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Gas production during pyrolysis of blocks of coal i s  strongly affected by heat 
and mass t ransfer  resistances.  Since large pieces of coal must 3e pyrolyz'ed during 

c~irT-Zi%u gasification, these effects  become important i n  modeling, production, and 
resow-ee recovery. Experiments have shown t h a t  pyrolysis of subbituminous coal 

. ,blocks, which are typi&d.ly heated a t  3.0 cO/min a t  the  block surface and which have 
, the high' moistwe content,  of in situ- 'coal, '  evolves substant ial ly  more. gas than does 

pyrolysis of powders. 

Coal pyrolysis reactions are  fundamental i n  all c o a l  conversion processes. Coal 
chemical s t ructures  a re  thermally decomposed a t  250°C or higher t o  produce l i q u i d  
vapors, noncondensible gases, and a so l id  char residue. This decomposition may be 
u t i l i zed  i n  coking or as par t  of the combustion, gasification, or l iquefact ion 
processes. For example, pyrolysis, p a r t i a l  combustion, and steam-char reactions 
combine i n  gasif icat ion t o  produce a combustible gas and an ash residue. Heat and 
mass t ransfer  interferences with these chemical reactions a re  normally minimized i n  
conventional coal conversion by crushing and drying the coal pr ior  t o  processing. 

Underground coal gasif icat ion (UCG) or  i n  s i t u  gasif icat ion represents P, 

modeling challenge f o r  coal p p o l y s i s  because of three  unusual character is t ics :  
large pa r t i c l e  size,  high water content, and low heating ra tes .  A typ ica l  UCG 
process feeds oxygen or a i r  i n to  a coal seam, supporting a moving, high-temperature 
reaction f ront  (flame f ront ) .  To permit flow of a i r  t o  the fYont and flow of product 
gases away from it, seam permeability i s  increased by explosive fracturing, by 
burning a high-permeability path between in jec t ion  and production pipes, or by other 
methods. Each of these methods leaves large blocks or sections of coal in tac t .  Also, 
since seams are  chosen t o  be below the water table ,  i n  s i t u  coal reserves f o r  UCG may 
be typ icauy  3% moisture. Finally, the  gas i f ica t ion  f ront  i n  several schemes moves 
a t  about 1 m/day, cocurrent with the f a s t e r  gas flow. Hot product gases thus produce 
a slaw-moving temperature gradient ahead of the  front,  slowly heating the coal. 

Understanding of block pyrolysis and other aspects of UCG i s  important i n  i t s  
development toward being a s ignif icant ,  economical energy source. The concept of 
UCG was f i r s t  proposed i n  1868 by S i r  W i l l i a m  Siemans, and fu l l - sca le  UCG operations 
i n  the U.S.S.R. have continued since the 1930ts; however, despite la rge  research 
programs immediately a f t e r  World War 11, no Western nation was able t o  develop 
an economical UCG process (1) .  The United States  began UCG development i n  1971, 
and r e su l t s  t o  date have been both technically and economically promising. Success- - fu l  developnent of UCG wodd make an estimated 750 b i l l i o n  tons of coal available 
f o r  energy production, as compared t o  the 297 b i l l i o n  tons of coal reserves l i s t e d  
by the Bureau of Mines as recoverable by s t r i p  or underground mining (2) .  I n  
addition t o  u t i l i z ing  otherwise inaccessible coal, UCG could have l e s s  of an 
environmental impact than e i ther  underground or s t r i p  mining and could improve 
resource recovery and personnel safety over t h a t  of underground mining. 

