BNL -, 22445

THE ARCHITECTURE OF THE BNL

ARCHIVE AND DISSEMINATION SYSTEM

Jack Heller

December, 1976

INFORMAL REPORT

WASTER

APPLIED MATHEMATICS DEPARTMENT

BROOKHAVEN NATIONAL LABORATQRY
ASSOCIATED UNIVERSITIES, INC

UPTON, N.Y. 11973
UNDER CONTRACT NO. E(30-1}-16 WITH THE

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the United States Energy Research and
Development Administration, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents that its use would
not infringe privately owned rights.

BNL -~ 22445

AMD - 752

THE ARCHITECTURE OF THE BNL

ARCHIVE AND DISSEMINATION SYSTEM

Jack Heller

December, 1976

INFORMAL REPORT

Foo -

'
| NOTICE
‘| This report was prepared a3 an account of work !
] sponsored by the United States Government. Neither
| the United States nor the United States Energy
| h and D it ion, nor any of t
their employees, nor any of their contractors, l

!
|
|
1
1

| subcontractors, or their employees, makes any
warranty, exptess ar implied, or assumes any lega}
.} sisbility or responsibilit for the N

ar useful of any i i pp product or
.| process disclosed, or represents that its use would not
, infringe privately owned rights.

Di
STRIBUTION OF THIS DOCUMENT I UNLIMITED

ABSTRACT

The Brookhaven National Laboratory Archive and Dissemination

System (BNLADS) has been designed to deal with the record keeping

-associated with archiving.and disseminating sequenﬁial files through

a computer network. This data base management system (DBMS) is

implemented in a host language that is a subset of PL/I which is

capable of running on a variety of manufacturer's equipment under

their respective operating systems. .

The stored‘sequential files that can be dealt with by the‘
BNLAbS must be in character mode (ASCII; BCD, EBCDIC). The access-—
ing of fields muét be specified by a format description which allows
for fofward précessing of fields only. The structure of a CASE type
statement allows for a data field determining a format sequence from
a set of format sequences. A data definition language (DDL).has
been devised to describe the accessing sequence of stbred sequential
files and is comprised of the key words DO UNTIL GET IF and END and
the format specifications A F and I with the FORTRAN, PASCAL or PL/T
allowable syntax.

A data model definition (DMD), called in the BNLADS, the

physical logical description (PLD), gives the user a view of the con-

tent of each stored sequential file and contains

ii

(i) the orgapization:creating the file,
(ii) the logicallfile name,
(iii) the ?hysical sforage charactef set, _ v
(iv)A the visual sticker labél,

(v) any comments about the data,

o

and (vi) the DDL'details for the file.

The DDL reqﬁires all field type feferences to contain the

field ﬂame, so that‘phe BNILADS can access all stored sequential
-files by logical field naﬁe'and can write stored sequential'files
by st&ting the logical field name'without the hecessity'of referring
to formats. | |

The BNIADS is architected in a strétified form in which the
application programs (AP) are.built on.the accessing prqcedures.
Below this level, the procedures become dependent upon the compiler

) implémentation of.the host language PL/I and the operating system.
In this manner, BNLADS can be available on‘most manufacturer's
hardware.

The AP's written by users specify logical names of files,
which are intérfaced witﬁ;t£é;operating system via the job control
language; the AP's refer only to logical field names for accessing
and writiqg'stored sequential files, the interfacing with the BNLADS :
being accomplished via the DDL embedded in the DMD. By this archi- ‘

_ tecture of the BNILADS, we are able to obtain data independence of

»

iii

the allowable stored sequential files. The uniqueness éf BNLADS
from most other DBMS's is that one can describe previously formatted
files créated by the conventional higher level languages, rather
than reformatting them into some predefined structure. However,

it is not intended to duplicate query and report generation capa-
bilities of other DBMS's, but to interface with any of them via the.

AP's.

1. Introdnétion

In this report we specify and discuss the Brookhaven National
Laboratory Archive and Dissemination System (BNLADS), which has'
been designed to cope with

(1) 1logical accessing of sequential files,
(ii) the dissemination of subsets‘of sequential
files of data,
(iii) the reformatting of sequential files of
data,
and (iv) the record keeping associated with these
archivipg and‘disseminating activities.
In section 2 we discuss the broad specifications and desires of
the BNLADS. These desires revolve around the concept that even-
tﬁally this system will operate in a nonhomogeneocus computer net-
work.

. In section 3 we discuss the nature of sequential files as
dealt with by the BNLADS. A data definition language(4) (DDL)-
is specified that.is capable of describing the accesé sequence,
formatting and logical names of the fields of data. This DDL is
used by the system for accessing sequential files and formatting
“data for output onto user specified filés; The formal specifica~-
tion in Baccus Naur Form (BNF) is given in section 4 with a dis-

cussion of the sematics of the DDL.

The architeéture of the BﬁLADS, i.e. the stratified organiza-
tion is discussed in section 5. This organization is$ used with
fhe hope that the system will be hardware independent for those
machines and operating systems whicﬁ support PL/I. The versién
used is an intersection of the PL/IlwhiCh i? cbmmon to all manu-
facturer's considered. The architecture of the BNLADS reqﬁires é‘
physical logical deécription (PLD) of sequentiai files of data
which is used bf the system, via its built in compilef,Ato read
and write files. The BNF forﬁ of the PLD is‘discussed in section 6.

In section 7 we discuss the data accessing lahguage (DAL)
upon which the application programs (AP) are written. These DAL
procedures/areAwritﬁen in PL/I and can be used to write AP. Three
APs that have been designed are discussed in section 8. These AP
are characteristic of utility programs and deal with constructing
an "archive type" file, if desired, displaying the contents, se-

lectively, of a file and reformatting a sequential file.

2. Specifications and Desires of the Brookhaven National Laboratory

Archive and Diésemination System

Under the present modus operandi of computer.technology there
is an ever increasihg accumulation 6f data files which are in se-
quential form. Thé légical‘content and making of these data files,
are described and documented in reports’that reside in libraries,
archives and iepositories; the mechanism of accessing these files
resides in the programs originélly constructed té process the
data; the -location of‘theSe machine readable files is stored some-
place known to the programmers and/qr project leaders. Because
the relevant pbrtions of archived histérical—typéAdata used in
conjunction with data processing equipment is stored in physicallyv

, ~

'different places and because the archives and programmers vary
over time, much-of this data becomes, in practice, unaccessible.
The Brookhaven National Laboratory Archive and Dissemination SYstem
(BNLADS),addreéses itself to the problem of bringing together this
ever increasing divergencé of logically archived data as well as
allowing for the dissemination, réformatting and logically retriev-
ing of subsets of the archived data.

The'BNLADS has been designed to satisfy the following desires:.

