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LRBSTRACT

A numerical method is pfesented for analyzing the transonic
potential flow past a lifting, swept wing. A finite-difference
approximation to the full potential equation is solved in a coordi-
nate system which is nearly conformally mapped from the physical
space in planes parallel’to the symmetry plane, and reduces the
wing surface to a portion of one boundary of the computational grid.
A coordinate invariant, rotated difference scheme is used, and the
difference equations ére solved by relaxation. The method is
capable of treating wings of arbitrary planform and dihedral,
although approximations in treating the tips and vortex sheet make
its accuracy suspect for wings of small aspect ratio. 'Comparisons
of calculated results with experimental data are shown for examples
of both conventional and supercritical transport wings. Agreement
is quite good for both types, but it was found necessary to accodnt
for the displacement effect of the boundary layer for the super-
critical wing, presumably because of its greater sensitivity to

changes in effective geometry.



INTRODUCTION

The development of profile shapes capable of efficient
operation in the transonic regime has spurred interest in flight
vehicles designed specifically to opefate at near sonic speeds.
The ability to predict accurately the aerodynamic characteristics
of the complete three-dimensional wing should have a substantial
impact on the design of sﬁch vehicles by allowing detailed trade-
off studies to be performed without recourse to wind tunnel test-
ing of evéry design variation.

Recent advances in thé theoretical prediction of inviscid
transonic flow fields are based largely on type-dependent, fipite—
difference solutions of the steady potential equation. These
methods were‘first applied to the transonic small disturbance
equation by Murman and Cole [1], and the full potential equation
by Jameson [2] and Garabedian and Korn {3] for the_prediction of
air foil flow fields. The three-dimensional small disturbance
equation has also been solved for s&ept wings by Ballhaus and

Bailey [4] and for wing-cylinder combinations by Bailey and

. Ballhaus [5]. Finally, the full potential equation has been

solved by Jameson for the transonic flow over an oblique yawed
wing [6]. Although an oblique wing should be aerodynamically more
efficient than a conventional swept wing [7], it presents
problems of stability and control and aeroelastic divergence.
We consider here the prediction of the flow over a swept wing.

In Jameson's treatment of the flow over obligue wings,

the coordinate system is aligned in planes normal to the wing



leading edge. Thus, for nonzero angles of yaw the free stream
velocity vector is not contained in these planes, and the freat-
ment of a symmetry plane in the flow.past a swept wing would be
difficult in this coordinidte system. In the analysis presented
~here, the flow is analyzed:in ceordinate planee perallel to eﬁe
free stream velocity vector, end the symmetry condition is
applied on a single coordinate surfaee. To alloﬁ the use of a
fine meeh to resolve the details of the flow in the se@sitive‘
region near the leading.edge,lthe spanwise coordinate lines are
aligned with the leading edge. Thus for wings of appreciable
sweep, the resulting coordinate system is'highly nonortﬁogonal.

~The type of geometry we shall treat is illustrated in
Figure 1. It consists of a wing of arbitrary planform and
dihedral extending from a symmetry plane (or wall). We shall
solve‘a finite difference approximation tc the full potential
equation for the transonic flow past such é configuration using
avgeneralized relaxation method. The finite difference épproxi-
mation is the rotated difference scheme introduced by Jameson [6],
and is not in conservation form. This can introduce substantial
~errors in the treatment of flows containing strong shock waves.
To assure the correct shock jump relations one oughf either to
introduce a shock fitting scheme or else to use a difference
scheme in conservation form. A conservative formulation of the
small disturbahce equation has beeﬁ given by Murman [8], and the
exact potential flow equation has been selved in conservation form
by Jameson7[9] for flows past airfoils. Comparisons with

experimental data show no clear cut -advantage to using the



conservation form without a detailed modeling of the shock wave

boundaryvlayer interaction [10]. This is appafently because the
error in the shock jump relations which results from the use of
the nonconservative schemes is in the same sense as the effect
of the boundary layer intéraction. A three dimensional scheme

in conservation form will be discussed in a later report. -



ANALYSIS

Geometrx

Accurate representation of the finite difference boundary
conditions is much simplified if the boundary surfaces lie in

coordinate planes. This is achieved in the present analysis by

a sequence of transformations based upon a nearly conformal mapping'

of the physical space in planes containing the wing sections,
taken in the streamwise direction. We begin by considering the
physical space to be described in a Cartesian coordinate system
for which x, y, and z represent the>streamwise, vertical, and
~spanwise directions, as shown in Figure 1. We then introduce an
arbitrary singular line, just inside the leading edge of the
profile at each spanwise station. This singular line will be the
locus of branch points in subsequent transformations in each of
the spanwise planes to unwrap the wing surface to a shallow bump;
its location will be chosen to make the bump as smooth as possible.

Representing the singular line as

X

xs(Z)
Y =y (2)

we define-

EY
I

X - xs(z):,
Y=y -y (z), (1)
zZ =2z .

