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E N E R G Y  EXTRACTION CHARACTERISTICS O F  HOT DRY ROCK GEOTHERMAL SYSTEMS* 

J .  W .  Tester  and M. C .  Smith 

Los Alamos S c i e n t i f i c  Laboratory, University of Cal i fornia  
L o s  Alamos, New Mexico 87545 

Abstract  

The LASL Hot Dry Rock Geothermal Energy Project  i s  invest igat ing methods t o  ex t r ac t  energy a t  useful 
temperatures a n d  r a t e s  from na tura l ly  heated c rus ta l  rock in locat ions where the rock does not spontane- 
ously y i e ld  n a t u r a l  steam or hot water a t  a r a t e  s u f f i c i e n t  t o  support commercial u t i l i z a t i o n .  
concepts a r e  discussed f o r  appl ica t ion  t o  low a n d  high permeability formations. 
vest igated f i r s t  i s  intended f o r  use in formations of low i n i t i a l  permeabili ty.  I t  involves producing 
a c i r cu la t ion  system within the h o t  rock by hydraulic f rac tur ing  t o  c rea te  a l a rge  crack connecting two 
d r i l l e d  holes,  then operating the system as a closed pressurized-water heat-extract ion loop. With the 
best  i n p u t  assumptions t h a t  present knowledge provides, the f luid-f low a n d  heat-exchange ca lcu la t ions  
ind ica te  t h a t  unpumped (buoyant) c i rcu la t ion  through a large hydraulic f rac ture  can maintain a comnier- 
c i a l l y  useful r a t e  of heat ex t rac t ion  t h r o u g h o u t  a useful ly  long system l i f e .  With a power cycle 
designed f o r  the temperature of the f lu id  produced, t o t a l  cap i ta l  investment a n d  generating cos t s  a r e  
estimated to  be a t  l e a s t  competitive with those of fos s i l - fue l - f i r ed  a n d  nuclear e l e c t r i c  p l an t s .  
paper discusses  the potent ia l  of the hot dry rock resource,  various heat ex t rac t ion  concepts,  predict ion 
of reservoi r  Performance, and economic f ac to r s ,  and summarizes recent  progress in the LASL f i e l d  program. 

Several 
The method being in- 

This 

RESOURCE POTENTIAL 

An extraordinary combination of high rock tempera- 
t u re ,  a h i g h  geothermal temperature gradient ,  
adequate matrix o r  f r ac tu re  permeabili ty,  suf-  
f i c i e n t  i n  s i t u  water supply,  a n d  reasonable 
r e se rvo i r  pressures i s  required f o r  a natural  
hydrothermal resource to  be p rac t i ca l ly  i f  not 
economically f eas ib l e .  Even w i t h  the  in t r in s i ca l -  
ly  low probabi l i ty  t h a t  a l l  these conditions wil l  
be met, the United S ta t e s  Geological Survey (USGS) 
[ l ]  es t imates  t h a t  vapor and l iqu id  dominated 
systems could be used t o  recover about 1.5 x 102'J 
(1500 x 10 l5  BTU o r  1500 quads) of energy as heat 
f r o m  hydrothermal reservoi rs  w i t h  i n i t i a l  tempera- 
t u re s  above 150°C. 
by Diment, e t  al. [2] and McGetchin, e t  al. [3] one 
can expand the geothermal resource base to  include 
hot dry rock ( H D R )  geothermal energy stored as  
heat i n  c rus ta l  rock ho t t e r  than 150°C beneath the 
Uni ted  S ta t e s  ( including Alaska and Hawaii) a t  
depths l e s s  than 10  km.  
1OZ1J  (13,000,000 quads) [3]. 

As McGetchin, e t  a l .  [3] point ou t ,  two general 
heat-source categories  of H D R  e x i s t :  ( 1 )  igneous- 
r e l a t ed  c rus ta l  heat caused by magma bodies and 
( 2 )  conductional heat from the deep i n t e r i o r  of 
t he  ea r th .  
molten and c rys t a l l i zed  igneous systems to  depths 

Using the  approach suggested 

This amounts t o  13,000 x 

Smith a n d  Shaw [4] es t imate  tha t  

of 10 km in the conterminous U.S. cont r ibu te  about 
105 x 1021J (105,000 quads) t o  the  H D R  resource 
base. 
1OZ1J (74,000 quads) e x i s t  as  heat in rock a t  
temperatures over 150°C to  depths of 10 k m .  
r e s u l t s  of Diment, e t  al. [ Z ]  suggest t h a t  a t  l e a s t  
5% of the to t a l  U.S .  land area has underlying rock 
w i t h  geothermal gradients  of 40"C/km or more. I n  
a s imi la r  conservative approach, one could assume 
t h a t  over 33% of the U.S. land area i s  character-  
ized by above average heat flow and gradients  
ranging from 30 t o  36"C/km [5]. 

T h e  H D R  heat content es t imates  discussed above 
represent  the resource base and not the amount of 
heat t h a t  can be recovered. I f  only a small f r ac -  
t i on  (%0.2%) of the ava i lab le  13,000,000 quads of  
the  H D R  resource base i s  recoverable as  hea t ,  this 
would be comparable t o  the  energy content of a l l  
the coal remaining in the U.S. 

The useful heat contained i n  a HDR resource can be 
depicted on a graph of rock temperature versus 
d e p t h .  The case shown i n  Figure 1 i s  f o r  a mean 
gradient  of 30"C/km with u t i l i z a b l e  temperatures 
taken above 100°C a t  1 . 6  km t o  220°C a t  6 kni 
(assumed maximum economically d r i l l a b l e  depth) 
with a minimum f lu id  r e in j ec t ion  temperature of 
60°C. 

McGetchin, e t  al. [3] es t imate  t h a t  74 x 

The 

*Work done under the  auspices o f  the  U.S. Energy 
Research and Development Administration. 
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Figure 1 .  Generalized geothermal tempera- 
ture gradient  d i a g r a m  f o r  a 30"C/km H D R  
resource base. Cross-hatched area repre- 
s en t s  useful heat contained above 100°C 
t o  a depth of 6 k m .  

