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ABSTRACT 

The improvement i n  t h e  me&hod of  l a rge  d e f l e c t i o n  
. e l a s t i c - p l a s t i c  a n a l y s i s  o f  s h e l l s  and o t h e r  s t r u c t u r e s  
appears t o  have con t inued  i n t e r e s t .  Wi th  t h e  development 
i n  t h i s  work an improved numerical  suppres s ion  scheme i s  
now a v a i l a b l e  for  t h e  . large  d e f l e c t i o n  e l a s t i c - p l a s t i c  
a n a l y s i s  o f  ax i symmetr ic  s h e t t s  o f  r e v o l u t i o n ' s u b j e c ~ e d  
t o  symmetric l oad ings .  Q u a z i l i n e a r i z a t i o n  o f  Sander ' s  
non - l i near  s h e l l  equa t ions  i s  presen ted  for  t h e  f i r s t  
t i m e .  Wi th  t h e s e  q u a z i l i n e a r i z e d  equa t ions  t h e  suppres-  
s i o n  scheme has been deve2,oped t o  s o l v e  non - l i near  
boundary-value problems. T h i s  suppres s ion  scheme has been 
used i n  c o n j u n c t i o n  w i t h  a  Newton-Raphson method t o  
improve a  s t a b l e  convergence process  a t  t h e  y i e l d  s u r f a c e  
i n  e l a s t i c - p l a s t i c  problems: R e s u l t s  p ~ e s e n t e d  i n d i c a t e  
t 2 e  accuracy o f  thi-s  numerica.l scheme. I. t  ,appears  t o  ba 
p o s s i b l e  t ,o ex tend  t h i s  method for  more compl icated 
s i t u a t i o n s .  
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NOMENCLATURE 

Fo l l ow ing  i s  a l i s t  o f  some important  symbols as they a r e  used 

i n  the t e x t .  Other symbols a r e  de f i ned  appropr iate.  p a r t s  o f  c e r t a i n  

symbols have d i f f e r e n t  meaning i n  d f f f e r e n t  sec t ions  o f  the t e x t .  

Where th i s ,occu rs ,  the  symvol i s  rede f i ned  f o r  each sec t i on .  

4 = Angle between a x i s  o f  r e v o l u t i o n  and normal 
t o  the  s h e l l .  

r = Radia l  d is tance from the a x i s - o f  r e v o l u t i o n  t o  
.. . . a p o i n t  on the middle sur face.  

R, o r  R = P r i n c i p a l  rad ius  o f  curva ture  i n  the, mer id iona l  
4 plane. 

R 2  o r  R e  = P r i n c i p a l  rad ius  o f  curva ture  i n  the p lane 
perpend icu la r  t o  the mer id ian.  

S = Coordinate l eng th  measured on the  mer id ian.  

= She l l  c o n f i g u r a t i o n  rad ius .  When def ined as 
supersc r i p t  R r e f e r s  t o  r e s i d u a l  o r  p rev ious  , 

s o l u t i o n  s t a t e .  

a,B = Lame's C o e f f i c i e n t s .  

u,v,w . = Components o f  displacements a t  the middle surface 
o f  the s h e l l .  

h  = She1 1  th ickness.  

= When used as a  supersc r i p t  i t  r e f e r s  t o  a  non- 
dimensional q u a n t i t y  pe r  the d e f i n i t i o n s  i n  
appendix B. 

X I  ,X2,X3 = Car tes ian  coord ina te  system used f o r  the 
d e f i n i t i o n  o f  s h e l l  c o n f i g u r a t i o n .  

Y = Angle o f  r o t a t i o n  o f  s h e l l  mer id ian.  

z = She l l  th ickness coord ina te .  



= Membrane s t i f f n e s s  c o e f f i c i e n t s  i n  s h e l l  s t ress -  
s t r a i n  r e l a t i o n s  

= Bending s t i f f n e s s  c o e f f i c i e n t s  i n  s h e l l  s t r e s s -  
s t r a i n  r e l a t i o n s  

= Modulus o f  e l a s t i c i t y .  

= s t i f f n e s s  c o e f f i c i e n t s  i n  incremental s t ress -  
s t r a i n  r e l a t i o n s .  

E . .  
I J 

= Mer- id ional  and c i r c u m f e r e n t i a l  membrane s t r a i n s .  

= Approximations t o  E and E r e s u l t i n g  from the 
8 p rev ious  i t e r a t i o n  $f the quasi 1 i n e a r i z a t i o n  

a lgor i thm.  

= P r i n c i p a l  s t r a i n .  

= €1  and c 2  a t  the beginning o f  an increment. 

= Approximations t o  € 1  and € 2  r e s u l t i n g  from 
the prev ious  i t e r a t i o n  o f  the  q u a s i l i n e a r i z a -  
t16h a lgor i thm.  

= S t r a i n -  hardening func t ion .  

= D e r i v a t i v e  o f  H w i t h  respect  t o  i t s  argument. 

= Def ined by Eq. (111.13) 

= Coupl ing s t i f f n e s s  c o e f f i c i e n t s  i n  s h e l l  s t ress -  
s t r a i n  r e l a t i o n s .  

= Approximations t o  x and x r e s u l t i n g  from 
prev ious  i t e r a t i o n  70 quas f l  i n e a r i z a t i o n  
a lgo r i t hm.  

= Poisson's  r a t i o .  

= Mer id iona l  and c i r c u m f e r e n t i a l  bending moments 
per  u n i t  length.  

= Approximations t o  Ms and Me r e s u l t i n g  from 
previous i t e r a t i o n  o f  q u a s ~  l i n e a r i z a t i o n  
a l g o r i  thm. 

2 
= Y i e l d  bending moment, a,h /4  per  u n i t  length .  



= Mer id iona l  and c i r c u m f e r e n t i a l  membrane forces 
per  u n i t  length .  

= Approximations t o  NS  and N g  r e s u l t i n g  from 
previous i t e r a t i o n  o f  q u a s ~ l i n e a r i z a t i o n  
a lgo r i t hm.  

= y i e l d  membrane fo rce ,  oJ per  u n i t  length.  

= Ex te rna l  sur face loads per  u n i t  area o f  midd le  
surface. 

= Transverse shear f o r c e  pe r  u n i t  length.  

= Approximation t o  Q r e s u l t i n g  from previous 
i t e r a t i o n  o f  q u a s i j i n e a r i z a t i o n  a lgo r i t hm.  

= D e v i a t o r i c  Stress.  

= P r i n c i p a l  s t resses.  

= u, and u 2 a t  the  beginning o f  an increment. 

= Approximations t o  a  and u resu l  t l n g  from 2 prev ious  i t e r a t i o n  t o  quasl 1  i n e a r i z a t i o n  
a lgor i thm.  

= Y i e l d  s t ress  i n  s imple tension.  

= Independent v a r i a b l e .  

= I n f i n i t e s i m a l  increment. 

= F i n i t e  increment. 
d (  - -  - (Note except ion  f o r  H I . )  

d  s  
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CHAPTER I 

l NTRODUCT l ON 

A d i r e c t  i n t e g f a t i o n  numerical  scheme has been developed f o r  the 

l a r g e  d e f l e c t i o n  e las t ic -p : las t . i c  ana lys i s  o f  s h e l l s  o f  r e v o l u t i o n  

subjected t o  symmetric loadings.  Th is  numerical  scheme appears t o  

b e  advantageous t o  o t h e r  e x i s t i n g  numeri c a l  schemes f o r  s imi  l a r  

a p p l i c a t i o n s .  The' r e s u l t s  o  b t a i n e d  f o r  some samplt problems compare 

w i t h  e x i s t i n g  t h e o r e t i c a l  and experimental  r e s u l t s  i n  the l i t e r a t u r e .  

I n  the  design o f  nucl'ear reac tors  and o t h e r  i n d u s t r i a l  appl i ca -  

t i o n s  where s i  ze 1 i m i  t a t  i o n  on components a r e  imposed, the s  t r u c t u r s s  

.must w i ths tand l a r g e  magnitude o f  loadings.  Th i s  requ i res  t h a t  

t h e i r  s t r u c t u r a l  performance be i nves t i ga ted  w e l l  i n t o  regions o f  

p o t e n t i a l  y i e l d f n g .  Such i n v e s t i g a t i o n s  i n  the case o f  s h e l l s  o f  

r e v o l u t i o n  a re  more p r e c i s e  and economical w i t h  d i r e c t  numerical  

i n t e g r a t i o n  schemes than w i t h  f i n i t e  element o r  f i n i t e  d i f f e r e n c e  

approaches. 

1 .1  Previous Research. 

A summary o f  the 1 i t e r a t u r e  on the su b jec t  i s  presented under 

var ious  s u b t i t l e s  i n  t he  con tex t  o f  work performed. 

1 . 1 . 1 .  Non- l inear  - Shel l  Theory. Subs tan t i a l  progress has 

been made toward the developement o f  the non- l inear  theory of  e l a s t i c  

s h e l l s  i n  the pas t  ten  years. I t  i s  i n t e r e s t i n g  t o  no te  tha t  the 

l i t e r a t u r e  on t h i s  sub jec t  i s  d i v i d e d  i n t o  two d i f f e r e n t  approaches, 
- 

those t h a t  invoke K i r c h o f f ' s  Hypothesis a d  those t h a t  assume 



a s t a t e  o f  p l a n e  s t r e s s .  Under K i r c h o f f ' s  Hypothes is  the norrnal 

t o  t he  undeformed m idd le  s u r f a c e  remain normal t o  the  deformed m idd le  

s u r f a c e  o f  t h e  s h e l l .  

Sander 's  (7)  has based h i s  n o n - l i n e a r  s h e l l  t heo ry  on t he  

K i r c h o f f ' s  assumption and on t he  assumption o f  smal l  r o t a t i o n s  

a bou t  t h e  normal.  Small s t r a i n s  a r e  admi t ted .  T h i s  t heo ry  i s  more 

g e n e r a l l y  accepted than o t h e r s  d u e ' t o  i t s  simp1 i c i  t y  and t o  the  

s a t i s f a c t o r y  r e s u l  t s  obta i -ned there f rom.  Koi  t e r ' s  ( 5 )  work i s  

concen t ra ted  a lmost  e n t i r e l y  on t he  assumption o f  t he  s t a t e  o f  p l a n e  

s t r e s s  and o f  smal l  s t r a i n s .  But ,  i t  was necessary f o r  K o i t e r  t o  

l o w e r  . the magnitude o f  c o r r e c t i o n s ,  w i t h  r2spec.t t o  s t r a i n  rneasurss, 

t o  t h e  fundamental forms o f  t he  m idd le  s u r f a c e  t o  s a t i s f y  t he  Gauss- 

C odazz i  r e l a t i o n s  o f  s u r f a c e  compat i b i  1 i t y .  Naghdl (6)  has d e f i n e d  

h i s  s t r a i n  measures as f u n c t i o n s  o f  t he  m e t r i c  o f  t he  undeformed 

m idd le  sur face .  F u r t h e r ,  Naghdi (3)  has chosen t o  couple h i s  non- 

l i n e a r  c o n s t i t u t i v e  r e l a t i o n s  w i t h  s t r a i n  measures and s t r e s s  r e s u l -  

t a n t s ,  H i s . d e r i v a t i o n s  a r e  tased, l i k e  those o f  Sander 's  ( 7 ) ,  on 

a s t r a i n  energy densi  t y  f u n c t i o n  cor respond ing  t o  t he  undeformed 

m idd le  s u r f a c e  w i t h  t he  assumption o f  t h e  K i r c h o f f ' s  Hypothes is .  

1.1.2. P l a s t i c l t y .  E a r l i e r  work i n  p l a s t i c i t y  theory  was based 

on a p e r f e c t l y  p l a s t i c  m a t e r i a l  behav io r .  Some o f  t h i s  !s r e p o r t e d  

by Prager  and Hodge (72) .  Scope o f  work hardening behav io r  i n  t h e  

e a r l i e r  l i t a r a t u r e  was l i m i t e d .  However, some fundamental research  

i n  t h i s  area was done by Drucker  (73)  and (74) and a l s o  by H i l l  ( 1 ) .  



A b r i e f  survey,on the  e a r l y  developements i n  p l a s t i c i t y  t heo ry  i s  

a v a i l a b l e  i n  Ref. (78)". 

A l though many y i e l d  c r i t e r i a  have been proposed i n  t h e  

1 i t e r a t u r e  such as those by H i  11 ( I ) ,  t h e  Von-Mises y i e l d  c r i t e r i o n  

( 75) has been suppor ted by exper imenta l  obse rva t i ons .  For  t he  
- 

p r e d i c t i o n  o f  t h e  onse t  o f  p l a s t i c  f l ow,  t he  f l o w  r u l e s  advocated 

b y  P r a n d t l  (75) and by Reuss (,77) seems t o  agree c l o s e l y  w i t h  

t he  Von-Mises y i e l d  c r i t e r i o n  (75) .  Some o f  t he  exper imenta l  

obse rva t i ons ,  such as i n  t h e  L i q u i d  Meta l  Fast  Breeder Reactor  

m a t e r i a l  exper iments  ( 2 4 ) ,  i n d i c a t e  t h a t  s t a i n l e s s  s t e e l  ( S S  304)  

obeys  t h e  Von-Mises y i e l d  c r i t e r i o n .  These exper in ients  a l s o  i n d i c a t e  

t h a t  a combina t ion  o f  i s o t r o p i c  and k i nema t i c  harden ing  behaviour  

i s  observed i n  S S  304 m a t e r i a l  t e s t i n g .  For  some h i g h  temperature 

a p p l i c a t i o n s  Wu and Witmer ( 4 )  have developed c o n s t i t u t i v e  r e l a t i o n s  

based on t h e  Von-tlises y i e l d  c r i t e r i o n  and an i s o t r o p i c .  harden ing  

r u l e .  

S ince t h e  work per formed here  used t h e  inc rementa l  t heo ry  of 

p l a s t i c i  t y ,  the i n f o r m a t i o n  ava i  lab l 'e  i n  t he  11 t e r a t u r e  f o r  p r a c t , i c a l  

s o l u t i o n  methods w i l l  be zmphasized i n  t he  Fo l low ing .  -Hodye ( 6 2 , 6 3 )  

adopted a q u a d r a t i c  programming approach i n  a s o l u t i o n  a l g o r i t h m  
C. 

u s i n g  t he  f i n i t e  element method o f  a n a l y s i s .  Marcal  (15-18)  

p rov ided  a t heo ry  o f  inc rementa l  p l a s t i c i t y  which was a p p l i c a b l e  t o  

s h e l l s  o f  r e v o l u t i o n .  Marcal  a l s o  used the  f i n i t e  element approach 

I n  h i s  developement o f  an inc rementa l  p l a s t i c i t y  s o l u t i o n  a l g o r i t h m .  



Gerdeen (9) l a t e r  used Marcal "s ,approach. i n  con junc t  i on  w i  t h  the  .. 

d i r e c t  i n t e g r a t i o n  method. Hutu la  (65)  used e s s e n t i a l  l y  the same 

approach as Gerdeen (9) bu t  a l s o  presented an appl  i c a t i o n  o f  the 

Newton-Raphson scheme f o r  p r e d t c t i n g  b e t t e r  approximations t o  s t r e s s  

and s t r a i n  increments i n  the  v i c i n i t y  o f  the  y i e l d  sur face.  I n  t h i s  

d e f i n l t l o n ,  Hutu la  (65) used a spec ia l  case o f  Marca l ' s  (15-16)  

y i e l d  t rans1 t i o n  case. 

1.1 . 3 .  Numerical Methods. There a re  several  numeri'ca.1 methods 

I n c l u d i n g  f i n i t e  element method, f i n i t e  d i f f e r e n c e  method and d i r e c t  

numerical  I n t e g r a t i o n  method t h a t  have been used f o r  the e l a s t i c -  

p l a s t i c  a n a l y s i s  of  s h e l l s  o f  r e v o l u t i o n .  

I n  t he  f i n i t e  element method the s t r u c t u r e  i s  d i s c r e t i z e d  i n t o  

f i n i t e  s i zed  elements,and the  s t i f f n e s s  o f  each o f  these elements i s  

def ined. By us ing  the  s t i f f n e s s  method o f  a n a l y s i s  and s a t i s f y i n g  

the  c o m p a t i b i l i t y  a t  the  node c i r c l e  j u n c t i o n s  o f  ad jacent  elements, 

s o l u t i o n s  o f  a g iven problem a r e  obta ined.  

I n  the f i n i t e  d9 f fe rence method the  s t r u c t u r e  i s  d i s t r i b u t e d  

w i t h  mesh p o i n t s .  For each o f  t he  mesh p o i n t s  the  d i f f e r e n t i a l  

equat ions o f  t he  system a r e  represented i n  f i n i t e  d i f f e r e n c e  form 

f o l l o w i n g  a backward d l  f fe rence,  a c e n t r a l  d l  f fe rence o r  a forward 

d i f f e r e n c e  approach. A system o f  simultaneous equat ions a re  

developed and a boundary value problem i s  sc lved.  

I n  the e l a s t l c - p l a s t i c  ana lys i s  o f  s t r u c t u r e s  bo th  the  f i n i t e  

element and the f i n i t e  d i f f e r e n c e  approaches have been used. I n  many 

instances a combinat ion o f  f i n i t e -e lemen t  and f i n i t e - d i f f e r e n c e  



methods has been proved usefu l ;  The f i n i t e  element method i s ' h i g h l y  

v e r s a t i l e  and does n o t  have the inherent  s t a b i l i t y  probl'ems o f  the  

f i n i t e  d i f f e r e n c e  'methods. I n  the f i n i t e - d i f f e r e n c e  method, i t  i s  

d i f f i c u l t  t o  s e l e c t  an app rop r ia te  mesh s i z e  t h a t  i s   simultaneous^^ 
convergent and e f f i c i e n t .  Various a p p l i c a t i o n s  w i t h  f i n i t e  element, 

f i n i t e  d i f f e r e n c e  and t h e i r  combinations i s  g iven i n  Refs. ( 2 6  - 5 5 . ) .  

S i g n i f i c a n t  c o n t r i b u t i o n s  i n  the  a p p l i c a t i o n  o f  f i n i t e  elements 

t o  l a r g e  d:ef lect ion analyses o f  e l a s t i c - p l a s t i c  . s h e l l s  were g iven 

by Marcal (16 - 18) and by Poppov and yaghammi ( 1 9 ) .  Both s tud ies  

used the  curved s h e l l  element o f  Khajasteh-Bakht. 

Marcal (18)  a l s o  uses a  t r i a n g u l a r  p l a t e  element known as the  

De Veneke element. Wu and Witmer (4)  have app l i ed  the  f i n i t e -e lemen t  

method t o  t r a n s i e n t  l a r g e  d e f l e c t i o n  e l a s t i c - p l a s t i c  analyses of  

s imple s t r u c t u r e s ,  bu t  t h i s  i n v e s t i g a t i o n  was l i m i t e d  t o  the use o f  

r i n g  and beam elements. One s i g n i f i c a n t  f e a t u r e  o f  the  work o f  

Wu and W i  tmer i n  (4 )  i s  the development o f  p l a s t i c i  t y  f low theory 

r e l a t i o n s  from d i r e c t  cons idera t ions  o f  t he  h lgh  temperature app l i ca -  

t ions.  

D i r e c t  numerical  i n t e g r a t i o n  methods, when a p p r o p r i a t e l y  deve- 

1hped t o  app ly  t o  compl icated problems, prove t o  be computa t iona l ly  

advantageous t o  the  f i n i t e - e l e m e n t  and f i n i t e  d i f f e r e n c e  methods. 

Goldberg and Bogdanoff (11) were the f i r s t ,  t o  develop the  m u l t i -  

segment method o f  numerical  i n t e g r a t i o n .  Ka ln ins  and L e s t i n g i  (66! 

have a p p l i e d  t h i s  technique t o  non- l inear ,  ana lys i s  o f  e l a s t i c  s h e l l s  

o f  r e v o l u t i o n .  Gerdeen (9) used the  mu1 kisegment method o f  d i r e c t  



numerica.1 i n t e g r a t i o n  f o r  the  l a r g e  d e f l e c t i o n  ana lys i s  c f  e l a s t i c - .  

p l a s t i c  she1 l s ' o f  r e v o l u t i o n .  The suppression technique o f  Goldberg 

(1  1) and Zarghami and Robinson (80..) was used by Car te r ,  Robinson 

and Schnobrich (14) and by Leonard (13) f o r  the dynamic response o f  

e l a s t i c  s h e l l s ,  Marcal and P i l g r i m  (15) used a numerical  i n t e g r a t i o n  

method f o r  the  e l a s t i c - p l a s t i c  ana lys i s ,  bu t  i t  was l i m i t e d  t o  smal l  

d e f l e c t i o n  theory  assumptions. 

