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Abstract

A hydrodynamical approach to the quark model of extended 

hadrons is proposed. Quarks are identified with certain basic 

fluids of the Dirac type which carry definite amounts of the 

electric and baryonic charges and colors. The hadrons are 

viewed as droplets of suitable multicomponent liquids. The 

model implies some interesting possibilities for a drastic 

reduction of the number of independent basic fields which means, 

of course, some very essential simplification of the quark model.
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Whenever in the last 100 years the physicists found a m a t e ­

rial object with some extension and structure, they tried to 

explain all its properties in terms of suitable constituent 

particles. Usually, the latter were first assumed to be exten- 

sionless, so the problem could be reduced to the classical or 

quantum mechanics of a system of interacting point particles.

One of the most conclusive confirmations of the respective 

models consisted always in the isolation of the constituent p a r ­

ticles. This general pattern for constructing more and more 

accurate models of reality worked very well in the case of m a c r o ­

objects, molecules, ions, atoms and nuclei. However, the last

of such point-mechanical models, namely the quark model of 
-fj

hadrons'scored not only several impressive successes but also

*)
led to many very serious troubles.' The most serious of these 

troubles is the apparent non-existence of free quarks. The 

confinement of point quarks to the interior of hadrons, the 

strange saturation properties of the interactions which allow 

formation of hadrons of only three types: qq, 3q and 3q, can 

be explained only with the help of very strange forces. M o r e ­

over, in order to explain the observed properties of hadrons on 

the basis of the conventional point-quark model, the number of 

the fundamental particles (quarks and gluons) had to be gradually 

increased to several tens.

In view of this highly unsatisfactory situation it is tempt­

ing to ask the fundamental questions: Can the point-mechanical
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formulation of tJie quark model be saved at all? Should we not 

start from a continuum model of extended hadrons which may 

throw completely new light on the nature and basic properties of 

quarks.' Can the models based on conventional field qua n t i z a ­

tion provide an adequate framework for the description of e x ­

tended hadrons?

It should be noted that in spite of their name, the quantum 

field theories are based on the point-particle concept and 

operate essentially only with global properties of particles 

like their total charges, masses, spins, energies, momenta, etc. 

The densities which can be calculated from such quantum field 

theories are interpreted as probability distributions of o b ­

servables referring again to point particles and not to extended 

particles.
and

All theseVmany other difficulties and basic shortcomings 

of point-mechanical as well as quantum field-theoretical approach 

stimulated the search for other lines of approach in which the 

hadrons are identified with some extended but well confined 

states of suitable fields, e.g., solit/ons, strings, bags or

3)
droplets. '

The present paper contains an outline of what may be called

4)
the hydrodynamical or droplet version of the quark model./ Se c ­

tion 1 contains the basic formulae of relativistic hydrodynamics 

of an ideal, neutral fluid. It is shown that in the case of a 

barotropic fluid all the motions are described by one vector 

field Va (x). The invariant energy density and pressure are then

3

expressible in terms of one scalar function which depends non- 

linearly on the invariant V aVa . The equations of motion can be 

put in a quasiparticle Form and the relation between the ef f e c ­

tive mass of the quasiparticle and the total mass of the droplet 

is discussed. Section 2 contains the respective formulae for an 

electrically charged Dirac fluid. In Section 3 a system of i n ­

teracting charged Dirac fluids described by some basic vector 

currents is discussed. The properties of the basic currents 

implied by the conservation rules for the electric, baryonic, 

leptonic and color charges are studied. Creations and ann i h i l a ­

tions as well as decays of hadrons are related to some definite 

properties of the non-vanishing divergences of the basic c ur­

rents. Charge conservation and charge quantization impose c e r ­

tain integral conditions on these divergencies which resemble 

somewhat the Bohr-Sommerfeld quantization rules of the old q u a n ­

tum theory.

The hydrodynamical quark model of hadrons outlined in

Section 3 offers several highly interesting possibilities.

First, the problem of quark confinement and saturation of forces

can be solved very simply by an algebraic condition that the 
overjH

density of theVcolor current be zero in all points of space-time. 

Second, the number of independent basic quark currents can be 

drastically reduced. In fact, the mentioned condition that the 

density of the color current be zero implies certain simple 

equalities between component currents carrying different colors. 

Next, no gluons are necessary, because all the strong interactions
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are desert bed by n o n - linear but I oca I functions of the invariants 

of the cur vent current type. I'urt h e r m o r c , the hvd roilyii.imi c;i) 

interpretation of quarks opens an interest ini; possibility that 

the c, s, t and b quark fluids may be just different phases of 

the u m d  d fluids. This could provide some interesting i n t e r ­

pretation of such mysterious quantum numbers like strangeness, 

charm, etc.

The condition that the density of the color current he zero 

applied to single mesons or htirvons implies that there is no 

relative motion of different component fluids in such simple 

systems. I'hus, from the point of view of motion a mesonic or 

baryoiiic droplet behaves a.s if it consisted of only one fluid of 

cMi'itant composition prescribed by the conventional igiinrk model.

Ih is would restrict verv cons iderably the m u l t i t u d e  of the 

otherwise possible excitation modes of the hadronic droplets.

S

1• Quo ideal, neutral, barottopic fluid

The motion of such a fluid can be described in terms of 

the following basic fields:

u'Cx) - four-vetoeity of the fluid 

£ < x ) - invariant mass density (1.1)

p(x) - invariant pressure 

She energy-momenttin tensor of the ideal, neutral fluid has the 

familiar form ~*)-

T tB » - g a?'p , (1.2)

where j; *! is the metric tensor (r°° = -g1 1 = *1)- The equations

of notion

U ‘P)^I7 = ''r‘e,\<? ? 1‘3>

together with one scalar equation of the form

u  uu ) = 'pua , (1.4)
.-i ,<t

imply t)ie conserv.it ion laws for energy and m o m e n t u m

( 1 . 5 )
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anil vice versa: (1.2) and (1.5) imply (J.J) and il.4). The 

conventions anti notations used in the ibove formulae are

u% a . 1, - UV \  g  . >t#u« . ,1.6)

a
None of the vector currents u'1, tu , p u ^ w i e  can construct 

directly from our basic fields,is conserved for arbitrary m o ­

tions of the fluid. However, the situation simplifies c o n ­

siderably if one assumes that our fluid fulfil* some sort of 

equation of state which can be regarded as the limit of n 

suitable conventional equation of state for temperature T * 0. 

