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The usefu l  l i f e t i m e  of a geothermal resource is usual ly  ca lcu la ted  by 
assuming f l u i d  w i l l  be produced from and re in jec ted  i n t o  a uniform porous 
medium. However. most geothermal systems are found in f rac tured  rock. I f  
t h e  r e i n j e c t i o n  and production wells i n t e r s e c t  connected f r a c t u r e s ,  then 
re in jec ted  f l u i d  may cool  the  production w e l l s  much sooner than would be 
predicted from ca lcu la t ions  of flow i n  a porous medium, 

We have developed a "quick and d i r ty"  method f o r  c a l c u l a t i n g  howmuch 
sooner t h a t  cool ing w i l l  occur. (Kasameyer and Schroeder, 1975, 1976). In t h i s  
paper. we discuss  t h e  bas ic  assumptions of the  method, and show how i t  can be  
applied t o  t h e  Sal ton Sea Geothermal Field.  t h e  Raft  River System, and t o  
r e i n j e c t i o n  of supersaturated f lu ids .  

Solut ion f o r  Flow in a Porous Medium 

c 

A family of f r a c t u r e s  is assumed t o  e x i s t  p a r a l l e l  t o  t h e  d i r e c t i o n  of flow. 
The f r a c t u r e s  a re  character ized by a permeabi l i ty  kr and a spacing D. 
r e s u l t s  presented here ,  t h e  f r a c t u r e s  are t i g h t  enough so t h a t  water s torage  
i n  them is negligible.) 
t h e  pressure f i e l d  80 t h a t  the flow stream l i n e s  are p a r a l l e l  i n  t h e  porous 
rock and i n  t h e  f rac tures ,  but  the  flow v e l o c i t i e s  are d i f f e r e n t .  

(For the  

The f r a c t u r e s  are assumed t o  have no e f f e c t  on 

The so lu t ion  of a problem with two d i s t i n c t  v e l o c i t i e s  by a f i n i t e  d i f fe rence  
method (e.g.. Kasameyer and Schroeder, 1975) is not  e f f i c i e n t  i f  t h e  v e l o c i t i e s  
are q u i t e  d i f fe ren t .  
rap id  v e l o c i t y  and c a l c u l a t i o n s  take a long t i m e  when f r a c t u r e s  are important. 
An approximate solut ion requir ing a few t i m e  s t e p s  has  been developed. 
r e s e r v o i r  is conceptually divided i n t o  10 regions of equal  volume. The boundaries 
of the  regions coincide with flow f r o n t s  of t h e  re in jec ted  f l u i d  so t h a t  the  f l u i d  
in t h e  pores and t h e  f l u i d  i n  the  f r a c t u r e s  both f low through t h e  regions i n  series 
(see  Figure 1 ) .  
t h e  temperature of t h e  f l u i d  i n  t h e  f r a c t u r e s  averaged throughout t h e  region, 
Tf,,to the  average temperature of the  s a t u r a t i n g  f l u i d ,  Ts. The 10 p a i r s  of 
coupled f i rs t -order  equat ions a r e  solved a n a l y t i c a l l y  by assuming constant  
c o e f f i c i e n t s  during time i n t e r v a l s  which are much longer than those  appropriate  
f o r  t h e  f lni te-dlfference method. 

I n  t h a t  case. t i m e  s t e p s  must be  determined by t h e  most 

The 

In each region, w e  wr i te  p a i r  of approximate equat ions r e l a t i n g  

The equations f o r  the  ith region a r e  presented here  i n  dimensionless form 
(see  Kasameyer and Schroeder, 1976. f o r  t h e  der iva t ions) .  The times have been 
mult ipl ied by a- (thermal diffusivi ty) / (D/2)2.  

We model a f i n i t e  hot-water r e s e r v o i r  produced a t  a constant  flow r a t e  with 
f l u i d  replenished e i t h e r  by r e i n j e c t i o n  o r  by cool  recharge a t  t h e  boundaries. 
We assume t h a t  t h e  an idea l ized  well d i s t r i b u t i o n  can be  found which allows a 
spec i f ied  f low r a t e  and which produces all of t h e  o r i g i n a l  f l u i d  from t h e  
reservoi r  before  any re in jec ted  f l u i d  has  been produced. 
there  is no pressure drawdown o r  f lash ing ,  t h a t  t h e  f l u i d  moves with p is ton  
displacement through the  pores, and t h a t  t h e  pore f l u i d  and matr ix  come t o  
thermal equi l ibr ium instantaneously.  
es t imate  of t h e  production temperature. 

dTfr - 9 M (Tfr-Tfro) + -R (l+R 1 
d t  Rr(l+Rq) 7 

Further ,  we assume 

A l l  these  assumptions lead  t o  an over- 

An a n a l y t i c a l  so lu t ion  f o r  t h i s  idea l ized  problem of h e a t  t r a n s f e r  has  been 
The equations depend only on th ree  dimension1 diacussed by Bodvarsson (1974). 

ayatem with no change of shape with t i m e ,  and with a slower v e l o c i t y  than the 
f l u i d  f ront .  
i n i t l a l  temperature. 