~ u m e r i c a l '  I n t e g r a t i o n  ena Mes a d i r e c t  s o l u t i o n  t o  non-1 inear  

d i f f e r e n t i a l  equat ions by conve r t i ng  a boundary value problem t o  a 

se t  o f  i n i t i a i  va lue  problems i n  a form such t h a t  these i n i t i a l  

va lue  problems a re  i n teg ra ted  numer i ca l l y  and recombined t o  s a t i s f y  

the boundary cond i t i ons .  

However, i n  she ' l l  a n a l y s i s  a-problem a r i s e s  i n  the  use of 

numerical  i n t e g r a t i o n .  The s o l u t i o n s  a r e  o f  exponent ia l  type and 

accuracy i s  l o s t  i n  i n t e g r a t i o n  over  long pa th  lengths.  To overcome 

t h i s  problem, the mu1 t i-segment (12) o r  the  suppression technique (13) 

( 14) can be us'ed. These methods p rov idz  un i  form accuracy everywhere 

a l o n g  the i n t e g r a t i o n  path. I t  has been shown t h a t  the suppression 

method I s  a more e f f i c b n t  means t o  achieve t h a t  accuracy. 

Where l a r g e  d e f l e c t i o n s  o f  s h e l l s  a r e  accompanied by p l a s t i c  

s t r a i n s ,  an accurate ana lys i s  requ i res  t h a t  p a r t i a l  y i e l d i n g  through 

the  s h e l l  th ickness  be considered. For the Von-Mlses c r i t e r i o n  , 

o f  y i e l d i n g  the s t i f f n e s s  i s  determined by i n t e g r a t i o n  over  the s h e l l  

th ickness following the work o f  Marcal and P i l g r i m  (IS) who considered 

smal l  d e f l e c t i o n s  on l y .  Th i s  requ i res  storage o f  s t ress  a t  several  



points through the thickness of the shell at each station along the 

meridian. Gerdeen (9) and Hutula (65) adopted,. the mu1 t i segment method 

of direct integration for large deflection elastic-plastic analysis 

of shel 1s of revolution.  here has been no work reported in the 

literature for the large deflection elastic-plastic analysis of shells 

of revolution using a suppression technique. 

1 . 2  Scope of Study . -- 
The following assumptions are made in this study: 

( i )  Large deflections and small strains. 

( 1  I )  Axisymmetric. shel 1 of revolution with arbitrary 
meridional contours. 

( I  i i )  Symmetrical loadi'ngs. 

(iv) Isotropic material behavior.. 

(v) Von-Mises yield criterion. 

A quazilinearization method along with Sander's non-linear 

shell theory is used in developing a set of quastlinearized governing 

equations. The constitutive relations for elastic-plastic behavior 

have a more general form than those presented by Hutula (69. In 

treating the elastic-plastic interface problem, Marcal Is (15,161 

approach has been generally followed. Much of the work on the 

development of a numerical scheme was directed towards the develop- 

ment of a suppression technique for non-linear elastic-plastic 

behavior. It is shown analytically that the suppression technique 

Is a more efficient technique than the multisegment method. 

1.3 Oraanization -- of Study. 

Equi 1 ibrium and kinematic equations for non-linear shel 1s of 



revolution are presented in Chapter 11. Incremental elastic-plastic 

constitutive relations is the' subject of Chapter 111. In Chapter IV 

a q~a.~ilinearization technique is applied to the non-linear shell 

equations and the resulting- equations are organized in a form 

necessary for the solution algorithm. 

In %.hapter V .  the suppression technjque for the 1 inear elastic 

analysis of shells is reviewed. In Chapter VI a non-linear method 

of analysis with the supp.ression scheme for large deflection elastic 

and elastic-plastic analysis of she1 1s of revolution is developed 

and compared to the multisegment.method of numerical integration. 

A set of examples for the verification of the linear elastic, 

non-linear elastic and non-linear elastic-plastic solutions aigorith~n 

is given in Chapter VII. Chapter VIII provides conclusions and 

recommendat ions resul t ing from this study. 



.' . 
' CHAPTER ' I1 

EQUILIBRIUM AND KINEMATIC EQUATIONS FOR SHELLS OF REVOLUTION 

2.0 I n t e n t  - o f  Chapter. 

O f  the  most r e c e n t l y  developed s h e l l  t h e o r i e s ,  Sander's s h e l l  

theory (7)  appears t o  be most advantageous due t o  i t s  simp1 i c i  t y  

i n  a p p l i c a t i o n .  I n  t h i s  chapter  the governing equat ions f o r  a  general 

s h e l l  a r e  presented fo l lowed by t h e i r  r e d u c t i o n s . t o  those f o r  

ax i symmet r i ca l l y  loaded s h e l l s  o f  r e v o l u t i o n s .  Those equat ions 

c o n s i s t  o f  equ i l i b r i um,  s t ra in -d isp lacement  and c o n s t i t u t i v e  r e l a t i o n s .  

Only a  bas ic  t reatment  o f  c o n s t i t u t i v e  r e l a t i o n s  i s  g iven here. A 

more d e t a i l e d  treatment o f  p l a s t i c i t y  i s  l e f t  f o r  a l a t e r  chapter .  

The governing equat ions a r e  represented as a  s e t  o f  f i r s t  o rde r  

o r d i n a r y  d  i f f e r e n t i a l  equat ions s u i t a b l e  f o r  numerical  i n t e g r a t i o n .  

2.1 She l l  Geometry. 

Le t  the  undeformzd midd le  sur face o f  the s h e l l  be as shown i n  

F i  g  ( 11.1) upon which t l-e orthogona 1 cur  v i  l'i near coord ina te  1 i nes 

5 and 5 a r e  de f ined by the d o t t e d  l i n e s .  Le t  the  coord ina te  system 
1 2 

o f  the middle sur face be de f i ned  as fo l l ows :  

The p o s i t i o n  vec to r  of a  p o i n t  on the  s h e l l  m idd le  sur face i s :  

A 

Where f i  i s  a  s i n g l e  valued funct ion,and e a r e  the u n i t  
i 

Car tes ion  base .vectors.  
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The p o s i t i o n  o f  any p o i n t  i n  the  s h e l l  i s  s p e c i f i e d  by the  coord ina tes  

5 , 5  and z, where 6, and 5 s p e c i f y  p o s i t i o n  on the midd le  sur face 
1 2  2 

w h i l e  z measures the d is tance a long  the outward normal from the midd le  

sur face t o  the p o i n t  (see Fig.  2 . 1  ) ,  

The outward d i r e c t e d  u n i t  normal v e c t o r  a t  a . p o i n t  o f  the middle 
- 

surface" i s  denoted by A. The coord ina t e s  F 1  and e 2  a r e  t o  b e  chosen 

i n  such a way t h a t  t h e  system is r i g h t  handed. The u n i t  t angent  

v e c t o r s  t o  t h e  6 1  and 52 curves  a r e  denoted by it and E r e s p e c t i v e l y .  
2 

Let  t h e  displacement  v e c t o r  of t h e  m a t e r i a l  p o i n t s  on t h e  

middle s u r f a c e  of t h e  s h e l l  be reso lved i n  t o  components tangent i a  1 

and normal t o  t h e  undeformed middle s u r f a c e  a s  fo l lows .  

2.2 General E q u i l i b r i u m  Equat ions.  

The e q u i l i b r i u m  equations o f  a th ree  dimensional medium 

r e f e r r e d  t o  or thogonal  c u r v i l i n e a r  coo rd ina t e s  corresponding t o  t h e  

deformed body a r e  obta ined  f rom Sanders (7 ) .  The equa t ions  of 

equ i l i b r ium i n  terms of s t r e s s e s  a r e  reduced t o  t he  f o r c e  and moment 

equ i l i b r ium equa t ions  by i n t e g r a t i n g  t h e  s t r e s s  equ i l i b r ium equa t ions  

through t h e  th i ckness  and us ing  t h e  r e l a t i o n s h i p s  between t h e  s t r e s s e s  

and t h e  s t r e s s  r e s u l t a n t s .  Sander (7) .adopted K l r c h o f f ' s  H ~ p ~ t h e s e s  

with  some rqfCrence t o  -small  s t r a i n  assumption and smal l  r o t a t i o n s  

about  t he  normal. He a l s o  de f ined modi f ied fo rce  r e s u l t a n t s  which 



F i g u r e  2 . 1 .  Shell Surface Coordinates 



include contributions from the moment resultants multiplied by the 

deformed radii o f  curvature. With these assumptions pertinent non- 

1 inear terms are retained. The governing equations are given by: 



F i g u r e  2 . 2 .  S . h e l l  Curva tures  



Where a ,B  a r e  Lame's c o e f f i c i e n t s  o f  the  surface m e t r i c  of an 

o r thogona l  c u r v i l i n e a r  coord ina te  system; P  ,P ,P = t r a c t i o n s  i n  , 
1 2  

1 , 2 ,  normal d i r e c t i o n s ;  R ,R a r e  r a d i i  o f  p r i n c i p l e  curvature;  
1 2  

P  i s  the  mass densi t y ;  Y1s Y29 y a r e  r o t a t i o n  q u a n t i t i e s  de f ined i n  

Sec. 2 . 3  commas denote p a r t i a l  d e r i v a t i v e s  ( f , a  = af/aga 1; and 

NaB, Ma$, Qa a r e  mod i f i ed  r e s u l t a n t s  o f  the s t r e s s  d i s t r i b u t i o n  a,. 
I J 

i ntegra ted  through the th ickness.  The modi f led' moment r e s u l t a n t s  are: 

M = J U l 1  ( I  + z / R  ) zdz 
1 1  2  

M = M  = + / u  ( 2 + r / R  + z / R  ) rdz  
2  1 12 12 2  1 

I f k; j a r e  curva tures  (de f i ned  i n  Sec. 2 . 3 ) ,  and N jo are 



F igu re ' 2 .3 .  S i g n  Conven t ion  o f  S t ress  Resu l t an t s  



the c l a s s i c a l  memb rane force  r e s u l t a n t s :  

The modif ied f o r c e  r e s u l t a n t s  o f  E q s .  (11.3) t o  (11.7) a r e  
* 

g iven by sanders (7) as: 



F l  gure 2.4.  ' S 1 gn Convention o f  S t r e ~ . ~ -  Components 



The t r ansve rse  shear resu  1 t a n t s  a re :  

The s i gn .  conven t ion  o f  v a r i o u s  s t r e s s  r e s u l t a n t s  i s  as 

shown i n  F ig .  (11.2) 

The s i g n  convent ion  o f  v a r i o u s  s t r e s s  components i s  as 

shown i n  F i g .  (11.3) 

I n  F ig .  111.3 and as g i v e n  i n  Eqs. (11.8) t o  (11.20) 

t he  va r i ous  s t r e s s  components a r e  i n t e g r a t e d  w i t h  r e fe rence  t o  

t he  m idd le  s u r f a c e  o f  t he  s h e l l .  



2.3  General S t r a i n  Displacement Re la t i ons .  

Sander 's  t heo ry  (7) i s  based on smal l  s t r a i n s  and sma l l  r o t a t i o n s  

about  t he  normal. Through t h e  t h i ckness  a l i n e a r  d i s t r i b u t i o n  o f  

s t r a i n  i s  assumed, v i z :  

- 
E . .  = E . .  + Z k 

I J I J  1 j 

. . - 
Where ' ij 

a r e  s t r a f n s  o f  a p o i n t  n o t  on t h e  m idd le  sur face ,  

k a r e  cu rva tu res  and E ' a r e  s t r a i n s  o f  t he  cor respond ing  po in ' t  on 
i j i j  

t h e  m i d d l e  sur face:  



The r o t a t i o n a l  terms a r e  given by: 

. - 
2 .4  General .Boundary Condi t i o n .  . 

Four condl t i o n s  a r e  necessary on each edge t o  provide boundary 

c o n d i t i o n s  f o r  the f i e l d  equations o f  a general  s h e l l .  
. .. 

On an edge [ = constan$i' ' . :  
1 

. -. 
. - 

. -- 



N 1 l  
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- 1 
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o r  v  spec i f i ed  

o r  w s p e c i f i e d  

2.5 S i m p l i f i c a t i o n  t o  She l l  o f  Revo lu t ion .  --- 

The geometry o f  a  s h e l l  o f  r e v o l u t i o n  i s  shown I n  F ig .  ( 2.2.:). 

The coord ina te  6 i s  taken as the a r c  l eng th  s; and the coord ina te  6 
1 2 

as the  c i r cumfe ren t i a l  ang le  8. Thus, i f  the d e r i v a t i v e s  a re  taken 

w i t h  respect t o  the a r c  . lengths: 

a = l  



Where R$ = R 1  ' 
R e  = R  ( = angle the normal to the shell makes 

2 ' 
w l t h  the axis of revolution and r is the perpendicular distance of the 

meridional point from the axis of revolution. 

2.6 Simplified Equations of .Motion. -- 
1.f axisymmetric behavior is assumed, Eqs.  (11.3) to (11.7) become: 



2.7 Specialized St,raln-Displacement Relations. 

For a shell of revolution: 



2.8  inclusion -. o f  Cons t i  t u t l v e  Re la t i ons .  

Hookean behav io r  w i l l  be assumed f o r  the  e l a s t i c  p a r t  o f  the  

response. The Von Mises y l e l d  c r l t e r l a  assoc ia ted  w i t h  t he  Prand t -  

ReGss f l o w  r u l e  w i  1 1  be adopted f o r  e l a s t i c - p l a s t i c  behav io r .  A 
. . .. .- . . - .  - . . 

d e t a i l e d  t rea tment  o f  i"ncrementa1 c o n s t i t u t i v e  r e l a t i o n s  f o r  e l a s t i c -  

p l a s t i c  behav io r  w i l l  be t he  s u b j e c t  o f  a  separa te  chap te r .  Only 

a . b r i e f  t rea tment  o f  these r e l a t i o n s  i s  g i v e n  i n  t h a  f o l l o w i n g .  

The inc rementa l  s t r e s s - s t r a i n  r e . l a t i ons  a r e  g l ven  by: 

Where d i  i s  ' the e f f e c t i v e  p l a s t i c  s w a i n  d i F f e r e n t i a 1 , t h e  terms 
P  

i n  t he  m a t r l x  a r e  c a l l e d  p a r t i a l  s t i f f n e s s  c o e f f i c i e n t s  and a r e  

descr ibed  i n  d e t a i  1  ' i n  Chapter I11 f o r  p l a s t i c  behav io r .  

For  Hookean e l a s t i c  behav io r  t he  inc rementa l  s t r e s s  and s t r a i n  



values reduce t o  t o t a l  s t ress  and s t r a i n  values,  and: 

. . 

2 . 9  Reordering ' o f  -- Equations. 

The s o l u t i o n  techniques d e t a i l e d  i n  subsequent chapters requ i res  

t h a t  the governing equat ions f o r  the two p o i n t  boundary problems 

o f  a s h e l l  o f  r e v o l u t i o n  be w r i t t e n  i n  the form o f  an i n i t i a l  va lue 

problem i n  terms of..fundamental v a r i a b l e s  appearing i n  the n a t u r a l  

boundarycond i t i ons , i e .  w,Q9, Nq,  y h ,  U a n d M  Therema in ing  
9 ' 

va r iab les  a r e  termed a u x i l i a r y  va r i ab les :  €8, kg, / lo ,  Me,  E and K . 
cP cb 

Rearranging the  governing she1 1 equi l i b r i u m  and k inemat ic  equat ions, , 

Eqs. ( 12 39) t o  ( 1 ~ 4 6 )  gives the requ i red s e t  o f  sf x ordered f i r s  t 

order  n o n l i n e a r  d i f f e r e n t i a l .  equat ions i n  t e rms .o f  the s i x  a u x i l i . a r y  and 

. s i x  fundamental va r i ab les .  The remaining s i x  equat ions a r e  t o  be 

obta ined from the  constitutive equations. 





CHAPTER 111 

ELASTO - PLASTIC CONSTITUTIVE RELATIONS 

3.0 I n t e n t  o f  Chapter. - 
I n  t h i s  chapter  a r e  de r i ved  the c o n s t i t u t i v e  r e l a t i o n s  t o  be used 

w i - th  the e q u i l  i b r i u m  and kinernaeic she1 1  equat ions In the preceeding 

chapter .  A b r i e f  d e s c r i p t i o n  o f  m a t e r i a l  behavi'or i s  fo l lowed by a 

summary o f  the  method o f .  anadysi s. The incremental c o n s t l  t u t i v e  

r e l a t i o n s  a r e  presented a long w i  t h  an i t e r a t i v e  scheme f o r  p r e d i c t i n g  

f mproved s t ress  increments. 

3.1 M a t e r i a l  Behavior - and Proper t i es .  

The importance o f  m a t e r i a l  c h a r a c t e r i s t i c s  i n  the cons ide ra t i on  

o f  e l a s t i c - p l a s t i c  behavior  i s  obvious, p a r t i c u l a r l y  when s t r a i n  

hardening e f f e c t s  a re  considered. I n  t h i s  study a  l i m i t a t i o n  i s  

imposed i n  t h a t  a  b i l i n e a r  s t r e s s - s t r a i n  rep resen ta t i on  i s  assumed. 

I t i s ,  therefore,  necessary t o  cons t ruc t  a  b i l i n e a r  s t r e s s - s t r a i n  

r e p r e s e n t a t i o n  from the ava i  l a b l e  i sochronous mater ia  1 curves. 

One d f f f i c u l t y  i n  such a  c o n s t r u c t i o n  i s  t h a t  almost a l l  m a t e r i a l  

cu rves  have been based on t e s t s  o f  u n i a x i a . l l y  loaded speci'mans. The 

method .recommended by Oak Ridge Na t  iona 1.. Laboratory (24) i s  'adopted i n 

t h i s  study: t h a t  rep resen ta t i on  i s  shown ' i n  F i g ,  D . l  a.f,Appendix D .  

E l a s t i c - p l a s t i c  ana lys i s  requ i res  cons ide ra t i on  o f  several  

aspects o f  m a t e r i a l  response o the r  than the s e l e c t i o n  o f  a  b i l i n e a r  

s t r e s s - s t r a i n  representa t ion .  These inc lude:  



(a)  a  y i e l d  s t r e s s . c o r r e s p o n d i n g  t o . t h e  onse t  o f  p l a s t i c  f l ow .  

(b)  equa t ions  r e l a t i n g  p l a s t i c  s t r a i n  increments t o  s t r e s s  
and s t r a i n s  subsequent t o  y i e l d i n g ;  and 

( c )  a  harden ing  r u l e  s p e c i f y i n g  t he  change i n  y i . e l d  s t r e s s  
i n  t he  course  o f  p l a s t i c  f l ow,  e t c .  

T h i s  work has been l a r g e l y  devoted t o  a n a l y t i c a l  developments 

and hence l i m i t e d  t o  mechanical  and monotonic l oad ing  a p p l i c a t i o n s .  

A Von-Mlses y i e l d  c r i t e r i o n  w i t h  t h e  assoc fa ted  f l o w  r u l e  t h a t ~ f o l l o w  

i s o t r o p i c  hardening i s  used i n  t h i s  a n a l y s i s .  T h i s  combina t ion  o f  

m a t e r i a l  behav io r  has g e n e r a l l y  agreed w i t h  exper imenta l  obse rva t i ons .  

A )dewton-Raphson scheme, wh ich  was i n i t i a l l y  used by H u t u l a  (65) 

i s  used t o  a i d  convergence o f  e l a s t i c - p l a s t i c  c o n s t i t u t i v e  r e l a t i o n s .  

M a r c a l ' s  (15) approach f o r  t he  e l a s t i c  t o  p l a s t i c  t r a n s i t i o n  case i s  

used i n  c o n j u n c t i o n  wi t h  t h i s  Newton-Raphson procedure.  

I t shou ld  be no ted  t h a t  Marcal  (15) was t h e  f i  r s t  t o  propose a 

s t i f h e s s  approach t o  p l a s t i c i t y  f o r  s h e l l s  o f  : -evo lu t ion .  Hu tu la  (65) 

and t h i s  work have 3 e n e r a l l y  f o l l o w e d  M a r c a l ' s  approach i n  deve lop ing  

a n a l y s i s  procedures. 



