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- 
ABSTRACT 

A s tudy  of t h e  n o n l i n e a r  s a t u r a t i o n  by mode coup l i ng  of the  d i s s i p a t i v e  

t rapped- ion  mode i s  presented i n  which bo th  r a d i a l  and p o l o i d a l  v a r i a t i o n s  a re  

considered. The s a t u r a t i o n  mechanism c o n s i s t s  o f  t he  n o n l i n e a r  coup l i ng  v i a  

E - x  B convec t ion  of energy f rom l i n e a r l y  uns tab le  modes t o  s t a b l e  modes. 

S tab i  1  i z a t i o n  i s  p rov ided  a t  s h o r t  p o l o i d a l  wavelengths by Landau damping f rom 

t rapped and c i r c u l a t i n g  ions ,  a t  s h o r t  r a d i a l  wavelengths by e f f e c t s  assoc ia ted  

w i t h  t h e  f i n i t e  i o n  banana excurs ions  and a t  l o n g  wavelengths by i o n  c o l l i s i o n s .  

A one-dimensional, n o n l i n e a r  p a r t i a l  d i f f e r e n t i a l  equa t ion  f o r  t he  e l e c t r o -  

s t a t i c  p o t e n t i a l  de r i ved  i n  e a r l i e r  work i s  extended t o  two dimensions and t o  

t h i r d  o rde r  i n  amp1 i tude. Inc luded  sys tema t i ca l l y  a r e  k i n e t i c  e f f e c t s ,  e.g. 

Landau damping and i t s  s p a t i a l  dependence due t o  magnet ic shear. The s t a b i l i t y  

and a c c e s s i b i l i t y  o f  e q u i l i b r i a  a r e  cons idered  i n  d e t a i l  f o r  cases f a r  f rom 

as w e l l  as q l ose  t o  marg ina l  s t a b i l i t y .  I n  t he  f i r s t  case three-wave i n t e r -  

a c t i o n s  a r e  found t o  be impo r tan t  when t h e  spectrum of uns tab le  modes i s  

s u f f i c i e n t l y  narrow. I n  t h e  l a t t e r  case, i t  i s  found t h a t  f o r  a  s i n g l e  uns tab le  

mode, a  four-wave i - n t e r a c t i o n  can p rov ide  t he  dominant s a t u r a t i o n  mechanism. 

C r o s s - f i e l d  t r a n s p o r t  i s  ca l cu la ted ,  and t he  s c a l i n g  o f  r e s u l t s  i s  cons idered 

f o r  tokamak parameters. 



1. Introduction 

I t  i s  well known that  microinstabili t ies involving magnetically trapped 

part ic les  can pose a potentially serious obstacle to  e f f ic ien t  plasma confine- 

ment in toroidal systems 11-121. Present tokamaks,, such as T-10 and the 

Princeton Large Torus (PLT), are expected to  achieve high enough temperatures 

for both electron and ion orb i t s  to  be in the "banana" regime, uBeYi > v 
-,+ 

where uBeYi are the trapped-electron and ion bounce frequencies and v are - ,+ 

the effect ive electron and ion col l is ion frequencies. For mode frequencies, 

w, below u B i , i t  i s  predicted that electron collisions can drive d r i f t  waves - 

unstable [I-121. This so-called trapp-ed-ion mode - can lead to  anomalously 

large transport [I  1,12] and has motivated theoretical study of i t s  1 inear [I-81 

and nonl i near [9-161' properties. Thi s paper considers mode coup1 i ng as a 

saturation mechanism and extends two earl i e r  one-dimensional studies [10,15]. 

We will make frequent reference to these ea r l i e r  studies,  b u t  will review 

some of the i r  contents in an ef for t  to  make the present p,aper reasonably se l f -  

contained, 

The conventional description of the dissipative trapped-ion mode i s  

that  of a low frequency, quasineutral , e lec t ros ta t ic  d r i f t  wave propagating 

i n  the electron diamagnetic d r i f t  direction. Electron collisions are destab- 

i l  izing while ion coll isions [ I  ,4] and Landau resonances with both circula.t.ir~g 

.[3,4] and trapped [5] ions are s tabi l iz ing.  Most of the theoretical t r ea t -  

\ ments cited do not address the issue of the radial mode s tructure,  i .e. the 

mode i s  assumed to be localized in a region small re la t ive  to the plasma - 
radius b u t  large relat ive t u  Lhe banana w i d t h .  Tn studies of the nonlocal , . 

l inear radial problem [17,6] i t  was found that  shear exerts a s tabi l iz ing 

influence. We adopt a point of view simil a r  to that  of Gladd and ROSS [61, 

i . e .  a l l  modes are  assullied to  have f lu te - l ike  structure along the f i e ld  l ines  



[ O  5 k,, < @connect ion length)- ' ] .  I n  t r e a t i n g  the  two-dimensional nonl i nea r  

mode s t r u c t u r e  orthogonal t o  the  magnetic f i e l d ,  we a l l o w  f o r  the presence o f  

many mode r a t i o n a l  sur faces [where k,, ( r )  = 01. 

The o b j e c t  of t h i s  s tudy i s  t o  t race  the  non l inear  e v o l u t i o n  o f  l i n e a r l y  

unstable modes which undergo wave steepening as the  r e s u l t  o f  - E x - B convect ion 

[11,12]. Kadomtsev and Pogutse have est imated a d i f f u s i o n  c o e f f i c i e n t  a t  

2 s a t u r a t i o n  which i s  w ide l y  accepted as an upper l i m i t ,  D = y /k  (y i s  t he  l i n e a r  

growth r a t e  of t h e  f a s t e s t  growing mode w i t h  wavenumber 'k).  T h e i r  phys i ca l  

arguments g ive  a l e v e l  o f  turbulence a t  s a t u r a t i o n  equ iva len t  t o  t h a t  s u f f i c i e n t  

f o r  l o c a l  d e n s i t y  f l u c t u a t i o n s  t o  have grad ien ts  comparable t o  the  background 

gradient .  LaQuey, Maha jan, Ruther ford,  and Tang (LMRT) [I 01 i n v e s t i g a t e d  the  

Kadomtsev and Pogutse s lab  model [I 1 ,I 21, and demonstrated t h a t  the i n s t a b i  1 i t y  

can be sa tura ted  by phase-coherent, non l inear  E x B coup l ing  o f  energy f rom 

unstable long-wavelength modes t o  short-wavelength modes which are  s t a b i l i z e d  
. . 

by Landau damping a r i s i n g  from t rapped- ion bounce resonances f o r  weak temper- 

a t u r e  gradients:  ni = den(Ti)/din(n0) < 2/3. These k i n e t i c  e f f e c t s '  were - 

h e u r i s t i c a l l y  in t roduced i n t o  the  f l u i d  model. I n  the  r a d i a l l y  l o c a l  l i m i t  

fa r  from mode r a t i o n a l  surface;, LMRT found coherent sa tura ted  s ta tes  composed ' 

o f  many Four ie r  modes.. Cohen, Krommes, Tang, and Rosenbluth [15] extended 

t h i s  study by determin ing the  s t a b i l i t y  and a c c e s s i b i l i t y  o f  var ious non l inear  

e q u i l i b r i a  admit ted by the  LMRT model and by examining the  in f luence o f  l i n e a r  

d i spe rs ion  and i o n  c o l l i s i o n s .  Saisson and Wimmel [16] have considered the  .. - 
e v o l u t i o n  o f  the  Kadomtsev-Pogutse f l u i d  equat ions by means of d i r e c t  numeri-. 

ca l  i n t e g r a t i o n .  I n  the  absence of Landau damping e f fec ts  and i g n o r i n g  wave 

steepening a long the f i e l d  l i n e ,  they observe a s a t u r a t i o n  which occurs due 

t o  p r o f i l e  mod i f i ca t i on ,  b u t  a t  s u b s t a n t i a l l y  h igher  1 eve1 s o f  tu rbu lence as 
1 

compared t o  the  ~adomtsev-pogu&e est imate. 



The present study deals with a  two-dimensional analysis of mode coupling 

as a  saturation mechanism for  the trapped-ion mode. In par t icular ,  now we 

include the radial ly  nonlocal e f fec ts  of magnetic shear and hence many mode 

rational surfaces. Nonlinear terms arising from - E x - B convection and depending 

expl ici t ly  on radial derivatives are  also taken into account. We present a  

more fundamental derivation of the nonlinear equation governing the evolution 

3 of the ins tab i l i ty  extended to @ ( e $ / ~ )  . The derivation begins as in Ref. 10 

with the Kadomtsev and Pogutse f luid equations. Important kinetic e f fec ts  . 

are systematical ly added t o  the quasi neutral i  ty condition in a  perturbati ve 

fashion. When linearized, our fundamental equation i s  consistent with the 

resul ts  of a  more exact kinetic theory describing the two-dimensional l inear  

mode structure of the trapped-ion mode [6]. 

In the in te res t  of simplicity many potentially important effects  are 

n o t  considered here, e.g. e l l i p t i c i t y  of the torus [5], toroidal gradient 

d r i f t s  [7,18], impurities [8] and detrapping [9,13,19]. We ,will  es tabl ish the 

parameter regimes in which approximations within our model are self-consistent 
'- 

and describe the scaling of our resul ts  with tokamak parameters.' A more 

general analysis with a  wider range of appl icabi l i ty  demands a  fu l ly  kinetic 

nonlinear .treatment wi t h  a real i s t i c  coll ision operator. This formidable 

calculation remains an outstanding problem. 

The remainder of the paper i s  ovganized as follows. In Section 2 a  

derivation of the nonlinear model equation i s  reviewed in which a  prescrip- - .. 
tion i s  given for  the systematic addition to the Kadomtsev-Pogutse f lu id  

equations of weakly perturbative kinetic e f fec ts .  In Section 3 the rad ia l ly  
> 

local model described in Refs. 10 and 15 i s  extended to include nonlinear 

E- x - B effects  depending on radial derivatives of the potenti a1 . These ef fec ts  

are found to destabi 1 i ze the radially uniform equi 1  i  bri a  previously found t o  



be s t ab l e  . t o  perturbations pciral l e l  t o  the  propagation di rect ion of the  d r i f t  

waves 1151. This motivates construction of new equi 1 i br ia  with h i ther to  .ig- 

L nored l i nea r  and nonlinear, r ad ia l ly  dependent physical e f f ec t s  included. 

These equ i l ib r ia  a r e  shown t o  achieve much lower levels  of saturated amp1 i  tude 

provided the  waves a re  not too dispers ive .  This const ra int  on dispersion i s  

necessary fo r  the  three-wave interact ions  t o  remain e f fec t ive .  Section 4 con- 

s iders  the case very c lose  t o  l inear  marginal s t a b i l i t y  where a s ing le  unstable 

mode couples w i t h  i t s e l f  by means of a four-wave in te rac t ion .  A nonlinear 

frequency s h i f t  i s  induced which allows a balance between l i nea r  frequency- 

dependent driving and damping forces.  In Section 5 the t ranspor t  of pa r t i c l e  

f lux  i s  calculated and the scalings of the  t ranspor t  coef f ic ien t  and the satu- 

ra ted amplitude e$/T w i t h  tokamak parameters a re  examined. Section 5 concludes 

w i t h  a  brief  summary of the  conditions under which our model i s  applicable and 

the  principal r e su l t s  of our analysis, 

, . 

2. Model Equations . 

In t h i s  section we present a derivation of the  nonlinear equations needed 

t o  generalize the  analysis  of Ref. 15. Once again we use the  Kadomtsev-Pogutse 

f l u id  prll~ations r11,12] as a s t a r t i ng  point. This model u t i l i z e s  a four-fluid 

description consist ing of c i rcu la t ing  and trapped ions and e lect rons .  In some 

sense an average has been taken over the  bounce motion of the trapped par- 

t i c l e s .  T h i s . i s  j u s t i f i ed  because the  mode frequency i s  much smaller than the 

bounce frequencies w << w B i , e  where w ( E T , / z ~ , ) ~ / ~ / ~ R ,  q i s  the  sa fe ty  
& s 

f ac to r ,  E = r/R i s  the inverse aspect r a t i o ,  and R i s  the  major radius of the 

torus .  

b!e consider the  famil iar  s lab  coordinate system (Fig. 1 )  w i t h  uniform 

magnetic f i e l d  in the z di rec t ion ,  density and temperature gradients in  the  x 

( r a d i a l )  d i rec t ion ,  and the diamagnetic d r i f t  therefore  in the  y d i r e h i o n  



[y = r ( 0 -  </q),  where e and ; a r e  t h e  p o l o i d a l  and t o r o i d a l  angles] .  The i n -  

t r i n s i c  inhomogeneity o f  t h e  tokamak magnet ic f i e l d ,  which i s  p r o p o r t i o n a l  t o  

E, leads t o  a  r e l a t i v e  f r a c t i o n  o f  m a g n e t i c a l l y  t rapped p a r t i c l e s .  Be- 

cause t he  phase v e l o c i t y  of these modes l i e s  below t h e  thermal v e l o c i t y  o f  

t h e  ions, f r e e  s t reaming a long  t h e  magnet ic f i e l d  l i n e s  causes t h e  b u l k  o f  

t h e  c i r c u l a t i n g  i ons  and e l e c t r o n s  t o  respond a d i a b a t i c a l l y  t o  t h e  wave. The 

number d e n s i t i e s  here  a r e  g i ven  r e s p e c t i v e l y  by t h e  quas i  -s teady Bol tzmann 

d i s t r i b u t i o n s  (1  - ,'/*)no exp (+e$/T) f o r  Te = Ti 5 T and s i ng l y j cha rged  

spec ies.  I n  e v a l u a t i n g  t he  Boltzmann f a c t o r s  we have made a s p e c i f i c  c h o i c e  

of  gauge: /d3x-$(&) = 0. 