This transformation shears out the wing sweep and dihedral, and

puts the singular line at the origin of each X,y plane. 1In .each




of these planes we introduce the conformal mapping
(X, + iv) %= 2(x +’i'5 (2)
l l y r

which maps the entire wing surface to a shallow bump near the

plane Yl = 0. If we define Fhe height of this bump as

Y, = S(X,z) ,

then the final shearing transformation

X =X |
Y=Y, - s(xX,z) , - (3)
7 =32 ,

- reduces the wing sufféce'to a portion of the plane Y = 0 .
To render the computational domain finite, stretching

transformations are introduced. For example,

o2,
(1 - ¥Y7)

I A

a<l, (4)

is used to map thé planes ¥ = + ® to Y = + 1. Similar tranéfor-
mations are used pﬁtboard of the wing tip in the Z direction,
and downstream of the trailing edge in the X direction. A
sketch of the resulting rectangular computational domain is
shown in Figurelz. |

To avoid discontinuities at thé wing trailing edge, the-
branch cut in each 5panwise plane is continued smoothly'down4
stream. In the physical plane, the continuation is represented
by % - *

In [:———13J

_ _ _ % X - X
Y = Yio + T(xte-x ) te_* (5)

t )

=



where T is the mean of the upper and lower surface slopes at the

trailing edge, ite’ §te
%

X 1is a suitably chosen scaling constant (usually taken as the

are the trailing edge coordinates, and

ordinate of the local quarter-chord point). In the solution,
this cut is taken as the location of the vortex'shéet, acioss
which special difference formulas must be applied. Thus we make
the approximation that the vortex sheét lies in a fixed surface
near the plane of the wing which leaves the traiiing edge

smoothly according to the above formula.

T EQuétion_of Motion

In the absence of strong shock waves, the steédy, inviscid
motion of a compressible fluid is well approximated by the well
known equation for the velocity potential ¢:

2 2 2 .2 2 2 e _
(a —u.)¢xx+ (a”-v )¢yy_ (a“-w )@zz 2uv<1>xy 2uw<I>xz 2vw¢yz- 9,4(6)

where u, v, and w are the velocity components (i.e., the,
derivatives of ¢) in the x, y, and z directions, and a is the
speed of sound. For the steady, potential flow of a perfect gas

with specfic heat ratio Y,
a = a2 - 1%£ (u2+ v+ w2) ’ (7)

where a, is the stagnation speed of sound. If the flow is uniform

at infinity, parallel to the x-y plane, and inciined{at an angle a



to the x-axis, the far field singularity can be removed by defin-

ing the reduced potential G as

G=9% - xcos a -y sin a

o - {%(xi-yi)+xs(z)} cos a - {X1Y1+ ys(z)} sin a.

The transformations of equations (1), (2), and (3) applied to

equation (6) then result in an equation of the form

A GXX + B GYY'+ C GZz + D GXY + E GXZ + F GYZ + R=0.

If we introduce‘£he notation

]
n = xl_ Xg - X1_ Yg
X
v=2xo =2L1Ixcosa+ ¥Y,sin a + G~ S,G
h X1 h 1 1™ X XY '
vV = 1 ] =.l -Y cos’a+ X.sin o + G
h Yl h 1 1 Y ’
1 l'
w = ¢Z = hEU + hnV + xscos a+ y851n a+ GZ— SZGY '
and
U =U+ hiw ,
V=V + hnw ,
where _ _ 2
2 d(x + 1iy) ) 2
h® = - =x1+Y1,
d(Xl +.1Yl)

(8)

(9)

(10)

(11)

(12)

(13)



then

B =

C =

(w)
I

E =

o
"

Note

the coefficients in equation (9) can be written as

a?l1 + hzgz} - 52
{a2(1+h252)- 62}s§ + {a2(1+h2n2)- 62}
+ hz(az—wz)sg - {2h2azgn - 2ﬁv}sx

+ {2h2£a2—2hwﬁ}SxSZ - {2h?na2—_2hwv}s

hz{a2 - wz} ‘

- 2{a2(1+h2£2)-ﬁ2}sx+ {2h25na2- 266}- {zhzgazf'zhwﬁ}sz :

Zvl.

- 2h%Ea’ — 2hwi ,
- (14)

-2h2(a2-w2)sz - {2h2£a2— 2hwﬁ}sx+ 2h%na®- 2hwV ,

{~{£%1+h252)é 62}sxx-‘h2(a2-w2)szz; {2hzga2-2hwﬁ}sxz}GY

3 2 2 12 12 [ ] " "
+ h™(a"-w ){{(xs Y IX __t 2x y Xy - x X, _- ysxl_}u
XX Xy X Yy .

2-y;2)x1__+ 2%y X, _+ X X; - y;Xl_}V}
Xy XX Y X

+,{-(xé
4 }(Uz+v2)

' ' L N
+ 2h w{(xl_xs_xl-ys)xl__+ (Xy_xg+ Xy v )Xy
x Yy XX Y RS

Xy

2 52

+ % {X1U+Y1V}(U2+V2)_+ cos a{hz(iz-nz)az-ﬁ -V +h2(a2-w2)x;}

__ 1]
+ sin a{ZhZEnaz- 20V + hz(az-wz)ys} .

that for the transformation defined by equation (2),

2 .
X, = X./h%,
A PR |

Y =Y /h2 ,
1- 1
Y .

(15)



and

]

x,_ _ =-— 0% -],
XX h
. (16)
Y .
x,__ = —¢ (%- x?) .
Xy h
The symmetry condition that w = 0 on the plane z = 0
. requires
GZ + EGX - {SZ + ng - n}GY- =0 , (17)

and the boundary condition that the flow be tangent to the wing

surface requires

l 2 \2
{—h—z- (1 + sy) + {sz + ESy - n} }GY

1. |
+ {— L5+ 5{‘Szf Esx*“}}cx +-{- S, ESy + “}Gz

h

+,{-X1_ cos a- X,_sin a}Sx— X,_cos a+X,_sin a = o, (18)
x Y B < :

on Y = 0.

