

ELECTRON TRANSFER REACTIONS OF EXCITED DYES
WITH METAL COMPLEXES

Progress Report
for Period May 1, 1976 - January 31, 1977

Norman N. Lichin

Boston University
Boston, MA 02215

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

February 1977

Prepared For

THE U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
UNDER CONTRACT NO. EY-76-S-02-2889

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately owned rights.

MASTER

efb

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

A study was initiated of the factors which determine quantum efficiency of transfer of reducing equivalents between excited dye molecules and metal complexes in their ground state and composition and dynamics of formation and decay of related photostationary states. A ruby laser capable of delivering a 3.6 J, 19 nsec flash was acquired and assembly of an apparatus for laser flash photolysis begun. At the same time, conventional flash photolysis was used to pursue investigation of the dependence upon solvent, anions, pH and ionic strength of the kinetics of the spontaneous dark reaction of $\text{Fe}(\text{H}_2\text{O})_6^{3+}$ with leucothionine and with semithionine, reactions which contribute to the composition and dynamics of formation and decay of the photostationary state of the iron-thionine photoredox reaction. Results are consistent with formation of an intermediate complex between leucothionine and Fe(III), $K_A = 380 \text{ M}^{-1}$ and $k_{\text{elec. transfer}} = 0.88 \text{ sec}^{-1}$ at $\sim 22^\circ$ in water solution at pH 2, with sulfate as anion and $\mu = .05 - .1 \text{ M}$. Under similar conditions in 50 v/v% aqueous CH_3CN , $K_A = 780 \text{ M}^{-1}$, $k_{\text{elec. transfer}} = 0.55 \text{ sec}^{-1}$. In both solvents, sulfate produces a large positive salt effect. Intermediacy of a complex was not established for the faster reaction of Fe(III) with semithionine under similar conditions: $K_A \cdot k_{\text{elec. transfer}} \sim 3.5 \times 10^5 \text{ M}^{-1} \text{ sec}^{-1}$ in H_2O , $\sim 1.0 \times 10^4 \text{ in 50 v/v\% aqueous } \text{CH}_3\text{CN}$.

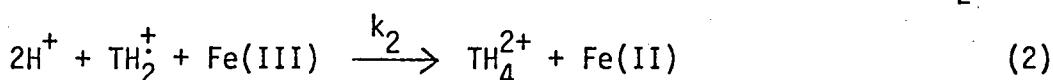
INTRODUCTION

One aspect of work planned for the year beginning May 1, 1976 involved acquisition of those basic components of an apparatus for laser-flash photolytic experiments which could be purchased within the limits of a \$15,000 budget and temporary installation of these components so that they could be used in conjunction with the monitoring system of a conventional apparatus for flash photolysis. Another aspect of planned work involved initiation of experiments employing apparatus available at Boston University and laser flash photolytic apparatus in the laboratory of Professor Henry Linschitz at Brandeis University to study electron transfer reactions between selected excited photoredox dyes and metal complexes as well as the ground state back reactions of resulting products.

Since it was the beginning of September before a postdoctoral research associate began work, results described below are more limited than would have been the case if the project had been fully staffed by its inception date at the beginning of May.

APPARATUS FOR LASER FLASH PHOTOLYSIS

Equipment was ordered from Holobeam Laser Inc. on July 12, 1976 and was delivered around December 15, 1976. It consisted of a series 630 ruby laser with a Pockels Cell Q-switch accessory. Claimed performance specifications include 3.6 J output or 190 MW power in a 19 nsec pulse. Planned and unplanned closings of the University during the month of December delayed assembly of working apparatus. By the middle of February "bugs" were still being uncovered and corrective measures were in progress.