To be more specific we assume that both t and p depend on x 

only through s o u p  invariant density x(x):

' * <{«.(*)) , p * p(«(x)l (1.7)

Obviously, instead of ti we can use some function ulxlx)), so 

the choice of the basic scalar density must be dictated by its 

physical meanini! and by the mathematical convenience. We shall 

take ,i(x) in the form:

f d> («ii • A exp I - - .Z— fJily— -. , ( 1 . 8 )
- p ( « )

which leads to the following expressions for r and p

c * f(».) . p * u f’ - f * »z A  tr/u) . (i.!>)
dn

f

f  (;.) . IfJLd .
u;.

Thus, wc r.ec that both and p are expressible in terms of one 

function flu) and its derivatives with respect to 

Inserting (1.9) into (1.3) we obtain

* i  t h

.•A. (sau 1 * ua , 1 1 .11)
ds 11 ,a

with

m * f*(u) . i1 -1’)

dividing both sides of (1.11) by u, one gets the quasiparticle 

form of the equations of motion

A ( m u a ) • m a . (1..V)

These equations look like equations of motion for a particle 

with the x-dependent effective mass,moving with four-velocity 

u t in the scalar field of forces given again by the function

r’Oi(x)).

Inserting (1.91 into (1.4) one obtains a rigorous c o n s e r ­

vation equation

(uun ) * 0
• Cl

( 1 - 4 * )



for the v e c t o r  current VI, « uua . It can eas i l y  be seen from 

Cl.8) that the choice of the real con«tant A  fixes the sign of 

M which is then the same in all points x of space-time. In 

this section we shall assume that A is positive. The absolute 

value of A is then fixed by a suitable n ormalization condition 

for the total current. For a one-component fluid, in which we 

are now interested, the n ormalization condition takes the form

J v ad6a -  fv u °d $x -  1 ( 1 . 1 3 )

It follows from 11.13) that v> has the dime n s i o n  cm'-* and, c o n ­

sequently, in has the dimension of mass. It is obvious from 

(. 1.*1' ) that the conserved current uua should be related to some 

conserved charge and not to the mass of the fluid. The c o n ­

servation of the total mass is securcd by (1.5). We shall d i s ­

cuss this point later when dealing with e l e ctrically charged 

IHrac fluids.

Let us now discuss the foris of the function f(u). First 

we require the mass density f {u ) be zero in points where u ■ 0:

f{y-0) « 0 . (1.14)

Further restrictions are implied by the structure o f  the energy 

momentum density tensor expressed in terms o f  i; and f (s. J:

T'lP - u f’i^u® ♦ (f-uf')ga£ ( I . : 1!

9

The c ondition that the energy density be n o n-negative

T°° - uf'((u°)2 - 1) «• f > 0 (1.15)

for all x and in all inertial frames implies that

f(y) > o , u f • (m ) > o (1.16)

For ii ? 0 this means that f(u) must be not only non-n e g a t i v e  

but it must grow raonotonically with increasing u.

F u r t h e r m o r e , in contrast to the conventional, m a c r o s c o p i c  

fluids at T  / 0, the function f(u) should not allow the f o r m a ­

tion of the vapor phase. In fact, the transport of matter b e ­

tween the vapor and the liquid phases is responsible for the 

instability of the macroscopic droplets and for v a rying amount 

of m a t t e r  c ontained in them. We shall require that the shape 

of f l u ) allows for the e xistence o f  liquid droplets in 

equi l i b r i u m  with the vacuum. In this way we shall be a ble to 

regard our droplets as closed systems which may occur in the 

ground state o r  several excitation states but are always s u r ­

rounded by vacuum c o rresponding to u * 0,

It follous front the equations of m o t i o n  that the inside of 

the droplet will be in equ i l i b r i u m  if u * const and c o n sequently 

p • const. In order that the forces vanish on the surface of 

the droplet as well, wc must require

p(u{x)) - uf'(w) - f(«) - 0 (1-17)
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for all x and for u(x) t 0 and satisfying the normalization con- 

di t ion

Ju d 3x = i . (1.18)

Equation (1.17) must have at least one positive root u * wc to 

allow ths existence of stable droplets. For a given value of 

Mc satisfying the equation

uc f'(uc ) - f(Uc) (1.19)

equation (1.18) fixes essentially only the volume t c  of the 

droplet in the equilibrium state, because

Judjx  = u c t c  « 1 . ( 1 . 20 )

We shall also require

lim p - 0 (1.21)
u-0

and the inequality

( Q )  > 0 . (1.22)
\ < W u-uc -

This inequality is the well known stability condition which e n ­

sures that the droplet d o e s n’t collapse. We also expect the

function p(u) to increase asymptotically wijj/t increasing u 

either to +«■ or to some positive constant.