E N E R G Y  EXTRACTION CONCEPTS 

Reasonable r a t e s  of energy ex t rac t ion  and s u f f i -  
c i e n t  reservoi r  l i fe t imes  (2.20 y r  or g rea t e r )  from 
HDR systems can be achieved using two fundamental 
approaches t o  mining the heat [SI .  
formation permeabi l i t ies  a r e  low then a n  a r t i f i c i a l  
system must be created to  expose a c i r cu la t ing  heat 
t r ans fe r  f l u i d  (e.g.  water) t o  hot rock by c rea t -  
i n g  high conductance flow passages w i t h  a s u f f i -  
c i en t ly  la rge  hea t - t ransfer  surface area.  
case,  recovery of a large f r ac t ion  of injected 
f l u i d  may be achieved qui te  e a s i l y  by taking ad- 
vantage of natural  containment provided by the low 
formation permeabili ty.  Extraction methods develop- 
ed f o r  these formations should a l so  be d i r ec t ly  
appl icable  t o  the  s t imulat ion of some sub-economic 
hydrothermal systems. I f  permeabi l i t ies  a r e  high, 
the problem of c i r cu la t ing  f l u i d  i s  probably n o t  as  
demanding as  containment and recovery of the f lu id  
and 
rock sur face .  Approaches used f o r  recovery of gas 
and o i l  by water-drive or  flooding methods may be 
qu i t e  appl icable  [7]. Both production- and 
injection-well  a r rays  would be required and arrang- 
ed i n  a manner t o  minimize f l u i d  loss  t o  surround- 
i n g  permeable formations a t  the  perimeter of the 
devel oped f i e l  d . 
Figure 2 depic t s  several  possible concepts fo r  low 
pernieabi 1 i t y  formations. 
present ly  being invest igated by the Los Alamos 
S c i e n t i f i c  Laboratory ( L A S L )  [6,  81. I n  Figure Z A ,  
the  f i r s t  concept i s  introduced. A s ing le  ver t ica l  
h jdrau l ic  f r ac tu re  is  grown from one wellbore by 
f l u i d  pressurizat ion t o  c rea t e  the required surface 
area f o r  heat ex t rac t ion .  
completed by d i r ec t iona l ly  d r i l l i n g  a second 

I f  _-  in s i t u  

I n  t h i s  

insuring uniform f l u i d  contact  with the  h o t  

These concepts a re  

The downhole system i s  
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Figure 2 .  Single a n d  mult iple  
f r ac tu re  concepts appl icable  t o  
low permeability formations. 
Fracture planes divided a t  a 
ve r t i ca l  ax is  of symmetry. 

wellbore t o  i n t e r sec t  the f r ac tu re  plane with suf-  
f i c i e n t  separation from the f i r s t  wellbore to  
avoid flow shor t -c i rcu i t ing .  Pressurized f l u i d  
would then be c i rcu la ted  down one hole through the 
fractured region to  remove energy from the rock. 
and recovered in a second hole connected t o  the 
surface where heat could be ex t rac ted .  Because 
reservoi rs  of t h i s  type would most 1 i kely be formed 
a t  depths s u f f i c i e n t  t o  insure t h a t  the  l e a s t  
principal ea r th  s t r e s s  i s  in the horizontal  plane,  
the hydraulic f r ac tu re  should have a nea rve r t i ca l  
o r i en ta t ion ;  and assuming t h a t  the  s t r e s s  f i e l d  is  
uniform a n d  the physical s t rength proper t ies  o f t h e  
formation a r e  approximately isotropic a n d  homo- 
geneous, an ideal f rac ture  of c i r c u l a r  shape w i t h  
e l l i p t i c a l  cross  sect ion should be formed [6,8,10]. 
Fracture r ad i i  would be typ ica l ly  100 m o r  g rea t e r  
with widths of a few mill imeters in c ross  sec t ion .  
Because the  inherent ly  low thermal conduct ivi ty  of 
the rock quickly controls  the r a t e  of heat t r ans fe r  
t o  the c i r cu la t ing  f l u i d ,  l a rge  f r ac tu re  sur face  
a reas  a r e  required.  I n  order t o  optimize the  per- 
formance of a reservoi r  of t h i s  type,  f l u idshou ld  
contact  a s  much of the f rac ture  surface as  poss ib le ,  
taking advantage of the natural  buoyant e f f e c t s  
between the cold and h o t  holes connected t o  the  
f r ac tu re .  Fracture conductances o r  permeabi l i t ies  
f o r  s e l f -  o r  pressure-propped f r ac tu res  should be 
su f f i c i en t ly  high t o  permit buoyant c i r cu la t ion  
between the  i n l e t  a n d  ou t l e t  points  of the  system. 
Furthermore, the t o t a l  pressure drop through the 
e n t i r e  surface and downhole heat ex t rac t ion  loop 
could be low enough f o r  buoyant forces  t o  " s e l f -  
pump" the system. 
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I f  theriiial exhaustion of the reservoir  occurs 
because of  i t s  rock conduction-1 imi ted charac te r i s -  
t i c ,  remedial treatiiient t o  s t imulate  production i s  
possible .  By proper or ien ta t ion  of the boreholes 
in a p a r a l l e l ,  incl ined arrangement as  shown i n  
Figure 2A, addi t ional  f rac tur ing  might be used to  
provide new surface area in a hot region of rock. 
Sidetracking of the  or ig ina l  wellbores t o  a new 
region and  re f rac tur ing  m i g h t  a l so  be a n  a t t r ac -  
t i ve  method of re-s t imulat ion.  As suggested by 
Harlow and Pracht ' s  ea r ly  modeling [9] of H D R  energy 
ex t r ac t ion ,  removal o f  heat from the v i c in i ty  of 
the f r ac tu re  sur face  may introduce su f f i c i en t  
thermal contract ion and induced s t r e s ses  t o  cause 
addi t ional  cracking of the  rock. I f  these thermal 
s t r e s s  cracks propagate in  such a way as toprovide 
access ib le  flow channels fo r  the c i rcu la t ing  f lu id ,  
as  shown in Figure Z B ,  the  performance a n d  l i f e -  
time of the reservoi r  wil l  be substantiallyenhanced. 
Thermal s t r e s s  cracking of t h i s  type increases the 
heat t r ans fe r  e f f i c i ency  by forming a n  extended 
surface penetrat ing in to  the  hot te r  regions of the 
formation. 
even i f  thermal s t r e s s  cracking does not occur, 
the thermal contract ion of the rock wil l  increase 
the f r ac tu re  gap width, thus allowinq buoyancy 
e f f e c t s  t o  sweep f l u i d  more uniformly over the 
ava i lab le  f r ac tu re  surface a rea .  

