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ABSTRACT 

Herein we report the initial stages of our study of the fluid 

transport properties of rock at high pressure and temperature. Em- 

phasis of this study is on the mechanical hydraulic interactions, 

in an attempt to understand the process of fracture closure and its 

influence on fracture permeability. To determine the fluid trans- 

port properties of a fracture we investigated the effect of surface 

roughness, geometry and filling on fracture permeability. Perme- 

ability of these fractures was measured at various effective normal 

stresses at room temperature. The law of effective stress appears 

valid for fractures without filling but permeability of filled 

fractures is more sensitive to confining pressure than pore pressure. 

Permeability of smooth surfaces varied 5 to 0.5 darcys over a range 

of effective stresses from 0 to 3000 bars. Filled fractures were 

an order of magnitude more permeable. 
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I N T R O D U C T I O N  

C e n t r a l  t o  many proposed geothermal  power e x t r a c t i o n  schemes 

i s  the  need t o  t r a n s p o r t  large volumes o f  f l u i d  through n a t u r a l  

o r  induced  f r a c t u r e s  i n  rock ,  o f t e n  a t  c o n s i d e r a b l e  dep th  w i t h i n  

the c r u s t  and i n  areas o f  e l e v a t e d  t empera tu re .  I n  o r d e r  t o  

d e s i g n  and c a r r y  o u t  such  programs, a c l e a r  unde r s t and ing  i s  

r e q u i r e d  o f  the f l u i d  t r a n s p o r t  p r o p e r t i e s  o f  rock  a t  t h e  appro- 

p r i a t e  t empera tu res  and p r e s s u r e s ,  and o f  t he  f a c t o r s  t ha t  i n f l u -  

ence  these p r o p e r t i e s .  

\ 
I 

Geothermal water i s  more l i k e l y  t o  be d e r i v e d  from igneous  

o r  metamorphic rock  t h a n  from sedimentary  d e p o s i t s .  S ince  most 

o f  t h e  f l u i d  t r a n s p o r t  i n  such  rock  is expec ted  t o  be born by 

f r a c t u r e s  ( j o i n t s  and f a u l t s ) ,  t h e  problems o f  d e a l i n g  w i t h  f low 

i s  somewhat d i f f e r e n t  t h a n  t h a t  encountered  i n  u s u a l  h y d r o l o g i c a l  

p r a c t i c e .  Furthermore,  t he  h i g h  t empera tu res  and p r e s s u r e s  

encoun te red  i n  any b u t  t h e  s h a l l o w e s t  geothermal  p r o j e c t s  w i l l  

produce a d d i t i o n a l  problems. 

Although f l u i d  f low through rock  masses has been t h e  s u b j e c t  

o f  a c t i v e  r e s e a r c h  i n  t he  past  decade,  many fundamental  problems 

remain p o o r l y  r e s o l v e d .  I n  a d d i t i o n ,  most past  work has been 

d i r e c t e d  towards s u r f a c e  e n g i n e e r i n g  works, and the  geothermal  

program r e q u i r e s  i n f o r m a t i o n  on f l u i d  f low a t  h igher  t empera tu re  

and p r e s s u r e  t h a n  has been c o n s i d e r e d  b e f o r e .  We i n t e n d  w i t h  

what follows t o  b r i e f l y  summarize p r e s e n t  knowledge i n  t h i s  f i e l d  



and emphasize t h o s e  problems t o  which w e  propose t o  d i r e c t  

o u r s e l v e s .  

It i s  customary t o  assume t h a t  a f r a c t u r e  i n  rock  can be  

t reated as a pa ra l l e l  p l a t e  opening,  i n  which c a s e  t h e  volume 

flow ra te  q i s  re lated t o  t h e  p r e s s u r e  g r a d i e n t  by 

3 
= 1 2 p  dx 
e* 
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where e i s  t h e  f r a c t u r e  opening and p i s  v i s c o s i t y  (Romm, 1966) .  

The p e r m e a b i l i t y  o f  a rock  mass t h a t  c o n t a i n s  a s y s t e m  o f  pa ra l l e l  

f r a c t u r e s  w i t h  s p a c i n g  d i s  t h e n  

p a r a l l e l  t o  t he  f r a c t u r e  s y s t e m ,  where yo  i s  t h e  u n i t  weight o f  

f l u i d  (see, e.g., Seraphim, 1968) .  