Downstream of a finite lifting wing there will be a vortex
. sheet. Across the sheet the pressure is continuous, but there
may be discontinuities in the tangential velocity components.
Convection and roll-up of the vorﬁex sheet are ignorea. In
reality, the component of velocity normal to the sheet must be
zero, but in our approximation it is simply required to be contin-
uous. Thus, the equation

byy =
is used at points lying on the vortex sheet. Also the disconti-



nuity in potential is assumed to be constant along streamwise
coordinate lines downstream of the trailing edge. The value of
"this discontinuity is determined by the Kutta condition, and its

spanwise variation determines the strength of the vortex sheet.

Finite Difference Approximation

The success of the type dependént,difference scheme applied
'to the transonic small disturbance equation by Murman énd Cole [1]
can be attributed to the fact that it efféctively adds a direc-
tional bias to the equation at points where the local flow is
supersonic. In constructing an analogous scheme for the full
potential equation ih general curvilinear coordinates (which may
not be aligned, even approximately, with the local flow direction),
care must be taken to ensure that this bias is added in the upwind
direction, i.e., in the direction parallel to the velocity vector.

A~methodAwith this property has been proposed by Jameson [6].
To illustrate it, we return to the potential equation in the
physical coordinates. The équation is rearranged as if it were
expreésed in  a Cartesian coordinate system aligned with the local
flow direction, s, at the point under cohsideration. Then

- equation (6) assumes the canonical fo:m

2 2. 2,,2 _. |
(a®-g%)e__ + a“(vie-o_) =0 (19)

where q is the magnitude of the velocity.

10



The relaxation scheme is designed to simulate an artificial
time dependent process which converges to the desired solution
of the steady state equation. In the finite difference approxima-
tion to the potential equation, céntral differences are used to .
calculate all first derivatives, from which the velocities can be
determined using equations (11). At grid points where the flow
is subsonic, central differences are also used to approximate the
second-order derivatives in equation (9). A typical central

difference formula for GXX is

(n+1) 5 (n+1). 1 (n) (n)l

G,k - @ Ci,g, 7207 @) G55kt Cie1,i.k

Cxx = ' ) r (20
AX

where the superscripts denote the iteration level and w is
the relaxation factor [6]. If we regard each iteration as repre-
senting an advance At in an artificial time coordinate, this

formula can be interpreted as an approximation to

st 12

XX AX t

Similarly, the formula

(n) () . (n+1) (n+1)
G = Gi+1,j+1,k Gi+1,3-1,k Gi-l,j+l,k * Gi-1.5-1,k

XY 4AXAY (21)

can be interpreted as an approximation to.

G L]

1
Cyy = 32 Yt

XY

o>
%l

The relaxation process can thus be regarded as an approximation to

the time dependent equation

11



) _
(M —l)GSS— Gmm- Gnn+ 2alet+ 2a2Gmt+ 2a3Gnt+ GGt = Q, (22)

where M = q/a is the local Mach numbei, m and n are suitably
scaled coordinates in the plane normal to the velocity vector,
and Q contains all the terms in the equation other than the
principai part. The coefficients al,az,a3, and 6, depend on
the mix of o0ld and updated values 1n the dlfference equations
as well as any explicit time-like or mixed terms that have been.
added for stability.

Introducing the new time coordinate

%

Mz-l

s + o

T=1¢t- om + a3n ’

transforms equation (22) to
M2-1)G__- ¢_- G - -J;l- - a2 -alle,. +66, = 0 (23)
o ss mm nn _ 2 3J°TT T . ‘

In order to ensure the convergence of the scheme, we require
that equation (23) should be a damped three-dimensional wave

"equation. This will be the case if

2

- 2. 2,2,
Gy > (M -1)(a2+a3) . (24)

At points where the velocity is supersonic, upwind differ-
ences are used to represent contributions to GSs in the first

term of equation (19). This is done using formulas of the type

(n+1) _ () _ ,o(n+l) (n)
e 2,5k 7 %,5,6 " %65,k t a2,k
- , ]
“XX _ sz
. - (25)
(n+l) (n+1) : (n+l) (n+l)
G} - —
S U5 0% S 5 U5, 15 Sl 05 5 9 Sl o U 1 05 300

XY - AXAY
12




These formulas also have the property of guaranteeing diagonal

dominance for the updated values on each line. The formula for

GXx can be interpreted as representing

At
Gyx * 2% X Cxt -

Together with analogous formulas for GYY and GZZ-’ this intro-

duces a term equal to

2
| 2(M -l)Gst

into equatibn (22) . To ensure that equation (24) is satisfied
at points near the sonic line where (Mz-i) is small, the coeffi-

cient of Gs can be further augmented by adding a term of the

t
form

. At 2

- B {UGXt + Veyy * B WGZt} ’ : (26)
where B8 > 0 is appropriately‘choseh. The required mixed

derivatives can be constructed in the form

(n+1) (n) (n+1) (n)

G. . - G. 5 - G. . + G. .
At - _ i, 3.,k i,j.k i-1,3.,k i-1,3,k (27)
X °xt %2 .

The supersonic difference scheme is completed by using central
difference formulas similar to equations (20) and (21) to
evaluate contributions to the second term of equation (19),
but with w set to unity, as suggested by a local von Neumann

.test [6];

13



Boundary Conditions

The boundary condifion at infinity is particularly simple
because the squafe root transformatioh reduces the entire vortex
wake to the X-Z plane at downstream infinity. Therefore, since
. the uniform stream singularity has beén removed by the introduc-
tion of the reduced potential, the Dirichlet condition

G=0
is appropriate.