The e f f e c t i v e  c o l l i s i o n  f requenc ies  a r e  enhanced ( v -  = V,/E and v+= v ~ / E )  

because sma l l -ang le  c o l l i s i o n s  a r e  t h e  dominant process f o r  s c a t t e r i n g  pa r -  

t i c l e s  i n t o  and o u t  o f  t h e  loss,  cone ( v ,  > vL)  [12]. C o l l i s i o n s  tend  t o  
. .. 

r e l a x  t h e  t rapped p a r t i c l e  d e n s i t i e s  t o  Bol  tzmann d i s t r i b u t i o n s  
T 

'e,i - c1 l2n  exp (ke$/T) over  c h a r a c t e r i s t i c  t imes v-'  . Using t h e  s i m p l e s t  
0 - + 

Krook model ope ra to r  t o  t r e a t  c o l l i s i o n s ,  we f i n d  t h a t  t h e  momentum equat ions 

become 

where s  denotes t h e  species,  eS - i s  t h e  p ressure  tensor ,  eS i s  t h e  charge, n  i s  
S 

t h e  number d e n s i t y ,  i s  t h e  f l u i d  v e l o c i t y ,  and vss ,  i s  t h e  r e l a t i v e  c o l l i -  

s i o n  frequency. Temperature p e r t u r b a t i o n s  a r e  c o n s i s t e n t l y  neg lec ted .  The 

usual o rde r i ngs  a r e  assumed: v+ << w << v  - $  U B ~  << 'e,i where ne a r e  t h e  -. 
9 i 

c y c l o t r o n  f requenc ies .  !Je taI:c t h e  p ressure  t enso r  t o  be i s o t r o p i c  pcrpendic- .  

u l a r  t o  t he  magnet ic f i e l d ,  which a l l o w s  - v*PS -i yS = o(nST)  s i n c e  a l az  s 0. 

Eq. ( 1 )  i s  then  so lved  p e r t u r b a t i v e l y  by expanding nS and V i n  power s e r i e s  
-S 

as f unc t i ons  o f  a~ r e$/T << 1. 



I -6- 

The lowest  o rder  s o l u t i o n  of Eq. ( 1 )  i s  g iven  dominant ly  by 

v(o), j cT/e Br  where r I [d  a n ( n o ~ ) d x ] - l  , and t o  f i r s t  o rder  i n  m by 
-5 s  P P 

The p o l a r i z a t i o n  d r i f t  i s  smal le r  by B( o/nS),  and t h e  d r i f t  due t o  c o l l i s i o n a l  

drag i s  smal le r  by B ( v S / n S ) .  These as w e l l  as t h e  g rad ien t  and cu rva tu re  . 

d r i f t s  a re  ignored 171. The most impor tan t  e f f e c t  o f  weak magnetic shear 

appears i n  t h e  untrapped i o n  response [6,17] and demands a k i n e t i c  d e s c r i p t i o n  

which we d iscuss l a t e r  i n  t h i s  sec t i on .  A t  second order  i n  m y  

v(') = c; x  [ms% (1 )  
S 

) + ( & / n ) i 2 )  1 (eSB)-' p l us  sma l l e r  terms due t o  x< 
p o l a r i z a t i o n  e f f e c t s  and drag. Hence 1d2) 1 -  (kv!' )/n,)V!' ) . 

- - 

( 3 )  A (1  1 
- 

( 2 )  S i m i l a r l y ,  5 = cz x[mS% .v V+ + s (')' -1% ' + ( v p / n ) i 3 ) ] ( e S ~ ) - 1  -. ; and 

(1  ( 3 )  l V S  I - B ( k v S  /aS)' v!' ) .  We have now evaluated t h e  f l u i d  v e l o c i t i e s  t o  
- 

% , & ('I ( 3 ) y  and can rep lace  t h e  f l u i d  v e l o c i t i e s  
+ % + %  + &  

appearing i n  t he  c o n t i n u i t y  equat ions which f o l l o w  w i t h  e x p l i c i t  f unc t i ons  o f  

m and nS. 

The trapped p a r t i c l e s  s a t i s f y  c o n t i n u i t y  equat ions 

Because v - >> u t h e  t rapped-e lec t ron  d e n s i t y  i s  dominant ly  Bol tzmann- l ike 

n l  cr cl/' n  exp(e$/T),  T h i s  i s  n o t  t h e  case f o r  t he  i ons  f o r  which v+ << u . -.' 
0 ! 

Closure o f  t h e  f l ~ l i d  equations i s  obta ined bay i nvok ing  quas i -neut ra l  i ty. 

where 6n($) i s  de f ined  a s  the  number d e n s i t y  induced by the  e l e c t r o s t a t i c  



p o t e n t i a l  n o t  inc luded i n  the  fo rego ing  f l u i d  model. I t i s  a t  t h i s  p o i n t  t h a t  

we sys temat i ca l l y  add l i n e a r  k i n e t i c  e f f e c t s  n o t  otherwise contained i n  t he  

Kadomtsev-Pogutse mode, e.g. Landau damping, f i n i t e  banana-width excursions, 

and thermal e f fec ts  which c o n t r i b u t e  t o  l i n e a r  d ispers ion .  I n  general, t h e  

term 6n i s  t he  d i f f e r e n c e  o f  the a d d i t i o n a l  i o n  and e l e c t r o n  cont r ibu t ions ,  

To determine 6n we must cons t ruc t  t he  1  i nea r  s u s c e p t i b i l i t y  x S ( ~  ,k) f o r  

species s  which i s  de f i ned  by the  l i n e a r  r e l a t i o n  between the  Four ier-Laplace 

transformed number dens i t y  h s  (!. k )  and e l e c t r o s t a t i c  p o t e n t i a l  ((o,k) : 

A p p l i c a t i o n  o f  Eq. (5 )  t o  Poisson's equat ion and- use o f  a  k i n e t i c  equat ion t o  

evaluate xs(w,k) lead t o  a  l i n e a r  d i spe rs ion  r e l a t i o n  f o r  an e l e c t r o s t a t i c  mode. 

For t he  t rapped- ion mode i n  s imp les t  approximation t h i s  can be expressed as [ 6 ]  

1/2 * 
E  (we  -4 

0 = E(wyk)  1  + x S ~ S ( ~ y ~ k )  = I + ( ~ A ~ ) - ~  {2  + < w-w > 
De + . i v  T 

* 
where w a re  the  diamagnetic frequencies, uDeYi e, i are  the  Doppler s h i f t s  

2  2  2 2  
a r i s i n g  f rom the  curva ture  d r i f t s ,  b  = (kx  + ky ) pi q  / a  << 1, which g ives  the  

- lowest  o rder  banana-width ef fects,  pi i s  t he  i o n  gyro-radius, A ;(T/4nn e  2  ) 1 /.2 e  o 

i s  the Debye length ,  and the  subscr ipted brackets imply t h a t  there  i s  an i n t e -  

g r a t i o n  over the  magne t i ca l l y  trapped (T)  o r  untrapped ( U )  r eg ion  o f  v e l o c i t y  

space. I n  dea l i ng  w i t h  the i o n  banana-width c o r r e c t i o n  term (1 - b ) ,  t he  

.SfiTlplest.harmonic t i ~ e  dependence o f  t he  excursions of t he  trapped ions  i n  t h e  



x-y plane away from the  magnetic f i e l d  l i n e  i s  assumed [6]. 

. .  . I n  t he  usual f l u i d  l i m i t  v - >> w >> v+ 2 2 
' W ~ e ,  i +0, bc< 1 and k he c 1, 

Eq. (6 )  g ives a f t e r  t he  veloc i ty-space averaging 

* * 
. where 'we = -mi = : k cT/eBrn, r - en(no)/dx]-' and V+ a r e  the  e f f e c t i v e  

. .  y n - 

i o n  and e l e c t r o n  c o l l  i s i o n  frequencies. Th is  g ives  the  same d i spe rs ion  re1  a- 

t i o n  as produced e a r l  i e r  by t h e  Kadomtsev-Pogutse f l u i d  equat ions [I ,101, 

w =€  i/Zu.6/~ + i E ~ W )  - .+I . our p r e s c r i p t i o n  f o r  i n c l u d i n g  
L ' J 

small  k i n e t i c  co r rec t i ons  t o  t h e  l i n e a r  normal mode frequency i s  then t o  use 

f o r  t he  Four ier-Laplace t ransform o f  the  number dens i t y  6n the  expression 

2 
6; (my&) = -k sx(w,k) m (u,k)/4ne, - where ax i s  obta ined from the  d i f f e r e n c e  o f  

Eqs. ( 6 )  and ( 7 ) .  We formal l y  perform t h e  i nve rse  Four ier-Laplace t ransforms 

as fo l l ows :  

3 2 6n(x - ; t )  = - ( Z T ) - ~ ~ /  dud k k 6y (w,k) nohe 2 ~ - 1 e m ( ~ , k )  - exp ( - ( ~ t  + ik ; x-) 

To i l l u s t r a t e  the  p r e s c r i p t i o n  f o r  c a l c u l a t i n g  6n(x - ; t )  we consider  t h e  

k i n e t i c  c o n t r i b u t i o n s  t o  the  i o n  response a r i s i n g  from the  f i n i t e  i o n  banana- .' 
w id th  excursions, resonant and nonresonant untrapped ions,  and resonant 

trapped ions.  For t he  banana-width excurs ion  c o n t r i b u t i o n  t o  the  suscept i -  

b i l i t y ,  6xg. we o b t a i n  from Eq. (6 )  



Use of Eq. (8), t h e  usual f requency order ings ,  and k rn  >> 1  g i v e  

112 where v , ~  z (E  12 )  cT/eBr i s  t he  e l e c t r o n  diamagnetic d r i f t  v e l o c i t y  r e -  
n  

duced by the  f a c t o r  ~ ' ' ~ 1 2 .  The bounce resonances o f  t he  ions  l ead  t o  d i s -  

s i p a t i o n  [4,5]: 

where n z d  anT/d an no and A '  - W(20) ,  f rom which i t  f o l l o w s  t h a t  

To i nsu re  Landau dam ping,^< 213. We igno re  d i spe rs ion  e f f e c t s  associate3 w i t h  

t h e  t rapped i ons  [5]. 

Impor tant  ef fects  due t o  magnetic shear a r i s e  i n  t he  untrapped i o n  r e -  

sponse because of t he  dependence o f  t h e  resonance w = k,~.,, upon t h e  q-prof i 1 e, ' 

i .e. e f f e c t i v e l y  k,, = laq - m l  /qR, where m i s  t h e  p o l o i d a l  mode number and a  '- . - 

i s  t he  t o r o i d a l  mode number and i n t e g e r  min imiz ing  laq - rnl [6]. The l oca -  

t i o n s  of t h e  mode r a t i o n a l  sur faces a re  determined by k,, = 0. Fo l low ing  t h e  

ana l ys i s  o f  Gladd and Ross [6], the  untrapped i o n  response i s ,  i n  t h e  '1 i m i  t s  

of n e g l i g i b l y  smal l  untrapped i o n  c o l l i s i o n  frequency and untrapped banana- 

w id th  excursion, 

I 

x  [ ~ ( l  -E  ' I 2 )  + ( z 2  - 112) z(=)-(Ez2-112) z (E1I2z) ]  

112 where Z(z )  i s  the  plasma d i spe rs ion  func t i on  and z  = o /k . (2~T/m~, )  , 



I / Z  Far fro111 rr~ode r -a t i  ona 1 surfaces, where t o  good approximation w<<k,, (2~T /m.  ) , 1 

t he  plasma d i spe rs ion  f u n c t i o n  can be approximated by the  f i r s t  few terms o f  a 

2 power ser ies :  Z ( 6 )  . = i $ I 2 ( i  - 6 ) - 26. Then f o r  t he  usual order ings,  t he  

untrapped ions prov ide  d i spe rs ion  and Landau damping: 

which f o r  k,, - 1/2qR and hence z - 2 d m B i  leads t o  

The q u a n t i t y  6n(x;t) - i s  s imply g iven by t h e  sum o f  the  i n d i v i d u a l  c o n t r i b u t i o n s ,  

T Bn(x;t) = 6nB + 6nT + Sny. A 1 i m i t  on the  magnitude o f  (an/ni ) w i l l  be de- . ' 

termined as a by-product o f  t he  f o l l o w i n g  ana lys i s .  

We now r e t u r n  t o  the  augmented Kadomtsev-Pogutse f l u i d  equations, Eqs. ( I ) ,  

(3) ,  and (4 ) .  We have used the  momentum equat ion (1  ) t o  so lve  f o r  t h e  f l u i d  

v e l o c i t i e s  II, t o  t h i r d  order  i n  m . S u b s t i t u t i n g  these s o l u t i o n s  f o r  v_S i n t o  . 

the  c o n t i n u i t y  equat ions (3 ) ,  expanding Eqs. (3 )  and ( 4 ) .  a l s o  t o  t h i r d  o rde r  

i n  m, and then s o l v i n g  f o r  neT i n  terms o f  an expansion i n  m w i l l  g i v e  a , i 
nonl inear  equat ion o f  e v o l u t i o n  f o r  CJ. As noted i n  [15] c o n t r i b u t i o n s  t o  

V* (n  V ) i n  Eq. ( 3 )  from the  diamagnetic d r i f t  vanish t o  a l l  orders i n  CJ : - s-s 
6 f x vp /n e )] = c o  ( z  x  3 S ) / B e S  E 0. We a1 so determined i n  [I 51 -. 

- S  s s  

f o r  parameters t y p i c a l  o f  1 arge,  tokamaks. 