EXPERIMENTS EMPLOYING CONVENTIONAL FLASH PHOTOLYTIC APPARATUS

Time resolution provided by our conventional flash photolytic apparatus enables processes with time constants of the order of 10^{-4} sec. or slower to be studied. Such time resolution is not convenient for study of the dynamics of processes involving excited states. It is, however, suitable for investigation of initial products of reaction of excited states with redox quenchers, e.g., the nature and reactions of initially formed dye radicals. It is also suitable in some cases for investigation of ground state back reactions of final products of photodriven reactions. During the report period, conventional flash photolysis technique was used to extend and refine previous exploratory studies (1) of the reaction of Fe(III) with semithionine, TH_2^+ , and with leucothionine, TH_3^+ or TH_4^{2+} . (In the balance of this report leucothionine is designated as TH_4^{2+} because measurements were carried out with 10^{-2} M concentrations of acid. The pK_a values of the first and second ionization constants of TH_4^{2+} are both probably within the range 5 ± 1 . (2)) TH_2^+ is the initial product of reduction of triplet thionine, $^3\text{TH}_2^{2+}$, by Fe(II). Leucothionine is formed subsequently by the rapid disproportionation of TH_2^+ , eq. 1, and is the major reducing charge carrier when the iron-

thionine photogalvanic cell is illuminated, at least when 50 v/v% aqueous CH_3CN is used as the solvent (3).

Investigation of the reaction between Fe(III) and TH_2^+ , reaction 2:

employed a competition method which involves knowledge of the specific rate

of disproportionation of TH_2^+ in the absence of added Fe(III), reaction 1.

Thus values of k_2 were determined under the conditions of investigation of k_1 by measuring dependence of yields of TH^+ on concentration of Fe(III).

Since the reaction of TH_4^{2+} with Fe(III), eq. 3, is much slower than reactions 1 or 2, k_3 can be measured by following the reappearance of TH^+ after

reactions 1 and 2 are complete. Since the latter reactions also follow reaction 3 and have different stoichiometries, evaluation of k_3 involves estimation of the partitioning of TH_2^+ produced by reaction 3 between reactions 1 and 2.

Previous work (4) had shown that $\log k_1$ varies linearly with Kosower's solvent function, χ , in 10^{-2}M $\text{Fe}_3(\text{CSO}_3)_2\text{H}$. During the report period, investigation was initiated of the kinetics of oxidation of TH_2^+ by Fe(III), reaction 2. The immediate objectives of these measurements include determining whether reversible formation of a complex between TH_2^+ and Fe(III) precedes electron transfer and, if it does, evaluation of the equilibrium and rate constants for the separate steps. In addition, elucidation in depth of the mechanism is to be aided by observing the effects of variation of pH, solvent, nature of anions and ionic strength. During the report period data were obtained in two solvents, water and 50 v/v% aqueous CH_3CN , containing 0.01M H_2SO_4 and FeSO_4 and concentrations of $\text{Fe}_2(\text{SO}_4)_3$ varying from $\sim 3 \times 10^{-5}$ to $6 \cdot 10^{-2}\text{M}$. Resulting equilibrium and rate constants are summarized in Table 1. Whether complexation of Fe(III) and TH_2^+ is involved in the electron transfer process is still subject to question. Since salt effects in these reactions appear to be substantial (see col. 5 of Table 1)

failure to maintain constant ionic strength introduces errors of unknown magnitude. It appears however that k_2 is more sensitive to solvent (36 fold decrease from H_2O to 50 v/v% aqueous CH_3CN) than is k_1 (4.7 fold decrease). The indicated comparison of k_1 in sulfate and triflate media is inconclusive.

TABLE 1
Values of Association and Rate Constants
for the Reaction of TH_2^+ with Fe(III) in
 $10^{-2} M H_2SO_4$ and $FeSO_4$, Varying
Ionic Strength^a at $\sim 25^\circ C$

Solvent	k_1^b $10^8 M^{-1} sec^{-1}$	$K_{A, TH_2^+}^c$	$k_{t, TH_2^+}^d$ $10^4 sec^{-1}$	$K_{A, TH_2^+}^e \times k_{t, TH_2^+}^f$ $10^4 M^{-1} sec^{-1}$
H_2O	$14.2 \pm 1.3 (20)^e$?	?	$35 \pm 15 (9)^f$
50 v/v% aq. CH_3CN	$3.05 \pm .31 (2)^e$	0.8	1.2	$.96 \pm .25 (.65)^f$

a. $\mu = .05$ to $.5 M$ depending on concentration of $Fe_2(SO_4)_3$.

b. Second order rate constant for disproportionation of TH_2^+ , determined with $\mu = .05 M$, H^+ not treated as a reactant.

c. Equilibrium constant for 1:1 association of TH_2^+ with Fe(III).

d. Rate constant for unimolecular electron transfer within the complex.

e. Values of k_1 with $F_3CSO_3^-$ as sole anion, $\mu = .09$, taken from ref. 4.

f. Values of k_2 in sulfate medium with $\mu = 0.3 M$, taken from ref. 1.

