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Abstract

A hydrodynamicul approach to the quark model of extended
hadrons is proposed. Quarks are identified with certain basic
fluids of the Dirac type which carry definite amounts of tie
electric and baryonic charges and colors. The hadrons are
viewed as droplats of suitable multicomponent liquids. The
model implies some interesting possibilities for a drastic
reduction of the number of independent basic fields which means,

of course, some very essential simplification of the quark model.
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Whenever in the last 100 years the physicists found a mate-
rial object with some extemsion and structure, they tried to
explain all its properties in terms of suitable constituent
particles. Usuaily, the latter were first assumed to be exten-
sionless, so the problem could be reduced to the classical or
quantum mechanics of a system of interacting point particles.

One of the most conclusive confirmations of the respective
models consisted always in the isolation of the constituent par-
ticles. This general pattern for constructing more and more
accurate models of reality worked very well in the case of macro-
objects, molecules, ions, atoms and nuclei. However, the last

of such point-mechanical models, namely the quark model of
hadrons4scored not only several impressive successes but also

led to man§ very serious troubles? The most serious of these
troubles is the apparent non-existence of free quarks. The
confinemept of point quarks to the interior of hadroms, the
strange saturation properties of the interactions which allow
formation of hadrons of only three types: qq, 3q and 3q, can

be explained only with the help of very strange forces. More-
over, in order to explain the observed properties of hadrons on
the basis of the conventional point-quark model, the number of
the fundamental particles (quarks and gluons) had to be gradually
increased to several tens.

In view of this highly unsatisfactory situation it is tempt-

ing to ask the fundamental questions: Can the point-mechanical
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formulation of the quark model be saved at all? Should we not
start from a continuum model of extended hadrons which may

throw completely new light on the nature and basic properties of
quarks’ Can the models based on conventional field quantiza-
tion provide an adequate framework for the description of ex-
tended hadrons?

It should be noted that in spite of their name, the quantum
field theories are based on the point-particle concept and
operate essentially only with global properties of particles
like their total charges, masses, spins, energies, momenta, etc.
The densities which can be calculated from such quantum field
theories are interpreted as probability distributions of ob-
servables referring again to point particles aand not to extended
particles.

All theséyggny other difficulties and basic shortcomings
of point-mechanical as well as quantum field-theoretical approach
stimulated the search for other lines of approach in which the
hadrons are identified with some extended but well confined
states of suitable fields, e.g., solitfons, strings, bags or
droplets.‘)

The present paper contains an outline of what may be called
the hydrodynamical or droplet version of the quark modelﬁb Sec-
tion 1 contains the basic formulae of relativistic hydrodynamics
of an ideal, neutral fluid. It is shown that in the case of a
baratropic fluid all the motions are described by one vector

fiela Va(x). The invariant energy density and pressure are then

expressibie in terms of one scalar function which depends non-
linearly on the invariant vaV“. The equations of motion can be
put in a quasiparticle form and the relation between the effec-
tive mass of the quasiparticle and the total mass of the droplet
is discussed. Section 2 contains the respective formulae for an
electrically charged Dirac fluid. In Section 3 a system of in-
teracting charged Dirac fluids described by some basic vector
currents is discussed. The properties of the basic currents
implied by the conservation rules for the electric, baryonic,
leptonic and color charges are studied., Creations and annihila-
tions as well as decays of hadrons are related to some definite
properties of the nen-vanishing divergences of the basic cur-
rents. Charge conservation and charge quantization impose cer-
tain integral conditions on these divergenqﬂbs which resemble
somewhat the Bohr-Sommerfeld quantization rules of the old quan-
tum theory.

The hydrodynamical quark model of hadrons outlined in
Section 3 offers several highly interesting possibilities.
First, the problem of quark confinement and saturation of forces
can be solved very simply by an algebraic condition that the

overdll
density of theYcolor current be zero in all points of space-time.
Second, the number of independent basic quark currents can be
drastically reduced. In fact, the mentioned condition that the
density of the color current be zero implies certain simple
equalities between component currents carrying diffgrent colors.

Next, no gluons are necessary, because all the strong interactions



are described by non-linear but local functicns of the iavariants
of the currvent.curvent type. Furthermore, the hydrodynamical
interpretation of quarks opens an interesting possibility that
the v, s, t and b quark fluids may be just different phases of
the u and d fluids. This could provide some interesting intee-
pretation of such mysterious quantum numbers like strangencss,
charm, etc.

The condition that the density of the color current be ero
applied to single mesons or barvons implies that there is no
relative motion of different component fluids in such simple
systems. thus, from the point of view of motion a mesonic or
baryonic Jdropict behaves as 17 it consisted of only one fluid of
constant composition prescribed by the cosventional quark model.
this would resteict verv considerably the multitude of the

otherwise possible excitation modes of the hadronic droplets.

