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ABSTRACT

The improvement in the method of large deflection

elastic-plastic analysis of shells and other structures

appears to have continued interest. With the development
in this work an improved numerical suppression scheme is
now available for the large deflection elastic-plastic
analysis of axisymmetric shells of revolution subjeeted
to symmetric loadings. Quazzlzneartzatzon of Sander's
non-linear shell equations is presented for the first
time., With these quazilinearized equations the suppres-
sion scheme has been developed to solve non-linear
boundary-value problems, This suppression scheme has been
used in conjunction with a Newton-Raphson method to
improve a stable convergence process at the yield surface
in elastic-plastic problems, Results presented indicate
the accuracy of this numerical scheme. It appears to be
possible to extend this me+hod for more complicated
sztuattons.
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~ NOMENCLATURE

Following is a list of some important-symbols as they are used

in the text. Other symbols are defined appropriate parts of certain

symbols have different meaning in different sections of the text,

Where this occurs, the symvol is redefined for each section.

| Rl or R
' ¢

R, or Re

X1,X2,X3

Angle between axis of revolution and normal
to the shell,

Radial distance from the axis-of revolution to
a point on the middle surface.

Principal radius of curvature in the meridional
plane,. '

Principal radius of curvature in the plane
perpendicular to the meridian. '

Coordinate length measured on the meridian.
Shell conflguration radius. When defined as
superscript R refers to residual or previous
solution state.

Lame's Coéfflcignts.

Components of displacements at the middle surface
of the shell. »

Shell thickness.
When used as a superscript it refers to a non-
dimensional quantity per the definitions in

appendix B.

Carteslan coordinate system used for the
definition of shell configuration.

Angle of rotation of shell meridian.

Shell thickness coordinate.



€1,€5

s{,eé

Membrane stiffness coefficients in shell stress-
strain relations

Bending stiffness coefficients in shell stress-

'strain relations

Modulus of elasticity.

Stiffness coefficients in incremental stress-
strain relations.

Meridional and circumferential membrane strains.
Approximations to € and g_ resulting from the
previous iteration 8f the quasilinearization
algorithm,

Principal strain.

€, and €, at the beginning of an increment.
Approximations to €1 and g3 resulting from

the previous iteration of the quasilineariza-
tion algorithm.

Straln- hardening function.

Derivative of H with respect to its argument.

Defined by Eq. (III.13)

Coupling stiffness coefficients in shell stress-
strain relations. :

Approximations to x_ and x.resulting from
previous iteration fo quas?linearization
algorithm,

Poisson's ratio.

Meridional and circumferential bending moments
per unit length.

Approximations to M, and M, resulting from
previous iteration of quasilinearization
algorithm. ‘

Yield bending moment, Uohz/b per unit length.

xi ¢



Meridional and circumferential membrane forces
per unit length, :

Approximations to N_ and Ny resulting from
previous iteration of quasilinearization
algorithm. o

Yield membrane force, oft per unit length.

External surface loads per unit area of middle
surface.

Transverse shear force per unit length.

Approximation to Q_ resulting from previous
iteration of quasi?inearization algorithm.

Deviatoric Stress.

Pyincibal stresées.

o4 and cZ-ét the beginning of an increment.
Apbroximations to c} and P! reﬁulting from
previous iteration fo quasilinearization
algorjthm.

Yield stress in sfmple tension.

Independent variable.

Infinitesimal increment.

Finite increment.

d( ) ,

—— (Note exception for H .)
ds

xii



CHAPTER I

INTRODUCT ION

A direct Integration numerical scheme has been developed for the
large deflection elastic-plastic analysis of shells of revolution
sup jected to symmetrlﬁ loadings. This numerfcal scheme appears to
be advantageous to other exisfing numerical schemes for similar
applications. The results o btained for some sample problems compare
with existing theoretical and experimental results in the literature.

In the design of nuclear reactors and other industrial applica-
tions where size limitation on components are imposed, the structures
must withstand large magnitude of loadings. This requires that
their structural performance be investigated well into regions of
potential yielding. Such investigations in the case of shells of
revolution are more precise and economical with direct numerical
integration schemes than with finite element or finite difference
approaches.

1.1 Previous Research.

A summary of the literature on the subject is presented under
various subtitles in the context of work performed.

1.1.1. Non-linear Shell Theory. Substantial progress has

been made toward the developement of the non-linear theory of elastic
shells in the past ten years. It is interesting to note that the
literature on this subject is divided into two different approaches,

those that invoke Kirchoff's Hypothesis ad those that assume




a state of plane stress. Under Kirchoff's Hypothesis the normal
to the undeformed middle surface remain normal to the deformed middle
.surface of the shell.

Sander's (7) has based his non-linear shell theory on the
Kirchoff's assumption and on the assumption of small rotations
about the normal. Small strains are admitted. This theory is more
generally accepted than others due to its simplicity and to the
satisfactory results obtained therefrom. Koiter's (5) work is
concentrated almost entirely on the assumption of the state of plane
s tress and of small sﬁrains. But, it was necessary for Koiter to
lower .the magnitude of corrections wfth raspect to strain measurss,
to the fundamental forms of the middle surface to satisfy the Gauss-
Codazzi relations of surface compatibility. Naghdi (6) has defined
his strain measures as functions of the metric of the undeformed
middle surface. Further, Naghdi (3) has chosen to couple his non-

1 inear constitutive relations with strain measures and stress resul-
tants, His derivations are tased, like those of Sander's (7), on

a straln energy density function corresponding to the undeformed
middle surface with the assumption of the Kirchoff's Hypothesis.

1.1.2. Plgstlcltx. Earlier work in plasticity theory was based
on a perfectly plastic material behavior. Some of this !s reported
by Prager and Hodge (72). Scope of work hardening behavior in the
earlier literature was limited. However, some fundamental research

in this area was done by Drucker (73) and (74) and also by Hill (1).



(W)

A brief survey on the early developements in plasticity theqry is
available in Ref. (78).

Although many yleld criteria have been proposed'in the
literature such as those by Hill (1),Athe Von-MlseS yield criterion
( 75) has been supported by experimental observations. For the
prediction of the onset of plastic flow, zhe flow rules advocated
by Prandt]l (76) and by Reuss (77) seems to agree closely with
the Von-Mises yield criterion (75). Some of the experimental
observations, such as in the Liquid Meial Fast Breeder Reactor
material experiments (24), indécate that stainless steel (55430h)

: ébeys the Von-Mises yield criterion. These experiments also iﬁdicate
that a combination of isotropic and kinematic hardening behaviour

is observed In SS 304 material.festing. 'For some high temperature
applications Wu and Witmer (4) have developed constitutive relations
based on the Von-Mises yield criterion and an isotropic hardening
rule,

Since the work performed here used the incremental theory of
plasticity, the Information avallable in the literature for practical
solutlon methods will be amphasized in the following. "Hodge (62,€3)
adoptéd a quadratic programming approach in a solution algorithm
using the finiie element method of analysi;. Marcal (15-18)
provided a theory of incremental plasticity which was applicable to
shells of revolution. Marcal also used the finite element approach

in his developement of an incremantal plastfcity solution algorithm.




‘AGerd?en (9) later used Marcal's -approach-in conjunction with the
direct integration method. Hutula (65) used essentially the same
approach as Gerdeen (9) buf also presented an application of the
Newton-Raphson scheme for predicting better appro#imations to stress
and strain increments in the vicinity of the yield surface. In this
definition, Hutula (65) used a speclal case of Marcal's (15-16)

yield transition case.

1.1.3. Numerical Methods. There are several numerical methods
including finite eleﬁent method, finite difference meihod and direct
numerical integration method that have been used for the elastic-
plastic analysis of shells of revolution.

In the finite element method the structure is discretized into
finite sized elements, and the stiffness of each of these elements is
defined. By using the stiffness method of analysis and satisfying
the compatiblility at the node circle junctions of adjacent elements,
solutions of a given problem are obtained.

In the finlte difference method the structure is distributed
with mesh points. For each of the mesh points the differential
equations of the system are ;epresented in finite difference form
following a backward difference, a central'difference or a forward
difference approach. A system of simultaneous equations are
developed and a boundary value problem is sclved.

In the elastic-plastic analysis of structures both the finite
element and the finite difference approaches have been used. In many

instances a combination of finite-element and finite-difference




methods has been proved useful. The finite element mefﬁod is highly
versatile and does not have the inherent stability probrehs of the
finite difference methods. In the finite-difference method, it is
difflcult to select an appropriate mesh size that is simultaneousty
convergent and efficient. Various applications with finite element,
finite différence and thelr combinations }s given in Refs. (26 -53.).'
Significant contributions in the application of finite elements
to large Qeflectionvanalyses of elastic-plastic shells were given
by Marcal (16 - 18) and by Poppov and Yaghammi (19). Both studies
used the curved shell element of‘Khajasteh-Bakht.
Marcal (18) also uses a triangular plate element known as the
De Veneke element. Wu and Witmer (4) have applied the finite-element
method to transient large deflection elastic-plastic analyses of
simple structures, but this Investigation was limited to the use of
ring and beam elements. One significant feature of the work of
Wu and Witmzr in (4) is the development of plasticity flow theory
relations from direct considerations of the high temperature applica-
tions. |
Direct numerical integration methods, when appropriately deve-
léped to apply to complicated problems, prove to be computationally
advantageous to the finite-element and finite difference methods.
Goldberg and Bogdanoff (11) were the first  to develop the multi-
segment method of numerical integration. Kalnins and Lestingi (66}
have applied this technique to non-linear aralysis of elastic shells

of revolution. Gerdeen (9) used the muitisegment method of direct




numerical integration for the large deflection analysis of elastic--
plastic shells of revolution. Thé sbppression_technique of Goldberg
(11) and Zarghami and Robinson (80.) was usedAby Carter, Robinson

and Schnobrich (14) and by Leonard (13) for the dynamic response of
elastic shells., Marcal and Pilgrim (15) used a numerical integration
method for the elastic-plastic analysis, but it was limited to small
.deflection theory assumptions.

_Numericaf Integration enables a direct solution to non-linear
differential equations by converting a boundary value problem to a
set of initial value problems in a form such that these initial
value problems are integrated numerically and recombined to satisfy
the boundary condltfons.

However, in shell analysis a-problem arises in the use of
numerical integration. The solutions are of exponential type and
accuracy Is lost in Integration over long path lengths. To overcome
this problem, the multi-segment (12) or the suppression technique (13)
(14) can be used. These methods provide uniform accuracy everywhere
along the integration ﬁath. It Aas been shown that the suppression
method 1s a more efficknt means to achleve that accuracy.

Where large deflections of shells are accompanied by plastic
strains, an accurate analysls requires that partial ylelding through
the shell thickness be considered. For the Von-Mises criterion
of yielding the stiffness is determined by integration over the shell
thickness following the work of‘Marcal and Pilgrim (15) who considered

small deflections only. This requires storage of stress at several




points through the tﬁickness of the shell at each station along the
meridian. Gerdeen (9) and Hutula (65) adopted“thé multisegment method
of direct integration for large deflection elastic-plastic énalysis

of shells of revolution. There has been no work reported in the
literature for the large deflection elastic-plastic analysig of shells
of revolution using a suppression technique.

1.2 Scope of Study.

The following assumptions are made in this study:
(i) Large deflections and small strains.

(11) Axisymmetric. shell of revolution with arbitrary
meridional contours.

(rii) Symmetrical loadings.

(iv) Isotropic material behavior.
(v) - Von-Mises yield criterion.

A quazilinearization methoa along with Sander's non-linear
shell theory is used in developing a set of quasllinearized governing
equations. The constitutive relations for elastic-plastic behavior
have a more general form than those presented by Hutula (65. In
treating the elastic-plastic interface problem, Marcal's (15,16)
“approach has been generally followed. Much of the work on the
development of a numerical scheme was directed towards the develop-
ment of a suppression technique for nbn-linear elastic-plastic
behavior. It is shown analytically that the suppression technique

Is a more efficient technique than the multisegment method.

1.3 Organization of Study.

Equilibrium and kinematic equations for non-linear shells of




revolution are presented in Chaptér II. Incremental elastic-plastic
con;tftutEVe relations is the'sﬁbject of Chapter III. In Chapter IV
a quasilinearization technique is applied to the non-linear shell
equations.and the ;esﬁlting-equations are o}ganized in a form
necessary for the solution algorithm.

In Chapter V' the suppression teéhnique for the linear elastic
analysis of shells is reviewed. |In Chapter VI a qon-linear me thod
of analysis with the suppression scheme for large deflection elastic

and elastic-plastic analysis of shells of revolution is developed

and compared to the multisegment method of numerical integration.

A set of examples for the verifiéation of the linear'elastic,
non-linear elastic and non-linéar elastic-plastic solutions aigorithin
is given inChapter VII. Chapter VIII provides conclusions and

recommendations resulting from this study.




" CHAPTER II

EQUILIBRIUM AND KINEMATIC EQUATIONS FOR SHELLS OF REVOLUTION

2.0 Intent of Chapter.

. 0f the most recentiy developed shell theories, Sander's shell
theory (7) appears to be most advantageous due to its simplicity
in applicat}on. In this chapter the governing equations for a general
shell are presented followed by their reductions to those for
axisymmetrically loaded shells of revolutions. Those equatioﬁs
consist of equilibrium, strain-displacement_and constitutive relations.
Only a basic treatment of constitutive relations is given here. A
more detailed treatment of plasticity is left for a later chapier.
~ The governing equations are represented as a set of first order

ordinary differential equations suitable for numerical integration.

2.1 Shell Ceometry.

Let the undeformed middle surface of the shell be as shown in
Fig (11.1) upon which the orthogonal curvilinear coordinate lines

g, and &2 are defined by the dotted lines. Let the coordinate system

1
of the middle surface be defined as follows:

The position vector of a point on the shell middle surface is:

Xi = fi (gl9£2) ’ i=]’273 (II.])

-~

Vihere fi is a single valued function,and e. are the unit

Cartesion base vectors.
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The posit!qn of ahy point in the shell is specifled by the coordinates
51,52 and z, where & and 52 specify position on the middle surface
while z measures the distance along the outward normal from the middle
surface to the point (See Fig. 271 ).

The outward directed unit normal vector at a-point of the middle
surface is denoted by ﬂ. The coordinates &; and §, are to be chosen
.in such a way that the system is right handed. The unit tangent
vectors to the &, and\gz curves are denoted by 61 and E2 respectively.

