ity.v Eq. (13) then becomes

[(a/3t) - W] (s +67/6) - 2n.VL(a/2y)e /6

?‘] _ T . 2 -~ ’
+ 2¢ (J n)wg /v WVer r (axcpay - aycpax)a@y ~ 0. (28)

We ignore parametric decays [20],whose characteristic growth rates scale
typically as a positive powér of the.wave amplitude of thé'”pump", the wave
undergding decay into other waves. Since the modes we consider here are 'asguméd“
to grow from an initially small amplitude, the growth rates for parametric decay
are quite small initially. Meanwhile harmonic generation proceeds at an ampli-
tude-independent rate proportional to Y- Furthermore, dissipation of the
decay products and frequency mismatch typically reduce the growth rates for
parametric decay, produce an instability threshold condition on the amplitude
of the pump wave, and therefore further decrease the 1ikelihood and efficiency )
- of paramelric decay. The cubic nonlinearity in Eq. (28) requires us to survexf
all pussible four-wave interactions. Because of the dispersion present in the
linear normal mode frequencies, given py Eg. (27), many of the four-wave inter-
actions can be ruled out because of the effects of frequency mismatch. A sub-

class of four-wave interactions possessing identically zero frequency mismatch
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have the trivial phase-matching conditions

(29)
9 (ky) + 2 (ky) = 2 (ky) + 2 (k).
We demonstrate in this sub-section that the four-wave interaction of the

unstable mode with jtself (54 = k, = k) induces a frequehcy shift which causes

-2
the mode to be nonlinearly stabilized by modification 6f the linear driving

and damping mechanisms.A.The_se]f-coup]ing of the unstab]é mode also induces -
frequéncy shifts in thé otherwise stable modes, K # 52 = k. If this frequency
shiff is large enough to nonlinearly destabilize a linearly damped mode, then
the equilibrium established by the self-coupling of the single 1iﬁear1y unstable
mode is clearly unstable (Sec. 4.2). For 54, 52 # k the wavenumber of the
single unstable mode, a]] four waves are linearly damped; and the four-wave
process js unimportant unless one of the modes has been nonlinearly excited to
finite amplitude by some other process; If this should éccur the coupling )
described in Eq. (29) again produces a frequency shift. |

To consider the self-coupling of the single unstable mode we describe its _

amplitude by

t .
o(x,yst) = o sin(k_x) exp[ik - i./r dt’w(t*)] + c.c., , (30)
0 X y 4

where in general w(t) = w * sw(t) = o + sa(t) + iy + isy(t) and w = QL+1YL‘“

js given by Eq. (27) In the absence of nonlinear effects, w(t) = W in order.
that ¢ satisfy Eq. (28). 'Hence, sw(t) is due to nonlinear coupling and is

very small if & is very weakly nonlinear, i.e. |6m/le «67(02) << 1.
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The nonlinear terms arising from [(a/3t) - W] ¢3/6 are much smaller by
'Cﬁ(YL/kyVI) than the other nonlinear terms in Eq. (28) and are therefore neglec-
ted consistent with earlier approximations. The nonlinear term in Eq. (28)

containing (ax¢ay - ayéax) ay¢2 generates modes with x-dependent structure

given by sinz(kxx) cos(kxx) = (1/2) sin(kxx) sin(ZkXx) = (1/4) [cos(kxx)

©

-cos(3k,x)] = }: a,, sin(2nk x), and hence does not contribute to the self-
i n=1 ,
coupling because no mode with variation sin(kxx) appears in the series. The
remaining nonlinear term, which contains (a/ay)¢3/6, generates modes with

structure sin3(kxx) = (3/4) sin(kxx) - (1/4) sin(3kxx), and therefore provides

~ for self-coupling. Therefore, from Eq. (28) we obtain

- , t
-l - Tsw(t) - Wlw +éw.k) - 1(3/4)n kyVII <I>OI2' exp f dt- 2Imu(t-) = 0.

