

SENSITIVITY RATIOS

C. R. Winkleman and H. G. Davidson
Equipment Engineering

March 31, 1977

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

General Electric Company
Neutron Devices Department
P. O. Box 11508
St. Petersburg, Florida 33733

Prepared for the U. S. Energy
Research and Development Administration
Albuquerque Operations Office
Under Contract No. EY-76-C-04-0656

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

Sensitivity factors for use with residual gas analyzers in mass spectrometry have been derived for compounds most frequently encountered in vacuum tube exhaust processes. With these factors, calibration of a mass spectrometer may be done for nitrogen and applied by ratio to other compounds.

CONTENTS

Section	Page
INTRODUCTION	1
DISCUSSION	1

TABLES

Number	Page
1 Sensitivity Values for the UTHE Technology International Residual Gas Analyzer Model 100C-02	2

INTRODUCTION

Usually, the calibration of a mass spectrometer for residual gas analysis requires the determination of an ionization gage factor for each compound. However, by calculation of a gage sensitivity ratio of various gas compounds to nitrogen (N_2), the mass spectrometer may be calibrated for nitrogen and that calibration can be applied by ratio to the compounds of interest. This is an especially useful tool in analyses of gases repeatedly evacuated from vacuum devices in production.

DISCUSSION

Table 1 lists the sensitivity values for the UTHE Technology International Residual Gas Analyzer Model 100C-02 used in this study. The five compounds listed are the most common gases evacuated from vacuum tubes produced at the General Electric Neutron Devices Department (GEND). The compound sensitivity ratios were derived from the equation:

$$\text{gage sensitivity} = \frac{\text{gage sensitivity of compound}}{\text{gage sensitivity of nitrogen}}$$

The values have been compared to the Catalog of Mass Spectral Data, American Petroleum Institute, Project 44, and found satisfactory. The values were also compared to the Dushman and Young and to the Wagener and Johnson data* and found to be in agreement.

Based on these compound values and the instrument operating conditions as noted in the table, calibration of an individual instrument may be accomplished by actual calibration of only one compound, nitrogen (N_2), and applied by ratio to other compounds of interest.

*S. Dushman, Scientific Foundations of Vacuum Technique, J. M. Lafferty, Editor, Table 5.7 "Ionization Gage Sensitivity Ratios for Various Gases," John Wiley & Sons, Inc.

Compounds used for these calibrations were calibration grade gases and were incorporated into standard leaks in order to ensure constant rate of flow and system equilibrium.

The final Amps/Torr values shown in Table 1 have been normalized to nitrogen (Mass 28) and are averages of Samples 1, 2 and 3.

Under the conditions noted in the table, the accuracy of the data will fall within a $\pm 25.0\%$ error band.

Table 1. Sensitivity Values for the UTHE Technology International Residual Gas Analyzer Model 100C-02