A s t e e p  temperature f r o n t  moves through the  

R Flow i n  Fractures  Ahead of t h e  temperature f r o n t ,  t h e  r e s e r v o i r  r e t a i n s  i ts  
Behind the  f ront ,  enough hea t  has  been taken from the  rocks 

[ t o  cool  them t o  t h e  r e l n j e c t i o n  temperature. 
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The f l u i d  en ters  the  pores and f r a c t u r e s  of region i a t  temperatures T 
and Tso. respect ively.  These temperatures are determined from t h e  solut ionfro 
for region i-1, o r  by the  r e i n j e c t i o n  temperature i f  111. 

The term H is the  hea t  conducted from t h e  sa tura ted  rock i n t o  t h e  f rac tures .  
Tlut term is approximated by an expression depending only on the  t i m e  and the  
instantaneous values  and d e r i v a t i v e s  of t h e  average temperatures. 

The func t ion  F ( t )  v a r i e s  smoothly from one a t  e a r l y  t i m e s  t o  zero a t  late 
times. 

The approximation of H is j u s t i f i e d  by t h e  c l o s e  agreement of our ca lcu la t ions  
of t h e  temperature in f rac tured ,  impermeable rock with those of Gringarten. e t  sl., 
(1975). shown in Figure 2. 
(Kasameyer and Schreoder. 1975) ind ica ted  b e t t e r  agreement between t h e  methods, 
but those r e s u l t s  were f o r  a small  range of values  of T *  and were based on t h e  
very slow f in i te -d i f fe rence  c a l c u l a t i o n  with a l a r g e  number of regions. Our 
answers d i f f e r  from those of Gringarten, e t  a l .  because 1 )  we over-estimate 
t h e  heat  t r a n s f e r  t o  t h e  f r a c t u r e  f l u i d  a t  e a r l y  times, and 
f r o n t  is smoothed out a t  l a t e  times because of averaging over l a r g e  regions. 

Resul ts  presented a t  the  Stanford Workshop i n  1975 

2)  t h e  thermal 
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the  usefu l  lLfetime of the  f i e l d .  Faul t s  hundreds of  meters a p a r t  inf luence t h e  
f low i n  severa l  wells. I f  these  f a u l t s  car ry  more than h a l f  t h e  f l u i d ,  produced 
and re in jec ted  wells, the  usefu l  l i f e t i m e  may be  d r a s t i c a l l y  s h o r t e r  than 
predicted from porous flow ca lcu la t ions .  

11. A Fracture-Dominated System Like Raft River 

I f  most of t h e  flow is from f r a c t u r e s ,  then t h e  cor rec t ion  f a c t o r  depends 
only on the  f rac ture  spacing and the  r a t e  a t  which hea t  is removed from 
t h e  system. 
f a c t o r  on pumping r a t e  cap be  s t rong,  and knowledgqof t h e  f r a c t u r e  spacing 
i n  such a system is c r u c i a l  f o r  planning explo i ta t ion  rates. 

In Figure 5 ,  we see t h a t  t h e  dependence of t h e  c o r r e c t i o n  

Correct ion Fac tors  f o r  Porous Flow Models 

A set  of calculated production temperature h i s t o r i e s  are shown in Figure 3. 
Resul ts  from many such c a l c u l a t i o n s  can be summarized i n  one f i g u r e  by ca lcu la t ing  
the  t i m e ,  t f ,  when the production temperature f a l l s  below a spec i f ied  value. 
That value would normally be determined from power generat ing equipment. 
the  examples presented below, we have chosen a value of 0.8. 
t f /r  f o r  d i f f e r e n t  f r a c t u r e  systems and production rates is a cor rec t ion  f a c t o r  
€or  the  usefu l  l i fe t ime.  

For 
The r a t i o  of 

t i o n  of Super-saturated Brines 

be  p r a c t i c a l  t o  i n h i b i t  silica deposi t ion i n  a geothermal parer  
p lan t  by b r i n e  modification. Acid i f ica t ion  of Sa l ton  Sea b r i n e  i n h i b i t s  
deposi t ion of s i l i c e o u s  scale and decreases  rates of p r e c i p i t a t i o n  o f  silica 
and s u l f i d e s  long enough t o  produce parer  from t h e  b r i n e  and reinject it 
i n t o  t h e  ground (Oven, 1975; Oven and Tard i f f ,  1977). Bowever, t h e  forma- 
t i o n  around a r e i n j e c t i o n  w e l l  may become badly plugged by silica i f  t h e  

I? is  not reheated rapidly.  