_ (31)
We Taylor-series expand ﬁ(m,g)'around Q(wL,g) = imL in the small varijable
Gw/u)L «(9’(]@12:
. 2 . 2
~igw(t) - %GW]“L&» - Q__Z_ Wle‘(S‘LE— + ...
’ Jw
% t
- 1(3/4)n ikyV* (9, | exp[J/. dt 2Imu(t-)] = 0. (32)
' 0

»Saturation can occur if the net growth rate can be nonlinearly reduced to zero,
Imp(t) = ot sy(t)> 0. Then at saturation §y(«») = -y, - From the real and

imaginary parts of Eq. (32) we obtain to Towest order in lam/mL[-and lkyVI/v_I;

sa(») = - (3/4)n KyVI |¢w|2 (33a)
and |
3 ~ 32 -\ s 2
v = ov(=) m == ReW]wLGQ(w) 7 Rl ImL‘z“ (=) (336)
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02 g2 C -y
where |o_|° =|¢o| exp [ dt-2Ime(t-)].
0 X

Evaluation of (a/aw)Reﬁ and (az/amz) Rel completes the solutions of &Q(«)
and [¢_| and can be used to justify the approximation that [6y| << |éa| which
* has been used in deriving Eqs. (33). For the mostAunstab1e mode, am2 =1/2,
we deduce from Eq. (27) that (5/3w) ReW =~ mwo/4v_ and (32/3w2)<Reﬁ :;-S/Zv_,
where o = VI/rhand o =6140) (1 - 3n/2) ?(wozv_/wBi3). To good approximation
in (wo/v_),.(yL/wo) << 1 and for n > 0, we find that in Eq. (33b) 8y(«) =

[ (3/3w) ReW]sa(»). Hence,

8a(=) = - (4v_/mo )y, | (34a)
and
° 2) = (32/3n) (%a'-v)a | (34b)

o 1% & (16/3n) (v v_ /n%u,

For reversed-gradient profiles (n < 0), the frequency shift is positive
in Eq. (33a); totally different values of &p(=) and |¢m|2,resu1tg ‘However, our
fluid model omits the physical effects of reversed gradiehts.in the linear ‘
electfon driving term which exerts a significantly stabilizing infiuénce f21].
Therefore, we will only consider equilibria for non-reversed-gradient profiles
(n > 0) for which the frequency shift sn(~) is negative, proportional to the
linear growth rate K and considerably larger than &y by a factor 4v_/mmo>>|,

The time-dependent solution of Eq; (32) is straightforward. We use
lsy(t)/sn(t) [<< 1 and |(aRel/aw)sq (t)] >> |(32Reﬁ/aw2)ag(t)2/2| to simplify
the mathématics. Solution of Eq. (32) is then obtained by differentiation

with respect to time, separation of variables, and calculation of two elemen--

tary integrals. We find that

sy(t)/y, = Texp(2y t) [1 - Texp (2y,_t)]'1 (35a)
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and

sa(t)/sa(=) = (|og)*/1e_] exp[f dt- 2Imy(t-)] = -sy(t)/y,,  (35b)

where T = -(|¢0| /|¢w| ) (1 - |¢0| /|¢m| )' . Thus the nonlinear complex fre-
quenéy shift and squared amplitude grow exponentiai]y at rate 2yL until just
before saturation. We emphasize that saturation of the unstable wave in this
case occurs for reasons much the same as for the equilibria established by
three-wave interactions: mode coupling again provides for the formation of a

balance between linear driving and damping forces.

4.2 Stability Qf Equilibria Established by Four-wave Interactions.

In this sub-section wejinvestigate the linear stability of the equilibria
construéted in the immediately preceding discussion. Consider a perturbation
expansion ¢(x,y;t) = @0(x,y;t) + ¢](x,y;t), where the equilibrium satisfies

Eq. (28) with solutions described by Egs. (33) and (34)

¢0(x,y;t) = l¢m] exp[-iQLt - i80(=)t + ikyy] sin(kxx) + c.é.;

and the perturbation satisfies Eq. (28) to first order in ¢]/¢0

[ (a/t) - W] (o #0,%,/2) - nVL (/3y) o,

(36)

-1 2 7.
+2 (1 -n)w /v v rar [(BXQ]By -3 ¢]ax) v + 2(ax¢oay ay@OaX) y(¢o¢1)] 0.