(i) the abiiity to locate and retrieve data

fields and files using their logical names,

(ii) the ability to locate filés based on the
~ presence of logically named fiélas,
A(iii) the ability to conform with dissemination
and format standards of ANSI(Z){‘IWGDE(ll),
, MCN(lS), ... and other as yet undefined
standards, -
.(iv) not require the presenﬁly cdllected machine‘
readable data to be reformatted, -
(v) not require the recopying of user data,
"and (iv) be hardware independentvfor third genera-
tion computers and operating systems.

Requirements i) and ii) can be met by using the concepts of
Data Base Management sttems (DBMS)(4) and aliowing interfacing
with other systems to take advantage of their capabilities.

In order to deal with format and disseminating standards (de-
sire iii) defined by various organizations, the BNLADS will allow
for formatting épecifications to be given externally at rﬁn time
in its own data definition language (DDL). This DDL contains a
very small set of key words and is FORTRAN, ALGOL, PL/I like
in its systax and sematics(12). The desire and need to leave the
data unchanged in format (desire iv) is also met by using the DDL
which can describe the accessing performed by the programs that

operate on the data.

As we will see, users of the BNLADS need not recopy their
data but can.sﬁore the DDL in any user chosen filé, which can be
used by the system, thus satisfying desire v.

In order to be manufacture hardware ana‘softwgré indépendenﬁ,
'the system is being implemented in that intersectioh‘of the PL/I
language found to run under the éurrent available operéﬁing systems.i
With the advent of computér networks, this last desire is of impor-
tance for we can envisage data archived atlone node of a compuﬁer
network being transferred to another node with aifferent hafdware;
and yet being "logically accessible" by the BNLADS at the receiving

node.

* at present (12/1/76), the parts of the system implemented have
run on CDC 6600 under SCOPE, on IBM hardware under OS and VS,
and on the SPECTRA under OS.

>3.- Desired Organization of Machine Readable Data

In(this,section we consider the nature of sequential files of
data and the DDL which clearly stores the accessing of recorded
and "logically implied" data. Since the previous descriptions and
accessing of files was under other systéms, devised by programmers
using FORTRAN or ALGOL .or PL/I or PASCAL or , it will either
be necessafy to devise a complex DDL to deal with every eventgality
dr restrict the type of dgta with the consequeﬁt sihplification of
the DDL.‘ We choose the éecond alternative, which we believe in-
cludes many, 1f not most, sequential file accessing. The sequential
files that the BNLADS dealt wi£h satisfy the féllowing two'condi;
tions: | |

(i) files are in character mode,
and (ii) each field'é format is determined at the
time of agcess or by a Ereviouslz ac-
ceéséd field and its value.

In order to understand the DDL and the motivation behind its
structure, let us consider various kinds of sequential files and
thelr visualization.

Consider a fixed field formatted file of the type shown in
figure 1. Each row is considered to be a record made up of two

fields whose name* is given at the head of each column while the

* There are various terms for the name of a field: tag, attribute,
field name, class, identifier, field type, ...

Average Pressure Average Temperature
14.70 : . 15.1
14.92 15.3
14.86 - 14.5
114.83 _ 14.7

Figure 1

A Visualization of a Fixed
Field Sequence of Records

L

: Average' Average
Time Bouy # Pressure Temperature
0.0 100 14.70 15.1

" ‘105 , 14.92 15.3

" 136 14.86 14.5

" 125 14.83 14.7
1.0 - 100 ' .

" 105 .

M 136 .

" 125

Figure 2

A Visualization of a Fixed
Field Sequence of Records

machine recoraed information is displayed in the-semifiﬁfinite
strip of the figuré.4 This view is typicallof the visualizations
.presented in relational data set modéls(3). The ordered headings
4are‘célled a relation; eéch récord is called a value of tﬁe rela-
tion.

Hoﬁever'this view is far too simple to describe many sequential
files of data. Consider the case visualized in figure 2. Here
each row has a set of implied fields, their:names are the headings
day., time and bouy #, while the implied values are given under the
headings and‘apply to eéch_recofd, i.e. row. Upon looking at the
physical stbrage of the information in'this visualization, we would
find the data

| 14.70 15.1
14.92 15.3

14.86 14.5
14.83 14.7

.
- -
.

recorded on é magnetic device, e.g. a tape. We would find thé
other information, hopefully in reports about the collecting and
use of this daﬁa, and the documentation in the programs used to .
access the data.

We will refer to data on the.magnetic devicés as recorded

values. We will refer to their headings, which name the fields

logically} as recording tég;, We will refer to the logical data

on the left of Our‘visualization as external. In particular the

headings will be referred to as external tags and the values will

be referred to as external values.

A tag value pair is a field.* We will refer to a recorded

field as being made up of a recording tag and a recorded value;

we will refer to an external field as being made up of an external

tag and an external value.

Fo? example 14.70 is a recérded value; Average Pressure is.a
recording tag and £he ordered palir average pressure, 14.70 ié a
recorded field. Similarly, Bouy # is an external tag, 105 is an
external value and the ordefed pair Bouy‘#, 105 is aﬁ egternal
£ieid. The data viewed.inlthis manner can be given a formal set
theoretic description, in which ordered tﬁples of tuples describe
the logical sequencing of the data(9). 6ther descriptions of'log—
ical data with other.logical cbnnectivities have beep described by

set theoretic means,‘l'8:9,lo)

Howeve;, these descriptions, though
useful for theoretic discussions of data are not easily used to
describe the "logical content" andlaccessing sequence. We there-
fore choose an aléorithmic structured programming type of descrip- -

tion which is more natural to programmers who originally devised

the formats and accessing sequence in their program.

* Our tag value pair is referred to as a stored field by Date(4).

-10-

The example in figure 2 has the following access description:

.Day: DA 1,2,... *
Time: DS 0.0,1.0,...,24.0%
Bouy #: D@ 100,105,136,125%

GET average pressure, F(10,2), # per sq in;
average temperature, F(10,1), deg C*

END Bouy # *

END .Time *

END Day *
Obviously, the key words DA GET F and END, and the delimiters
T, % () :; are not enough to describe most sequential fiié
accesses.

The BNLADS will support the following key words:
| D4 UNTIL END GET IF

and the format key words

-11-

4. Syntax and Sematics of the BNLADS DDL

The syntax of the BNLADS DDL was devised.to describe accessing
of sequential files which are typical of the.various programs of
the past énd_allow for documéntation of the fields imﬁlied (external)
or accessed (recorded). Furthermore the structure of the DDL makes
all accessing descriptions appear inlstructured programming form.

The DO loop §tatement has four forms:

i) a do for various external values,
ii) a do until a deliﬁiter,
iii) a do for a given number of records
and iv) -a dé until the end of filelis encountered.

Associated with every DO is an‘END statement with the label of the
DO.

- The accessing of the fields is performed with a GET statement
thch has tﬁo férms:

i) a GET of a set of fields,
and ii) ‘a labeied GET which triggers a case statement.