Let the displacement vector U of the material points on the
middle surface of the shell be resolved into componénts tangential

and normal to the undeformed middle surface as follows.
U=ut) +vty+wn (11.2)

2.2 General Equilibrium Equatlons.

The equilibrium equations of a three dimensional medium
referred to orthogonal curvilinear coordinates corresponding to the
deformed body are obtained from Sanders (7). The equations of
equilibrium in terms.of stresses are reduced to the force and moment
equilibrium equations by integrating the stress equilibrium equations
through the thickness and using the relationships between the stresses
and the stress resultants. Sander (7). adopted Kirchoff's Hypotheses

with some reférence to small strain assumption and small rotations

about the normal. He also defined modified force resultants which



Figure 2.1.

Shell Surface Coordinates

1



include contributions from the moment resultants multiplied by the
deformed radii of curvature. With these assumptions pertinent non-

] inear terms are retained. The governing equatlions are gliven by:

( B N ); + ( a N )’ +a, N

-1
-8, N +aBR
11 1, 2 T Ny T B Ny e BRI

1 2 1 1

, - R™ N o+ N
2 12 g T BR Uy v )

+ a BP1 =0 :
(1I1.3)

. o »
(o N22 ),2 + (8 Noyry * Bay Npp)- oy N+ a8 R, Q,

' I -1 \ -1
+ 18 (( RZ R1 ) M21} 5y T aBRZ ( Y, sz + Y, N_. )

+ apP_ =0
2 (11.4)
( )yq + ( ) w8 (RTTN crl )
- + =
(8 Yy N1] + Y2 N12 ),] (a Y1 N12 +a Y2 NZZ )’2 aBP

(1I1.5)

12

0




Figure 2.2. Shell Curvatures
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(8 M '),] + (oM

1 Yoy My TRy e B =o

12 )’2 , 122 )
(11.6)

(aM ), +(B8M ), + s,m M

-~ . M - -
22 72 2, 1 g My ety T e B, s

2

(11.7)
Where a,B are Lame's coefficients of the surface metric of an
I’PZ’P = tractions in -

,R2 are radil of principle curvature;

orthogonal curvilinear coordinate system; P

1,2, normal directions; R]

P is the mass density; vy, Yy Y are rotation quantities defined in

1
Sec. 2.3 commas denote partial derivatives ( f,a = 3f/3ga ); and
NaB, MaB, Qo are modified resultants of the stress distribution cij

i ntegrated through the thickness. The modif]ed‘momént resultants are:

+h/2
M” =f°11 (1 + z/R2 ) zdz - (I1.8)
-h/2
+h/2
My, =M, = *_/f;1z (2+ z/R, + z/R, ) zdz . (11.9)
~ =h/2
+h/2
Mzz =J/~°zz (1 + z/R1 ) zdz ‘ (11.10)
-h/2

If k;j are curvatures (defined in Sec. 2.3), and Nijo are



Figure 2.3.

Sign Convention of Stress Resultants
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the classical membrane force resultants:

+h/2

o= - ‘ - 1
N”o ./'c:11 (1 + z/R2 ) dz o (I1.11)
-h/2 ' :

N = : 1 + R d 1T1.12
22, /022( 2/1)2 ( )

le =/c12 (1 + z/R2 ) dz | (11713)

Noto =f021 (1 +2/R ) dz (11.14)

The modifled force resultants of Eqs. (II.3) to (IL.7) are

given by Sanders (7) as:

= . o+ k T (II.15)
Nop = Mo T My, (RA 1 ) A

N N - ' _ (
22 220 22 g 22 (II.16)
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Figure 2.4, Sign Convention of Stress. Components
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The transverse shear resultants are:

¢,

Q

2

The sign convention of various stress resultants is as

1

NZZO + MZZ (- + k

1
N —

+h/2

'/013(1+Z/R2)dz

~h/2

+h/2

f023(1+z(R1)dz

-h/2

shown in Fig. (1I.2)

The sign convention of various stress components is as

shown in Fig. (II1.3)

In Fig. III.3 and as given in Eqs. (11.8) to (1I.20)

the various stress components are integrated with referencs to

the middle surface of the shell,

(II.i7)

'(11.18)

(11.19)

(11.20)

18



2:3 GeneralVSfrain Displacement Relations.

Sander's theory (7) is based on small strains and small rotations
about the normal. Through the thickness a linear distribution of

strain Is assumed, viz:

=g, +z k (I1.21)

Where eij are strains of a point not on the middle surface,

k, are curvatures and ei.'are strains of the corresponding point on
1] J

the middle surface:

[y]
i

- ' y | ,
"= ( aB ) {F Uy * o, V + a8 R1 w+ +aB YIJ

(11.22)

]
]

(ag)” + B u+taBR w4+baBy
22 ‘a 8 a %vz yputa 2 w+ 3 a’ Ys

(11.23)

-1 :
€1p=% (a8B) [B Viptau,, ma,, ut By vta By, YZ_J

(1II.24)

=
I

1 (9 8 )7 [BYiJ *“'zYiJ o
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_ )1 [ .
ky, = (a8 @Yy, t BT . (II.25)
| - |
= 1 - -
-1 -1
+aB (R =Ry (I11.26)
= (ag) B - 8 -
21 = a B o YLZ’ Y2’1 " YZ c‘lz ‘Y‘
(11.27)
The rotational terms are given by:
-1 -1

Y, =B W, +R, Vv ‘ (11.29)

2.4 General Boundary Condition.
Four conditions are necessary on each edge to provide boundary
conditions for the field equations of a general shell.

On an edge £ = constanti ..
1
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1. NII or uy specified . '. | (11.30)

2. Ny o+ (3R =R M ey (N e N )y
or v specified (11.31)
3. Qv M2r2 = 11 N - Yy N
12
or w specified (II.SZ)
L, Mi; or v, specifiéd (11.33)

2.5 Simplification to Shell of Revolution.

The geometry of a shell of revolution is shown in Fig. (2.2).
The coordinate g‘ is taken as the arc length s; and the coordinate 52
as the circumferential angle 8. Thus, if the derivatives are taken

with respect to the arc ‘lengths:

a =1 A (11.34)
B8 =r (1I.35)
0,2 = 0 (11.36)
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dr
B,]A= — = Cos¢ (I1.37)
ds
r= R2 Sing . (11.38)
ds = R] d¢; (I1.39)
Brg =0 (1I1.40)

Where R¢ = R1 Re = RZ’ ¢ = angle the normal to the shell makes

with the axis of revolution and r is the perpendicular distance of the

meridional point from the axis of revolution.

2.6 Simplified Equations of Motion.

If axisymmetric behavior is assumed, Eqs. (11.3) to (II.7) become:

Cos¢ 1
No,g + (No - Mo ) +— (Qp-vgMNy)+Py=0 (IL.4])
r . R¢ o
Cos¢ - Sing 1.
Q¢’S + Q¢ = ( Ke + ) Ne + - Q¢ Y¢
‘ 4 r R¢
1 ) . ‘
Yoo *— (1T +y5) N +P=0 (11.42)
¢’s o $ ¢

¢
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- Mg ) - Q¢ =0 (1I.43)

2.7 Sp‘ecla!ized Strain-Displacement Relations.

For a shell of revolution:

1

eg = — (v Cosy + w Sing ) - | (I1.44)
r 4 .
w » :
€y = Usg + - + 3 Yo ' : (I1.45)
Rs
1 A ‘
Yo == Ut W, (11.46)
Re
1
kg = = Y4 Cos¢ (I1.47)
r

K, = Yo | (11.48)
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2.8 Inclusién_2£4ConstitutIVe Relations.

Hookean behavior will be assumed for the elastic part of the-
rasponse. The Von Mises yie!d criterfa associated with the Prandt-
Reuss flow rgle will Se adopted for elastic-plastic behavior. A
detailed tre;fmeht éf Tnéreméﬁgai.éonsfi}uflvé‘refafions for elastic-
plastic béhavior will be the subject of a seperate chapter. Only'

a brief treatment of these relations is givenAin the following.

The incremental stress-strain relations are given by:

Y 7 | 1 ()
aoe aoe
dcé — —_ de
ase ae¢
. 3o 30 '
R -
aee 8€¢ .
3¢ de
- dE —P _.8.
p .
3e 9€
6
L J L ¢ J L J (II.49)

Where dgp is the effective plastic strain differential,the terms
in the matrix are called partial stiffness coefficients and are
described in detail ‘in Chapter III for plastic behavior.

For Hookean elastic behavior the incremental stress and strain
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values reduce to total stress and strain values, and:

90 ac¢ E ' .
— = — = — (11.50)
9€E g 1=-v )

9 ¢
F-Tof o0 - ME
—8 = ¢ - — (11.51)
Be¢ aee 1-v

2.9 Reorderlng'gf Equatlons.

The solution techniques detailed in gubsequent'chapters requires
that the governing equations for the two point boundary problems
of a shell of revolﬁtion be written in the form of an initial value.
problem in terms of fundamental variables appearing in the natural

boundary conditions,ie. w ,Q¢, N, Yyr Y and M¢. The remaining

P
variables are termed auxiliary variables: eg, ke, Ng» Me, e¢ and K¢.
Rearranging the governing shell equilibrium and kinematic equations,
Eqs. (I139) to (IL46) gives the required set of six ordered first

order nonlinear differential equations In terms of the six auxiliary and
‘s Ix fundamental varlables. The remaining six equations are to be

obtained from the constitutive equations.

w, =2 -y (11.52)

u
s R ¢

¢
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CHAPTER III
ELASTO - PLASTIC CONSTITUTIVE RELATIONS

3.0 Intent of Chapter.

In this chapter are derived the constitutive relatlonsAto be used
with the equilibrium and kinematic‘shell equétiéns In the preceeding
chapter. A brief description of material behéVTor is followed by a
summary of thé method of'anafysis. The incremental consfitutive
relations are presented alggg with an iterative scheme for predicting
{ mproved stress increments. |

3.1 Material Behavior and Properties.

The importance of material characteristics in the consideration
of elastic-plastic behavior is obvious, particularly when strainv
hardening effects are considered. In this study a limitation is
I mposed in that a bflinear stress-strain representation is assumed.
It is, therefore, necessary to construct a bilinear stress=-strain
representation from the available isochronous material curves.

One difficulty in such a construction is that almost all material
curves have been based on tests of uniaxially loaded specrmans.' The
method ‘recommended b?AOak RIdge.NatIonaT:Lab&fétory (24) is-adopted in
this study: that representation is shown in Fig. D.1 of-Appendix D.

Elastic-plastic analysis reduireé consideration of several
aspects of material response other th;n the selection of a bilinear

stress-strain representation. These include:
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(a) a yleld stress-corresponding to _the onset of plastic flow.

(b) equations relating plastic strain increments to stress
and strains subsequent to yielding; and :

(c) a hardening rule specifying the change in yleld stress
in the course of plastic flow, etc.

This work has been largely devoted to analytical developments
and hence limited to mechanical and monotonic Ioading applications.

A Von-Mises yield criterion with the associated flow rule that follow

i sotropic hardening is used In this analysis. This combination of

material obehavior has generally agreed with experimental observations.
A Mewton-Raphson scheme, which was initia!ly used by Hutula (65)
is used to aid convergence of elastic-plastic consgftutive relations.
Marcal's (15) approach for the'elastic to plastic transition case is
used fn conjunction with this Newton-Raphson procedure.
It should be noted that Marcal (15) was the first to propose a
Hutula (65)

stiffhess approach to plasticity for shells of revolution.

and this work have generally followed Marcal's approach in developling

éna!ysis procedures.
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3.1.1 Yield Surface. From the stress preliminaries of Appendix

A the second ‘invariant of the stress tensor J2 is defined as:

1
2 2\ _ 2 _
{ o] g, o, + e } = -0, (I11I.1)

where 9 Is the effective stress. According té distorsion energy
theory, the distorsion energy density In the real system equals the

d Istorsion energy density at yield In an equivalent simple tension test.

| 3,
U, = —J. =—r1 o (1I1.2)
d 96 2 g oct '

Where G is the shear modulus and 1 is the octahedral shear stress.

oct

For the simple tension test at the yield po%nt'in simple tension:
J.=—0 : ' (I11.3)

Where 06 is the yleld stress in simple -tension. Hence, the yield

condition for the blaxial state of stress becomes:

=g (II1.4)




~ =

»Figufe 3?1. Von Mises Yield Sdrfac; Elastic to Plastic.

y
A C =0y

_Figure 3.2. Von-Mises Yield Surface Plastic to Elastic.
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For the case of pure shear:

o = - c. . =A ’ ‘ (I11.5)

Where A is the yield stress in pure shear.
The second Invariant of stress tensor is given by Eq. (IIL.3) and

Eq. (I11.4) as :

( ci -0y Og ¥ cg ) ' (I1I.6)
But if we use the pure shear condition of Eq. (III.5) on the right
hand side of Eq. (11I1.6), we get:

cg = o2 = A2 ‘ , ' (I1I.7)

“or

o : ,
A= 2 . ' _ (I11.8)
{’ |
: 1
indicating that the yield stress in pure shear i%J? times the yield

stress in simple tension.

3.1.2 Hardening Modulus: For & strain hardening material obeying

isotropic hardening law the yield surface grows with increase in
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Figure 3.3. Bilinear Stress~Strain Curve



plastic strain. That is,when the material is subjected to plastic

strain ¢P It attains a stress state o given by:

Ez-:.p

(I11.9)

K

Where o, here is the initial yield stress of the material, E
is the slope of elastic pwrtion of the bilinear stress-strain curve of

Fig. (D.1), then:

1-8 o .
K = — (II1.10)
> A

In Eq. (111.9) the stress state ¢ describes the new yield surface or
the new yield stress generally denoted as the hardening modulus H.
Therefore, Eq. (1I17.9) can be written as:

EcP

H(eP) = o + — (II1.11)
(o] ¥ .

Once a plastic strain eP is attained rather than using the yield
condition of Eq. (IIL4), a new yield condition is given by:
o

- 0y og * ok = H2 (eP) (I1I.12)

Refer to Appendix D for a precise discussion on Eq. (111.9) to (1IL11).
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" The slope of the effective stress-plastic strain-diagram H

is obtalned by differentiating equation (IIL11).,

(II1.13)

The values of Hl are obtainable directly from the material
data. Specificélly, the values of K are obtained from the effective
s tress-effective plastic strain _relationships. A selection of
these values obtained from the nuclear reactor material data of
Ref. (24a) is given in Appendix D.