We f i n d  t h a t  a t  t h i r d  o rde r  i n  a 

v -  (n( '  ) V ( ~ ) ) / V -  (n !2 )~  1 - ' 6 ' ( k ~ r ~ k Y ~ ~ / n s ) < <  1 I - s .-s - - S 

( 2 I v  (1 )  and, I _ v- (n(')v s -s ( 3 ) ) / v -  ( n  
s ' -s 3 r 3 k 2 ~ 2 / ~ 2 )  << 1;.   here fore ) ' + d k x n y k  s 

3 vT = CB" ;xv( f o r  purposes o f  expanding t h e  c o n t i n u i t y  Eq. ( 3 )  t o  & m  ) , - e , i  - 
which become 

~ r o m  t h e  q u a s i n e u t r a l i t y  c o n d i t i o n  Eq. ( 4 )  we determine t h a t  

T T We s u b t r a c t  Eqs.( lO)from one another  t o  o b t a i n  an express ion f o r  tl(ni - ne)/Dt,  

where (a /a t )  + CB-' ( a (a  - a ( a  ) .  and use Eq. (11 ) and t h e  frequency 
..x y y x 

3 o rder ings  t o  c a l c u l a t e  n: t o  d( (r ) :  

We s u b s t i t u t e  t h i s  r e s u l t  i n t o  Eq. ( 3 )  f o r  n; t o  o b t a i n  

-J - - ' (D/D t ) '  [2n o (1  - 2'') (m +?/6) - an] + ( D / D ~ )  2no( l  - 2'') (m + 2 / 6 1  - I 
2 3 - an + ?'2n0(1 + m + m /2  + m 16) + (v+/v-) 

+ V+ [2no(m + m 16 )  -an . = 0 . With t h e  use of O i O t  = (slat) I 
+2;1/2~Irn ( a  @a - a @a  -008  ) E << 1, and t h e  standard frequency o rde r -  

X Y  Y x Y '  



ings,  we reduce t h i s  expressl'on t o  

. . 
(13) 

T where wo V,/r. T h i s  i s  our fundamental nonlinear equation describing 

the  evolution of the  d i s s i pa t i ve  trapped-ion mode i n  the  presence of wave 

steepening e f f ec t s .  

The val i d i t y  of Eq. (13) depends upon many approximations, the  most im.-  

portant  of which a r e  E << 1 ,  @ << 1 ,  v+<<w<<v -, uBi << w and w << ",i Be ' 
The dependence of the cha r ac t e r i s t i c  frequencies and other  crucia l  parameters 

which appear here on spec i f i c  tokamak plasma parameters and p ro f i l e s  has been 

considered i n  some de t a i l  i n  [15]. The neglect  here of e l e c t r o s t a t i c  detrap- 

ping [9,13,19] determines a more r e s t r i c t i v e  condition than e+/T < 1 ,  namely 

 em/&^ < 1. We wil l  make comparison w i t h  t h i s  1 imit  i n  l a t e r  sect ions  when we 

consider approximate s teady-s ta te  solut ions  of Eq. (1 3) . .  In deriving the  non- 

1 i  near terms in Eq. (1 3 )  we have made use of the 1 owest order 1 i  near dispersion 
T r e l a t i on ,  ( a / a t )  = -V,(a/ay). The va l i d i t y  of this  approximation and the  

accurate correspondence of the l i nea r  dispersion r e l a t i on  a s  determined by our 

augmented f l u id  theory w i t h  t h a t  as derived by a rigorous k ine t i c  theory 
0 

[4,5,6] s e t  a l i m i t  on the s i z e  an/2no = (a6n/at) /2no,  v iz .  

o r  equivalently 



I n  o ther  words, t he  r a t e  of Landau damping and the  s i z e  o f  the l i n e a r  frequency 

s h i f t s  due t o  d i spe rs i ve  e f f e c t s  prov ided by i o n  k i n e t i c s  must be smal l  com- 

T pared t o  Rew kyV,. 

The remaining sec t ions  o f  t h i s  paper consider  approximate s o l u t i o n s  o f  

Eq. (13).  Time dependent and s teady-s ta te  s o l u t i o n s  a re  constructed,  and the  

s t a b i l i t y  o f  non l inear  e q u i l i b r i a  i s  examined where poss ib le .  A common f e a t u r e  

of a l l  the  e q u i l i b r i a  found i s  t h a t  n o n l i n e a r i t y ,  whether due t o  three-wave 

o r  four-wave i n t e r a c t i o n s ,  creates a balance between a l i n e a r  source term 

2 v- ' (a2/at - ) and l i n e a r  d i s s i p a t i v e  terms a r i s i n g  from 61/(2n0@) and yt f o r  

n < 2/3. As the  plasma approaches s teady-s ta te  t h e  energy f l o w  from the  e lec t rons  

t o  uns tab le  modes v i a  e l e c t r o n  c o l l i s i o n s  es tab l ishes  a dynamic e q u i l i b r i u m  w i t h  

l o s s  processes v i a  mode coup l ing  o f  uns tab le  t o  s t a b l e  modes. U l t i m a t e l y  energy 

f lows t o  t h e  ions  v i a  Landau damping and i o n  c o l l i s i o n s  [F ig.  21; Considera- 

t i o n  of (non)conservat ion laws der ived from Eq. (13) by c a l c u l a t i n g ,  f o r  ex- 

ample, d cm './dt f o r m a l l y  demonstrates the  d i f f e r e n t  e f f e c t s  produced by the  . 

l i n e a r  d r i v i n g  and damping fo rces  and the  non l inear  coupling.. - - 

3. E q u i l i b r i a  Es tab l ished by Three-Wave I n t e r a c t i o n s  

3.1 Radia l  I n s t a b i l i t y  o f  One Dimensional E q u i l i b r i a  

This  sec t i on  considers t h e  non l inear  dynamics o f  t he  trapped- 

i o n  modes when the  cond i t i ons  f o r  e f f e c t i v e  three-wave i n t e r a c t i o n s  preva i  1. 

Three-wave i n t e r a c t i o n s  w i l l  occur i f  the  frequency mismatch AU, g iven by 

i s  l e s s  than the c h a r a c t e r i s t i c  r a t e  f o r  t he  three-wave Aw = W3 - W1 - w2 

process. Here t h e  f requencies u n. = 1,2,3, s a t i s f y  t h e  l i n e a r  d i spe rs ion  
R ' 

A 

r e l a t i o n ,  E ( ~ ~ ,  k ) = 0; and the  corresponding wave numbers s a t i s f y  the  con- 
R 

d i t i o n  t h a t  lc3 = t L2. Refs. 10 and 15 examine t h i s  l i m i t  and cons ider  the 

one-dimensional case i n  which r a d i a l  v a r i a t i o n s  a re  ignored. I n  t he  l i m i t  



-1 4- 

3 that three-wave interactions are effective, the 0 (s ) terms can be discarded. 

Far from mode rational surfaces (kll = 1/2qR), Eq. (13) can then be written in 
nondimensional units as 

2 T where r - %t/v , 5 = (Y - V*t)/r, pz x/r,$ = - (1 - n )  (v-/uO) @, 

A similar equation, but without dispersion (6B = 6" = O), was the subject of 

a preliminary investigation by Lovelace and Tang [14]. 

In Ref. 15 the stability and accessibility of one-dimensional equilibria 

were studied using Eq. (15) with (a/ax) a (a/ap) - 0. In particular, attention . 

was focused on a class of "two-mode" equilibria in which an unstable mode with ' 

puloidal mode number L couples to its stable harmonics 2L, 3L, ... These 

equilibria were found to be stable to perturbations in the same direction as 

the wave propagation for 0.6 - a~',~ 0.7. In this section we find that the 

inclusion of an x-dependent variation in the perturbation of the one-dimensional 

equilibria is always destabilizing for a sufficiently large values of kxrL~. 

It is useful to define the linear operator W, which is simply related to' 

the local growth rate and 1 inear oscil latfon frequency, 
2 T - 1 w = -v, (a/a ) -v (a2/at ) + (2norn)-' (aanlat) -;+, 

,Y - 
whose Fourier transform in y and Laplace transform in t gives 



Far from mode r a t i o n a l  surfaces, t h e  l o c a l  va lue o f  B w i t h  a/ax 5 0 i s  g iven 

2 2 4 s imply by = -imo [I - (oO/v-) 6m ] + (oo2/v-) (m - am - v ) ,  where t o  
0 

lowest  order  U/U - m E k r and 6 E 6 + 6 I n  Ref. 15 the  authors found one- 
o - Y B U '  

dimensional e q u i l i b r i a  $o z x a n L  exp [ i n L ( <  - u r ) ]  + C . C .  w i t h  ampl i tudes and 
n 

group v e l o c i t y  u g iven by 

2 
a 2 ~  = - (6L + u ) /2  + iyL/2L 

and 

2 2 where ym 5 m (1  - am ) -v  = ( v  - l o o 2 )  R ~ K  

F i n i t e  d i spe rs ion  can g i v e  r i s e  t o  d r i f t i n g  o r  convect ing steady s ta tes  

w i t h  l a r g e r  sa tura ted  ampli tudes than f o r  nondispers ive two-mode e q u i l i b r i a  

which a re  s t a t i o n a r y  ( u  = 6= 0)  i n  the  e l e c t r o n  diamagnetic d r i f t  frame [ I S ] .  

For s u f f i c i e n t  d i spe rs ion  the  sa tura ted  ampli tudes a r e  l a r g e  enough t o  make 

suspect the  neg lec t  o f  t he  four-wave processes. The d i spe rs ion  produces a 

frequency mismatch AU whose phase-mixing in f luence over the  t ime sca le  of t he  

harmonic generat ion, v i z .  (2yL ) - l  , becomes s u f f i c i e n t  t o  cancel t he  energy 

t r a n s f e r  from the  uns tab le  mode t o  s t a b l e  modes. Ref. 15 concluded t h a t  three-  

wave i n t e r a c t i o n s  would n o t  occur f o r  t h i s  reason i f  ~ > > c x ~ / ~ ,  and made t h i s  -.. 

c o n d i t i o n  q u a n t i t a t i v e  f o r  t h e  case of i o n  banana-width dominated d i spe rs ion .  

However, f o r  t y p i c a l  l a r g e  tokamak parameters and p r o f i l e s ,  t he re  i s  a sub- 

s t a n t i a l  f r a c t i o n  o f  t h e  plasma cross-sec t ion  f o r  which 6B/a1/2 < 1 [15]. 

For the  case where l i n e a r  d i spe rs ion  i s  prov ided dominant ly by untrapped 

112 ions,one f i n d s  t h a t  - (v-/wBi )'/'. I n  order  t o  guarantee the  v a l i d i t y  
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o f  our model equat ions the  i n e q u a l i t i e s  (1 4) must be s a t i s f i e d .  This  together  

w i t h  the  f a c t s  t h a t  v, -- (me/mi)112v - 1.2 and f o r  i n s t a b i l i t y  114a > v  tends t o  

r e s t r i c t  parameter choices t o  v - /ugi - u ( l  ) [I 51. Hence our model i s  va l  i d  

on l y  i n  a  smal l  r eg ion  o f  parameter space f o r  which the  e f fec t i veness  o f  th ree-  

wave coup l ing  i s  probably marginal due t o  t h e  r e l a t i v e l y  s i g n i f i c a n t  degree o f  

d i spe rs ion  6" .  A s  we approach l i n e a r  marginal  s t a b i l i t y  1/4a -v+O, any d i s -  

pers ion  whatsoever w i l l  render three-wave coup l i np  i n e f f e c t i v e  s ince  the  f re -  

quency mismatch AU 6 w i l l  g r e a t l y  exceed ZyL + 0, t he  c h a r a c t e r i s t i c  r a t e  o f  

t he  harmonic generat ion. This  mot iva tes  t h e  d e t a i l e d  cons ide ra t i on  o f  t h e  

3  0(@ ) terms i n  Eq. (13),  which i s  discussed i n  Sec. 4. 

We p o i n t  o u t  t h a t  i n  bo th  Refs. 10 and 15 appears the  un for tunate  use o f  

t h e  terminology "near marginal  s t a b i l i t y "  t o  descr ibe plasma parameter choices 

f o r  which a i s  n o t  too  smal l  i . e .  a c 1, which i s  cons i s ten t  w i t h  

v-/wgi - @(I) and V, <c  u << v . The i n t e n t  was t o  i n d i c a t e  t h a t  f o r  f i n i t e  
0 - 

r a t h e r  than i m f i n i t e s i m a l  a . t h e r e  a r e  n o t  t o o  many uns tab le  modes ( - a  -1 12)  

2  
and t h a t  t he  maximum growth r a t e  i s  n o t  t oo  l a r g e  ( m o o  / 4 a v  - ) .  However, i t .  - - 
was assumed i n  bo th  [ l o ]  and 1151 t h a t  t he  maximum growth r a t e  was never theless 

w e l l  above th resho ld :  Im u = (1/4a - v )  - 1/4a >> v. A s t r i c t e r  d e f i n i t i o n  

o f  l i n e a r  marginal s t a b i l i t y  i s  t h a t  t he  l i n e a r  growth r a t e  o f  the  most un- 

stab1 e  mode approaches zero ( th resho ld ) ,  1/4a = @(v), and i s  t h e  d e f i n i t i o n  we 

use throughout t h e  present  d iscussion.  