As McFarland and Murphy [ l o ]  point o u t ,  

Assuming t h a t  thermal s t r e s s  cracking does n o t  occur 
i n  the  manner described by Harlow and Pracht [ 9 ]  
and t h a t  la rge  s t a b l e  f r ac tu re  areas  cannot be pro- 
duced, mult iple  pa ra l l e l  f rac tur ing  from a pair  of 
pa ra l l e l  incl ined boreholes,  as  suggested by Raleigh, 
e t  a1 [ I ] ]  and  R .  M .  Po t te r  of LASL and analyzed by 
Gringarten,  e t  al .[12],  may provide a t r ac t ab le  
technique f o r  generating s u f f i c i e n t  surface area to  
maintain reservoi r  l i f e t ime .  

In addi t ion t o  the  two-spot, f ive-spot ,  and s imilar  
peripheral  f looding techniques f o r  water-drive in 
h i g h  pernieability formations ( see  re f  [ 7 ] )  , another 
concept m i g h t  be ab le  t o  provide good water re -  
covery and maintain uniform contact  between the 
c i r cu la t ing  f l u i d  and reservoi r  rock. Figure 3 
shows a system c o n s i s t i n g  o f  three para l le l  f r a c -  
tu res  of s imi l a r  a rea .  
f r ac tu re  serves  as  the  f l u i d  in jec t ion  surface while 
the two outs ide  f r ac tu res  receive f lu id  by per- 
meation through the  rock. I f  near uniform plug 
flow can be maintained in such a system, reservoir  
l i f e t ime  wi l l  be determined by the heat content of 
the contained rock volume. 

Additional discussion of an t ic ipa ted  performance 
and economics f o r  the system described above i s  
presented i n  l a t e r  sec t ions .  

RESERVIOR PERFORMANCE 

The cen t r a l ly  located 

Single  and Multiple Fracture Concepts - (low per- 
mea b i  1 i t y  f orma t i  on s ) 

The predicted l i f e t ime  and the ra'te a t  which energy 
can be ex t rac ted  from a s ingle  f r ac tu re  depend on 
several  major f ac to r s  [9,10,12]: 

( 1 )  thermal conduct ivi ty  of the rock, X r  

CASED 

LOWER 
PRESSURE 

Figure 3 .  Double para l le l  f r ac tu re  
water dr ive  concept f o r  ex t rac t ion  of 
H D R  energy appl icable  t o  high per- 
meabili ty formations.  Fracture planes 
divided a t  a ve r t i ca l  ax is  of symmetry 

_ -  ( 2 )  

( 3 )  

access ib le  surface area of the 
f r a c t u r e ,  A 
r a t e  and d i s t r ibu t ion  of f lu id  flowing 
across  the  f r ac tu re  sur face .  

A simplif ied approach t o  es t imat ing reservoi r  per- 
formance would assume t h a t  a cer ta in  f rac t ion  n 
o f  the recoverable power, corresponding touniform 
flow across  t h e  face  of the  f r a c t u r e ,  c o u l d  be  
extracted.  By following a procedure suggested by 
McFarland and Murphy [ lo]  a n d  analogous to  the 
approach of Gringarten,  e t  a l .  [12] f o r  mu1 t i p l e  
para1 le1 f r ac tu res  , the  recoverable power, P (  t )  
in J / sec ,  f o r  uniform flow can be expressed as :  

where : 
A=nR2= area of one face of the f r ac tu re ,  m 2  
C = heat capaci ty  of water = 4200 J/kgK 
C';r = heat capaci ty  of gran i te  = 1000 J/kgK 
m = water flow r a t e  through the f r ac tu re ,  

R = f r ac tu re  rad ius ,  m 
t = time, sec 
T = mean rock temperature, " C  
Tmin = f l u i d  r e in j ec t ion  temperature, 69°C 

kg/sec 



X r  : = thermal conductivity of g ran i t e ,  
3.0 W/mK 

, P,. = rock densi ty ,  k g / m 3  

McFarland and  Murphy [ lo]  compare P ( t )  t o  estimated 
values which account fo r  non-uniform flow across 
the access ib le  f rac ture  a rea .  Fluid buoyancy a n d  
convection e f f e c t s  within a n  ideal f r ac tu re  as well 
as  t r ans i en t  conduction of heat through the sur-  
rounding rock a re  t reated in a numerical solut ion 
of the  four  coupled two-dimensional non-linear 
p a r t i a l  d i f f e ren t i a  1 equations describing con t inu- 
i t y ,  f l u i d  momentum, a n d  rock and f lu id  energy 
balances. Depending on the location a n d  separat ion 
of f l u i d  in jec t ion  and  recovery points within the 
f r ac tu re  and the internal  f r ac tu re  permeabili ty 
(gap w i d t h  versus r ad ius ) ,  the recovered f rac t ion  
of power q may vary from 2.0.4 t o  0 . 9 .  When these 
condi t ions a r e  f ixed,  Eq.  ( 1 )  shows t h a t  P ( t )  
depends d i r ec t ly  on the e r ro r  function of 

&] f o r  constant rock and f lu id  propert ies  

’ .  Consequently, reasonably ac-  
where = “J  cw 
cura te  predict ions of reservoi r  1 ifetime can be 
made f o r  specif ied ideal f r ac tu re  s i zes  and  flow 
r a t e s .  Figure 4 presents parametric r e s u l t s  f o r  
the power r a t i o  ( P ( t ) / P ( t = o ) )  versus time t using 
d i f f e r e n t  values of m w / R 2  t o  generate a family of 
curves f o r  a g ran i t i c  H D R  reservoi r .  