3.2 Review of Elastic-Plastic Method of Analysis.

Elastic-plastic problems beyond the yield point on the stress-
strain diagram require an incremental analysis since a closed form
solution is not possible for complicated loadings’and geometries.
Strain hardening characterestics and effects are important. The
non-linearities associated with large deflection shell theories and
the Von-Mises criteria for yielding,-compéund the difficulties of
the problem.

The plasticity theory presented here is based on the small strain

assumption. The total strain is assumed as a linear combination of

e lastlic E?j and plastic e?j strains.
de.. = de®. + deP. (III.14)

] 1) 1




The Von-Mises yield condition used in the analysis is based on
distortion energy theory. Using Eq. (I1I.12) a yield function can

be defined as:

(I11.15)

The yield envelope of Von-Mises is shown in Fig. (3.1 .)
where ABC is the loading path from elastic to plastic state and
ABD is the proportional loading path. In Fig. ( 3.2.) the path

AB defines plastic to elastic state.

J. =400 oy ' (1T1.16)

In terms of this function, the general stress-strain

relation in the differential form in the plastic region is:

/

b \}3/2 ( 3f/d0, . ) deP
de’ . = ' - (111.17)

ij
| ‘J( af/aomn ) ( 3f/3c )

Where deP is the effective plastic strain increment corresponding

to the equivalent strain increment in a simple tension test.




For the Von-Mises yield condition the above relation can be

reduced to (Prandt-Reuss flow rule)

3 .
deP =-°;. _ . (II1.18)"
2 |

3.3 Incremental Plasticity for Shells of Revolution.

3.3.1 Definition of Stress-Strain Relations.h Marcal (15,16)

has recommended an incremental form of the constitutive relations to
be used with the governing axisymmetric shells of revolution equations
with limitations to symmetric loadings. Marcal's partial stiffness
approach in these references is useful in develbping a convenient
numerical algorithm which accounts for most of the difficulties in the
elastic-plastic problem.

The total incremental strain is a linear sum of incremental elastic
and incremental plastic straiﬁs. For shells of revolution

(ignoring shear components) this is given by Marcal (15) in component

form as:

de¢ = de: + deP (III.19)

de = de® + deg : (IIT.20)




or, substitutions for the elastic strains de

e

¢
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e
and dse in terms of

corresponding stress increments, Poison'a ratio and Young's Modulus

E gives:

| f the Prandt-Reuss relations (1711.20) are used, Eqs.

. 4P
[ J— dc — do + de

E E ° ¢

| v b
—-dcre - —-dc¢ + de

E E 6

and (ITII.24) are written as:

d = _ do
0 "7 %
‘ .
de, = — do, -
6 £ 0
] ]
c¢ and 06
1
o' = — (20
) 3 )
1
cé = — (20

are

v 3
- do. + —
E 0 2

de’

0- - .

QIQ

(1]

v 3 g! _
—-dc¢ + — — geP
E 2 T '

the deviatoric compbnent of stresses:

o)

‘O‘)

¢¥11.21)

(I11.22)

(111.23)

(II1.23)

(1I1.24)

(I11.25)

(I11.26)
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Another equation comes from.the Von-Mises yield Criterion, as
given by Marcal (15), when represented in differential form and then
simplified using the slope of effective stress-effective plastic

strain curve and neglecting the shear components,

o 39 3 a}
H'de™ = — — de, + —-—-—-dse (111.27)
2 ce ¢ 2 O

Where H' is the slope of effective stress-effective plastic

s train curve:

3g
H' = —2 (I11.28)
J€

and & = [ acP - | (I11.29)

Equations (III.25),(IXI1.26) and (III.29) can be represented

together as:

1 v 3 o ) - ~
t de A — - - _.(Ei ) do
¢ E E 2 e ¢
g/ '
- -y il 38
< deg 5 E E 2(ce) < dag >
3 o 3 ¢ -
Lo Sy IS L de” )
2 O 2 g )
_ € - (I11.30)
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or:
"dc¢ | de¢
dce = [k] dse
deP o (1II.31)
Where the plastic stiffness coefficient matrix:
-1
[ v 3 o! ]
- - _ A
E E 2 Je
. v 1 3 oé
[«]=| -- - .-
E E 2 o
» e
3 o o' -
- (% — &) - H (I1I.32)
2 ¢ 2 ¢
. € . e -

3.3.2. Partial Stiffness Coefficients.

differentiation we can also write:

80¢ 90
do = —de + ——-¢-dse
¢ e 3¢
¢ 8
90 : 3o
do, = ——§-ds + ——Q-de
6 ¢ 9
o€ J€
¢ 8

By the chain rule of

(I11.33)

(III.34)




4o

) aeP aeP
d:—:p T e de¢ + — dee ) (III.35)
3¢ de '
) 6
or
[~ 30 30,
( dcdﬂ ¢ —L ( de¢\
Be¢' aee
30 g
_ 8 8
ﬁ d°e> B e A L deg
e¢ €
-p 3¢ 3c
\ de . —— —_— . .
- ae¢ Bee - | (ITI.36)

By a comparison of Eq. (III.37) with the Eq.{111.32) the terms
in the matrix of Eq. (III.37), called the partial stiffness coeffi- -
cients as defined by Marcal (15), are determined from Eq. (111-33).
Stiffness coefficeints are only ¢! (class 1) functions of e¢ and €4
as demonstrated by Hutula (65).

3.3.3. Transition Case. The transition between elastic and .

plastic regimes of Fig ( 3,3 .) must by fre;ted differently as foliows.
Partial stiffness coefficients at the transition are modified by
considering a mean stiffness coefficient. The mean stiffness coeff-
icient as defined by Marcal (15) is calculated from the proportional

weighting of the elastic and plastic partial stiffness coefficients,
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for instance:

g a0 30
-2 = m ) + (]-m) -2
de 3e d¢e ‘
¢ lnean ¢ elastic ¢ plastic (111.37)

Where m is a propotionality factor, o<me 1.
The value of m is obtqined eitﬁer from consideration of the maximum
shear stress-strain curve for the Tresca Yield Criterién or froﬂ the.
e ffective stress-strain curve for the Von-Mfses Yield Criterion.
Marcal‘(IS) has defined m to be the ratio of plastic strain
to the total strgin at the yield transition for the load increment.
Gerdeen {9) and Hutula (65) have found m=}% as a value for stable
and reasonable solutlion which is used lq this study.

g o/

In Eq. (II1.32) the values of ( —E-) , ( ) ) and H' at the
0o . g

transition can be determined as suggested by Hutula (65).

! : ol + Ao}
() em (22 ) 4 (1-m) ("2 )
Oe Oey Ogy * b0,

(IT1.38)
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(£) = m (295 + (1-m) (R 2
ce 081 Oel+Ace
(I11.39)
) e mH (e )+ (i-m) H (e +ae )
Pt p P
(11I1.40)

Where (A) identifies an incremental value for a given load
increment and the subscript (1) refers to previous or residual
solution state.

3.3.4. Determination of Partial Stiffness Coefficients. The

qdantities in the matrix of Eq. (III.31) are obtained by inverting

the matrix of Eq. (III.32). The determinant of matrix (III.3q)

is given by:
I N GO M TR S PR B T
D=-—- (1-v ) + — ( ) T —=v (—=) (—)
3 E L ¢ 2 o o
e e e
%2
9 o)
+ — (—
4 g (I11.41)
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‘Where an asterik denotes that at the transition the quantities
with asterik must be determined from Eqs. (III.24) to (III.26)

respectively.

Let:
D* = - ED, thén:
0 | 9 o,
£,y = ._¢_=_¢§ i +_(_9)’*ZE€ . (II1.42)
as¢ D" 4 T
a. l 9 ] 1
o o, . O,
Eqp = ‘—9-’—*.& %\) H| - —F (__?.)(_g.)é (II1.43)
9€ D ag o
6 e
3 3 ) L
g g * a w ]
Eyy = _¢=_T%(—i) +\,(_9)"§ (I111.44)
a€p, ZD" O'e Ue .
3 | 9 ) ‘ '
[¢) ' - O * g &
Eyy =  —2=— 1 VH -..E(_i)(_e_)%. | (II1.45)
3¢ p* 4 o o . ) ‘
¢ e e
3 | 9 '
[of 1 g 2
£,y = —2=_ ; h o+ ZE (Ji)"zf | (III.46)
= 3¢ D" 4 o :
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3o 3 Oy & 7, ,

B2z = te— )( (=) +v (2 } (T11.47)
aep 2D Oe ' Og
3 ¢ '.°é % —.0, . :

g = U e () f - (111.48)
2D 0o ‘ 9
3 o, o,

£, - '_*% () ey ()L (111.49)

- 2D Oq Ou

[ (1-v) ; | -

E33 = B; g - . : : (I11.50)

3.3.5 Newton-Raphson Scheme. In the incremental elastic:

plastic énélysié that is performed here it Is necessary to select
extremely small load steps In order to keep the stress point at the
yleld surface. The sélection of a load step and thereby a stress

i ncrement varles fpr different problems depending upon the degree

of accuracy desired. . In order to achieve the desired accuracy for
lesser load steps Hutula (65) adopted a Newton-Raph;on Scheme. This
s cheme .is used In theg!ncremeﬁtal elastic-plastic analysis performed
here. The formulation of the Newton-Raphson scheme for obtaining

improved stress increments is presented here with generalizations
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with respect to the yield transition parameter m defined earlier.

In this scheme three functions f F2 and f3 are defined and by

1!

means of these functions a Newton-Raphson alogrithm is developed.

Define three functions:

£, o= -

Ao =0

Ao, =

Ao, =

Ae

Ae

+_— Ao, =

1
v 3 [o} L
= bdog + — ( —Q—-) Ae
E 2 o
e
]
| 3 Oe *

(1II1.51)

(I111.52)

(1I11.53)

(I11.54)

(I1I1.55)

(III1.56)

(1I11.57)
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bE = Ep - €. ' (111.58)

Two of the above functions, f. and f2 of Eqs. (III.51) and

1
(111.52) have been defined using the incremental form of Eqs. (III.23)

and (III.24). The third function f_ of Eq. (III.53) is defined using

3
the definition of the yieid function of Eq; (II1.15) rather than using
Eq. (111{27). | o

The consistency of using Eq. (III.15) for defining the function
f3 will be given toward the end of this chapter.

Above functions f, and fé have been defined using the -
incremehtal form of Egs. (iII.23) énd (II1.2L). However, rather than
defining a third function f3 from Eq. (III.28)Ause of the yield

function of Eq. (III1.15) has been made.

Substituting for ( 99 )™ and ( % )™ from Eqs. (III.38) and

Te e

(1I1.29) the functlons of Eqs. (II1.51) to (III.53) can be written

éé:
f1 ( °¢’°6’€p )

=-ps, +— (o0
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3m g 3
+[-- (2) +=(1-m) (-"’)J(e &)
. 2 oe1 2 g P
. e (1I1.59)
_ | v
f, ( 941%5€p ) = - beg + E—( o --oel) - E-( % Y4 )
| 3m cl 3 o'
+ [-__ (2 ye=(1-m) (2) ] (_Ep -e )
2 9., 2 oe P
e (11I.60)
' : - 2 2 - 2
f3 ( T4r0gs€, ) ={o¢ - G 9y + o0 - H ( €p ) }/// (II11.61)
3

Substituting for the deviatoric stress components for the

residual as well as the current state:

f1 (og,,0.,6. ) ==-he +—=(0, ~a. ) -={ g -0 )

¢"%0""p ¢ F ¢ el g 61

(II11.62)
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]} ¢ e /7 ¢ ( )
¢

afA . '

;0-3-=<z oy - o¢)/3 = o (I11.72)
6

3f . | / | |
3 Co- -

—- -{z HO(E) W (& )}/3 (111.73)

and, thus the Newton-Raphson algorithm is given by:

——n-]

—_ .

o n+t) ﬁ(n)l af,. afy of | - -~

g (o} e — — f

¢ ¢ IH 304 | 3 B

) 3i£ af, af, 1
ﬁ o P = % - ) ;“ : ;?' fs
C¢ O’e Ep

- - af3 af3 Efi .

. / .\ J 30¢ ‘ 30, 3gp Y W,
(I1I.74)

It can be easily seen that for m = % these equations reduce

to those given by Hutula (65).
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Henceforth, our definition of the function f3 on the previous

pages, viz.

is consistant with the definition of the Von-Mised Criteria or the
distortion energy theory. What remains to be seen now is whether this
function is also consistent with the Prandt Reuss relations that were

used in defining the plastic strain components in functions fl

and fz.

3.3.6 Cbﬁs1stencyl2f Function fé. From (64) the general plastic

s tress-strain relation is given by:

i V%/Z ( afs/%oij ) deP

ds‘i’j r = (I1I.75)
‘ \J( af3/acmn ) (3 3/3°mn )
or:
3/ (afyfsa,. ) do
def | = /%1, . (I11.76)

i \J( af/aomn ) (Bf%/ao;:=3 ;;F

and for the fungtion f3 defined as before, this reduces to:




51

deP

de

ij 2 ge

Which is same as the plastic strain components used in
t he def{nit!gn of functions fl and fz.
The definition of the yield function is therefore consistent
with Prandt-Reuss relations.
A further.simplicity is achieved by noting the fact that
the component plastic strains are directly obtainable from

the derivatives of the defined function, for instance:

3 af./[ec
de: =_ de? - (111.78)
2 o]
e .
3 af /60
deg SRR 7 S (I1I.79)
2 °e_
and:
2 . 5
deP = = %/de”z + deP deP + deP - (II1.80)
\/’3' ¢ ¢ 6 8 o




3.4 Shell Incremental Plasticity.

Tﬁe'incremental elastic-plastic stress~strain relations presented
in the previous section can not as yet be used directly with.the
governing shell equations, According to Eqs. (171.11) to (11.20)
the stress components must be integrated through the thickness in
order to determine the magnitudes of stress resultants at the
meridional integration points. This is not quite straight forward

for incremental plasticity. The incremental values of stress

resultants Né, Ng» M¢, Mg are represented as functions of strains

€¢» €9 and of curvatures K¢, Kg defined by the following chain rule
of differentiation.