On the X-Y and X-Z planes, finite difference approximations
to the Néuménﬁ boundary conditions specified by equations (17) and
(18) must be applied to those portions représenting'solid-bOunda-‘
ries '(i.e., the symmetry plane and the wing éurface). At the wing
surface, central differencé approximations are used in equation
(18) to define Values of the reduced potential at image points
locéted one mesh spacing below the_X;Z plane. A similar method

is usea on the symmetry plane, but due t§ the high degree of
nonorthogonality of the coordinate sfstem when the'wing is highly
swept, simple central differences become unstable. Thus; to set
vthe potentiél values at the image points for the'symmetry plane,
the X-differences required in equation (17) are evaluated by
averaging one-sided differences on either side of the symmetry
‘pPlane, taken in the, upwind direction in the image plane,.and in
the downwind direction in the first plane in the flow region.

The symmetry condition thus remains formally second order'accurate,
aﬁd the incorporation of the image point whose value is being set
intd the X-difference édds to the'étability of the scheme. This |

' method of handling the symmetry condition has proved stabkle for

14




sweep angles in excess of 35 degrees.

At points on the X~Z plane which do not lie on the wing
surface, the values of the reduced potential at the image points
are taken to be those of the associated point on the other side
of the branch cut, allowing for a discontinuity across the vortex
sheet. The value of this discontinuity is taken to be independent
of X at each spanwise station, and its value is determined by the
Kutta condition that the flow leave the trailing edge smoothly.

One final note concerns points which lie on the contin-
uation of the singular line outboard of the wing tip. At
these points the mapping is singular, and a special
limiting form of the difference equations must be used. At
points where the solution is regular, the nonlinear terﬁs of
the potential equation are of 0(1/h), while the Laplacian

transforms to

A
h®

(o + & ) + 0 .
X Xy Y, Y, 27
Thus, in the limit as h tends to zero,

¢, , + @ =0 (28)

is a suitable limiting form.

15



RESULTS

Computational procedure

The potential formﬁlation is particularly attractive for
three-dimensional calculations because it requires the storage of
only one quantity at each grid point, and the number of grid
points required to accurately describe these flow fields is large.
Even so, it is impractical to store the entire solutiop array
in the high speed core of many current computing machines.
Fortunately, since the analysis presented here depends on a
relaxation solution of the difference equations, it'is not neces-
sarY’to have the entire solution immediately available at all
times; It is, therefore, stored on a disk file, and read into
core one X-Y plane at a time. At any time during the solution
procedure, .the vaiues of the potential on fouf such planes are
in the core. 014 values are buffered in and new values bufferea
outiof core while other calculations are being performed as much
as possible, to keep the process efficient.

| In each X-Y plane, the equations are solved by suécessive
line overrelaxation. The pléne is divided into three'regions,
as shown in Figure 3. 1In the central region the equations are
rélaxed'along horizonta} lines, sweeping from infinity to the
wing surface. In the outer regions the equations are relaxed
along vertical lines, sweeping away from the central region to
infinity.l Such a sweep pattern énsufes that the sweep direction

will not be opposed to the flow direction in any supersonic zones,

.16




which would result in instability. In many cases, the central
region can be taken to cover the entire plane; that is, only
horizontal line relaxation is used.

To speed convergence, an initial calculation is usually
performed on a coarse grid, typically containing 48x6x8 grid cells
in the X, Y, and Z directions respectively. This solution is |
then interpolated onto a finer grid containing twice as many mesh
cells in each direction, and is used as a stafting guess for an
intermediate solution. The process is repeated once again to
give the final solution on a grid containing 192x24x32 mesh cells.
A typical run consisfs of 100 relaxation sweeps on each grid,

. requiring a total of approximately 85 minutes of CPU time on a
CDC 6600. The same program has been run on the CDC 7600, for

which a similar calculation requires about 15 minutes.

Examgles

In this section we present the results of calculations
.using the swept wing program, and compare the predicted surface
pressure distributions with those measured in experiments. The
comparisons are made for two different wings, each typical of
a class of swept wings of the subsonic transport type.

The first wingvgeometry is representative of the tip
panel of a relatively simple wing of conventional high speed sec-

tion shape. It has a uniform section of 9.8 percent thickness ratio,

17



and the planform.has a leading edge sweep angle of 30°, avtaper
ratio of 0.7, and an aspect ratio of 3.8. A program generated
projection drawing of the wing is shown in Figure 4. The wing
was tested by Monnerie and Charpin [11] of the ONERA, and carries
their designation of wing M-6.

The first results presented are at a free stream Mach
number of 0.9226 and zero angle of atﬁack, resulting in zero lifg
for this symmetriéal wing. Figure 5 compares the calculatedwand
measured streamwise surface pressure distributions at the 20, 45,
65, and 95 percent semispan locations [11,12]. Agreement is
quite good, including the predicted shock location.