0 10 20 30 
t , Y E A R S  

Figure 4 .  Parametric thermal power 
drawdown curves f o r  a s ing le  f r ac tu re  
n = 0.9,  T = 60°C - min 

Legend , 
m w / R 2 ,  kg/m2-sec 
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The quant i ty  i w / R 2  r e f l e c t s  the I I I ~ S S  flow capaci ty 
of the system fo r  a given accessible  f r ac tu re  a rea .  
Gringarten,  e t  al .  [12]  present e laborate  power a n d  
temperature drawdown curves for  riiul t i p l e  para1 le1 
f r ac tu re  systems showing the e f f ec t s  of var iab le  
f r ac tu re  number and  spacing. 

Neither the approach presented here nor the one 
presented by Gringarten, e t  al. [ I 2 1  include any 
beneficial  e f f ec t s  caused by thermal s t r e s s  crack- 
ing. Harlow a n d  Pracht [9],  using a sirriplified 
model, were able  to  denionstrate that  subs tan t ia l  
enhancement of reservoir  perfortitance could be 
an t ic ipa ted .  The mechanisms associated with 
thermal s t r e s s  cracking a re  ex t raord inar i ly  complex 
and not we1 1 understood even under we1 1 -defined 
laboratory condi t ions.  Consequently, LASL will  
use i t s  f i e l d  reservoir  as a way o f  ident i fying 
-- in s i t u  thermal s t r e s s  e f f e c t s .  I t  i s  important 
t o  emphasize t h a t  economically acceptable r a t e s  of 
energy extract ion ($50 kg/sec per pa i r  o f  wel l s )  
and reservoir  l i fe t imes  (220 y r )  may be achieved 
by e i t h e r  growing large f r ac tu res  ( R  % 1000 m ) ,  
using smaller multiple para l le l  f r ac tu res ,  or  by 
remedial refractur ing t o  generate new surface a rea .  

Water-drive Concepts (high perrneabil - -  i& formations) 

Fluid flow d i s t r ibu t ion  a n d  r a t e  through the rock 
matrix,  the amount of access ib le  f r ac tu re  surface 
a rea ,  and the formation permeability a r e  the major 
f ac to r s  in control l ing the performance of water- 
dr ive systems l ike  the double para l le l  f r ac tu re  
system described in Figure 3.  Assuming plug flow 
and good heat t r ans fe r  contact  between f l u i d  and 
the  matrix contained by the para l le l  f r a c t u r e  s e t ,  
the  mean l i fe t ime 7 o f  the  system can be estimated 
from an energy balance: 

CrAL ~ ~ ( 1 - 0 )  
( 2 )  

- 
T =  

&WCW 

where 
L = spacing between outer  f r ac tu res ,  m 
e = porosity 

with the remaining terms defined by E q .  ( 1 ) .  

Because the double para l le l  f rac ture  system r e l i e s  
on d i r e c t  contact with the matrix t o  e x t r a c t  heat ,  
subs tan t ia l  amounts of rock surface a r e  exposed t o  
c i r cu la t ing  f lu id  c rea t ing  an ideal s i t u a t i o n  f o r  
-~ i n  s i tu solut ion mining i f  there  a re  any elements 
contained in the reservoi r  t h a t  might be econom- 
i c a l l y  recovered. The  permeability a l s o  i s  
important because by Darcy’s l aw i t  r e l a t e s  hW, A ,  
and L f o r  a given pressure d r o p  and v i scos i ty :  

where - 
k = mean permeabili ty,  m 2  or darcies  
L, = f lu id  v i scos i ty ,  Pa-sec 

;I = volumetric flow r a t e  = mW/pw, m3/sec 

AP = pressure drop between in jec t ion  and 

pw = f l u i d  densi ty ,  kg /m3 

recovery f r ac tu res ,  Pa . 

! 
(3) 



Pumping; power w i l l  depend d i r e c t l y  on { A P ;  conse- 
q a e n t l y  an optimum r e l a t i o n s h i p  between A and L 
w i l l  r e s u l t  depending on and p r e v a i l i n g  economic 
c o n d i t i o n s .  An upper l i m i t  f o r  A P  i s  f i x e d  by the  
d i f f e r e n c e  between t h e  fo rma t ion  breakdown p ressu re  
and the  ambient pore  pressure .  F r a c t u r e  a r e a m i g h t  
a l s o  have a p r a c t i c a l  upper limit s p e c i f i e d  by & 
situ s t r e s s  aEd geo log ic  c o n d i t i o n s  (e .g .  con- 
t a c t s ) .  
s e p a r a t i o n  d i s t a n c e s  would be d e s i r a b l e  t o  reduce 
pumping power. If k i s  l a r g e ,  s m a l l e r  areas and 
l a r g e r  s e p a r a t i o n  d i s tances  would be acceptab le .  