The immediate objectives of investigation of the reaction of leuco-thionine, TH_2^{2+} , with Fe(III) are analogous to the objectives of study of the

reaction of TH_2^+ with Fe(III) which are stated above. Considerably more information on the former reaction was collected during the report period. Previous evidence (1) that reaction 3 proceeds via an association complex and subsequent electron transfer was confirmed. Separate association and rate constants, respectively $K_{A,\text{TH}_4^{2+}}$ and $k_{t,\text{TH}_4^{2+}}$, were evaluated in water and 50 v/v% aqueous CH_3CN . Information was obtained on salt effects with sulfate anion in the aqueous organic solvent. Data are presented in Table 2. As shown in Table 2, failure to take into account disproportionation

TABLE 2

Values of Association and Rate Constants
for the Reaction of TH_4^{2+} with Fe(III) in
 $10^{-2}\text{M H}_2\text{SO}_4$ and FeSO_4 at $\sim 22^\circ\text{C}$

Solvent	μ <u>M</u>	Corrected for Disproportionation of TH_2^+	$K_{A,\text{TH}_4^{2+}}$ <u>M</u> ⁻¹	$k_{t,\text{TH}_4^{2+}}$ <u>sec</u> ⁻¹	$K_{A,\text{TH}_4^{2+}} \times k_{t,\text{TH}_4^{2+}}$ <u>M</u> ⁻¹ <u>sec</u> ⁻¹
H_2O	.05-.10	yes	380	0.88	334
H_2O	.05-.10	no	380	0.88	334
H_2O	0.3 ^a	no	1,745 ^b	0.85 ^b	1,483
50 v/v% aq. AN	.05-.14	yes	780	0.55	429
50 v/v% aq. AN	.05-.14	no	380	0.69	262
50 v/v% aq. AN	0.2 ^a	yes	1,070	1.28	1,370
50 v/v% aq. AN	0.2 ^a	no	550	1.39	765

a. Made up with Na_2SO_4 .

b. Unpublished work by Dr. Russell Cheney in this laboratory using leuco-thionine prepared by reduction of TH^+ with H_2/Pd and stopped flow technique.

of TH_2^+ subsequent to its formation by reaction 3 results in substantial errors for data in 50 v/v% aq. CH_3CN . Errors are negligible in H_2O solution, because, as can be estimated from Table 1, $(v_2/v_1)_{\text{H}_2\text{O}} > (v_2/v_1)_{50\% \text{CH}_3\text{CN}}$ for any set of concentrations. The data of Table 2 indicate relatively small solvent effects on $K_{A,\text{TH}_4^{2+}}$, $k_{t,\text{TH}_4^{2+}}$ and on k_3 , their product. There is a substantial positive salt effect in sulfate solutions. The cause of this effect remains to be determined.

REFERENCES

1. N. N. Lichtin, Report No. NSF/RANN/SE/AER/72-03579/A03/75/4, April 15, 1976, pp. 15-20.
2. H. W. Meyer and W. D. Treadwell, *Helv. Chim. Acta*, 35, 1444 (1952).
3. P. D. Wildes, N. N. Lichtin and M. Z. Hoffman in *Proceedings of the International Symposium on Solar Energy of the Electrochem. Soc.*, Washington, D.C., May 5-7, 1976, p. 128.
4. P. D. Wildes, N. N. Lichtin and M. Z. Hoffman, *J. Amer. Chem. Soc.*, 97, 2288 (1975).

APPENDIX I

Time and Effort Devoted by
Principal and Co-Principal Investigators
and Other Personnel

Summer 1976 Sept. 1, 1976 - April 30, 1977

N. N. Lichtin, Principal Investigator	1 man mo.	1 man mo.
M. Z. Hoffman, Co-Principal Investigator	1 man mo.	0.9 man mo.
T. L. Osif, Research Associate	-	8 man mos.
S. Ray, Graduate Student	1 man mo.	2 man mos.