Associated Qith each labeled GET is anAEND with the label of the
GET and within this labeled GET END block’is a set of labeled IF END
blocks'for each case.

The syntax of the BNLADS DDL accessing is

(DDL): :=l| (get)| (do)| (1abeled get)l|

-12-~

- where || | means any combination in any order of the statements
within the set of double vertical baré.
The GET statement is defined as
(get)::é GETHB(recorded field)

mih{;(recofded field)}*
0

{recorded field)::=(fiéld name), {format [, (text)]
where ﬁhe (field name) and (text) are arbitrary character strings
not containing the.reserved delimiters ;. ,'} *-.

The (format) types are those used in FORTRAN, ALGOL or PL/I°

(format)"—A(n)|A(n)|A((del))II(n)l
F((n))|F(n).(n)]
F((n), (n)) |F({n).(n))
where {(n) is:an unsighéd decimal integer number and (del)'is non-
numeric and terminates a.variable access.

The labelea GET‘statement is used to trigger thé case state-
ment which ailoWs a recorded value to determine the next sequence
of formats:

(labelled get)::=
{label).. GETﬁ(recorded field)*

min{(label).. IFh{(value)*
1 .

» {(DDL) . '
END¥{label)*}

ENDﬁ(label)*

~13-

where (lébel) is any character string not containing the reserved
delimiters._ The purpose of the (labeled get) statement is'to allow
for data determined férmats° The.recordea value obtained by the
labeled get if equal to the (value) in the IF (value) triggers

the (DDL)Astatements in the (label)..IF END{(label) block. If none
of the values of the IF bloéks match a (label).,‘IF"E END{label)

will be pérformed. .If the IF* block does not appearAin the
(labeled get) block and the (value) does not match»ah IF(vglue)
block, an error condition is raised and the job will be terminatéa.

The do block has the syntax:

(label).. DO¥

min max{(value)min{, (value)}|

0 1 ’

| (value), {value)...[,{value)]]

GET¥H(field name),(format)[,(text)]l."
UNTILK(del)}*
(DDL)
ENDﬁ(label)*

If the DO block doeé not contain one of the above»possibilities,
the do block is performed until the end of record condition is
raised.,

If the (Vaiue),(value>,9. type is used, the values must be
numeric and the difference determines the increment for the next

values. Termination of the do block results when the third {value)

-14-

is exceeded, if it is present, or to the end of file if it is
not present.

The {(label).. DY GET form of the do block requires that the
- GET accesses a numeric value whose integer part determines the num-
ber of times the do block is executed.

The'UNTIL'(ael), where {(del) is any character string, determines
the termination of the do block upon the first access of'thé value
(del,.

In Appendix I we give examples of the use of the (DDL) to de-
scribe accessing of sequential files; in Appendix III we give
examples equivalent to the DataADefihiﬁion File of the extended

ERDA-aANSI (11) standard.

~15=-

5. The BNLADS Architecture

The BNLADS is constructed to help with the record keeping
necessary in maintaining, using and disseminating subsets of large
sequential files of historical data in machine readable form. A
pﬁysical logical description (PLD)(*) for any sequential file dealt
with via thé BNLADS is either stored as the first logiéél record
before the user's data or in a separate file. 1In éither casé the
"accessing of a sequential file requires a PLD which; as we. will see,
contains the DDL (defined in section 4) fér this.fiie (see section.
6). In figure 3 we see a visualization of the two methods of
archiving sequential files for use in the BNLADS.

The BNLADS systém is organized in a strétified form, where
each stratification‘is~built upon lower structural layers. In
figure -4 we exhibit the architecture of the BNLADS.

In order to have hardware independence, we use a subset of
PL/I which is the intersection of various manufacturer's PL/T sup-
ported by tﬁeir operating system and hardware. By this restric-
tion inh implementation, we obtain a hardware independence at the
expensé of an increase cos£ of implementation. However, this in-
creased cost is relatively small if the system is uéed for a suf-

ficiently long time.

(4
* our PLD is analogous to a Data Model Definition.()

~16-=

Sequential File

(a)

Formatted

Physical Sequential File

Logical ' (b)

Description

Record User's data with
no format or

blocking changes

; ’ '.' Sequential File

(c)

- Formatted Physical Logical
‘Description Record

User's data with no format
or blocking changes.

. Figure 3

The two physical modes of storing sequential files.

In the (a), (b) case the PLD description is physically
separate from the user's data file (b). In case (c)
the user's data is copied after the PLD description,
The block size is determined by the user's original
data file. ' ' ‘

-17-

APPLICATION
and
DISSEMINATION

PROGRAMS

DATA
ACCESSING
LANGUAGE (DAL)

STRING
MANIPULATION
LANGUAGE (sML)

HOST LANGUAGE PL/I
(only those language features common
to the below listed systems)

OPERATING SYSTEM

0s MCP SCOPE MULTICS os 0S 0s EXEC
Vs KRONOS VS VS
VM VM | VM
ANDOL | Burroughs| CDC Honeywell | IBM | ITEL | SPECTRA | UNIVAC
6000 6600 360
’ 370
HARDWARE
Figure 4

The Stratified Architecture of the BNLADS

Using PL/I, we Aevelop a set of character string manipulatioh
procedures which are found to be useful in writing the procedures
and programs at the stratifications above the-SML level. The SML
pfocédures were mostly taken from a system developed on an 1BM/360
system(7).

Upon the hardware, operating system, host language and string
manipulation language sﬁratifications, we build the data accessing
language (DAL), a set of procedures that perform the accessing of
the sequential files dealt with in the BNLADS. These procedures
perform.the input/output of data, formatting of output, inﬁerpre-
tdtion of input format descriptionsvand opening and ciosing of
files. |

Finaily, we build the application programs based on the lower
levels ofvthe»system: DAL,SML,(*) host language, operating system

and hardware.

(*) The Data Access Language (DAL) and String Manipulation Lan?uagé
(SML) is analogous to the Data Sub-Language (DSL) of Date. 4)
The Brookhaven National Laboratory Archive and Dissemination
System iBNLADS) is an example of a Data Base Management System
(oms) (47, |

-19-

6. Physical Logical Description (PLD)

In this section we discuss the PLD, its syntax and use in
the.BNLADS; There are two forms of the PLD: 4(i) the input form
stated by'a user and (ii) tﬁe stéred form constructed by the
BNLADS. Either form contains the following logical information

(1) the organization which created the file,
(ii) the title of the file,
(iii) the visual sticker label,
A(iQ) bibliogréphic references and comments,‘
(v) 5lock size
(vi) character type ' .
and (vii) the déta'accessing-description in the DDL form.

The input description is in free fofm éharacter mode in
blocks df 80icharacters, Qhere one of more blanks may separate
Words.' There is‘a hierarchy represented by the description |
(figurelS).of the PLD, which has tﬁree logical subdivisionsh
(i) root information which is global tolthe data file being de-
scribed, (ii) physical information describing the particulér‘
file; and (iii) the data accessing description for this file.