of t i m e  re in jec ted  br ine  s t a y s  cool  can be 
f l u i d  is in jec ted  i n t o  a porous medium, a s t e e p  boundary between warm and cool  
rock moves a t  a ve loc i ty  less than t h e  p a r t i c l e  ve loc i ty .  If  R i s  t h e  f r a c t i o n  
of t h e  hea t  of t h e  reservoi r  s tored  in t h e  pore f l u i d  ( a . 3  €or  15% porosi ty) ,  
then the  temperature moves at v e l o c i t y  RVp. where V is t h e  p a r t i c l e  veloci ty .  

w e l l  are shown in Figure 6. 
flowing remains cool f o r  

P 
P a r t i c l e  paths  and temperature boundary loca t ions  f o r  r a d i a l  flow around a 

A p a r t i c l e  in jec ted  at t i m e  t a f t e r  the w e l l  s t a t t e d  
r iod  of t i m e ,  tc, where 

R tC - tp 2 .4  t f o r  R - .3  
P 

The va lues  of t h a t  cor rec t ion  f a c t o r  f o r  small R are contoured i n  
Figure 4. The contours depend on and ‘I*. For no h o w  i n  f r a c t u r e s  shown i n  P i  n jec ted  one year  a f t e r  i n j e c t i o n  begins w i l l  
(Rq < 1 )  o r  f o r  slow removal of f lu$ ( T x - l / a ) ,  t h e  porous medium ca lcu la t ions  
are cor rec t .  
determined from t h i s  diagram. 

Examples rock-brine in te rac t ions  must be  s tud ied  i n  

I. Tbe Sal ton  Sea Fie ld  

remain cool  f o r  n e  r. Short-term i n j e c t i o n  tests may not  
ind ica te  t h e  f u l l  po ten t ia l  f o r  i n j e c t i o n  well damage, because t h e  f i r s t  b r ine  
which is in jec ted  vi11 be rap id ly  reheated. 
super-saturated br ines  and the  temperature dependence of  t h e  r a t a s  of poss ib le  

success  of re in jec t ion .  

If  those condi t ions  are not  met, the. ,correct ion f a c t o r  can be 
The k i n e t l c s  of p r e c i p i t a t i o n  from 

The T* values  have been r e l a t e d  t o  f r a c t u r e  spacings (D) by assuming parameters 
appropr ia te  f o r  t h e  Sal ton Sea Geothermal F ie ld  (Figure 4 ) .  Two s c a l e s  of f r a c t u r e  
systems a r e  Been in  t h a t  f i e l d .  
than a meter. From Figure 4 ,  we see that f low i n  these  f r a c t u r e s  w i l l  not shorten 

Frac tures  are seen in cores  with spacings l e s s  

L 
n 
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FIGURES 

Figure 1 Division of reservoi r  i n t o  a small number of regions. 

Comparison of our  calculated curves f o r  the  output  temperature 
from f rac tured  impermeable rock (dashed) with those  of 
Gringarten et  al., 1975, ( so l id) .  
converted t o  wr dimensionless format, where t* - a t .  

Figure 2 

Their  va lues  have been - 

1 deple t ion  curves f o r  d i f f e r e n t  f r a c t u r e  spacings D 
(in meters). 
o r ig ina l  pore f l u i d  would b 
the usefu l  l i f e t i m e  (T) bas 
ca lcu la t ion  vas 66 years. 

The parameters were chosen so t h a t  a l l  t h e  
educed after 20 ,,ears, and 
n t h e  exact  porous f l o w  

Figure 4 Correction f a c t o r  f o r  l i f e t i m e  estimates. The production 
temperature f a l l s  t o  0.8 a t  t . The r a t i o  of f f l T  is 
contoured f o r  d i f f e r e n t  flow d i s t r i b u t i o n  (Rq) and prc- 
duction rates (T*). The contour where the f a c t o r  equals  
0.20 is d i s t o r t e d  because of our  approximation o f  tern H. 
The f r a c t u r e  spacings (D) are appropriate  f o r  the Sal ton  
Sea F i e l d  example. 

Figure 5 The e f f e c t  of production r a t e  on t h e  cor rec t ion  fac tor .  
f rac ture  spacing is around 10 meters, more than twice the  energy 

I f  the  

a t  t h e  slow production r a t e  
rate ( T - 30 yeara) .  

mperature f r o n t  and f l u i d  p a r t i c l e s  as funct ion 
of t i m e  s ince  r e l n j e c t l o n  s ta r ted .  
are  for (R - 0.3, and r a d i a l  flow of  0.05 m3/sec. i n t o  a 
200m th ick  aqui fe r  with 20% porosity. 
the d is tance  t o  t h e  temperature f ront .  
the t r a j e c t o r i e s  of p a r t i c l e s  in jec ted  a t  d i f f e r e n t  times. 
p a r t i c l e  in jec ted  one year  a f t e r  i n j e c t i o  
for  AT years .  

The curves in t h e  f i g u r e  

The solid l i n e  show 
The dashed curves a r e  

A 
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