Let us now calculate the total mass of the droplet. In the 

general case the formula for the total mass is given by the e x ­

pression

M = / T 0 0 (rest)d7X = f (uf • (u) (u2-l) + f(u))d,x, (1.23)
* ■'rest 0

where the tensor element is to be calculated in the overall rest 

frame of the droplet. Obviously, M can be calculated only after 

inserting u(x) and u 0 (x) satisfying the eqs. (1.3'), ('1.4*) and

(1.13). The expression for M simplifies considerably for the 

equilibrium state in which u0 = 1 and f = f(uc ) = const inside 

the droplet. We get then for the equilibrium droplet

f(uc)
M (e q ) = = P  (Uc ) . (1.24)

When we compare the formulae (1.12) and (1.23) for m and M  we 

see that in the general case there is no simple relation between 

the effective mass m(x) of the quasiparticle and the total mass 

of the droplet. The effective mass may be much smaller than M 

if ;j(x) just happens to have the value for which f ' (y) has the 

minimum value. However, for the equilibrium droplet the e f f e c ­

tive mass inside the droplet is constant and has the same value 

as the total mass.

It can easily be seen that no simple power function f(u) = 

nk can satisfy all the requirements listed above. If one



considers polynomials, then one can prove that the simplest 

polynomial which can fulfill the requirements is of 3rd degree. 

If we take p(y) of the form

p - au2(n-uc ) (1.25)

with a > 0, we get for f(u) and f ' (u) the following polynomial 

expressions

f(u) ■ f((u-u0)3 ♦ U03) ♦ bfi ,

(1.26)

f'(u) « |a(u-ii0 )Z ♦ b ,

2
where yc » j m c and the constant b ^  0. Both f'(M) and p(ti) 

have a minimum at u ■= u0 where f(p) has an inflection point.

The occurrence of an inflection point in which f' (u) has a local 

minimum implies many highly interesting physical effects.

It can easily be seen that the linear term in f (u) does not 

contribute to the value of p(p). However, it contributes to the 

values of M and m. For the particular case of the equilibrium 

state we get

M c = m(eq) « f'(yc ) * ya p 2 ♦ b . (1.27)

Of course, the potential f '(u) or the effective mass m(u) have 

this constant value only inside the equilibrium droplet. At the

4Z 43

boundary the value of f'(u) jumps up to f'(p=0) which for our 

model function (1.26) is equal to

f'(u»0) = h » l  * b (1.28)

7 1
which is -|auc above the minimum value equal to b. This shape 

of f ’(y) implies the existence of some forces which tend

to confine the droplet to a finite region. In order to see 

more clearly the action of these forces let us rewrite the 

equations of motion in the following fully equivalent but perhaps 

slightly more transparent form

- n“BW , (1.29)
as >0

where

In f’W * ) ) .  (1.30)
B

and B is some arbitrary constant of the same dimension as f ' (u) . 

In a local rest frame of our fluid (1.29) reduces to

» - - %  , i - 1,2,3. (1.31)
“R 3x

Suppose now that for u •* 0 the function f'(iJ) grows to infinity 

(or at least becomes very large). The same is then true for 

the function W(u). If one assumes that at some fixed time t the 

function w(x) is spherically symmetric and has the smooth form



shown on Figure 1 and f'(u) has the form shown on Figure 2,

■fhen the potential W(r) has the form indicated on Figure 3, 

which prevents the fluid from diluting and from escaping to 

infinity in the form of vapor .

Let us now discuss the highly interesting possibility that 

the function p(u) has n > 1 roots uj of (1 .1 7) satisfying the 

stability condition (1.22). Consider, for example, the follow­

ing polynomial

p(u) » au2 < TT (u -Uj J W  TT Cu-CulV (1.32)

with a ^  0 and

0 < Uj < Cj < u 2 < & 2  < **j (1.33)

It can easily be checked that the inequality (1.22) is indeed 

satisfied at pj, u 2 .• • • Thus the function p(p) of this form 

describes a fluid which can appear in n liquid phases charac­

terized by different densities Uj. Because of the monotonic 

dependence of f on p,the invariant mass density f(u^) increases 

wi th i :

fCl^) < f(n2) < ■" (1.34)

rtipectivt
On the other hand the siies of theVequilibTium droplets contain­

ing only one phase decrease:

Tj > t 2 > Tj > ••• (1•35)

However, no such simple order can be established in the general 

case for the effective or total masses of one-phase equilibrium 

droplets. The order of m(Uj) * M(p^) = f' (iij) depends on the 

choice of the particular function p(y) or f(p)- Taking suitable 

model functions we can have e.g. f * Ciji) < f'(u2 ) or vice versa. 

Suppose that we have only two liquid phases and that

M 2 - f'(u2) > Mj - f'(U l ) (1.36)

The total mass of an equilibrium droplet containing both phases 

will be given by the formulae

M  » Mjtjvij ♦ M 2t2ii2 •

(1.37)

TiUl ♦ t2U2 ■ I .

where denotes the volume of the i-th phase. Depending on 

the value of the total mass can take any value between Mj and

M2
M, < M < M., (1.38)1 i.

Strictly speaking only the droplet with the lowest possible 

value of mass can be stable. The phases corresponding to higher 

values of masses may be, however, metastable. The phase

s/S



transitions leading to the formation of metastable droplets 

with a higher value of the total mass should be regarded as a 

new excitation mode which can of course combine with the con­

ventional excitation inodes of a droplet: rotations, shape 

oscillations, radial oscillations, etc. For a spherical droplet 

the phase transition discussed here may be regarded as some new 

sort of radial excitation which is not accompanied by an increase 

of the kinetic energy but by a discontinuous change of the in­

teraction energy of the fluid and of the self-consistent poten­

tial of forces. Fig. 4a shows a schematic plot of a function 

f 1(u) which implies the existence of two equilibrium densities 

;ij and u,. The respective shapes of Uj(r) and vi2 1rJ ns well as 

of the potentials f ' U‘i(.r)) and f'(u->(r)) are shown on Figure 

4b,c.