5

1. One_jdeal, neutral, barotiopic fluid

The motion of such a fluid can be described in terms of

the following basic ficlds:

u'{x) - four-velocity of the fluid
€i{x) - invariant mass density {1.1)
p{x) - invariant pressure

the c¢nergy-momentum tensor of the ideal, neutra) fluid bas the

familiar form j):

78 . (gep)uu® - gaap . (1.2)
where g'r is the metric tensor (goo = -gii = +1j. The equations
af motion

du™ = e ,
eep)s I A {1.3)

together with one scalar equation of the form
t Q
fguty = pu, (1.3)
vk 2t

imply the cvonservation laws f{or energy and momentum

% - o (1.5)
(N4



and vice versa:  (1.2) and (1.5) imply (1.3) and (1.4). The

conventions amd notations used in the above formulace are

1 a & * 8
u “rx o ‘, ,Jle LI 8 -u o, (‘;E FY :,.euu . ‘l‘o,
a that
%one of the vector curreats u?, cu , puﬂ‘onc can construct

directly from our basic ficlds, is conserved for arbitrary mo-
tiens of the fluid. However, the situation zimplifies con-
siderably if one assumes that our fluid fulfile some sort of
equation of state which can be regarded as the limit of a
suitablie conventional equation of state for tempesature T » 0.
To be more specific we assume that hoth g and p depend on x

only through some invariant density «{(x):
vor o (x)y , p e plr(x)y . (1.7)

Obviously, instead of x we can use some function ulMi{x)}:, so
the choice of the basic scalar den<ity must be dictated by its
physical meaning and by the mathematical convenience. We shall

take +{x) 1n the form:

v (o)
uoe A cxp/-r-ﬁ%-—-:o;-(-ﬁ , (1.8)

which leads to the following cxpressions for » and p

¢ = flu) poeouft - f o= pl (_g; (£/w) ., (1.9

with
£y = SfL) PR
du.
Thus, we see that both = and p are eapressible in terms of one
function f{u) and its derivatives with respect to &.

Inserting [1.9) in%o (1.3) we obtain

. j% (mun) = un.q . 11.11)

with
moes £ {e) . (1.1

ftividing both sides of {1.11) by #, one gets the quasiparticle

form of the equations of motion

(1.3}

w s

(mu,) = m.n
These equutions look like cquations of motion for a particle
with the x-dependent effective mass, moving with four-velocity
u, in the scalar field of forces given apain by the function
f'{u(x)).

Inserting (1.9) into {1.4) onc obtains a rigorous cosser-

vation cquation

(uu“)m = 0 {1.3")
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for the vector current vg = puy. It can easily be seen from
(1.8) that the choiceof the real con<tant A fixes the sign of
u which is then the same in al)l points x of space-time. In
this section we shalil assume vhat A is positive. The absclute
value of A is then fixed by a suitable normalization condition
for the total current. For a one-ccmponent fluid, in which we

are now interested, the normalization condition takes the form

Jrrady = fuutazx =1 (1.13)

It follows from {1.13) that » has the dimension cm-3 and, con-
sequently, i has the dimension of mass. 1t is obvious from
(1.4') that the conserved current wu® should be related to some
conserved charge and not to the mass of the fluid. The con-
servation of the total mass is secured by (1.5). We shall dis-
cuss this point later when Jdealing with electrically charged
Dirac fluids,

Let us now discuss the form of the function f(u). First

we require the mass density f(u) be zero in points where u = 0:
f(u=0) = 0 . (1.14)

Further restrictions are implied by the structure of the energy-

momentum density tensor expressed in terms of ¢ and f(u}:

AT SOV N (f'uf')gne . (r.2n

9

The condition that the energy density be non-negative
TOC w uE' ((u®)2 - 1) + £>0 {1.15)
for all x and in all inertial frames implies that
f(u) 20, uf'(u) > 0 (1.16)

For v > 0 this means that f(u) must be not only non-negative
but it must grow monotonically with increasing u.

Furthermore, in contrast to the conventional, macroscopic
fluids at T ¢ 0, the functioa f(u) should not allow the forma-
tion of the vapor phase. In fact, the transport of matter be-
tween the vapor and the liquid phases is responsible for the
instability of the macroscopic droplets and for varying amount
of matter contained in them. We shall require that the shape
of f(u) allows for the existence of liquid droplets in
equilibrium with the vacuum. |[n this way; we shall be able to
regard our droplets as closed systems which may occur in the
ground state or several excitation states but are always sur-
rounded by vacuum corresponding to v ¢ 0.

It follows from the tquations of motion that the inside of
the droplet will be in equilibrium if p = const and consequently
p = const. [In order that the forces vanish on the surface of

the droplet as well, we must require

plu(x}) = uf'(u) - f(n) = 0 (1.17)
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for all x and for u(x) # 0 and satisfying the normalization con-

dition
jhdsx =1 . (1.18)

Equation (1.17) must have at least one positive rovot u = B to
allow the existence of stable droplets. For a given value of

uc satisfying the equation
e f'(ue) = £(uc) (1.19)

equation (1.18) fixes essentially only the volume t. of the

droplet in the equilibrium state, because

Joasx = uere =1 (1.20)
We shall aiso require
limp =0 (1.21)
u-0
and the inequality
(d_P >0 . (1.22)
der u=ue

This inequality is the well known stability condition which en-

sures that the droplet doesn’t collapse. We also expect the
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function p(u) to increase asymptotically w%y? increasing u
either to +» or to some positive constant.

Let us now calculate the total mass of the droplet. In the
general case the formula for the total mass is given by the ex-
pression

M= I}°°(rest)d3x =]' (uf'(u)(ug-l) + f(u))dzx, (1.23)

rest

where the tensor element is to be calculated in the overall rest
frame of the droplet. Obviously, M can be calculated only after
inserting u(x) and uy(x) satisfying the eqs. (1.3'), (1.4') and
{1.13). The expression for M simplifies considerably for the
equilibrium state in which ug = 1 and f = f(uc) = const inside
the droplet. We get then for the equilibrium droplet

f(ue)

M(eq) = m = f'(uC) . (1.24)
c

When we compare the formulae (1.12) and (1.23) for m and M we
see that in the general case there is no simple relation between
the effective mass m(x) of the quasiparticle and the total mass
of the droplet. The effective mass may be much smaller than M
1f u{x)} just happens to have the value for which f'(u) has the
minimum value. However, for the equilibrium droplet the effec-
tive mass inside the droplet is constant and has the same value
as the total mass.