Because of the potent ia l  of UCG and the  unav,ailability of adequate data  for  
process modeling, Oak Ridge National Laboratory began research i n  1974 on pyrolysis 
of coal blocks a t  low heating rates .  Primary variables .in t h i s  study have 'been 

)C 
Research sponsored by the Energy Research and Development Administration under 
contract with Union Carbide Corporation Nuclear Division. 



heating r a t e  and f i n a l  temperature, axid these data.have been compared towdata  on, 

' *  . 
. pyrolysis of powdered. coal from the same source. 'Data and observations from .these 

experiments have been shaYed w i t h  Energy Research and DevelopmGnt' Administration 
UCG process developers a t  Laraniie (waning) Energy Research Center, Lawrence 
Livermore ( ~ a l i f o r n i a )  Laboratory, and. Morganto~m (west ~ i r g i n i a )  Energy Research 
Center, and have been incorporated in to  process models as  deemed appropriate. 

Equipment and Procedure . . 

Figure 1 depicts the  block m o l y s i s  equipment schematically. In the  experi- 
ment, an approximately 15-cm-diam by 15-cm cyl indrical  block of coal was positioned 
on insulating blocks i n  the bottom of a 60-cm deep, thin-walled reactor vessel, 
fabricated from 8-in. Sched 1 0  3 0 4 ~  s ta in less  s t e e l  pipe. Protection of the reactor 
from external oxidation a t  high tem~era tures  was afforded by a commercially prepared 
nickel-chromium-aluminum coating (Metco No. P443-10). Heat fo r  pyrolysis was supplied 
by an e l ec t r i ca l  furnace, with reactor temperature controlled by an ORNL-fabricated 
temperature programmer. Control thermocouples, thermocouples for  in terna l  and 
externzl block temperature measurements, an ine r t  gas purge l ine,  and an exhaust 
l i n e  heated t o  250°C were connected t o  the reactor through a flanged top. Con- 
densibles (water and t a n )  were removed from the hot reactor exhaust by d i rec t  
contact with water-cooled copper coi l s  and by a f ine  glass-wool demister. A suf- 
f i c i en t  number of noncondensible gas samples were collected in to  evacuated sample 
bot t les  t o  describe gas evolution as a function of time. Finally, gases were metered 
and vented. 

For these experiments, blocks of unweathered subbituminous coal were selected 
a t  the mine face f rm the  Roland and Smith seams (Wyodak Resources Development 
Corporation, Wyodak, ~yoming). To prevent drying and breakage, these blocks were 
bagged i n  p l a s t i c  and cushioned for  shipping. Upon receipt  a t  ORNL, coal was placed 
under water fo r  storage u n t i l  and a f t e r  it was machined in to  cylinders. A l l  machining 
operations were performed under a water spray fo r  cooling and t o  prevent drying. 
Thermocouple holes (1.6-~nm dim) were d r i l l e d  through the  top of the coal cylinder 
down t o  a middle, common plane. Hole patterns were chosen t o  minimize heat conduction 
through radia l ly  placed thermocouples (for  example, spiral ing outward from the block 
center) ;  1.0-mm-dim thermocoupl-es were used f o r  similar reasons. Standard analyses 
of the coal are reported in  Table 1. 

Table 1. Analyses of c o d  taken from the Roland-Smith seams, 
Wyodak Resources Development Corporation, Gil let te ,  Wyoming 

Moisture, wt % 

Proximate analysis, dry wt % 
Ash 
Volatile matter 

'.- Fixed carbon 

Standard ca lo r i f i c  content, 
~ t u / l b  moisture-and-ash-free" 

30.0 Ultimate analysis, moisture- 
and-ash-free wt % 

Carbon 
5.3 Hydrogen 

47.0 . Nitrogen 
47.7 S u l f u r  

w g e n  

The experiment was preceded by an argon purge of a i r  from the closed system. A 
constant flow of argon was maintained throughout the  experiment, both t o  establ ish a 
t i e  element for  calculating gas flowrates and t o  stseep gases and vapors from the 
reactor. The experiment i t s e l f  consisted of elevating reactor temperature at  a 
predetermined r a t e  t o  a predetermined maximum, then holding it u n t i l  the reaction was 
cmylete.  Meanwhile, pressure, temperature, and florrrates were monitored, l iquid$ 
\sere condensed and collected, ,and gas was smplcd periodically. ACl;cr conplet-ion, 



. : the reactor was cooled t o  ambient temperature. Because pyrophoric c h a s  were created . . 