Equa t ions  1 and 2 have formed t h e  basis f o r  much of t h e  

work on f l u i d  f l o w  th rough f r a c t u r e d  rock  ( s e e ,  e.g. ,  Snow, 

19681, and has been reviewed by  Wilson and Witherspoon (1970) .  

Louis  (19691, f o r  example, has s t u d i e d  the  a p p l i c a b i l i t y  o f  t h i s  

fo rmula t ion  t o  s i n g l e  f r a c t u r e s  t e s t e d  i n  t h e  l a b o r a t o r y  and has 

cons ide red  i n  some d e t a i l  the e f f e c t  o f  f r a c t u r e  roughness  on 

(1). 

There i s ,  however, some doubt as t o  t h e  a p p l i c a b i l i t y  o f  

e q u a t i o n s  (1) and ( 2 )  t o  f low i n  f r a c t u r e d  rock  a t  some dep th  i n  
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t h e  c r u s t ,  because o f  t h e  e f f e c t  o f  p r e s s u r e  i n  c l o s i n g  f r a c t u r e s .  

The f r a c t u r e  opening,  e ,  i s  s t r o n g l y  dependent on normal stress 

a c r o s s  t h e  f r a c t u r e .  Goodman (1968, 1974)  and Goodman and Dubois 

( 1 9 7 2 )  have shown i n  t he  l a b o r a t o r y  and P ra t t  -- e t  a l .  (1974)  have 

shown i n  t he  f i e l d  tha t  f r a c t u r e s  c l o s e  r a p t d l y  under  t h e  a c t i o n  

o f  a n  a p p l i e d  normal l o a d ,  and t h a t  t h e  normal f o r c e - c l o s u r e  

cu rve  i s  n o n l i n e a r .  I n  t h e  p resence  o f  a n  e f f e c t i v e  normal 

stress, t h e  f r a c t u r e  walls w i l l  b e  i n  c o n t a c t  o v e r  p a r t  o f  t h e i r  

s u r f a c e ,  and  t h e  flow p a t h  w i l l  be  more t o r t u o u s  t h a n  g iven  by  

(1). T h i s  d i sc repancy  w i t h  (1) and (2 )  w i l l  b e  expec ted  t o  i n c r e a s e  

w i t h  a p p l i e d  normal f o r c e ,  s i n c e  from f r i c t i o n  s t u d i e s  w e  know 

t h a t  t h e  r e a l  area o f  c o n t a c t  a c r o s s  a f r a c t u r e  w i l l  be  g iven  

approximate ly  by ( f o r  smooth f r a c t u r e s )  

F AR = - 
P 

( 3 )  

where F i s  t h e  normal s t ress  and p ,  t h e  p e n e t r a t i o n  ha rdness  

(Bowden and Tabor,  1 9 6 4 ) .  S i n c e ,  from (31 ,  A R  i n c r e a s e s  w i t h  F ,  

w e  might expec t  t h a t  a t  normal stresses greater  t h a n  a few t e n s  

o f  bars t h e  parameter e becomes meaningiess  excep t  i n  a s t a t i s t i c a l  

s ense .  

One o f  t h e  fundamental  q u e s t i o n s  t h a t  remains t o  be answered, 

and t o  which w e  d i r e c t  o u r  work, is: A t  d e p t h s  i n  t h e  ear th  where 

the  e f f e c t i v e  normal stresses may l i e  i n  t h e  range  o f  1 0 0  bars t o  
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several kilobars, are fractures sufficiently open to act as 

conduits for fluid flow? If a small amount of effective normal 

stress is sufficient to close off fractures as conduits then 

geothermal projects will be limited to areas in which the fluid 

pressure is anomalously high or injection pressures equal to the 

normal stress must be used in order to force fractures open. 

However, there is some reason to believe that nominally closed 

fractures may still be sufficiently open, even under moderate 

to high normal stresses, to transport fluid at substantial 

rates. If this is true, engineering requirements may not be 

as stringent as may otherwise have been thought. 

EXPERIMZNTAL APPROACH 

The initial phase of our study is to determine the 

hydraulic characteristics of "model" fractures as a function 

of effective confining pressure at 2 5 O C .  Our scheme involves 

isolating three characteristics of a fracture which we think 

will most influence the fluid flow along the fracture. These 

characteristics are: (1) surface roughness; (2) surface geometry; 

and ( 3 )  surface filling. An in situ fracture consists o f  some 

combination of these three characteristics (Figure 1). By 

knowing how these three characteristics independently influence 

fluid flow we may suggest which of the three is most important 

in keeping fractures open at depths in the earth where effective 

-- 
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normal stresses are greater than 100 bars. 