It can casily be seen that no simple power function f(u) =

uk can satisfy all the requirements listed above. 1f one
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considers polynomials, then one can prove that the simplest
polynomial which can fulfill the requirements is of 3rd degree.

1f we take p(u) of the form
2z
P = au"(u-uc) (1.25)

with a > 0, we get for f(u) and f'(n) the following polynomial

expressions

£ = 2oug)® v udy s by,
(1.26)
£ = Jaeugd? o b,

where u, = %“c and the constant b > 0. Both f£'(u) and p(u)
have a minimum at u = u, where f(u) has an inflection point.
The occurrence of an inflection pvint in which f'(u) has a local
minimum implies many highly interesting physical effects.

It can easily be seen that the linear term in f(u) does not
contribute to the value of p(u). However, it contributes to the
values of M and m. For the particular case of the equilibrium

state we get
M. = m(eq) = f'(ug) = éauz +b . (1.27)

Of course, the potential £'(u) or the effective mass m(u) have

this constant value only inside the equilibrium droplet. At the
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boundary the value of f'(u}) jumps up to f'(p=0) which for our
model function (1.26) is equal to
2

£ (us0) = -;iauc + b (1.28)

which is %auz above the minimum value equal to b. This shape

of f£'(y) implies the existence of some forces which tend

to confine the droplet to a finite region. In order to see

more clearly the action of these forces let us rewrite the
equations of motion in the following fully equivalent but perhaps

slightly more transparent form

R e , (1.29)
where
W= In .f_'iﬂn_(i))_ (1.30)

and B is some arbitrary constant of the same dimension as f'(u).

In a local rest frame of our fluid (1.29) reduces to

dul _ _ 3w -
S ol i=1,2,3. (1.31)

Suppose now that for n + 0 the function f'(u)} grows to infinity
(or at least becomes very large}. The same is then true for
the function W(n). 1f one assumes that at some fixed time t the

function u(x) is spherically symmetric and has the smooth form
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shown on Figure 1 and f'(u) has the form shown on Figure 2,
then the potential W(r) has the form indicated on Figure 3,
which prevents the fluid from diluting and from escaping to
infinity in the form of vapor .

Let us now discuss the higkly intercsting possibility that
the function p(u} has n > 1 roots u; of (1.17) satisfying the
stability condition (1.22). Consider, for example, the follow-

ing polynomial

n n-1
p(u) = aul ﬂl(“'“i;‘} ;ﬂ'l(u-ﬁk)} (1.32)
i= =

with a 2» 0 and
D <wp < By cuy <y« pg ot (1.33)

It can easily be checked that the inequality (1.22) is indeed
satisfied at uj, uy.... Thus the function p(u) of this form
describes a fluid which can appear in n liquid phases charac-
terized by different densities u;. Because of the monotonic
dependence of f on y, the invariant mass density f(uj) increases

with i:

f(ugd < £uy) < -+ (1.348)

respective
On the other hand the sizes of theYequilibrium droplets contain-

ing only one phase decrease:

> T, D> Ty > ses (1.35)

However, no such simple order can be established in the general
case for the effective or total masses of one-phase equilibrium
droplets. The order of m(ui) = M(u;) = f'(uj) depends on the
choice of the particular function p(y) or f(pu). Taking suitable
model functions we can have e.g. £'{(uj;) < f£'(uz) or vice versa.

Suppose that we have only two liquid phases and that
Mz = f'(UZJ > "l = f’(UI) (1.36)

The total mass of an equilibrium droplet containing both phases

will be given by the formulae

M= MlTlul + Mz‘l’zllz N
(1.37)

Ty Tz = 1,

where 7; denotes the volume of the i-th phase. Depending on

the value of 1] the total mass can take any value between My and
M,

M, <M< MZ (1.38)

1
Strictly speaking only the droplet with the lowest possible
value of mass can be stable. The phases corresponding to higher

values of masses may be, however, metastable. The phase
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transitions leading to the formation of metastable droplets

with a higher value of the total mass should be regarded as a
new excitation mode which can of course combine with the con-
ventional excitation modes of a droplet: rotations, shape
oscillations, radial oscillations, etc. For a spherical droplet
the phase transition discussed here may be regarded as some new
sort of radial excitation which is not accowmpanied by an increase
of the kinetic energy but by a discontinucus change of the in-
teraction energy of the fluid and of the self-consistent poten-
tial of forces., Fig, 4a shows a schematic plot of a function
f'(u) which implies the existence of two equilibrium densities
uy and Hae The respective shapes of u}r) and u,(r) as well as
of the potentials £'(uj(r)) and f'(uz(r)) are shown on Figure
ib,c.