The equilibrium condition of the form (1.17) docs not dis­

tinguish any particular shape of the droplet. In order to e n ­

sure the shape stability jf the spherical droplet in its equi­

librium ground state, we must impose some additional boundary 

conditions, e.g., those provided by the surface tension. The 

condition for the minimum of the total mass of the droplet, in­

cluding the surface energy, implies then the familiar relation 

between the pressures in two adjacent equilibrium phases i and 

k separated by a spherical surface of radius

•? 7

where is the surface tension constant. For a one-phase 

liquid droplet surrounded by a vacuum this reduces to

1 isf ( n s) - f(Ps) = y  ■ d-40)

It can easily be seen that us * Uc . One can show that for 

suitable f(u) the surface tension ensures also the stability of 

the spherical ground state droplet with respect to spontaneous 

decays into two or more smaller droplets. However, one cannot 

forbid this kind of splitting processes if enough energy is 

supplied, e.g., in collisions between two droplets, unless one 

imposes suitable quantization rules for the amount of matter 

and the charges of the droplets.



2. One ideal, charged, Dirac fluid

We shall now consider a simple generalization of the rela- 

tivisj/tc hydrodynamics of a barotropic fluid to the case of a 

fluid carrying definite amounts of the electric and baryonic 

charges. We shall discuss the relatively simple but physically 

quite interesting situation when the fluid is fully described 

by only one vector field

Va (x) - y(x)ua (x) , (2.1)

where ua (x) is the four-velocity and the scalar density U (x) >_ 0 . 

The field V.,(x) is assumed to satisfy the same conservation 

equation (1.4') as in the case of the neutral fluid. Moreover, 

for a single droplet we shall impose the same normalization 

condition (1.13) as before. Suppose now that the charge c u r ­

rents are of the Dirac type, i.e., strictly proportional to the 

basic current Va {x): ^

v * )  - eva (x) , Ba (x) - bVa (x) (2.2)

The conservation equations for the charge currents follow then 

’mmediately from the conservation of V0 (x). Decause of the 

normalization condition (1.13), we have for a droplet

Jj°(x)d3x « e , jB°(x)d3x - b (2.3)

Therefore, the constants e and b have the m e a n - i n g  of the total 

electric or baryonic charge, respectively.

The invariant mass density f((j) can be now regarded as the 

result of non-linear but local self-interaction of the type 

Ba (x)Ba (x) » b V ( x )  of the baryonic current. Since b is a c o n ­

stant we are left with the dependence on u alone. However, the 

electromagnetic interactions are definitely not of this type, 

because they are certainly mediated by the long-range e l e ctro­

magnetic field. Therefore, in the case of charged barotropic 

Dirac fluid we can take the hydrodynamical part of the energy- 

pomentum tensor in the same form (1.2') as for the neutral fluid 

but we must add to it the familiar energy-momentum tensor of the 

electromagnetic field:

Ta6 - vif’uau B + {f-tif)^“8 ♦ Ta 6 (el) . (2.4)

The equations of motion which together with the conservation 

law (1.4') for VQ (x) imply the conservation of energy-momentum 

can be again written in the quasiparticle form:

£ C£'U°] ‘ S  * eF“6“B * C2-S)

where Fa g(x) is the tensor of the electromagnetic field. The 

equation (2.5) looks like that for a particle of electric charge 

e and effective mass f'(p(x)) moving with four-velocity ua (x) 

in the scalar field f'(u(x)) and the electromagnetic field F0 g(x).

19
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The presence of the electric charge and of the resulting 

Coulomb repulsion makes the equilibrium conditions more c o m ­

plicated. Of course, in the equilibrium state the force on the 

right hand side of (2.5) must vanish inside the droplet, which 

implies

f(u(«)) ♦ e<t>(K) * const , (2.6)

where

/ u(*')
-------  d,x' (2.7)

!*-«'I

is the electrostatic potential. The value of the constant and 

the necessary and sufficient equilibrium condition can be o b ­

tained from the variational principle 6M - 0 with subsidiary 

condition 11.13), where M is the total mass of the static d r o p ­

let given by the formula

M  » yV(u(jr.))djX + ♦ aS , (2.8)

with S denoting the area of the surface of the droplet. The 

equilibrium equation obtained in this way has the form

f*(u(r)) ♦ e*(r) - XiHlBIi ♦ e*(R) * — . (2.9) 
u(R) Ru(R)

where R is the radius of the droplet. Since »(R) is continuous 

at r * R it follows that not only u(r) nut also pfr) has a jump

at this point. In fact we find that

p(R) - u ( R ) f '(R) - f(u(R)) - y  t2 -10^

and, of course, p(r) = 0 for r > R. Thus, the discontinuity 

of the pressure on the surface of the equilibrium droplet has 

the sane form like that for the neutral droplet, but the value 

will be, of course, different because of different R.

21
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3. Hydrodynamicaj quark model of hadrons

In this section we shall outline a m u l t i component hydro- 

dy^nmical mo d e l  of hadrons. The m u l t i c omponent fluid will be 

described by J basic vector currents

V°(x) = Mjfxju“fx) ; uj (x) > 0 ; j * 1,2, ...,J .

(3.1)
the.

We shall identifyVquarks w i t h  these basic curients, o*, perhaps, 

wi t h  the c orresponding quasiparticles appearing in the r e s p e c ­

tive equations of mot i o n  of our fluid. Thus our m o d e l  can be 

regarded as a n e w  v e r s i o n  of the quark model.

tet us first discuss some general p r o p erties of the basic 

currents and in p a r t icular those which foll o w  from the assumed 

quark concept and from the rigorous conser v a t i o n  laws of the 

charges. We shall assume that our basic had r o n i c  or quark c u r ­

r e n t  (3.1) are Dirac currents, which are carrying definite 

amounts of the electric and baryonic charges as well as the 

three basic colors Cj, C£> £ 3 * The colors ma y  be regarded as 

some r ew kind of charges specified by two n u m b e r s . Thus the 

colors can be vi s u a l i z e d  as suitable vectors of the color plane, 

and, correspondingly, will be denoted b y  bold-face letters. 