Singe the input description is freé form, it is necessary to
delimit the various logical entities. There is a default set of

delimiters which can be overridden if they appear in the input de-

scription. These overfides, if present, are listed before the

-20-

Root Information

organization

title of file
- visual sticker label .
bibliographic references and comments

Physical Access

Data Accessing
Description in
the DDL form

block size
. character type

Figure 5

The Hierarchical form of the
PLD used by the BNLADS

-21-

root delimiter and indicate those delimiters that are changed
with their new values.
The syntax of the PLD is
(PLD)::=[(override delimiters)]

++ROOT++b++
ORG=(organization){(vdel)|¥]
{PFN=|DD=}(file title){(vdel)|¥}
VSN={volume label){(vdel)]%)
min[(tag){tdel){text)(vdel)]
0
++PHYS++ROOT++
BLKSIZE=(n){(vdel)|$}
CHAR={A|B[D|E}{ (vael)|¥}

++BNLPLD++ROOT++{(DDL) {rdel)

The order of the fields separated by {(vdel)lﬁ} can appear in

any order within the node groups ++ROOT++¥++ and ++PHYS++ROOT++,
[vDEL={*|(vdel}}]
[LDEL={..|{(ldel)}]
[FDEL={; | (£del}}]
_ [sDEL={,!(sde1>}]
‘ [RDEL=t0#*|(rdel)}] .
If any of the override delimiters are not present, the default
values are taken and are‘indiéated as the first character string

in the choice bracket { }.

-22=

¥::=any number of blanks
(vdel)::=(ch4)
{1del)::=(ch4)
<fde1>--—(ch4>
(sdel)::=(ch4)
(rdel)::={ch4)
(ch4)::=min max { {character)]
- {character)::=(cap)|(lower)|(digit)|(special)
(cap)::=a|B|...|z |
(lower)::=albl...|z
(dlglt)-°—0|l|...[9._
<specia1>===+1-J/|*|«|,l;::l}jun
:l#l#l%l&l(l)l=l_l
ell1<]...

where the ellipses ... impliés any other special character fead—
able by the particular machine beiﬁg used.
(organization)::=m%n{(character)}
(file title)::=(capdmin ﬁax”(éép)|(digit)”
<volume label)--—min max”(cap)](dlglt)u
(tag)°°—min{(character>} A
(text}°'—min{(character)}

{(n)::=min max{{(digit)].
1 5

-23~

The character type of the file is indicated by CHAR=", where A implies
ASCII, B implies BCD, D implies Display Code and E imélies EBCDIC.
The data definition'language, (DDL), which was described in
section 3 is defiﬁed as
(DDL): :=||(do) | (get) | (1abeled get)|
(do)::=(label)(ldel YDO¥
{(value)m%n{,(value>}|
(value),(value),...[,(value)][
GET¥(field)(vdel)]
UNTIL B{delimiter){vdel)
{DDL)
END{label){vdel)
where |
(1abel)::=min(charécter)
(value)::=min(character)
(field)::=(field name)(sdel)
{(format)
[{sdel){text)]
(field name)::=min{(charactér)}
(format)::=F(n).{(n)|F ({n),{n?)]|
I{(n)|F ((n)) |
A(n)|a((n)) |
A({(delimiter))

(délimiter)::=min(chéracter)
1 A

-24-

All delimiters can bé:surrounded by none too many blanks; all key
words cén‘be surrounded by onevtoo many blanks. The preseﬁt’imple_
mentation allows any PLD to be < lOOOO'charactérs in length.

The above fo;m of the PLD is that which is used as input given
by users to describe theif files and used by the BNLADS to set up
a list structure in the high speed storage so that acqessing of the
file can be performed. If the user specifies that the PLD should
bé.stored with the user's data (fiéure 3(c)), an internal format

(2)

is constructed, which is in the ANSI magnetic tape format and

is closely related to the ERDA—ANSI(ll) format (see Appendix IV);

-25—

7. The Data Accessing Language (DAL)

In keeping with the design and implementation of data base
'management systems (DBMS), the accessing of files, formating of
data, opening and closing of files and the general bookkeeping
is kept éway from the user. In the BNLADS we construct a set of
procedures in PL/I héving CHARACTER(*) VARYING arguments to per-
form the accessing and bookkeeping functions. Using PL/I.and
these DAL procedures, we then construct application programs
(section 8).

We give a brief description of tpese procedures, Which all
- use varying charaéter strings as arguments . The identifier's we
Will use are |

pld_ﬁesc PLD character string "describing" a

sequential file

pfn - title of a file

tag a name of a field

value character form of data in a field
XR E for external field

R for recorded field.
The procedure for input in 80 character records is invoked by
CALL get80 (pfn, pld_desc, delimiter);.. If the identifier de-
limiter is a character string of length 0, the total file whose

title is pfn is read into pld_desc, otherwise the character string

-26-

up to the first 0ccurrahce of the string in delimiter is read
into pld_desc. When GET80 is invoked again, it starts reading
after the delimiter: this proqedure simulates STREAM mode reads
up to a delimiter(7). : | |

-The accéssing of a sequential file in the BNLADS fequires
that the PLD descriptioﬁ be'given and structured ip the high
speed storage ih a way that all ofher reieVant procedures ﬁnder-
stand. This structuring of a character étring description, is
performed by |

| CALL formpld(pfn;desc,pfn)7

The pfn;desc must contain_the title of the file to be accessed
(see‘section‘6 and Appendix II), which is returned in pfn.

'When a pfn is obtained from forﬁpld, it is possible to maké
another copy of the stfuctures cbnnected with it and give this
copy a new name. The procedure to perform thié'copy ié invoked

by
CALL copypld(pfn,new_pfn);.

When a pfn is obtained from formpld, it is possible to open
'a file for write and place the BNLADS PLD on the file'és the first
record. This function is accomplished by

CALL wrtpld (pfn).
If we want to start using a file without the PLD heade; record,
but use the PLD description to write the file, we would

. CALL wrtpldn (pfn) ;.

-27 -

If a file has a PLD header record, and we want to read the

file, we would

' CALL openpld(pfn).
If there is no PLD header on a file which we desire to read, we
would invoke the proéedures formpld and then opnpldn by
CALL formpld(pid_desc,pfn);
CALL opnpldn(pfn);

After é file is opened for read by the procedures openpld or
opnpldn, we can obtain the field naﬁe (tag), the field data (value)
and whether the.field is an external or internal field (xr) by

CALL geftv(pfn,tag,value,xr);';
| After a file is opened for write by the procedures wrtpld
or wrtpldn, we can output the field data.(value) according to the
name of the field (tag) by |
CALL puttv (pfn,tag,value);.