For elastic-plastic behavior

— . g

N, N N N
® b
a8, — — ~t ' ( sey)
3¢ 4 3 oK, 3Kq
AN ' Ae, |
8 6
< : > LT 3 3Ng aNg >
3e 3¢ 3K 3K ﬁ
o) 8 ) 8
M AK
Ay ¢
M M oM oM
Ao — —* = (. 2Kg
8€¢ Bee BKqb aKe
3Mg M, M, g
ae¢ ase 3K¢ aKe

(I11.81)
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(111.82)

(IITL.83)

(I11.84)

(I11.85)

(II1.86).

(II1.87)

(1I11.88)

(I11.89)

AHHH.oov



Thus:

: AN¢

ANe

AM¢

AMg

Egs.

Ae

[}

[}

<+
+

C11 A€¢ C12 AEe

+

C12 A€¢ + sz Aee

+

K11 A€¢ + K12 Ase

+

K12 A€¢ + KZZ heg
(III.91) to (III.94)

- (-AM¢ = Ky, Aeg

K]] AK‘b + K12 AKe

011 AK¢ + D]Z AK6

D]z AK¢ + D22 AKe

can be solved for Ae¢ and AK¢

- Dyp AKg ) K11J

11
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(II1.91)
(111.92)
(1I1.93)

(111.94)

©(I11.95)




Where All = C1] 011 - K]]

AK = ( aM -KIere-D

o 0 AK6 -

12

- AN¢ - c12 Be, f K]'Z MKy =

11  (II11.96)

2
W : A = D - .
here " C]l r K]] s

The varlious coefficients in Eqs. (III.91) to (III.94) are

determined from the definitions of the stress resultants.

+h/2 ) +h/2 ,
. 3o 90
c.”=/—9dz o, c12=f—idz
' ae¢ ' ey
-h/2 -h/2
+h/2 +h/2
90 g
C._=f —dz , .. = | —2 242
22 Y 1 e
-hs2 © -h/2
+h/2 +h/2
80¢ 80
D12 = —" 2zdz , 022 -/ - zdz
BE:e oEe
-h/2 ~-h/2
cC =¢ D =0
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+h/2 ‘ +h/2

90 Lo
=/ - zzdz ’ K12 = .—i zzdz
o€ e
-h/2 ¢ -hs2 °
+h/2

30
_ 8 2
T
9€

-h/2 ° : ' (111.97)
For elastic-behavior Eqs. (III.97) simply reduce to:
Eh
C =C =
1T t2 T T3
: Ehv
C =
12
(1-v2)
(111.98)
Kip = Kjg =Ky =0
Eh>
D = D =
11 22 12(1‘V2)
th3
D = ————
12 9201-9Y
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3.5 Treatment EE_Shelf Apex.

Constitutive relations Eqs. (III.91) to (III.95) must be

. treated differently at an umbelical shell apex because of singularities

in the equations. In .the speclal case of singularities of an untelical

 Therefore Eqs. (II1I.90) and (III.92) become:

MNy = (Cyq + C12)Ae¢ + (Kpq + K,Z)AK¢ (I11.99)
aMy = (Dyy + D)k, + (Kyy + Ky))aey (I11.100)
From which:
[Ae¢ = (0, ¥ D) (a3 (Kyp + Ky {AM¢}]
A2
_ (111.101)
[}K¢ = (Cyp ¥ Cyp) famd- Ry + KD {Anﬂ
A22

p A (II1.102)
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Where: ’

>
l

22

AN
¢

AM

2
(c11 + c12) (011 + 012) (K]1 + K12) (I1I1.103)
AN ' (I11.104)
¢ .
AM¢ (111.105)




CHAPTER IV~

INCREMENTAL SOLUTION OF ELASTIC-PLASTIC PROBLEMS

4.0 intent of Chapter.

The equations derived in the previous chapters must be organized
in a form such that they are integrable. It is intended to present
a complete set of equations in a form independent of the numerical

integration scheme adopted.

4.1 Bases for Solution.

The set of first order ordinary differential equation,
Eqs. (I1.52) to (ILS58) can not as yet be integrated ;ince they contain
non-linearities. The method adopted to treat these non-linearities
requires that they be reorganized. The incorporation witH the
constitutive relations of chapter IIImust also be detailed.

The method of analysis for treating the non-linearities in shell
equations és simplified in such a way that direct integration yith
the aid of a suppression scheme (ChapterV) is possible. To obtain
the nonlinear elastic solutions, this Integration is performed directly
for the total applied loading and a numter of Iteratiqns are reéuired
to converge to the non-linear elastic solution. For elastIc-plastic~
material behavior this integration and lterative procedure is carried
quf for every increment of the load.

The direct numerical integration of shell equations is possible
;eparately for all homogenecus as well as particular solutions followed

by their recombinations. For elastic-plastic analysis this is
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accomplished for each incrementhof the load. Further, the elastic-
plastic constitutive relations are used accordingly during each Bomb-
geneous and particular solution integration. |

It is in general extremely difficult to obtain solutions to non-
linear differential equations of_the boundary value type such as those
posed for a shell of revolutfén in the previous éhapters; Direct
numerical integration of the non-linéar differential equations can
‘be ‘-made possible in various ways such as:

(i) Using an incremental approach thréughout:

(i1) Application of a Newton-Raphson procedure:

(i1i) Application of quazilinearization methods:

THé first of the aboveAIs generally tedious and may lead to
proﬁogation of errors due to truncation within each of the series
of increment. A Newtbn-Raphson Procedure has been used with the multi-
segment method by Kalnins and Lestingi (67) to obtain solutions to non-
linear-elastic shell problems. Later Gerdeen (9) applied the'Newton-
Raphson Procedure with a multisegment method to solutions to non-}inear
elasti¢c-plastic problems.

Hutula (65) obtained a set of quasillngarized’shell equations
using Relsner-Melsner's Shell Theory. The set of first order ordfnary
di fferential equations due to Sandérs (7) presented in gchapter ||

will be quasilinearized and organized-to be made amenabie to use,

4.2 Reformulation of Initial Value Prob!éms.

The solution to a symmetrically loaded shell of revolution



problem Between the initial and final edges is obtained by converting
a boundary value problem to an initial value problem. For a system

of 2n varltables, at the inital edge only n boundary conditions are
known for a given problem. Linearly Independent values of the remain;
’ihg n varlables at the iniftlal edge are chosen. The prescription of

n boundary values and n arbitrarily chosen values at the initial edge
for each homogeneous and particular solution integration thus consti-
tutes an initlal value problem. Wh;% these integrations are carrfed
out to the final edge n boundary conditions are satisfied and a set

of coefficients determined that are used to appropriately combine the
linearly independent homogeneous and the particular solutions. This
is valid for iterative hon-linear elastic solutions since the non-
linear shell equations are quasilinearized within each iterate.

This Is also possible for an incrementalnon-linear elastic-pléstic
solutions due to the assumed linear behavior within each increment in
this range.

Direct numerical integration of linear or non-linear shell
governing equations is difficult since these equations tend to provide
extraneous exponentially growing functlons which must be controlled
in order to obtain a correct solution to the probiem. The numerical
integration of shell equations which starts by conversion of a boundary
value problem to an Initial value problem, must be assisted by a
technique to control the extraneous solutions. Two such techniques

have been developed, which provide uniform accuracy everywhere along
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the integration path: the multisegment method and the suppression tech-
nique.

4,3 Quasilinearization.

4.3.1 Theory. The quasilinearization technique was developed
by Bllman (68), Kélaba(ﬁg) and applied to chemical engineering problems
by Lee (70). |

In the qués'linearization technique the non-linear differential
equation are first represented by a set of simultaneous first order
differential equations. Each of the first order differential

'equations is linearized using Taylor series expansions with second
and highér order terms omitted. lterative solutions of the resulting
linearized differential equations usually converge quadratically to
the solution of the original equations such that each iteration
approximately doubles the number of digits of accuracy. For example,
let us consider the following set of non-linear first order differ- '

ential equation:

(Iv.1)




(o2 T
A¥S )

with boundéry’éondltlons:

Yy (o) = @, (IV.2)

where fi (:x,Yj ) are non-linear functions which can be

linearized around y; = y; as follows:

& afi ( X;Yj ) &%
f. (><,\/J.)=fi (g,yj)+{——;-\/—*—-— 3l=y-k(yk'yk)
k jl
(1v.3)

In other words, the differential equatiors can be represented

oo

around yi=y;, as:

dyi * %

;——= f. (xy. )+ 9y, YV, ) (IV.4)

X

where:

) {E_fg
Tk :

) 13 (IV.S)
yk YJ=Y .
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If -y is represented In the vector form (-y1, Yo weees , Y )

and f represented in vector form ( foo f , fn ), and if y

g e

is taken as a previous iteration vy h) to the solution.then the

differential equation, Eq. (IV.1.) can be written as:

dy(n+1)

Tl b (xyy ™y ey My ] )y (17.6)
dx

'. . * . . . +]
Eq. ( IV.6.) now constitutes a linear initial value problem for y(n ).

n+t) ' .
Once y( has been determined, successive iterates y(r), r=n+2,n+3,
..., can be obtained from successive solutions of Eq. (IV.6 ). The

Inttial lterate y(g) can be taken as the linear elastic solution.

The - Jacoblan J is gliven by:

af {n) aff") affn)

————

8y1 3y2 Bym

afé”) afén) _ afé”)
J ( y(n) ) = ay‘ ayz ' aym (IvV.7)
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4.3.2‘Agplicatfon. It is-now possible to apply this method to
the set of first order sﬁell differential equations given in Chapters
IT and III.-
The application of the quasi]inearized method does not alter’
the.linear terms in the shell governing‘equations. For - example, the

first order ordinary. differential equation.
-y . (1v.8)

when quasilinearized becomes:

P 5y (n)
w$2+1) - { oMy —  (ylnet) C (o) )}
R¢ du .

@ W e )
n n - n
- Ly, '+ ( Y¢ )}

A — Y
) ¢
8Y¢
(n+1) A .
U
_ % y (n+1) (IV.9).
R¢ ¢

To illustrate the quasilinearization process, consider the

non-linear equation:
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W 2 : =
U¢’s = e¢ - E - 3 Y (1v..10)
¢
Application of the quasilinearization method to-tﬁls equation
glves:
(n+1) - ( 2)
(n+1) W 2 3y n
oD Dy e (P ey
¢ r K 5y ¢ ¢
- ¢ ' ¢
B |
n)W (n) (n+1) (n)
=e-_ -3 {( +2 " -
a¢ - i Y¢) (Y¢) (Y¢ Y, )}
s .
(n#1) )
n+1 W (n+1) (n) 2, (n)
‘ Uprs = TS Y +2'(Y¢ ) (Iv.11)

where the superscript {n) represents the value of the previous
i terate.” The quasilinearized version of the complete set of governing

shell equatfons: Eq. (II.52) to Eq. (11.58), is given by:

(1) U(n+l)

W - -yl (1v.12)
S R ¢

¢ p



(n+1)
Yd”s

(n+1)
$’s

1
(rQ )(n+ )
s

(n+1)

Cos¢ _{AMén+1)- (n+1)

-

(1v.13)

(n+1)
"o } * e, (1v. 14)

+ N K +rN K

= ' { 2 Y(n) N(n) } (n+l) (n) (n+1) (n) (n+1)

. ) r (m*+1) r  (n)  (n+1)
+ { Sing + rKén _}N("”)- - (“)Q -

8 . g e b =%

IENCARR
$ (n) (n+1)
+r{;+ R—- +K¢ }N¢
6 ¢

) (n) 2 2, (n) . (n)
o+ r {Ki" Né”)- K(n)Nen -2 (™M

6 ¢ b
Ry |
- P (IV.-5)
(n+1)
() _(n+1) ) (2 )(n)
- Y
Y¢ Y¢- ¢ . (IV.16)
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(n+1 Cos¢ Cosd Nyl Q
W W 2% D S Te Ty
- 9’s r 8 . 9 R
¢ ¢
_ o .
(n)  (n+1)  (n) ("+1) :
'z g wg" e T e v

It is to be notad that the above set of equatlions contain
auxiliary variables, such as 564K9’ g¢, K¢, Ne and Me,‘aéong with
‘the fundamental variables that were defined in Chapter II. These
auxiliary variables are determined using the constitutive relations.
Since no prior use of constitutive relations was made in deriving
.the set of quasilinearized governing differential equations, Egs.
(1v.12) to (1v.17), genef’éify with respect to material behavior
is retained.

In the foregoing.derivation of Egs. (I1.52) to (I1.58") the
iterate values corresponding to.a previous solutlon state are repre-
sented with superscript (n) whereas the current iteration variables
are represented with superscript (n+1). An obvious choice for the

trial iterates 'during the first iteration of the non-linear ‘solution

is the.llnear elastic solution, Subsequently, the current iteration .

variables defined by the superscript (n+1) become iterate values
for future iterations. Such fterations are repeated until a desired

accuracy |s obtained.
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L.4 Final Form of Equations.

A brief descfiption of the method of'large defléctioﬁ elastic-
plastic analysis is presented in the following chapter.

Emphasis is given to organizing previously derived equations
in a form sultable for integrations. Since only a general method of
analysis can be presented here many of the previously de}ivad
equétions have been refesrenced to indicate their usability.

The érOCedure for the scaling of loads to the yield point and
a method of assuming strains to start the solution algorithm is out~
lined in Appendix D.

Once #he strains are known for the current iteration of a
load Increment then the functions f1, fz, |
are evaluated from (III.50) to (III.61).

f3 and their deriQatives

For each load step the initial trial solution ( o¢,5e,gp )O
correspohds to initial iteration number zer&. In this caszs the best
cholce happens to be Eq. (III.31). HNote thaﬁ if the transition factof
m=1 Is used im Eqs. (II1.62) to (III.73) they reduce to Eq.(III.31).

The current values of stresses and effective plastic strain

are evaluated ‘from Eq. (II1I.62), given by:




4 A (n+1) é g n) — — r h
o4 o, afy  3fy 3 f,
¢ a0 o0 Y-

$ 8 .
% & - ﬁ 9 ) - | a2 22 3f f2 >
ao¢ aoe aep
£, £, afy  3fy  afy f3

(Iv.18)

The plastic stiffness coefficients are then evaluated from
(I11.25) to (III.34) and the coefficients C ., Chyy Coys Dyys Dyps
022’ 021, Kll’ Kios K21,-A11 are evaluated at each meridional
integration point from Eq. (III.99) or (III.100) to (III.104) for
singular points.