Surface roughness is an important parameter in controlling 

fluid flow along extension fractures. Surface filling is an im- 

portant parameter for shear fractures which contain gouge genera- 

ted during frictional sliding. Surface geometry will probably 

not be as important a parameter in influencing fluid flow along 

a single fracture but may be significant when considering fluid 

communication through a highly jointed rock where the path of 

the fluid has many corners to turn. 

EXPERIMENTAL TECHNIQUE 

This proposal is largely concerned with measuring perme- 

ability of single fractures in the laboratory under controlled 

conditions of pressure and temperature. The experiments are 

conducted in a triaxial deformation press equipped with a 2" 

bore pressure vessel capable of 10 kb and 1000°C. For these 

experiments, kerosene is used as the pressure medium. Silicone 

oil will be used as the pressure medium for temperature exper- 

iments to 3OOOC. An internal furnace will be used. 

The experimental setup is drawn in Figure 2. The sample 

is a cylinder of 3 cm diameter, 10 cm long, split by a vertical 

fracture and jacketed in either copper or polyurethane. Pore 

pressure is introduced to the top of the fractured specimen 

through port A and taken from the bottom through port B. Confining 
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p r e s s u r e  i s  i n t r o d u c e d  through p o r t  C .  The c o n f i n i n g  p r e s s u r e  

s y s t e m  i s  capab le  of 5 k b ,  and the  po re  p r e s s u r e  s y s t e m ,  3 kb. 

A s t a i n l e s s  s t e e l  shim w i l l  be used t o  r e s t r a i n  t h e  j a c k e t  from 

i n t r u d i n g  t h e  f r a c t u r e ,  An ex tensometer ,  D ,  w i l l  be mounted 

a c r o s s  t h e  f r a c t u r e  t o  measure c l o s u r e .  There are 8 e l e c t r i c a l  

f eed th roughs  ( E )  t o  a l l o w  a v a r i e t y  o f  measurements i n s i d e  t h e  

v e s s e l .  

The p e r m e a b i l i t y  measurements are made w i t h  a modi f ied  

v e r s i o n  o f  t h e  t echn ique  of Brace e t  -- a l .  (1968) .  

d i f f i c u l t  t o  measure f l u i d  volumes under  p r e s s u r e ,  p e r m e a b i l i t y  

w i l l  b e  measured by induc ing  a small s t e p  i n c r e a s e  ove r  t he  

ambient p o r e  p r e s s u r e  a t  p o r t  A ,  and measuring t h e  t r a n s i e n t  

decay i n  t h e  r e l a t i v e  po re  p r e s s u r e  between p o r t s  B and A .  

The s t e p  i n  p o r e  p r e s s u r e  i s  r e q u i r e d  t o  be  much smaller t h a n  

t h e  t o t a l  po re  p r e s s u r e ,  because o f  the  e f f e c t  o f  po re  p r e s s u r e  

on p e r m e a b i l i t y ,  S ince  w e  measure t h e  decay ra te  o f  p r e s s u r e ,  

we t e s t  t h e  a p p l i c a b i l i t y  o f  Darcy 's  law r o u t i n e l y ,  The measure- 

ments are made w i t h  a s p e c i a l l y  c o n s t r u c t e d  d i f f e r e n t i a l  p r e s s u r e  

t r a n s d u c e r  capab le  of d e t e c t i n g  d i f f e r e n c e s  o f  0.1 bars under 

ambient p r e s s u r e s  as h i g h  as 5 kb. E i t h e r  f i x e d  head o r  f a l l i n g  

head t e s t s  can be  made. 

S ince  i t  i s  

To de te rmine  t h e  p e r m e a b i l i t y  o f  f r a c t u r e s  w e  have assumed 

t h a t  Darc ian  f low o c c u r s  a l o n g  t h e  f r a c t u r e .  Darcyls  law f o r  



f low th rough  a medium i s  c h a r a c t e r i z e d  by t h e  e q u a t i o n  

where q i s  the  vo lumet r i c  f l o w  r a t e ,  k i s  t h e  p e r m e a b i l i t y ,  

p i s  t h e  dynamic v i s c o s i t y ,  A and L are t h e  c r o s s - s e c t i o n a l  

area and l e n g t h  o f  t h e  sample and (P1-P2) i s  the  d i f f e r e n c e  i n  

po re  p r e s s u r e  a c r o s s  the  sample (P1 = high  p r e s s u r e  s i d e ) .  