The same choice of boundary conditions is made here as for the equilibrium

-1 2
= - p—4 = - ] 2’
¢](kxx O,n) = 0 and ¢1(gyv + 27) ¢](kyy), where k_y mr, am” /
.o =1 . .
and k, = "ky‘ For ¢y = E, °, ) exp (igr 'y - 1w2nt) sin (nkxx) + c.cC.
where Wy EeL (k’y = zr'], k; = nkx), Eq. (36) leads to an infinite matrix

equation describing the coupling of the Tinear mode amplitudes ®n via the

equilibrium -
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We reqa]] that all modeS other than the principal mode of the equilibrium
afe assumed to be linearly damped and are consequently not spontaneously ex-
cited to significant amplitudes. We apply the arguments of Sec. 4.1 and there-
forerestrict our investigation of Eq. (36) to the considerétion of.only the |
nonlinear couplings which exactly satisfy the phase matching conditions Egs.
(29). This reduces the infinite matrix to diagonal form, viz.
[ - 96 - 6w - W (woar ), nk.) - i(3n/2)t0 Jo |2 =0,  (37)
n X 0 '"w n
where w = wp + sw” and we have Lap]ace—transformed in time 3/3t> - i8w. Recog-
nizing that this equation has the same structure as Eq. (31), we conclude that
the finite amplitude of the equilibrium ¢_ evidently induces a frequency shift
in all the modes of the system. If this frequency shift is sufficient to non-
linearly destabilize any linearly sfab]e mode in the system, then the equilib-
rium is unstable. |
In order that there be only a single linearly unstable mode,
v (s my - 20%v_ <0 or
0 g_z;—;iz—;— - -v < 2. (38)
o V-
Because the mode frequency has been assumed to satisfy vy << Moy <<, where
v = v+v_/m02 and v, = (1/2) (me/mi)]/zv_ =é?(10-2)v_ for a deuterium plasma, we
find that 0(0.1)< v < ©(10). Then Eq. (38) allows us to establish a condition
on o, viz.@(107%)< a < 1; and hence m <7.

A slightly more sevefe condition on a is obtained from a consideration of’n
the nonlinear shift of the sideband frequencies. We Taylor-series expand W ‘
in Eq. (37) and employ the standard'frequency orderings (@O/v>, (YL/wO)<< |
to obtain , 60”7 = 2(2/m)sn (=) ‘ (39a)
and

2

| LT .2
Sy~ = < ReW| 69” + =—5 ReW| &0° 7/2, : (39b)
o dw “on w® “n
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where 80(=) is given by Eq. (34a). The most stringent condition on stability
is obtained by considering the perturbed modes which are nearest sidebands of
the equilibrium and which might sustain 6y > 0, viz. £ =m+ 1 and n =1, AFrom
Eq. (27) we determine that ( ReW/30) = (wo/v_) (x4 - m/4) and (32Reﬁ/aw2) =
(1/v.) [ +(4/m) + (5/2)] for & =m+ 1. Then Eqs. (39) give sa” = 2(m + 1)
x 80 (w)/m z-8YL\,_/mwo form>> 1 and 6y~ = [-2 = (32/m]yL.
From Imwgn =y (. =m=+1) Ry - Zwoz/v_, the net growth rate for two side-
bands becomes for m >> 1 .

L I m2e v+ [ x(32/m) 11y, (a0)
which must be negative for stability.

The lower sideband is evidently further stabilized by the nonlinear
frequency shift. However, for m < 32 the upper sideband can be destabilized
for linear growth rates YL sufficiently large. We recall that (T (wozlv_)
x[ (4@)-1 -v], which using Ed. (40) allows us to express the condition Imw < O

equivalently as

Y ' . : 2
L m 2m . (4-])

?