Because of the pa r t i c u l a r  role plsyed by colors it is c o n ­

v e n ient to regard j as a double index: 3 = (ik) w i t h  k ■ 1,2,3 

and i = l,2 ,...,h, denoting respectively the three colors and 

the remaining proper t i e s  n ecessary to specify a quark. The

-?3

value of h will be left open in the following formulae. In the 

original quark m o d e l  we had h = 3, then after the d i s c o v e r y  of 

c h a r m  it was raised to 4, but some models require h  = 6 . The 

general scheme pres e n t e d  here does not depend on the p a r t i c u l a r  

value o f  h.

To each basic quark current v“k there corresponds an anti- 

q u a r k  current wh i c h  w ill be d e n oted by the symbol n * -  Th e  r e ­

spective basic electric, baryonic and color charge currents are

<x -a
pTopoTtional to or

j“k (x) = e j V ^ l x )  , 3 ? k (x} = - e j V ^ C x )  ,

B“k (x) = b j V ^ t x )  , B ? k (x) = -bi7 ? k (x) , (3.2)

Cik (x) = ekVik(x) ' ®lk = 'ckVik(x) *

with the values of the pro p o r t i o n a l i t y  c onstants e^, b j, c ^  

taken from the c o nventional quark model. Thus bj = 1/3, = 

e 3 = ( e 5 e ’ e 2 = e 4 = ^e 6 “1/3 e, w h e r e  e is the

v a l u e  of the (positive) e l e m entary charge. The constants <y 

are three unit vectors o f  the c o l o r  plane w h i c h  intersect at 

120°C, e.g.

C 1 = (/j/2,1/2) , e 2 = (-/5/2,1/z) , e 3 = (0,-1) .
(3.3)
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In the sane way we shall treat the four basic leptonic currents 

L°(x) and the corresponding anticurrents I*J(x) where I = 1 d e ­

notes electron, 2-electronic neutrino, 3-muon , 4-muonic 

neutrino. The currents and L2 are carrying one kind of lep­

tonic charge which is called electronic, and the currents Lj and 

L4 are carrying the second kind of leptonic charge which is 

called muonic. We shall assume that these two leptonic charges 

are separately conserved. Moreover, the leptonic currents 1 

and 3 carry the electric charge as well. Assuming that the 

leptonic currents are also of the Dirac type we have

j“(x) = e£L“(x) , * -e^E^(x) , (3.4) 

with e, = e- = -e, e, ■ e. « 0.1 •> « 4
The expressions for the overall electric, baryonic, color

and leptonic currents in any particular physical system are given 

by the following sums.

J ^  Ci V̂i3( " * ̂ e£<-L£ ' ^  ’

Ba (x) = E  b ^ V ^  - V ? k ) , (3.5)

C“(x) = L c kCVaik - VfkJ ,

La(x) = E  cl“ - tf) , a“cx) - E  a. -
1=1,2 L *- £=3,4 £ *■

All these currents must be strictly conserved, i.e.,

Ja (x) = 0 , Ba (x) = 0 , C“(x) = 0 ,
>•* > U > “

(3.6) 

La (x)t0 = 0 , Aa (x)ja « 0 .

It can easily be checked that the baryon and overall color con- 

servation laws are equivalent to the three conservation laws for 

each color separately
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Ecyik« - vikfx)),<*= 0 * k ■1,2,3 ■ (3-7) 
i

These vigorous conservation equations can be satisfied in 

many ways depending on the choice of the system and its initial 

state. The simplest non-trivial solution is obtained, if we 

require the four-divergence of each basic current to vanish in 

all points of space-time

Equations (3.7) imply that the values of the integrals 

/ V ikd 3x = n ik « / 7 ikd 3X = ffik

M d3X " \  > /r£d3X = *1

(3.9)
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are constant. In the case of a one-component fluid we have i m ­

posed on the current describing one droplet the normalization 

condition (1.13). We generalize that condition requiring it to 

be valid for each basic current separately. However, since we 

may have 0,1,2,... droplets or quanta of each component fluid 

in the physical state and system of interest,we impose the c o n ­

dition that the constant n's appearing in (3.9) be non-negative 

integers.

n ik» “ik* n * ’ lf 2 * (3.10)

This means that the equations (3.8) describe systems and p r o c ­

esses in which the numbers of basic quarks and antiquarks as 

well as leptons and antileptons of each kind remain constant.

Only some rearrangement collisions are allowed by (3.8) but any 

creation or annihilation processes are forbidden. This is 

usually regarded to be a necessary condition for the system to 

be describable in terms of particles and their mutual interac­

tions both in classical as well as in quantum mechanics. It is 

generally believed that the description of creation and annihila­

tion of particle-antiparticle pf.irs, decays, etc., requires the 

formalism of quantum field theory.

However, we shall show now that the hydrodynamical droplet 

picture of the elementary particles offers another possibility 

for the description of creation, annihilation and decay processes. 