The function procedure iendfl (pfn) when invoked will return O
if the file whose title pfn is closed but formpld(pfn) has been
invoked, -1 if formpld(pfn) has not beeﬁ invoked and 1 if the file
whose title is pfn has been opened.

A graph of the possible-sequence of DAL statements is given
in figure 6. In any application program, the sequence of DAL

. procedures called must be a path through this graph.

-28-

get80

L

formpld < - >=opnplan .. - openpld

gettv4{——— iendfl

wrtpld

wrtpldn

closepld

Figure 6

A graph depicting the possible sequence of DAL statements
that can occur in an application program. Any application
program must follow circuits in the graph and supply the
semantics to deal with the data.

-29~

8. Application Programs

Any number of application programs (AP) can be wfitten using'
the DAL of the BNLADS. Most AP déal with the semantics of the
data retfieved from séquential files in a ménner that is character-
'istic of a user's special view. However, some application programs

(utilities) have wide use. In this section we describe a few of
these utiliﬁy application programs, their use and construction.

All application programs‘require input specifications which
convey the following logical informatién to the AP:

i) description file tiﬁles
ii) PLD descriptions
iii) special options for the APA
and iv) special options'for debugging
-The standard input device is used to read the AP specifications in
- 80 character unbrdered free field records (i.e. stream mode).
The'general form of the input specification is
(AP specs)::=[DEL={*|{(ch4)}]
m%n {IPFN=(input description title)ﬁ
(input data file title)

[{(special AP specs)]{*‘(ch4)>

. =30=-

m%n [OPFN=(output description title)
(output data file title)
[¥LABEL={YES |NO}] |
[{(special AP specs)]{*l(ch4)}‘
[TRACE={YES |NO}[*| (ch4a)]] | | |
L(key wd)=(other specificationé){*'(ch4)}].
Every application progréﬁ in the BNLADSXmﬁst have an ihput
PLD and may require an output PLD description. The key word
LABEL= indicates whethefvthere is a PLD labei to be placed in
front of the sequential file (case (c) figure 3)‘and if the key
word is not present YES is assumed as the default. |
" The key word TRACE=,Vif not:preSént, has a default of NO,
and.ihdicafés whether tface information should be printed on the
standard output device. This key wofd is ﬁsually used for de-
bugging. |
The {input description title) and the (output description title)
are the titles of the fiies which cqntain their respective PLD; the
(ihput data file title) and the (output daté file title) are'tities
of data fiies{ If (input description title) and (input data file
title) afe the same, the AP assumes that the PLD is in front of
the daté on the sequential file (case (c) figure 3).
The order of the IPFN= and OPFN= specificatiéns are arbitrary

and each such specification is terminated by a delimiter string.

-31-

If the key word DEL= is not present, * is assumed as the delimiter,
otherwise the specified

| (ch4):==m%n mzx[<character)}
ié taken as the delimiter.

Any AP, which must specify input other than those described

above, will define its own key word |
(key wd)::=min mzx{(ch4>}=
and {(other specificatibns) whose SYNTAX will be characteristic
of its own execution. .
As examples, we will describe three APs:
i) ARCHIVE,
ii) DISPLAY,
and iii) REFORM.,

ARCHIVE. The ARCHIVE brogram takes a user's data file and
‘user's PID and places themzon an output sequential file in the
form usable by any other BNLADS AP (case (c) figure 3). There -
are two input fileé, the.user's data file and the user's PLD de-
scription file; there is one outpgt file, the BNLADS cononacol
form of a sequential file (case (c) figure 3).

The standard input specifications for the ARCHIVE program is

is in the input form for introduction into a S2K data base.

-32~

(ARCHiVE specs>::=[DEL={*|(ch4)}]
IPFN=(input description'title)ﬁ
{(input data file title}{*l(ch4)}
QPFN=(input description title)¥
(output data file title){*|<¢h4)}

‘[SZKi(SZK output file title){*l(ch4)}}.

The S2K= key word, if pfesent, indicates that the input data file

PLD is to be parsed; formatted.and output ontd the séquential
file_whosé title is (S2K outpu£ file title). This sequential file-
| (5,13)
Thié data base can be used as a ﬁ$er's index for locating sequential
files by organization, field name and visual sticker number,
'.An example of (ARCHIVE specs§ input is
| | IPFN=MCND ARCINP *
OPFN=MCND MCNARC1 * .
In this specification no record will be made for SzKlinput, the
input description PLD is found in file MCND (see variable unofdered '
fields in Appendix II),'the input data is found‘in the file‘whose
title is MCNINP énd the resultant output is to reside on the.file
whose title is MCNARCL.
DISPLAY. The DISPLAY program prints the contents of a se-
quential file which is in the BNLADS archive form produced by the

ARCHIVE-program'(case‘(c) figure 3) or uses a PLD file and a

-33~

user's déta file to print the contents of the sequential file
(case (a) and (b) figure 3).
The input specifications are
IPFN=[DEL={*| (ch4)}
{input description titie)ﬁ
{(input data file title)¥
[LABEL={YES|N0}]{¥1(ch4)}
[aMT=[REC=(n)¥]
[conv={n)¥]
[BLANK=<n>]{*|(ch4)}].
' The PLD will be printed and if the key word AMT= is present, some
or all of the data fiie whose title is (inpﬁt data file title)
will be printed. If AMT= is not present, only the PLD will be
aisplayed. When REC= is preéent, the first (n) records will be
disélayed with their field names. When éONV= is present, if more
than {(n) conversion errors are detected in the data file, the job
will be terminated;v When BLANK= ié present, if more than (n)
‘blank fields are detected the job will be terminated.
A typical (DISPLAY specs) ig
iPFN=DEL===
MCNARIBMCNAR1==

AMT=REC=50¥BLANK=10== -

~-34-

Since (input descriﬁtion title) and (input data file title) are'
the same (MCNAR1), the dispiay-prbgram assumes £hat there is a

BNLADS label on the file whosé‘title'is»MCNARl.l The first fifty
reéords'will be displayed énd.if more than ten biank fields ére
encountered, the job will be terminated. L

REFORM. ' The REFORM program constructs a new sequential file

according to ‘the format of the user's specified output PLD. The

. sequential order'of‘the fields on the input file must be the same

aé-the order on the outpuf file, but hot all fiélds need be outputted
gnd formats need not be the same. |
- The input spééification is
(REFORM specs)::=[DEL={*|(ch4)iﬁ]
: IPFN;{input desériptibn title)¥
{(input dafa file tifle)”
{*[(cha)}
OPFN=<output.description tifle}
(output data file title)
[BLABEL={YES |NO}]
tAMT=[REC=(n>ﬁ]
[com=(n)B]
[BLANK={n}]{*|(ch4)}]
If the (input description title} and the {(input data file title)

are the same, we assume that a PLD description heads the data. If

-35-

LABEL= is not present, we assume that the output data file is to
have its PLD description in front of the data (case (c) figufe,B).
The key wofds AMT=, REC=, CONV= and BLANK= has the same meaning as

in DISPLAY.