S <
(g /) ’ e

where 1 << m < 32 and amz ~ 1/2. Of course, the linear stability of the side-
bands already demands that m ¢ 7. For O10.1) < v < &{10), as consequence of
Eq. (41) we determine that m <5, o > 0.02, and v (u /v )7 < 611/2) to
guarantee the nonlinear stability of the upper sideband.
5. Cross-field Transport and Scaling for Tokamak Plasmas

5.1 Transport Coefficient for Radial Flux

. This section presents a calculation of the anomalous transport

arising from the-trapped-ion mode. We compare the transport levels for satura-
tion due to coherent mode coupling in two dimensions, due either to three-wave

or four-wave interactions, with the transport levels predicted by Kadomtsev

and Pogutse [11,12].



-33-

The coherent‘radial transport of'particles is giQen by the flux <nsys';§,
Where the brackets indicate an average over the boloida] angle. Quasineutral-
ity and the dominance of the ExB contribution to the velocity of each species
account fof the equality of <ni!i' ;'>== < ne!e' ;_> to 1§west significant

order. Thé po1bida11y averaged electron flux is given by

| o enr 2qr
~ B _-I. _t_'lT ~ -] 40 T T N
<ne!e- x >= (2ar) 1!. dy(n V + x) = (2nr) ;}E dy(ne ye © X)s
the circulating electrons do not contribute to the average radial flux because
they respond adiabatically. The poloidal average is equivalent to a time aver-
age over many oscillation periods. Because of poloidal periodicity, the dia-
magnetic fluid velocity produces no average flux to all orders in ¢.

Eq. (12) gives an expression for neT accurate to Eﬂ¢3). As argued in
deriving Eq. (10), for purposes of calculating the particle fluxes the fluid
velocities can be replaced by the EXB drift: ys+ chy¢/8. The nonlinear con-
tributions to ng were found to be much more important than the ponderomotive

contributions to ys' The transport coefficient is defined by D = -< nsys' X >

X (dno/dx)'], which leads to

D~ -r,(cT/eB) < In7l(0/v_bt) [2n (1 - ¢'/?) (o'+ 67/6) - on]

+ (\)+/\)_) [2¢ - (Gn/no) + fb3/3] } 3d/3y > (42)
To Towest order (D/Dt) -{3/a3t) and 3¢/t ::-VIa¢/ay, where use has been made

]
of the frequency ordering, e << 1, and ¢ << 1. Hence, Eq. (42) gives

| T2 | .
5 (SL 2__5”2/ 9,‘?.2\-,21* "o’ ¢ [22 2\ . (43)
~\eB v_ Sy )7 €172v — “Aay ) / | .

The next higher order terms in ¢ are smaller by relative order |¢/e]/2|

if three-wave interactions are effective; otherwise the next higher
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order terms are (®4), or of-relative order |<t>|2 compared to those retained.
Kadomtsev and Pogutse have estimated a transport coefficient when satura-

tion is provided by incoherent, turbulent processes, which is given by

, T2
o 2T N2 %
Kp € eBr, v, v £

Their calcu]atibn assumes thét there are many unstable modes, i.e. the plasma
is far from marginal stability.

In order to compare the Kadomtsev-Pogutse estimate with our general ex-
pression, Eq. (43), the quantity < (a@/ay)2 > must be evaluated. In the pre-
ceding sections appear calculations of the nonlinear saturation of the trapped-
ion mode for plasmas having moderate-sized o, viz. 10-2 <a <1, either well
above marginal stability or so close to marginal stability that only a single
mode is unstab]é.. Appropriate for the case far from marginal stability (v++ 0)
in which three-wave interactions are dominant, it was previously calculated [15]
that nondispersive, 6ne-dimensiona] two-mode equf]ibria have a transport coef-

ficient given by

(44)

2
)2 2

€ - r (1 -n

The quantity in the square brackets in Eq. (44) is the saturated value of

r2 < (a<1>/ay)2 >; values of this quantity for dispersive equilibria including

two-dimensional effects.can be calculated from Eqs. (22-25) and scale quite
2

differently. Numberical examples of the prediction of r” < (a@/ay)2> made by
our model in various parameter regimes are presented in the final sub-section.