LASL FIELD PROGRAM 

A t  t h e  Fenton H i l l  s i t e ,  about  32 km (20  m i )  west 
o f  Los Alamos, the  conceptua l  hea t  e x t r a c t i o n  
system shown s c h e m a t i c a l l y  i n  F i g u r e  2 i s  now 
be ing  i n v e s t i g a t e d  i n  low p e r m e a b i l i t y ,  Precambrian 
c r y s t a l l i n e  r o c k  u n d e r l y i n g  t h e  Jemez P la teau  o f  
Nor the rn  New Mexico. I n i t i a l  e f f o r t s  have been 
d i r e c t e d  toward t h e  two-borehole s i n g l e - f r a c t u r e  
concept.  The f i r s t  24.5 cm (9-5 /8  i n )  d iameter  
boreho le  (GT-2) was d r i l l e d  t o  a f i n a l  depth  o f  
2930 m (9610 f t ) ,  where the  r o c k  tempera ture  was 
197"C, and was used f o r  a l o n g  s e r i e s  o f  h y d r a u l i c -  
f r a c t u r i n g ,  c rack -ex tens ion ,  p r e s s u r i z a t i o n ,  and 
f l u i d - l o s s  s t u d i e s .  I t  was determined t h a t  a 
su r face  pumping p ressu re  o f  t h e  o r d e r  o f  120 bars  
(1750 p s i )  was s u f f i c i e n t  t o  f r a c t u r e  the  rock ,  
t h a t  t h e  f r a c t u r e s  produced were s u b s t a n t i a l l y  
v e r t i c a l  , and t h a t  t h e  o v e r a l l  p e r m e a b i l i t y  o f  t h e  
r o c k  was low enough ( l e s s  than one m ic rodarcy  a t  
h y d r o s t a t i c  p ressu re )  t o  c o n t a i n  p r e s s u r i z e d  water  
w i t h  accep tab ly  low permeat ion  l osses  [a], 
A f t e r  one o f  t h e  f r a c t u r e s  i n  GT-2 had been extend- 
ed t o  a c a l c u l a t e d  r a d i u s  o f  about  120 m (400 f t ) ,  
a second 24.5 cm (9-5/8 i n )  d iamete r  h o l e  (EE-1) 
was d r i l l e d  d i r e c t i o n a l l y  i n  an a t t e m p t  t o  i n t e r -  
s e c t  t h e  f r a c t u r e .  Because o f  u n c e r t a i n t i e s  con- 
c e r n i n g  t h e  az imu tha l  o r i e n t a t i o n  and v e r t i c a l  
h e i g h t  o f  t h e  f r a c t u r e  and i n  the  h o l e  surveys made 
d u r i n g  d r i l l i n g ,  t h i s  i n t e r s e c t i o n  d i d  n o t  occur .  , 
A f t e r  EE-1 had been d r i l l e d  t o  a f i n a l  depth  o f  
3064 m (10,053 f t) ,  where t h e  r o c k  temperature was 
206"C, ano the r  h y d r a u l i c  f r a c t u r e  was made f rom it, 
a t  a surface pumping p ressu re  of 165 bars  (2400 
p s i ) .  T h i s  d i d  produce a connect ion  t o  GT-2, 
c r e a t i n g  a con t inuous  f l o w  l o o p  th rough t h e  two 
w e l l b o r e s  and a connected system o f  h y d r a u l i c  
f r a c t u r e s .  

If k i s  low, l a r g e  areas  and smal l  

I n v e s t i g a t i o n  o f  t h e  p ressu re - f l ow  behav io r  o f  t h e  
connected EE-l/GT-Z system under t r a n s i e n t  and 
s teady  s t a t e  c o n d i t i o n s  con t inued  a l o n g  w i t h  the  
development of  downhole i ns t rumen ts  and techn iques  
( i n c l u d i n g  temperature,  a c o u s t i c ,  and t r a c e r  con- 
c e n t r a t i  on measurements ) f o r  de te rm in ing  boreho le  
and f r a c t u r e  geometry [6,8,13]. 
t h e  mapping and p r e s s u r i z a t i o n  exper iments suggest 
t h a t  t h e  h y d r a u l i c  f r a c t u r e s  l e a v i n g  EE-1 and GT-2 
a r e  n e a r l y  v e r t i c a l  and e s s e n t i a l l y  para1 l e 1  b u t  
separa ted  by  % l o  m o f  b i o t i t e  g r a n o d i o r i t e  w i t h o u t  
any d i r e c t  f r a c t u r e  i n t e r s e c t i o n .  The n a t u r e  o f  
t h e  f l o w  p a t h  th rough  t h e  r o c k  s e p a r a t i n g  t h e  two 
ma jo r  f r a c t u r e s  i s  s t i l l  b e i n g  i n v e s t i g a t e d ,  b u t  
i t s  f l o w  behav io r  has been adequate ly  modeled by 
F i s h e r  [13] assuming a pressure-dependent permeat ing 

Data ob ta ined  f rom 

I 

system o f  secondary m i c r o f r a c t u r e s  spaced 1 t o  10 
m a p a r t  con ta ined  between t h e  ma jo r  f r a c t u r e  
fea tures  [13]. The main h y d r a u l i c  f r a c t u r e s  appear 
t o  be se l f -p ropped and i i i a in ta in  h i g h  f r a c t u r e  con- 
ductances even a t  p ressures  we1 1 below the  minimum 
e a r t h  s t r e s s .  Thus w i t h  a d i r e c t  connect ion  t o  
t h e  f r a c t u r e  w i t h  two we l l bo res ,  buoyant c i r c u l a -  
t i o n  shou ld  be p o s s i b l e .  Consequently, the  h i g h  
p ressu re  drop  p e r  u n i t  f l ow  r a t e  (impedance) o f  
% l . l  x l o 4  MPa-sec/m3 (100 psi /gpm) t h a t  charac- 
t e r i z e s  the  p resen t  EE-l/GT-2 systenl r e s i d e s  
p r i m a r i l y  i n  t h e  over lapped rock  r e g i o n  con ta ined  
between t h e  v e r t i c a l ,  p a r a l l e l  f r a c t u r e s  o f  GT-2 
and EE-1. O f  t h e  t o t a l  impedance, o n l y  about 
0.055 x l o 4  MPa-sec/m3 ( 5  psi /gpm) can be a t -  
t r i b u t e d  t o  t h e  combined t o t a l  w e l l  bo re - to -  
f r a c t u r e  p ressu re  drop .  

To a v o i d  an u n s t a b l e  s i t u a t i o n  where e i t h e r  o f  t he  
h y d r a u l i c  f r a c t u r e s  extends w i t h o u t  1 i m i  t, t h e  
s u r f a c e  p ressu re  o f  i n j e c t e d  water  must be kep t  
below about 9 .4  MPa (1360 p s i ) .  An impedance o f  
1.1 x l o 4  MPa-sec/m3 (100 psi /gpm) t h e r e f o r e  l i m i t s  
t h e  f l o w  r a t e  t o  something l e s s  than 1 x 10-'in3/ 
sec (15 gpm), w e l l  below t h e  nominal 2 x 10-'m3/ 
sec (300 gpm) r e q u i r e d  t o  ope ra te  a 10  MW(t) heat  
e x t r a c t i o n  exper iment .  