We must assume a l i n e a r  p r e s s u r e  g r a d i e n t  a c r o s s  t he  sample and 

a f low rate which i s  on ly  a f u n c t i o n  of t i m e .  

p r e s s u r e  p u l s e  on one s i d e  o f  t he  sample, t h e  p u l s e  decays  

Given a small 

w i t h  t i m e  a c c o r d i n g  t o  t he  e q u a t i o n  

-a t  (P1-P2) = e 

where, 

( 5 )  

where B i s  the  i s o t h e r m a l  c o m p r e s s i b i l i t y  o f  t he  po re  f l u i d  and 

V i s  t h e  volume o f  t he  po re  f l u i d  r e s e r v o i r  a t  t h e  low p r e s s u r e  

end o f  t h e  sample. To de te rmine  f r a c t u r e  p e r m e a b i l i t y  we s o l v e  

t h e  e q u a t i o n  

aUuLV k =  A ( 7 )  
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a i s  t h e  s l o p e  o f  t h e  p l o t  o f  t h e  l o g  o f  (P1-P2) v e r s u s  t ime. 

F o r  o u r  i n i t i a l  exper iments  w e  used kerosene  as t h e  pore  

f l u i d .  I t s  i s o t h e r m a l  c o m p r e s s i b i l i t y  and v i s c o s i t y  as a f u n c t i o n  

o f  p r e s s u r e  are w e l l  known. The advantages  o f  u s i n g  kerosene  

as a po re  f l u i d  are t h a t  i t  i s  chemica l ly  i n e r t  w i t h  r e s p e c t  

t o  t he  r o c k  and i t  i s  n o t  c o r r o s i v e  a t  h i g h  p r e s s u r e s .  

The samples  w e  used f o r  t h e  i n i t i a l  tests i n c l u d e d  Barre 

g r a n i t e  and Gr imsby  sands tone .  The former was used f o r  t h e  

f r a c t u r e  p e r m e a b i l i t y  t e s t s  where t h e  p e r m e a b i l i t y  o f  t h e  g r a n i t e  

i s  so  low o\I 1 0 0  m d )  t h a t  t h e  decay o f  po re  p r e s s u r e  p u l s e s  can 

be  a t t r i b u t e d  s o l e l y  t o  f l u i d  f low a l o n g  t h e  f r a c t u r e .  The 

c a l c i t e  cemented sands tone  from Medina, N e w  York i s  used as a 

c o n t r o l  f o r  measuring whole rock  p e r m e a b i l i t y .  

EXPERIMENTAL RESULTS 

( a )  F r a c t u r e  w i t h  a p l a n a r  s u r f a c e .  To t e s t  t he  e f f e c t  o f  

s u r f a c e  roughness  on f r a c t u r e  p e r m e a b i l i t y  ( k ) ,  we p l a n  

a number o f  t e s t s  u s i n g  p l a n a r  c u t s  i n  c y l i n d e r s  o f  Barre 

g r a n i t e .  The p l a n a r  c u t s  w i l l  be  ground t o  v a r i o u s  roughnesses  

u s i n g  g r i n d i n g  wheels made o f  v a r i o u s  g r i t s .  

Fo r  t h e  i n i t i a l  t e s t s  w e  prepared s u r f a c e s  p o l i s h e d  w i t h  

1000-gr i t  p o l i s h i n g  compound. T h i s  p o l i s h e d  s u r f a c e  r e p r e s e n t s  

t h e  smooth end member i n  a s u i t e  o f  s u r f a c e s  ground t o  v a r i o u s  

roughnesses  . 
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We obse rve  that  a l t h o u g h  k d e c r e a s e s  r a p i d l y  w i t h  F, t h a t  

these samples, w i t h  a s i n g l e  smooth mated f r a c t u r e ,  have a perme- 

a b i l i t y  o f  0.3 darcy  a t  1 Kb e f f e c t i v e  normal stress. T h i s  v a l u e  

i s  three  o r d e r s  o f  magnitude h i g h e r  t h a n  t h e  whole rock  p e r m e a b i l i t y  

and s u p p o r t s  o u r  o r i g i n a l  premise t ha t  f r a c t u r e s  can remain e f f i c i e n t  

f l u i d  t r a n s p o r t  p a t h s  even wh i l e  s u p p o r t i n g  h igh  e f f e c t i v e  normal 

stresses. 