'Figure 6 shows similar results fér the same wing at a
Mach number of 0.919 and an angle of attack of 3.07 degrees.
Again, agreement.between the computed and.experimental-results
is quite good, wifh the exception of ﬁhe shock location on the
lower surface, which is somewhat further aft than predicted by
the calculation.

Figure 7 shows a program generated, three-dimensional,
projection view of the wing surface pressure distribution at a
Mach number of 0.840 and an angle of attack of 3.06 degrees.

This is a particularly interesting case because of the merging

of two shocks into one on the wing upper surface as one proceeds
outboard. This pattern ié graphically illustrated in the projec-
tion view. Figure 8 shows comparisons of the calculated results

with experimental data, again at the 20,‘45, 65, and 95 percent

semispan .stations. Agreement is quite good, including the

18



prediction of the double-shock pattern at the inboard stations.

Figure 9 shows the projection view of the wing surface
pressure distribution at a Mach number of 0.837 ard an angle
of attack of 6.06 degrees. Again) the calculation predicts the
merging of a double shock pattern inboard to a single shock
further outboard. Comparisons with data, shown in Figure 10
show that agreement is still quite good.

The second gecmetry is representative of wings being
considered for the next generation of subsonic transport aircraft..
The Wing is twisted, both aerodynamically and geometrically, is
highly tapered, and has a discontinuity in trailing edge sweep
angle at the.35 percent semispan location. The planform has a
leading edge sweep angle of 35 degrees and an aspect ratio of 7.
It has 5 degrees of dihedral. It is defined by four distinct
streamwise sections (at the 12, 35, 70, and 100 percent semispan
stations), with linearly interpolated coordinates between. The |
streamwise thickness ;atio varies from 16.3 percent at the root
to 11.9 percent at the tip. For the wind tunnél tesfs the wing‘
was mounted on a quasicylindrical fﬁselage which extended to |
" the 12 percent semispan.- For the computations, the symmetry
plane was assumed to be at the same spanwise station as the
wing-fuselage intersection in the tests. A projection drawing
of the wing (extended to the fuselage centerline) is showp in
Figure 1l1. For these calculations, the wing geometry was modified
to account for boundary layer effects by adding the displacemenf

thickness obtained from two—dimensional'boundary layer calculations

19



multiplied by an empirically determined spanwise weighting
factor. The wing was one.of several tested in a cooperative
program by the Douglas Aircraft Company and the NASA Ames
Research Center in the Ames ll-foot tunnel at a(Reynolds number
of approximately SXIOG, based on the mean aerodynamic chord.
A program generated three-dimensional projection drawing

of the upper and lower surface pressure distributions for this
wing is shown in Figure 12. (This particular case was run with
no correction for boundary layer displaeement effect, and with
the wing extended to the fuselage centerline.)

| Comparisons with experimental data are shown in Figures
13 and 14. The first case, Figure 13, ehqws streamwise surface
pressure distributions.at a number of spanwise stations for a
Mach number of 0.75 and an angle of attack ofV2.2‘degrees.
Agreement with experiment is seen to ne excellent, including
the location and strength of the rather strong shoek near the
‘leading edge on the wing upper surface.

“Figure 14 shows similar comparisons at a Mach number of
0.84 and an angle of attack of 1.85 degrees. Again, agreement
is quite good, although the resolution of the first (rather weak)
shock of the 1nboard double shock pattern seems lost between the
'35 5 and 50 percent semlspan locatlons.

| The results displayed in Figures 13 and 14 were klndly
supplied by R. M. Hicks and P. A. Henne. Further details of
the wing geometry, calculations, and test condltlons are

contained‘in [13].
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CONCLUSIONS

A numerica1 method has been presented for determining the
inviscid transonic flow past a swept wing..The-method is based
on a type-dependent, finite difference approximation to the full
potential equation, solved in a computational domain designed
for accurate application of the wing surface and symmetry plane
boundary conditions. Calculated surface pressure distributions
agree well with experimental data for wings of conventional and
supercritical section shape (when the geometry in the latter
cases is corrected for the dieplacement effect of the boundary
layer).

Mapping techniques similar to those used here could be
used to treat more realistic geometries, e.g., a wing mounted
on a fuselage [14). The recasting of the finite difference
approximation into conservation form would also be an important
theoretical contribution. | ~

Finally, as was mentioned in the preceding section, these
calculations require a substantial amount of computer time. |
Thus, methods of accelerating the convergence of the iterative
scheme are particularly important in three-dimensional problems.
A number of techniques to achieve this have met with success in
two-dimensional calculations, includiﬁg a hybrid Poisson-eolver/
relaxation technique [15,16], a multi-grid method [17], and an
alternating-drection method [18]. The extension of these methods

to three-dimensional calculations should result in great savings.
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(a)

Plan View : (b) Front View

Figure 1. Geometry of4Swepthing,
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Figure 2. Sketch of Computational Domain.
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FIGURE 7

UPPER SURFACE PRESSURE LOWER SURFACE PRESSURE
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Figure 8. Comparison Of Calculated And Experimental Wing Presswe Distributions For Onera Wing M-6.
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FIGURE 9
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FIGURE 11, ‘GEOMETRY :OF DOUGLAS ‘NENG.
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Appendix A. Description of the program