3 .1 : l  - Y i e l d  Sur face.  From the  s t res.s  p r e l i m i n a r i e s  o f  Appendix 

A t he  second . i n v a r i a n t  o f  t h e  s t r e s s  t enso r  J i s  d e f i n e d  as: 
2 

where ue I s  t h e  e f f e c t i v e  stress.. Accord ing  t o . d i s t o r s i o n  energy 

t heory,  t h e  d i s t o r s ' i o n  energy dens! t y  I n  the  r e a l  sys tem equals  the  

d  I s t o r s i o n  energy, d e n s i t y  a t  y i e l d  I n  an equ i ' va len t  s imp le  t e n s i o n  t e s t .  

Where G i s  t h e  shear modulus and T . ~ ~ ~  i s  t he  oc tahed ra l  shear s t r e s s .  

For t h e  simple. t -enslon t e s t  ' a t  t he  y i e l d  p o f n t  i n  s imp le  tens ion :  

Where o; i s  the  y i e l d  s t r e s s  i n  s l n p l e . . t e n s i o n .  Idence, t he  y i e l d  

c o n d i t i o n  f o r  the. b l a x i a l  s t a t e  o f  s t r e s s  becomes: 



~ i b u ; e  3r1. Von Mises Y i e l d  su r f ace  E l a s t i c  t o  P l a s t i c .  

.. .- . . , . . . --. . . 
. - - .--, 

Figure  3.2. Von.Mises Y i e l d  Sur face  P l a s t i c  t o  E l a s t i c .  



For the  case o f  pure  shear:  

Where A i s  t he  y i e l d  s t r e s s  i n  pu re  shear .  

The second I nva r . i an t  o f  s t r e s s  t enso r  i s  g i ven  by Eq .  (1111.3) and ' 

Eq .  (1'11.4) as : 

But  i f  we use t he  pu re  shear c o n d i t i o n  o f  E q .  (111.5) on t he  r i g h t  

hand s i d e  o f  Eq.  (111.6) , we ge t :  

i n d i c a t i n g  t h a t  t h e  y i e l d  s t r e s s  i n  pure  shear i s  t imes t h e  y i e l d  fi 
s t r e s s  i n  s imp le  tens ion .  

3.1.2 Hardening Modulus: For a s t r a i n  hardening m a t e r i a l  obey ing  

i s o t r o p i c  harden ing  law the  y i e l d  s u r f a c e  grows w i t h  i nc rease  i n  
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Fi.gure 3.3. Bilinear Stress-Strain Curve 



p l a s t i c  s t r a i n .  Tha t  is,when t he  m a t e r i a l  i s  sub jec ted  t o  p l a s t i c  

s t r a i n  E P  i t  a t t a i n s  a  s t r e s s  s t a t e  a g i ven  by: 

Vhere o he re  i s  t h e  i n i t i a l  y i e l d  s t r e s s  o f  t he  m a t e r i a l ,  E 
0 

i s  t he  s l ope  o f  e l a s t i c  p t > r t i o n  o f  the  b i l i n e a r  s t r e s s - s t r a i n  curve  o f  

F i g . .  (D.  1') , then: 

I n  E q .  ( 1 ~ ~ . 9 )  t he  s t r e s s  s t a t e  descr ibes  the  new y i e l d  su r f ace  o r  

t h e  new y i e l d  s t r e s s  g e n e r a l l y  denoted as the  harden ing  modulus H. 

There fo re ,  E q .  ( 111.9) can be w r i  t t en  as: 

Once a  p l a s t i c  s t r a i n  E~ i s  a t t a i n e d  r a t h e r  than u s i n g  t he  y i e l d  

c o n d i t i o n  o f  E q .  (IIL~), a  new y i e l d  c o n d i t i o n  i s  g i ven  by: 

Refer t o  Appendix D f o r  a p r e c i s e  d i s c u s s i o n  on E q .  ( 111.5) t o  ( 11z11). 



. . 
The s l ope  o f  t h e  e f f e c t i v e  s t r e s s - p l a s t i c  s t r a i n . d i a g r a m  H 

i s  o b t a i n e d  by d i f f e r e n t i a t i n g  equa t i on  ( I I I . l l ) . ,  

I 

The va lues  o f  H a r e  o b t a i n a b l e  d i r e c t l y  f rom the  m a t e r i a l  

. data.  S p e c i f i c a l l y ,  t h e  va lues  o f  K a r e  obtai ,ned f rom the  e f f e c t i v e  

s t r e s s - e f f e c t i v e  p l a s t S c  s t r a i n - r e l a t i o n s h i p s .  A s e l e c t i o n  o f  

these va lues  o b t a i n e d  f rom the n u c l e a r  r e a c t o r  m a t e r i a l  da ta  o f  

Ref.  ( 2 4 a )  i s  g i v e n  i n  Appendix D. 

3.2 Revi.ew - o f  E l a s t i c - P l a s t i c  Method, - o f  Ana l ys i s .  

E l a s t i c - p l a s t i c  problems beyond t he  y i e l d  p o i n t  on t h e  s t r e s s -  

s t r a i n  diagram r e q u i r e  an inc rementa l  a n a l y s i s  s i n c e  a  c losed  form 

s o l u t i o n  i s  n o t  p o s s i b l e  f o r  compl i ca ted  l oad ings  and geometr ies.  

S t r a i n  harden ing  c h a r a c t e r e s t i c s  and e f f e c t s  a r e  impo r tan t .  The 

n o n - l i n e a r i t i e s  assoc ia ted  w i t h  l a r g e  d e f l e c t i o n  s h e l l  t h e o r i e s  and 

t h e  Von-Mises c r i t e r i a  f o r  y i e l d i n g , .  compound t h e  d i f f i c u l t i e s  o f  

t he  problema 

The p l a s t i c i t y  t heo ry  p resen ted  here i s  based on t he  smal l  s t r a i n  

assumpt ion .  The t o t a l  s t r a i n  i s  assumed as a  l i n e a r  combina t ion  o f  

P  e l a s t i c  E~ and p l ~ s t i c  E..  s t r a i n s .  
1 j I J 

e  
d r i j  = deij  + d r ?  

I j 



The Von-Mises y i e l d  c o n d i t i o n  used i n  the ana lys i s  i s  based on 

d i s t o r t i o n  energy theory.  Using E q .  (111.12) a y f e l d  f u n c t i o n  can 

be de f i ned  as: 

The y i e l d  envelope of  Von-Mises i s  shown i n  F ig .  (3.1 . )  

where ABC i s  the  l oad ing  path  from e l a s t i c  t o  p l a s t i c  s t a t e  and 

A B D  i s  the p r o p o r t i o n a l  load ing  path.  I n  F ig .  ( 3.2:) the pa th  

At3 de f ines  p l a s t i c  t o  e l a s t i c  s t a t e .  
- 

I n  terms o f  t h i s  f unc t i on ,  the  general s t r e s s - s t r a i n  

r e l a t i o n  i n  the d i f f e r e n t i a l  form i n  the  p l a s t i c  reg ion  i s :  
I 

Where dEP i s  the e f f e c t i v e  p l a s t i c  s t r a i n  increment corresponding 

t o  the equ iva len t  s t r a i n  increment i n  a  s imple tens ion  t e s t .  



F o r  t he  Von-Mises y i e l d  c o n d i t i o n  t h e  above r e l a t i o n  can be 

reduced t o  ( ~ r a n d t - ~ e u s s  f l o w  r u l e )  

P1 .as t i c i t y  f o r  She1 1s - Revo lu t i on .  

3.3.1 D e f i n i t i o n  - o f  S t r e s s - S t r a i n  Re la t i ons .  Marcal  (15,lG) 

h a s  recommended an incrementa l  form o f  t he  c o n s t i t u t i v e  r e l a t i o n s  t o  

be used w i t h  t h e  govern ing  ax isymmet r i c  s h e l l s  o f  r e v o l u t i o n  equa t ions  

w i t h  l i m i t a t i o n s  t o  symmetr ic load ings .  M a r c a l ' s  p a r t i a l  s t i f f n e s s  

approach  i n  these re fe rences  i s  u s e f u l  i n  deve lop ing  a  convenient  

n u m e r i c a l  a l g o r i t h m  which accounts f o r  most o f  t h e  d i f f i c u l t i e s  i n  t he  

e l a s t i c * - p l a s t i c .  problem. 

The t o t a l  i nc rementa l  s t r a i n  i s  a  l i n e a r  sum o f  inc rementa l  e l a s t i c  

and inc rementa l  p l a s t i c  s t r a i n s .  For  she1 1s o f  r e v o l u t i o n  

( i g n o r i n g  shear components) t h i s  i s  g i v e n  by Marcal  (15) i n  component 

form as: 



e  e  
o r ,  s u b s t i t u t i o n s  f o r  the e l a s t i c  s t r a i n s  de and d~ i n  terms o f  

9 8 

corresponding s t ress  increments, Poisonla r a t i o  and Young's Modulus 

E g ives:  

I f  the Prandt-Reuss r e l a t i o n s  (111.-20) a r e  used, Eqs. (111-23) 

and (11x.24) a r e  w r i t t e n  as: 

a '  and a '  a r e  the  d e v i a t o r i c  component o f  stresses:  
9 8 



Another equa t i on  comes f rom the  Von-Mises y i e l d  C r i t e r i o n ,  as 

g i v e n  by Marcal. (IS), when represen ted  i n  d i f f e r e n t i a l  form and then 

s i m p l i f i e d  u s i n g  t h e  s l ope  o f  e f f e c t i v e  s t r e s s - e f f e c t i v e  p l a s t i c  

s t r a i n  cu rve  and n e g l e c t i n g  t h e  shear components, 

3 04 3 a; 
HId;P =: - - d ~  + - -  

Q dr 0 
'e 'e 

Where H 1  i s  t h e  s l ope  o f  e f f e c t i v e  s t r e s s - e f f e c t i v e  p l a s t i c  

s t r a i n  curve:  

and iP = $ dEP 

Equat ions 

t oge the r  as: 

and (111.25) can be rep resen t ed 



o r :  

- 
Where the  p l a s t i c  s t i f f n e s s  c o e f f i c i e n t  matr ix :  

3 . 3 . 2 .  P a r t i a l  S t i f f n e s s  C o e f f i c i e n t s .  By the chain r u l e  of  

d i f f e r e n t i a t i o n  we can a l s o  w r i t e :  



By a  comparison of  Eq.  (111.37) w i t h  the E q .  (III.32) the  terms 

i n  the  m a t r i x  o f  Eq .  (111.37)~ c a l l e d  the p a r t i a l  s t i f f n e s s  c o e f f i -  

c i e n t s  as de f ined  by Marcal ( I S ) ,  a r e  determined from E q .  (III.33). 

S t i f f n e s s  c o e f f i c e i n t s  a r e  on l y  C '  ( c l ass  1) f unc t i ons  o f  E and E 
4J 8 

as demonstrated by Hutu la (65). 

3 . 3 . 3 .  T r a n s i t i o n  Case. - The t r a n s i t i o n  tetween e l a s t i c  and 

p l a s t i c  regimes o f  F i g  ( 3 . 3  .) must by t r e a t e d  d i f f e r e n t l y  as fo l lows.  

P a r t i a l  s t i f f n e s s  c o e f f i c i e n t s  a t  the t r a n s i t i o n  a r e  mod i f ied  by 

c o n s i d e r i n g  a  mean s t i f f n e s s  c o e f f i c i e n t .  The mean s t i f f n e s s  coe f f -  

i c i e n t  as de f ined by Marcal (15)  i s  c a l c u l a t e d  from the p r o p o r t i o n a l  

we igh t ing  o f  the e l a s t i c  and p l a s t i c  p a r t i a ' l  s t i f f n e s s  c o e f f i c i e n t s ,  



f o r  instance:  

Where m i s  a p r o p o t i o n a l i  t y  f a c t o r ,  o<mc_l - 
.--.. 

The value o f  m i s  ob ta ined e i t h e r  from cons ide ra t i on  o f  the mxirnurn 

shear s t r e s s - s t r a i n  curve f o r  the.Tresca Y i e l d  C r i  t e r i o n  o r  fr0.n the 

+ (1-m) 3 
a E 

e l a s t i c  p l a s t i c  (111.37) 

5 
a E 

e f f e c t i v e  s t r e s s - s t r a i n  curve f o r  the Von-Mises Y i e l d  C r i t e r i o n .  

a 0  
0 = m-- 

a E 

Marcal (15)  has def ined rn t o  be the r a t i o  of  p l a s t i c  s t r a i n  

t o  the t o t a l  s t r a i n  a t  the  y i e l d  t r a n s i t i o n  f o r  the load increment. 

Gerdeen (9) and Hu tu la  (65) have found rn=3 as a value f o r  s t a b l e  

and reasonable s o l u t i o n  which i s  used i n  t h i s  study. 

4 mean 

. . 

4 u 
8 

I n  Eq.  (111.32) t he  values o f  ( - ) , ( - ) and H I  a t  the 

Oe a e 

t rans1 t i o n  can be determined as suggested by Hutu la  (65) .  



t 
* ( t i ' )  = m H 1  ( E  ) + ( i - r n )  Hi ( E  + A €  ) 

P 1 P ' P 

Where ( A )  i d e n t i f i e s  an incremental va lue f o r  a  g iven load 

increment and the subsc r ip t  (1) r e f e r s  t o  p rev ious  o r  res idua l  

s o l u t i o n  s t a t e .  

3.3.4. Determinat ion - o f  P a r t i a l  S t i f f n e s s  C o e f f i c i e n t s .  The 

q u a n t i t i e s  i n  the  m a t r i x  o f  E q .  (111.31) a r e  ob ta ined by i n v e r t i n g  

t h e  m a t r i x  o f  Eq. (111.32). The determinant o f  m a t r i x  (III.~~) 

i s  g iven by: 



'Where an a s t e r i k  denotes t h a t  a t  the t r a n s i t i o n  the q u a n t i t i e s  

w i t h  a s t e r i k  must be determined from Eqs. (111.24) t o  (111.26) 

r e s p e c t i v e l y .  .. 

L e t :  

f: 
D = - E D ,  then: 



3.3.5 Newton-Raphson Scheme., I n  the incremental e l a s t i c .  

p l a s t i c  ana iys is  t h a t  i s  performed h e r e . l t  i s  necessary t o  s e l e c t  

ex t remely  s m a l l . ~ l o a d  s teps .  i n  o rde r  t o  keep the s t r e s s  p o l n t  a t  the 

y i e l d  sur face.  The s e l e c t i o n  o f  a load s tep  and thereby a s t r e s s  

i ncrement var  I es f o r  d i f f e r e n t  p r o  .. blems . depending upon the degree 

o f  accuracy desired. . I n  o r d e r  t o  achieve.  the  des i  red accuracy f o r  

1 esser  load steps Hutu la (65) adopted a Newton-Raphson Scheme. T h i s  ' 

scheme . i s  used i n  the. .. incremental e l a s t i c - p l a s t i c  a n a l y s i s  performed 

here .  The fo rmu la t i on  o f  the Newton-Raphson scheme f o r  o b t a i n i n g  

improved s t r e s s  increments i s  presented here w i t h  genera l i za t i ons  



. . . -  . 

w i t h  respect  t o  the y i e l d  t r a n s i t i o n  parameter m de f ined e a r l i e r .  

I n  t h i s  scheme th ree func t l ons  f f 2  and f a r e  de f ined and by 
1 ' 3 

means o f  these func t l ons  a Newton-Raphson a l o g r i t h m  i s  developed. 

Def ine  th ree  func t i ons :  



Two o f  the above f u n c t i o n s ,  f and f 2  o f  Eqs. (111.51) and 1 

(111.52) have been de f ined  us ing,  t he  inc rementa l  fo rm o f  Eqs. (111.23) 
- 

a n d  (111.24). The t h i r d  f u n c t i o n  f o f  iq. (111.53) i s  d e f i n e d  u s i n g  
3 

t he  d e f i n i t i o n  o f  th3 y i e l d  f u n c t i o n  o f  iq. (111.15) r a t h e r  than u s i n g  

E q .  (111.27) . 
The cons i s tency  o f  u s i n g  Eq. (111.15) f o r  d e f i n i n g  the  f u n c t i o n  

f w i l l  be g i ven  toward t he  end o f  t h i s  chap te r .  

Above f u n c t i o n s  f and f 2  have bean de f ined  u s f n j  t he  1 . -  

i ncrernental form o f  Eqs. (111.23) and (111.24). ~ b w e v e r ,  r a t h e r  than 

d e f i n i n g  a  t h i r d  f u n c t i o n  f f rom Eq. (111.28) use o f  the  y i e l d  3 

f u n c t i o n  o f  Eq. (111.15) has been made. 

S u b s t i t u t i n g  f o r  ( ) and ( '0 ) *  - from Eqs. (111.38) and 

e 
. . 

ee 

(111.~9) the functions o f  Eqs. (11i.51) t o  (111.53) can be w r l  t t e n  

a s :  



Substituting for the deviaroric stress components f o r  the 

residual as we1 1 as the current state: 





and, thus the Newton-Raphson a lgor i thm i s  given by: 

. . 

I t  can be e a s i l y  seen t h a t  f o r  m = 4 these equations reduce 

t o  t h o s ~  given by Hutu la  ( 6 5 ) .  



Henceforth, our  d e f i n i t i o n  o f  the f u n c t i o n  f on the prev ious  
3 

pages, v i z .  

i s  cons i s tan t  w i t h  the d e f i n i t i o n  of  the Von-Mised C r i t e r i a  o r  the 

d i s t o r t i o n  energy theory.  What remains t o  be seen now i s  whether t h i s  

f u n c t i o n  i s  a l s o  c o n s i s t e n t  w i t h  the  Prandt Reuss r e l a t i o n s  t h a t  were 

used i n  d e f i n i n g t h e  p l a s t i c  s t r a i n  components i n  func t ions  f, 

and f2. 
. . .  

3.3.6 ~ o n s . i s t e n c y ' o f  . - Funct ion f From ' ( 6 4 )  the  general p l a s e i c  3 ' 

s  t r e s s - s t r a i n  r e l a t i o n  i s  g iven by: 

o r :  

and f o r  the f u n c t i o n  f -  de f i ned  as before,  t h i s  reduces to:  
3 



Which I s  same as t h e  p l a s t i c  s t r a i n  components used i n  

t h e  d e f i n i t i o n  o f  f u n c t i o n s  f, and f 
2 ' 

The d e f i n i t i o n  o f  the  y i e l d  f u n c t i o n  i s  t h e r e f o r e  c o n s i s t e n t '  

w i t h  Prandt-Reuss r e l a t i o n s .  

A f u r t h e r  s i m p l i c i t y  i s  ach ieved  by n o t i n g  the  f a c t  t h a t  

the  component p l a s t i c  s t r a i n s  a r e  d i r e c t l y  o b t a i n a b l e  f rom 

t h e  d e r i v a t i v e s  o f  t he  d e f i n e d  f u n c t i o n ,  f o r  ins tance :  

and: 



3 . 4  S h e l l  Inc rementa l  P l a s t i c i t y .  

The inc rementa l  e l a s t i c - p l a s t i c  s t r e s s - s t r a i n  r e l a t i o n s  p resen ted  

i n  t he  p rev ious  s e c t i o n  can n o t  as y e t  be.used d i r e c t l y  w i t h  t h e  

govern ing  she1 1  equa t ions ,  Accord ing  t o  Eqs. (11.11) t o  (11.20) 

t h e  s t r e s s  components must be i n t e g r a t z d  th rough the t h i ckness  i n  

o r d e r  t o  determine t h e  magnitudes o f  s t r e s s  r e s u l t a n t s  a t  t h e  

m e r i d i o n a l  i n t e g r a t i o n  p o i n t s .  T h i s  i s  no t  q u i t e  s t r a i g h t  fo rward  

f o r  inc rementa l  p l a s t i c i t y .  The inc rementa l  va lues  o f  s t r e s s  

r e s u l t a n t s  N d ,  No,  M+,  b?e a r e  represen ted  as f u n c t i o n s  o f  s t r a i n s  

E+,  c e  and o f  cu rva tu res  Kg, K e  d e f i n e d  by t h e  f o l l o w i n g  cha in  ru. le 

o f  d i f f e r e n t i a t i o n .  