Data f o r  these p l a n a r  s u r f a c e s  are shown i n  F i g u r e  3 where 

l o g  k i s  p l o t t e d  a g a i n s t  l o g  e f f e c t i v e  c o n f i n i n g  p r e s s u r e  (‘PI .  To 

a rough approximat ion  the  law o f  e f f e c t i v e  stress i s  v a l i d  and t h e  

o f f s e t  o f  o u r  two cu rves  f o r  t h e  k of  p l a n a r  s u r f a c e s  i s  a measure 

o f  e x p e r i m e n t a l  e r r o r .  The p l o t  s u g g e s t s  t h a t  t h e  r e l a t i o n s h i p  

between k and does no t  f i t  t h e  e q u a t i o n  f o r  a power law. 

( b )  F r a c t u r e  w i t h  a f i l l i n g  s e p a r a t i n g  t h e  p l a n a r  s u r f a c e s .  To 

t e s t  t h e  e f f e c t  o f  s u r f a c e  f i l l i n g s  on k ,  w e  p l a n  a number of  t e s t s  

u s i n g  p l a n a r  c u t s  separated by s u r f a c e  f i l l i n g s  o f  v a r i o u s  s i z e s  

and composi t ions .  The composi t ions  o f  t h e  f i l l i n g  w i l l  i n c l u d e  

quartz, calcite, and clay particles as well as mixtures. The 

p a r t i c l e  s i z e  o f  t h e  f i l l i n g s  w i l l  v a ry  from sand t o  c l a y .  

For  o u r  i n i t i a l  t e s t s  w e  chose t o  s t a r t  w i t h  a f i l l i n g  o f  

q u a r t z  sand known as Ottawa sand. Data f o r  t h e  sand f i l l e d  

f r a c t u r e  are shown i n  F i g u r e  3. The l a w  of  e f f e c t i v e  s t ress  

was n o t  v a l i d  f o r  these t e s t s  as  k appears t o  depend on t h e  

c o n f i n i n g  p r e s s u r e  and i s  a p p a r e n t l y  n o t  g r e a t l y  a f f e c t e d  by  

l a r g e  changes i n  po re  p r e s s u r e .  A f i l l i n g  of  q u a r t z  sand i n -  

c r e a s e s  t h e  p e r m e a b i l i t y  o f  a f r a c t u r e  by as much as two o r d e r s  

o f  magnitude a t  t h e  same e f f e c t i v e  c o n f i n i n g  p r e s s u r e  ( F i g u r e  3 ) .  
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( c )  Non-planar f r a c t u r e s .  To tes t  t h e  e f f e c t  o f  s u r f a c e  geometry 

on k ,  w e  p l a n  a number o f  t e s t s  u s i n g  s u r f a c e s  o f  v a r i o u s  shapes. 

We p l a n  t e s t s  u s i n g  samples w i t h  i n t e r l o c k i n g  tee th  and samples 

w i t h  c a v i t i e s  o f  v a r i o u s  shapes. 

I n i t i a l  tes ts  i n c l u d e d  samples wi th  s q u a r e  t e e t h  which were 

0.65 cm h igh  and 1 . 2  cm wide (F igu re  1). The s q u a r e  t e e t h  are 

i n t e r l o c k i n g  and were lapped t o g e t h e r  600# g r i t  t o  p rov ide  very  

c l o s e  t o l e r a n c e s  between t ee th .  Data f o r  t h e  samples w i t h  i n t e r -  

l o c k i n g  s q u a r e  t ee th  are shown i n  F i g u r e  4. k was c a l c u l a t e d  

u s i n g  the  sample l e n g t h ,  n o t  t h e  a c t u a l  d i s t a n c e s  o f  f l u i d  flow. 