-36-

Appendix I

Examples of BNLADS DDL

4Wé_give various examples typical of accessihg sequential files
which have been taken from already existing applicatiohs, The
: éimplest casé.is that of repeated fixed field logical records,
which we start with and give succéssively more complex caseé dealf
ing with data dependént formats (cése-statement) and variable un-

ordered fields.

Fixed Field. Let us COnsider a sequential file made up of
fixed field records of length 24, containing the‘stored fields
ubouy #, year, day, time, pressure and température. Each logical
record has the'éame formét and the-data on the file is terminated
by an énd of file mark. There;is one accessing do block and its
specifiéation gives the field names, their formats and statements
about the fields:

| Long Island Sound..DO *
GET Bouy #, A3, Ref. NC 137-A;
year, I2;
day, 13,_Julian7
time, I5, minutes 0 = midnight;
pressure, F(6.2), kilos/ch sq:
temperature, F(5.2), degs cent*A

END Long Island Sound ¥

~37-

This DDL description implies that the accessing continues until
the end of the data file is encountered.

Fixed Field with External Variable. In the previous example

the Bouy # was récorded in the file, If this were hot the case,
we might héve a description where the Bouy #s are.external values
specified for each logical record access:
Long Island Sound..DO *
Bouy #..DO A31,A46,L¥1, LR3,RR5 *
.. GET year,iZ:
day,I3,Julian;
timg,IS}minutes.O=midpight;
pressure,F (6.2) ,kilos/cm sq;
temperature,F (5.2) ,degs cent*
ENDvBouy # *
END Long Island Sound *.

We note that the label of the D9 key word Bouy # is an external tag

and A3l A46 Aﬁl I.R3 and RR5 are external values,

Variable_Undrdered Fieids of Recofds. Let us consider a se-~
quence éf fields made up of a'ﬁag, i.e. the name of the field and'
a value, i.e. the data in that field. The tag and value data of
each field is variable. The tag comes:first and is terminated by
a : and the data value is terminated b ==.‘ Each record is termin-~

ated by a 0O==., Data of this type is typical of the Museum Computer

~38-
Network(ls) aﬁd United Nation Indexing project(l4). TA typical
input éata stream wouid look as follows:
Artist: Miro;Jeap=éTit1e:'The Night
Dancers==Owner :Irvine,Hyman==Medium:
tapestry=¥material:wool==size:130cmX
196cm==0==Artist :Picasso,P.==Location:
The Museum of Modern Art; N.Y.C.==
Title:Boy with Horse==Material:oil==
Material:éanvas;=0== coe
The DDL is
. MCN Input.. Dp *
record.. DY UNTIL O==*%
| GET MCN tag, A(:),Ref Vance'D. "Manual for
preparation of Museum Data, CCAL
4Report.3, 1976; . |
data value,A(==)*
END recprd*l

END MCN input*

Fixed Field Variable Number of Fields. Often sparse matrices
are input in a format of variable number of fixed fields per record,
in wﬁich the row and column position is given before the'matrix
element. Non~zero elements are not inputted. Suppose the matrix

input were in card form image, the first card containing the number

-39

of rows‘and columns of the matrix and the remaining cards contain-
ing three-tuples of row, column and matrix element value. The
BNLADS DDL description would be
GET rows,I5;columns,I5;
skip,A(70)*
matri#..Dé
GET row,I5;
‘column,I5;
data value,F10.4%
END matrix#*
The field named skip is needed'beéause the BNLADS DDL specifies
STREAM mode input; therefore, after the rows and columns data are
read, the remaining sevénty blanks must be read, for the:row,
"column and data value start on the next card.

If more thap one matrix were in the input stfeam, and if the
rows and columns were giyen and then immediately followed by the
row, column dataAelements until XXX termination of a matrix, we
would have the DDL description: |

all matrices.. DO *
GET rows,I5;columns,I5*
matrix.. DS UNTIL 30000CH

GET row,I5;
column,I5;
data value,F1l0.4%

END matrix *

END all matrices *

-40-

Data Determined Format Choice. Many examples exist in which

a field 1is feadiwhich then determines thg\format of a next set of
fields. For example, consider an address file éf.Card images. The
number of lines for the address will vary, and the formats for each
line will vary. In the following example, column 1 determines the
" type of format for the remaindér 6f the card; 1 is name, 2 is ad-
dress; 3 is city, étate and zip, 4 are keys.associated with'thé ad-
dress and é 0 separatés each address set of 1ines. The DDL state-
ments are
all addresses.. Dé-*
" cases..GET type,A(l)*
name. ,IF 1%
GET last name,A(30)}
first namg,A(lO);“
othe:‘names,A(39)*
END name*
~address..IF é *:
GET #,2A(9):
street,A(40);
apt,A(lO);
.floor,A(lo);
other,A(10);

END address*

-]

locationo.iF 3 *
GET city,A(39);
state,A(30);
2ip,IiO;
END location¥*
keys..IF 4 *
each key;.DO 1,2,...,79%
GEf key,A(l)*
END each key *
END keys¥*
terminator.. IF 0 *
GET ‘_sk'ip_,A(79) *
.END terminatof*
END cases*

END all addresses*

Hierarchical Variable _Fields° Many examples of data organiza-
tion require a hiera?chy because there is a necessity to indicate,l
the logical donnectivitf of parté of a set of data representing-é
user define logical record. For examplé, suppose we ére'collecting
bibliographic déta about articles in a journal. Each issue will
be viewed as a recora composed of a variable number of article sub-

parts. The record is viewed in a hierarchical fashion (see

-42-

figure 6). If the sequential filé representing these variable
strings were sepérated by an = and each variable set ofvauthors
and subjects were separated by 0= and each issue were éeparatéd
by OO¥, we would key board thé data as follows:.

18 12—CACMrDecember 1975=Programming

Languages, Natural Languages, and Mathematlcs—
Nour, Peter=0=Analogies related to social aspects=
language quality=language development=artificial
"auxiliary languages=0=Exception Handling:

Issues and a Proposed Notation=Goodenough,J.B.=
O=mutilevel exit=GOTO statement=error conditions=
structured programming=0=The intrinsically
Exponential Camplexity of the Circularity Problem
for Attribute Grammars=Jayayeri, M=

Ogden, W.F.=Rounds, W.C.=0=Attribute
grammars=circularity problem=context free
grammars—computatlonal complexity=exponential
time=0=

peoe

Automatic Data Structure Choice in a Language
of Very High Level=Schwartz, J.T.=0=

program optimization=automatic programmlng—
high-level languages=0=00=18 10=
CACM=October, 1975=a Preliminary System

for the Design of DBTG Data Structures=
Gerritsen, R=0=network model of data bases=
Data Base Task Group=data base design=data
structure=0=

Horner's Rule for the Evaluation of a
General Closed Queueing Networks=
Reiser, M=Kobayashi, H=0=Queueing
Networks=queueing theory=Horner's Rule=
service rate=0=00=

43—

issue #
journal
date
title
author Tt
subject
Figure 6

A hierarchical record in which each article
contains one title, a variable number of
authors and a variable number of subjects.