For  e l a s t i c - p l a s t i c  behav io r  , 





T h u s :  

Eqs. (111.91 ) to (111.94) can be solved for AE+ and AK+ 



Where A l  = C ,  D  - 

2 
W h e r e :  A = C l l D l l - K  

1 1  1 1  

The various c o e f f i c i e n t s  i n  Eqs. (111.31) t o  (111.94) a r e  

d  etermi'ned from the d e f i n i  t ions o f  the s t ress  resul  t a n t s .  

a 0  

O 2 2  = /  2 8 E Z ~ Z  

-h/2 8 



For e l a s t  ic-behavior Eqs .  (111.37) simply reduce to:  

Ehv 



3.5 Treatment at sheli Apex. --- 
Constitutive relations Eqs .  (111.91) to (111.95) must be 

. treated differently at an umbelical shell apex because of singularities 

, in the equations. I n  .the special case of singularities of an unbelical 

point, 

A E  = A E  and A K  = A K  
0 .  4 0 0 

Therefore Eqs. (111.90) and (111.92) become: 

From which: 



Where: ' 



CHAPTER I V  

INCREMENTAL SOLUTION OF ELASTIC-PLASTIC PROBLEMS 

4.0 I n t e n t  o f  Chapter.  - 
The equat ions  d e r i v e d  i n  t h e  p rev ious  chap te rs  must be o rgan i zed  

- 
i n  a  fo rm such t h a t  they a r e  i n t e g r a b l e .  I t  i s  in tended t o  p resen t  

a  complete s e t  o f  equa t ions  i n  a  fo rm independent ,o f  t he  numer ica l  

i n t e g r a t i o n  scheme adopted. 

4.1 Bases f o r  S o l u t i o n .  -- 
The s e t  o f  f i r s t  o r d e r  o r d i n a r y  d i f f e r e n t i a l  equa t ion ,  

Eqs. ( 1 ~ 5 2 )  t o  ( 1 ~ 5 8 )  can n o t  as y e t  be i n t e g r a t e d  s i n c e  they  c o n t a i n  

non-I  i n e a r i  t i e s .  The method adopted t o  t r e a t  these non- I i n e a r i  t i e s  

r e q u i r e s  t h a t  they be reorganized.  The i n c o r p o r a t i o n  w i t h  the  

c o n s t i t u t i v e  r e l a t i o n s  o f  chap te r  I I I m u s t  a l s o  b e  d e t a i l e d .  

The method o f  a n a l y s i s  f o r  t r e a t i n g  the  n o n - l i n e a r i t i e s  i n  s h e l l  

equa t ions  i s  s i m p l i f i e d  i n  such a way t h a t  d i r e c t  i n t e g r a t i o n  w i t h  

t h e  a i d  o f  a  suppress ion scheme ( C h a p t e r v )  i s  p o s s i b l e .  To o b t a i n  

the  n o n l i n e a r  e l a s t i c  s o l u t i o n s ,  t h i s  i n t e g r a t i o n  i s  performed d i r e c t l y  

f o r  t h e  t o t a l  a p p l i e d  l oad ing  and a n u m h r  o f  i t e r a t i o n s  a r e  r e q u i r e d  

t o  converge t o  t he  n o n - l i n e a r  e l a s t i c  s o l u t i o n .  For e l a s t i c - p l a s t i c  

m a t e r i a l  behav io r  t h i s  i n t e g r a t i o n  and i t e r a t i v e  procedure i s  c a r r i e d  

o u t  f o r  every  increment o f  t h e  load. 

The d i r e c t  numer ica l  i n t e g r a t i o n  o f  s h e l l  equa t ions  i s  p o s s i b l e  

sepa ra te l y  f o r  a l l  hom~geneous as w e l l  as p a r t i c u l a r  s o l u t i o n s  f o l l owed  

by t h e i r  recombinat ions.  For e l a s t i c - p l a s t i c  a n a l y s i s  t h i s  i s  



accomplished f o r  each increment o f  the load. Fur ther ,  the e l a s t i c -  
% 

p 1 a s t . i ~  const i t u t i  ve r e l a t i o n s  a r e  used. acco rd ing l y  duri'ng each homo- 

geneous and p a r t i c u l a r  s o l u t i o n  i n t e g r a t i o n .  

I t  i s  i n  general extremely. d i f f i c u l t  t o  o b t a i n  s o l u t i o n s  t o  non- 

l i n e a r  d i f f e r e n t i a l  equat ions o f  the boundary va lue  type such as those 

posed f o r  a  s h e l l  o f  r e v o l u t i o n  i n  the  prev ious  chapters.  D i r e c t  

numerical  i n t e g r a t i o n  o f  the non - l i nea r  d i f f e r e n t i a l  equat ions can 

be made p o s s i b l e  i n  var ious  ways such as: 

( I )  Using an incremental approach throughout:  

( i  1) Appl i c a t i o n  o f  a  Newton-Raphson procedure: 

( i i i )  A p p l i c a t i o n  o f  q u a z i l i n e a r i z a t i o n  methods: 

The f i r s t  o f  the above i s  genera l l y  tedious and may lead t o  

propogat ion o f  e r r o r s  due t o  t r u n c a t i o n  w i t h i n  each o f  the s e r i e s  

o f  increment. A Newton-Raphson Procedure has been used w i t h  the m u l t i -  

segment method by Ka ln ins  and L e s t i n g i  ( 67) t o  o b t a i n  s o l u t i o n s  t o  non- 

1 ] .near -e las t ic  shel 1 problems. L a t e r  Gerdeen (9) appl i ed  the Newton- 

Raphson Procedure w i t h  a  mul t isegnent  method t o  s o l u t i o n s  t o  non - l i nea r  

e l a s t i c - p l a s t i c  problems. 

Hutu la  (65)  o b t a i n e d  a  s e t  o f  quasi  1 i nea r i zed  shel  1 equat ions 

us ing  Relsner-Meisner 's She l l  Theory. The s e t  o f  f i r s t  o rde r  o r d i n a r y  

d i f f e r e n t i a l  equat ions due t o  Sanders (7)  presented i n  chapter  I I 

w i  1 1' be quas i I l nea r i  zed and organi  z e d . t o  be made amenable t o  use. 

4.2 Reformulat ion - o f  I n i t i a l  Value Problems. 

The s o l u t i o n  t o  a  symmetr ica l l y  loaded s h e l l  o f  r e v o l u t i o n  



. . 

problem between the i n i t i a l  and f i n a l  edges i s  obta ined by conve r t i ng  

a  boundary value problem t o  an i n i t i a l  va lue problem. For a  system 

o f  2n va r iab les ,  a t  the i n i t a l  edge on l y  n  boundary cond i t i ons  a r e  

known f o r  a g iven problem. L i n e a r l y  independent va lues o f  the  remain- 

i n g  n  v a r i a b l e s  a t  the  i n i t i a l  edge a r e  chosen. The p r e s c r i p t i o n  o f  

n  boundary values and n  a r b i t r a r i l y  chosen values a t  the i n i t i a l  edge 

f o r  each homogeneous and p a r t i c u l a r  s o l u t i o n  i n t e g r a t i o n  thus c o n s t i -  

t u tes  an i n i  t i a l  va lue problem. when these i n t e g r a t i o n s  a r e  c a r r i e d  

ou t  t o  the f i n a l  edge n  boundary cond i t i ons  are s a t i s f i e d  and a  se t  

o f  c o e f f i c i e n t s  determined t h a t  a re  used t o  a p p r o p r i a t e l y  combine the 

l i n e a r l y  independent homogeneous and the p a r t i c u l a r  so lu t i ons .  Th i s  

i s  v a l i d  f o r  i t e r a t i v e  non - l i nea r  e l a s t i c  s o l u t i o n s  s ince  the non- 

l i n e a r  s h e l l  equat ions a re  q u a s i l i n e a r i z e d  w i t h i n  each i t e r a t e .  

Th is  i s  a l s o  poss ib le  f o r  an incrementalnon- l inear  e l a s t i c - p l a s t i c  

s o l u t i o n s  due t o  the  assumed l i n e a r  behavior  w i t h i n  each increment i n  

t h i s  range. 

D i r e c t  numerical  i n t e g r a t i o n  o f  l i n e a r  o r  non - l i nea r  s h e l l  

governing equat ions i s  d i  f f  i c u l  t s ince  these equat ions tend t o  p rov ide  

extraneous exponen t ia l l y  growing func t i ons  which must be c o n t r o l l e d  

i n  o rde r  t o  o b t a i n  a  c o r r e c t  s o l u t i o n  t o  the  problem. The numerical  

i n t e g r a t i o n  o f  s h e l l  equat ions which s t a r t s  by convers ion o f  a  toundary 

value problem t o  an i n i t i a l  value problem, must be ass i s ted  by a  

technique t o  c o n t r o l  t he  extraneous s o l u t i o n s .  Two such techniques 

have been developed, which prov ide  un i fo rm accuracy everywhere a long 



t he  i n t e g r a t i o n  pa th :  the niu l t lsegment  method 'and t he  suppress ion tech-  

n ique .  

4.3 Q ~ a . ~ i l  i n e a r i z a t i o n .  

4.3.1 Theory. The q u a s i l i n e a r i z a t i o n  techn ique  was developed 

by k l  lman (6&2), ~ a l ~ b ~  (69) and app l  i e d  t o  chemical  eng inee r i ng  problems 

by Lee .(70). 

I n  t he  q u z s l l i n e a r i - z a t i o n  techn ique  t he  n o n - l i n e a r  d i f f e r e n t i a l  

equa t i on  a r e  f i r s t  represen ted  by a s e t  o f  s imul taneous f i r s t  o r d e r  

d i f f e r e n t i a l  equa t ions .  Each o f  t he  f i r s t  o r d e r  d i f f e r e n t i a l  

equa t ions  i s  l i n e a r i z e d  u s i n g  T a y l o r  s e r i e s  expansions w i t h  second 

and h i g h e r  o r d e r  terms o m i t t e d .  I t e r a t i v e  s o l u t i o n s  o f  t he  r e s u l t i n g  

l i n e a r i z e d  d i f f e r e n t i a l  equa t ions  u s u a l l y  converge q u a d r a t i c a l l y  t o  

t h e  s o l u t i o n  o f  t he  o r i g i n a l  equat fons such t h a t  each i t e r a t i o n  

approx imate ly  doubles t h e  number o f  d i g i t s  o f  accuracy. For  example, 

l e t  us cons ide r  t h e  f o l l o w i n g  s e t  o f  n o n - l i n e a r  f i r s t  o r d e r  d i f f e r -  

e n t i a l  equa t ion :  

(IV. 1) 



w i t h  bounddry' condl t ions : 

(IV. 2) 

where f ,  ( : x , Y .  j '  a r e  non-1 inear  funct ions which can be ' 

I J .  
.t. 

l i n e a r i z e d  around yi  = y ; ~  as fol lows:  

. (IV. 3) 

I n  o t h e r  words, the d i f f e r e n t i a l  equat iom can be represented 

it 
around y =y as: 1 i '  

where: 

(IV. 4 )  



I f  y  i s  represented i n  the vec to r  form ( yl, 
Y2 * . . * * p  'n ) 

.L 

and f represented i n  vec to r  form ( f f 2  ....., f ) ,  and i f  y" 
n 

i s  taken as a  prev ious  i t e r a t i o n  y h, t o  t h e s o l u t l o n . t h e n  t h e  

d i f f e r e n t i a l  equat ion,  Eq. (IV.1.') can be w r i t t e n  as: 

(IV. 6) 

' I  

Eq.  ( 111.6,') now c o n s t i t u t e s  a l i n e a r  i n i t i a l  va lue problem f o r  y  (n+ l )  

Once y  
(n+l )  

has been determined, successive .i t e r i t e s  , r=n+2,n+3, 

..., can be obta ined from successive s o l u t i o n s  o f  E q .  ( IV.6 ) .  The 

L n . k ~ l a l  i t e r a t e  y(") can be taken as the 1 i n e a r  e l a s t i c  s o l u t i o n .  

The: Jacobian J i s  g iven by': 



4.3.2'  App l ica t - ion .  I t  is-now p o s s i b l e  t o  a p p l y  t h i s  method t o  

the  s e t  of  f i r s t  o rde r  s h e l l  d i f f e r e n t i a l  equat ions g iven i n  Chapters 

11 and 111. - . 

The a p p l i c a t i o n  o f  the q u a s i l i n e a r i z e d  method does no t  a l t e r  

, the  l i n e a r  terms i n  the  s h e l l  governing equat ions. For example, the 

f i r s t  o rde r  o rd inary ,  d i f f e r e n t f a 1  equat ion.  

when quasi 1  i near i zed becomes: 

(IV. 8) 

To i 1 l u s t r a t e  the  quasi 1 i n e a r i z a t i o n  process, cons ider  ' t h e  

non-1 l nea r equat ;.on: 



A p p l i c a t i o n  o f  the  q u a s i l i n e a r i z a t i o n  method t o  . t h i s  equat ion 

g ives:  

(IV. 1 1 )  

whera the supersc r i p t  (n) represents the va lue  o f  the prev ious  

i terate. .  The quas i l i nea r i ze 'd  .version o f  the complete se t  o f  governing 

s h e l l  equations.; E ~ .  (11.52) t o  Eq. ( 1 1 5 8 ) ,  i s  g iven by: 

(IV. 12) 



(n+ l )  Cos 9 - - -  1, M A ~ + I )  (n+ l )  
M6's r - njn+') 1 + Q~ 

. 
(IV. 13) 

(IV. 14) 

(IV. -5) 

. . 

(n+ l>  w ' 
(n+ l )  - _ = E - Y u, s 6 R 

Q 
( IV .  16) 



I t  i s  t o  be notzd t h a t  the above se t  o f  equat ions c o n t a i n  .-,. . ,, 

a u x i l i a r y  va r i ab les ,  such as sg.:Kgy K N o  and M e ,  , a long  w i  t h  E 4 '  9 *  

. the fundamental v a r i a b l e s  t h a t  were de f lned i n  chapter  11. These 

a u x l l  i a r y  v a r i a b l e s  a r e  determined us ing  the c o n s t i t u t i v e  r e l a t i o n s .  

Since no. p r i o r  use o f . c o n s t i t u t i v e  r e l a t i o n s  was made i n  d e r i v i n g  

. t h e  s e t  o f  quasi l i n e a r i z e d  governing d . i f f e r e n t i a 1  equat ions,  Eqs. 

(1v.12) t o  ( 1 ~ . 1 7 ) ,  g e n e r d i t y  w i t h  respect  t o  m a t e r i a l  behavior 

i s  re ta ined.  

I n  the fo rego ing  . d e r i v a t i o n  o f  Eqs. (11.52 ) t o  (11.58') the 

i t e r a t e  values corresponding to.a prev ious s o l u t i o n  s t a t e  a re  rep re -  

sented w i t h  supersc r i p t  (n) whereas the  c u r r e n t  i t e r a t i o n  v a r i a b l e s  

a r e  represented w i  t h  supe rsc r i p t  (n+ l )  . An obvious choice fo r  the . 
t r i a l  i t e r a t e s  .dur ing  t h e ' f i  r s t  i t e r a t i o n  o f  the  non-1 i nea r  ' s o l u t i o n  

i.s t h e . l l n e a r  e l a s t i c  s o l u t l o n ,  Subsequently, the  c u r r e n t  i t e r a t i o n  

v a r i a b l e s  de f i ned  by the supersc r i p t  (n+l )  become i t e r a t e  values 

f o r  f u t u r e  i t e r a t i o n s .  Such i t e r a t i o n s  a r e  repeated u n t i  1 a  des i red  

accuracy i s  obta ined.  



. . 

4.4. F i n a l  Form o f  Equat ions.  --- 

A b r i e f  d e s c r i p t i o n  o f  t h e  method o f  l a r g e  d e f l e c t i o n  e l a s t i c -  

p l a s t i c  a n a l y s i s  i s  p resen ted  i n  t he  f o l l o w i n g  chap te r .  

Emphasis i s  g i v e n  t o  o r g a n i z i n g  p r e v i o u s l y  d e r i v e d  equat ions  

i n  a  form s u i t a b l s  f o r  i n t e g r a t i o n s .  S ince  o n l y  a  genera l  method o f  . 

a n a l y s i s  can be p rssen ted  here  many o f  t he  p r e v i o u s l y  d e r i v e d  

equat ions  have been re fe renced  t o  i n d i c a t e  t h e i r  u s a b i l i t y .  

The procedure f o r  the  s c a l i n g  o f  loads t o  the  y i e l d  p o i n t  and 

a  method o f  assuming s t r a i n s  t o  s t a r t  t he  s o l u t i o n  a l g o r i t h m  i s  o u t -  

l i n e d  i n  Appendix D .  

Once t he  s t r a i n s  a r e  known f o r  t h e  c u r r e n t  i t e r a t i o r i  o f  a  

10-d increment  then the  f u n c t i o n s  fl, f2, f and t h e i r  d e r i v a t i v e s  3 

a r e  eva 1 uated f r o n  (111.50) t o  (111.61) .. 

For each l oad  s t e p  t he  i n i t i a l  t r i a l  s o l u t i o n  ( o+,og,;P ) o  

corresponds t o  i n i t i a l  i t e r a t i o n  number zero.  I n ' t h i s  case t he  bes t  

cho i ce  happens t o  be Eq .  (111.31). Note t h a t  i f  t h e  t r a n s i t i o n  f a c t o r  

m=l f s used i n  Eqs. (111.62) t o  (111.73) they  reduce t o  Eq .  (111.31). 

The c u r r e n t  va lues  o f  s t r esses  and e f f e c t i v e  p l a s t i c  s t r a i n  

a r e  eva lua ted  .from E q .  (III.GZ), g i v e n  by: 



(IV. 18) 

The p l a s t i c  s t i f f n e s s  c o e f f i c i e n t s  a r e  then e.valuated f r om 

(111.25) t o  (111.34) and t he  c o e f f i c i e n t s  C 1 , ,  C22, C 2 1  9 Dl1,  

D 2 2 ,  D 2 1 ,  K l l ,  K 1 2 ,  K 2 1 ,  A l l  a r e  eva lua ted  a t  each m e r i d i o n a l  

I n t e g r a t i o n  p o i n t  f rom Eq. (111.99) o r  (111.100) t o  (111.104) f o r  

s i n g u l a r  p o i n t s .  

The auxf l i a r y  v a r i a b l e s  a r e  determined from: 

(IV. I ? )  

(IV ... 20) 

wherz j=o,  1 ;  1=1, 2 ,  . . . ... n  . The f i r s t  o f  these s u p e r s c r i p t s  

(0). corresponds t o  a  p a r t i c u l a r  s o l u t i o n  and the  rema in ing  n  super- 

s c r i p t s  correspond t o  homogeneous s o l u t i o n s .  



.. . . . . . . . .. -.- 

% 

For homogeneous s o l u t i o n s : .  

and f o r  p a r t i c u l a r  so lu t ion:  

( I V .  2 1 ) 

( I V .  2 2 )  

(I?. 2 4 )  

Where the subscr ipt  1 r e f e r s .  t o  a  previous s o l u t i o n  s t a t e .  

F o r  e l a s t i c - p l a s t i c  s o l u t i o n  process the previous s o l u t i o n  s t a t e  

i s  a l s o  c a l l e d  a  res idua l  s t a t e .  

For homogeneous so lut lons ,  

and f o r  p a r t i c u l a r  so lu t ion:  

(IV. 2 5 )  

(IV. 26) 



(IV. 28) 

Eq.  (111.91) and Eq. (111.94) are now solved: 

j - ( A M m  - K 1 2  E - D 1 2  AX: ) K 1 , I  

(IV. 29 j  

where various coefficients C l l ,  C 1 2 ,  CZ2, K l l  , K 1 2 ,  D l l  , D I 2  , 

D22 ire sloved .ty integrating E q .  ~ 1 1 1 3 7 )  through the thickness 

using Simpson's rule; A , ,  is determined from Eq. (I11 9 6  ) 

j j Now ANg and AMerare similarly determined from Eq.  (111.92) 

and E q .  (111.94) respectively. 

Thus: 
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( IV.  32) 

( IV. 33) 

(IV. 3 4 )  

The subsequent development o f  a  numer ica l  scheme f o r  the  d i r e c t  

i n t e g r a t i o n  o f  a  s e t  o f  f i r s t  o r d e r  o r d i n a r y  d i f f e r e n t i a l  equa t ions ,  

g i v e n  by Eqs. (m. 12) t o  (IV. 17) ,  r e q u i r e  a  much c l e a r e r  p e r s p e c t i v e  

w l t h  r ega rd  t o  t h e  t rea tment  o f  (n )  th and (n+ l )  th i t e r a t i o n  va lues .  

Eqs. (1v.12) t o  (1v.17) a r e  t h e r e f o r e  reorgan ized  i n  t h e  f o l l o w i n g  

form. 

L e t :  

= Vec to r  o f  t he  fun.damenta1 v a r i a b l e s  o f  Eqs. k ~ ' . 1 2 )  
t o  ( 1 ~ . 1 7 ) ,  i=1,2,. . . .6  

T 

t h  .= M a t r i x  t h a t  con ta ins  cons tan t s  and (n) . 