The auxiliary variables are determined from:

i< (yd J e :
€ = (U¢ Cos¢ + w¢ Sing) /r (1Iv.19)
Ké,= Yi Cosd /r . (1v..20)

whers j=o, 1; t=1, 2, ..... n . The first of these superscripts
(o) corresponds to a particular solution and the remaining n super-

scripts correspond to homogeneous solutions.

70
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For homogeneous solutions:.
pe! = ¢! | (Iv.21)
0 6
ak! = k! (1V.22)
9 G ’
and for particular solution:
0 (0]
= - (1Iv.23
Aee €y~ €g i | ( )
° - ko - ' T,
Ky = Ky Kei , (Iv.24)
Where the subscript 1 refers to a previous solution state.
For elastic-plastic solution process the previous solution state
is also called a residual state.
For homogeneous solutlons,
AN‘ = N‘ | (IV.?S)
¢ ) ‘
AMl _— (Iv.26)
¢ ¢ '

and for particular solution:

ARG = N; - N (1v.27)
¢ ~ o o "
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. ‘
AMO =M - M ' - (1V.28)

Eq. (1II.91) and Eq. (III.94) are now solved:

j j j iy g
Ae” = ANT - C._ Ae- - K. AK D
€4 l:( s~ Cyp feg T Ky, AKC) D
j Jj J
- M° - K -D K
(M - K, beg 1er)‘K”J
A
(1V.29)
J J J J
kK = M) - K - K
A¢ [(A¢ ‘Aee Dlee)C”
i j
- N - -
(A¢ t:12 beg - Ky, AKS ) K”:]
A
(IV.31)

where various coefficients C11, Ci20 Co2s K11 Ko K22’ D11, 012,

D,y are sloved by Integrating Eq. @I1.97) through the thickness

using Simpson's rule; A, is determined from Eq. (111 96 )
Now ANé and AMérate simllarly determined from Eq. (I1I.92)
and Eq. (III.94) respectively.

Thus:
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Ng = Ng; + aNg | (1v.32)
ej = ¢ + Asj ‘ : ‘ (1v.33)
o) ol )
ki =k o+ akd ' (IV. 34)
¢ $i ¢

The subsequent development of a numerical schehe for the direct
integration of a set of first order ordinary differential equations,
given by Egs. (1y.12) to (1V.17), requlire a much clearer perSpectiQe

with regard to the treatment of (n)lth and (n+1)th iferation values.

Eqs. (IV.12) to (IV.17) are therefore reorganized in the following

form.

Let:

{F;} = Vector of the fundamental variables of Eqs. &v'.12)
to {Iv.17), i=1,2,....6

{ " U N}
w¢’ Y¢’- ¢’ Q¢’ ¢’ ¢ .

{R, .} = Matrix that contains censtants and (n)Fh
sl ‘teration values of all variables and thelr
derivatives In Eq. (IV.12) to @v.17),
1=1,2, 000l j=1,2,00000000a 12,
(see table IV .1 for components of this matrix).

{A } = Vector of (n+1)th iterates of fundamental and
1 auxiliary variables in Eqs. (Iv.12) to (1v.17);
j=1,2,...... 6. :
_ T
= {ee, K K Ne, Mo,

e’ €¢’ ¢) e
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{L,} : = Vector of (n)th iterates of the fundamental
! and awiliary variables that are not multiplied
by coefficients of (n+1)th jterates in Egs.
(1v.12) to (1V.17). :

Where
L] = L2 = L3 =0 (IV.35)
N 2 Y:Q4 y(n)
. _ - R 2N R
Lh—r[{K(b N¢  Kg N - vy My + - } Pn] (1V.36)
) $
2 (n)
L - %{Y¢} (1v.37)
¥, N y(n) |
L = - {_SL_EL__}r- P¢ (1v.38)
R
¢

The set of first order ordinary differential equations are now

organized as:

(n+1) (n) (n+1) (n)
._ .
{Fx,s} = [R;,j'] A{';?-] | + {Li} ’(fv.39).
Where P=1,2,....6 and



Table IV.1 Components of Matrix R, .

. 5 (n)
R T . | Ry,10 = 7 Mg
1
"5 T Ry T
q) o
1
Ry ! Re ¢ = “;
' o
. Cosd .: (n)
3,3 - . Rs 2 =7 74
Ry =1 Reg =1
Cosé (n)
R3,12 = B R6,2 = N¢
r (n) 1
_ (n) (n)}
R =— IN - = - —
4,2 - WM 7" - Y Re,u =™~
9 : )
(n)
r n Y
R =_-Y( ) R =—i—. -
b,k = 6,6~
$ $
r 2 (n) (n)} Cosd
We T3 {’ vl HRK 6,11 =
A ,
Ry, 8 =rNg

3

A1l other components of the matrix [Ri .] have a zero value.
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In the expanded form Eq. (Iv.43) is written as:
2 " o+ (
e (n+1) . . . (n) (& W(n 1) - n)
1’5 1,1 1,2 ceseaene 1,12 1 :
F R R, evevenns
2 20 fay "2,12 12 v2
] ] L) ]
< t g L= ! < 1 g + < i >
[} ] 1 . 1
] ] ] -k
[} 1 ' [}
. ] i ]
1 ] t ]
] ] ] !
F 1 [ L
L 6,5/ ' 1 . 6J
1 ]
] ]
] t
- R6,1 R6,2. ...... . R6,12 ] \G]2 (IV.40)
F.
where {c.} = (=}, =206 5 321,240 nnn. 12
A o | (1V.41)
(n)

It is'customary to regard{Li} as a load vector and, hence,
Is considered only during direct integ}ations of the particular
solutions. Once a Solugign ig known for an lteratlon then the middle
surface strains ;nd cucvatufes éré used to evéluate the strain
increments at every point through the thickﬁess using the following

expressions:

.Ae¢ = e, m e, ) = ey meg ) mz (Ky- Ky ) (IV.42)
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Ae . = (e. -e,: ) = (se - Egi ) - é <R¢ - R¢i ) © (IV.43)

Where z is the coordinate through the thickness, €4 Ee, R¢,

Re, are some of the auxiliary variables at the middle surface.
Subscript i refers values of these auxiliary.variables at the previous

solution state.

.5 Statement of Chapter.

.The equations (I¥.39) are now in the appropriate form to be
used with the non-linear integration scheme that is developed in a
subsequent chapter. All quantities of Eqs. (IV.39) are non-dimen-

sionalized in Appendix B.
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CHAPTER V-

NUMERICAL INTEGRATION SCHEME FOR LINEAR ANALYSIS

5.0 Intent of Chapter.

In this chapter the suppression technique for lineér elastic
analysis Is reviewed. This Is done separately in this chapter.in
order to avold repetition of certain salient features of this
technique that would be common to both linear and non-linear
analysis. More detailed discussions of the numerical integration
process including suppression can be found in (11) to (14).

5.1 Linear Analysis Method Background.

The ‘numerical integration problem is first set-up such that
the fundamental variables are those appearing on the boundaries.
Then the boundary value problem is transformed into a set of
initial value problems; solutions to each of these initial value
prodems are called partial solutions.

A problem arlses in the use of numerical integration. The
solutions .are of the exponential type and accuracy is lost in
lntegfating over long path lengths. To overcome this problem
the multisegment method (12) or the suppression technique (13)
and (14) can be used. These methods provide uniform accuracy
everywhere along the integration path.

In the multisegment method the rég!on of integration is
subdivided into a number of segments. The stiffness of each

segment is obtained by successively setting each fundamental
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variable at the beginﬁing of the segment equal to unity while
others are set equal to zero. Having the stiffness of previously
integrated segments, one can reassemble the segments by solving
a sét of simultaneous equatlons. The number:of these equations
equals the number of fundamental variable times the number of
shell segment, plus one. Kalnins and Lestingl (67) adopted a
Newton-Raphson scheme with the multisegment meth>d of numerical
Integration for the large deflectng analysis of elastic shells
of revolution.

The suppression tecﬁnique alleviates the numerical problem
of error propagations by recombining the imdependent initial value
problems (partial solutions) when necessary as the integration
proceeds. They are recombined in such a way that the components
of the erroneous growing solutions at the point in question are
eliminated. With this technique, the solutions are all of
comparable magnitude when the integration process arrives at
the far edge of the shell. Whenever the partial solutions have
become large compared with the initial conditions, the suppression
is accomplished by requiring that linear combination of the partial
solutions sequentially satisfy sets of artifitial initial conditions
with small magnitude at various points along the meridian of the
shell. Thus, for each segment the number of equations solved
equals the ﬁumber of fundamental variables. For the linear ejastic
analysis of shells the partial solutions can be linearly combined

to obtain the final solution.



An extension of the suppression technique to non-linear shell

analysis is presented in the following in which the quasi-

lineariza;ion technique described in chapter IV i; used in such
a way that the final recombination of partial solutiéns becomes
possibie.

In the numerical integration scheme, & standard Runge-Kutta
Gill procedure in conjunction with Hamming's predictor-corrector
method is used to solve the system of first order differential

equations.

5.2 Description of Suppression Process.

In the suppression technique for a system of order 2j, j
quantities are assumed at the initial point and j boundary:
conditions are satisfied at the terminal point. The correct

solution corresponds to some other set of initial values that

-produce boundary quantitles satisfying the terminal boundary

conditions.
Partial solutions for j homogeneous and one particular solution

designated by S,. S., .... Sj are carried simultaneously by

i
assuming j initial values and prescribing j boundary conditions

at the initial point. The growth of extraneous solutions is
controlied by selecting suppression points at locations where
magnitudes of the fundamental variables have exceeded a prescribed
l1imit which is based upon the desired level of accuracy. At each

suppression point artificial boundary conditions are satisfied and

a set of coefficients are chosen and stored. The resulting
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suppressed solution is used to restart the integration process
and the integration is carried out until another suppression
point is required. The artifitial boundary conditions are once
again satisfied at this new suppression point anq a set of
coefficlents required for recombination are determined for the
present suppression point. These coefficients are used to modify
the set of coefficients at the previous suppression points. This
process is repeated until the terminal point at the far end of the
shell is reached where the terminal boundary conditions are
satisfied. The set of coefficiénts for recombination determined
to satisfy the terminal boundary conditions are used to determine
fhe final set of coefficients at all previous suppressionApolnts.
The process is completed by performing direct integration between
all the suppression points, using these initial conditions
vectors, with recombination of partial solution after integration
to determine the final solution.

5.3 Basic Suppressfon Technlque.

The detailed mathematical treatment of the integraticn process
for the linear elastic analysis of shells of revolution is out-
1ined in the following. The fundamental variablés are as defined
in Chapter 1.

Let the partial solution matrix P be defined as follows:




Y, s0 Mo, 51 VM,s)
Y¢,So Y¢’S' Y¢’Sj
M so Ho,si Mo,s
] -
Qtii,so Q¢,si """ Q'q>,sj
U¢ySO U‘b:SE U¢»S.j
_ N¢,so N¢,si , N¢,sj4

(v.1)

Where the subscfipt ¢ on the fundamental term refers to
meridional direction, comma denoted derivative, s represents arc
lengths along the meridian ofithe shell, a zero (0) identifies a
particular solution and the numbers 1,2,....j identify j homo-

geneous conditions.

The partial solution matrix given by Eq, (V.1) is written as:

{P""}"} - {P Py eeeennp (v.2)

Where K = 0, 1, 2 ......]
Each of the vectors PK is composed of (j+1) boundary
conditions and (j+1) initial conditions at the initial point.

The (j+1) initia) conditions are given by vectors i, and Ij as

follows:

32
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[ 0) &k 0 ) (0 )

Thus, a partial solution vector ‘{PK‘} in Eq. (v.2) is given by:

{Pj} - {?‘L} (P - {T—:} | (v.4)

Once j boundary conditions are known at the initial point,
j initial conditions are chosen according to Egs. {(v.3).
thus converting the boundary problem to an initial value problem

according to Egs. (V.4).
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Furthermore, let P; be the matrix of partial solutions P
at suppression point m after n suppressions have been made. The
value m = 1 can be represented as the base or the initial point -
The shell equations are integrated numerically from base to point
where the extraneous solutions bebome so large that it is necessary
to suppress them. |t was found convenient to fepresent the sheli

‘equations In a non-dimensionalized form which provided a balanced
set of equations that were used for suppression. The first point
at which suppréssion was carrled out is denoted by m = 2,

- The extraneous solutions are suppressed by requiringthat ;he partial
solutions satisfy sets of independent conditions. The magnifudes
of the conditions must be small compared to the values of the
unsuppres;ed partial solutions at the suppression point. At a

- éuppfesslon point the arflf?tial boundary conditions afe'represented

by the vectors {Ak} wlth the element Akk (k=0, 1, ....j). A

convenient selection of artifitial boundary values is as follows:

(F90™° [y ° A &
0 . 0 . .
‘ " 0 % 3 . . .
(A} =< o ), {ar=) . ) (Al =< 0 )5 (A) f< :
. . All=? .

Lo . 0 \0 LA, =1
‘ jj

(v.5)
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As outlined befo;é it should be noted that for a system of
order 2j, only j boundary conditions are satisfied_at the terminal
or the suppression point. In other words out of 2j quantities in
the matrix 5lon|y j quantities need be chosen in order to obtain
appropriate suppression coefficients. The choice of these j
quantities is arbitraty but chosen in such a way that the
suppression process is most efficient., It has been found that a
choice of highér hagnitude.j values produces an efficient
suppression process.

Let us assume that the j quantities to be chosen out of the
matrix P are denoted by Q and are as follows for a system of 2j=6

and j=3:.

(o (2) 3)
Mo,s1 Mo,s2 Mc1>.53
- | (1) (2) (3)
Q= Q¢,v51 Q¢,SZ Q¢,S3 = [:q] v 9o Q3]
(y - . €2) (3)
L Nest MNeysy Noysgo

(V.6)

Let the unsupéressed quantities {q'} (1.=0,1,.00cey])
where {qj} are vectors of ﬁ,represent the’fundamental variables at
the supbression point, i . e. at a point at which extraneous
solution can not be tolerated, so that the following artifitial
bOuﬁdary conditions are satisfied. Here again; as before, a 0
designates a particular solution and j=1,2,... correspond to

homogeneous solutions.