A t  t h i s  p o i n t ,  seve ra l  a1 t e r n a t i v e  methods were 
cons idered t o  reduce t h e  f l o w  impedance: 

1. A d d i t i o n a l  f r a c t u r e  ex tens ion  o r  growth t o  

2. 

3. 

i nc rease  t h e  over lapped area .  
S e l e c t i v e  d i s s o l u t i o n  o f  q u a r t z  f rom the  
r o c k  m a t r i x  con ta ined  between the  f r a c t u r e s .  
R e d r i l l i n g  ( s i d e t r a c k i n g )  one h o l e  t o  
d i r e c t l y  i n t e r s e c t  t he  f r a c t u r e  o r i g i n a t i n g  
f rom t h e  o t h e r  ho le .  

A1 though f r a c t u r e  ex tens ion  i n  E E - 1  has been 
achieved w i t h  l i t t l e  o r  no d i f f i c u l t y  i n  ou r  f i e l d  
.experiments and i n  f a c t  decreased t h e  impedance t o  
0.83 x l o 4  MPa-sec/m3 (75 psi /gpm),  massive ex ten-  
s i o n  o f  t h e  EE-1 f r a c t u r e  system d i d  n o t  reduce the  
impedance t o  t h e  va lue  o f  5.5 x l o 2  MPa-sec/m3 
( 5  psi/gpm) o r  l e s s  r e q u i r e d  f o r  a 10 MW(t) heat  
e x t r a c t i o n  r a t e .  A d d i t i o n a l  ex tens ion  o f  t he  GT-2 
f r a c t u r e  system f i n a l l y  became i m p o s s i b l e  because 
o f  an annulus l e a k  t h a t  developed around t h e  tub -  
i n g  used t o  p r e s s u r i z e  t h e  ho le .  

The use o f  chemica ls  t o  s e l e c t i v e l y  d i s s o l v e  rock  
i n  f r a c t u r e d  o i l  o r  gas r e s e r v o i r s  t o  i nc rease  
f o r m a t i o n  p e r m e a b i l i t y  o r  conductance i s  i n  
p r a c t i c e  today. I n  p a r t i c u l a r ,  a c i d  t rea tmen t  o f  
carbonate  fo rma t ions  i s  commonly used t o  i nc rease  
o i l  and gas p r o d u c t i o n .  I n  an analogous fash ion ,  
t h e  s e l e c t i v e  d i s s o l u t i o n  o f  q u a r t z  (SiOn) was 
thought  t o  be an e f f e c t i v e  method f o r  decreas ing  
t h e  h i g h  f l o w  impedance t h a t  p r e s e n t l y  cha rac te r -  
i z e s  t h e  EE-l/GT-2 f r a c t u r e  system. Labora to ry  
exper iments conducted d u r i n g  t h e  p a s t  yea r  a t  LASL 
have demonstrated t h a t  d i l u t e  aqueous s o l u t i o n s  
(0.1 t o  4 .0  N) o f  sodium carbonate  (Na2C03) r e a c t  
w i t h  EE-l/GT-2 co re  specimens t o  d i s s o l v e  Si02 
p r i m a r i l y  by a t t a c k i n g  the  q u a r t z  component o f  t h e  
g r a n i t e  [ Id ] .  

The r e a c t i o n  i s  s u f f i c i e n t l y  i r r e v e r s i b l e  t o  
r e s u l t  i n  e s s e n t i a l l y  s t o i c h i o m e t r i c  convers ion  o f  

! 
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c r y s t a j l i n e  s i l i c a  ( S i 0 q c ) )  in to  a soluble form. 
.$la,CO, a c t s  t o  buffer  the solut ion in to  the moder- 

, a t e l y  basic region (‘‘.pH=lO) a n d  thus provides an  
ac t ive  source of hydroxide ions (O t1 - )  which can 
r eac t  with dissolved s i l i c i c  acid Si(OH), t o  form 
soluble  rnetasil i ca t e s  , thus increasing the e f -  
fec t ive  s o l u b i l i t y  o f  s i l i c a .  

SiOn(c)  + 2 H ~ 0  + nOH- = Si(OH)i:n 

I n  order  t o  optimize the design of a f i e l d  experi-  
ment f o r  carbonate leaching, a s e r i e s  of laboratory 
t e s t s  was performed to  co l l ec t  d a t a  on the re-  
act ion k ine t i c s  of Na2C03 solut ions on gran i te  and 
on the f l u i d  flow cha rac t e r i s t i c s  expected in the 
reservoi r .  In e f f e c t ,  we would l i ke  t o  control 
the  locat ion and extent  of s i l i c a  dissolut ion in 
the system. Reaction k ine t ic  data t e l l s  us how 
f a s t  s i l i c a  dissolves  as a function of time, a n d  
f luid-residence-t ime data col lected in the E E - 1 /  
GT-2 reservoi r  t e l l s  us how long the reacting 
f l u i d  wi l l  be exposed to  the reservoir  rock .  By 
combining t h i s  information we can s e l e c t  solut ion 
concentration and volumes f o r  specif ied flow ra t e s  
t o  insure t h a t  the carbonate will  n o t  be expended 
before i t  reaches the zone of high impedance. 