. i t e r a t i o n  va lues  o f  a1 1 . v a r i a b l e s  and t h e i r  
d e r i v a t i v e s  I n  Eq,, @V .12) t o  @V . 1 7 ) ,  
= 1 , 2 , * . . ' . G ;  j=1,2, .......... 12. 
(see t a b l e  I V  . I  f o r  components o f  t h i s  m a t r i x ) .  

= Vec to r  o f  (n+ l )  th i t e r a t e s  o f  fundamental and 
a u x i l i a r y  v a r i a b l d s  i n  Eqs. (1v.12) t o  (1v.17); 
j=1,2,. . . . . . 6 .  



= Vec to r  o f  (n)  th i t e r a t e s  o f  t h e  fundamental '  
and ac#i l i a r y  v a r i a b l e s  t h a t  a r e  n o t  m u l t i p l i e d  
by c o z f f i c i e n t s  o f  ( n + l ) t h  i t e r a t e s  i n  Eqs. 
( 1v .12 )  t o  ( 1 v . 1 7 ) .  

Where 

L , = L 2 = L  = O  
3 

(IV. 35) 

(IV. 37) 

(IV .38)  

The s e t  o f  f i r s t  o r d e r  o r d i n a r y  d i f f e r e n t i a l  equa t ions  a r e  now 

o r g a n i z e d  as: 

Where i = 1,2, .... 6 and 
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Tab le  IV.1 Components o f  M a t r i x  R:',j 

(n) 

A l l  o t h e r  components o f  the m a t r i x  [ R ~ ,  j] h a v e  a z e r o  va lue .  



I n  t h e  expanded form Eq. (1i1.43) i s  w r i t t e n  as: 

(IV. 40)  

(n> 
I t  i s  customary t o  r ega rd { l i {  as a l oad  v e c t o r  and, hence, 

I s  cons idered  o n l y  d u r i n g  d i r e c t  i n t e g r a t i o n s  o f  the  p a r t i c u l a r  

s o l u t i o n s .  Once a so lub?sn  i s  known fo r  an i t e r a t i o n  then t he  midd le  

s u r f a c e  s t r a i n s  and cucvatures a r e  used t o  e v a l u a t e  the s t r a i n  

increments a t  every  p o i n t  through t he  . th ickness u s i n g  t he  f o l l o w i n g  

express Ions:  

( I V .  4 2 )  



(IV. 4 3 )  

- - - 
Where z i s  t h e  c o o r d i n a t e  through t he  th ickness ,  c+, E ~ ,  K+, 

Re, a r e  some o f  t h e  a u x i l i a r y  v a r i a b l e s  a t t h e  m idd le  sur face .  

S u b s c r i p t  i r e f e r s  va lues  o f  these aux i  1 i a r y  . v a r i a b l e s  a t  t h e  p rev ious  
- 

s o l u t i o n  s t a t e .  

4 .5  Statement - o f  Chapter.  

.The equat ions  (1.V.39) a r e  now i n  t h e  a p p r o p r i a t e  f o rm  t o  be 

used w i t h  t h e  n o n - l i n e a r  i n t e g r a t i o n  scheme t h a t  i s  developed i n  a  

subsequent chap te r .  A l l  q u a n t i  t i e s  o f  Eqs. ( IT'. 39) a r e  non-dirnen- 

s i o n a l i z e d  i n  Appendix B.  



CHAPTER V 
% 

NUMERICAL INTEGRATION SCHEME FOR LINEAR ANALYSIS 

5.0 I n t e n t  - o f  Chapter. 

I n  t h i s  chapter  the suppression technique f o r  l i n e a r  e l a s t i c  

ana lys i s  i s  reviewed. Th i s  i s  done separa te ly  i n  t h i s  c h a p t e r . i n  

o rde r  t o  avo id  r e p e t i t i o n  o f  c e r t a i n  s a l i e n t  fea tures  o f  t h i s  

technique t h a t  would b e  common t o  both l i n e a r  and non - l i nea r  

ana lys i s .  More d e t a i l e d  d iscussions o f  the  numerical  i n t e g r a t i o n  

p r o c e s s . i n c l u d i n g  suppression can b e  found i n  (11)  t o  (14) .  

5.1 L inea r  Ana lys is  Method Backg,round. 

The .numerical i n t e g r a t i o n  problem i s  f i r s t  set-up such t h a t  

t he  fundamental var iabl les a r e  those appearing on the  boundaries. 

Then the  boundary value problem i s  transformed i n t o  a se t  o f  

i n i t i a l  value problems; s o l u t i o n s  t o  each o f  these i n i t i a l  va lue 

problems are  c a l l e d  p a r t i a l  s o l u t i o n s .  

A problem a r i s e s  i n  the  use of numerical  i n t e g r a t i o n .  The 

s o l u t i o n s  .are o f  the exponent ia l  type and accuracy i s  l o s t  i n  

i n t e g r a t i n g  over  long path  lengths,  To o'vercome th i s '  problem 

the mu1 t isegment method ( 1 2 )  o r  the suppression technique (13) 

and (14) can be used. These methods p rov ide  uni form accuracy 

everywhere a long the i n t e g r a t i o n  path. 

I n  the  multisegment method the reg ion  o f  i n t e g r a t i o n  i s  

subdiv ided i n t o  a number of  segments. The s t i f f n e s s  o f  each 

segment i s  obta ined by successively  s e t t i n g  each fundamental 

. . 



v a r i a b l e  a t  the b e g i n ~ i n g  of the segment equal t o  u n i t y  w h i l e  

o thers  are s e t  equal t o  zero. Having the s t i f f n e s s  o f  p rev ious l y  

i n teg ra ted  segments, one can reassemble the  segments by s o l v i n g  

a s e t  o f  simultaneous equati,ons. The numberlo.f these equat ions 

equals the  number o f  fundamental v a r i a b l e  t imes the number o f  

s h e l l  segment, p l u s  one. Ka ln ins  and L e s t i n g i  (67) adopted a 

Newton-Raphson scheme w i t h  the multisegment . mefh>d . o f  numerical  

i n t e g r a t i o n  f o r  the  l a rge  d e f l e c t i o n  ana lys i s  o f  e l a s t i c  s h e l l s  
,.-.. 

o f  r e v o l u t i o n .  

The suppression technique a l l e v i a t e s  the  numerical  problem 

of  e r r o r  propagations by. recombining the independent i n i t i a l  va lue  

problems ( p a r t i a l  s o l u t i o n s )  when necessary as the  i n t e g r a t i o n  

proceeds. They are  recombined i n  such a way t h a t  the  components 

o f  the erroneous growing s o l u t i o n s  a t  the p o i n t  i n  ques t ion  a re  

e l im ina ted.  Wi th t h i s  technique, the s o l u t i o n s  a re  a l l  o f  

comparable magni tude when the  i n t e g r a t i o n  process a r r i v e s  a t  

the f a r  edge o f  the s h e l l .  Whenever the p a r t i a l  s o l u t i o n s  have 

become l a r g e  compared w i t h  the i n i t i a l  cond i t i ons ,  t.he suppression 

i s  accomplished by r e q u i r i n g  t h a t  l i n e a r  combinat ion o f  the p a r t i a l  

s o l u t i o n s  s e q u e n t i a l l y  s a t i s f y  se ts  o f  a r t i f i t . i a . 1  i n i t i a l  condi t . ions 

w i t h  smal l  magnitude a t  var ious  p o i n t s  a long the mer id ian o f  the 

s h e l l .  Thus, f o r  each segment the number o f  equat ions solved 

equals the number o f  fundamental va r i ab les .  For the 1 inear  e l a s t i c  

ana lys i s  o f  s h e l l s  the p a r t i a l  s o l u t i o n s  can be l i n e a r l y  combined 

t o  o b t a i n  the f i n a l  s o l u t i o n .  



An ex tens ion  o f  the suppression technique t o  non - l i nea r  s h e l l  

ana l ys i s  i s  presented i n  the f o l l o w i n g  i'n which the quas i -  

l i n e a r i z a t i o n  technique descr ibed i n  chapter  I V  i s  used i n  such 
' .  

a  way t h a t  the f i n a l  recombinat ion o f  p a r t i a l  s o l u t i o n s  becomes 

possi b le.  

I n  the numerical  i n t e g r a t i o n  scheme, a standard Runge-Kutta 

G i  11 procedure i n  conjungt  i o n  w i  t h  Hamming I s  pred i c t o r - c o r r e c t o r  

method i s  used t o  so lve  the system o f  f i r s t  o rde r  d i f f e r e n t i a l  

equat ions.  

5.2 Descr- lp t ion - o f  Suppression Process. 

I n  the suppression technique f o r  a system o f  o rde r  2 j ,  j 

q u a n t i t i e s  are  assumed a t  the i n i t i a l  p o i n t  and j boundary* 

cond i t i ons  a r e  s a t i s f i e d  a t  the te rm ina l  p o i n t .  The c o r r e c t  

s o l u t i o n  corresponds t o  some o t h e r  s e t  o f  i n i t i a l  values t h a t  

. produce boundary quant i  t l s s  s a t i s f y i n g  the te rm ina l  boundary 

cond i t ions. 

P a r t i a l  s o l u t i o n s  f o r  j homogeneous and one p a r t i c u l a r  s o l u t i o n  

designated by So. S i ,  .... S .  are  c a r r i e d  s imul taneously by 
J 

assuming j i n i t i a l  values and p r e s c r i b i n g  j boundary cond i t l ons  

a t  the i n i t i a l  p o i n t .  The growth o f  extraneous s o l u t i o n s  i s  

c o n t r o l l e d  by s e l e c t i n g  suppression p o i n t s  a t  l oca t i ons  where 

magn i tudes o f  the fundamental va r i ab les  have exceeded a  p r e s c r i  bed 

1 i m i  t which i s  based upon the  des i red  l e v e l  o f  accuracy. A t  each 

suppression p o i n t  a r t i f i c i a l  boundary c o n d i t i o n s  are s a t i s f i e d  and 

a  se t  o f  c o e f f i c i e n t s  a re  chosen and stored.  The r e s u l t i n g  



. , . . . . ,,, . suppressed sol 'u t  i on  i s  used t o  r e s t a r t  t h e '  in - tegra t  ion-.proc,zs's . 

and the  i n t e g r a t i o n  i s  c a r r i e d  o u t  u n t i l  'another  suppression 

p o i n t  i s  requ i red .  The a r t i f i t i a l  boundary cond i t i ons  a r e  once 

again s - a t i s f i z d  a t  t h i s  new suppression p o i n t  and a se t  o f  

c o e f f i c i e n t s  requ i  red f o r  recombinat ion a re  determined f o r  the 

present  suppression p o i n t .  These c o e f f i c i e n t s  a re  used t o  modify 

the s e t  o f  c o e f f i c i e n t s  a t  the prev ious suppression po in ts .  Th i s  

process i s  repeated u n t i  1 the te rmina l  p o i n t  a t  the f a r  end o f  the 

s h e l l  i s  reached where the te rmina l  boundary cond i t i ons  a r e  

s a t i s f i e d .  The s e t  o f  c o e f f i c i e n t s  f o r  recombinat ion determined 

t o  s a t i s f y  the te rmina l  boundary condi t i o n s  a r e  used t o  determine 

the f i n a l  s e t  o f  c o e f f i c i e n t s  a t  a l l  prev ious  suppression po in t s .  

The process i s  completed by per forming d i  r e c t  i n t e g r a t i o n  between 

a l l  the suppression po in t s ,  us ing  these i n i t i a l  cond i t i ons  

vectors,  w i t h  recombinat ion o f  p a r t i a l  s o l u t i o n  a f t e r  i n t e g r a t i o n  

t o  determine the f i n a l  s o l u t i o n .  

5.3 . - Basic Suppression Technlque. 

The d e t a i l e d  mathematical t reatment o f  the i n t e g r a t i c n  process 

f o r  the l i n e a r  e l a s t l c  ana lys i s  o f  s h e l l s  o f  r e v o l u t i o n  i s  ou t -  

l i n e d  i n  the  f o l l o w i n g .  The fundamental v a r i a b l e s  are  as def ined 

i n  Chapter I I .  

Le t  the p a r t i a l  s o l u t i o n  m a t r i x  P be de f ined as fo l l ows :  



Where the s u b s c r i p t  $ on the  fundamental term r e f e r s  t o  

mer ld lona l  d i r e c t i o n ,  comma denoted d e r i v a t i v e ,  s  represents arc 

lengths a long the mer id ian o f  the s h e l l ,  a  zero (0) i d e n t i f i e s  a  

p a r t i c u l a r  s o l u t i o n  and the numbers. l,2, ....j i d e n t i f y  j homo- . 

geneous condi t ions. 

The p a r t i a l  s o l u t i o n  m a t r i x  g iven by Eq, (v.1) i s  w r i t t e n  as: 

Where K = 0, 1 ,  2 ...... j 
Each o f  the vectors P i s  composed o f  (j+l) boundary 

K 

cond i t i ons  and (j+l) i n i t i a l  cond i t i ons  a t  the i n i t i a l  p o i n t .  

The (j+l) i n i  t i a l  cond i t i ons  are  given by vec tors  lo  and I as 

f o l l o ~ q s :  



Thus, a  p a r t i a l  s o l u t i o n  vec to r  i n  Eq.  (v.2) i s  g iven by: 

Once j boundary cond i t i ons  a r e  known a t  the i n i t i a l  p o i n t ,  

j i n i t i a l  condi t ions a r e  chosen accord.lng t o  Eqs. I(v.3) 

thus conve r t i ng  the  boundary prob'lkm t o  an i n i t i a l  va lue problem 

according t o  Eqs. (V.4). 



Furthermore, l e t  pn be the m a t r i x  of  p a r t i a l  s o l u t i o n s  
m 

a t  suppression p o i n t  m a f t e r  n suppressions have been made. The 

value m = 1 can be represented as the base o r  the  i n i t i a l  p o i n t .  

The shel  l equat ions a re  i n teg ra ted  nume.ricai:ly from .bass t o  p o i n t  

where the  extraneous s o l u t i o n s  become so l a r g e  t h a t  i t  i s  necessary 

t o  suppress them. I t was found convenient t o  represent  the  shel l 

equations i n  a non-dimensional ized form which prov ided a balanced 

s e t  of  equat ions t h a t  were used f o r  suppression. The f i r s t  p o i n t  

a t  which suppression was c a r r i e d  o u t  I s  denoted by m = 2 .  

The extraneous s o l u t i o n s  a r e  suppressed by requi.r ing t h a t  t he  p a r t  l a1  

s o l u t i o n s  s a t i s f y  se ts  o f  independent cond i t i ons .  The magnitudes 

o f  the  cond i t i ons  must be small compared t o  the  values o f  the 

unsuppressed p a r t ' i a l  s o l u t i o n s  a t  the suppression p o i n t .  A t  a 
. . 

suppression p o i n t  t he  a r t i f i t l a l  boundary cond i t i ons  a.ra represented 

by the  vec tors  ( A  w l t h  t h e  element A 0 1 j ) .  A 
- k kk 

convenient s e l e c t i o n  o f  a r t i f i t i a l  boundary values i s  as fo l l ows :  



%. 

As out1  ln'ed before  i t  should be noted t h a t  f o r  a system.of  

o rder  2 j ,  o n l y  j boundary cond i t i ons  a r e  s a t i s f i e d  a t  the  te rmina l  

o r  t he  suppression p o i n t .  I n  o t h e r  words ou t  of 2 j  q u a n t i t i e s  i n  

the  m a t r i x  o n l y  j q u a n t i t i e s  need be chosen i n  o rde r  t o  o b t a i n  

appropr ia te  suppression c o e f f i c i e n t s .  The choice o f  these j 

q u a n t i t i e s  i s  a r b i t r a t y  bu t  chosen i n  such a way t h a t  the  

suppression process i s  most e f f i c i e n t .  I t  has been found t h a t  a 

cho ice  o f  h igher  magnitude .j values produces an efficient 

suppress i on  process. 

Le t  us assume t h a t  the j q u a n t i t i e s  t o  be chosen o u t  o f  the 

m a t r i x  a re  denoted by a and a re  as fol ' lows f o r  a system o f  2j=6 

and j=3:  

Le t  the unsuppressed quant i t l e s  (q 1 ( 1. = 0, 1 , . . , . . , j ) 
1. 

where i q . 1  a r e  vec tors  o f  6,represent the fundamental va r iab les  a t  
J 

t he  suppression p o i n t ,  i . e. a t  a p o i n t  a t  which extraneous 

s o l u t i o n  can not  be to ie ra ted ,  so t h a t  the f o i l o w i n g  a r t i f i t i a l  

boundary cond i t i ons  a re  s a t i s f i e d .  Here again, as before,  a 0 

designates a p a r t i c u l a r  s o l u t i o n  and j=1,2,. . . correspond t o  

homogeneous s o l u t i o n S *  



Th is  w i l l  y i e l d  a set o f  suppression coe f f i c i en t s :  

(V. 8) 

Each so lu t i on  w i l l  y i e l d  a set  o f  values so t ha t  the 
l k  

suppressed so lu t i on  can be w r i t t e n  as: 

- 
SK i s  the suppressed p a r t i a l  ' so lu t ion vector  and S i s  the 

- K 
unsuppressed p a r t i a l  so l u t i on  vector .  I t  i s  necessary t o  po in t  out  

here tha t  a t  the rnth suppression po in t  H s u ~ ~ r e s s i o n  coe f f i c ien ts  
k 1 

obtained are used not  on ly  t o  suppress the so lu t i on  a t  the m 
t h 

suppression po in t  i n  question but  a lso  t o  resuppress a l l  the 

. . .  . , .  . . 



t h 
prev ious suppressioti p o i n t s  from the base t o  the m 

suppression p o i n t  ( m = 1 , 2 , .  . . . . t ) .  Th i s  marching process i s  

cont inued u n t i l  the te rmina l  p o i n t  i s  reached. A t  the te rmina l  

p o i n t  o n l y  the p a r t l c u l a r  s o l u t i o n  need be suppressed t o  the  r e a l  o r  

t e rm ina l  boundary'.condi t . ions C T 1 , so t h a t  the  unsuppressed values 
0 - - 

{ TK 1 can be combined as fo l l ows :  

(V. 10) 

- 
where { T 1 represents the  f i n a l  s o l u t i o n .  

K 

5.4 Statement o f  Chapter. - 
The suppression technique presented above i s  a p p l i c a b l e  on l y  

t o  1 i nea r  e l a s t i c  problems. I n  chapter  t h a t  f o l l o w  t h i s  technique 

has been extended t o  non - l i nea r  e l a s t i c  and non - l i nea r  e l a s t i c -  

p l a s t i c  problems i n  which c e r t a i n  s a l i e n t  fea tures  of  the 

suppression technique o f  t h i s  chapter  w i l l  be used. 



CHAPTER VI 

- 
NUMERICAL It4TEGRATION OF QUASI LINEAR1 Z E D  EQUATIONS 

6.0 I n t e n t  o f  Chapter.  - 
I n  t h i s  chap te r  i s  developed an a l g o r i t h m  f o r  t he  non- 

l i n e a r  a n a l y s i s  o f  s h e l l s  o f  r e v o l u t i o n ,  ' Eq. (IV.41) w i t h  non- 

d imens iona l l zed  terms i s  t o  be used i n  t h a t  developetxgnt. An 

ex te r i s ion  o f  t h i s  numer ica l  i n t q r a t i o n  a l g o r i t l i m  f o r  e l a s t i c -  

p l a s t i c  a n a l y s i s  is .  a l s o  presented.  

0.1 Suppression Sclicme -- f o r  - Non-1 i n e a r  E l a s t i c  A n a l y s i s .  

- . . 

6.1.1 A p p l i c a t i o n  - o f  Quasi l i n e a r i z a t i o n .  The' q u a s i l i n e a r i z a t i o n  method 

c o n s i s t s  o f  the  de te rm ina t i ons  o f  success ive i t e r a t i o n s  converg ing  

t o  the  t r u e  s o l u t i o n .  T h i s  method i s  advantageous i n  t h a t  t he  unknown 

v a l u e s  f o r  t he  c u r r e n t  i t e r a t e  occur  1  i n e a r l y  i n  the  equat ions .  The 

c o e f f i c i e n t s  o f  t h i s  c u r r e n t  i t e r a t e  may c o n t a i n  p rev ious  i t e r a t i o n s  

t o  the  unlcnown, thereby, the  s o l u t i o n  t o  the  n o n - l i n e a r  prob lem i s  

o b t a t n a b l e l  w i t h  very  l i t t l e  d i f f i c u l t y .  