To demonstrate i n s t a b i l i t y  o f  t he  one-dimensional e q u i l i b r i a  sub jec t  t o  

pertui-bat ions w i t h  x-dependcnt v a r i a t i o n ,  i t  i s  s u f f i c i e n t  t o  consider  t he  

s lmp les l  cdse o f  no dispersion. The e q u i l i b r i u m  qo s a t i s f i e s  the  equat ion 

w i t h  ampl i tudes anL$ n  = 1,2 g iven by Eq. (17) i n  t h e  6 = 0 l i m i t .  The per-  



turbat i 'on Sly= exp(-  in^) e x p ( i  kx rp)  am+n ,L exp [i (m+nOL)c] + C.C. s a t i s f i e s  
n' 

t h e  1  i near ized equat ion 

a We Laplace t rans form t h i s  expression - -+ - in, where 1 nl << ( V  /uo) I m + n / ~  1 ,  a -c - 
and ob ta in  

7 ' 4  
[ - in  - (m + nL +nOL)-  .+ a(m + nL +nOL) +v2 6a - - 

m+(n+n' ) L  

. *  
where n  = +I, 52, n' = 0, 51, 22, .. . and a-nL = a  nL ' 

Eq. (19) c o n s t i t u t e s  an i n f i n i t e  m a t r i x  equat ion. Fo l lowing the  example 

o f  Ref. 15,we use t h e  f a c t  t h a t  modes w i t h  l a r g e  p o l o i d a l  mode number s u f f e r  

severe Landau damping and c o n t r i b u t e  n e g l i g i b l y  t o  t he  pe r tu rba t i on  eigen- 

func t ions .  This  j u s t i f i e s  t r u n c a t i o n  o f  the  s e t  o f  per turbed Four ie r  modes t o  

o n l y  t he  m y  mtL, mt2L modes. The s t a b i l i t y  problem i s  t he re fo re  reduced t o  the  

c a l c u l a t i o n  o f  t he  eigenvalues o f  a  5  x  5  m a t r i x  whose elements a re  g iven by 

2  Eq. (19).  F igs.  (3a),  (3b),  and (3c)  d i s p l a y  the  r e s u l t s  f o r  n/L as f u n c t i o n  

o f  k  r L g  w i t h  parameter choices L = 8,m = 1, and uL2 = .56, .64, and .72 r e -  
X 

spec t i ve l y .  For kxrL  -+ 0  we recover  e x a c t l y  t he  q u a n t i t a t i v e  r e s u l t s  o f  the 
B 

one dimensional ana lys i s  i n  [15] an,d f i n d  t h a t  t he  two-mode e q u i l i b r i a  a re  

s t a b l e  t o  pe r tu rba t i ons  w i t h  y  v a r i a t i o n  f o r  0.6 < o ~ '  < 0.7. For l k x r L  1 > 0.1 
B 

t he re  i s  i n s t a b i l i t y .  D i r e c t  numerical i n t e g r a t i o n  o f  Eq. (15) has quant i  t a -  

t i v e l y  confirmed these r e s u l  t s .  The numerical  i n t e g r a t i o n s  employed the  tech- 

n ique described i n  [15] w i t h  the  a d d i t i o n  o f  an x  g r i d  and d i f ference opera tor  

af/ax + [f  (x +AX)  - f (x  - AX) ! /~AX.  The i n s t a b i l i t y  o f  the one-dimensional 
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two-mode e q u i l i b r i a  t o  p e r t u r b a t i o n s  w i t h  t r ansve rse  ( r a d i a l )  v a r i a t i o n  m o t i -  

vates us t o  i n v e s t i g a t e  t h e  non loca l ,  f u l l y  two-dimensional  mode s t r u c t u r e  o f  

t h e  t rapped- ion  i n s t a b i l i t y .  

3.2 Two Dimensional Equi 1  i b r i a  Es tab l  i shed by Three-wave I n t e r a c t i o n s  

L i n e a r  c a l c u l a t i o n s  o f  t h e  r a d i a l  mode s t r u c t u r e  have shown t h a t ,  

of t he  many e f fec ts  a r i s i n g  f rom t h e  r a d i a l  v a r i a t i o n  o f  t h e  plasma parameters, 

cu r ren t ,  and magnet ic f i e l d ,  magnet ic shear can have t h e  most pronounced i n -  
. - 

f luence [6, 171. Untrapped i o n s  can p r o v i d e  s t r o n g  Landau damping i f  

w/kIl - ( ~ ~ m ~ ) ~ .  S ince e f f e c t i v e l y  O<k,, - = l i q ( k ) -m l / q ( r )P .Z  1/2qR, t l l r r e  i s  a  

s t r ong  v a r i a t i o n  o f  t h e  Landau damping o f  t h e  t rapped- ion  mode w i t h  r e s p e c t  t o  

t h e  r a d i a l  sepa ra t i on  f rom t h e  mode r a t i o n a l  su r f ace  where kll ( r )  =. 0. The 

c i r c u l a t i n g  i ons  respond a d i a b a t i c a l  ly ,  w/k,, << (Ti/mi ) ' I 2  , where k,, = 1/2qR 

v e r y  f a r  f rom t h e  mode r a t i o n a l  surface. There i s  severe Landau damping i n  a  

l a y e r  f a i r l y  c l o s e  t o  t h e  r a t i o n a l  su r face ,  and t hen  again. weak damping f o r  

w/k,, rr  ( ~ ~ / m ~ ) l / ~  a t  t h e  r a t i o n a l  su r f ace  ,where t h e  i i r c u l a t i n g  ion$, respond - 

hydrodynamical ly .  For monotonic q  p r o f  i 1  es t h e  sepa ra t i on  between r a t i o n a l  

surfaces i s  g i v e n  approx imate ly  by A r  = 1  r m  Hence, f o r  modera te ly  
S 

l a r g e  p o l o i d a l  quantum number m y  t h e  c h a r a c t e r i s t i c  l e n g t h  over  which t h e  un- 

t rapped i o n  response axU v a r i e s  d r a m a t i c a l l y  i s  much s h o r t e r  than any o f  t he  

c h a r a c t e r i s t i c  r a d i a l  l eng ths  over  which o t h e r  c o e f f i c i e n t s  i n  Eq. (13)  va ry .  

Th i s  mo t i va tes  us t o  d i s c a r d  a l l  r a d i a l  v 6 r i a t i o n  o f  c o e f f i c i e n t s  i n  Eq. (13)  

except  f o r  t h a t  a r i s i n g  f rom B x , ,  ( ~ , k ; x ) .  - 

Cladd and Ross 161 hove f n ~ l n d  t h a t  t h e  s t r o n g  dependence o f  6x, ,  on r a d i a l  

sepa ra t i on  from t h e  r a t i o n a l  su r f ace  g e n e r a l l y  produces r e f l e c t i o n  and s t r o n g  

d i s s i p a t i o n  i n  t h e  v i c i n i t y  o f  k,, = 0. They a l s o  f i n d  t h a t  o the rw i se  6xU i s  

f a i r l y  cons tan t  i n  most o f  t h e  r e g i o n  between r a t i o n a l  su r faces .  The n e t  



e f f ec t  i s  t o  cause radial  nodes i n  the  waveform f a i r l y  c lose  t o  the  mode 

rat ional  surfaces f o r  a given mode. As a useful theoret ical  "ansatz" which 

allows us t o  make considerable analyt ic  progress in finding r e l a t i ve ly  simple 

nonlocal solutions of E q .  ( 13 ) ,  we a l so  take Sxu t o  be independent of x by 

s e t t i ng  kt1 z 112qR b u t  require  the  spontaneously excited unstable modes t o  

have vanishing amplitude a t  , their mode ra t ional  surfaces.  

We will  construct  s teady-s ta te  solutions of 

2 where v W/oo [see Eq. ( 1 6 a ) l .  As before, solutions a re  considered in which 

a s ing le  l inear ly  unstable mode couples with i t s e l f  t o  generate l inear ly  s t ab l e  

modes. The t o t a l  disturbance I+'J will  then vanish a t  the  mode ra t ional  surfaces 

of the  s ing le  unstable mode, '(x = 0)  = $(x = d r S )  = 0,  and i s  periodic in y ,  

$ ( Y  + 2 n d  =q(y) .  

We expand the  potential  in ascending powers of the wave amplitude of the 

unstable mode: $ = + + . . . where $(l)=sin(kp)[allexp(iLc) + c.c . ] ,  

JJ (2 )  = C,a'nn~ sin(n'  kp) exp(inLc) + c . c . ,  and k E n r l d r  s z T L .  In general ,  
n , n  

there can he a poloidal d r i f t  a t  steady s t a t e ,  a / a ~  -+ - u a / a g .  To second order 

in  la /we obtain 11 

[-u (alas)  + u 1 2  - ( a / a c ) +  (1 12 

and 

[-u ( a / a c )  + 

where we define an .  inner product <f  ,g, ( 2 rn r s / r )  - 1 / 2 T d i ~ A r s i r d p  f g. (21b) 
0 



The o r t h o g o n a l i t y  of s i n ( ~ x )  and sin'(mx), a# m y  on the  i n t e r v a l  [O,T] 

can then be ,used t o  Fou r ie r  expand the  r. h. s. o f  Eq. (21a) and determine the  

Four ie r  c o e f f i c i e n t s  f o r  +('). We f i n d  t h a t  

and s imi  l a r l y  

- 1  where inn. E W(O,ky = nLr  , kx = = n O n d r - l )  as de f ined i n  Eq. (16b).  
s  

As noted e a r l i e r  t h e  format ion of an e q u i l i b r i u m  depends on t h e  non l inear  

s t a b i l i z a t i o n  o f  the  l i n e a r l y  unstable mode by means o f  mode coupl ing.  To 

j u s t i f y  t r u n c a t i o n  o f  + - a t  B'( lall I ) ,  a1 1  the  Four ie r  modes i n  Eq. (22a) must be 
. . I - 

l i n e a r l y  damped, ReWmn < 0. Furthermore, t he  subsequent coupl ings o f  + (1  1 

w i t h  q (2 ) ,  e t c .  generate h igher  o rder  modes which must a l s o  be 1  i n e a r l y  s tab le .  ' 

Examination o f  t he  1  i nea r  mode s t r u c t u r e  determined by Eq. (1  6 )  .a1 lows the  

i d e n t i f i c a t i o n  o f  t he  r e l e v a n t  energy s inks .  A t  k  = 0 the  modes a r e  damped 
Y 

by i o n  c o l l i s i o n s .  A t  very s h o r t ' p o l o i d a l  wavelengths, m z k  r >> the  
Y  

modes a re  l i n e a r l y  s t a b i l i z e d  by i o n  Landau damping prov ided ni < 2/3. For 

increas ing  e f f e c t i v e  r a d i a l  wavenumber kxr , the  modes a r e  s t a b i l i z e d  i n  a 

monoton ica l l y  i nc reas ing  fash ion  [6]. This  e f fec t  a r i s e s  as  a  consequence of 

2  2  2  -1 the  f i n i t e  i o n  banana-width reduc t i on  of t he  mode frequency a k  p.q 
X 1 

and i t s  subsequent in f luence on the  growth r a t e ,  which i n v o l v e s t h e  frequency 

dependent e l e c t r o n  d r i v i n g  term and the  i o n  Landau damping terms. 



To p rov ide  f o r  t h e  lowest  o rder  f i n i t e  i o n  banana-width e f f e c t s  

(kip:q2~-1 ,<< 1  ) i n  t he  1  i n e a r  d i spe rs ion  r e l a t i o n ,  we p e r t u r b a t i v e l y  i n c l u d e  

a  f requenc .~  c o r r e c t i o n  i n  eva lua t i ng  t h e  U-dependent terms i n  W, i . e .  

2  2  2. 
u 2 kyv: (1 - where bi2 pi q  / E  i n  e v a l u a t i n g  u /v-,6xT, and 

Sx".  or simp1 i c i  ty i n  c o n s t r u c t i n g  an e q u i l i b r i u m ,  we hypothesize plasma 

parameters such t h a t  t he  Fou r ie r  mode w i t h  k  r = (2a ) - ' l 2  and k  r = nr/Ars = 
Y  X 

nk r i s  unstable,  b u t  t h e  mode w i t h  k x r  = 2nr/Ars and t h e  same k  i s  stab1 e  
Y Y 

(F ig .  4) .  The s tud ies  o f  Eq. (15)  appearing i n  [14] d i d  n o t  have an energy 

s i n k  a t  s h o r t  e f f e c t i v e  r a d i a l  wavelengths. Therefore t h e  waveforms cou ld  

be expected t o  undergo cont inued f l u i d  steepening i n  t h e  r a d i a l  ( x )  d i r e c t i o n  

w i t h o u t  s a t u r a t i n g .  

Reduct ion o f  Eqs. (22a) and (22b) can be made by s u b s t i t u t i o n  of t he  am- 

p l i t u d e s  determined i n  (22a) i n t o  (22b):  

which g ives  t h e  approximate expression 
. . 

upon t r u n c a t i o n  o f  smal le r  terms. 

The r e a l  and imaginary p a r t s  of Eq. (23) determine two equat ions f o r  
\ 

1 a1 ! and u  .whose simultaneous s o l u t i o n  g ives  

u3 t au2 + bu + c  = 0, (24)  



- 
and III,,, z ImWmn. From t h e  s tandard d i s c r i m i n a n t  f o r  cub i c  equat ions one can 

determine under what c i rcumstances t h e r e  a r e  one, two, o r  t h r e e  r e a l  s o l u t i o n s  

2  f o r  u. For  a  g i ven  v e l o c i t y  u  s a t i s f y i n g  Eq. (24) ,  1 al 1 can be determined 

f rom e i t h e r  t h e  r e a l  o r  t h e  imag inary  p a r t s  o f  Eq. . ( 23 )  and must be p o s i t i v e  

d e f i n i t e  f o r  an e q u i l i b r i u m  t o  e x i s t .  The r e a l  p a r t  o f  Eq. (23)  g i v e s  

We have used t h e  imaginary  p a r t  o f  Eq. (23)  t o  p rov ide  an d l t e r n a t i v e  d e t e r -  

2 
m i n a t i o n  of lal 1 \and thus  check t h e  cons i s tency  o f  s p e c i f i c  numer ica l  eva lua-  

2  
t i o n s  o f  u  and 1 al 1 . 