The equilibrium condition of the form {1.17) does not dis-
tinguish any particular shape of the droplet. In order to en-
sure the shape stability >f the spherical droplet in its equi-
librium ground state, we must impose some additional boundary
conditions, e.g., those provided by the surface tension. The
condition for the minimum of the total mass of the droplet, in-
¢luding the surface energy, implies then the familiar relation
between the pressures in two adjacent equilibrium phases i and

k separated by a spherical surface of radius Ry

plug) - pleg) = 4= (1.3

R

where %y is the surface tension constant. For a one-phase

liquid droplet surrounded by a vacuum this reduces to

ugf'lug) - flug) = & . (1.40)
1t can easily be seen that ug > u.. One can show that for
suitable f(u) the surface tension ensures also the stability of
the spherical ground state droplet with respect to spontaneous
decays into two or more smaller droplets. However, one cannot
forbid this kind of splitting processes if enough energy is
supplied, e.g., in collisions between two droplets, uniess one
imposes suitable quantizatiun rules for the amount of matter

and the charges of the droplets.
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2. One ideal, charged, Dirac fluid

We shall now consider a simple generalization of the rela-
tivigy?c hydrodynamics of a barotropic fluid to the case cf a
fluid carrying definite amounts of the electric and baryonic
charges. We shall discuss the relatively simple but physically
quite interesting situation when the fluid is fully described

by only one vector field
Val(x) = u(x)uy(x} , (z.1)

where uy(x) is the four-velocity and the scalar density u(x) > 6.
The field V,(x} is assumed to satisfy the same conservation
equation (1.4') as in the case of the neutral fluid. Moreover,
for a single droplet we shall impose the same normalization
condition (1.13) as hefore. Suppose now that the charge cur-
rents are of the Diruc type, i.e., strictly proportional to the
basic current V {(x): 6)

Ja(x) = eVu(x) , B“(x) = bv“(x) (2.2)
The conservation equations for the charge currents follow then
immediately from the conservation of Vu(x)' Because of the
normalization condition (1.13), we have for a droplet

]ﬁO(x)d;x ae, jh°(x)dsx = b (2.3

79

Therefore, the constants e and b have the mean-ing of the total
electric or baryonic charge, respectively.

The invariant mass density f(u) can be now regarded as the
result of non-linear but local self-interaction of the type
Ba(x)B“(x) = bzuz(x) of the baryonic current. Since b is a con-
stant we are left with the dependence on u alone. However, the
electromagnetic interactions are definitely not of this type,
because they are certainly mediated by the long-range electro-
magnetic field. Therefore, in the case of charged barotropic
Dirac fluid we can take the hydrodynamical part of the energy-
momentum tensor in the same form (1.2') as for the neutral fluid
but we must add to it the familiar energy-momentum tensor of the

electromagnetic field:
T8 = ueru®u® o (£-ufr)g®® ¢ T%B(e1) . (2.4)

The equations of motion which together with the conservation
law (1.4') for V,(x) imply the conservation of energy-momentum
can be again written in the quasiparticle form:

d of’ g8

a;(f'\lu) = 5‘;.- + eFaBu ’ (2.5)
where Fue(x) is the tensor of the electromagnetic field. The
equation (2.5) looks like that for a particle of electric charge
e and effective mass f’(p(x)) moving with four-velocity ua(x)

in the scalar field f'(v(x)) and the electromagnetic field Fas(x).
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The presence cf the electric charge and of the resulting
Coulomb repulsion makes the equilibrium conditions more com-
plicated. Of course, in the equilibrium state the force on the

right hand side of (2.5) must vanish inside the droplet, which

implies
f(u(a)) + ed¢(x) = const , (2.6)
where
u(x'}
o(n) = e dyx’ (2.7)
jm-xt |

is the elactrostatic potential. The value of the constant and
the necessary and sufficient equilibrium condition can be ob-
tained from the variational principle M = 0 with subsidiary
condition (1.13), where M is the total mass of the static drop-

let given by the formula
M= fraomag s Somemdgx v as . (2.8)

with S denoting the area of the surface of the droplet. The

equilibrium equation obtained in this way has the form

» = f{u R) . . Zu_ 2
£ (u(r)) + ed(r) J—L—lu(k) e¢ (R) Rk (2.9)

where R is the radius of the Jroplet. Since ¢(R) is continuous

at r = R it follaws that not only u(r) out alsc p(r) has a jump

27
at this point. In fact we find that

PR = w(RIE'(R) - £(u(R)) = &2 (2.10)
and, of course, p(r} = 0 for r > R. Thus, the discontinuity
of the pressure on the surface of the equilibrium droplet has

the same form like that for the neutral droplet, but the value

will be, of course, different because of different R.
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3. Hydrodynamical quark mndel of hadrons

In this section we shall outiine 2 multicomponent hydro-
dygﬁmical model of hadrons. The multicomponent fluid will be

described by J basic vector currents

V?(x) = uj(XJu?(XJ ; uj(x) >0 ; ji=1,2,...,J

(3.1)

the

We shall identifyYquarks with these basic curients, or, perhaps,

with the corresponding quasiparticles appearing in the respec-

tive equations of motion of our fluid. Thus our model can be

regarded as a new versior of the quark model.

Let us first discuss some general properties of the basic

currents and in particular those which follow from the assumed

quark concept and from the rigorous conservaticn laws of the

charges. We shall assume that our basic hadronic or quark cur-

ren-s (3.1) are Dirac currents, which are carrying definite
amounts of the electric and baryonic charges as well as the
three basic coliors tl, ‘2' Cz. The colors may be regarded as

some new kind of charges specified by two rumbers. Thus the

colors can be visualized as suitable vectors of the color plane,

and, correspondingly, will be deroted by bold-face letters.

Because of the particular role played by colors it is con-

venient to regard j as a double index: 3 = (ik) with k = 1,2,3

and i = 1,2,...,h, denoting respectiveiy the three cclers and

the remaining properties necessary to specify s quark. The
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value of h will be left open in the following formulae. In the

original quark model we had h = 3, then after the discovery of

charm it was raised to 4, but some models require h = 6. The

general scheme presented here does not depend on the particular

value of h.
To each basic quark current V?k there corresponds an anti-

quark current which will be denoted by the symbol G?k' The re-

spective basic electric, baryonic and color charge currents are

. a =
proportional to Vi, or Vi

Jgk(X) = eivaik(x) R jzk(x) = -eiv?{k(x) R

B, (x) = byvi 00 B () = bV () (3.2)
a o .