The q u a  i l i n e a r i z e d  s e t  o f  n o n - l i n e a r  f i r s t  o r d e r  o r d i n a r y  

d i f f e r e n t i a l  equa t ions  d e r i v e d  i n  chap te r  111 have i n  genera l  t he  

f o l l o w i n g  c h a r a c t e r i s t i c s :  

( 1 )  They c o n t a i n  c s e ' f f l c i e n t s  i n  terms o f  t he  p rev ious  
i t e r a t i o n  as w e i l  as t he  c u r r e n t  i t e r a t i o n .  

. . . . . . .  . . . 

(2 )  Each equat ion  o f  t he  system i s  composed o f :  
(a)  terms c o n t a i n i n g  the  p r e  ious i t e r a t i o n  va lues  

(de f i ned  by the  m a t r i x  R . i n  Eq. (1v.41) 
mu1 t i p 1  i e d  by t he  d e r i v a t i v d  o f  t he  fundamental 
v a r i a  b l e s  o f  the c u r r e n t  i t e r a t i o n  ( d e f i n e d  



. . 

by t he  v e c t o r { f .  ) o f  E q .  (IV./+I); and: 
1,s 

( b )  terms c o n t a i n i n g  o n l y  t h e  i t e r a t e s  o f  t he  
p r e v i o u s ~ s o l u t i o n  and t h e  l o a d i n g  tsrms 
de f i ned  by v e c t o r { l i )  o f  Eq. (1v.41). 

( 3 )  T h i s  sys tem o f  equa t ions  i s  fo rmu la ted  t o  s u i t  
the  e l a s t i c - p l a s t i c  a l g o r i t h m .  

. . . . 

(4 )   he. v e c t o r  (G .) o f  E q .  , (1~.,43) con t a  i ns the c u r r e n t  
o r  : (n+l)  th,.. i td,ratds b f c  t h e  fundamental as we1 1  
as the  aux i  1  i a r y  v a r i a b l e s .  

(5) These system of. equat ions  c o n t a i n  aux i  1  i a r y  
. v a r i a b l e s  o f  t h e  p rev ious  and c u r r e n t  i t e r a t i o n s .  

6.1.2 A p p l i c a t i o n  - o f  Suppression Scheme. The p a r t i a l  s o l u t i o n s  

f o r  the, n o n - l i n e a r  a n a l y s i s  ' a r e  represen ted  a t  t he  ( n + l ) t h  i t e r a t i o n ,  

namely: 

W 
0 

+,s 

6 , s  

s  

Q?, s  

"0, s  

LN8.s 

Where s u p e r s c r i p t  p=o, l ,2 ...... r i d e n t i f i e s  a  p a r t i c u l a r  s o l u t i o n  

and r homogeneous s o l u t i o n s .  



Eq. (1v.42) i s  r e w r i t t e n  i n  t he  f o l l o w i n g  f o rm  w i t h  t h e  

s u p e r s c r i p t  p r e p r e s e n t i n g  each o f  t he  (r+1) p a r t i a l  s o l u t i o n s :  

(n I 
! f  shou ld  b3 :no ted  t h a t  t h e  ( n ) t h  i t e r a t e s   in[^^ .I 

9J 

remain same f o r  r homogeneous and one p a r t i c u l a r  s o l u t i o n .  The 
(n) 

- v e c t o r  {li) wi 11 d i  sappear f o r  t he  r homogeneous s o l u t i o n g .  

The v a r i o u s  p a r t i a l  s o l u t i o n  v e c t o r s  { F ?  ) ("+' I  a r e  sub- 
I ,s 

v e c t o r  o f  ( D )  ("'I. I n  t h e  suppress ion process t h e  d e f i n i t i o n s  

o f  i n i t i a l  c o n d i t i o n s  vec to r s ,  a r t i f i c i a l  boundary c o n d i t i o n  v e c t o r s  

e t c .  w i l l  be the  same as d e f i n e d  f o r  l i n e a r  a n a l y s i s  i n  t h e  p r e v i o u s  

c h a p t e r .  L i kew ise ,  the process o f  recombina.t i on  desc r i bed  i n  the  

p r e v i o u s  chap te r  i s  the  same. 

( n + l I  
As ou t1  ined  i n  Eqs. (Iv. 41) t o  (1v.43) t he  v e c t o r s  ( G ; )  

a  n d ( ~ ~ )  and the  m a t r i . x [ ~ ~ ,  j](n) a r e  composed o f  the  fundamenta 1 as 



9 1 

we1 1  as t h e  aux i  1  i a r y  v a r i a b l e s  de te rmined  f o r  the1 r r e s p e c t i v e  

i t e r a t i o n s .  " To determine .the aux i  l i a r y  v a r i a b l e s  o f  t h e  (n+ l )  t h  

i t e r a t i o n  i n  t h e  v e c t o r  G: , i t i s  necessary t o  use t h e  c o n s t i t u t i v e  

r e l a t i o n s  cor respond ing  t o  e l a s t i c  o r  e l a s t i c - p l a s t i c  m a t e r i a l  

behav io r  as o u t 1  ined  i n  chap te r  V. For- ins tance ,  i n  chap te r  V 

i t  has been shown t h a t  the  fundamental and t he  a u x i l i a r y  v a r i a b l e s  a r e  

i n t e r - r e l a t e d  through p a r t i a l  s t i f f n e s s  c o e f f i c i e n t s  which mclst be 

determined a t  every  n a r i d i o n a l  p o i n t  d u r i n g  i h s  i n t e g r a t i o n  process.  

A d i s c u s s i o n  on t h s  n o n - l i n e a r  e l a s t i c - p l a s t i c  a l g o r i t h m  i s  t he  

s u b j e c t  o f  Appendix 0. I t  shou ld  be noted t h a t  i t e r a t i o n s  on b o t h  

georcet r ic  and m a t e r i a l  non-1 i n e a r i  t i e s  occu r  s imu l t aneous l y  i n  the  

s o l u t i o n  a l g o r i t h m .  

F o r . t h e  f i r s t  i t e r a t i o n  t o  t h e  n o n - l i n e a r  e l a s t i c  s o l u t i o n ,  t he  

l i n e a r  e l a s t i c  suppressed p a r t i a l  s o l u t i o n s  a r e  used as t h e  assumed 

va lues  requ i red .  L ikewise ,  the  non-1 i n e a r  e l a s t i c  s e t  o f  suppressed 

p a r t i a l  s o l u t i o n s  a r e  used as i n i t i a l  assumptions f o r  t h e  f i r s t  

i t e r a t i o n  o f  t h e  e l a s t i c - p l a s t i c  s o l u t i o n  scheme. I n  v iew o f  the  

quas i  1  i n e a r i z e d  form o f  the  she1 1  equa t ions  and t h e  inc rementa l  

n a t u r e  o f  the  e l a s t i c - p l a s t i c  anal .ys is  t h e  l i n e a r  supe r -pos i t i on  

o f  t h e  homogeneous and the p a r t i c u l a r  terms as desc r i bed  i n  s e c t i o n  

6.2 becomes p o s s i b l e .  

6.1.3 Comp lex i t i es  - o f  Non - l i nea r  E l a s t i c - P l a s t i c  Ana l ys i s :  

As has been s t a t e d  i n  t h e  p rev ious  s e c t i o n , t h e  q u a z i l i n e a r i z e d  

f o rm  o f  Sander 's  s h e l l  govern ing  equat ions  t h a t  were d e r i v e d  i n  

Chapter I1 can be used i n  an e l a s t i c - p l a s t i c  a n a l y s i s  s i n c e  the  use 



. o f  e - l a s t i c  cons:ti t u t i v e  r e l a t i o n s  was avo ided  i n  t h e i r  d e r i v a t i o n .  

. I n  t h i s  s e c t i o n  i s  d iscussed the  s p e c i f i c  manner i n  which the  e l a s t i c -  

p l a s t i c  c o n s t i t u t i v e  r e l a t i o n s  a r e  used a long  w i t h  t h e  q u a s i l i n e a r i z e d  

d t f f e r e n t i a l  equa t ions  and t h e  suppress ion technique,  

The  a u x i l i a r y  v a r i a b l e s  ce ,  K O ,  E ~ ,  K+, Ne ,  M e ,  a r e e v a l u a t e d  a t  

e v e r y  m e r i d i o n a l  I n t e g r a t i o n  p o i n t  as 'be fo re .  I n  a d d i t i o n  t h e  

p a r t i a l  s t i f f n e s s  c o e f f i c i e n t s  E i j  a r e  eva lua ted  a t  each m e r i d i o n a l  

l n t e g r a t i o n  l o c a t i o n  a t  seve ra l  p o i n t s  through t he  t h i ckness .  W i th  

t h e  Von-Mises Y i e l d  c r i t e r i a  used, e leven  p o i n t s  through t he  t h i ckness  

we re  necessary t o  ach ieve  the  d e s i r e d  accuracy i n  t he  s o l u t i o n .  W i th  

i j  va lues  known a t  each p o i n t  through t he  t h i ckness ,  t h e i r  weighted 

e f f e c t s  C i  j, D m .  and C. a; d e f i n e d  i n  Chapter  V, were eva lua ted  
I J  i js 

a t  t he  m e r i d i o n a l  i n t e g r a t i o n  p o i n t  u s i n g  t he  t r a p e z o i d a l  i n t e g r a t i o n  

r u l e .  I t  i s  e s s e n t i a l  t o  s t o r e  C i j ,  D i j  and K.. terms i n  addi  t i o n  t o  
I J 

t h e  a u x i l i a r y  v a r i a b l e s ,  d e f i n e d  e a r l i e r .  T h i s  i s  necessary i n  o r d e r  

t o  c a l c u l a t e  a l l  p a r t i a l  s o l u t i o n s  a t  t h e  m e r i d i o n a l  p o i n t .  T h i s  

l n t e g r a t i o n  process i s  subsequent ly  con t i nued  a long  the  s h e l l  me r i d i an  

f o l l o w i n g  t he  suppress ion techn ique  desc r i bed  i n  p rev ious  sec t i ons .  

6.2 Non - l i nea r  Mul t isegment  Numerical  I n t e g r a t i o n  Technique. 

The mul t isegment  method o f  a n a l y s i s  f o r  l a r g e  d e f l e c t i o n  e l a s t i c  

p roblems has been developed by Ka ln i ns  ( 67), f o r  l a r g e  d e f l e c t i o n  

e  l a s t i c - p l a s t i c  problems by G i  rdeen ( 9 ) .  T h i s  technique i s  o u t 1  i ned  

i n  the f o l l o w i n g  i n  o r d e r  t o  e s t a b l i s h  a  d i r e c t  a n a l y t i c a l  comparison 

w i t h  t he  suppress ion technique.  



The system o f  f i r s . t . . o rde r  o r d i n a r y  d i f f e r e n ' t i a l  equa t ions  a r e  

represen ted  by: 

where y ( x )  a r e  t he  fundamental v a r i a b l e s  and h ( x )  denotes the  non- 

homogeneous terms i n  t he  i n t e r v a l  ( acx<b ) w i t h  t he  boundar ies 

a and b. I t  i s  assumed t h a t  t he  va lues o f  n/2 elements o f  each v e c t o r  

y (a )  and y ( b )  a r e  known boundary c o n d i t i o n s . '  T h e . i n t e r v a 1  i s  d iv i ,ded  

i n t o e q u a l  segments M i n  o r d e r  t h a t  t h e  extran'eous growth o f  t he  

s o l u t i o n s  can be c o n t r o l l e d  a t  t h e  end o f  t h e s e  segments by s a t i s f y i n g  

t h e  telminal boundary c o n d i t i o n s .  

A t  the i n i t i a l  edge t h e  boundary va lue  problem is  converted 

i n t o  a n  i n i t i a l  va lue  problem. The d i r e c t  i n t e g r a t i o n  is performed 

w i t h i n  each segment f o r  a l l  segments w i t h i n  the  i n t e r v a l  up to  b 

where the boundary c o n d i t i o n  must be s a t i s f i e d .  I f  TI and T,,,+l a r e  

t h e  t r a n s f o r m a t i o n  m a t r i c s ,  then: 

(VI . 4 )  



Y (x )  = 

. . . . -- . . . 
ay2(x i )  , , a y j  ( x i )  ayn ( x i  1 

The j th column o f  Yi (x)  can be regarded as a  s e t  o f  new 

v a r i h l e s .  A s e t  o f  s imul  tanebus f i r s t - o r d e r  d l  f f e r e n t i a l  equa t ions  

i s  i n t e g r a t e d  f rom x i  t o  xi+, f o rm ing  t he  m a t r i x  Y ;  (xi+,). The 

r e q u l r e d  f i r s t - o r d e r  d i f f e r e n t i a l  equa t ions  a r e  then o b t a i n e d  by 

d i f f e r e n t i a t i n g  Eq. (VI.3): 

(VI .6) 

The s o l u t i o n  t o  t he  n o n - l i n e a r  prob lem i s  t he  l i m i t  t o  

which t h e  i t e r a t i v e  s o l u t i o n  t o  Eq .  (VI.6) converges. The s o l u t i o n  

o f  t h e  l i n e a r i z e d  prob lem i s  chosen as t h e  i n i t i a l  t r i a l  s o l u t j o n .  
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(VI. 7)  

(VI - 3 )  

Where ya (x )  a r e  t h e  va lues  o f  t h e  i t e r a t e d  s o l u t i o n  s t a t e ,  

yc ( x )  a r e  t he  va lues  o f  the  i n t e g r a t e d  s o l u t i o n  s t a t e  from x.  t o  
I 

x a n d y t ( x , )  a r e  the  i n i t i a l  v a l u e s o f t h e s o l u t i o n .  . i+l 

These e v a l u a t i o n s  a r e  c a r r i e d  a t  the  end o f  every  segment 

S i ,  i = 1,2, .... M thus r e p r e s e n t i n g  M m a t r i x  equat ions which c o n t a i n  

M+1 unknown vec to r s :  ya  (x i ) , i=1,2,  .... M+1. 

S ince  t h e r e  a r e  n boundary c o n d i t i o n  e x a c t l y  s p e c i f i e d ,  t h e  

number o f  unknowns become the  same as t he  number o f  equa t ions .  

Consequent ly t h e  combined system o f  equa t ions  f o r  a l l  i i s  so lved  

u n i q u e l y  f o r  ya(x i )  u s i n g  the  Gaussian e l  i m i n a t i o n  technique.  The 

cho i ce  of the  c o n t r o l  o f  the  ext raneous growth o f  t he  s o l u t i o n  i s  i n  

t h e  predetermined s e l e c t i o n  o f  t he  s i z e d  o f  equal segments. 

6.3 Suppress ion - - .  Scheme vs  Mul t isegment  Method'. 

The suppress ion techn ique  developed i n  Sec t i on  6.1 f o r  l a r g e  

d e f l e c t i o n  e l a s t i c  and l a r g e  d e f l e c t i o n  e l a s t i c - p l a s t i c  problems 

w i l l  be an improvement ove r  t he  mul t isegment  method desc r i bed  i n  

S e c t i o n  6;2 f o r  the  f o l  l ow jng  reasons: 

( 1 )  I n  the  mul t isegment  method o f  a n a l y s i s  the  s e l e c t i o n  

o f  t h e  s i z e  o f  each segment i s  the  o n l y  way t o  c o n t r o l  t he  ext raneous 



growth o f . t h e  s o l u t i o n .  . .  . 

I n  the  suppress ion  techn ique  the  growth o f  t he  ext raneous 

s o h t l o n s  i s  c o n t r o l l e d  based on a c r i t e r i a  imposed on t he  growth o f  

one o r  a l l  v a r i a b l e s .  The cho i ce  o f  t he  suppress ion p o i n t  i s  thus 

a r b i t r a r y  and t he  suppress ion p o i n t s  can be unevenly  spaced. 

(2 )  I n  t h e  mu1 t isegment  method ' o f  a n a l y s i s  i t  i s  necessary t o  

handle (nxn) m a t r l c e s  f o r  i n v e r s i o n s  as w e l l  as  f o r  s o l v i n g  s imul taneous 

e q u a t i o n s .  I n  t he  suppr2ss ion techn ique  t he  o r d t r  o f  m a t r i c e s  f o r  : . .  
*-.. 

i nvers ions  i s  reduced by one ha1 f .  . 

( 3 )  I n  t h e  mul t isegment  method o f  a n a l y s i s  t he  unknown 

fundamenta l  v a r i a b l e s  a r e  determined th rough a s o l u t i o n  o f  a  s e t  o f  

Mxn/2 equa t ions  by a techn ique  such as t he  Gaussian e l  im.9nation 

t echn i que. 

I n  t he  suppress ion  techn ique  t he  s o l u t i o n  o f  t he  prob lem develops 

i n  a  marching process .so t h a t  o n l y  n/2 equa t ions  a t  t he  t e r m i n a l  p o i n t  , . 

would be cons idered.  . I n  f a c t  t h a t  process occu rs  a u t o m a t i c a l l y  when the  

i n v e r s i o n  process i n  i t e m  2 occurs  a t  t h e  t e r m i n a l  p o i n t .  Ins tead ,  ( ~ ! ) '  

I n n e r  p roduc ts  are*. taken o f  two m a t r i c e s  a t  each suppress ion  p o i n t .  

(4 )  I n  the  mul t isegment  method o f  a n a l y s i s  f o r  l a r g e  

d e f l e c t i o n , p r o b l e m s  the  de te rm ina t i ons  o f  t he  Jacobian m a t r i c e s  

a t  the  end o f  each segment r e q u i r e s  a complex s o l u t i o n  scheme and 

r e q u i r e s  inc reased  s to rage  s i n c e  a t  t h e  end o f  t h e  i n t e r v a l  a  Gaussian 

e l i m i n a t i o n  scheme i s  necessary t o  o b t a i n  t he  s o l u t i o n  t o  the  problem. 

I n  t he  suppress ion technique p resen ted  i n  Sec t i on  6 .1  the 

q u a j i  1 i n e a r i  z a t i o n  o f  the  s h d l l  equa t i on  and t he  suppress ion techn iq.ue 



a r e  complementary. Once a  system o f  .equat ions have been .quaz i  1  inear . ized - '  ' . " "  - 
s 

i t  i s  a  s imp le  m a t t e r  t o  app l y  the  suppress ion technique.  Thus a c l e a r  

6.4 Statement o f  Chapter.  - 
A numer ica l  methad o f  a n a l y s i s  f o r  tshe l a r g e  d . e f l e c t i o n  e l a s t i c -  

p l a s t i c  a n a l y s i s  o f  symmet r i ca l l y  loaded s h e l l s  o f  r e v o l u t i o n  has now 

been descr ibed .  I n  the  chap te r  t h a t  f o l l o w s  a s e t  o f  example problems 

.have been so lved  f o r  the  purposp, o f  v e r i f i c a t i o n  o f  t h e  method of  

a n a l y s i s .  



CHAPTER VII 

RESULTS 

I n  t h i s  chap te r  a  b r i e f  d e s c r i p t i o n  o f  boundary c o n d i t i o n  i s  

inc luded .  Then a  s e t  o f  f ou r  numer ica l  examples a r e  p resen ted  which 

p r o v i d e  comparison w i t h  p u b l i s h e d  r e s u l t s .  The spectrum o f  these- 

examples chosen cover  membrane and bending behav io r  o f  v a r i o u s  types 

o f  she l  1  c o n f i g u r a t i o n s .  For  ins tance ,  a t o r u s  example 'prov ides 

e x c e l l e n t  v a l i d a t i o n  o f  sma l l  d e f , l e c t i o n  and l a r g e  d e f l e c t i o n  a n a l y s i s .  

The examples o f  s p h e r i c a l  and c y l i n d r i c a l  s h e l l  e x h i b i t  membrane 

behav iour  w i t h  l a r g e  d e f l e c t i o n  e l a s t i c - p l a s t i c  behav iour  and va r i ous  

s t r a i n  harden ing  p r o p e r t i e s .  An annu la r  p l a t e  hav ing  bending 

behav io r  was analyzed w i t h  sma l l  d e f l e c t i o n  e l a s t i c ,  l a r g e  d e f l e c t i o n  

e l a s t l c  and l a r g e  d s f l e c t i o n  e l a s t i c - p l a s t i c  c o n s i d e r a t i o n  u s i n g  a  

p e r f e c t l y  p l a s t i c  m a t e r i a l  hahav io r  p r o v i d i n g  good agreement w i t h  

exper imenta l  and p rev ious  t h e o r e t i c a l  research.  These comparisons, 

t h e r e f o r e ,  v a l i d a t e  the  numer ica l  methods developed i n  t h s  f o r g o i n g  

chap te rs .  

7 . 1  Boundary Cond i t ions .  