-44 -

The DDL for this type of S'.e.quenti'ally>StOred hierarchical
type of déta is “
 all issures..D@ *
GET'issﬁe #,A(=);
journal,A(=);
date,A(=) *
articles..DP UNTIL O==%*
GET title,A(=)*
authors..Dé UNTIL O=*%*
GET author,A(=)¥
 END authors*
subjects.;Dé UNTIL O=%*
GET subject,A(=)*
END:subjects*
END articles*
END all issures*®*

Mixed Fixed Field and Variable Unordered Field of Records.

It is possible to have both fixed field and free fieid daﬁa in the
séme logical record. An example of mixed fixed and varigble data
fields is given by the ERDA-ANSI standard for data transmission(ll).
The BNLADSﬂDDL and itsvrelation fo the ERDA-~-ANSI DDF and bF is

discussed in Appendix III.

—45-

- Appendix II
BNLADS PLD Input Examples

The following examples have been formed from existing data
files and descriptions.

Fixed Field File. The following case was taken from a form

given to user's of the meteorology tapes disseminated by BNL.

The names of the fields and formats are those given on the form.

VDEL=== RDEL=0==

++ROOT++ ++ COMMENT CLIMATOLOGY TAPES==

~ PFN=DATACL == ORG=BNL MET == VSN=N12345 ==
CONTACT TISCHLER, JOYCE BNL MET== :
COMMENT APRIL 1967 - CURRENT==
REF SINGER, I. A. AND SMITH, M. E.,

JN., METEOR. VOL. 10, NO., 2, APR.1953,P. 121-126.==
++PHYS++ROOT++ BLKSIZE= 83== CHAR= B==
4++BNLPLD++ROOT++

INPUT,.,. DO ==
GET -60 IN TEMPERATURE DEG C,F4.l;

-30 IN TEMPERATURE DEG C,F4.1;
-3 IN TEMPERATURE DEG C,F4.1l;
SHELTER IN DEG C, F4.l;

37' TEMPERATURE,F4.1;

75' TEMPERATURE,F4.1;

150' TEMPERATURE,F4.1;

300' TEMPERATURE,F4.1;

410' TEMPERATURE,F4.1;

' 27' DIRECTION DEGREES,F3.0;
37' SPEED,F3.1,METERS/SEC.;
150*' DIRECTION,F3.0,DEGREES;
150' SPEED,F3.1,METERS/SEC.;
355' DIRECTION,F3.0,DEGREES;
355' SPEED,F3.l,METERS/SEC.;
GUSTINESS,I2,1=A 2=Bl 3=B2 4=C 5=D;
NET RADIOMETER LANGLEYS,F5.0;
PYRHELIOMETER LANGLEYS,F6.0;
PRECIPITATION,F4.0,INCHES;
SKIP,A(1l),BLANK NOT USED:
TIME,I4,HOUR*10;
YEAR-MONTH, A2 ,JAN=A FEB=B .., DEC=L —-- 1960=A 1961=B ...;
REL HUMIDITY,F5.0==

END INPUT==

-46-

Variable Unorder Fields. The following description is
typical of textual data that is input to the GRIPHOS data base

management system used by the Museum Computer Network and the

United Nations Library.(l4'15)

REF VANCE, D.; MCN DATA PREPARATION MANUAL;
CCAL PERT. 7 (1975)*%*
REF HELLER,J.; GRIPHOS PROGRAMMER'S GUIDE;
MCN PUBL. (1974)%
CONTACT HELLER, J.*REMARK THIS DATA INPUT WAS USED
TO CHECK OUT THE ARCHIVE PROGRAM VERSION 1.1
‘AT BNL 9/76%
++ROOT++ ++ PFN=ARCINP *VSN=GRITOl*ORG=MCN*
++PHY S++ROOT++BLKSIZE=80 *CHAR=B*
| ++BNLPLD++RO0T++ TOTAL..DO*
| RECD..DO UNTIL O==%
| GET TAG,A(¥) ;VALUE,A(==)* , .
END RECD* A o
END TOTAL%¥ : :
o*

ERDA report

-47-

Appendix IIi
. The Relatinn between the BNLADS PLD
and the ERDA-ANSI DDF and DF
There are simiiarities and differences betwéen the PLD of
the BNLADS and the DDF and DF of the extended ERDA-ANSI data ex-
change format(ll). However, there is no logical inconsistency
between the two concepts, the differences being syntactical,
phyéical storage and semantical. in this appendix we give the BNF
form of the DDF and then we consider-some of the exambles in the
(ll).giving their corresponding PLD form,
- The BNF specification of tne DDF is
(ddf}::=[(control)@]
| [(name @] |
[min[(row_label)%l@]
[m%n[(colnmn label Y%)@]
[(format)]#.
The sematic meaning of the (ddf) is described in the repnrt(ll)
section "Draft Proposgl An Extendable Standard for Information
Interchange on Magnetic Tape." -
In this report Appendix A "Explanatory Examples" there are
illustrations of DDFs and DFs, which we will state and then give

the PLD form which will document and describe the accessing of

the DF.

~48-

Example A.1.1.1 Unstructured Data Element

DDF AUTHOR#

DF DOE, JANE#.
The corfesponding PLD for the above DDF could be

| ++ROOT++¥++

Reference Erda Interlaboratory Working

-Group for Data Exchange (IWGbE)

edited by Deane Merrill and Donald Austin

September 1976 LBL-5329*%

i++PHYS++§OOT++CHAR=B* -

BLKSIZE=80%
++BNL'ADS++‘ROOT++
GETBAUTHOR, A (#) * 0%

In this éLD description, we have assumed that the data element
Doe, Jane is the DF and we have taken the liberty to give a refer-
ence ébout this exémple. If the data file contained a sequence of
authors separated by'a #{ we would replace the PLD access descrip-
tion statement ‘ |

GETBAUTHOR, A(#) * by

al; authors. .D@*
GETYAUTHOR, A (#) *

END all authors*.

-49-

In the remaining examples, we will assume that there is a
sequence of fields comprising the DF up to a file terminator.

Example A.1.22 Vector Fields.