In fact the conditions (3.8) are sufficient but by no means

z?

necessary. One can satisfy (3.6) by imposing other, less r e ­

strictive, conditions. So, the strong and electromagnetic 

interactions are characterized by the following conservation 

laws for the basic currents

Vik°°,a - ^k(x),a = ° ’ L*{x).« ‘ ,<* = °-

The common value of the four-divergence of each basic current 

and the corresponding anticurrent may be zero in all points of 

space-time, or it may be different from zero for some part of 

currents in some regions which we shall call briefly creation 

regions. The first case reduces to the already discussed above, 

so let us consider now the second case in which, e.g.,

V i k W , «  " " a i k W  * 0 (3.12)

in some region of x and for some definite values of the indices 

i, k. Equations (3.11) and (3.12) imply that only the differences

n i k (t) - n i k (t) = N.k - 0, +1, 12,... (3.13)

are constant but the numbers n ^  and n ^  may be not. The 

numbers n ^  and n ^  are non-negative integers before the creation 

period with values specified by the initial conditions of the 

system. However, during the creation period they change c o n ­

tinuously in time till they assume new integer values at the end
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of this period. Let us denote by K the three-dimensional r e ­

gion of space outside of which the currents and are 

zero during all the creation period. Of course K contains the 

creation region in which a ^ C t , * )  4 0. Integration of the first 

equation of (3.12) over K gives

fK£ V°ikd3X + f/iV Vi*V = /K3i k ^ V  ’ Aik^

The second integral is equal to zero because it can be trans­

formed into a surface integral over the surface enclosing K,
a

where = 0. So we find

£//W  - £ ^ k V  ■ Aik^
or

^ i k C t )  - £ n i;c(t) * A i k (t) .

Integrating (3.16) from a time tj before the creation period to 

a time t^ after the creation period we get

nikCt2J ■ nik(ti> “ "ik^i5 ■ "ikcV  = /  Aik(^dt •
1 ( 3 . 1 7 )

It can easily be seen that the integrations involved in (3.14) 

and (3.17) can be extended over the whole space-time. Then 

(3.17) can be written in the form

(3.15)

(3.16)
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nik(“) - = "ik^3 - 5ik("':i */aik(x)V  (3-18)

Because of (3.13) we must have

/ a i k U ) d 4 x = J V ? k (x)>ad,x - 0. *3. *2,... (3.19)

with the integral being extended ever the whole space-time.

The second set of equations (3.11) for the leptonic c u r ­

rents implies similar formulae

l ® 0 0 , a  * J j W , ! ,  = b* W  . (3.20)

Hence

n^(t) - n^(t) = = 0, _+l, +2, ... = const (3.21)

n^(“) - n£ (-«) * n^(«) - n^(-“) “ Jb^(x)d^x = 0, +1, +2,...

(3.22)

It is worthwhile stressing that in the case o f  processes 

induced by the strong a n d  electromagnetic interactions, for 

which (3.11) is supposed to hold, only exactly matched pairs can 

be created or annihilated, e.g., one ik-quark together with one 

ik-antiquark, one £-lepton together with one -C-antilepton, etc. 

This is no more t m e  for most slow processes induced by the weak 

interactions, except very few processes like the elastic ev
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scattering or the scattering of a neutrino by a hadron. In a 

very wide class of leptonic, semileptonic and non-leptonic p r o c ­

esses either one quark is transformed into another one, or some 

unmatched quark and lepton pairs are created or annihilated.

The divergencies of the respective currents must be then d i f f e r ­

ent from zero. However, their values can be always chosen so as 

to satisfy the conservation laws (3.6). The procedure to be 

applied is based on the fact that both the baryon and overall 

color are conserved if equations (3.7), which involve summation 

over ijare satisfied for each k. Similarly we can satisfy the 

lepton conservation laws requiring only the equality of the sums

E  Ll a “ E  ^  a • £  ll a = ^  3  a ' £ =1,2 l ’a 1 = 1,2 l 'a 4 =3,4 £ ,“ 4=3,4
(3.23)

Equations (3.7) and (3.23) can be satisfied in many ways depend­

ing on the particular process of interest. For example, one 

can satisfy (3.7) putting for i 1 j :

” ■ -’J m  * 0 •

(3.24)

with all the remaining divergencies in the sum (3.7) equal to 

zero. If the electric charge is exchanged between hadrons and 

leptons, then similar cross relations must be postulated for the 

leptonic currents. Next step consists in inserting the
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non-vanishing divergenc/es of the leptonic and quark currents 

into the conservation equation for the electric charge which 

imposes some relation between these divergencies. For example 

the decay

t t "  - e* ♦ v (3.25)

implies the following relation between the currents which appear 

in this decay

V 2k,a = ^ k , a  = - Ll,a = * ^ , a  = 'h ^  (3 ‘2C»

with the function h(x) satisfying the integral condition

J h ( x ) d 4x = 1 . (3.27)

It is interesting to note that the conservation laws for the 

changes imply the equality (apart from sign) of the divergencies 

of our basic quark and leptonic currents.

Take a more complicated example of the non-leptonic decay

K' 2*' + tr+ . (3.28)

In this case we find from (3.6) the following relations



^lk.a " V lk,a = h(x) • V 2k,o “ V 2k,a * V 4k,a = i(xl

(3.29)

V“k,a ='-i(x)

witH h(x), i (x) and j (x) satisfying

J h ( x ) d 4x = J i (x)d^x = J j ( x ) d 4x = 1 (3.30)

Consider now the role of color in our hydrodynamical quark 

model. Because of the rigorous color conservation law we can

define the total color of a system of quark currents

C - E  ck /(V°k - ^ k )d3x - E  e k (nk - nk) . (3.31)

3 2

where

nk (t) = E  n i k (t) , = E -  ni k (t;i C3.3Z)

denote respectively the total number of quarks and antiquarks 

of color k present in the system at time t. The numbers nk and 

nk may change in time during the creation period but their d i f ­

ferences remain constant. In agreement with the conventional 

quark model we postulate that the value of C must be exactly 

zero :

C - 0 (3.33)

3 3

for all physical systems. There are three fundamental n o n ­

trivial solutions of (3.33) with non-negative integer values of

“k and v

a) nk = iik = 1 , b) nk = 1, nk = 0 , c) nk = 0 , nk - 1

(3.34)

The first of these basic solutions describes one meson, the 

second one baryon and the third one antibaryon. All the other 

solutions of (3.33) can be reduced to these basic solutions and 

interpreted as describing systems with different numbers of 

mesons, baryons and antibaryons. In fact the integration in 

(3.31) may be ptrjbrmed over any finite region of space K and we 

should require C jj 5 0 if all the hadronic currents vanish on the 

surface enclosing K. Before, and after the creation period, 

one can always divide the whole space *nto non-overlapping r e ­

gions each of which contains only one hadron or a nucleus, i.e. 

a cluster of strongly interacting hadrons. The color of each 

of these non-overlapping subsystems must be also zero: C|( * 0, 

which of course implies

C « E c k = 0 . (3.3 S )

In this way the condition (3.33) in fact ensures that no 

hadronic droplets with nonvanishing C can be produced. Thus the 

basic hadronic droplets or elementary particles are either two- 

component fluids of the type q q or three-component fluids of
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the type 3q or 3q,with all the three quarks bearing different 

color's.