[d]{51}+{qK}={t }(K=0,1, ....

K

or QKl { g }+{ a Y={ ¢t 1}

1 K

-— 0] ..

=1

This will yield a set of suppression coefficients:

~ - - - -~
Y01 M a1;
k] = . . ¢« oo e s s o ;K=0’1"..j
L] L] . l=]’2,0l0j
L %5 i 3

Each solution will yield a set of Hlk values so that the

suppressed solution can be written as:
S, (K=0,1, ..o.j)

S, Is the suppressed partial solution vector and §
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)

(v.7)

(v.8)

(v.9)

is the

unsuppressed partial solution vector. It is necessary to point out

here that at the mt" suppression point Hk? suppression coefficients

. . th
obtained are used not only to suppress the solution at the m

suppression boint in question but also to resuppress all the
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. . th
previous suppression points from the base to the m

suppression point (m=1,2,..... t). This marching procéss is

continued until the terminal point is reached. At the terminal

point only the particular solution need be suppressed to the real or
terminal boundary.conditions { To } , so that the unsuppressed values
{ TK—} cén be combined as follows:

J
(T} (T ret

t

ol { T, } (vV.10)

where { fK } represents the final solution.

5.4 Statement of Chapter.

The suppression technique presented above is applicable only
to linear elastic problems. In chapter that follow this technique
has been extended to non-linear elastic and non-linzar elastic-
plastic problems in which certain salient features of the

suppression technique of this chapter will be used.



CHAPTER VI

" NUMERICAL INTEGRATION OF QUASILINEARIZED EQUATIONS

6.0 Intent of Chapter.

In this chapter Is developed an algorithm for the non-
linear analysis of shells of revolution, Eq.-(IV.hl) with non-
dimensionalized terms is to be used in that developement., An
extension of‘this numerical integration algorithm for elagtic-

plastic analysis is also presented.

€.1 Sugpress?on,Schehe_for Non-linear Elastic Analysis.

6.1.1 Application of Quasilinearization. Thé'quasiiinearization me thod
consists of the determinations of successive iterations converging
to the true solution. This method is advantageous in that the unknown
values for the current iterate occur linearly in the equations. The
coefficients of this current iterate may contain previous iterations
to the unknown, thereby, the solution to the non-linear problem is
obtalnable' with very little difficulty.

The quas ilinearized set of non-linear first order ordinary
d ifferential equations derived in chapter III have in general the
following characteristics:

(1) They contain coefficients in terms of the previous
iteration as weil as the current iteration.

(2) Each equation of the system is composed of:

(a) terms containing the preyious_iteration values
(defined by the matrix |R, .] in Eq. (Iv.41)
multiplied by the derivativad of the fundamental
varia bles of the current lteration (defined
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' By the vector(Fi s} oF Eq. (1v.41); and:
. . ?

(b) terms containing only the iterates of the
previous _solution and_the loading terms
defined by vector(l.i} of Eq. (IV.41).

(3) This system of equations is formulated to suit
the elastic-plastic algorithm. ’

(L) The vector {C.} of Eq.- (IV.43) contains the current
or -{n+1) th.Ttdrates of<the fundamental as well

as the auxiliary variables.

(5) These system of equations contain auxiliary
variables of the previous and current iterations.

6.1.2 Application of Suppression Scheme. The partial solutions

for the non-linear analysis are represented at the (n+1)th iteration,

namely:
[F?,S] (,nﬂ) =[F?’S FloFd e F'.l"s] o+t
e 1 r ) (n+1)
W¢,S W¢’.S W¢’S
Yo, s Yo s Ye,s
= MO M;’s ME
% %, s %, s
ug, ¢ 7 ' Us,s
L% W, "os] Wi
Where superscript p=o,f,2 ...... r identifles a particular solution

and r homogeneous solutions.
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Eq. (IV.42) is rewritten in the following form with the

superscript p representing each of the (r+1) partial solutions:

Py ) | I |
Fl,s R1’1 R1’2 ..... R1,12 G] L1
P P
F s RZ,s R2’2 ..... R2,12 G2 L2
[y - O
P p
F R R ..... R G L
, 1. 76,2 T 06,12 12 £
L 6’SJ u 6 J g J L (VI.Z)
(n)

It should be:noted that the (n)th iterates in[Ri’jJ

remain same for r homogeneous and one particular solution. The
- (n)
. vector(Li> will disappear for the r homogeneous solutions.

The various partial solution vectors{F?’s> (n+1) are sub-
vector of{D} (n+1). In the subpression process the definitions
of initial conditions vectors, artificial boundary condition vectors
etc. will be the same as defined for linear analysis in the previous
chapter. Likewise, the process of recombination described in the
previous chapter is the same. |

As outlined in Egs. (IV.41) to (IV.43) the vectors {GT} (n+1)

and{Li}(”) and the matri.x[R;,J-](”) are composed of the fundamental as
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well as the auxiliary variables determined for thelr respective
iterations. To determine the auxiliary variables of thé (n+1) th
iteration in the vector Gf , it is necessary to usé‘the constitutive
relations corresponding.to elastié or elastic-plastic material
behavior as outlined in chapter V.. For instance, in chapter V

it has been shown that the fundamental and the auxiliary variables are
inter-related through partial stiffness coefficients which must be
determined at every meridional point during the integration process.
A discussion on the non-linear elastic-plastic algorithm is the |
subject of Appendix D. It should be noted that Iterations on both
geometric and material non-linearities occur simultaneously in the
solution algorithm.

For the flrst.iteration to the non-linear elastic solution, the
linear elastic suppressed partial solutions are used as the assumed
values required. Likewlse, the non-linear elastic set of suppressed
partial solutions are used as initial assumptions for the first
i teration of the elastic-plastic solution scheme. In view of the
quasilinearized form of the shell equations and the incremental
nature of the elastic-plastic ana}ysis the linear super-position
of the homogeneous and the particular terms as described in section
6.2 becomes possible.

6.1.3 Complexities of Non-linear Elastic-Plastic Analysis:

As has been stated in the previous section, the quazilinearized
form of Sander's shell governing equations that were derived in

Chapter II can be used in an elastic-plastic analysis since the use




-of elastic constitutive relations was avoided in their derivation.
In this Section is discussed the specific manner in which the elastic-
plastic constitutive relations are used along with the quasilinearized
differential equations and the suppression technique.

The auxiliary variables €gr Kg» e¢, K¢, Ne, Mg, are evaluated at
every meridional jntegration point as before. In addition the

partial stiffnes§ coefficients Eij are evaluated at each meridfonalA
Integration location at several points through the thickness. With
the Von-Mises Yield criteria used, eleven points through the thickness
were necessary to achieve the desired accuracy in the solution. With
Eij values known at each pcint through the thickness, their weighted

effects C; D:: and Ki , a5 defined in Chapter V, were evaluated

ijr oij j
at the meridional integration point using the trapezoidal integration

rulg. lt is essential to store C;j, D;j and Kij terms in addition to

the auxiliary variables, defined earlier. This is necessary in order

to calculate all partiaf solutioris at the meridional point. This

I ntegration process is subsequently continued along the shell meridian

following the suppression technique described in previous sections.

6.2 Non-linear Multisegment Numerical Integration Technique.

The multisegment method of analysis for large deflection elastic
problems has been developed by Kalnins (67), for large deflection
elastic-plastic problems by Girdeen (9). This technique Is outlined
in the following in order to establish a direct analytical comparison

with the suppression technique.
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" The system of first-order ordinary differential equations are

represented by:

dy
- [, Y 0, y2 (0, e, y"(x), h(x)) (VI.3)
4K .

where y(x) are the fundamental variables and h(x) denotes the non-
homogeneous terms in the interval ( a<x<b ) with the boundaries

a and b. It is assumed that the values of n/2 elements of each vector
y(a) and y(b) are known boundary conaitions.' The ‘interval is divided
intoequal segments M in order that the extraneous growth of the
solutions can be controlledAat the end of these segments by satisfying
the teminal boundary conditiomns.

At the initial edge the boundary value problem is converted
into an initial value problem. The direct integration is performed
within each segment for all segments within the interval tho b
where the boundary condition must be satisfied. |If T] and TM+1 are

t he transformation matrics, then:

T, y(a) = Y(a)
(VI1.4)

Tyaq v(b) = U(b)



g
— 1 I
ay (x)- - ayl(x) ayt(x) ay' (x)
3y (xy) ay2(x;) 3yl (xi) ay™ (x|
“ay2(x) 3y? (x) ay? (x) ay? (x)
Yi(X) = 1 2 RN . ; “e e
ay ' (x;) ay“ (x;) ayd (x,) 3y" (x;)
3y™(x) 3y" (x) ay"(x) 3y" (x)
A (VI.5)
La.\/’(xi) 3y2(x;) 3y (x,) 3y (x;)
The jth column of Yi(x) can be regarded as a set of new
varidles. A set of simultaneous first-order differential equations
is integrated from x; to x; 4 fgrming the matrix Y, (Xi+1)' The
requlred first-order differential equations are then obtained by
differentiating Eq. (VI.3):
\
d dy (x) d : )
- . = . f XY (X),Y (X), """" 9Yn(x)’h(x)
dx dyJ (x) dYJ(Xf) '

The solution to the non-linear problem is the limit to
which the lterative solution to Eq. (VI.6) converges. The solution

of the linearized problem is chosen as the initial trial solution.




Vi Ogap) v ) = v () = = 25 (xgpq) (VI.7)

Zi (xjaq) = v© () =Yg (xpp) vE (x) L)

Where y3(x) are the values of the iterated solution state,
y¢(x) are the values of the integrated solution state from x; to

X

.41 and yt(x‘) are the initial values of- the solution.

These evaluations are carried at the end of every segment
S;, 1 =1,2,.... M thus representing M matrix equations which contain
M+1 unknown vectors: y@ (xi),I=l,2,....M+1.

Since there are n boundary condition exactly épecified, the
number of unknowns become the same as the number of equations.
Consequently the combined system of equations for all i is solved
uniquely for y?(x;) using the Gaussian elimination techn}que. The
choice of the control of the extraneous>growth of the solutfon is in
the predetermined selection of the si;ed of equal segments.

6.3 Suppression Scheme vs Multisegment Method.

The suppression technique developed in Section 6.1 for large
deflection elastic and large deflection elastic-plastic problems
will be an improvement over the multisegment method described in
Section 6.2 for the following reasons:

(1) In the multisegment method of analysis tre selection

’

of the size of each segment is the only way to control the extraneous
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growth of -the solution.

| | In the suppression technique the growth of the extraneous
soltlons is controlled based on a criteria imposed on the growth of
one or all variables. The choice of the suppression point is thus
arbitrary and the suppression points can be unevenly spaced.

(2) ‘In the multisegment method of analysis it is necessary to
handle (nxn) matrices for inversions as well as for solviqg simul taneous
equatioqi. In the suppression technique the order of matriﬁas for
i nversions is reduced by one half.

(3) In the multisegment method of analysis the unknown
fundamental variables are‘determined through a solution of a set of
Mxn/2 equations by a technigue such as the Gaussian elimfnation
t echnique.

In the suppression technique the solutfqnof the problem develops
in a marching process so that only n/é equations at the terminal point
would be considered. In fact that process occurs automatically when the
inversion process in item 2 occurs at the terminal point. Instead, (M!)’
inner products are taken of two matrices at each suppression point.

(4) In the multisegment method of analysis for large
deflectioﬁ,problems the determinations of the Jacobian matrices
at the end of eaech segment requires a complex solution scheme and
requires increased storage since at the end of the interval a Gaussian
elimination scheme is necessary to obtain the solution to the problem.

In the suppression technique presented in Section £.1 the

quasilinearization of the shell equation and the suppression technique




are complementary. Once a system of -equations have been 'quazilinearized = "~

it is a simple matter to apply the suppression teChnique.‘ Thus a clear
Improvement. i$ Inherent.

6.4 Statement of Chapter.

A numerical method of analysis for the large deflection elastic-
plagic analysis of symmetrically loaded shells of revolution has now
been described. In the chapter that follows a set of example problems

have been solved for thes purposz of verification of the method of

analysis.
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CHAPTER VII

- RESULTS

In this chapter a brief description of boundary condition is
included. Then a set of four numerical examplés are presented which
provide comﬁarison with published results. The spectrum of these
examples chosen covér membrane and bending behavior of various types
A of shell configurations. For instance, a torus example provides
excellent validatfon of small deflection and large deflection analysis.
The examples of spherical and cylindrical shell exhibit membrane
behaviour with large deflection elastic-plastic behaviour and various
strain hardening propertfes. An annuiar plate having bending
behavior was analyzed with small deflection elastic, large deflection
elastlc and large deflection elastic-plastic consideration using a
perfectly plastic material beshavior providing good agreement with
experimental and previous theoretical research. These comparisons,
therefore, validate the numerical methods developed in the forgoing

chapters.

7.1 Boundary Conditions.

Treatment of sHell equationé reqﬁ?rés careful congiderations
of boundary conditions at the base (initial edge) and at the apex
(final edge). A total of six boundary conditions must be known in
order to solve the boundary value problem in symmetrically loaded
axisymmetric shells of revolution. As defined in chapter I1 the

six fundamental variables to be used to satisfy these boundary
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Figure 7.1. Shell Boundary Condition Homenclatures
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“Figure 7.2.  Shell Boundary Condition Nomenclature
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conditions are w,Y¢,M¢,Q U¢ and N¢. Figs 7 .1 and 7 .2 show fhe

b’
sign conventions at the initial edge and at the final edge. Iote

the change in the direction of the normal from Fig. 7 .1 to Fig. 7.2
deﬁending upon the choice of the initial edge of the shell. Consistent
with the shell behavior three of the six fundamental variables are
chosen at each of the Initial and the final edge of the shell. The
5uppressiqn'scheﬁe used in chapter V and VI requires szlection of fhe
remaining three variables at the initial edge for prescribing arbitrary
values in order to convert the boundary value problem 'nto initial

valueé problem.