Based on laboratory reaction r a t e  measurements 
[14], a composition of 1-Normal Na2C03 was 
se lec ted  f o r  the f i e l d  t e s t .  To evaluate  
prec ise ly  the  condition of  the f rac ture  system 
before leaching was attempted, approximately 
1000 m 3  (275,000 g a l )  of water were pumped t h r o u g h  
i t  a n d  a res idence-t ime-dis t r ibut ion study was 
made by in j ec t ing  a pulse of sodium-fluorescein 
dye in to  E E - 1 ,  and monitoring i t s  appearance a t  
the GT-2 wellhead a s  a function of time and 
throughput volume. Then 190 m 3  (50,000 g a l )  of 
1N Na2C03 solution--about 5 fracture-volumes--were 
pumped t h r o u g h  in a 25-hour period a t  a constant 
pumping pressure of 83 bars (1200 p s i ) .  Final ly  
t h e  system was thoroughly flushed w i t h  water and 
the  dye-inject ion residence-time study was repeated. 
As was expected, a t  l e a s t  1000 kg ( 1  t o n )  o f s i l i c a  
was dissolved and removed with no s ign i f i can t  
e f f e c t  on system volume or residence time of the 
f l u i d .  Unexpectedly, however, instead of reducing 
flow impedance t h i s  chemical treatment increased 
i t  s l i g h t l y ,  from about 0.83 x l o4  MPa-sec/m3 (75 
psi/gpm) during pre-leach c i rcu la t ion  t o  about 
1.0 t o  1.1 x l o 4  MPa-sec/m3 (90  t o  100 psi/gpm) 
d u r i n g  post-leach f lushing.  Since these measure- 
ments were made a t  pressures too low t o  i n f l a t e  the 
f r a c t u r e s ,  one possible  explanation i s  t ha t  t h e i r  
self-propping i s  primarily by quartz grains which, 
being s t r e s s e d ,  were su f f i c i en t ly  attacked to  
permit p a r t i a l  c losure of the f r ac tu res .  Another, 
s ince  there  was considerable a t tack  of the cement 
behind the  E E - 1  casing,  i s  t h a t  the f r ac tu res  were 
p a r t i a l l y  plugged by residual f ines  from the cement. 
Plugging by mineral a l t e r a t i o n  i s  a t h i rd  possibi l -  
i t y ,  although t h i s  did not occur during leaching 
and permeabi l i ty  experiments on core samples in 
the  laboratory.  

I n  any case ,  the chemical d i sso lu t ion  atteiiipt was 
unsuccessful.  I t  i s  of course possible t h a t  ad- 
di t iona l  leaching with sodium carbonate w o u l d  
eventual ly  r e s u l t  in subs tan t ia l  increases  in 
matrix permeabili ty,  and  another poss ib i l i t y  i s  
acid treatment t o  dissolve the c a l c i t e  which i s  
the major secondary mineral t h a t  f i  1 1  s and  seal  s 
old f r ac tu res  in the c r y s t a l l i n e  rock. However, 
as  a r e s u l t  of successful development of more 
sophis t ica ted  downhole instruments and  we1 lbore- 
and fracture-mapping techniques,  i t  i s  f e l t  t h a t  
the geometry of the underground c i r cu la t ion  loop 
i s  now reasonably well understood. Accordingly, 
instead of attempting addi t ional  chemical t r e a t -  
ments, the  next e f f o r t  t o  improve i t  w i l l  be re-  
d r i l l i n g  t o  c rea te  the s ingle  f r ac tu re  system 
geometry shown in Figure 2 .  

Directional r e -d r i l l i ng  i s  now in progress a t  
Fenton H i l l ,  from near the bo t tom of hole GT-2.  
The d r i l l i n g  t a rge t  i s  the  hydraulic f r ac tu re  
or ig ina t ing  in E E - 1 ,  a t  a point about 100 m 
(300 f t )  above t h a t  a t  which the f r ac tu re  leaves 
the incl ined E E - 1  borehole. I f  t h i s  t a r g e t  i s  
reached a n d  the an t ic ipa ted  impedance reduction 
r e s u l t s ,  a surface air-cooled heat exchanger 
with 20 M W ( t )  capacity wil l  be assembled a n d  
operated f o r  several  months in order t o  i nves t i -  
gate  the  thermal , chemical , and mechanical 
behavior of the  e n t i r e  system, in pa r t i cu la r  t3 
study how thermal s t r e s s  cracking a n d  geochemical 
e f f e c t s  inf luence the performance of the reservoi r .  

ECONOMICS ___- 

Hot dry rock systems share s imi l a r  requirements 
w i t h  hydrothermal systems in order  t o  a t t a i n  
economic f e a s i b i l i t y .  In s t a l l ed  e l e c t r i c a l  gener- 
a t ing  cos t s  wil l  depend on geothermal well , f l u i d  
pumping and equipment cos ts  associated with the  
surface conversion plant  [ 5 ] .  Well and pumping 
cos ts  wil l  be control led by the  c h a r a c t e r i s t i c s  
of the r e se rvo i r ;  namely i t s :  

( 1 )  f luid-f low capaci ty  o r  product iv i ty ,  niw 
( 2 )  depth from sur face ,  Z 
( 3 )  f l u i d  composition 
( 4 )  pressure losses  
(5 )  l i f e t ime .  

All of the above have inherent uncer ta in t ies  
because the  de t a i l ed  charac’ter of the r e se rvo i r  i s  
f requent ly  unknown. This makes reservoi r  cos t  
es t imat ion d i f f i c u l t  and subjec t  t o  e r r o r .  S u r -  
face equipment cos t s ,  although eas i e r  t o  es t imate ,  
may be s t rongly  dependent on f l u i d  composition and 
therefore  a r e  a l s o  somewhat uncertain,  f o r  
example, i f  se r ious  scal ing o r  corrosion problems 
e x i s t .  For preliminary economic assessments, 
Milora and  Tester  [5] have developed a s implif ied 
approach based on de ta i led  analyses of several  
geothermal reservoi r  and power plant types.  The 
t o t a l  i n s t a l l e d  generating c o s t ,  including d r i l l -  
i n g  and  equipment re la ted  c o s t s ,  i s  expressed as  
a funct ion of geothermal f lu id  temperature ( T g f ) ,  
geothermal gradient  ( V T )  , *and reservoi r  capaci ty  
given by well flow r a t e  ( m w ) .  The model assumes 
a two-hole c i r cu la t ing  H D R  system. 