In the conventional quark model which treats quarks as 

point particles (or at least as particles much smaller than 

the hadrons) the density of color cannot vanish in all points 

of space-time. Therefore, s e m e  dynamical j ustifica­

tion of (3.33) in terms of suitable forces is necessary. Thus, 

several highly unconventional forces have been proposed to keep 

the quarks of different colors together and to prevent creation

of colored particles. In the hydrodynamical model one can also
relative

follow this path: first to a l l o w V  motions of different

color fluids and then to restrict these motions by suitable 

forces so that no colored droplet can be created. Wc shall show 

below on a simple model how this can be done. However, it is 

interesting to note that the hydrodynamical approach offers 

another, much simpler and plausible possibility, which does not 

require any forces between different color quarks because they 

have no possibility to separate even locally within the hadrons.

In fact, we may require that not only the total color C given 

by the integral (3.31) be zero but also the color density c u r ­

rent be exactly zero.

C “(x) = E  c k (v“k (x) - ?“ (x)) = 0 0 . 3 6 )
ik

in all points x of space-time, and for all the physical systems.

It can easily be checked that (3.36) is equivalent to the slightly
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more appealing equality of all three color currents:

- ^1> -C(V°2 - <,) - E ( V “, - 5“,) . 0.3’)

If (3.36) or (3.37) are vigorous and general conditions, then

no local excess of any color can emerge and we don't need to

worry about the nature of forces keeping different color quarks
then

together. Obviously the hadronic matter isYa very peculiar 

multicomponent fluid with very restricted color composition 

given by (3.37).

Applied to a meson which is a qq system,equation (3.37) im­

plies

vikM  - ̂ k(x) vh kM }  • (3-38)

Applied to a baryon which is a 3q system it gives

V“i(x) = V“2 (x) = V“3 (x) (= V“ij(x)} . (3.39)

Thus, both in a mesonic and a baryonic droplet there is only one 

independent current which describes all the motions of the c o m ­

ponent fluids. For any given composition of the droplet we 

shall have only one vector equation of motion of the form d i s ­

cussed in Sec. 2 for o^? charged fluid, instead of a set of two 

or three coupled equations of motion for each component fluid.
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This is, of course, an immense simplification of the problem of 

motion. However, not only the value of the total electric charge 

of the droplet but also the equation of state of the fluid and 

the invariant energy density may depend in general on the quark 

content, i.e., on the indices ij or h i j . Some additional s y m ­

metry requirements can be easily imposed on the interaction 

functions, if necessary.

It follows from (3.38) and (3.39) that the different c o m ­

ponent fluids completely penetrate, i.e., occupy the same region 

of space-time. They form some kind of a perfect fluid solution 

which is in many respects similar to a solution of two or three 

macroscopic liquids (for example: water, alcohol and glycerine). 

Such a multifluid solution will have equal composition in all 

points x and will move like one pure liquid. However, the equa­

tion of state, the energy density, etc., depend in general on 

the composition, and the velocity, pressure, density, etc., may 

va^y from point to point. Of course, the general validity of 

equations (3.37) must be tested more carefully. It seems that 

they can be generally valid at all energies and for all kinds 

of physical processes including creation, annihilation, and 

transmutation processes.

If (3.36) or (3.3") is only an approximation valid for 

certain processes and states (e.g. for equilibrium states of the 

hadronic droplets and lowest excitation states), then the problem 

of forces keeping the different color fluids together comes up

3?

again. We shall present now a relatively simple version of such 

forces which should be applicable to isolated hadroric droplets 

and to the purely elastic scatterings. These restrictions stem 

from the fact that we shall assume that each of the basic c u r ­

rents present in the initial state is conserved, so no creation 

or annihilation processes will be allowed. Each of the component 

fluids, which we shall again denote by one index j, is held 

together by some non-linear local interaction fully described 

by the invariant energy density expressed as a function of the 

invariant density of the respective current: fj(Uj)- We shall 

assume that the functions fj(uj) have the same general properties 

as those discussed for one fluid in Section 1. We shall now 

discard the condition (3.36) and allow the different component 

fluids to move with respect to each other. In order to prevent 

the separation of any one color droplet we must introduce suitable 

interaction between different fluids. The simplest way to achieve 

it is to add to the invariant energy dens'ty a term g(u) where

M = JZc.U. , Ivl = P (3.40)
j J 3

is a color vector but a Lorentz scalar. It ian easily be seen 

that

2 2 , 2 H = u = (p: - P2) (3.41)
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for a meson, and

M 2 = p 2 « (Pj + p2 ♦ Mj - PXP 2 - p 2p 3 - H j P j ) (3.42)

for a baryon. The color vector 11 vanishes if all the invariant 

densities are equal, i.e. p j(x) * p(x) for all x. In order to 

prevent separation of colors we assume that the function g(p) 

and its derivative g'(p) with respect to y vanish at y » 0 but 

grow rapidly with growing p. A schematic plot of g(p) and g ’(p) 

is indicated on Fig. 5.