7.2 Torus Under External Pressure.

For verifiéation of large deflection theory, a torus under exterﬁal
_pressure appeared to be a very gobd example. The problem was
investigated earlier by Kalnins and Lestingi (67) wHo used multi-
segment method of integration on Reisner-Meisner's Shell equations.
The results presanted here u;ed the suppression technique, that was
developed in chapter VI, for the numerical integration of Sander's
non-linear shell equations (7). It should be mentioned here that
Sander's (7) assumptions In his development of the non-linear shell
theory are identical to Reisner-Meisner's non-linear shell theory
used by Kalnins (67).

The geometrical and material constants of the torus broblem

according to the nomenclature of Fig. 7.3 were taken as follows:
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' _Figure 7.3, .Torus ‘Unde-r- Ext‘érn-al'~.P'ressure
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| =

a }
- = 1.5
b .
- = 0.01
b
p
- = 0.00001
£ _ .
E = 30x106 psi
y = 0.3
6 = 90° (initial edge)
6 = 270° (final edge)
Boundary Conditions: Initial Conditions:
(at inner and final edge) (at inner edge)
Y¢ = 0.0 ' B | We = 1.0
q, = 0.0 | My = 1.0
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Results wére first obtained for linear-elastic behavior.’ Fof
the non-linear elastic analysis the resﬁlts of-the linear elastic
analysis were used as initial iterates. Thé convergence of the non-
linear elastic solution was obtained with desired accuracy within about
three iterations. For this‘analysis no incremental approach wés
necessary since the quazilinearization of shéll equations made
possible the Integration of non-linear shell equations for one step
total applied load. The non-dimensionalization of the shell theory
‘further improved the sgability of the solution. The suppression.
technique of Chapter VI was found to be a good analytical tool in
integrating non-linear shell equations.

The results of thevtorus problem are plotted in Fig. 7.4 to 7.7
and show excellent agreement with Kalnin's results in (67). The
dotted curves indicate linear elastic solution and solid curves
indicate non-linear elastic solution in these figures. Fig. 7.k
is a plot between deflection and meridional angle 4. Tﬂe dotted line
indicates linear elastic solution and solid line indicates non-
linear elastic solution. The soiutions differed from those tabulated
in. (67) by a.maximum -of-two percent difference. Fig. 7.5 is:

a plot begweenvmerldional moment resultant and the meridional angle ¢
.. and shows good agreement with Kalnins results in. (67). Flg. 7.6
is a plot between circumferential membrane force resultant and the
meridional angle ¢ showing simllar agreements. Fig. 7.7 is a plot of

circumferential bending moment result and meridional angle . It

t
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Figure 7.9. Cylindrical Membrane Under External Pressure
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Is noteworthy that high variations in fundamental variables occur
approximately between meridional angles of 150° to 225°.

7.3 Spherical Membrane Under External Pressure.

For the elastic-plastic analysis understanding and verification

of results it was considered useful to analyze a spherical membrane

10

under external pressure. The gzometric and material parameters used

according to the nomenclature of Fig. 7.8 are as follows:

¢ = 0% (initial edge)
¢ = 909 (final edge)
R = 20.6 inches
h = 0.5 inches
E = 30x108 st
v = 0.3
oy = 28300.psi (yield stress)
p = 2000.psi

o = 410000.psi (elastically calculated stress)
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Boundary Conditions Inftial Conditions
(at inner and final edge) . (st inner edge)
Yy = 0.0 _ ’ Wy = 1.0
b
U¢ = 0.0 N¢ = 1.0

Strain-hardesning pfoperties of th; material.weré'inc]uded in the
elastic-plastic analysls. The results of the large-defiection elastic-
plastic analyﬁis are reported in Fig.'7.10 which is a relationship
between load and deflection. The results of this analysis were carried
far beyond the deflection values reported in Fig. 7.10 and exhibited
stability of the solution for very lafge deflections. Fig. 7.10
shows the relationship between load and deflection for two different
percentaged (1% and 10%) of strain-hardening. It is indicated that
the spherical membrane showed considerable resistance to applied load
with increased strain-hardening. - |

7.4 Cylindrical Membrane Under External Pressure.

Another example of elastic-plastic analysis chosen was that of a
cylindrical membrane subjected to external pressure. The geometric

parameters used according to the nomenclature of Fig. 7.9 are as. follows:

¢ = 90°

4
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0'3 1 1 i T T 1 1 1 T I )] T 1
0.2¢ LINEAR - NON -LINEAR ELASTIC -
o - NON -LINEAR ELASTIC - PLASTIC -
o
x N —
% ‘ Loy
L. i y |0% HARDENING -
%i B OR] S '/ éf/ -
i 1% HARDENING |
i 1 | § 1 { 1 | L 1 | | i
0.1 0.2 0.3 0.4 0.5 0.6 0.7
5,102 |
R x 10
Fiéure 7.2. Load Deflection of Cylindrical Membrane Under

External Pressuyre
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R = 20.0 inches
h = 0.5 inches
L = 10.0 inches
E = 30x10% psi
v = 0.3

= 28300. psi (yield stress)

Yg

Y
p = 1000. psi
o = 40000, psi (elastlically calculated stress)
Boundary Conditions fnitial Conditions
(at initial and final edge) (at inner edge)
= 0.0 : Wy = 1.0
Q¢ = 0.0 M¢ = 1.0
U¢ = 0.0 N¢ = 1.0




Since the elastically calculated stress of cylindrical membrane
example was the same as in the spherical membrane example, it provided
an interesting study of the elastic-plastic analysis results. As
for the spherical membrane example the results for cylindrical membrane
example were computed fo} different strain-hardening percentages
(1% and 10%). Results of the elastic-plastic analysis of cylindrical
membrans are reported in Fig. 7.11, which is a relationship between
load and deflection.

7.4 Annular Plate Subjected to Inner Edge Deflection.

Nomenclature of this problem is as indicated in Fig. 7.12.
it is shown that the annular plate is simply éupported at the outer edée
and is free at the inner edge. Edge deflections were appliéd at the
inner edge. Since this problem exhibits considerable bending and
nonjlinear effects it was considered ideal to verify large deflection
elastic-plastic analysis results.

‘This problem of annular plate was earlier analyzed experimentally
and theoretically by Ohashi, Murakami and Endo (79) who used large
deflection theory in their theoretical analysis. They used a perfectly
plastic material in their theoretical and experimental analysis. -

In the theoretical analysis of (79) Von-Mises yield criterion was
used with Prandt-Reuss's flow rule. The geometrical and material

parameters used were as follows:

a = 100 mm
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Figure 7.12. Annular Plate Nomenclature
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b = 200 mm

h = 10 mm

v o= Oﬂ28

E = 20890 Kg/mm?
H' = '0.0 (perfectly plastic)

30.1 Kg/mm2

Q
1]

Hutula (65) also analyzed this problem usiné.a large.deflection
theory and under the con&itions similar to (79). Their results
showed good agreement with experimental and theoretical results of (79).
In the experimental analysis of annular plate in (79) a mild steel
specimen was used which behaved more closely like a perfectly plastic
material. |

The large deflection elastic-plastic analysis of thls annular
plate was also analyzed In this work to verify the techniques developed
in earlier chapters. Since local unloading was éllowed in this analysis
it was possible to go beyond the range to which the analysis was carried
out in (79). This analysis was carried out to the same range of

loading to which Hutula (65) carried his results. Following boundary




'7 -

o &,0,00 HUTULA (65) ¢ | | / | i
o  OHASHI (79) i

i :;-_-;} CALCULATED ,’ o

THIS WORK
o p -
a.
i —b-—0.5 ~ o ’I / |
/ f
8 o ¢ 1
NON-LINEAR ELASTIC ——=/ Z—LINEAR ELASTIC |

!

/
P
/
/

LIMIT LOAD

NON-LINEAR ELASTIC-PLASTIC -
0 1 | 1 ! i { 1 ] ] Il { 1 1 1 §
o 2 4 6 8 10 i2 4 16
W-mm

Figure 7.13.  Relation’ Between Total 'Load' and Deflection of
Annular Plate o




boundary conditions and initial conditions were used in the analysis.

Boundary Conditions Initial Conditions

At initial edge-

Wy = Vg (specified) Yo = 1.0
N¢) 0.0 Q¢ = ‘--L. e
M¢ = 0.9 . ’ U‘i) = 10’\) .

At final edge .

W¢ = 0.0
N¢ = 0.0
M¢ = 0.0

The results of this analysis are reported in Fig. 7.13.
First a linear elastic analysis was carried out which showed good
agreement with the results of Hutula (65) as shown in Fig. 7.13.
The results of non-linear elastic ana]ygis also compared very well
with those of Hutula (65). As shown in ng. 7.13 the non-linearity is
quite evident as indicated by linear elastic and non-lfnear elaétiq

results.
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Fig. 7.14 Flastic-Plastic Histogram of Annular Plate




The theoretfcal.results of this analysis and those of Ohashi {(79)
and Hutula (é5) compare very well with thelexperimental feéults of (79)
in the large deflection range. However, some apparent disagreement
with éxperlmental results, of the order of about 8%, can be seen in
the small deflection range. This difference can be expected since
the material properties and the plasticity constitutive relations ar=s
based on uniaxial experimental data and thus may not match fully
with biaxial load deflection results. A histogram of the spread of

the plastic zone in the deformed annular plate is given in Fig. 7.14,
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CHAPTER VIII
CONCLUSIONS AND RECOMMENDATIONS

Improvements in methods of large deflection elastic-plastic

.analysis of shells and other.structures continue to be of interest.

With the developments in the previous chapters an improved numerical
suppression scheme is now.available for the large deflection elast{c-
plastic analysis of axisymmztric shells of revolution subjected to
symmetric loadings. Results presentad in the previous chapter

indicate the accuracy of this numerical scheme. |t appears to te

possikie to extend this method for more complicated situations.

8.1 Summary of Study. Quazilinearization of Sander's non-llnear

shell aquations 1s presented for the flrst.time. With these quazi-
}linear equations the suppression scheme for numerical Integrations
has been developed to solve non-linear boundary-value problems; in
particular the problem of the large deflection elastic-plastic
response of shells of revolution. This supp;ession schema has been
used In conjunction with a Newton-Raphson iteration methnd for the
constitutiva relations. Convergence process at the yield surface in

elastic-plastic problems is thus obtained.

8.2 Discussion of Results. The large deflection elastic analysis

results for a torus presented in the previous chapter show excellent
agreement with the results obtained by Kalnins (67) who adopted the

multisegment method of numerical integration in that work.
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It was not possible to obtain experimental verification of the
reauslts for torus. For large deflection elasfic-plastic analysis of
an annular plate, also reportzsd in the brevious‘chapter, agfeément
has been obtained with experimental results as well as with previous
analytic results using the multisegment method obtained by
Hutula (65). For the annular plate problem a perfectly plastic
material behavior was assumed. A set of examples were also presented
that included strain-hardening ﬁaterial effacts.

83 Limitations. Although non-linear problems have been soived
with the suppression scheme, such problems have been limited only
to axisymmetric shell behavior. The method of quazilinearization
has been developed for shells of revolution using the first order
e ffects of the Taylor series expansion of a function. Large
deflection elastic-plastic analysis can be carried out only with
'incremental loadings. For each incremental load the entire
suppresslon process must be used in a space-wise marching process
to find a new solution state.

A set of three boundary conditions must be specified at each
end of the shell, any set of arbitrary values can be specifiad for
the three remaining variables at the initial edge. The analysis is
1imited to static dead weight or/and pressure loadings. However any
symmetric edge loadings can be specified by transfprming them into
edge boundary conditions.

Only isotropic material properties were considered and no thermal

effects were included. However, strain hardening can be accounted



differently at different points of the shell depending upon- the-
magnitude of the plastic strain effects.

8.4 Possible Extensions.

a. With the present method of analysis thermal loadings can be
included by proper modifications of the shell governing
equations and the constitutive relations.

b. Dynamic effects may be added with the present method of
analysis by inclusion of inertia effects in the governing .
shell equations. However, a modal superposition analysis
in thz elastic-plastic regimes is not possible. Direct
time-integration would have to be uszd.

c. A convenient means of specifying arbitrary loadings is to
use Fourier Series distributions. Due to the non-linear
nature of elastic-plastic analysis it is not a straight
forward process to suparpose Fourizsr harmonics in order
to analyze arbitrary loaded elastic-plastic problems.

d. It is possible to include cyclic thermal loading effects
by proper modifications of the elastic-plastic constitutive
relations. This will also allow a study of thermal
ratchetting and piastic-creep problems.

e. A study is recommended in which various other yield functions
and hardening laws are used.

8.5 General Conclusions. Through the application of a quasilinear-

ization algorithm it has become possible to extend the suppression
s cheme of numerical integrations to nonlinear problems. Since,
for‘a suppression process, a criteria must be selected on limiting
the extraneous growth of the solution, the aegree of stabllity
and/or accuracy will depend upon the criterja. Mo extensive studies
were carried out to find optimum rules for such a criteria.

The suppression method is known to be compgtatiénally superior

to the multi-segment method for linear problems. Untill now it had




ndt been possible to use the suppression method for nonliner shell

p roblems except-in'a strictly incremental fashion. Although no
6ompérison of efficiency were made in this study, it is expected
that the suppression method will be as comparatively efficient for
noﬁlinear problems as it is for linear problem. The large deflection
'elastic solutlion of a.torus presented in the previous chapter

is indicative of the need to be concerned about the accuracy of

non-linear shell solutions.
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A1l Sfréss Tensor.

o11 o912
| 959 = | 921 g22
03] G32

STRESS PRELIMINARIES

g137)

923

°33J
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Xz

T (A. 1)

yz

z —

Stress tensor can be resolved into following additive

compononents:

where

. O (o}

(A.2)
”ﬂggcx + 9 +09,) o 0o .“
0 1(0 +0 +0) o
3 m y 2z

' .
—(o_ + a_ +
0 3(°x o GZJ

(A.3)
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— -
2 cx - oy - oz
: T T
3
. " -0 +20 -0
=g -0, = X - z T
ij ij ij T yz
Xy 73
-6 -0 +20
T T X y Z
Xz yz 3
L : - (A.%)

This is the deviatoric component of stress tensor.

or

ij iy 3 i ke (A.5)

=9 for 1 = j

¢ = g .+ + = + + .
KK e 022 é33 % oy % (4.6)

012 =g —‘; (o) ( 011 +0,.+o0 ) =%

12 22 33 Xy
(A7)
20 =04,—0
' 1 L2273
olg 01] - 3 (1) (011 + 022 + 033 )
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A.2 Stress lInvariant.