Ail the numerical results in this report were generated
by the computer program FLO 22 listed in Appendix B. This
proéram includes options to tfeat both a swept wing on a
wall (Figuré Al), and an isolated yawed wing (Figure A2).
Forvswept wingvcalculations the sheared parabolic coordi-
nates are intrbduced in planes parallel to the free stream.
In the treatment ‘of a‘yawed'wing the whole cdordinate system
is rbtated through a specified yaw angle, so that the X-Y
planes are nofmal'to the leading edge of the wing at its
center liné. In eitherlcase the wing section can be varied
in an arbitfary ménner,'and the only restriction on the plan;
form is that the leading edge may be any smooth curve, but
it should not have kinks, since these would cause the second
derivatives of the singular line of the coordinate system
to become unbounded. Kinks are permitted in the trailing edge,
on the other hand. The trailing edge defined by the input
is éctually rébiacéé by a piecewise straight 1inevconnecting

the nearest mesh points in the computational lattice.
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The geometry is defined by giving the wing sections at
successive span stations from the wing root to the tip, or in
the case of a yawed wing, from the leading to the trailing tip.

Up to 1l span stations may be used for this purpose, and.the

planform and dihedral are determined by specifying fhe chord

and the x aﬁd,§ coordinates of the leading edge at these span
stations. vThe wing section at each station is then determined

by scaling and rotating a prescribed_profile; given by a table
of x and y qoordinates; If the wing sections are similar, only
the profile for the first station need be read in. The gdordif
nates for the other stations are 6btained by: scaling the original

profile to the proper chord, and rotating it to obtain the.

-appfopriate twist. If, on the other hand, the sections are not

similar, the program permits the coordinates of new profiles to
be read in at each span station. The wingjsection.between
stations is generated by interpolation. The. location of. the
singular 1iné about which the wing is unwrapped by the square
root transformation is determined by the parameters XSING and YSING,
which must be specified at each span station. It is important
to choose these 56 that the mapped profile does not have any sharp
bumps.

The main input to the program is read from Tape 5, and
the output is written'on Tape 6. Tapes 1, 2 and 3 are disk files
used for internal storage in order to reduce the requirements for

high speed memory. Tape 4 is a permanent storage device such as
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a magnetic tape cn which an intermediate result can be saved.
The computation can then be continued for more iterations,
starting from the values saved on Tape 4. The disk instruc-
tions in the version of the code listed in Appendix B are
specialized to the CDC 6600 using the FTN compiler. Otherwise
“ the code should be readily adaptable to other computers.

The data deck for a run is afranged to include
title cards listing the>required data items. The complete set
of title'cards provides a-list of all the data which must be
suppliéd, and can be used as a guide in setting up a data deck.-
Eachltitle'card'is followed by one or more cards supplying the
numerigal values of the parameters ;igted on. the titie card.
All data items are read as floating point numbers in fields of
10 columns, and values representing integer parameters are
converted inside the program. A glossary of the input parameters

is given in Table l, and a typical data deck.is shown in Table 2.
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Table 1. Glossary of input parameters

(Liste@ in order of their cccurrence on the data title cards)

TITLE CARD 1

NX

NY -

NZ

FPLOT

XSCAL, PSCAL

1
(
-
l

The number of mesh cells in the direction of the
chord used at the start of the calculation.
NX = 0 causes termination of the program.

The number of mesh cells in the direction normal

~ to the chord and span.

The number of mesh cells in the span direction.

Controls generation of plots.

FPLOT=0. for a print plot but no Calcomp plot

at each span station.

FPLOT=1. for both a print plot and a Calcomp plot
at each span station. ‘

FPLOT=2. for a Calcomp plot but no print plot at
each span station. ' '

FPLOT=3. for a three dimensional Calcomp plot only.

Control the scales of the Calcomp plots.

XSCAL>0. scales each section plot to XSCAL
XSCAL=0. scales each section plot to 5.0

XSCAL<Q0. scales the maximum chord to XSCAL, and
each section plot proportionately to the local chord.
PSCAL#0. sets the pressure scale to PSCAL per inch
in each section plot. , '
PSCAL=0. sets the pressure scale to 0.4 per inch
in each section plot. Also,

PSCAL>0. scales the three dimensional plot so

that the span or semispan is 5. If PSCAL=0. and
XSCAL#0. then the three dimensional plot is

scaled so that = the maximum chord is 1/2 XSCAL.

Indicator which determines the manner of starting
the procram. ,

FCONT=0. indicates the calculation begins at
iteration zero. ‘

FCONT=1. indicates the computation is to be
continued from a previous calculation. In this
case the values of the velocity potential and the
circulation are read from a magnetic tape where
they were previously stored (Tape 4) ., It is still
necessary to provide the complete data deck to.
redefine the geometry. The count of the iteration
cycles is continued from the final count of the
previous calculation and the maximum number of
additional iterations to be performed is defined
by MIT.
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TITLE CARD 2

MIT

cov
P1
P2

P3

BETA

STRIP

FHALF

The maximum number of iteration cycles which will
be computed.

The desired accuracy. If the maximum correction
is less than COV the calculation terminates or
proceeds to a finer mesh, otherwise the number
of cycles set by MIT are completed.

The subsonic relaxatlon factor for the velocity
potential. It is between 1. and 2. and should
be increased towards 2. as the mesh is refined.

The supersonic relaxation factor for the velocity
potential. It is not greater than 1. and is
normally set to 1.