' i n  most experiments, the block of char ( s t i l l  dimensionally s table)  was carefully 
removed and sampled under an agon'blanket .  Liquids were carefully removed and 
weighed, and gases were analyzed by a combination of low-resolutiain mass spectrometry 
and gas chromatography . 

Dzta and Interpretation 

General effects of 'heat and mass t ransfer  resistances may be observed by com-, 
' 

parison of block and pmder pyrolysis data and by comparison' of block pyrolysis 
- data a,t d ifferent  heating rates .  Three representative experiments permit these 

analyses : 

1. powder pyrolysis a t  3.33 cO/min t o  950°C (3) ,  
2, block pyrolysis a t  3.0 cO/min t o  950°C, - and 

'3. block pyrolysis a t  2.0 cO/min t o  1000°C. 

Because of minimal heat and mass t ransfer  e f fec ts  indicated in the  powder data 
of Campbell (3),  a s m a l l  heating-rate difference does not hinder compasison wit'n 
the resistance-hindered second experiment. A sat isfactory comparison m q r  be made 
between experiments 2 and 3 since the ef fec ts  of s l igh t ly  d i f ferent  f i n a l  temperatures 
are negligible compared t o  the effects of the different  heating rates .  The unimpor- 
t an t  difference between powder heating r a t e  and 3.0 cO/min may be eliminated and data - --- 
a t  the two block heating ra tes  may be compared d i rec t ly  by changing the ordinate from 
time t o  T, a pseudo-temperature ("c)  defined as: 

7 = To + Ts. t ,  1) 

where To i s  ambient s t a r t ing  temperature, Ts i s  the  r a t e  of temperature increase a t  
the  block surface, and t i s  elapsed time. It may be observed t h a t  T i s  the same 
as  surface temperature u n t i l  maximum surface temperature i s  reached; ACrom tha t  point, 
it continues the sane proportional relat ionship t o  time. 

Heat t ransfer  i n  block pyrolysis i s  most s ignif icant ly affected by water content. 
In Fig. 2, temperatures a t  the block surface (radius + block radius = l), the  equi- 
volume point ( r / ~ ,  = 0.707), and the  block center ( r / ~ ,  = 0) are  compared as functions 
of T f o r  the  bio block experiments. In a coal powder a t  these heating rates ,  pa r t i c l e s  
are  so small tha t  the temperature i s  the same throughout a pa r t i c l e  ( T  = T t o  Tmaxhum 
fo r  a l l  r) .  In a large, dried block, thermal conductivity would cause some temperature ' 

prof i l e  t o  build during heat up. However, i n  a r e a l i s t i c a l l y  wet block, generation of 
steam soaks up a great deal of heat, resul t ing i n  high heating ra t e s  a t  the center 
and in sharp temperature profi les .  Figure 2 shows tha t  most of the  block w i l l  heat 
up t o  100°C as steady heating continues at the surface. A wet-dry interface gradually 
moves inward from the  surface as s t e m  i s  generated, creating a shrinking core of 
damp coal. This e f fec t  mw be seen graphically in the temperature prof i les  of Fig. 3. 
(placement of r ad ia l  thermocouples i n  a cent ra l  plane sa t i s fac to r i ly  describes r ad ia l  
temperatures without heating ef fec ts  from the cylinder top or bottom. These effects  
were fur ther  prevented by making the  cylinder height greater than or equal t o  cylinder 
diameter. ) Figure 2 a l so  shows tha t  a t  a lower block heating ra te ,  in terna l  block 
temperatures do not l a g  surface temperature as  much (i .e. ,  temperature prof i les  are  
not as steep),  but tha t  absorption of heat by steam generation s t i l l  exerts a con- 
siderable resistance. 