Weyl co.sts a s  shown by Milora and Tester [5] could 
bf represented a s  anexponential function of depth. 
Given the mean geothermal gradient ,  depth can be 
specif ied by T g f .  
optimized bi nary-fl  uid conversion cycle in $/ kW 
were expressed as a l i n e a r l y  decreasing function 
of Tgf in the range from 100 t o  3OOnC. This i s  
primarily due to  increased cycle e f f i c i ency  as Tgf  
increases thereby decreasing heat exchange require- 
ments. Assuming t h a t  an  appropriate working f lu id  
can be found in t h i s  temperature range t o  provide a 
u t i l i z a t i o n  e f f i c i ency  ( n u )  of a t  !east  60%, 
required to t a l  flow r a t e s  per kW (m/P, kg/sec-kW) 
can be estiiiiated froni the following equation: 

Equipment cos t s  f o r  a cost-  

kJ 2oo 

E 
5 
3 

n 
0 100 

where T = minimum heat r e j ec t ion  t e m e r a t u r e  
A 8  = a v a i l a b i l i t y ,  J/kg K o r  W-sec/kg K 

and a l l  temperatures a re  expressed i n  degrees K .  

For a given T 
a t ing c o s t  (Cy'can be estymated using the s e t  of 
generalized equations from Milora and  Tester  [5] 
i f  a uniform reservoir  productivity i s  assumed f o r  
20 years under self-puniped (buoyant-circulat ion)  
conditions.  Uniform productivity could be obtained 
by l a rge  f r a c t u r e s ,  multiple smaller f r a c t u r e s ,  
thermal s t r e s s  cracking enhancement, and/or 
remedial r e f r ac tu r ing .  To express the t o t a l  gen- 
e ra t ing  cos t  in d / k W h ,  additional assumptions a re  
required.  These include an 85% (7446 hlyr)  load 
f a c t o r ,  1 7 %  annual fixed-charge rate, and 0.13 C/kWh 
added t o  cover annual operating and maintenance 
c o s t s .  Furthermore, equipment costs  a r e  assumed 
not t o  decrease beyond 300°C because ant ic ipated 
d i f f i c u l t i e s  with scal ing in the primary heat 
exchanger (caused by a higher concentration of 
dissolved s i l i c a  and other ma te r i a l s )  wil l  o f f s e t  
the bene f i t s  of higher cycle e f f i c i ency .  

Figures 5 and 6 show the opt imum r e se rvo i r  con- 
d i t i o n s ,  well depth,and temperature f o r  a speci-  
f i e d  geothermal gradient  with nU=0.60 and 
To=26.7"C. I n  F igu re  5 ,  optimum temperatures and 
dep ths  correspond t o  a minimum i n  the  t o t a l  gener- 
g t i n g  cos t  as  a function of T f and V T  f o r  a fixed 
mw of 50 kg/sec. These optimj represent a trade- 
o f f  between well and equipment cos t s .  A t  a f ixed 
gradient ,  increasing temperature by d r i l l i n g  deeper 
increases cycle e f f i c i ency  and A B  in E q .  ( 6 ) ;  there-  
fore  m/P decreases and fewer wells a r e  required. 
In add i t ion ,  u p  t o  300'C equipment costs  would 
decrease. However increasing temperature by d r i l l -  
i n g  deeper increases  the cos t  per well .  
optimum o r  mininiurn generating cost  wil l  then occur 
where the re  i s  a balance among fewer, moreexpensive 
wells and l e s s  expensive equipment. 

As seen i n  Figure 6 ,  f o r  gradients  below 40°C/km 
and flow r a t e s  ranging from 10 t o  200 kg/sec, t o t a l  
cos t s  a r e  control led by well cos t s .  A t  higher 
gradients  and flow r a t e s  above 20 kg/sec, equipment 
costs  dominate. Above gradients  of 50"C/km, costs  
below 4$/kWh a r e  achieved f o r  well flow ratesequal  
t o  o r  g rea t e r  than 50 kg/sec. With proper design 
of a HDR r e se rvo i r ,  well flow r a t e s  of 100 kg/sec 

n u ,  V T ,  T f ,  a n d  i w ,  t o t a l  gener- 
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Figure 5.  Optimum reservoir  temperature as  a 
function of average geothermal gradient using 
the generalized cost  model presented in r e f .  
[5]. Optimum temperatures a n d  depths corres-  
pond t o  cos t  minima fo r  given gradients and  a 
well flow r a t e  of 50 kg/sec, nu=O.6O and To 
26.7"C (1976 d o l l a r s ) .  

Figure 6. Estimated cos t  minima as  a function 
of average geothermal gradient  fo r  a s e r i e s  of 
well flow r a t e s  with nu=0.60 and T0=26.7"C 
(1 976 dol l a r s )  . 



- 
0% ' g r6a te r  shou ld  be p o s s i b l e .  For  these cases, 

-'Sgenerating c o s t s  would be 30/kWh o r  below f o r  
' g r a d i e n t s  o f  40"C/kiii o r  above. I f  n o n - e l e c t r i c  

uses a r e  i n t roduced ,  economic f e a s i b i l i t y  o f  HDR 
systems even w i t h  g r a d i e n t s  o f  20 t o  30"C/km i s  
p o s s i b l e  f o r  w e l l  f l o w  r a t e s  cons ide rab ly  below 
50 kg/sec. 

F i g u r e  5 shows t h a t  optimum r e s e r v o i r  temperatures 
i n c r e a s e  as t h e  geothermal g r a d i e n t  inc reases  t o  
%70°C/km where the  optimum temperature s tays  a t  
3OOOC u n t i l  'L 140"C/km. A t  300"C, the  cons tan t  
equipment c o s t  c o n s t r a i n t  f i x e s  t h e  optimum 
u n t i l  g r a d i e n t s  ove r  140"C/kni a r e  reached. I f  
t h i s  c o n s t r a i n t w e r e  n o t  a p p l i e d  the  cu rve  m igh t  
f o l l o w  the  d o t t e d  l i n e  shown i n  F i g u r e  5 u n t i l  a 
d r i l l i n g  tempera ture  l i m i t  i s  approached. 
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