Treatment o f  she l  1 equa t ions  requ'i res  c a r e f u l  c o n s i d e r a t i o n s  

o f  boundary c o n d i t i o n s  a t  t h e  base ( i n i t i a l  edge) and a t  the  apex 

( f i n a l  edge). A t o t a l  o f  s i x  boundary cond i . t i ons  must be, known i n  

o r d e r  t o  s o l v e  t he  boundary v a l u e  problem i n  symmet r i ca l l y  loaded 

ax isymmet r i c  s h e l l s  o f  r e v o l u t i o n .  As d e f i n e d  I n  chap te r  I1 t he  

s i x  fundamental v a r i a b l e s  t o  be used t o  s a t i s f y  these boundary 
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F igure  7.1. S h e l l  Boundary Cond i t i on  Nomenclature 
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c o n d i t i o n s  a r e  w,y  ,M ,Q ,U and N F i g s  7 .1 and 7 . 2  show t h e  
$ 4 0 9  9 ' 

s i g n  convent ions  a t  t h e  i n i t i a l  edge and a t  t h e  f i n a l  edgz. Note 

t h e  change i n  t he  d i r e c t i o n  o f  t he  normal f rom F i g .  7 . 1  t o  F i g .  7 .2  

depending upon t h e  cho i ce  o f  t h e  i n i t i a l  edge o f  t he  s h e l l .  Cons i s ten t  

w i t h  t h e  s h e l l  behav io r  t h r e e  of  t h e  s i x  fundamental v a r i a b l e s  a r e  

chosen a t  each' o f  t he  i n i t i a l  and t he  f i n a l  edge o f  t he  she l  1 .  The 

suppression'scherr;e used i n  chap te r  V and TjI r e q u i r e s s z l e c t i o n  o f  t he  

rema in ing  t h r e e  v a r i a b l 5 s  a t  t h e  i n i t i a l  edge f o r  p r e s c r i b ! n g  a r b i t r a r y  

va lues  i n  o r d e r  t o  c o n v e r t  t he  boundary va lue  problem ? n t o  i n i t i a l  

va lues  problem. 

7..2 Torus Under E x t e r n a l  Pressure.  -- 
For v e r i f i c a t i o n  o f  l a r g e  d e f l e c t i o n  theory ,  a  t o r u s  under e x t e r n a l  

p ressure  appeared t o  be a  ve ry  good example. The problem was 

i n v e s t i g a t e d  e a r l i e r  by K a l n i n s  and L e s t i n g l  (67) who used m u l t i -  

segment method o f  i n t e g r a t i o n  on Re isner -Me isner ' s  S h e l l  equat ions.  

The r e s u l t s  p resen ted  here  used t he  suppress ion technique,  t h a t  was 

deve loped  i n  chap te r  V I ,  f o r  the numar ica l  i n t e g r a t i o n  o f  Sander 's 

non- l  i n e a r  she l  1 equat ions  ( 7 ) .  I t  should be ment ioned here  t h a t  

sande r ' s  (7)  assumptions i n  h i s  development o f  t he  n o n - l i n e a r  s h e l l  

t heo ry  a r e  i d e n t i c a l  t o  R t i sne r -Me i sne r ' s  n o n - l i n e a r  s h e l l  t heo ry  

used by Kal n  i ns (67) . 

The geome t r i ca l  and m a t e r i a l  cons tan t s  o f  the  t o r u s  prob lem 

accord ing  t o  t he  nomenclature o f  F i g .  7 .3  were taken as f o l l o w s :  



. . .. . .: . , F i g u r e  '7 , 3.. , Torus Under ~x . te l ;n .a i .  . ~ ' . r e s s u r e  



E = 3 0 x 1 0 ~  p s i  

4 = 90' ( i n i t i a l  edge) 

4 = 270' ( f i n a l  edge) 

Boundary Cond i t ions:  
( a t  i n n e r  and f i n a l  edge) 

I n i t i a l  Ccnd i t i ons :  

( a t  i n n e r  edge) 

w$, = 1.0 



F,ib"re 7.4. E l a s t i c  D e f l e c t i o n  Behav io r  o f  a T o r u s  
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Figure 7.7. Circumferential B2nding Moment Distribution in T o r u s  
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Resu l t s  were f i r s t  ob ta i ned  f o r  l i n e a r - e l a s t i c  behav io r .  ' For 

the  n o n - l i n e a r  e l a s t i c  a n a l y s i s  t he  r e s u l t s  o f  the  l i n e a r  e l a s t i c  

a n a l y s i s  were used as i n i t i a l  i t e r a t e s .  The convergence o f  t he  non- 

l i n e a r  e l a s t i c  s o l u t i o n  was o b t a i n e d  w i t h  d e s i r e d  accuracy w i t h i n  about 

t h r e e  i t e r a t i o n s .  For  t h i s  a n a l y s i s  no inc rementa l  approach was 

necessary  s i n c e  t h e  q u a z l l i n e a r i z a t l o n  of  s h e l l  equa t ions  made 

p o s s i b l e  t he  i n t e g r a t i o n  o f  n o n - l i n e a r  s h e l l  equa t ions  f o r  one s t e p  

--,. 
t o t a l  a p p l i e d  load.  The non-d i rnens iona l i za t ion  o f  t he  s h e l l  t heo ry  

f u r t h e r  improved the  s t a b i l i t y  o f  the  s o l u t i o n .  The suppress ion 

t echn ique  o f  Chapter VI was found t o  be a  good a n a l y t i c a l  t o o l  i n  

i n t e g r a t i n g  n o n - l i n e a r  s h e l l  equa t ions .  

The r e s u l t s  o f  t he  t o r u s  prob lem a r e  p l o t t e d  i n  F ig .  7.4 t o  7;7 

and show e x c e l l e n t  agreement w i t h  K a l n i n ' s  r e s u l t s  i n  (67) .  The 

d o t t e d  curves i n d i c a t e  l i n e a r  e l a s t i c  s o l u t i o n  and s o l i d  curves 

i n d i c a t e  n o n - l i n e a r  e l a s t i c  s o l u t i o n  i n  these f i g u r e s .  F i g .  7.4 

i s  a  p l o t  between d e f l e c t i o n  and m e r i d i o n a l  ang le  +. The d o t t e d  l i n e  

i n d i c a t e s  l i n e a r  e l a s t i c  s o l u t i o n  and s o l i d  l i n e  i n d i c a t e s  non- 

l i n e a r  e l a s t i c  s o l u t i o n .  The s o l u t i o n s  d i f f e r e d  f rom those t a b u l a t e d  

I n .  (67) by a.rnaxfmum-of.--two pe rcen t  difference. F ig ,  7.5 is: \  

a  p l o t  between m e r i d i o n a l  moment r e s u l t a n t  and t he  m e r i d i o n a l  ang le  4 

-.-I.- 
____ and shows good agrsement w i t h  Ka ln i ns  r e s u l t s  i n .  (67 ) .  F l g .  7.6 

i s  a  p l o t  between c i r c u m f e r e n t i a l  membrane f o r c e  r e s u l t a n t  and the  

rner id iona l  ang le  $ showing s i m i l a r  agreements. F i g .  7.7 i s  a  p l o t  o f  

c i r cu rn fe ran t i a l  bending moment r e s u l t  and m e r i d i o n a l  angle;$. I t  



F i g u r e  7.5. Sphe r i ca l  Membrane Under 
Ex te rna  1 P ressure  

F i g u r e  7.9. C y l i n d r i c a l  Membrane 'Under E x t e r n a l  P ressure  



is noteworthy that high variations in fundamental variables occur 

approximately between meridional angle s of 150' to 225'. 

7.3 Spherical Membrane Under External Pressure. 

For the elastic-plastic analysis understanding and verification 

of results it was considered useful to analyze a spherical membrane 

under external pressure. The gsometric and material parameters used 

according to the nomenclature of F i g .  7.8 are as follo\vs: 

= 0'. (initial edge) 

@ = 9Q0 (final tdge) 

R = 29.0 inches 

h = 0.5 inches 

6 E = 30x10 psi 

v. = 0 . 3  

a = 28300.psi (yield stress) Y 

a = 41000O.psi (elastically calculated stress) 



. . . . .  - -  . . . 

. .- 
F i .gure 7.10. D e f l e c t i o n  ~ e l a c i o n . s h : i ~  o f  S p h e r i c a l  Membrane . 

t inder Ex tz rna  1  Prassure  . . 



Boundary Condi t ions 
"(at inner and final edge) 

Initial Conditions 
(at inner edge) 

, . 

Strain-hardening properties of the material were. included in the 

elastic-plastic analysis. The results of the large-deflection elastic- 

plastic analysis are rsported in Fig. 7.10 which is a relationship 

between load and deflection. The results of this analysis were carried 

far beyond the deflection values reported in Fig. 7.10 and exhibited 

stability of the solution for very large deflections. Fig.' 7.13 

shows the relationship between load and deflection for two different 

percentaged (1% and 10%) of strain-hardening. It is indicated that 

the spherical membrane showed considerable resistance to applied load 

with increased strain-hardening. 

7.4 Cyl indrical Membrane Under External Pressure. 

Another example of elastic-plastic analysis chosen was that of a 

cyl indrical membrane subjected to external pressure. The geometric 

parameters used according to the nomenclature of Fig. 7.9 are as- follows: 
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Figure 7 . 2 .  Load .Deflect ion o f  Cyl  i n d r i c a l  Membrane Under 
Externa 1 Pressure 



R = 20.0 inches 

h = 0.5 inches 

L = 10.0 inches 

E = 30x106 psi 

v = 0.3 

u = 28300. psi (yield stress) 
Y 

a = 4 0 0 0 ~ .  psi (elastically calculated stress) 

Eoundary Conditions Initial Conditions 
(at initial and final edge) (at inner edge) 
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S ince  t h e  e l a s t i c a l l y  c a l c u l a t e d  s t r e s s  o f  c y l i n d r i c a l  membrane 

example was t h e  same as i n  t he  s p h e r i c a l  membrane example, i t  p rov ided  

an i n t e r e s t i n g  s tudy  o f  t he  e l a s t i c - p l a s t i c  a n a l y s i s  r e s u l t s .  As- 

f o r  t he  s p h e r i c a l  membrane example the  r e s u l t s  f o r  c y l  i n d r i c a l  membrane 

example were computed f o r  d i f f e r e n t  s t r a i n - h a r d e n i n g  percentages 

(1% and 10%).  Resu l t s  o f  the  e l a s t i c - p l a s t i c  a n a l y s i s  o f  c y l i n d r i c a l  

membranc a r e  r e p o r t e d  i n  F ig .  7.11, wh ich  i s  a  r z l a t i o n s h i p  between 

load and d e f l e c t i o n .  

7.4 Annular  P l a t e  Sub jec ted  -- t o  I n n e r  Edge D e f l e c t i o n .  

Nomenclature o f  t h i s  problem i s  as i n d i c a t e d  i n  F ig .  7.12. 

I t  i s  shown t h a t  t h e  annu la r  p l a t e  i s  s imp ly  suppor ted  a t  t he  o u t e r  edge 

and i s  f r e e  a t  t he  i n n e r  edge. Edge d e f l e c t i o n s  were app l  i e d  a t  t h e  

i n n e r  edge. S ince t h i s  prob lem e x h i b i t s  cons ide rab le  bending and 

n o n - l i n e a r  e f f e c t s  i t  was cons idered  i d e a l  t o  v e r i f y  l a r g e  d e f l e c t i o n  

e l a s t i c - p l a s t i c  a n a l y s i s  r e s u l t s .  

' T h i s  problem o f  annu la r  p l a t e  was e a r l i e r  analyzed exper iment .a l l y  

and t h e o r e t i c a l l y  by Ohashi, Murakami and Endo (79) who used l a r g e  

d e f l e c t i o n  t heo ry  i n  t h e i r  t h e o r e t i c a l  a n a l y s i s .  They used a  p e r f e c t l y  

p l a s t i c  m a t e r i a l  i n  t h e i r  t h e o r e t i c a l  and exper imenta l  a n a l y s i s .  . 

I n  t he  t h e o r e t i c a l  a n a l y s i s  o f  (79) Von-Mises y i e l d  c r i t e r i o n  was 

used w i t h  Prandt-Re.ussls f l o w  r u l e .  The geomet r i ca l  and m a t e r i a l  

parameters used were as f o l l o w s :  



. . . .- .. . .. - - . 

Figure 7.12. 

- -  - . - - , .- - . . - . . 

Annular Plate Nomenclature 



E = 20890 #g/mm2 

H '  = 0.0 ( p e r f e c t l y  p l a s t i c )  

Hu tu la  (65) a l s o  analyzed t h i s  prob lem u s i n g  a  l a r g e  d e f l e c t i o n  

t heo ry  and under the  c o n d i t i o n s  s i m i l a r  t o  (79 ) .  T h e i r  r e s u l t s  

showed good agreement w i t h  exper imenta l  and t h e o r e t i c a l  r e s u l t s  o f  (79) .  . 

I n  the  exper imenta l  a n a l y s i s  o f  annu la r  p l a t e  i n  (79) a  m i l d  s t e e l  

specimen was used which behaved more c l o s e l y  l i k e  a  p e r f e c t l y  p l a s t i c  

materi-a1 . 
The l a r g e  d e f l e c t i o n  e l a s t i c - p l a s t i c  a n a l y s i s  o f  t h i s  annu la r  

p l a t e  was a l s o  analyzed i n  t h i s  work t o  v e r i f y  t h e  techniques developed 

I n  e a r l i e r  chap te rs .  S inca  l o c a l  un load ing  was a l l owed  i n  th !s  a n a l y s i s  

i t  was p o s s i b l e  t o  go beyond t he  range t o  which t h e  a n a l y s i s  I.das c a r r i e d  

o u t  i n  (791.. Th i s  a n a l y s i s  was c a r r i e d  o u t  t o  the same range of  

l o a d i n g  t o  which Hu tu la  (65) ca , r r i ed  h i s  ' r e s u l t s .  Fo l l ow ing  boundary 
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boundary c o n d i t i o n s  and i n i t i a l  c o n d i t i o n s  were used i n  thlc a n a l y s i s .  

Boundary Cond i t l ons I n i t i a l  Cond i t i ons  

A t  i n i t i a l  edge 

w4 = w~~ ( s p e c i f i e d )  

A t  f i n a l  edge . 

WQ = 0.0 

The r e s u l t s  o f  t h i s  a n a l y s i s  a r e  r e p o r t e d  i n  F i g .  7.13. 

F i r s t  a l i n e a r  e l a s t i c  a n a l y s i s  was c a r r i e d  o u t  which. showed good 

agreement w i t h  the  r e s u l t s  o f  Hu tu la  (55) as shown i n  F ig .  7.13.  

The r e s u l t s  o f  n o n - l i n e a r  e l a s t i c  a n a l y s i s  a l s o  compared very  w e l l  

w i t h  those o f  Hu tu la  ( 6 5 ) .  As shown i n  F i g .  7. l j  t he  n o n - l i n e a r i t y  i s  

q u i t e  e v i d e n t  as i n d i c a t e d  by l i n e a r  e l a s t i c  and n o n - l i n e a r  e l a s t i c  

r e s u l t s .  



i 

Fig. 7.14 Elastic-Plastic Histogram of Annular P l a c e  



The t h e o r e t i c a l .  r e s u l t s  o f  t h i s  a n a l y s i s  and those o f  Ohashi (79) 

and H u t u l a  (65) compare ve ry  we1 1 w i t h  t h e  exper imenta l  r e s u l t s  o f  (79) 

i n  t h e  l a r g e  d e f l e c t  i o n  range. However, some apparent  disagreement 

w i t h  e 'xper l rnental  r e s u l t s ,  o f  t h e  o r d e r  o f  about 8%, can be seen i n  . 

t he  sma l l  d e f l e c t i o n  range. T h i s  d i f f e r e n c e  can be expected s i n c e  

t h e  m a t e r i a l  p r o p e r t i e s  and t h e  p l a s t i c i t y  c o n s t i t u t i v e  r e l a t i o n s  a r s  

based on u n i a x i a l  exper imenta l  da ta  and thus may n o t  match f u l l y  

w i t h  b i a x i a l  l oad  d e f l e c t i o n  r e s u l t s .  A h i s t og ram o f  t he  spread o f  

t h e  p l a s t i c  zone i n  t h e  deformed annu la r  p l a t e  i s  g i v e n  i n  Fig.. 7.14. 



CHAPTER VIII , 

CONCLUS IONS AND RECOMMENDATl OlJS 

Improvements i n  methods o f  l a r g e  d e f l e c t i o n  e l a s t i c - p l a s t i c  

. a n a l y s i s  o f  s h e l l s  and o t h e r . s t r u c t u r e ~  c o n t i n u e  t o  be o f  i n t e r e s t .  

W i th  t h e  developments i n  t he  p rev ious  chap te rs  an improved numer ica l  
, 

supp ress ion  scheme i s  n o w . a v a i l a b l e  f o r  t he  l a r g e  d e f l e c t l o n  e l a s t i c -  

p l a s t i c  a n a l y s i s  o f  ax isymm=t r i c  s h e l l s  o f  r e v o l u t i o n  sub jec ted  t o  

symmetr ic  load ings .  Resu l t s  prasented i n  t he  p rev ious  chap te r  

i n d i c a t e  the  accuracy o f  t h i s  numer ica l  scheme. I t  appears t o  be 

p o s s i b i e  t o  ex tend  t h i s  method f o r  more. comp l i ca ted  s i t u a t i o n s .  

8.1 -- Sunrnary - o f  - Study. Q u a z i l i n e a r i z a t i o n  o f  Sander 's n o n - l i n e a r  

s  he1 1 zqua t i ons  i s  p resen ted  f o r  t he  f I r s t .  t ime.  W i th  these quaz i -  

l i n e a r  equa t lons  t he  suppress ion  scheme for numer ica l  I n t e g r a t i o n s  

h a s  been developed t o  s o l v e  n o n - l i n e a r  boandary-value problems; i n  

p a r t i c u l a r  the  prob lem o f  t h e  l a r g e  d e f l e c t i o n  e l a s t i c - p l a s t i c  

rasponse  o f  s h e l l s  o f  r evo lu t i on . '  T h i s  suppress ion  scheme has been 

used I n  c o n j u n c t i o n  w i t h  a  Newton-Raphson i t e r a t i o n  method f o r  t he  

c o n s t i t u t i v a  relations. Convergence process a t  the  y i e l d  su r f ace  i n  

e l a s t i c - p l a s t i c  problems i s  thus ob ta ined .  

8 .2  D i scuss ion  - o f  Resu l t s .  The l a r g e  d e f l e c t i o n  e l a s t i c  a n a l y s i s  

r e s u l t s  f o r  a t o r u s  p resen ted  i n  the  p rev ious  chap te r  show e x c e l l e n t  

a  greement w i t h  t h e  r e s u l t s  o b t a i n e d  by K a l n i n s  (67)  who adopted the  

mul t isegment  method o f  numer ica l  i n t e g r a t i o n  i n  t h a t  work. 



I t  was n o t  p o s s i b l e  t o  o b t a i n  exper imenta l  v e r i f i c a t i o n  o f  the  

r e v l t s  f o r  t o rus .  For  l a r g e  d e f l e c t i o n  e l a s t i c - p l a s t i c  a n a l y s i s  o f  

a n  annu la r  p l a t e ,  a l s o  r e p o r t e d  i n  the  p rev ious  chap te r ,  agreement 

has been ob ta ined  w i t h  exper imsnta l  r e s u l t s  as w e l l  as w i t h  p rev ious  

a n a l y t i c  r e s u l t s  u s i n g  t h e  mul t isegment  method ob ta ined  by 

H u t u l a  (65 ) .  For  t h e  a n n u l a r  p l a t e  problem a  p e r f e c t l y  p l a s t i c  

m a t s r i a l  ' behav io r  was assumsd. A s e t  o f  examples were a l s o  p resen ted  

t h a t  i nc l uded  s t r a i n - h a r d e n i n g  m a t e r i a l  e f f e c t s .  

8.3 L imY ta t i ons .  A l though n o n - l i n e a r  problems have been so l ved  

with t he  suppress ion scheme, such problems have been l i m i t e d  o n l y  

t o  axisyn;metric she1 1  behav io r .  The method o f  quaz i  l i n e a r i z a t i o n  

has been developed f o r  s h e l l s  o f  r e v o l u t i o n  u s i n g  t he  f i r s t  o r d e r  

e f f e c t s  o f  t he  T a y l o r  s e r i e s  expansion o f  a  f u n c t i o n .  Large 

d e f l e c t i o n  e l a s t i c - p l a s t i c  a n a l y s i s  can be c a r r i e d  o u t  o n l y  w i t h  

i nc remen ta l  load ings .  For  each inc rementa l  load the  e n t i r e  

suppress ion process must be used i n  a  space-n lse  march ing process 

t o  f i n d  a  new s o l u t i o n  s t a t e .  