'l) Delimited Text Vector with Name and subfield Labels
DDF 1000&&&S@MATLING ADDRESS@
NAME%STREET%CITY%STATE%ZIPa#
DF DOE, JOHN@lOlo MAPLE ST.@OSHGOSH@OHIO@12345#A
The correspondiﬁg access descripﬁion'within the PLD for the above
DDF is
MATILING ADDRESS..D® *
GET NAME,A(@?:
STREET,A(@) ;
CITY,A(®);
STATE,A(@);
ZIP,A(#);
END MATLING ADDRESS*

2) Formatted Integer Vector with Name and Subfield Labels

bDF 1100&&&S@POPULATIONACY60%CY65%
CY70%CY75@(416)#
DF 765432987345903231897654#

The corresponding BNLADS access description is

o

~50-

PAPULATION..DP *
GET® CY60,16; | .
4 : CY65,16;
CY70,16;
CY75,I6%
END POPULATION*.
A.1.2.3 Array Fields
1) belimited Text Array with Name and Cartesian Label
DDF 2000&&&8@PROPERTIES@GOLD%
SODIUMYCOPPER@GDENSITY%
COLOR%ACTIVITYSH#
DF ‘, HIGHaYELLOW@INERTGLOWSGREY@HIGHEMEDIUMA .
REDDISH3LOWH
The corresponding BNLADS accessing description is
PROPERTIES. .DZ% GOLD, SODIUM, COPPER UNTILK#*
GETY DENSITY,A(@);
COLOR,A(®@) ;
ACTIVITY,A(@) *
END PROPERTIES*,
As a last example we cpnsider

4)‘ Formatted Mixed Array with Name and Column Label Vector

-51-

DDF 2300&&&S@TABLE _II%METAL%
DENS ITY%COLOR%ACTIVITYS
(A($),R4,A(,) ,RA)#
DF GOLD$14 .8YELLOW, ~1,3SODIUMS$0.63GREY,4.81
COPPER$10.63EDDISH,;O43#
If there are many rechds in the DF described by the above DDF,
the BNLADS accessing.description is
TABLE II..D@ ¥ UNTIL K#+*
GETY METAL,A(S);
DENSITY,F4.1;
COLOR,A(,);
_ ACTI?IT?,F4.1*'
END ¥ TABLE II*

From the abové examples, we can restate the DDF in BNF form
relating it to the terminology used to describe the BNLADS access-
ing description (section 3):

(ddf)::=[{control @]
[{external tag)@]
.[m%nt(external value Y%J@]
[minl[(recording tag)%]@]

.1
[(format)]#

-52-

As a last example, we will consider the hierarchical file
‘structure discussed by Haynes(6) in which the DDF contains five

tags describing five different DF accesses:

TAG

000 0000&&&&0On-site housing directory#

010 2300&&&&@Apartments@@Ap£. No.%Egt.%
Location®@(a(,),I4,A(9))#

020 2300&&&8@Guest House,l3 Upton Roada@@
Room%Ext .@(A(,) ,I4)#

030 '+ 2300&&&8@Summer Cottages@@No.%Ext .%
.Locatiom@(AC,),I4,A(,))#

040 23008&&&@Mobil Homes@@No . %EXE .%
Locaﬁion@(Ac;),I4,A(12))#

050 2300&&&&@Residences@@Bldg.%Address%

Ext.@(A(,),A(S$),14)4#
The accessing description of the BNLADS PLD is
On-site housing directory..Dé * |
Apartments..Dé UNTIL 1/13%
GET Ap£.No,A(,)7
Ext.,I4;
Location,A(9)*

END Apartments*

~53=

Guest House, 13 Upton Road;.Dé UNTIL 1/13*
GET Room,A(,):
Ext.,I4*
| END Guést House; 13 Upton Road*
Summer Cottages..D$ UNTIL 1/13% |
| GET No.,A(,):
Ext.,I4;
Location,A(,)*
END Summer Cottages*
Mobile Homes..Dd UNTIL 1/13%*
~ GET No.,A(,): |
| Ext;,I4;
Location,A(l2)*
END Mobil Hpmes*
Residencesf.Dé UNTIL ;/13*
GET Bldg.,A(,):
Address,A($);
Ext.,I4d*
END Residences*

END On-site housing directory*®

-54-

Appendix IV

The ANSI Magnetic Tape Label Format
‘ as used by the BNLADS

The BNLADS uses the ANSI magnetic tape labe1(2) format to
describe the sequential files that it accesses. The tags have

the following meaning

000 title of file (i.e. PFN, DD)

‘004 the PLD‘déscription

008 old PLD descriptions relating_t§ pre;ent file
. 009 the user's data.

Application programs which construct a new file from old fileé}
liSf the old PLD in the variable field whose tag is OO8.~ The
user's data is a variable data field with tag 009.
The DDL spécification of thé BNLADS ANSI label is
GET segment control word, A(5);

subsystem control, A(l):;

charactef set control, A(l);

reserved for future use, A(4):

field control count, A(l);

base address of data, A(5):

reserved for future use, A(3);

entry map, A(4), ANSI 239.2-1971%

55~

directory..Dé UNTIL #*
'GET tag,A(3);
length of field,A(4);
starting character position,A(5), see.PROC
wrtpld of BNLADS*
END directory¥*
padding..D® UNTIL $*
GET file character,A(l)*
END padding¥*
user's data..Dd *
GET one char,A(l); user's data considered to
be in STREAM mode charactér type *

END user's data *

10.

11.

12,
13.

14,

15.

~56 -
-References

Abbey, S., GRIPHOS as a Relational Data Base System, Ph.D.
dissertation, Dept. of Computer Sc1ence, SUNY at Stony Brook
(1975).

ANSI Z39.2-1971 Standard for Bibliographic Interchange on
Magnetic Tape.

Codd, E. F., A Relational Model for Large Shared Data Banks,

CACM 18, (June 1970). :

Date, C. J., Introduction to Database Systems, Addison-Wesley
Publishing Company, (1975).

Fuchel, K., Heller, J. and Tischler, J., System 2000 Tape
Inventory and Description, memo (1976).

Haynes, W., Private Communication, (1976).

Heller, J. A Set of Character String Manipulation Procedures
in PL/I. Tech Report 14, Dept. of Comp. Sci., Stony Brook,
(1972). '

Heller, J. On Logical Data Organizaﬁion, Card Catalogs and
the GRIPHOS Management Information System, Museum Data Bank
Research Report 3, Dec. 1974.

Heller, J. and Nardi, J., A Machine Interpretable Design for
Physical and Logical Description of Sequentially Archived
Data. BNL-20999, (Feb., 1976).

Lipka, M. S. E., Queries and Relations in the GRIPHOS System,
Ph.D. dissertation, Dept. of Comp. Sci., SUNY at Stony Brook,
(1975).

Merrill, D. and. Austin, D., ERDA Interlaboratory Working Group
for Data Exchange (IWGDE), LBL-5329, (Sept., 1976).

Nardi, J. Unpublished Report (1976).

.

Syétem 2000 Reference Manual, MRI Systems Corporation (1974).

United Nations Headquarters Library Documentation Division,
Computer-Assisted Indexing Project, COMP/l, May, 1969.

Vance, D., Manual for Museum Computer Network GRIPHOS Applica-
tion, CCAL Publ, SUNY at Stony Brook, 1976.