To make qua1 i t a t i v e  connec t ion  w i t h  t h e  one-dimensional two-mode equi  1  i - 
, .  ..  ., 

b r i a ,  we compare Eq. (25)  t o  Eqs. ( 17 ) .  Rmn corresponds t o  a  1  i n e a r  growth/ ' #  

.- . 

damping r a t e  . I f  we s e t  d  kg 5 0 and i gno re  d i spe rs i on ,  Imn E 0, then  u  = 0  

2  
and lall = - (3n /8 )  Rl1RZl/~L2: Th i s  acirees w i t h  ~ ~ s d 1 7 )  i n  t h e  nond i spe rs i ve  

2  1  i m i  t except  ' f o r  t h e  geomet r i ca l  f a c t o r  (3+/8) which i s  d.ue t o  t h e  r e d u c t i o n  

i n  coup l i ng  e f f i c i e n c y  caused by t h e  s i n ( k p  ) r a d i a l  mode s t ruc tu re . .  .For . . - .. 

t y p i c a l  l a r g e  tokamak parameters and cho i ce  o f  modes f o r  which Rll <. 0  and 

RZ1 > 0, d i s p e r s i v e  e q u i l i b r i a  w i t h  s i n g l e  rea l - va lued  s o l u t i o n  f o r  u  as w e l l  

as nond ispers ive  e q ~ r i l i b r i a  w i t h  u  = 0  e x i s t .  D i spe rs i on  tends t o  in,crease 

t h e  sa tu ra ted  mode alnpl i tude, Il 1'121 . 2 2  2L u > 0; b u t  t h i s  i s  compensated by 

t h e  ampl i tude  r e d u c t i o n  p rov ided  by t h e  inc reased  coup l i ng  when g  f 0. For  

t y p i c a l  parameters and a  cho ice '  o f  modes such t h a t  RZ1 < 0, then  1 dRill > > I ;  

and 1 all 12 as es t imated  by ~ q .  (25)  can be s i g n i f i c a n t l y  sma l l e r  than  t h e  one- ' 

d imensional  r e s u l t  Eqs. ( 1  7 ) .  

The mode ampl i tudes approach s teady s t a t e  i n  a  manner much t h e  same as 

descr ibed  f o r  t h e  one-dimensional two-mode c o n f i g u r a t i o n s  [l 51. The mode am- 

p l  i tude o f  t h e  fundamental d1 ), presumed t o  be thermal l y  e x c i t e d  a t  an 



a t  an i n i t i a l l y  smal l  ampl i tude,  grows a t  an exponent ia l  r a t e  g i ven  by Re W, 
By bea t i ng  w i t h  i t s e l f  i t  generates t h e  damped modes compr is ing  $ ( 2 )  a t  an 

exponent ia l  r a t e  2Re H1 u n t i  1  j u s t  be fo re  S a t u r a t i o n  ,at  which t ime  t h e  growth 

o f  bo th  and $ (2 )  d im in ishes  r a p i d l y .  

We observe t h a t  t h e  e q u i l  i b r i u m  we have approx imate ly  cons t ruc ted  i n  

Eqs. (23) ,  (24) ,  and (25)  has no e x p l i c i t  evidence o f  t h e  energy s i n k  a t  

l a r g e  kx. However, imp1 i c i t  i n  t h e  a n a l y s i s  i s  a  t r u n c a t i o n  o f  t h e  F o u r i e r  

I modes a t  t h i r d  o r d e r  and h ighe r  i n  1 al 1 ,which r e q u i r e s  t h a t  modes a t  l a r g e  

kx be l i n e a r l y  s t a b l e  o r  damped. There has a l s o  been a  t r u n c a t i o n  o f  t h e  

2  F o u r i e r  expansion o f  s i n  ( k p ) ,  i . e .  s in- ' (kp)  = ( 8 1 3 ~ )  s i n ( k p )  - ( 8 1 1 5 ~ )  

,2 x  s i n ( 3 k p ) . I n  f a c t ,  because i n  t h e  c a l c u l a t i o n  o f  lall 1 t h e  square o f  these 

F o u r i e r  c o e f f i c i e n t s  en te rs ,  o n l y  t h e  f i r s t  term o f  t h e  p reced ing  expansion i s  

a c t u a l l y  saved i n  Eq. (23) .  These approx imat ions a r e  r e s p o n s i b l e  f o r  sma3 1  

e r r o r s  i n  t h e  e q u i l i b r i u m  which f o r t u n a t e l y  a r e  n o t  t o o  impo r tan t  f o r  t h e  

o v e r a l l  s c a l i n g  o f  t h e  sa tu ra ted  ampl i tude  and assoc ia ted  anomalous t r a n s p o r t .  

However, a  s t a b i l i t y  a n a l y s i s  o f  these e q u i l i b r i a ,  s i m i l a r  t o  t h a t  descr ibed  

i n  Sec. 3.1, may be q u i t e  s e n s i t i v e  t o  these  e r r o r s  and g i v e  m is l ead ing  o r  

t o t a l  l y  erroneous r e s u l t s .  

We have undertaken a  l i n e a r  s t a b i l i t y  a n a l y s i s  o f  t h e  e q u i l i b r i u m  

$o= allsin(kp) e x p [ i L ( ~ -  U T ) ]  + ao2s in (2kp)  + aZlsin(kp) exp[ iZL([  - U T ) ]  + 
' 

c.c., where t h e  ampl i tudes and group v e l o c i t y  u  a r e  g i v e n  by Eqs. (22a) ,  ( 23 ) ,  

and (24) .  We f i n d  frequency e igenva l  ues g i v i n g  i n s t a b i l i t y ,  which a r e  much 

l a r g e r  i n  magnitude than  (v-/o0)L. Th i s  v i o l a t e s  ou r  approximate use of 

2 2 T 
o - kyV, ( 1  - - k b . )  i n  e v a l u a t i n g  W(w,k ,k ) .  Hence, t h e  p e r t u r b a t i v e  

'xbi y 1 Y x 

approach used here f o r m a l l y  breaks down. However, t h i s  should n o t  n c e s s a r i l y  

d i m i n i s h  t h e  va lue  o f  ou r  approximate e q u i l i b r i a  c a l c u l a t i o n  which may never- 

t h e l e s s  g i v e  an accu ra te  approx imat ion  o f  t he  c o r r e c t  s c a l i n g  o f  t h e  s a t u r -  

a ted  mode ampl i tudes and t r a n s p o r t .  For. example, i n  Ref. 15 i t  was d e t e r -  
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mined t h a t  even when t h e  s imp le  one-dimensional two-mode e q u i l i b r i a  were un- 

s tab le ,  t h e  energy and t r a n s p o r t  of t h e  n u m e r i c a l l y  ob ta ined  asympto t i c  spec t ra  

were bounded and sca led  i n  agreement w i t h  t h e  two-mode theory .  

The l a c k  o f  dependence of ou r  approximate e q u i l i b r i u m  s o l u t i o n s  upon t h e  

d e t a i l s  of  t h e  energy s i n k  a t  s h o r t  e f f e c t i v e  wavelengths i n  t h e  r a d i a l  d i r e c -  

t i o n ,  a l t hough  perhaps troublesome f o r  t h e  s t a b i l i t y  a n a l y s i s ,  i s  an advantage 

i n  o t h e r  respec ts .  We a r e ' a b l e  t o  deduce t h e  approx imate s c a l i n g  o f  t h e  sa tu -  

r a t e d  ampl i tude  and t r a n s p o r t  w i t h o u t  demanding a  p r e c i s e  c a l c u l a t i o n  o f  t h e  

l i n e a r  r a d i a l  mode s t r u c t u r e  and i t s  e f f ec t s  upon t h e  l i n e a r  mode f requency . .  

cons ide r  t h e  approximate express ion  f o r  Rei(,,k) g i v e n  by t h e  Tay lo r  s e r i e s  ex- 

pans i on. 
T  

.., .., T  aRe\(. = k$, y) 
ReW(w,k) - = ReWo(o = k  V,, k )  + 6w +..., 

Y - a u 

where io i s  g i v e n  by t h e  l o c a l  l i m i t  o f  Eq. (16b) w i t h  i a / a x  + kx and 6, 1 

T 2 "  ' Z 3  
-k  V,(kxbf + k b? I t  i s  s t r a i g h t f o r w a r d  t o  d e m o n s t r a t e t h a t  i n  t h e  model non- , 

Y  Y  1 ) .  

1 i n e a r  e q u i l i b r i a  descr ibed  by Eqs. (21 -25),  s t a b i l i z a t i o n  ( ~ e f i i  2 0)  of modes- ,. 

w i t h  k  = L / r  and kx = nn/dr,, n  > 2, r e q u i r e s  kx2bi2 --@I ) f o r  t h e  'case t h a t  
Y - 

t h e  s i n g l e  uns tab le  mode ( k  = L / r  and kx = n/drs% n k  ) i s  w e l l  above 1  i n e a r  
Y  Y  

marg ina l  s t a b i l i t y  and has n e a r l y  maximal 1  i n e a r  g rowth  r a t e .  The i m p l i c i t  

2  2 T 
v i o l a t i o n  ( f o r  n  - > 2) o f  t h e  c o n d i t i o n s  t h a t  kx bi << 1  and t h a t  l a U [  << kyV, 

i n d i c a t e s  t h e  weakness o f  t h e  weakly p e r t u r b a t i v e  a d d i t i o n . o f  k i r ~ e t i c  e f f e c t s  

t o  ou r  f l u i d  model. We p o i n t  ou t ,  however, t h a t  these c o n d i t i o n s  a r e  f a i r l y  i 

w e l l  s a t i s f i e d  by t h e  modes e x p l i c i t l y  r e t a i n e d  i n  these  e q u i l i b r i a .  The n e x t  

s e c t i o n  descr ibes  a  c a l c u l a t i o n  a p p r o p r i a t e  f o r  plasmas v e r y  c l o s e  t o  marg ina l  

s t a b i l i t y ,  i n  which t h e  assumptions made by our  model equat ions a r e  v e r y  w e l l  

j u s t i f i e d .  



4. Two D.imensiona1 E q u i l i b r i a  Near Marginal S t a b i l i t y  

4.1 Equi 1  i b r i a  Fstabl  ished by  our-wave I n s t e r a c t i o n s  

Near l i n e a r  marginal s t a b i l i t y  t he  e l e c t r o n  d r i v i n g  term i n  

the  l i n e a r  d i spe rs ion  r e l a t i o n  i s  jnear ly  cance l led  by the  damping terms pro-  

duced by i o n  c o l l i s i o n s  and i o n  Landau damping. We s p e c i a l i z e  our s tudy t o  

the  case of a  s i n g l e  weakly uns tab le  mode and consider  t he  l i n e a r  d i spe rs ion  

r e l a t i o n  g iven by Eqs. (16) i n  the  l o c a l  l i m i t :  

2  
where yLD = (1  - 30/2)(w/oBi) o[A-(doBi) + 8 ~ " ~  (kyvI/wBi) I ,  A *  =@20), 

T  
and . . t o  good approximation wck V*  on t h e  r.h.s.  The e f f e c t i v e  p o l o i d a l  wave- 

Y  
number of t he  s i n g l e  marg ina l l y  s t a b l e  mode i s  determined by dy /dk = 0 

L  Y 
2  

and by a con i i s tency  r e l a t i b n b e t w e e n  a and v \ y L  z (oo /v.-')(m2 --am4 - v )  = 0, . 

where. m n k  r. These g i v e  am2 = 1/2 and 4va = 1. We s e t  k i  i ~ k  f o r  t h i s - .  - - 
Y  Y 

mode i n  the  s p i r i t  o f  our  e a r l i e r  arguments and those o f  Ref. 6. 

The s i n g l e  uns tab le  wave grows a t  f i r s t  from some i n i t i a l  value, which i s  . 

assumed smal l ,  a t  i t s  1  i nea r  growth r a t e  yL. The coup l ing  o f  t he  mode w i t h  

i t s e l f  through t h e  non l inear  terms i n  Eq. (13)  d r i v e s  t o  f i n i t e  amp1 i tude i t s  

harmonics which would otherwise be the rma l l y  e x c i t e d  t o  much smal ler  ampl i -  

tudes. Harmonics w i l l  be generated a t  a l l  orders i n  the  ampl i tude o f ' t h e  fun-  

damental and w i t h  y r u w t l ~  r a t e s  g iven by the corresponding i n t e g r a l  mu1 t i p 1  es 

of the  growth r a t e  .rL [ I s ] .  

The preceding arguments concerning nonl i near e f f e c t s  t a c i t l y  assume t h a t  

phase matching cond i t i ons  a re  s a t i s f i e d ,  i. 'e. the  sum o r  d i f f e rence  o f  t he  

wavenumbers and corresponding l i n e a r  normal mode f requencies o f  the  weakly 



coupled modes must n e a r l y  equal t h e  wavenumber and frequency o f  another  normal 

mode. When the re  i s  a mismatch AU i n  t h e  f requencies, the e f f ec t i veness  o f  the  

coup l ing  process i s  reduced; and coup l i ng  v i r t u a l l y  ceases because o f  t h e  l o s s  

o f  phase coherence when AU g r e a t l y  exceeds t h e  c h a r a c t e r i s t i c  r a t e  of t h e  pro-  

cess. Because harmonic genera t ion  has a c h a r a c t e r i s t i c  r a t e  s c a l i n g  as an 

i n t e g r a l  m u l t i p l e s  of yL, any f i n i t e  frequency mismatch w i l l  be s u f f i c i e n t  t o  

complete ly  i n h i b i t  coup l ing  as y L  i s  decreased t o  zero a t  marginal  s t a b i l i t y .  

For l i n e a r  normal modes w i t h  d i s p e r s i o n  r e l a t i o n  g iven  by Eq. (27) ,  a l l  th ree-  

wave i n t e r a c t i o n s  have a f i n i t e  mismatch frequency and a r e  t h e r e f o r e  ine f fec-  

t i v e  f o r  systems near marginal  s t a b i l i t y .  Eq. (13)  then becomes 

We igno re  parametr ic  decays [20] ,whose c h a r a c t e r i s t i c  growth r a t e s  sca le  

t y p i c a l  l y  as 'a p o s i t i v e  pow&- o f  t h e  wave amp1 i tude o f  the' "pumpi', t h e  wave . 

undergoing decay i n t o  o t h e r  waves. Since t h e  modes we cons ider  here a r e  .assumed .. 