The relaxation factor for the circulation.
It is usually set to 1., but can be increased.

The damping parameter controlling the amount of
added ¢st (see equation (2.6), page 13).

It is normally set between 0. and 0.25.

Determines the split between horizontal and
vertical line relaxation and is the proportion

of the total mesh in which horizontal line relaxa-
tion is used. Fastest convergence is usually
obtained by setting STRIP = 1. so that horizontal
line relaxation is used for the entire mesh.

If convergence difficulties are encountered STRIP
may be reduced to some fraction between 0. and 1.

Determines whether the mesh will be refined.
FHALF=0.: the computation terminates after
completing the prescribed number of iteration cycles
or after convergence.

FHALF#0.: the mesh spacing will be halved after MIT
cycles have been run on the crude mesh size. An
additional data card must be providec for the
refined mesh giving the numerical values requested
by Title Card 2. If

FHALF<0 the interpolated potent1a1 will be
smoothed |FHALF| times.
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TITLE CARD 3

FMACH The free stream Mach number.
YAW The yaw angle of the wing in degrees.
ALPHA The angle of attack in degrees. When the wing

is yawed, ALPHA is measured in the plane normal
to the leading edge, not in the free stream
direction.

CDO The estimated parasite drag due to skin friction
and separation. It is added to the pressure drag
(sum of vortex drag plus wave drag) calculated
by the program to give the total drag.

TITLE CARD 4

ZSYM Determines whether to treat a wing on a wall or
an isolated wing.
ZS¥M=1l.: the w1ng is on a wall
ZSYM= 0.. the wing is an isolated w1ng at a yaw
angle given by YAW. .

NC The number of span stations at which the wing section
is defined on subsequent data cards from the wing
root to the tip if ZSYM=1l., or from the leading
to the tralllng tip if ZSYM=0. If
NC<3 it is assumed that the wing geometry is
the same as for the last case calculated and
the computation for new values of FMACH, YAW, ALPHA
and CDO begins without further data items
being read.

SWEEP1 Sweep of singular line at the wing root if ZSYM=l.,
or .at the leading tip if ZSYM=0.

SWEEP2 Sweep of singular line at the tip.
(SWEEP1 and SWEEP2 are used as end conditions
for a spline fitting the x coordinates of the
singular line.)

SWEEP Sweep of singular line in the far field.

DIHED1 Dihedral of singular line at the wing root if
ZSYM=1., or at the leading tip if Z2S¥YM=0.

DIEED2 Dihedral of 51ngular line at the tip.
(DIHED1 and DIHED2 are used as end conditions for

a spline fitting the y coordinates of the singular
line.)

DIHED Dihedral of singular line in the far field.
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TITLE CARD 5

Z
XLE, YLE

CHORD
THICK

ALPHA

FSEC

TITLE CARD 6

YSYM

NU

‘NL

TITLE CARD 7

TRAIL

SLOPT

(The geometry at the first span station)
Span location of the section.
X and y coordinates of the leading edge.

The local chord value by which the profile
coordinates are scaled.

Modifies the section thickness. The y coordl—
nates are multiplied by THICK.

The angle through which the section is rotated to
introduce twist. In the case of a yawed wing, this
angle is measured in the axis system attacbed to

the wing, not in the direction of the free stream.

Indicates whether or not the geometry for a new
profile is supplied.

FSEC=0.: the section is obtained by scaling

the profile used at the previous span section
according to the parameters CHORD, THICK, ALPHA.
No further cards are read for this span station,
and the next card should be the title card for the
next span station, if any.

FSEC=1.: the coordinates for a new profile are
read from the data cards which follow.

(Profile Geometry Supplied if FSEC=l.)

Indicates the type of profile.

YSYM=0. denotes a cambered profile. Coordinates
are supplied for upper and lower surfaces, each
ordered from nose to tail with the leading edge
included in both surfaces.

YSYM=1, denotes a symmetric profile. A table

. 0of coordinates is read for the upper surface only.

The number of upper surface coordaintes.

The number of lower surface coordinates.

- For YSYM=1l., NL=NU even though no lower surface

coordinates are given.
(Additional Profile Geometry Supplied if FSEC=l.)

The included angle at the trailing edge in degrees.
The profile may be open, in which case it is the
difference in angle between the upper and lower

sur faces.

The slope of the mean camber line at the trailing

- edge. This is used to continue the coordinate
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XSING, YSING

TITLE CARD 8

X,Y

TITLE CARD 9

X,Y

surface, assumed to contain the vortex sheet,
smoothly off the trailing edge. For heavily aft
loaded airfoils, the lift is sensitive to the
value of this parameter, which should be adjusted
by comparing two dimensional calculations using
parabolic coordinates with two dimensional calcula-
tions in the circle plane.

The coordaintes of the singular point inside the
nose about which the square root transformation

is applied to generate parabolic coordinates.

This point should be located as symmetrically as
possible between the upper and lower surfaces at

a distance from the nose roughly proportional to
the leading edge radius. It can be seen whether
the location has been correctly chosen by inspect-
ing the coordinates of the mapped profile printed
in the output. If the mapped profile has a bump
at the center, the singular point should be

moved closer to the leading edge. If the mapped
profile is not symmetric near the center, with a
step increase in 'y, say, as x increases through 0,
the singular point should be moved closer to the
upper surface. The coordinates of the singular
point are chosen relative to the profile coordinates
supplied on the cards which follow.