€™ = v 0, T e T,

with the values of the proportionality constants ey, bji, €
taken from the conventicnal quark model. Thus b; = 1/3, e, =
ez = (eg =) 2/3 e, e, = e4 = {e6 =) -1/3 e, where e is the
value of the (positive) elementary charge. The constants €
are three unit vectors of the color plane which intersect at

120°C, e.g.

€y = (¥3/2,1/2) , e, = (-/3/2,1/2) , €3=(0,-1) .
(3.3)
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In the ssme way we shall treat the four basic leptonic currents
L;(x) and the corresponding anticurrents E;(x] where £ = 1 de-
notes electren, 2-electronic neutrino, 3-muon , 4-muonic
neutrino. The currents L) and L, are carrying one kind of lep-
tonic charge which is called electronic, and the currents L and
Ly are carrying the second kind of leptonic charge which is
called muonic. We shall assume that these two leptonic charges
are separately conserved. Moreover, the leptonic currents 1

and 3 carry the electric charge as well. Assuming that the
leptonic currents are also of the Dirac type we have

Spx) = eyly(x) , T = ey (3.4)

with ey =e; = ¢, e =g, = 0.
The expressions for the overall electric, baryonic, color
and leptonic currents in any particular physical system are given

by the following sums.

(¢ ]
Jx) = }:.; e (Vi - ¥5K) +);.el(ﬁ; -
B%(x) = z.'.; by (Vi - V8 (3.5)

a 0 =0
€)= g‘}:“ik - Vi

M

o a 2 " 3
L™ (x) as -8, AT (x) = Z s -rh
i fd =3 ¢ 2

£=1,2
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All these currents must be strictly conserved, i.e.,

J (x),a =0, B (x),a 0, C (x),a 0 ,

(3.63
[\1 = a
L (x),a =0, A (x)’a =0 .
It can easily be checked that the baryon and overall color con-
servation laws are equivalent to the three conservation laws for

each calor separately

1

E(v‘;k(x) - v‘?k(x))’a =0, k=1,2,3 . 3.7
i

These vigorous conservation equations car be satisfied in
many ways dependirg on the choice of the system and its initial
state. .The simplest non-trivial solution is obtained, if we
require the four-divergence of each basic current to vanish in

all points of space-time

a o2 o a 2

Vik,a = Vik,a = Lga = Feye . (3.8)

Equations (3.7) inmply that the values of the integrals

c =
J U
(3.9)

iy ) —
[+ = =
]LLdsx nl , jlzdsx n,
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are constant. In the case of a one-component fluid we havez im-
posed on the current describing one droplet the normalization

condition (1.13). We gensralize that condition requiring it to
be valid for each basic curvent separately. However, since we
may have 0,1,2,... droplets or quanta of each component fluid

in the physical state and system of interest,we impose the con-
dition that the constant n's appearing in (3.9) be non-negative

integers.
nik) Hik’ nz, Hl = G: 1) 2, LR (3-10)

This means %that the equations (3.8) describe systems and proc-
esses in which the numbers of basic quarks and antiquarks as
well as leptons and antileptons of each kind remain constant.
Only some rearrangement collisions are allowed by (3.8) but any
creation or annihilation processes are forbidden. This is
usually regarded to be a necessary condition for the system to
be describable in terms of particles and their mutual interac-
tions both in classical as well as in quantum mechanics. It is
generally believed that the description of creation and annibila-
tion of particle-antiparticle pzirs, decays, etc., requires the
formalism of quantum field theory.

However, we shall show now that the hydrodynamical droplet
picture of the elementary particles offers another possibility
for the description of creation, annihilation and decay processes.

In fact the conditions (3.8) are sufficient but by no means

2F

necessary. One can satisfy (3.6) by imposing other, less re-
strictive, conditions. So, the strong and electromagnetic
interactions are characterized by the following conservation
iaws for the basic currents

Vi@ o - V) =0, L0 - T = 0, (3.11)
The common value of the four-divergence of each basic current
and the corresponding anticurrent may be zero in all points of
space-time, or it may be different from zero for some part of
currents in scme regions which we shall call briefly creation
regions. The first case reduces to the already discussed above,

so let us consider now the second case in which, e.g.,
o =0 .
vik(x),a = vik(x],a = aik(x) # 0 (3.12)

in some region of x and for some definite values of the indices

i, k. Equations (3.11) and (3.12) imply that only the differences
nik(t) - nik(t) = Nik =0, #1, *2,... (3.13)

are constant but the numbers njy and Eik may be not. The

numbers njy and Hik are non-negative integers befcre the creation
period with values specified by the initial conditions of the
system. However, during the creation period they change con-

tinuously in time till they assume new integer values at the end
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of this period. Let us denote by K the three-dimensional re-
gion of space outside of which the currents V?k and V?k are

zero during all the creation period. Of course K contains the
creation region in which aik(t,x) # 0. Integration of the first

equation of {3.12) over K gives

Ixﬁvlkdsx + I‘div Vigdsx = fxaik(t,x)dsx = Ay (1) (3.14)

The second integral is equal to zero because it can be trans-
formed into a surface integral over the surface enclosing K,

where VZk = 0. So we find

dtIvlkdx:__—{

o = A0 = a0, (3.16)