Near marginal stability we have demonstratéd that a single unstable mode
can saturate its own growth by producing a fréquency shift which allows a bal-

ance to be established between electron driving and ion damping forces, That
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these forces are separately finite is responsible for there being energy flow

and particle tfansport in the system even at saturation. From Egs. (34b) and

- (43), the transport coefficient for the saturation due to the self-coupling of
a single marginally unstable mode is given by

S
12 2

L2 'n [ 32
NS VSRR [T(H '\’)] (45)

In Ref. 15 a fairly detailed comparison of the Kadomtsev-Pogutse trans-
port coefficient and that for one-dimensional, hondispersive two-mode equili-
bria [ Eq. (44) Jwas presented. Profiles typical of the Princeton Large Torus
(PLT) were considered. It was found that the‘transport accompanying coherent
three-wave coupling could be substantially smaller than the Kadomtsev-Pogutse
estimate over much of the plasma cross-section. Very roughly, for (rn/r) -9,
moderate values of o, and 4av < 1, Ref. 15 determined that

-1
D/Dgp ~ [2/(1 -m%T (w /v ) (4a%) < 1.

The inclusion here of radial effects and especially the increased coupling
provided by B8 # 0 in Eq. (15) reduces the saturated amplitudes and consequent-

1y improves the transport picture by reducing D/DKP'

5.2 Scaling and Summary
In this section we conclude our discussion with a few remarks on
the scaling of the values of the saturated amplitudes, a review ofithe more
important assumptions made by our modeT and its limitations, and a brief sum-
‘mary of the important results. A detailed considefation of the dependence Of-
crucial parameters on the:experimenta1 conditions typical of a large tokamak,
e.g. PLT, appears in Ref. 15 and shall not be duplicated here.
A simple figure of merit in calibrating the value of the saturated mode

amplitude(s) is the value of ey/eT. When for a single wave this exceeds unity
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a trapped ion'resonantly interacting with a wave can be electrostatically de-
trapped by simple coherent acceleration due to the parallel electric field, if
its bounce length is appreciable compared to 2n/k, ~ connection 1engthA= qR.
Investigations of electrostatic detrapping in the presence of turbulence [9,13]
or for a single wave with stochastic effects included [19] have lead to con-
siderably 1ower_estimates of e¢/eT at saturation by factors typically of order
ten to twenty.

The ahaJysis in Ref. 15 of one-dimensional, non-dispersive equilibria
established by three-wave interactions gives a résu1t

eo/eT ~ e V201 )™ (0 /v )a™M2, (46)

where for validity of the model (w /v_).e << 15 n < 2/35 and 107%) < o < 1.
For typica] tokamak parameters admitting the trapped-ion instability, the ex-
pression for e¢/eT in Eq. (46) could possibly be of order unity. We now
numerically demonstrate how the inclusion of radial effects can dramatically
alter this estimate.

For purposes of numerical evaluation of Eqs. (22 - 25) we choose the
following basic parameters: v_/wol= 20.4, n =1/2, ¢ = 0.1, wy/wg; = 0.0612,
m;/m, = 3600 and s5 = (v_/u,) (ps°q°/er?) = 0.08. This gives a = A*(1 - 3n/2)

x(mo/wBi)2 (v-/wBi) = 0.04 for A” = »40 [4,5] and 8y = 8(1 - n) (v_/wo)

’ a2
x(wo/wBi)“ = 0.306. The important parameter o scales according to

a = 5.5 x 1071 - 3n/2) >c77/ZR(em)r, (em) ™% n(10'%en™3)8(50ke) 2T (KeV) T, (47)

In Table I we consider the influence on the equilibrium amplitudes of various -

- -1

parameter choices for g = 2(1 - n) (wo/v_) (rn/r) and the level of disper-

sion. Our choice of parameters is meant only to be illustrative, but is con-
sistent with the usual orderings, and ensures that ReW, > O, but that Reﬁoz,

ReW. ., ReW.. < 0.