THE Technology International Residual Gas Analyzer Model 100C-02 Controller S/N 02-088 Analyzer S/N 08-0097 Error Band \pm 25.0%				Average Multiplier Gain 2.7×10^4 Reflector Temperature 200°C Emission Current 2.1 Ma				Ion Energy 14.9 Vdc Focus Voltage 12.6 Vdc Electron Energy 70.3 Vdc					
Mass to Charge Ratio	No. 1 Sample Pressure* (Torr)	No. 2 Sample Pressure (Torr)	No. 3 Sample Pressure (Torr)	Amps/Torr	Normalized to Nitrogen 28	Amps/Torr	Normalized to Nitrogen 28	Amps/Torr	Normalized to Nitrogen 28	Amps/Torr	Normalized to Nitrogen 28	Average	
CARBON DIOXIDE (CO₂)													
44		2.7	0.04		2.7	0.04		2.8	0.04		2.7	0.04	
28		79.9	1.13		1.04 $\times 10^{-7}$	79.7	1.06		80.9	1.18		80.2	1.12
16		1.5	0.02		1.4	0.02		1.5	0.02		1.5	0.02	
12		4.3	0.06		3.4	0.05		3.6	0.05		3.8	0.05	
NITROGEN (N₂)													
28	8.65 $\times 10^{-8}$	70.9	1	8.20 $\times 10^{-8}$	75.4	1	8.35 $\times 10^{-8}$	68.7	1	8.40 $\times 10^{-8}$	71.7	1	
14		4.1	0.06		4.6	0.06		4.2	0.06		4.4	0.06	
CARBON MONOXIDE (CO)													
28		58.4	1.05		1.88 $\times 10^{-7}$	58.5	0.97		50.2	0.95		55.7	0.99
16		0.9	0.02			1.0	0.02		0.9	0.02		0.9	0.02
12		2.4	0.04			2.1	0.03		2.1	0.04		2.2	0.04
NITROGEN (N₂)													
28	8.55 $\times 10^{-8}$	55.6	1	8.60 $\times 10^{-8}$	60.2	1	8.95 $\times 10^{-8}$	52.8	1	8.70 $\times 10^{-8}$	56.2	1	
14		3.4	0.06		3.7	0.06		3.2	0.06		3.4	0.06	
METHANE (CH₄)													
16		11.6	0.27		13.5	0.30		11.9	0.25		12.3	0.27	
15		9.4	0.22		11.2	0.25		10.4	0.22		10.3	0.23	
14		1.8	0.04		2.2	0.02		2.0	0.04		2.0	0.03	
13	1.76 $\times 10^{-7}$	0.8	0.02	1.41 $\times 10^{-7}$	0.9	0.01	1.54 $\times 10^{-7}$	0.9	0.02	1.57 $\times 10^{-7}$	0.9	0.01	
12		0.7	0.02		0.6	0.01		0.6	0.01		0.6	0.01	
1		0.4	0.01		0.4	0.01		0.4	0.01		0.4	0.01	
NITROGEN (N₂)													
28	1.05 $\times 10^{-7}$	43.4	1	9.10 $\times 10^{-8}$	44.5	1	8.35 $\times 10^{-8}$	48.3	1	9.32 $\times 10^{-8}$	45.4	1	
14		2.6	0.06		2.9	0.07		3.1	0.06		2.9	0.06	
HYDROGEN (H₂)													
2	2.74 $\times 10^{-7}$	6.4	0.13	2.50 $\times 10^{-7}$	5.8	0.11	2.17 $\times 10^{-7}$	5.9	0.12	2.47 $\times 10^{-7}$	6.0	0.12	
1		0.1	0.002		0.1	0.002		0.1	0.002		0.1	0.002	
NITROGEN (N₂)													
28	8.00 $\times 10^{-8}$	50.8	1	7.50 $\times 10^{-8}$	52.5	1	8.00 $\times 10^{-8}$	49.6	1	7.83 $\times 10^{-8}$	51.0	1	
14		3.6	0.07		3.6	0.07		3.4	0.07		3.5	0.07	
DEUTERIUM (D₂)													
4		2.0	0.04		2.8	0.06		3.4	0.06		2.7	0.05	
3	7.39 $\times 10^{-7}$	2.4	0.05	6.09 $\times 10^{-7}$	3.3	0.007	5.65 $\times 10^{-7}$	4.0	0.07	6.38 $\times 10^{-7}$	3.2	0.06	
2		2.1	0.04		2.2	0.05		3.0	0.05		2.4	0.05	
NITROGEN (N₂)													
28	7.00 $\times 10^{-8}$	52.0	1	8.50 $\times 10^{-8}$	48.5	1	7.00 $\times 10^{-8}$	56.3	1	7.50 $\times 10^{-8}$	52.3	1	
14		3.6	0.07		3.2	0.07		4.1	0.07		3.6	0.07	

*Sample pressures corrected for gauge sensitivity by factors derived from API Index and Dushman-Lafferty.

**All sample pressure readings are averages of two or more readings.

DISTRIBUTION

ERDA

D. Ofte, PAO
Technical Information Center
Oak Ridge (2)

GE

Technical Information Exchange
Schenectady (5)

GEND

J. C. Carter
H. G. Davidson
D. A. Ehlers
E. J. Fernandez
E. J. Furno
C. O. Ludwig
H. A. Maurer
R. J. Mimault
E. E. Morgan
N. H. Parsons
J. L. Provo
D. J. Shuniak
J. J. Taylor
T. A. Wedel
C. R. Winkleman
H. A. Woods

Technical Data Library

Technical Report Writer (1 + Reproduction Masters)

Sandia Laboratories, Albuquerque

L. C. Beavis 2353
W. G. Perkins 2353

Los Alamos Scientific Laboratory

T. E. Larson WX-2
E. D. Loughran, WX-2