Aik(t) {3.15)

Integrating (3.16) from a time t; before the creation period to

a time t, after the creation period we pet

t
2
N (ty) - omy () = g (1) - N (t) =]t Aj(t)de .
! (3.17)

It can easily be seen that the integrations involved in (3.14)
and {3.17) can be extended over the whole space-time. Then

{3.17) can be written in the form

29
nik("") - nik(“"’) = Hik(m) - Hik("") =I8ik(x)d‘x (3.18)
Because of (3.13) we must have

+2 (3.19)

2

Josax = [V agx = 0,

with the integral being extended cver the whole space-time.
The second set of equations (3.11) for the leptonic cur-

rents implies similar formulae
@ - 7O -
LL(xJ,a = Lz(x)'a b,(x) ., (3.20)
Hence
nl(t) - EC(t) = Nt = 0, #1, +2, ... = const (3.21)

ng(=) - ny(-=) = M, (=) - ny(-=) = Ibl(x)d,,x =0, +1, +2Z,...
(3.22)

It is worthwiiile stressing that in the case of processes
induced by the strong and electromagnetic interactions, for
which (3.11) is supposed to hold, only exactly matched pair% can
be created or annihilated, e.g., one ik-quark together with one
ik-antiquark, one £-lepton together with one £-antilepton, etc.
This is no more true for most slow processes induced by the weak

interactions, except very few processes like the elastic ev
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scattering or the scattering of a neutrino by a hadron. In 2
very wide class of leptonic, semileptonic and non-leptonic proc-
esses either one quark is transformed into another one, or some
unmatched quark and lepton pairs are created or annihilated.

The divergeanes of the respective curreuts must be then differ-
ent from zero. However, their values can be always chosen so as
to satisfy the conservation laws (3.6). The procedure to be
applied is based on the fact that both the baryon and overall
color are conserved if equations (3.7),which involve summation
over i,are satisfied for each k. Similarly we can satisfy the

)
lepton conservation laws requiring only the equality of the sums

a — a

Boe Lomo, Lot - LT
l=IZ,Z Lpa £=1’2 Zyﬂ t=3,4 £, t=3,4 ﬂ,a
(3.23)

Equations (3.7) and (3.23) can be satisfied in many ways depend-
ing on the particular process of interest. For example, one

can satisfy (3.7) putting for i ¥ j:

o a _ e
! 0, or Vik,u = ij,a £0,
(3.24)
—
or v?k,u = -ij'a £0 ,
with all the remaining divergencfes in the sum (3.7) equal to
zero. If the electric charge is exchanged between hadrons and

leptons, then similar cross relations must be postuiated for the

leptonic currents. Next step consists in inserting the
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non-vanishing divergencles of the leptonic and quark currents
into the conservation equation for the electric charge which
imposes some relation between these divergencies. For example

the decay
LA AR Y (3.25)

implies the following relation between the currents which appear

in this decay
v =V =-1 _ =-1T3 =-h 3.26
=-1l,,=" = -h(x) (3.26)
with the function h(x) satisfying the integral condition
jh(x)d4x =1 (3.27)
It is interesting to nrote that the conservation laws for the
charges imply the equality (apart from sign) of the divergencfes
of our basic quark and leptonic currents.
Take a more complicated example of the non-leptonic decay

K"+ 2" + 0, (3.28)

In this case we find from (3.6) the following relations
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= e = 7 = a Qa _
VTk,u Vik,a = h(x) Vak,o = Vak,a * Vak,a T 10
(3.29)

o
v4k,a =-j(x)
witlh h(x), i (x) and j(x) satisfying
Jreodx = fimoa = fimagm =1 (3.30)

Consider now the role of color in our hydrodynamical quark
model. Because of the rigorous color conservation law we can

define the total color of a system of quark currents
o —
¢ iZ,k “x I(Vik i ng)dS" = ; Cp(nm - m) (3.31)

where

nk(tJ = ; "ik(t) ’ ﬁk(t) = Z Eik(t) (3.32)
1

denote respectively the total number of quarks and antiquarks
of color k present in the system at time t., The numbers n, and
ﬁk may change in time during the creation period but their dif-
ferences remain constant. In agreement with the conventional
quark model we postulate that the value of € must be exactly

Zero:

C=20 (3.33)
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for all physical systems. There are threc fundamental non-

trivial solutions of (3.33) with non-negative integer values of

ay and n:

aym=mn =1, ba=1, m =0, c)n=0, 0 =1
(3.34)

The first of these basic solutions describes one meson, the
second one baryon and the third one antibaryon. All the other
solutions of (3.33) can be reduced to these basic solutions and
interpreted as describing systems with different numbers of
mesons, baryons and antibaryons. In fact the integration in
(3.31) may be Plr{prmed over any finite region of space K and we
should require CR = 0 if all the hadronic currents vanish on the
surface enclosing K. Before, and after the creation period,
one can always divide the whole space ‘nto non-overlapping re-
gions each of which contains only one hadron or a nucleus, i.e.
a cluster of strongly interacting hadrons. The color of each
of these non-overlapping subsystems must be also zero: CK =0,

which of course implies
C-= {:CK =0 . (3.35)
K

In this way the condition (3.33) in fact ensures that no
hadronic droplets with nonvanishing € can be produced. Thus the
basic hadronic droplets or elementary particles are either two-

component fluids of the type g q or three-component fluids of
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the type 3q or 3q,with all the three quarks bearing different
colors.