The equations of motion for a system of interacting fluids 

written in the quasiparticle form are

5jT("jUjo) - Bj.B ♦ ejFaBu? (3.43)

very much resembling the equation (2.5) for one charged fluid 

but for a different expression for raj which have now the form

mJ " W  + *i If ' (3‘443

The gradient of g(p) appearing in (3.44) refers,of course, to the

color plane and is given by

2 p U l .  4 & J L  . (3.45)
9|i df* U

The second term in (3.44) gives the contribution of the initial

interaction between different component fluids to the effective 

mass and the scalar potential of forces acting on j-th fluid. 

The corresponding energy momentum tensor has the form

raB - E
3e, a 8 
—2-)U.U-3 M 1 1

aB - ^fj) pg*)

Ta B (el) (3.46)

It can be easily verified that the equations of motion (3.43) 

and the conservation equation for the component currents ( p . U j ) ^  

0 imply the energy-raomentum conservation

Ta6

For an equilibrium droplet at rest we can assume no motions, 

so u ?  = 1 and the energy density assumes the simple form

T°°(eq) = E M M  + 8(u) ♦ T 0 0 (el) . (3.47)

j 3

If we add the surface energy ajS^ for each component fluid we 

obtain for the total mass of the droplet the following expression

M(eq) - E j f j ( P j ) d 3x + J g(u)djx ♦ E “jSj * | E e j J p j « d j X  .

3 1 J (3.48)

The radius of the spherical equilibrium droplet and the functions



Pj(r) can be obtained from the variational principle

6M[Uj(r)] = 0 (3.49)

with the subsidiary conditions

f Rj

4tt / y,(r)r^dr = 1 . (3.50)

The general structure of the mass formula (3.48) is relatively 

simple. The first term gives the contributions of the s e l f ­

interaction energies of each component fluid, the second is due 

to the initial interaction between different fluids, the third is 

the sum of the surface energies of the component droplets, and 

the last is the Coulomb energy.

So far we have not imposed any symmetry requirements upon 

the functions fj(Mj) and the surface coefficients <*j . Suppose 

now that all aj are equal and also the invariant energy d e n s i ­

ties

fj(Mj) = ffuj) (3.51)

are given by the same function. If we then neglect the Coulomb 

interaction, we find that these symmetry properties of the s elf­

interactions imply that in the equilibrium state all densities 

U j ( r )  are equal. Consequently, u  = 0 and the interaction term 

vanishes due to g(0) = 0. In such a symmetric droplet the total

mass is simply the sum of masses of all the component droplets 

which are approximately equal to their effective masses given by 

f'(Uj).

This cannot be true for hadrons containing both non-strange 

and strange quarks because the experimental data seem to indicate 

that the strange quark must be heavier than the non-strange ones. 

In order to achieve this in our model, we must either break the 

symmetry (3.51) of the self-interaction functions or to keep 

this symmetry but assume that the strange quark is described by 

another phase of the d-liquid. The first possibility can be 

made compatible with the requirement (3.37) if all Uj(x) in an 

equilibrium droplet are equal in spite of different f j . The 

second case is rather incompatible with (3.37) unless the phase 

transitions between strange and non-strange quark is not of the 

first kind as described in Sec. 1, but of the second kind which 

is not accompanied by a change of density.

Obviously the same reasoning can be applied to the c, t, b 

quarks. Within the proposed hydrodynamical quark model there is 

definitely some chance for reducing the number of independent 

basic fluids by regarding the c and t fluids as different phases 

of u, and similarly s and b fluids as different phases of the 

d fluid. In this way we would be left with only two basic 

fluids u and d for each color. If (3.37) holds, then from the 

point of view of the equations of motion the number of inde­

pendent fluids is indeed quite small. The possibility of such



reduction of the number of independent fields is one of the most 

attractive features of the hydrodynaraical approach to the quark 

model. One should also note that we have used no gluons, which 

means another essential reduction of the number of different 

fields in comparison to that used in other quark models.

Conclusion and Outlook

The hydrodynamicai quark model outlined in this paper is 

a specific non-linear theory of interacting vector fields which 

are interpreted as basic currents of the hadronic matter. All 

the short-range interactions are described in terras of suitable 

local but non-linear functions of the current-current invariants. 

It turns out that some plausible physical requirements impose 

several essential restrictions upon the form of these functions.

Although the paper uses the formalism of classical h y d r o ­

dynamics some integral conditions have been imposed on the c u r ­

rents which have the meaning of the quantization rules related 

to the charges. The next step should consist in the quantiza­

tion of motions of the hadronic droplets. However, the presented 

version of the hydrodynamical model cannot be regarded as fully 

realistic because it neglects the spins of the quark droplets 

(unless the spin dependence can be factorized out). Nevertheless, 

many of the basic motions and relations discussed in this paper 

remain valid also in the more realistic version based on m u l t i ­

component Dirac spinors that will be presented in another paper.

Obviously the conditions (3.38-39) and the corresponding 

equations of motion for a one-component fluid presented in Sec.

1 and 2, or--for the second version of our model--the equations 

(3.43-47) are valid only if the numbers of constituent quark 

droplets are constant. This means that the degrees of freedom 

related to the creation or annihilation of quark paj^Ts are 

frozen. This may be a good approximation only for a restricted 

class of states and processes, e.g., for the ground states and 

lowest excited states of single hadrons, when the divergence 

of each basic current can be assumed to vanish. The description 

of more involved systems in which pairs can be created or a n n i ­

hilated requires more general forms of the equations of motion 

and of the energy-momentum tensors which allow the divergences 

of the basic currents to be different from zero. It is inter­

esting to note that the conditions (3.36) or (3.37) are free 

from such restrictions and thus can be assumed to be generally 

valid for all physical systems. We shall study the possible 

more general forms of the equations of motion which are free of 

the mentioned restrictions in a separate paper.
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Fig. 5. Schematical shapes of g(y) and g'(ii).
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