21° 12
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51/2(] -n)-]

The complex values of the Fourier amplitudes e$mn/€T
(wo/v_) (eamn/eT) and the group velocity Vg/ VI = (wo/v_)u are tabulated in
Table I. iThe cases for which B = 10°6 correspond closely to the one-dimen-
sional two-mode equilibria (B8 = 0) except for geometrical correction factors
of order unity arising from the simusoidal variation in x. Dispersion tends
to inhibit effective coupling of the fundamental mode %11 to the &2] mode and
hepce force the saturated amplitudes from e$]1/eT_5 1 to e¢]]/eT z 1. For the
g-dominated casés, g = 0.1, the coup]iné of the fundamental to 902 is more |
important than the coupling to ;2] and is much less influenced by dispersion -
for these parameter choices. %he table makes obvious the dramatic reduction
jn saturated amplitudes, e$11/5?~ 0.02 for these parameters, produced by the
enhanced‘coup]jng when g8 # 0.

Table I. Two-dimensional equilibrium amplitudes and group velocity vg estab-
‘lished by three-wave interactions for ¢ = 0.1, n = 1/2, v_/u, = 20.4,

1/2
wo(wBi = 0.0612, gnﬁ piq/g / r = 0.044
5 5./eT | eon /eT e /eT.. v VT
s | °8 u | en/e 21/¢ 02 AL
-6 . 4
10°% 0 o 0.473 ~i.062 -0.835 x 10°4] 0
10| 0.04 | 0.306 | 1.44 0.149 -i.0416 0.775 x 1073 0.342
0.1 lo o 0.0237 ~i.155x7073 | -0.0209 0
0.1 | 0.0a0.306] 0.0237 | 0.403x107%-i.113x10"% | -0.0210 0.389

For plasmas very close to marginal stability we have calculated equilibria
established by the self-coupling of a single, marginally unstable wave via a
four-wave interaction.. Using Eq. (34b) we calculate that at saturation

eo/eT ~ 87 (a/3n)/2 (1= -v)!/*

~

s, Where n > 0.
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We recall that the simple nomlinear stability arguments presented in Sec. 4.2
conc]qded that for stabi]ity-yLv_ﬁuoz = (4&)'] -v <&(1) and 4 >0.02. Near
Tinear marginal stability the value of e¢/eT can evidently be very small, i.e.
e¢/eT ;(yLv_/woz )]/2+ 0 as y -~ 0.

We caution the reader not to take the exact numerical predictions of our
model too seriously in view of the many approximations made. The augmented
Kadomtsev-Pogutse fluid equations give only a simple semi-quantitative model
of the trapped-ion mode . A more rigorous kinetic treatment of the nonlinear
evolution of the mode and accompanying computer simulations are needed in
our opinion. '

The scaling with tokamak parameters of most of the important assumptions
in our model has been previously discussedl[ls]. However, we emphasize

that validity of the model demands that wy << wgis W << k..(Ts/ms)]/2

s

e <<1, and R R to justify the Kadomtsev-Pogutse fluid equations,
IGXB + GxT + GXUI << 2 to guarantee that the kinetic effects added are only

weakly perturbative, and ¢ = es/T << 1 to ensure convergence of the perturba-
tion expansion in powers of ®. These conditions conspire to make the model in
which three-wave inferactions are effective valid only in a narrow regime of param-
eter space: v_/wBi~v€3(1) and of the parameter «, evaluated algebraically in

3 <a < 1. This is based on a calcula-

Eq. (47) and numerically in [15], 10~
tion of the effects of dispersion arising from untrapped ions which is referred
to in Sec. 3.1) The model calculations in which four-wave interactions are
~ dominant are valid near marginal stability, i.e. when (1/4a)-v < &{1) and
6%10_2) <a < 1.