in the conventional quark model which treats quarks as
point particles (or at least as particles much smaller than
the hadrons) the density of color cannot vanish in all points
of space-time. Therefore, Some dynamical justifica-
tion of (3.33) in terms of suitable forces is necessary. Thus,
several highly unconventional forces have been proposed to keep
tne quarks of different colors together and to prevent creation
of colored particles. In the hydrodynamical model one can also

relative
follow this path: first to allowV

motions of different
color fluids and then to restrict these motions by suitable
forces so that no colored droplet can be created. Wc shall show
below on a simple model how this can be done. However, it is
interesting to note that the hydrodynamical approach offers
another, much simpler and plausible possibility, which does not
require any forces between different color quarks because they
have no possibility to separate even locally within the hadrons.
In fact, we may require that not only the total color € given

by the integral (3.31) be zero but also the color density cur-

rent be exactly zero.
T« [ [V}
c’x) = L e (Vi) - Vi(x)) =0 (3.36)

in all points x of space-time, and for all the physical systems.

It can ecasily be checked that (3.36) is equivalent to the slightly
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more appealing equality of all three coclor currents:

Ei:(vzl - V‘;l) ’Ei:(voilz - V5 =)i:(vﬂils . vai!s) - (3.37)
If (3.36) or (3.37) are rigorous and general conditions, then
no local excess of any color can emerge and we don't need to
worry about the nature of forces keeping different color quarks
together. Obviously the hadronic matter igg;nvery peculiar
multicomponent fluid with very restricted color composition
given by (3.37).

Applied to 3 meson which is a q@q system,equation (3.37) im-

plies
a o a
Vig(x) = ij(x) (= Vijk(x)) . (3.38)
Applied to a baryon which is a 3q system it gives

Va1 () = VE00 = Vi) (= V(0 (3.39)
Thus, both in a mesonic and a baryonic droplet there is only one
independent current which describes all the motions of the com-
ponent fluids. For any given composition of the droplet we
shall have only one vector equation of motion of the form dis-
cussed in Sec. 2 for ore charged fluid, instead of a set of two

or three coupled equations of motion for each component fluid.
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This is, of course, an immense simplification of the problem of
motion. However, not only the value of the total electric charge
of the droplet but also the equation of state of the fluid and
the invariant energy density may depend in general on the quark
content, i.e., on the indices ij or hij. Some additional sym-
metry requirements can be easily imposed on the interaction
functions, if necessary.

It follows from (3.38) and (3.39) that the different com-
ponent fluids completely penetrate, i.e., occupy the same region
of space-time. They form some kind of a perfect fluid solution
which is in many respects similar to a solution of two or three
macroscopic liquids (for example: water, alcohol and glycerine).
Such a multifluid solution will have equal composition in all
points x and will move like one pure liquid. However, the equa-
tion of state, the energy density, etec., depend in general on
the composition, and the velocity, pressure, density, etc., may

vary from point to point. Of course, the general validity of
equations (3.37) must be tested more carefully. It seems that
they can be generally valid at all energies and for a1l kinds
of physical processes including creation, annihilation, and
transmutation processes.

If (3.36) or (3.37) is only an approximation valid for
certain processes and states (e.g. for equilibrium states of the
hadronic droplets and lowest excitation states), then the problem

of forces keeping the different color fluids together comes up
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again. We shall present now a relatively simple version of such
forces which should be applicable to isolated hadroric droaplets
and to the purely elastic scatterings. These restrictions stem
from the fact that we shall assume that each of the oasic cur-
rents present in the initial state is conserved, so no creation
or annihilation processes will be allowed. Each of the component
fluids, which we shall again denote by one index j, is held
together by some non-linear local interaction fully described

by the invariant energy density expressed as a function of the
invariant density of the respective current: fj(uj). We shall
assume that the functions fj(uj) have the same general properties
as those discussed for one fluid in Section 1. We shall now
discard the condition (3.36) and allow the different component
fluids to move with respect to each other. In order to prevent
the separation of any one color droplet we must introduce suitable
interaction between different fluids. The simplest way to achieve

it is to add to the invariant emnergy density a term g(n) where
u =zc.u. »  duf = (3.40)
j 3]

is a color vector but a Lorentz scalar. It can easily be scen

that

TR Tk (3.41)
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for a meson, and

wleuls ] - b3+ ug - upup - ¥y - MaHy)  (3.42)
for a baryon. The color vector u vanishes if all the invariant
densities are equal, i.e. uj(x) = p(x) for all x. In order to
prevent separation of colors we assume that the function g(u)
and its derivative g’'(n) with respect to u vanish at u = 0 but
grow rapidly with growing u. A schematic plot of g(u) and g'(u)
is indicated on Fig. 5.

The equations of motion for a system of interacting fluids

written in the quasiparticle form are

4 . 8
as; M%a) " My, * e5FasYs (3.43)

very much resembling the equation (2.5) for one charged fluid

but for a different expression for m; which have now the form
m, = fl(u) +e. &
3 JQ@,) tJ ™ (3.44)

The gradient of g(u) appearing in (3.44) refers,of course, to the

color plane and is given by

gly) - dgp
5 Eri (3.45)

The second term in (3.44) gives the contribution of the initial
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interaction between different component fluids to the effective
mass and the scalar potential of forces acting on j-th fluid.