. . t o  grow from an i n i t i a l l y  smal l  ampl i tude, t h e  growth r a t e s  f o r  parametr ic  decay . 

a r e  q u i t e  smal l  i n i t i a l l y .  Meanwhile harmonic genera t ion  proceeds a t  an ampl i -  

tude-independent r a t e  p r o p o r t i o n a l  t o  yL. Furthermore, d i s s i p a t i o n  o f  t h e  

decay products and frequency mismatch t y p i c a l l y  reduce t h e  growth r a t e s  fur- 

parametr ic  decay, produce an i n s t a b i l i t y  t h resho ld  c o n d i t i o n  on t h e  ampl i tude 

of t h e  pump wave, and t h e r e f o r e  f u r t h e r  decrease t h e  1 i k e l  i hood and e f f i c i e n c y  

of para111e1i. i~ decay. Thc cub ic  nonl i n p a r i t y  i n  Eq. (28) requ i res  us t o  survey '  

a1 1 p o s s i b l e  four-wave i n t e r a c t i o n s .  Because o f  t h e  d i s p e r s i o n  present  i n  t he  

l i n e a r  normal mode frequencies, g iven  by Eq. (27) ,  many o f  t h e  four-wave i n t e r -  

ac t i ons  can be r u l e d  o u t  because o f  t h e  e f f e c t s  o f  f requency mismatch. A sub- 

c l a s s  o f  four-wave i n t e r a c t i o n s  possessing i d e n t i c a l l y  zero frequency mismatch 



have the  t r i v i a l  phase-matchi ng cond i t i ons  

- K1 + k - k + k2 

We demonstrate i n  t h i s  sub-sect ion t h a t  t h e  four-wave i n t e r a c t i o n  o f  t h e  

uns tab le  mode w i t h  i t s e l f  (kl = k2 = - k )  induces a frequency s h i f t  which causes 

t h e  mode t o  be n o n l i n e a r l y  s t a b i l i z e d  by m o d i f i c a t i o n  o f  t he  l i n e a r  d r i v i n g  

and damping mechanisms. . T h e  s e l f - c o u p l i n g  o f  t h e  uns tab le  mode a l s o  induces 

frequency s h i f t s  i n  t h e  o therw ise  s t a b l e  'modes, - kl # k2 = k. If t h i s  frequency 

s h i f t  i s  l a r g e  enough t o  n o n l i n e a r l y  d e s t a b i l i z e  a l i n e a r l y  damped mode, then 

t h e  e q u i l i b r i u m  es tab l i shed  by t h e  s e l f - c o u p l i n g  o f  t h e  s i n g l e  l i n e a r l y  uns tab le  

mode i s  c l e a r l y  uns tab le  (Sec. 4.2).  For 4 ,  k2 # - k t h e  .wavenumber o f  t h e  

s i n g l e  uns tab le  mode, a l l  f o u r  waves a re  l i n e a r l y  damped; and t h e  four-wave 

process i s  unimportant  unless one o f  t h e  modes has been n o n l i n e a r l y  exci te.d t o  

f i n i t e  ampl i tude by some o t h e r  process. I f  t h i s  should occur t h e  coup1 i n g  .. 

descr ibed i n  Eq. (29)  again produces a frequency s h i f t .  

To cons ider  t h e  s e l f - c o u p l i n g  o f  t he  s i n g l e  uns tab le  mode we desc r i be  i t s  

ampl i tude by 

where i n  general  ~ ( t )  r wL + & ( t )  E n + 6 n ( t )  + i y L  + i s Y ( t )  and wL = nL+ iy  L L .. 

i s  g iven  by Eq. (27) I n  t h e  absence o f  non l i nea r  e f f e c t s ,  ~ ( t )  = wL i n  o rde r  

t h a t  s a t i s f y  Eq. ( 2 8 ) .  Hence, 6w( t )  i s  due t o  non l i nea r  coup l i ng  and i s  

very  small if a i s  very weakly non l inear ,  i .e. Ido/oLI = 8 ( m Z )  < 1. 



3 The non l inear  terms a r i s i n g  from [ ( a / a t )  - W] @ /6  a r e  much smal le r  by 

~ ( ~ ~ / k ~ ~ i )  than the  o ther  non l inear  terms i n  Eq. (28) and a r e  the re fo re  neglec- 

t ed  cons i s ten t  w i t h  e a r l i e r  approximations. The non l inear  ' term i n  Eq. (28)  

2 
conta in ing  (a @ a  - a @a  ) a @ generates modes w i t h  ,x-dependent s t r u c t u r e  

n X Y  Y X  Y 
g iven by s inL (kxx )  cos(k,x) = (112) s i n ( k x x )  s in (2kxx )  = (1/4)  [cos(kxx)  

rn 

-cos(3kxx)]  = 'x aZn s in(2nkXx),  and hence does c o n t r i b u t e  t o  the  s e l f -  
n=l  

- coup l ing  because no mode w i t h  v a r i a t i o n  s i n ( k x x )  appears i n  t he  se r ies .  The 

3 remaining non l inear  term, which conta ins ( a l a y ) ~  /6, generates modes w i t h  

3  s t r u c t u r e  s i n  ( kxx )  = (314) s i n ( k x x )  - (114) s in (3kxx) ,  and the re fo re  prov ides 

f o r  se l f - coup l i ng .  Therefore, from Eq. (28) we ob ta in  

T  2 t 
- ioL - i s w ( t )  - i ( w L  +S~,L) - i ( 3 / 4 ) n  k V,I m o l  - exp f d t H  2Imw(t*) = 0. 

Y  0 

(31 

We Tay lor -ser ies  expand W(w,k), around W(oL,k) = i w L  i n  t h e  small v a r i a b l e  

SUIU~ = ~ ( l m ' ( ~ :  

Sa tu ra t i on  can occur i f  the ne t  growth r a t e  can be n o n l i n e a r l y  reduced t o  zero, 

Imw( t )  = Y L  + s y ( t ) +  0. Then a t  s a t u r a t i o n  tiy(-) = - y L  From t h e  r e a l  and 

T 
imaginary p a r t s  o f  Eq. (32) we ob ta in  t o  lowest  order  i n  1 I -and lkyV,/~- I ' 

and 



'2 
w 

where / a m  . : ]a0 l2  exp [L  d t * 2 l m ~ ( t * ) ] .  

- 2 2  - Eva lua t ion  o f  (a/aw)ReW and (a / a w  ) ReW completes t h e  so lut ' ions of a n ( 4  

and I @  I and can be used t o  j u s t i f y  t h e  approximation t h a t  1 tiY 1 .<< 1 an1 which 
m 

2  has been used i n  d e r i v i n g  Eqs. (33) .  For t he  most uns tab le  mode, am = 1/2, 

2  2  we deduce f rom Eq. (27)  t h a t  ( a / a ~ )  ReW ;;: muo/4v - and ( a  / a ~  ) R e i  z - 5 / 2 ~  , - 
T . where wo ; V,/r and a E d ( 4 0 )  ( 1  - 31112) / (uo2v - /ugi3). To good approx imat ion 

i n  ( o ~ / v - )  , ( Y L / ~ o )  C< 1 and f o r  11 . 0, we f i n d  t h a t  i n  Eq. (33b) 6y(-) ;;: 

[ (a/aw) ReW]an(-). Hence, 

an(-) - ( ~ v - / ~ o ~ ) Y ~  ( 34a 

and 

1  
larn] = (161311) ( Y ~ v -  /m2w o ') = (32/3n) (G -v )a  (34b) 

For reversed-gradient  p r o f i l e s  (n < O), t he  frequency s h i f t  i s  p o s i t i v e  

2  
i n  Eq; (33a);. t o t a l l y  d i f f e r e n t  values o f  & ? ( a )  and ) a  OD I , resul t . '  'However, our 

f l u i d  model omi ts  t he  phys ica l  e f f e c t s  o f  reversed g r a d i e n t s . i n  t h e  l i n e a r  . 

- 
e l e c t r o n  d r i v i n g  term which exe r t s  a  s i g n i f i c a n t l y  s t a b i l i z i n g  i n f l uence  [21]. 

Therefore, we w i  11 o n l y  consider  e q u i l  i b r i a  f o r  non-reversed-gradient p r o f  i 1 es 

(,, > 0 )  f o r  which the  frequency s h i f t  an(-) i s  negat ive,  p r o p o r t i o n a l  t o  t h e  

l i n e a r  growth r a t e  yL, and cons iderab ly  l a r g e r  than ay by a  f a c t o r  4v - /rnoO>>l. 

The time-dependent s o l u t i o n  o f  Eq. (32)  i s  s t ra igh t fo rward .  We use 

2  I s y ( t ) / s n ( t )  I<< 1  and 1 (aR&ilaw)6n ( t )  1 >> I ( a2Re~ /aw2)an ( t )  / 2  1 t o  simp1 i f y  

t h e  mathematics. S o l u t i o n  of Eq. (32) i s  then obta ined by d i f f e r e n t i a t i o n  :' 

w i t h  respec t  t o  t ime, separa t ion  of va r i ab les ,  and c a l c u l a t i o n  o f  two elemen- - 

t a r y  i n t e g r a l s .  We f i n d  t h a t  



and 

2 2  2  where r E -(lmol / I m  rn I ) 1 - l o  / m m  ) T h u s  the nonlinear complex f r e -  

quency s h i f t  and squared amplitude grow exponentially a t  r a t e  2yL un t i l  j u s t  

before sa turat ion.  We emphasize t ha t  sa turat ion of the  unstable wave in t h i s  

case occurs fo r '  reasons much the  same as  fo r  the equ i l ib r ia  established by 

three-wave interact ions:  mode coup1 ing again provides f o r  the 'formation of a  

balance between l i nea r  driving and damping forces.  

4.2 Stabi 1  i t y  of Equi 1  i bria Establ i  shed by Four-wave Interact ions .  . 

In t h i s  sub-section we invest igate  the  l inear  s t a b i l i t y  of the  equ i l ib r ia  

constructed i n  the  immediately preceding discussion.  Consider a  perturbation 

expansion m(x,y;t)  I mo(x,y;t) + ml(x ,y ; t ) ,  where the equilibrium s a t i s f i e s  

Eq. (28) w i t h  solut ions  described by Eqs. (33) and (34) 

mo(x,y; t )  = lom/  exp[-inLt - i sn(- ) t  + i k  y] s in(kxx)  + C . C .  ,. - 
Y 

and the perturbation s a t i s f i e s  E q .  (28) t o  f i r s t  order i n  m l / m o  

+ a - ' ( ~  - I - , ) ( u ~ / v - ) v ~ ~ ~ ~  [ ( a x p l a y  - a  m a ) a  m + 2(a m a -a m a ) a  ( m o m l )  =O. 
L Y l X  Y O  x o y  y o x  y  I 

The same choice of boundary conditions i s  made here as  f o r  the equilibrium 
- 1 

ml(kxx = 0,n) = 0 and m ( k  v + 2 n )  = m ( k  ), where k = mr , am2 = 112, 
1  Y 1 rY Y 

and kx  = ~k For m l  = men(t) exp e  - hen t )  s i n  (nkxx) + C . C .  
Y '  e  , n  

- 1 where m a n  - 
= U ~  

(k'y = e r  , k; = nkx) , Eq. (36) leads t o  an i n f i n i t e  matrix 

equation describing the  coupling of the  l i nea r  mode amplitudes m l n  via the  

equilibrium m o .  



We r e c a l l  t h a t  a l l  modes o the r  than t h e  p r i nc ipa l 'mode  o f  t h e  e q u i l i b r i u m  

a re  assumed t o  be l i n e a r l y  damped and a re  consequent ly n o t  spontaneously ex- 

c i t e d  t o  s i g n i f i c a n t  ampl i tudes. We app ly  t h e  arguments o f  Sec. 4.1 and there-  

f o r e r e s t r i c t  our  i n v e s t i g a t i o n  o f  Eq. (36)  t o  t h e  cons ide ra t i on  o f  o n l y  t h e  

non l inear  coup l ings  which e x a c t l y  s a t i s f y  t h e  phase matching c o n d i t i o n s  Eqs. 

(29).  Th is  reduces t h e  i n f i n i t e  m a t r i x  t o  d iagonal  form, v i z .  

where w = w + 60' and we have Laplace-transformed i n  t ime a / a t +  - ibw. Recog- 
Rn 

n i z i n g  t h a t  t h i s  equat ion has t h e  same s t r u c t u r e  as Eq. (31 ),  we conclude t h a t  

t h e  f i n i t e  ampl i tude o f  t h e  e q u i l i b r i u m  @,evidently induces a  frequency s h i f t  

i n  a l l  t he  modes o f  t h e  system. I f  t h i s  frequency s h i f t  i s  s u f f i c i e n t  t o  non- 

l i n e a r l y  d e s t a b i l i z e  any l i n e a r l y  s t a b l e  mode i n  t he  system, then t h e  e q u i l i b -  

r i um i s  unstable.  

I n  o rder  t h a t  t he re  be o n l y  a  s i n g l e  l i n e a r l y  uns tab le  mode, 

Because t h e  mode frequency has been assumed t o  s a t i s f y  v+ << mu  << v , where 
0 - 

2  
v I V+V-/W o  and v+ z (112) (me/mi)1/2v- = m 1 0 - ~ ) v -  f o r  a  deuter ium plasma, we 

f i n d  thatCY(O.l)< - v - < V(10). Then Eq. (38) a l l ows  us t o  e s t a b l i s h  a  c o n d i t i o n  

on a, i z . ( 1 0 ~ )  u < 1  ; and hence m - < 7. 