Thé second inva;iant of the deviatoric component of stress
tensor has significance in.plasticity theory. The term
!invariant' derives from the fact that magnitudes of these
quantities are independent of the particular set of coordinate

axes being considered.

In index notation, second invariant can be written as:

JJ = o, . o, | (A.9)

- ( ] ‘_ + ] ] + [] ! \
7 V%5 %1y T %25 %25 T 93 93

. }2 '2 12 '2 '2 ’2
= -[( o1 + 0y, + 0y Yy + ( 01, + 023 + 023 )

—

'2 |2 '2
+ (o313 + 023 + O3, )
Since

) 4 t

2 ‘ 2 -Gy - - -
%11 T 922 T 933 N 022 = 911 ~ 933 933 T 922 T 9y,

- o | (A.10)
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' ' v2 12 12
(o1 + Oy, + 033) =0=o0p; + 05,

12 ' '
+033+2 (0gy; 0y,

33 ) . (A.11)

' J '
+ 0] g33 + 0’2'2 (o]

2 0 12 12 _ ' ! I ' '
01 - % 09 * 053 = - 2 ( 011 G922 *+ 0, 933 + O,5 933 )
(A.12)
|2 '2 '2 '2 '2 '2 - .
Jé =-;- [011 +022 +O‘33 + 2 ( 012+023+013 )] (A.13)
' ! ' ' ' ' ' 12 12 12
Jz = - [_011 975 + 0y, 033 * 022 033 - (o012 + Ou4 +013) .

(A.14)

' ' T ' ' 2 2 2
J')'==-}lo. 0. +0 0 +0,0 -9 =-g =g (A.15)
2 Xy X 2 y "z Xy vz Xz

A.3 kffectlve Stress.

_Effective stress can be written as:

C; = l-, the effective stress is equal to the octaledral-
3
shear stress;

1
(] =f§ » the effective stress is equal to the square of
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second invariant J2

of the deviatoric component of the stress

tensor.

Cl =;L then for a uniaxial stress, for which cx is the axial
d2 '
stress and all of the other stress components are zero, 3=ox

2 - - - -
O. ) Oy cv .cz ) ( o oy ) + ( ox o, ) (A. 16)
X -3 3
2 .
g -0_ -0 (o -0 )-(Co_=-0_)
¢ Y. X 2 __ Y 'z _x ¥ (A.17)
y . 3 . 3 :
2 - - - - - -
o' ] g, =@ cy . (o o, ) (_ox o, ) (A.18)
z 3 3
A.L Strain Prelimlinaries.
' "
eij = Eij + eij ; (A.19)
e,.= [ ¢ o o |
13 m | (A. 20)
0 € )
m
o ° €
m-l

‘where & = (e +¢ + €, )




deviatoric strain tensor

—
Ze_ - e - ¢ Y -
X y z Xy Xz -
3 2
Y 2¢ € - Y
8;. = xy. y z Yz
J 2 3 2
Yyz sz 252 e T
2 2 3
L=
ny
€1y = =—
12. =
2 2
- Yxz
813 ——2
Y}',z
23 T =,
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(A.21)

(A.22)

It is important to note that in both plasticity and creep

the assumption of incompressibility is made. This means that

when only the inelastic portion of the total strain is considered:
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or
and eij = eij

The second invariant, Ié , of the deviatoric component of

the strain tensor is in the case of in-elastic strains equal to

the second invariant, 12, of the strain tensor:

1
I! =1, =~ ¢ ¢
25 iy 4 (A.23)
2 2 2
Y Y Yy
I2 = - [Ex + € €, + € €, - Xy . Xz _ V2 ] (A.24)
y y 4 4 4
Effective Strain
- 2 2 2
€ = C2 ‘/ (e - ey ) + (e - €, )Y+ ( €, = & )
3 " )
+ = + + A.2
> G Yeg T Yyz ) (A.25)
2
C2 =73, the effective strain is equal to the octahedral

shear strain

1 .
C2 = — , square of the effective strain is equal to the second
6 .
invariant 12 of the strain tensor, provided only in-elastic



strains are being considered.

In case of uniaxial strain:
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e. =g ==1¢ . (A.26)
y Z “2‘ X
Since € = 0
m
- NP3
Therefore € = ex for a uniaxial test provided that C2 = ——
» 3
A.5 Devlatoric Stress Tensor.
! 1'6 o )
%13 7 %15 73 i3 e (4.27)
r 201; = O3 — 033 912 913 7
3
T . . .
Oij = 012 —0'11 + 2022 - 033 0'23
3
=01, ~%922 +'203§
013 %23
3
(A. 28)

'Sécénd)Invariant

(A.29)
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= - | 011 Opp + 03] 033 + 033 033 - 012 ~ 023 ~ °13]-

Effective Stress

= 2 2 ’ 2
o=20C y("n"’zz) + (055 - 033 ) + (035 -0y, )

+6 (o, + °%3 + 035 ) (4. 30)

1 1 1 )
C, = F \]? »,‘/.—2= maintain choice.
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NON-DIMENSIONALIZED SHELL EQUATION
AND

TREATMENT OF SINGULARITIES AT SHELL APEX

B.1 Significance of Non-dimensionalization.

There are two slgnificaﬁt advantages in dealing with the
non-dimensionalized form of shell equations. First, the treatment
of singulérities at the shall apex which is often difficult to,
handle in the analysis becomes convenient with the non-dimensionalization
of the shell eqqations.

Second, non-dimensionalized shell equations serve as a convenient
tool in speeding up the numerical integration process. Thus, a
convenient means of representation by which the control of the large
magnitudes of the growing extraneous solution as well as improving
the accuracy of tﬁe numerical Integration schemes is provided.

The terms that are non-dimensionalized initially are as follows:

«
W=
R ,
S
L.U
vt e 2 ,
R




« Ry "« Ry
R¢ = - 9 Re s - ?
R Rg
£ S x T
S = , r == ,
R R
S S
h 9 P
h* 2 , —-— = Rs -—
Rs " Ig* 3s
2
% p('lll' \Y ) p( 1 -V
= - « R =
Eh s Eh”
Where,
R = R for cylinder and sphere
S
= b for torus etc.
* Cos¢ * Sin¢ *
€ =g = Uu + = w
6 8 o r
%
-
Y
Y¢ ®
* . Cos¢ -
6 T Xe "s T T x Yo
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(B.1)

(B.2)

(B.3)
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*
M = o , M = _9___
D o D
N x N
N¢ = , Ne B ——
K K
Where,
'Eh3
D =
12 (1 -v2) (B.4)
Eh :
K= -————2—' ' ’ (Bus)
1 - v
Moo= M o+ (1 z)h** (B.6)
e V: ¢ v Ke .
N =y NS+ ( i - vz) e* (B.7)
8 ¢ , 8
* % *
= - i B.8
e¢ N¢ v ey (B.8)
%
* M¢ *
K = —— =~ v K
¢ p* ® (B.9)

B.2 Non-dimensionallzed Governing Shell Equations.
Non - dimensionalized linear set of first order governing

shell equations are:




1g*

U’S:‘: =
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T

_g - (8.10)

R® b

$

M¢ . (B.11)

-= = v Ke = K

h

Cosd N N 12 (r Q; )

— (Mg - My ) + — (B.12)

- R .

) e Nz . . e . L.

x . + + % KoLH L *

NG Sln(b R* r Keo N6 r Neo Kg r K¢O N¢
¢

RN L r* 2 . 2]'* . a Lo r & *

ORI £ L L INL N, % %

N¢o o) % Yoo "o x  ¢o Y60 Yo * Q¢o Yo

R R R
) ]

r“ -~ e * oo le L Zr* .Lz olo

7 Y¢o Q¢ -r Keo NeO r K¢o N¢0 X Y¢o N¢0

R R

) ¢

r-.': . . . .

= Qo oo " P T (8.13)

¢ N

K8 W" 1 *2

€T % T =Y (B.1k4)

¢ R; 2 ¢



% . C°5¢ . N .J. . r?':. Q?; ' . . - . . .
N = — (N -N°) - + - NI I
9,8 * F 6 ¢ ) * ok - Yoo 90 - Yoo Mo~ Noo )
r Ror R
% )
+ N:‘: * L%
40 ( Yo T Yoo ) }
Cosé¢ . R e e .
= Ny, = N -—t NT+ Nyl
e (N ) R P R { Yoo ¢ 0 "o J
¢ )
| * .
- ;- Y¢o " (B.15)
)

B.3 Singularities at the Apex of Shells.

Since at the apex of the shell r=o0 and r occurs in the
denominator of the shell equations, it is essential to have some
means of correcting such singularities while maintaining the accuracy
during the numerical integration process. |f we considar the shell
apei as smooth rather than pointed, then these singularities can be
removed conveniently. |If the shell apex is smooth then obviously
¢-0 . The non4dlmenéionalizafion of the shell equations has helped
in reducing this problem to fewer number of the governing equations.
Further, it should be noted that during the non-dimensionalization the

governing equation for Q has been rearranged to help remove the

$’s

singularities from that equation.
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. From symmetry at. the apex in .the axisymmetric shells of re-

valution it Is recognized that:

u=o
and y = o (B.16)
$ =0 r=o

and if there is no concentrated load at the apex Q¢ = 0.
Since the meridional and circumferential directions are not

distinct at the apex:

=
1

N

8 ¢
Me = M¢ (B.17)

ee = e¢
(B.18)

and Kg = x¢

Hence, with the above conditions and with the rearranging of

only one governing equation to be ( r Q ),S rather than Q the

¢’

non-dimensionalization of the shell equations has helped in removing
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the singularities at the apex. There are.other ways that this could
have been done. For instance the shell region at the apex can be

regarded as a shallow spherical shell.




144

APPENDIX C




SHELL CONFIGURATIONS

1. Cylinder.

radius of cylinder
90°

R

.

Length of cylinder
L

2. SEhere.

radius of sphere

angle of normal to the middle
surface measured from axis of
revolution.

R

R

3. Torus.

.distance of torus center mea-
sured from axis of symmetry.

= radius of torus.




angle of normal to the middle
surface measured from the axis
of revolution.

atb Sin¢

b

a+b Sing

Distance measured along meri-

dion middle surface.

L. Cone.

Distance measured along the
meridian

angle of normal to the
middle surface measure from

the axis of revolution.

distance of initial edge
from the axis of revolution.

Cone angle |

btand

Length on the meridian.
a+b Sina

5. Annular Plate.

o
initial edge

atb Sina

146
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b = distance between initial and
final edge. '
a A = ‘900
R =
¢
R ='r
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DEFINIfION OF HARDENING

The natufe of Incremental plastic analysis is such that a
set of strain values must be assumed with which the iteration procadure
musf start. These assumed values of strains should be reasonably
c lose approximation, to the behavior, preferably, in order to speed
the convergence process. The procedure to be used for predicting the
magnitude of the strains must also be consistent with the material

behavior. The available material curves have been constructed
based on uniaxial loading experiments and, thus, can not fully
describe biaxial or multiaxial stress behavior.

Let ¢ be the calculated effective stress and J the
corresponding yield point stress. 8 is the slope of elastic-plastic
portion of the bilinzar stress-strain cur?e and is some ﬁeasure
of strain hardening of the material.

The total strain is composed of elastic and plastic component

of strain.

e = ¢ + ¢P (D.1)
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o=o +gE (e €y ) (p.2)
- . e p
= + + -
o, * B E (¢ € €y )
- i o
=¢ +BE (eP+—---2)
E E
.. E
oc=g + - ep o (0.3)
° K
-8
Where K = —— as defined in Fig. (D.1)
B
But:
-2 ?
o =g -c,ce+‘a~=H2 (say) (D.4)
Where H is the hardening modulus.
or:
- - E el ‘
o=H=0 + - (D.5)
° K
Taking the derivative with respect to sp
-(D.6)




151

Hence, H' is the slope of the effective stress-plastic strain
diagram. It can be determined from the available material experimental
data.

Corresponding to a load increment let the stress increments
be represented«by do¢ and dog for stress components c¢ and g and the
correspondiné strain increments by de¢ and dse.

At a given load level P_ the linear elastic solution is obtained.

The maximum stress value for all points through the meridian and

radial direction Is located. |f this maximum stress value of effective

\

stress is larger than the yield stress it is scaled down to the

yield stress. The load Pa is al§o ccrrespondingly scaled down to Pb'
At the value of Pb'tha non-linear elastic solution is determined.

The maximum stress value is once agéin located. This maximum effective

stress value Is scaled to the yield stress and the scalar factor a

is determined such that:

o, = a amax ‘ (D.7)

The scalar factor Is now used to scale the entire solution
and a load Pc'is determined. The non-linear elastic solution is
once again obtained at the load level PC byAdlrect integration of
governing shell equations. This process is repeated until the non-
linear elastic solution is at the yield point at which the load level

is P .
Y



The resulting value of Py is the load level at which the plastic
solution load steps must begin. Thé solution at this load level
is stored as residuals indicated by the subscript (15% A load incremant
APn is now taken and the tota!‘load at this load step is:

P =P+ AP (D.8)

Where n is the current increment. number and m the preyjous

increment number. At the first load step Pm=Py such that,
P, = Py + AP1 : (D.9)

A study of the Newtoﬁ-Raphson aléorithm has indicated that
this incremental load step must be small enough to maintain the stress
point nzar the yleld surface and within the scope of this algorithm
to bring‘it to the yield surface. The entire solution is now scaled
to this load level P + APn.

The effective stress valueg of this scaled solution at every point
along the meridian and radial direction are now checlied against the
yleld stress of the material. If a point is elastic then, the corres-

ponding assumed values of stress and strain increments are given by:
do, =0, =~ 0, (D.10)

do, = (D.11)



2
O’=O‘»¢ "‘0"¢ O’e'l‘o'e ' ’ '(D."Z)
s =g - g | (D.13)
]
_ de 4= E— ( do¢ - v deg ) (D.14)
1 ‘.
dee=.E ( dce - v dc¢ ) ‘D.15)
g = o o (D.16)

However 1f a point is plastic.the entire calculation procedure

is In the incremental form.
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"#igdre D.1. Bilinear $train HardeningAPropertie§‘of $5304 Material.
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