To a rough approximat ion  t h e  l a w  o f  e f f e c t i v e  stress i s  v a l i d  

f o r  t he  p e r m e a b i l i t y  o f  these  samples ,  A s  was t h e  c a s e  f o r  

samples w i t h  a p l a n a r  s u r f a c e  t h e  t r e n d  i n  l o g  k v e r s u s  log 

does n o t  p l o t  as a power l a w .  F o r  bo th  t y p e s  o f  s u r f a c e s  the  

p e r m e a b i l i t y  d e c r e a s e s  f a s t e r  t h a n  t h e  e f f e c t i v e  c o n f i n i n g  

p r e s s u r e  ( F i g u r e  4 )  , 

The e x p e r i m e n t a l  v a r i a t i o n  between tes ts  u s i n g  samples 

w i t h  t e e t h  appears la rger  t h a n  was measured f o r  samples w i t h  

p l a n a r  s u r f a c e s .  The f r a c t u r e s  w i t h  s q u a r e  t e e t h  are  less  

permeable t h a n  t h o s e  w i t h  p l a n a r  f r a c t u r e s .  However, i f  t h e  

a c t u a l  d i s t a n c e  o f  f l u i d  f low i s  measured f o r  t h e  sample  w i t h  

s q u a r e  t e e t h  and t h a t  d i s t a n c e  used i n  t h e  p e r m e a b i l i t y  c a l c u l a -  

t i o n ,  w e  f i n d  t h a t  k i s  about  t h e  same o r  even a l i t t l e  l a r g e r  
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t h a n  f o r  samples  w i t h  p l a n a r  s u r f a c e s  ( F i g u r e  5 ) .  The r eason  

k may b e  a l i t t l e  l a r g e r  f o r  samples w i t h  t e e t h  i s  t h a t  f r a c t u r e  

c l o s u r e  i s  less because  o f  t h e  mismatch between s u r f a c e s .  

( d )  P e r m e a b i l i t y  o f  sands tone .  As a c o n t r o l  w e  measure k f o r  

a s o l i d  sample of  sands tone .  F i g u r e  6 shows t h e  v a r i a t i o n  o f  

k w i t h  f o r  b o t h  h y d r o s t a t i c  c o n d i t i o n s  and d i f f e r e n t i a l  s ta tes  

o f  stress. A t  a n  e f f e c t i v e  c o n f i n i n g  p r e s s u r e  o f  100  b and 

6 = 

An i n c r e a s e d  k accompanies d i l a t a n c y  p r i o r  t o  f a i l u r e .  

t h e  f rac ture  s t r e n g t h  of Grimsby sands tone  i s  2 .2  kb .  

D I S C U S S I O N  AND OUTLINE OF IMMEDIATE GOALS 

The accuracy  of  f r a c t u r e  p e r m e a b i l i t y  measurements t o  date 

i s  l i m i t e d  by any a b i l i t y  t o  measure t h e  t r u e  c r o s s - s e c t i o n a l  

area o f  t h e  f r a c t u r e .  It may neve r  be  p o s s i b l e  t o  measure a t r u e  

c ros s - sec t iona l  area bu t  the  c ros s - sec t iona l  area may be  e s t i m a t e d  

by  measuring f r a c t u r e  c l o s u r e .  We p l a n  t o  measure f r a c t u r e  c l o s u r e  

by a t t a c h i n g  a n  ex tensometer  a c r o s s  the  f r a c t u r e .  T h i s  w i l l  

e n a b l e  us  t o  measure t h e  r e l a t i v e  c l o s u r e  and t h u s  change i n  

r e l a t i v e  c r o s s - s e c t i o n a l  area as a f u n c t i o n  o f  c o n f i n i n g  p r e s s u r e .  

We view the  measure o f  f r a c t u r e  c l o s u r e  as t h e  key problem i n  

f u t u r e  work and w i l l  t r e a t  i t  accord ing ly .  
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F u t u r e  s t eps  i n  ou r  expe r imen ta l  program are as f o l l o w s :  

(1) We w i l l  complete o u r  data s e t  measuring t h e  e f f e c t s  o f  

s u r f a c e  roughness ,  geometry and f i l l i n g  as a f u n c t i o n  o f  e f f e c t i v e  

c o n f i n i n g  p r e s s u r e  a t  room tempera tu re .  

( 2 )  We w i l l  gather a data set  t e s t i n g  the  e f f e c t  o f  e l e v a t e d  

t empera tu re  on a l l  o f  the  above parameters. 

( 3 )  Then w e  w i l l  use  a chemica l ly  a c t i v e  fluid t o  measure 

t i m e  dependent  changes i n  f r a c t u r e  p e r m e a b i l i t y  f o r  t he  above 

pa rame te r s .  

( 4 )  F i n a l l y  w e  p l a n  t o  complete o u r  data  se t  by sampling 

t h e  p e r m e a b i l i t y  o f  n a t u r a l  f r a c t u r e s .  
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