A s l i g h t l y  more severe c o n d i t i o n  on a i s  obta ined f rom a  cons ide ra t i on  o f -  
- 

t h e  non l i nea r  s h i f t  o f  t he  sideband f requencies.  We Tay lo r - se r i es  expand W 

i n  Eq. (37) and employ the  standard frequency order ings  ( w ~ / v  , ( Y L / ~ O ) < <  I 
t o  o b t a i n  60' = 2 (R/ rn )6~ (m) (39a) 

and 3 



where 6n(w) i s  g i ven  by Eq. (34a).  The most s t r i n g e n t  c o n d i t i o n  on s t a b i l i t y '  

i s  ob ta ined  by cons ide r i ng  t h e  per tu rbed  modes which a r e  neares t  sidebands o f  

t h e  e q u i l i b r i u m  and which m i g h t  s u s t a i n  6y0 > 0,  v i z .  a = m + 1  and n  = 1 .  From 

.2 - Eq. (27)  we determine t h a t  ( ~ e i l a o )  = ( w o / ~  - ) ( k4  - m14) and ( a  ~ e w l a ~ ' )  = 

(11"-) [ +(4/m) + (5 /2 ) ]  f o r  a  = m + 1  .' Then Eqs. (39)  g i v e  6n' = 2(m + 1 )  

xsn(m)/m =-8rLv-/mo, f o r  m >, 1 and 6 f *  " [-2 (32/mIyL. 

From Imoan = Y,- (a  = m  1 )  2 YL - ~ u ~ ~ / v - ,  t h e  n e t  growth r a t e  f o r  two s i de -  

bands becomes f o r  m  >> 1  

Imo 2 - 2 w  0 '/v- + [ ,(32/m) -11 yL, ( 40 1' 
which must be nega t i ve  f o r  s t a b i l i t y .  

The lower  s ideband i s  e v i d e n t l y  f u r t h e r  s t a b i l i z e d  by t h e  n o n l i n e a r  

f requency s h i f t .  However, f o r  m < 32 t h e  upper sideband can be d e s t a b i l i z e d  

2  
f o r  l i n e a r  growth r a t e s  yL s u f f i c i e n t l y  l a r g e .  We r e c a l l  t h a t  yL = (ao / v - )  

X[ ( 4 a ) - '  -v], which us ing  Eq. (40)  a l l o w s  us t o  express t h e  c o n d i t i o n  Imw < 0  

e q u i v a l e n t l y  as 

2  
where 1  << m  < 32 and am = 112. Of course, t h e  l i n e a r  s t a b i l i t y  o f  t h e  s i de -  

bands a l ready  demands t h a t  m  s 7. For e ( 0 . 1 )  - < v - < @'(lo), as consequence o f  

Eq. (41)  we determine t h a t  m  - < 5, a - > 0.02, and y (U 2 / ~ - ) - 1  < @'(1/2). t o  L 0 

guarantee t h e  n o n l i n e a r  s t a b i l i t y  o f  t he  upper sideband. 

5. C r o s s - f i e l d  T ranspor t  and Sca l i ng  f o r  Tokamak Plasmas 

5.1 T r a n s p o r t ' c o e f f i c i e n t  f o r  Radia l  F l ux  

T h i s  sec' t ion p resen ts  a  c a l c u l a t i o n  o f  t h e  anomalous t r a n s p o r t  

a r i s i n g  f rom t h e . t r a p p e d - i o n  mode. We compare t he  t r a n s p o r t  l e v e l s  f o r  sa tu ra -  

t i o n  due t o  coheren t  mode coup l i ng  i n  two dimensions, due e i t h e r  t o  three-wave 

o r  four.-wave i n t e r a c t i o n s ,  w i  t t ~  t h e  t r a n s p o r t  1  eve1 s  p r e d i c t e d  by Kadomtsev 

and Pogutse [I 1 ,I 21. 



,. 
The coheren t  r a d i a l  t r a n s p o r t  o f  p a r t i c l e s  i s  g i v e n  by t h e  f l u x  <nSG 'X> ,  

where t h e  b racke t s  i n d i c a t e  an average over  t h e  p o l o i d a l  angle.  Quasi  n e u t r a l  - 
i t y  and t h e  dominance o f  t h e  - ExB - c o n t r i b u t i o n  t o  t h e  v e l o c i t y  o f  each spec ies 

A ,. 
account  f o r  t h e  e q u a l i t y  o f  <niYie x > "  < n&- x t o  l owes t  s i g n i f i c a n t  

o rde r .  The p o l o i d a l  ly averaged e l e c t r o n  f l u x  i s  g i v e n  by 

t h e  c i r c u l a t i n g  e l e c t r o n s  do n o t  c o n t r i b u t e  t o  t h e  average r a d i a l  f l u x  because 

they  respond a d i a b a t i c a l l y .  The p o l o i d a l  average i s  e q u i v a l e n t  t o  a  t ime  aver -  

age over  many o s c i l l a t i o n  pe r i ods .  Because o f  p o l o i d a l  p e r i o d i c i t y ,  t h e  d i a -  

magnet ic f l u i d  v e l o c i t y  produces no average f l u x  t o  a l l  o rde rs  i n  0 .  

3 Eq. (12)  g i v e s  an express ion  f o r  neT accu ra te  t o g ( @  ) .  As argued i n  

d e r i v i n g  Eq. ( l o ) ,  f o r  purposes o f  c a l c u l a t i n g  t h e  p a r t i c l e  f l u x e s  t h e  f l u i d  
,. 

v e l o c i t i e s  can be rep laced  by t h e  - EXB A d r i f t :  - Vs+ czxy$/B. The n o n l i n e a r  con- 

t r i b u t i o n s  t o  nS were found t o  be much more impo r tan t  than  t h e  ponderomotive 
h 

c o n t r i b u t i o n s  t o  - VS. The t r a n s p o r t  c o e f f i c i e n t  i s  d e f i n e d  by D = -<  n S I S .  x  > 

x  (dno /dx ) - l ,  which leads  t o  

To l owes t  o r d e r  (D/Dt) -+(a/at )  and a @ / a t  =-v:a@/ay,where use has been made 
I 

of t h e  f requency o rde r i ng ,  E << 1, and Q << 1.  Hence, Eq. (42)  g i v e s  - 

- 
The n e x t  h i ghe r  o r d e r  terms i n  @ a r e  s m a l l e r  by r e l a t i v e  o r d e r  I @ / E  l / z l  

if three-wave i n t e r a c t i o n s  a r e  e f f e c t i v e ;  o the rw i se  t h e  n e x t  h i ghe r  



4 2 o r d e r  terms a r e  (m ), o r  o f - r e l a t i v e  o rde r  1 0 1  compared t o  those r e t a i n e d .  

Kadomtsev and Pogutse have es t imated  a t r a n s p o r t  c o e f f i c i e n t  when sa tu ra -  

t i o n  i s  p rov ided  by incoherent ,  t u r b u l e n t  processes, which i s  g i ven  by 

T h e i r  c a l c u l a t i o n  assumes t h a t  t h e r e  a r e  many uns tab le  modes, i . e .  t h e  plasma 

i s  f a r  f rom marg ina l  s t a b i l i t y .  

I n  o rde r  t o  compare t h e  Kadomtsev-Pogutse es t ima te  w i t h , o u r  genera l  ex- 

p ress ion ,  Eq. (43) ,  t h e  q u a n t i t y  < (am/ay)' > must be evaluated.  I n  t h e  p re -  

ced ing  sec t i ons  appear c a l c u l a t i o n s  o f  t h e  n o n l i n e a r  s a t u r a t i o n  o f  t h e  t rapped-  

i o n  mode f o r  plasmas hav ing moderate-sized a, v i z .  lo- '  < a < 1, e i t h e r  w e l l  - 

above marg ina l  s t a b i l i t y  o r  so c l o s e  t o  marg ina l  s t a b i l i t y  t h a t  o n l y  a  s i n g l e  

mode i s  uns tab le .  . App rop r i a te  f o r  t h e  case f a r  f rom marg ina l  s t a b i l  i t y  (v++ 0) 

i n  which three-wave i n t e r a c t i o n s  a r e  dominant, i t  was p r e v i o u s l y  c a l c u l a t e d  [I 51 

. t h a t  nondispers ive,  one-dimensional two-mode e q u i l i b r i a  have a t r a n s p o r t  coe f -  

f i c i e n t  g i v e n  by 

The q u a n t i t y  i n  t h e  square b racke ts  i n  Eq. (44)  i s  t h e  sa tu ra ted  va lue  of 

r2 < (am/ay)' ; values o f  t h i s  q u a n t i t y  f o r  d i s p e r s i v e  e q u i l i b r i a  i n c l u d i n g  

two-dimensional  e f f e c t s  .can be c a l c u l a t e d  f rom Eqs. (22-25) and s c a l e  q u i t e  

d i f f e r e n t l y .  Numberical examples o f  t h e  p r e d i c t i o n  o f  r2 < (am/ay)'> made b y .  

ou r  model i n  va r i ous  parameter regimes a r e  presented i n  t h e  f i n a l  sub-sec t ion .  

Near marg ina l  s t a b i l  i t y  we have demonstrated t h a t  a  s i n g l e  uns tab le  mode 

can s a t u r a t e  i t s  own growth by p roduc ing  a frequency s h i f t  which a l l o w s  a b a l -  

ance t o  be e s t a b l i s h e d  between e l e c t r o n  d r i v i n g  and i o n  damping forces.  l ' ha t  



these f o r ces  a r e  sepa ra te l y  f i n i t e  i s  r e s p o n s i b l e  f o r  t h e r e  be ing energy f l o w  

and p a r t i c l e  t r a n s p o r t  i n  t h e  system even a t  s a t u r a t i o n .  From Eqs. (34b) and 

(43), t h e  t r a n s p o r t  c o e f f i c i e n t  f o r  t h e  s a t u r a t i o n  due t o  t h e  se l f - coup l  i n g  o f  

a  s i n g l e  m a r g i n a l l y  uns tab le  mode i s  g i v e n  by 

I n  Ref. 15 a  f a i r l y  d e t a i l e d  comparison o f  t h e  Kadomtsev-Pogutse t r ans -  

p o r t  c o e f f i c i e n t  and t h a t  f o r  one-dimensional ,  nond ispers ive  two-mode e q u i l i -  

b r i a  [ Eq. (44)  ] was presented. P r o f i l e s  t y p i c a l  o f  t h e  P r i nce ton  Large Torus 

(PLT) were considered. It was found t h a t  t h e  t r a n s p o r t  accompanying coheren t  

three-wave c o u p l i n g  cou ld  be s u b s t a n t i a l l y  sma l l e r  than  t h e  Kadomtsev-Pogutse 

es t ima te  over  much o f  t h e  plasma c ross -sec t i on .  Very rough ly ,  f o r  ( r n / r )  =@I),  

moderate va lues o f  or, and 4av < 1, Ref. 15 determined t h a t  

The i n c l u s i o n  here  o f  r a d i a l  e f f e c t s  and e s p e c i a l l y  t h e  increased c o u p l i n g  

p rov ided  by 6 f 0 i n  Eq. (15)  reduces t h e  s a t u r a t e d  ampl i t u d e s  and consequent- 

l y  improves t h e  t r a n s p o r t  p i c t u r e  by reduc ing  D I D K p .  

5.2 S c a l i r ~ y  and Summary ' 

I n  t h i s  s e c t i o n  we conc lude o u r  d i scuss ion  w i t h  a  few remarks on 

t h e  s c a l i n g  o f  t h e  va lues  of t h e  sa tu ra ted  ampl i t udes ,  a  r ev i ew  o f  t h e  more 

impo r tan t  assumptions made by ou r  model and i t s  l i m i t a t i o n s ,  and a  b r i e f  sum- 

mary o f  t h e  important, res111t.s. A detailed c o n s i d e r a t i o n  o f  t h e  dependence of  

c r u c i a l  parameters on t h e  exper imenta l  c o n d i t i o n s  t y p i c a l  o f  a  l a r g e  tokamak, 

e.g. PLT, appears i n  Ref.  15 and s h a l l  n o t  be d u p l i c a t e d  here. 

A s imp le  f i q u r e  o f  m e r i t  i n  c a l i b r a t i n g  the  va lue  o f  t h e  sa tu ra ted  mode 

amp l i t ude (s )  i s  t h e  va lue  o f  e q / ~ T .  When f o r  a  s i n g l e  wave t h i s  exceeds u n i t y  



a trapped i o n  resonan t l y  i n t e r a c t i n g  w i t h  a  wave can be e l e c t r o s t a t i c a l l y  de- 

t rapped by s imp le  coherent '  a c c e l e r a t i o n  due t o  t h e  para1 l e l  e l e c t r i c  f i e l d ,  i f  

i t s  bounce l e n g t h  i s  app rec iab le  compared t o  2 ~ / k , ,  - connec t ion  l e n g t h  = qR. 

I n v e s t i g a t i o n s  of e l e c t r o s t a t i c  de t rapp ing  i n  t h e  presence o f  t u rbu lence  [9,13] 

o r  f o r  a  s i n g l e  wave w i t h  s t o c h a s t i c  e f f e c t s  i nc l uded  [ I 9 1  have l ead  t o  con- 

s i d e r a b l y  1ower .es t imates  o f  e$/€T a t  s a t u r a t i o n  by f a c t o r s  t y p i c a l l y  o f  o r d e r  

t e n  t o  twenty .  

The a n a l y s i s  i n  Ref. 15 o f  one-dimensional , non-d ispers ive  e q u i l  i b r i a  

e s t a b l  i shed  by three-wave i n t e r a c t i o n s  g i ves  a  r e s u l t  

-1/2 ~ $ / E T  E-'/ '( I  )  (uO/1>_)0 y 

where f o r  v a l i d i t y  of t h e  model ( o ~ / v - ) , E  << 1; 11 < 2/3: a n d @ 1 0 - ~ )  < a < 1. 

For  t y p i c a l  tokarr~ak parameters a d m i t t i n g  t h e  t rapped- ion  i n s t a b i l  i ty, t h e  ex- 

p ress ion  f o r  e$/€T i n  Eq. (46)  cou ld  p o s s i b l y  be o f  o rde r  u n i t y .  We now 

n u m e r i c a l l y  demonstrate how t h e  i n c l u s i o n  o f  r a d i a l  e f f e c t s  can d r a m a t i c a l l y  

a1 t e r  t h i s  es t imate .  