We have made no estimates of the Timits determined by use of linear
kinetic theory in describing the effects of finite ion banana-width excursions,

thermal and resonant corrections to the circulating jon response, and trapped-

ion Landau damping. Nonlinear calculations of electrostatic detrapping
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[9,13,18] presumably offer estimates of what levels of electrostatic potential
are necessary to produce significant nonlinear orbit modifications. However,
in view of the lack of consensus among the theories of e1ecfrostatic detrap-
ping and the approximate nature of these theories and of our own mode-coupling
theory, precise quantitative comparison is premature. Nevertheless we can
conclude that the estimates of saturation by mode coupling seem to be quite
competitive with the lowest estimates made by the theories of e]ectrostétic
detrapping.

We have thus extended a mode-coupling theory of the saturation of the
trapped-ion mode based on the augmented Kadomtsev-Pogutse fluid equations to
include variations in the two dimensions corresponding to the plane perperndi-
cular to the magnetic field. Important linear kinetic effects have been
systematically added. The nonlocal effect that magnetic shear has on circu-
lating-ion Landau damping has been very simply incorporated in the limit that
the spacing between mode rational surfaces of the most linearly unstable mode
is much shorter than  any characteristic scale length of the basic plasma
parameters. We have offered a more general derivation of a fundamenta] equa-
tion of evolution for the electrostatic potential Eq. (13) than has previously
appeared.[10,15]. Simple time-dependent and steady-state approximate solutions
of this equation have been obtained analytically.

. Equilibria established by three-wave interactions have been shown to poten-
tially result in significantly smaller saturated amplitudes and weaker concomit-
ant particle transport as compared with the predictions of previous one- -
dimensional theory [15]. The transport coefficient can- therefore be substan-
tially reduced below the Kadomtsev-Pogutse estimate. Our two-dimensional
equilibria illustrate the need for an energy sink at short radial wavelengths
to counterbalance the effects of fluid steepening. Following the analysis of

Gladd and Ross, we have suggested that inclusion of the linear effects due to
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: finite ion banana-width excursionsvprovides the necessary stabilization. We
have found that a stabi]ity analysis of these equilibria is inconclusive and
| specd]ate that this might be due to the approximate nature of the equilibria.
Near linear marginal stability three-wave interactions cease to be effec-
tive and the GK¢3) terms in the fundamental equation must be considered. The
time-dependent approaéh toward an equilibrium produced by the self-coupling of
a single linearly unstable mode via a resonant four-wave interaction has been
analytically ca]cu]qted. We have also determined for what plasma parameters
these equilibria are stable. The particle transport at saturation is found to
scale as the Tinear growth rate,and es/eT scales as the square root of the
growth rate, both of which become vanishingly small as linear marginal stabil-

ity is approached.
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Fig. 1 Slab coordinates showing mutually orthogonal density and temp-
erature gradients vno(x) and vT(x), magnetic field B, and diamagnetic

drift velocity V,

Fig. 2 ~Diagram of the non-dimensional linear growth rate Yo = m2
- am4 -v as function of mode number m, ky =m/r, with parameter v = v+v_/w§.
The flow of wave energy is schematically presented.
Fig. 3 Frequency eigenvalues @ in the drift-wave frame for linearly perturbed

nondispersive two-mode equilibria as function of erLB. The perturbation
sy = exp(-iqr) exp(ierp) %; am+n,LAexp[i(m + n-L)e ] + c.c. is character-

ized by m = 1, and the equilibrium Vo = 3 exp(ilLg) + a5 exp(i2lg) + c.c.

2 _ 2

is parameterized by L = 8 and (a) oL? = .56, (b) aL? = .64, and (c) al® = .72.

Fig. 4 Schematic of the flow of energy due to mode coupling in two-
dimensional Fourier space (kx’ky) from unstable modes to modes stabilized
by ion collisions, ion Landau damping, and effects associated with ion
banana-width excursions. The quantity Ars = (kyr d &n q/dr)—] is

associated with the value of ky for the principal unstable mode.
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