Gas evolution, the  c r i t i c a l  parameter fo r  i n  s i t u  gasification, i s  s u b s t a n t i d y  
. greater in pyrolysis of blocks than of powders from the same coal. Figure 4 shows. 

' gas evolution and gas composition fo r  powder pyrolysis and for .block pyrolysis b.s . .  . 

functions of T, again equivalent (up t o  9 5 0 ' " ~ ) . t o  block surface temperatwe; i n  t h i s  
case, they' correspond t o  approximately the  same heating r a t e  and elapsed time. . . . 

. . 
Partial gas evolution r a t e  ( ~ i g .  4)  i s  the sum of H2, CO, C 0 2 ,  C I C-lr6 
(those compounds. c i t ed  by campbell), normalized per gram of niois-L~we-md-as11-i'reu 



'.. cod. (m<zf).  Similmly, pseudo-mole . fract ion refers  t o  a f rac t ibn .  of .the t o t n l  volwe : 
of gazes l i s t e d  above. 

!/iost of the increased gas y i e ld  may be a t t r ibuted  t o  self-gasification of char 
by the generated steam. I n i t i a l  evolution r a t e s  and compositions from block pyrolysis 
lagged those of the powder pyrolysis, :but strongly resembled them. Since the f rac t ion  
of coal. block at  pyroiysis temperatures ( 2 5 0 " ~  or higher) g r a d u d y  increased with T, 

thus lagging the powder par t ic les  tha t  were all a t  uniform temperature, t h i s  behavior 
i s  consistent vrith the occurrence of straightforward pyrolysis reactions. Beginnbg 
a t  about T = 700°C, gas evolution from block pyrolysis produced more gas than would 
have been expected from powder pyrolysis data, i n  pakticular, more H2 and CO. A 
reasonable -explanation is t h ~ t  as  s t e m  diff'used outward from the shrinking, damp 
core through the hot, outer char layer  of the  block, a form of the reaction 

occurred. This explanation i s  par t icu lar ly  plausible considering t h a t  the reaction 
equilibrium constant, K is greater  than 1 f o r  temperatures higher than 6 7 0 " ~ .  

pY. : . . 

Gas component evolutions in Table 2 suggest t h a t  steam-char reactions account 
f o r  only a par t  of the  increase i n  gas evolution observed i n  block pyrolysis. . I n -  
creases in t o t a l  evolution of H2 and CO a re  253 cm3/g and 106 c1113/~, respectively, 
while l e s s  marked changes occur i n  C02 (15 ~ m 3 / ~  increase),  CH4 (11 cm3 decrease), 
and C2 c6mpomds (3.9 cin3 increase). I f  only steam self-gasif icat ion of carbon took 
place, stoichiometry d lc ta tes  t h a t  the  increased evolution of H2 and CO would be 
the same, ra ther  than 147 cm3/g more of H2 than of CO. Contribution from the water- ; 

gas shift -reaction 

should be negligible or counterbalanced, since Kp exceeds 1 o e ,  f o r  temperatures 
l e s s  than 810°C. It i s  reasonable t o  expect steam reduction of hydrocarbons ( I C ~  > 1 
f o r  T > 6 1 0 " ~  f o r  C H ~ ) ,  but hydrocarbon l i g h t  gases a re  not great ly  d i f fe rent ;  In  any 
case, they could not contribute such a la rge  amount of hydrogen. A l i k e l y  explanation 
i s  t h a t  pyrolysis-generated tar and o i l  vapors, diffusing outward in to  hot te r  char, 
a re  themselves pyrolyzed or cracked t o  carhon and H2. 

Exothermic reactions i n  the center of the block were observed thermally i n  - 
Fig. 3 near the end of the 3.0 cO/min block pyrolysis experiment. Since H2 generated 
by the  very high-heating r a t e s  a t  r / ~ ,  = 0 was r e s t r i c t e d  i n  outward, diffusion, it 
may have part ic ipated i n  highly exothermic hydrogenation reactions. 