For  purposes of. numer ica l  e v a l u a t i o n  o f  Eqs. (22 - 25) we choose t h e  

I f o l l o w i n g  bas i c  parameters:  v- /uo != 20.4, = 1/2, E = 0.1, uo/uBi = 0.0612, 

2 2  2 
mi/me. = 3600 and sB - (V_/U,) (pi q / ~ r  ) = 0.04. Th i s  g i v e s  a = A'(1 - 3q/2) 

2  
x(w0/uBi) (v-/uBi) = 0.04 f o r  A *  - 40 [4,5] and s,, = 8 ( 1  - q )  (v-/u,) 

~ ( u ~ / u ~ ~ ) ~  = 0.306. The impo r tan t  parameter 0 sca les  accord ing  t o  

I n  Table I we cons ide r  t h e  i n f l u e n c e  on t h e  e q u i l i b r i u m  ampl i tudes o f  v a r i o u s  - 

parameter cho ices  f o r  6 = 2 (1  - q)- '  ( u  / v  ) and t h e  l e v e l  of d i s ~ e r -  
0 - 

s ion .  Our cho i ce  o f  parameters i s  meant o n l y  t o  be i l l u s t r a t i v e ,  b u t  i s  con- 

s i s t e n t  w i t h  t h e  usual  o rder ings ,  and ensures t h a t  ReW, > 0, b u t  t h a t  ReWO2, 



The complex va lues o f  t h e  F o u r i e r  ampl i t u d e s  g m n / ~ ~  ' ~ " ~ ( 1  -TI)-' 

T  
( w o / ~ - )  ( eamn /~  ) and t h e  group v e l o c i t y  V / VI 5 (wo/v-)u a r e  t a b u l a t e d  i n  

9  
Table I.   he cases f o r  which B = 1  o - ~  correspond c l o s e l y  t o  t h e  one-dimen- 

s i o n a l  two-mode equ i  1  i b r i a  ( 6  = 0 )  except  f o r  geome,tr ical  c o r r e c t i o n  f a c t o r s  

o f  o rde r  u n i t y  a r i s i n g  f rom t h e  s imusoida l  v a r i a t i o n  i n  x .  D i spe rs i on  tends 
- - 

t o  i n h i b i t  e f f e c t i v e  coupl  i n g  o f  the. fundamental mode Bl t o  t h e  m21 mode and 
.., 

hence f o r c e  t h e  s a t u r a t e d  amp1 i t u d e s  from eml l/cT - c 1  t o  emll/~T 2 1. For  t h e  

B-dominated cases, 8 = 0.1, t h e  coupl  i n b  of t h e  fundamental t o  4  i s  more 0  2  - 
impo r tan t  than  t h e  c o u p l i n g  t o  +21 and i s  much l e s s  i n f l u e n c e d  by d i s p e r s i o n  

f o r  these parameter choices.  ;he t a b l e  makes obv ious t h e  dramat ic  r e d u c t i o n  

i n  sa tu ra ted  ampl i tudes,  e( /E; 0.02 f o r  these parameters, produced by t h e  
11 i- 

enhanced 'coupl i n g  when B # 0. 

Table I .  Two-dimensional e q u i l i b r i u m  ampl i tudes and group v e l o c i t y  v  estab-  
9  

l i s h e d  by three-wave i n t e r a c t i o n s  f o r  E = 0.1, Q = 112, v-/wo = 20.4, 

"'ol,% i = 0.0612, and . .. piq/c112r = 0.044 

For  plasmas ve ry  c l o s e  t o  marg ina l  s t a b i l i t y  we have c a l c u l a t e d  e q u i l i b r i a  

e s t a b l i s h e d  by t h e  s e l f - c o u p l i n g  of a  s i n g l e ,  m a r g i n a l l y  uns tab le  wave v i a  a 

four-wave i n t e r a c t i o n .  Using Eq. (34b) we c a l c u l a t e  t h a t  a t  s a t u r a t i o n  



We recal l  t h a t  the  simple n o ~ i i n e a r  s t a b i l i t y  arguments presented in Sec. 4.2 

- 1 concluded t ha t  f o r  s t a b i l i t y  yLv - /wO2 = -v <@'(I ) and - >0.02. Near 

l i nea r  marginal s t a b i l i t y  the  value of ~ + / E T  can evidently be very small,  i . e .  

e+/rT a ( y L v / 0 2 ' ) 1 2  0 as y 0. 

We caution the reader not t o  take the  exact numerical predictions of our 

model too ser iously  in view of the many approximations made. The augmented 

Kadomtsev-Pogutse f l u id  equations give only a simp1 e semi-quanti t a t i v e  model 

of the  trapped-ion mode. A more rigorous kinet ic  'treatment of the  nonlinear 

evolution of the mode and accompanying computer . . simulations a r e  needed in  

our o'pi ni on. 

The scal ing w i t h  tokamak parameters of most of the  important assumptions 

i n  our model has been previously discussed [IS]. However, we emphasize 

t h a t  val i d i  t y  of the model demands ' tha t  O, <c w B i ,  o 1 /2 << k , ( T S / m s )  , 

E < < I ,  and v, << w << v t o  j u s t i f y  the Kadomtsev-Pogutse f l u id  equations, 
0 - 

1 'xB + 'xT + 'xu I << 2 t o  guarantee t ha t  the  kinet ic  e f f ec t s  added a r e  only 

weakly perturbative,  and @ 5 e+/T << 1 t o  ensure convergence of the  perturba- 

t ion expansion in  powers of @. These conditions conspire t o  make the  model i n  

which three-wave interact ions  a r e  e f fec t ive  valid only i n  a  narrow regime of param- 

e t e r  space: v-/wBi - Q(1)  and of the parameter a ,  evaluated a lgebraical ly  i n  

Eq.  (47) and numerically in [15], < a < 1 .  This i s  based on a calcula-  

t ion  of the  e f f ec t s  of dispersion a r i s ing  from untrapped 'ions which i s  referred 

to  in Sec. 3.1. The model calcula t ions  i n  which four-wave interact ions  a r e  

dominant a r e  valid near marginal s t a b i l i t y ,  i  . e .  when (1/4a)-v < e ( 1 )  and 

0 ( 1 o - ~ )  < a < 1. 

We have made no estimates of the l im i t s  determined by use of l inear  

k inet ic  theory i n  describing the  e f f ec t s  of f i n i t e  ion banana-width excursions, 

thermal and resonant corrections t o  the  c i rcu la t ing  ion response, and trapped- 

ion Landau damping. Nonlinear calcula t ions  of e l e c t r o s t a t i c  detrapping 



[9,13,18] presumably o f f e r  es t imates  o f  what l e v e l s  of  e l e c t r o s t a t i c  p o t e n t i a l  

a r e  necessary t o  produce s i g n i f i c a n t  n o n l i n e a r  o r b i t  m o d i f i c a t i o n s .  However, 

i n  v iew o f  t h e  l a c k  o f  consensus among t h e  t h e o r i e s  o f  e l e c t r o s t a t i c  de t rap -  

p i n g  and t h e  approximate n a t u r e  o f  these t h e o r i e s  and o f  our  own mode-coupling 

theory,  p r e c i s e  q u a n t i t a t i v e  comparison i s  premature. Never the less we can 

conclude t h a t  t h e  es t imates  o f  s a t u r a t i o n  by mode c o u p l i n g  seem t o  be q u i t e  

compe t i t i ve  w i t h  t h e  l owes t  es t imates  made by t h e  t h e o r i e s  o f  e l e c t r o s t a t i c  

d e t r a p p i  ng . 
We have thus  extended a mode-coupling t heo ry  o f  t h e  s a t u r a t i o n  o f  t h e  

t rapped- ion  mode based on t h e  augmented Kadomtsev-Pogutse f l u i d  equat ions t o  

i n c l u d e  v a r i a t i o n s  i n  t h e  two dimensions corresponding t o  t h e  p lane  perpendi -  

c u l a r  t o  t h e  magnet ic f i e l d .  Impor tan t  l i n e a r  k i n e t i c  e f f e c t s  have been 

s y s t e m a t i c a l l y  added. The non loca l  e f f e c t  t h a t  magnet ic shear has on c i r c u -  

l a t i n g - i o n  Landau damping has been ve ry  s imp l y  i nco rpo ra ted  i n  t h e  l i m i t  t h a t  

t h e  spacing between mode r a t i o n a l  su r faces  o f  t h e  most l i n e a r l y  uns tab le  mode 

i s  much s h o r t e r  t h a n .  any c h a r a c t e r i s t i c  s c a l e  l e n g t h  o f  t h e  bas i c  plasma 

parameters. We have o f f e r e d  a more genera l  d e r i v a t i o n  o f  a fundamental equa- 

t i o n  o f  e v o l u t i o n  f o r  t h e  e l e c t r o s t a t i c  p o t e n t i a l  Eq. (13)  than  has p r e v i o u s l y  

appeared [I 0,151. Simple t ime-dependent and s teady -s ta te  approximate s o l  u t i o n s  

o f  t h i s  equa t ion  have been ob ta ined  a n a l y t i c a l l y .  

. E q u i l i b r i a  e s t a b l i s h e d  by three-nave i n t e r a c t i o n s  have been shown t o  poten- 

t i a l l y  r e s u l t  i n  s i g n i f i c a n t l y  sma l l e r  s a t u r a t e d  ampl i tudes and weaker concomit-  
.- . . 

a n t  p a r t i c l e  t r a n s p o r t  as compared w i t h  t he  p r e d i c t i o n s  o f  p rev ious  one- 

dimensional  t heo ry  [I 51. The t r a n s p o r t  c o e f f i c i e n t  can. t h e r e f o r e  be subs tan-  

t i a l l y  reduced be1 ow t h e  Kadomtsev-Pogutse es t imate .  Our two-dimensional 

e q u i l i b r i a  i l l u s t r a t e  t h e  need f o r  an energy s i n k  a t  s h o r t  r a d i a l  wavelengths 

t o  counterbalance t h e  e f f e c t s  o f  f l u i d  steepening. Fo l l ow ing  t h e  a n a l y s i s  of 

Gladd and Ross, we have suggested t h a t  i n c l u s i o n  o f  t h e  l i n e a r  e f f e c t s  due t o  



f i n i t e  i o n  banana-width excurs ions  p rov ides  t h e  necessary s t a b i l i z a t i o n .  We 

have found t h a t  a  s t a b i l i t y  a n a l y s i s  of these  e q u i l i b r i a  i s  i n c o n c l u s i v e  and 

specu la te  t h a t  t h i s  m igh t  be due t o  t h e  approximate na tu re  o f  t h e  e q u i l i b r i a .  

Near 1  i n e a r  marg ina l  s t a b i l i t y  three-wave i n t e r a c t i o n s  cease t o  be e f f e c -  

3 t i v e  and t h e  e(@ ) terms i n  t h e  fundamental equa t ion  must be considered. The 

t ime-dependent approach toward an e q u i l i b r i u m  produced by t h e  s e l f - c o u p l i n g  o f  

a  s i n g l e  l i n e a r l y  uns tab le  mode v i a  a  resonant  four-wave i n t e r a c t i o n  has been 

a n a l y t i c a l l y  ca l cu la ted .  We have a l s o  determined f o r  what plasma parameters 

these e q u i l i b r i a  a r e  s tab le .  The p a r t i c l e  t r a n s p o r t  a t  s a t u r a t i o n  i s  found t-o 

s c a l e  as t h e  l i n e a r  growth rate,and e$/€T sca les  as t h e  square r o o t  o f  t h e  

growth r a t e ,  bo th  o f  which become v a n i s h i n g l y  smal l  as l i n e a r  marg ina l  s t a b i l -  

i t y  i s  approached. 
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F ig .  1 S l a b  coot.di ria t e s  showi 119 IIIU t u d l  ' ly o r  ~ J I U Y C ) I I ~ I ' ~  J e r ~ s i  ty L ~ I I ~  Le111p- 

e r a t u r e  g r a d i e n t s  vno(x )  and v T ( x )  , magnet ic f i e l d  - By  and d iamagne t i c  

d r i f t  v e l o c i t y  . 
F ig .  2  Diagram o f  t h e  non-dimensional l i n e a r  growth r a t e  ym = m  2  

4  2 - -v  as f u n c t i o n  o f  mode number my k  = m/r,  w i t h  parameter v = v+v-/wo. 
Y  

T h e , f l o w  o f  wave energy i s  schema t i ca l l y  presented.  

F i g .  3 Frequency e igenvalues n i n  t h e  d r i f t -wave  frame f o r  l i n e a r l y  pe r t u rbed  

nond ispers ive  two-mode equi  1  i b r i a  as f u n c t i o n  o f  kxrLg.  The p e r t u r b a t i o n  

. . 
i z e d  by m  = 1, and t h e  e q u i l i b r i u m  lo = aL exp( iL.c) + aZL exp ( i 2Lc )  + C.C .  

i s  parameter ized by L  = 8 and ( a )  uL2 = .56, ( b )  uL2 = .64, and ( c )  uL2 = .72. 

F ig .  4  Schematic o f  t h e  f l o w  o f  energy due t o  mode c o u p l i n g  i n  two- 

d imensional  F o u r i e r  space ( k  ,k ) f rom uns tab le  modes t o  modes s t a b i l i z e d  
x  Y  

by i o n  c o l l i s i o n s ,  i o n  Landau damping, and e f f e c t s  assoc ia ted  w i t h  i o n  

banana-width excurs ions.  The q u a n t i t y  A r S  = ( k y r  d  en q /d r ) "  i s  

assoc ia ted  w i t h  t h e  va lue  o f  k f o r  t h e  p r i n c i p a l  uns tab le  mode. 
Y  
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