A s e t  o f  t h ree  boundary c o n d i t i o n s  must be s p e c i f i e d  a t  each 

end o f  tha s h e l l ,  any s e t  o f  a r b i t r a r y  va lues  can tie s p e c i f i e d  f o r  

t h e  t h r e e  rema in ing  v a r i a b l e s  a t  t h e  i n i t i a l  edge. The a n a l y s i s  i s  

1 im i  t ed  t o  s t a t i c  dead we igh t  or /and p ressure  load ings .  However any 

symmet r i c  edge load ings  can be s p e c i f i e d  by t r a n s f o r m i n g  them i n t o  

edge boundary c o n d i t i o n s .  

Only i s o t r o p i c  m a t e r i a l  p r o p e r t i e s  were cons idered  and no t h ~ r m a l  

e f f e c t s  were inc luded .  However, s t r a i n  hardening can be accounted 



d i f f e r e n t l y  a t  d i . f f e r e n t  p o i n t s  o f  the  s h e l l  depending upon- the  

magn i tude  o f  t he  p l a s t i c  s t r a i n  e f f e c t s .  

8 . 4  P o s s i b l t  Ex tens ions .  

a. W i th  the  p resen t .method  o f  a n a l y s i s  thermal l oad ings  can be 
i n c l u d € d  by p rope r  m o d i f i c a t i o n s  o f  t he  she1 1 govern ing  
equat ions  and t he  c o n s t i t u t i v e . r e 1 a t i o n s .  

- 
b. Dynamic e f f e c t s  may be added w i t h  the prEsent  method o f  

a n a l y s l s  by i n c l u s i o n  o f  i n e r t i a  e f f e c t s  i n  the  govern ing  . ,  
s h e l l  equa t i ons .  However, a  m o d a l ~ s u p e r g o s i t i o n  a n a l y s i s  
i n  t h z  e i a s t i c - p l a s t i c  regimas i s  n o t  p o s s i b l e .  D i r e c t  
t i m e - i n t e g r a t i o n  would have t o  be used. 

c.  A conven ien t  means o f  s p e c i f y i n g  a r b i  w a r y  l oad ings  i s  t o  
use F o u r i e r  Se r i es  distributions. Due t o  t he  n o n - l i n e a r  
n a t u r e  o f  e l a s t i c - p l a s t i c  a n a l y s i s  i t  i s  n o t  a s t r a i g h t  
fo rward  process t o  supzrpose F o u r i e r  harmonics i n  o r d e r  
t o  a n a l y z t  a r b i t r a r y  1,oaded e l a s t i c - p l a s t i c  problems. 

d. I t  i s  p o s s i b l e  t o  i n c l u d e  c y c l i c  thermal l o a d i n g  e f f e c t s  
by p roper  m o d i f i c a t i o n s  o f  the  e l a s t i c - p l a s t i c  c o n s t i t u t i v t  
r e l a t i o n s .  T h i s  w i l l  a l s o  a l l o w  a  s tudy  o f  thermal 
r a t c h e t t i n g  and psas t i c - c reep  problems. 

e .  A s tudy  i s  recommended i n  which v a r i o u s  o t h e r  y i e l d  f unc t i ons  
and hardening laws a r e  used. 

8.5 General '  Conclus ions.  Through the  appl  i c a t i o n  o f  a quas i  1  i nea r -  

i z a t i o n  a l g o r i t h m  i t  has become p o s s i b l e  t o  extend t he  suppress ion 

scheme o f  numer ica l  i n t e g r a t i o n s  t o  n o n l i n e a r  problems. Since, 

f o r  a  suppress ion process,  a  c r i t e r i a  must be s e l e c t e d  on l i m i t i n g  

t h e  ext raneous g r o w t h . o f  t h e  s o l u t i o n ,  t h e  degree o f  s t a b i l i t y  

and /o r  accuracy w i l l  depend upon t he  c r i t e r i a .  No e x t e n s i v e  s t u d i c s  

w e r e  c a r r i e d  o u t  t o  f i n d  optimum r u l e s  f o r  such a  c r i t e r i a .  

The suppress ion method i s  known t o  be c o m p u t a t i o n a l l y  s u p e r i o r  

t o  the  mul t i -segment  method f o r  l i n e a r  problems. U n t i l 1  now i t  had , 



n o t  been p o s s i b l e  t o  use t h e  suppress ion method f o r  n o n l i n e r  s h e l l  

p rob lems except  i n  a  s t r i c t l y  inc rementa l  fash ion .  A l though no 

compar ison o f  e f f i c i e n c y  were made i n  t h i s  s tudy ,  i't i s  expected 

t h a t  t he  suppress ion method w i  11 be as comparat i v e l y  e:'f i c i e n t  f o r  

non l i .near  problems as i t  i s  f o r  l i n e a r  problem. The l a r g e  d e f l e c t i o n  

e l a s t i c  s o l u t l o n  of  a t o r u s  p resen ted  i n  t he  p r e v i o u s  chap te r  

i s  i n d i c a t i v e  o f  the  need t o  be concerned about t hz  accuracy o f  

non-1 i n e a r  she1 l s o l u t i o n s .  



APPENDIX A 



.- . 

STRESS PREL 1 M I  NARl ES 

A .  1 Scress Tensor. 

Stress tensor can be resolved into following additive 

compononents: 

where 



This is the deviatoric component of s tress  tensor. 

0 0  for i n  j 



A . 2  Stress I n v a r i a n t .  . 
. . .  

The second i n v a r i a n t  of t h e  d e v i a t o r i c  component of s t r e s s  

t e n s o r  .has s i g n i f i c a n c e  in.plasticlty theory.  The term 

' i n v a r i a n t '  d e r i v e s  f-rom t h e  f a c t  t h a t  nagni tudes  of t h e s e  

q u a n t i t i e s  are independent of t h e  p a r t i c u l a r  s e t  of coo rd ina t e  

axes  be ing  cons idered .  

I n  index n o t a t i o n ,  second i n v a r i a n t  can  be  w r i t t e n  as :  

S ince  

= 0 (A. 10) 



(A. 11) 

(A. 12) 

(A. 14 )  

A . 3  Effective Stress.  
.-. 

. -Effect ive stress can be written as: 

1 
C1 = -  , the effect ive stress  i s  equal to the octaledral- 

3 
. shear stress;  

1 
C 1  = , the effect ive stress  i s  equal to the square of 



second i n v a r i a n t  J' of the  d e v i a t o r i c  component of  the  stress 
2 

tensor .  

1 
C1 = - then f o r  a  u n i a x i a l  stress, f o r  which a  is the  a x i a l  

412 X - 
s t r e s s  and a l l  of the  o t h e r  s t r e s s  components aye zero,  a=a 

X 

2 a  - a x - a z  
Y .  

( a y - a  ) - ( a x - a  1 
P .  

z a  --. (A. 17) 
Y 3 3 

A . 4  S t r a i n  Prellmlna,ri ,es.  

(A.  19) 

(A. 20) 

1 
where  E = - ( E  + E  + E = )  

m 3  x Y 



deviatoric s tra in  tensor 

(A. 22) 

It  is important t o  note that i n  both p l a s t i c i t y  and creep 

the assumption of incompressibil i ty is made. This means that 

when only the i n e l a s t i c  portion of the t o t a l  s tra in  i s  considered: 



l 

and ' ij  ' i j  

The second i n v a r i a n t ,  I; , of  t h e  d e v i a t o r i c  component of 

t h e  s t r a i n  t e n s o r  i s  i n  t h e  c a s e  of i n - e l a s t i c  s t r a i n s  equa l  t o  

t h e  second i n v a r i a n t ,  12, of t h e  s t r a i n  t enso r :  
.--.. 

(A. 23) 

2 2 2 - 
Y 

r + E ~ E ~ + E  Y E Z  - - X Y -  - - (A. 24) 
4 4 4 

E f f e c t i v e  S t r a i n  

(A. 2 5 )  

2 
C = 7 , t h e  e f f e c t i v e - s t r a i n  is equa l  t o  t h e  o c t a h e d r a l  

2 

shea r  s t r a i n  

1 
C 2  = = , square  of t h e  e f f e c t i v e  s t r a i n  i s  equa l  t o  t h e  second 

46 
i n v a r i a n t  I of t h e  s t r a i n  t e n s o r ,  prov.ided only  i n - e l a s t i c  

2 



s t r a i n s  a r e  being considered.  

I n  c a s e  of u n i a x i a l  s t r a i n :  

(A. 2 6 )  

Since  e = 0 
m 

Therefore  E = E f o r  a  u n i a x i a l  test provided t h a t  C = - 
X 3 - 

A . 5  D e v l a t o r i c  Stress Tensor. 

(A. 2 7 )  

(A. 28) 

Second ' I n v a r i a n t  

(A. 29) 



I '  2 - a"]. - - [ail + 1 a33 + a;2 - a12 - a23 

Effective Stress 

(A.  30) 

~ 1 ~ ; ~ f  9 6  maintain choice. 
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NON-DIMENSIONALIZED SHELL EQUATION 

AND 

TREATMENT OF SlNGlJLARlTlES AT SHELL APEX 

B . l  S i g n i f i c a n c e  - o f  Non-d imens iona l i za t ion .  

There a r e  two s i g n i f i c a n t  advantages i n  d e a l i n g  w i t h  t h e  

non-d imens iona l i zed  form o f  s h e l l  equa t ions .  F i r s t ,  the  t rea tment  

o f  s i n g u l a r i t i e s  a t  the s h z l l  apex which i s  o f t e n  d i f f i c u l t  t o ,  

handle i n  the  a n a l y s i s  becomes conven ien t  w i t h  the  non -d imens iona l i za t i on  

o f  the  s h e l l  equa t ions .  

Second, non-d imensional ized s h e l l  equa t ions  serve  as a  convanient  

t o o l  i n  speeding up t he  numer ica l  i n t e g r a t i o n  process.  Thus, a  

conven ien t  means o f  r e p r e s e n t a t i o n  by which t h e  c o n t r o l  o f  t he  l a r g e  

magnitudes o f  t he  growing ext raneous s o l u t i o n  as w e l l  as improv ing  

t he  accuracy o f  t he  numer ica l  i n t e g r a t i o n  schemes i s  provl.ded. 

The terms t h a t  a r e  non-d imensional ized i n i t i a l l y  a r e  as f o l l o w s :  



Where, 

R = R f o r  cy l inder  and sphere 
S 

= b f o r  torus e tc .  



Where, 

~h~ 

8 . 2   on-dirnensional'lzed GoverriPng Shel.1 E'quat ions. . 

Non - dimensionalized linear set of first order governing 

she1 l equations are: 



.L .L .,. J. * :'; * * * -L ( r" Q; ) , 5 "  = N" S i n  + - 
e 9 + r r N; + i N ~ ~ .  Y e  + r r 

N; R" 8 o  90 
tJ 



8.3 S i n g u l a r i t l e s  -- a t  the Apex - o f  She l l s .  

Since a t  the  apex o f  the s h e l l  r-o and r occurs i n  the 

denominator o f  the s h e l l  equat ions, i t  i s  e s s e n t i a l  t o  have some 

means o f  c o r r e c t i n g  such s i n g u l a r i t i e s  w h i l e  ma in ta in ing  the accuracy 

du r ing  the numerical  i n t e g r a t i o n  process. I f  we cons ider  the s h e l l  

apex as smooth r a t h e r  than pointed, then these s i n g u l a r i  t i es  can be 

removed conven ien t ly .  I f  the s h e l l  apex i s  smooth then obv ious ly  

$ 0  . The non-d imens lona l iza t ion  o f  the s h e l l  equat lons has helped 

i n  reducing t h i s  problem t o  fewer number o f  t he 'gove rn ing  equat ions. 

Fur ther ,  i t  should be noted t h a t  du r ing  the non-dimensional ' izat ion the 

governing equat ion f o r  Q has been rearranged t o  he lp  remove the 4's 

s i n g u l a r l t i e s  from t h a t  equat ion.  



From symmetry a t .  the apex i n  . the  axi.symmetric s h e l l s  o f  re -  

v a l u t i o n  i t  i s  recognized tha t :  

and y = o  

and i f  the re  i s  no concentrated load a t  the apex Q = o .  
4 

Since the  mer id iona l  and c i r c u m f e r e n t i a l  d i r . ec t i ons  a r e  no t  

d i s t i n c t  a t  the apex: 

Me = M4 

'e = '4 

and K~ = K 
@ 

Hence, w i t h  the  above cond i t i ons  and w i t h  the  rear rang ing  o f  

o n l y  one governing equat ion t o  be ( r Q ) ,  r a t h e r  than Q the 
s  4's 

non-dimens i ona l  i za't i on  o f  the  she1 1  equat ions has helped i n  removing 



the  s i n g u l a r i - t i e s  a t  the  apex.. There a r e . o t h e r  ways t h a t  t h i s  cou ld  

have been done. For ins tance  the  s h e l l  reg ion  a t  the  apex can be 

regarded as a shal low s p h e r i c a l  s h e l l .  





SHELL C O N F l  GURAT IONS 

1 .  C y l i n d e r .  

= rad ius  o f  c y l l n d e r  

= go0 

= R 

- - w 

= R 

= Length o f  c y l i n d e r  

= L 

2 .  Sphere. 

R = rad ius  o f  sphere 

Q = angle o f  normal t o  the middle 
surface measured from a x i s  of  
r e v o l u t i o n .  

3 .  Torus. 

=. distance o f  torus center  mea- 
sured from a x i s  o f  symmetry. 

= radius o f  torus.  



= angle o f  normal t o  the middle 
sur face measured from the a x i s  
o f  rev01 u  t i  on. 

= a+b Sin4 
- 

= Distance measured a long mer l -  
d ion  middle sur face.  

4. Cone. 

= D i  stance measured a long the  
mer id ian  

= ang le  o f  normal t o  the  
midd le  sur face measure f rom 
the a x i s  o f  r e v o l u t i o n .  

= d i s tance  of i n i t i a l  edge 
from the  a x i s  o f  r e v o l u t i o n .  

= Cone angle 

= b t and a 

= Length on the  mer id ian.  

= a+b Sina 

5. Annular P la te .  

= i n i t i a l  edge 

= a+b Sina 



= distance between initi.al and 
f i n a l  edge. 
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DEFINITION OF HARDENING 

The n a t u r e  o f  inc rementa l  p l a s t i c  a n a l y s i s  i s  such t h a t  a  

s e t  o f  s t r a i n  va lues  must be assumed w i t h  wh ich  the  i t e r a t i o n  procedure 

mus t  s t a r t .  These assumed va lues  o f  s t r a i n s  should be reasonably  

c l o s e  approximat ion, t o  t h e  behav io r ,  p r e f e r a b l y ,  i n  o r d e r  t o  speed 

t h e  convergence process. The procedure t o  be used f o r  p r e d i c t i n g  the 

magnitude o f  the  s t r a i n s  must a l s o  be c o n s i s t e n t  w i t h  t he  m a t e r i a l  

behav io r .  The ava i  l a b l e  m a t e r i a l  curves have been c o n s t r u c t e d  

based on u n i a x i a l  l o a d i n g  exper iments  and, thus,  can n o t  f u l l y  

d e s c r i b e  b i a x i a l  o r  mu1 t i a x i a l .  s t r e s s  behav io r .  

L e t  be t he  c a l c u l a t e d  e f f e c t i v e  s t r e s s  and a t he  

co r respond ing  y i e l d  p o i n t  s t r e s s .  B i s  t he  s l ope  o f  e l a s t i c - p l a s t i c  

p o r t i o n  o f  t he  b i l i n z a r  s t r e s s - s t r a i n  cu rve  and i s  some measure 

o f  s t r a i n  hardening o f  the  m a t e r i a l .  

The t o t a l  s t r a i n  i s  composed o f  e l a s t i c  and p l a s t i c  component 

o f  s t r a i n .  



1-6 
Where K = - . a s  def ined I n  F i g .  ( ~ ~ 1 )  

B 
But: 

-2 3 2 
a  = a  - 0 . 0  + ' a . = H  (say) 

4 $ 0  0 

Where H i s  the hardening modulus. 

or :  

Taking the d e r i v a t i v e  w i t h  respect  t o  E 
P 



Hence, M I  i s  t he  s l ope  o f  the  e f f e c t i v e  s t ress -b las t !=  s t r a i n  

diagram. I t  can be determined from the  a v a i l a b l e  m a t e r i a l  exper imenta l  

data.  

.Corresponding t o  a  l oad  increment l e t  t h e  s t r e s s  increments 

be r e p r e ~ e n t e d ~ b y  do and doe f o r  s t r e s s  components o  and og and the  
4 Q 

cor respond ing  s t r a i n  increments by dc and dce.  9 

A t  a  g i ven  l oad  l e v e l  Pa the  l i n e a r  e l a s t i c  s o l u t i o n  i s  ob ta ined .  

The maximum s t r e s s  va lue  f o r  a l l  p o i n t s  through t he  m e r i d i a n  and 

r a d i a l  d i r e c t i o n  i s  l oca ted .  I f  t h i s  maximum s t r e s s  va lue  o f  e f f e c t i v e  

s t r e s s  i s  l a r g e r  than t he  y i e l d  s t r e s s  i t  i s  sca led  down t o  t he  

y i e l d  s t r s s s .   he load  P a  i s  a l s o  co r respond ing l y  sca led  down t o  Pb.  

A t  t h e  va lue  o f  P ' t h e  n o n - l i n e a r  e l a s t i c  s o l u t i o n  i s  determined. 
b  

The maximum s t r e s s  v a l u e  i s  once aga in  l oca ted .  ' T h i s  maximum e f f e c t i v e  

s t r e s s  v a l u s  i s  sca led  t o  t h e  y i e l d  s t r e s s  and t h e  s c a l a r  f a c t o r  a 

i s  determined such t h a t :  

The s c a l a r  f a c t o r  I s  now used t o  sca le  t h e  e n t i r e  s o l u t i o n  

and a  l oad  PC' I s  determined. The n o n - l i n e a r  e l a s t i c  s o l u t i o n  i s  

once aga in  ob ta i ned  a t  the  l oad  l e v e l  P by d i r e c t  i n t e g r a . t i o n  o f  
C 

govern ing  s h e l l  equat ions.  T h i s  process i s  repeated u n t i l  the  non- 

l i n e a r  e l a s t i c  s o l u t i o n  i s  a t  t he  y i e l d  p o i n t  a t  which the  load  l e v e l  



The r e s u l t i n g  va lue  o f  P  i s  t h e  load l e v e l  a t  which t he  p l a s t i c  
Y 

s o l u t i o n  load  s teps  must begin.. The s o l u t i o n  a t  t h i s  load  l e v e l  
' i/ 

i s  s t o r e d  as r e s i d u a l s  I n d i c a t e d  by the  s u b s c r i p t  ( 1 ) .  A l oad  increment 

APn  i s  now' taken and the  t o t a l  l oad  a t  t h i s  load  s t e p  i s :  

Where n  i s  t he  c u r r e n t  increment.  number and m the  prevJous 

increment number. A t  the  f i r s t  l oad  s t e p  P =P such t h a t ,  
m Y 

A  study o f  t he  Ncwton-Raphson a l g o r i t h m  has i n d i c a t e d  t h a t  

t h i s  inc rementa l  load  s t e p  must be smal l  enough t o  m a i n t a i n  t he  s t r e s s  

p o i n t  near  t he  y i e l d  s u r f a c e  and w i t h i n  the  scope o f  t h i s  a l g o r i t h m  

t o  b r i n g  i t  t o  t he  y i e l d  su r f ace .  The e n t i r e  s o l u t i o n  i s  now sca led  

t o  t h i s  load  l e v e l  Pm + APn. 

The e f f e c t i v e  s t r e s s  va lues  o f  t h i s  sca led  s o l u t i o n  a t  every  p o i n t  

a l ong  the  m e r i d i a n  and r a d i a l  d i r e c t i o n  a r e  now checked a g a i n s t  the 

y i e l d  s t r e s s  o f  t he  m a t e r i a l .  I f  a  p o i n t  i s  e l a s t i c  then, t he  co r res -  

ponding assumed va lues  o f  s t r e s s  and s t r a i n  increments a r e  g i ven  by: 



However I f  a p o i n t  i s  p l a s t 1 c . t h e  enttre  c a l c u l a t i o n  procedure 

i s  I n  the incremental form. 
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