The corresponding energy momentum tensor has the form
a8 = N !+ . a_g. o ? aB : - .f: - '
T ?“J(fj €5 w)uiuj *# ‘?“J vyfs) + 8 - wel)
+ 1°Be1) . (3.46)

It can be easily verified that the equations of motion (3.43)
and the conservation equation for the component currents (uju;) e
’
0 imply the energy-womentum conservation
af
T ,a 0

For an equilibrium droplet at rest we can assume no motions,

SO u? = 1 and the energy density assumes the simple form

19%(eq) = LF;(u) + g + T0Cel) . (3.47)
)

If we add the surfa.e energy ijj for each component fluid we

obtain for the total mass of the droplet the following expression

M(eq) = ):!fj (u)dgx + fadgx + Loo;s; ozizej]ujodsx .
! ! ! (3.48)

The radius of the spherical equilibrium droplet and the functions
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uj(r) can be obtained from the variational principle
SM[uj(r)] =0 (3.49)
with the subsidiary conditions
RJ
4n A uj(r)rzdr =1 . (3.50)

The general structure of the mass formula (3.48) is relatively
simple. The first term gives the contributions of the self-
interaction energies of each component fluid, the second is due
to the initial interaction between different fluids, the third is
the sum of the surface energies of the component droplets, and
the last is the Coulomb energy.

Sc far we have not imposed any symmetry requirements upon

the functions fj(uj) and the surface coefficients a Suppose

e

now that all a; are equal and also the invariant energy densi-

J
ties

£.(u;) = f(u.)
3(“3) (UJJ (3.51)
are given by the same function. If we then neglect the Coulomb
interaction, we find that these symmetry properties of the self-
interactions imply that in the equilibrium state all densities
uj(rl are equal. Consequently, u = 0 and the interaction term

vanishes due to g(0) = 0. In such a symmetric droplet the total

$7

mass is simply the sum of masses of all the component droplets
which are approximately equal te their effective masses given by
£(u5).

This cannot be true for hadrons containing both non-strange
and strange quarks because the experimental data seem to indicate
that the strange quark must be heavier than the non-strange ones.
In order to achieve this in our model, we must either break the
symmetry (3.51) of the self-interaction functions or to keep
this symmetry but assume that the strange quark is described by
another phase of the d-liquid. The first possibility can be
made compatible with the requirement (3.37) if all uj(x) in an
equilibrium droplet are equal in spite of different fj. The
second case is rather incompatible with (3.37) unless the phase
transitions between strange and non-strange quark is not of the
first kind as described in Sec. 1, but of the second kind which
is not accompanied by a change of density.

Obviously the same reasoning can bc applied to the ¢, t, b
quarks. Within the proposed hydrodynamical quark model there is
definitely some chance for reducing the number of independent
basic fluids by regarding the c and t fluids as different phases
of u, and similarly s and b fluids as different phases of the
d filuid. In this way we would be left with only two basic
fluids u and d for each color. If (3.37) holds, then from the
point of view of the equations of motion the number of inde-

pendent fluids is indeed quite small. The possibility of such
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reduction of the number of independent fields is one of the most
attractive features of the hydrodynamical approach to the quark
model. One should also note that we have used no gluons, which
means another essential reduction of the number of different

fields in comparison to that used in other quark modeis.

Conclusion and OQutlook

The hydrodynamical quark model outlined in this paper is
a specific non-linear theory of interacting vector fields which
are interpreted as basic currents of the hadronic matter. All
the short-range interactions are described in terms of suitable
local but non-linear functions of the current-current invariants.
It turns out that some plausible physical requirements impose
several essential restrictions upon the form of these functions.

Although the paper uses the formalism of classical hydro-
dynamics some integral conditions have been imposed on the cur-
rents which have the meaning of the quantization rules related
to the charges. The next step should consist in the quantiza-
tion of motions of the hadronic droplets. However, the presented
version of the hydrodynamical model cannot be regarded as fully
realistic because it neglects the spins of the quark droplets
(unless the spin dependence can be factorized out). Nevertheless,
many of the basic motions and relations discussed in this paper
remain valid also in the more realistic version based on multi-

component Dirac spinors that will be presented in another paper.
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Obviously the conditions (3.32-39) and the corresponding
equations of motion for a one-component fluid presented in Sec.
1 and 2, or--for the second version of our model--the equations
(3.43-47) are valid only if the numbers of constituent quark
droplets are constant. This means that the degrees of freedom
related to the creation or annihilation of quark pﬁjfé are
frozen. This may be a good approximation only fer a restricted
class of states and processes, e.g., for the ground states and
lowest excited states of single hadrons, when the divergence
of each basic current can be assumed to vanish. The description
of more involved systems in which pairs can be created or anni-
hilated requires more general forms of the equationms of motion
and of the energy-momentum tensors which allow the divergences
of the basic currents to be different from zero, It is inter-
esting to note that the conditions (3.36) or (3.37) are free
from such restrictions and thus can be assumed to be generally
valid for all physical systems. We shall study the possible
more general forms of the equations of motion which are free of
the mentioned restrictions in a separate paper.
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to the Professors A. Bohm, T. Griffy and G. Sudarshan for all
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

4a.

4b,
dc,

Fig. S.

Tentative smooth shape of the invariant mass dis- 1.
tribution as a function of r (non-equilibrium case).
2.
Schematic behaviour of the function f'(n).
W(r) Fg.
The shape of the potentialYresulting from¥l and 2. 3.
The case of two phases corresponding to two different
densities,
Schemetic shape of f'(n) with two minima.
Two functions u;(r]} and uy(r) satisfying eq. (1.17).
The corresponding shapes of the potentials Wj(r) and
wz(r).
4.
Schematical shapes of g(u) and g'(u).
5.
6,
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