Conparison of block pyrolysis a t  d i f  ferekt  heating r a t e s  indicates t h a t  s h i l a r  
gas-evolution behavior occurred r e l a t ive  t o  powder pyrolysis. In each case (see 
Table 2) )  block pyrolysis produced more gas than powder pyrolysis, primasily because 
of increased H and.CO groduction. For block pyrolysis, as observed i n  Fig. 5, over- 2 all gas-evolution ra t e s  i n  the 3.0 cO/min experiment did not .begin t o  increase beyond 
those of the  2.0 cO/min .experiment u n t i l  about a t  T = 700°C;. gas compositions i n  the  
two experiments remained quite similar.  This difference reinforces the hy-pothesia 
tha t  steam reactions i n  the hot outer layer  produced ext ra  H2 and CO, since a t  
T = 700°C, approximately three-fourths of the  2.0 cO/min block had been dried, as 
cmpared t o  .approximately one-half of the 3.0 cO/min block. 



. , Table 2. Comparison. of gas ' c~rnponent evolution among three pyrolysis cases . . . . 

, . 

Gas evolution, cm3 ( s T P ) / ~  coal. (maf) 

H2 co co2 CH4 3 C 2 ' s  C ' S  cq9s  

Powder, 3.3 cO/min t o  950°C (ref.  3)  134 48 60 71 8.5 - - a - - a 
 lock, 3.0 cO/min t o  950°C 387 154 75 60 12.4 6.4 1.2 
 lock, 2.0 cO/min t o  1 0 0 0 " ~  317 101 78 76 17.1 9.8 1.7 

?Not reported. 

Conclusions and Future Plans 

.Dewatering of c o d  blocks a t  i n  s i t u  moisture levels  was shawn t o  markedly af fec t  . 

pyrolysis gas production by being the  rate-limiting mechanism i n  heat t ransfer ,  and 
by causing self-gasif icat ion of the block as steam diff'uses from a shrinking core.of 
damp coal through a hot, outer layer  of char. Cracking of product o i l  vapors as  they 
diff'use outward m q y  a l so  contribute t o  the increased combustible gas evolution'of 
block pyrolysis compared t o  powder pyrolysis. 

These r e su l t s  influence modeling and design of i n  s i t u  coal gasification. Since 
no data are available on coal-block pyrolysis, improved understmding of ,heat .and mass 

' 

t ransfer  e f fec ts  s ignif icant ly improves semitheoretical models which have depended 
on powder pyrolysis data.. For sat isfactory resource recovery, the .shrinking core 
of unreacted coal makes it c r i t i c a l  t o  l i m i t  flame-front speed. ' I f '  the  flame f ront  ' - ' 

moves too fa s t ,  .only &.I outer layer  of any la rge  masses of coal w i l l  b e  gasified, 
. .  . leaving dmp, ungasified centers behind the front.  

More experimentation i s  planned t o  quantify and expand these resul ts .  Specifi- 
cally,  a matrix of experiments 'is being performed a t  0.3 cO/min and a t  3.0 cO/min, 
proceeding t o  maximum temperatures of 500 t o  1000°C. Analyses w i L l  be made of data 
on o i l ,  char, and gas yields; o i l ,  char, and gas conipositiono; thermal histories ' ;  
and o i l  and gas physical properties. Later experiments a re  planned t o  investigate 
the effects  of pressure, reducing gas atmospheres, and other coal ranks ( l igni tes ,  
caking and noncaking bituminous coals) .  The ultimate r e su l t  i s  a sa t i s fac to r i ly  
accurate model of pyrolysis as it af fec ts  i n  s i t u  coal gasification. 
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Fig. 1. Schematic diagram of block pyrolysis experiment. 
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