(Upper Surface Coordinates)

The coordinates of the upper surface. These are
read on the data cards which follow, one pair of
coordinates per card in the first two fields of 10,
"from leading to trailing edge inclusive.

(Lower Surface Coordinates, Read if ISYM = 0.)

The coordinates of the lower surface, read from
leading edge to trailing edge. The leading edge
point is the same as the upper surface leading edge
point. The trailing edge point may be different if
the profile has an open tail.

~—

TITLE CARD 10,1l... (Geometry at the Other Span Stations)

These title cards are the same as Title Card 5
(geometry for the first span station). The number

of such cards depends on the number of input span
stations NC. If the profiles are similar at each
station except for scaling, thickness tc chord ratio
and rotation to introduce twist, FSEC=0. and no

new profile coordinates are needed.
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TABLE 2. DATA DECK FOR ONERA M6 WING

[N~_ Columns 1-10 [ 11-20 | 21-30 | 31-40 | 41-50 i 51~60 | 61-70 ' 71-80 |
| . | ‘
Cards 9 ; i
: | :
Title of case|ONERA M6| WING (copied onto| output abd Calcomb plots) ;
. { y
T =]
Title Card NY NY NZ FPLOT | XSCAL i PSCAL | FCONT
48. 6. 8. 1. i 0.. i o. L o.
{ H
Title Card MIT cov Pl P2 { P3 i BETA STRIP  FHALF
|
100. 1.E-6 | 1.6 1., 1. ., .10 1. 1.
100. 1.E-6 | 1.6 1. . 1. ¢ .10 ;. 1. 1.
100. 1.E-6 | 1.6 L. - L. . .10 5 1.
Title Card MACH YAW ALPHA | CDO f
.840 0. 3.06 .010 ;
Title Card ZSYM NC SWEEP1 | SWEEP2 SWEEP  DIHED1 ; DIHED2 . DIHED
1. 6. 29.9 29.9 29.9 0. | o. . 0.
Title Card z XLE YLE CHORD  THICK , ALPHA | FSEC
0. 0. 0. .6737 . 1. 0. 1. - !
. t !
Title Card YSYM | NU NL ‘ : i
1. 72. 72. ;
Title Card TRAIL | SLOPT | XSING | YSING f :
7.06 0 .00725 | 0. : i ! é
i } e (
Title Card X Y ; vi (Upper Surface)
(72 cards) (Coordinhtes of pfofile) ? :
- :
‘Mitle Card z XLE YLE CHORD | THICK | ALPHA | FSEC
.2 .1150 | o. 6147 | 1. I 0. 0.
Title Card z XLE YLE CHORD | THICK | ALPHA | FSEC
4 .2300 | O. .5558 | 1. 0. - 0.
Title Card z XLE YLE CHORD | THICK | ALPHA | FSEC
.6 .3450 | o. .4968 | 1. 0. 0.
Title Card z XLE YLE CHORD | THICK | ALPHA | FSEC
| .8 . 4600 0. .4379 1. 0. 0.
Title Card z XLE YLE CHORD | THICK | ALPHA | FSEC
: 1.0 .5750 | o. 3789 1 1. | o.. 0.
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Both graphical and printed output are provided. The

‘wing sections defining the geometric configurations are

printed for each span station, if they are different, or for the
first span station only if the sections are all similar. The"
program next prints the coordinates of the unfolded sections
produced by the square root transformations at the root and

the tip. These should be inspected to see that they are reason-
ably smooth. The program alsc prints a chart of an indicator v
Shéwinq tﬁe configuration of the wing in.the cbordinafé surface

to which.it.has been mapped. The values of IV are as follows:

IV = 2 indicates arpoint on the wing
1 indicates a point'on the trailing vortex shéet
0 indicates a point on the singular Iiﬁe
-1 indicates a point aéjacent to the edge of the wing
or vortex sheet
-2 indicates an ordinary point not in contact with the

wing or vortex sheet.

The program next displays the iteration history. The
méximum correction to the velocity potential and the maximum
residual of the difference equations are printed at each cycle,
together with the locations of the pointé where these occur
in the computational lattice, and also the relaxation factors,
the circulation .at thé wing center line, éna fhe number of

supersonic points.
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Aftef a specified maximum number of cycles has been
completed, or a convergence criterion has been satisfied, the
section iift, drag and moment coefficients are printed for
each span station, and the pressure distribution is printed
or displayed in a Calcomp plot'és desirec. Finally the charac-
teristics of the complete wing are printed. These include the
coefficients of 1lift and form drag computed by integrating
the surface pressure, and the ratio of lift to form drag.

An estimate of the friction drag coefficient may be supplied

in the irput, and this will be included to. provide an estimate

of the total drag coefficient of the ratio of l%ft to total drag.
The pitching, rolling and yawing moments are also computed

and printed. In the case of a yawed wing these are in an axis
system normal to the wing leading edge at its center line. In

the case of a wing on a wall the rolling moment is the root
bending moment.

Finally additional Calcomp‘plots are generated if they
are desired. These show the convergence history, and also a view
of the complete wing and the three dimensional pressure distri-
bution over thé.upper and lower surfaces separately, with the
wing root or the leading tip at the bottom cof the pictﬁre. If
the mesh is to be refined the program thén completeé the same

sequence of calculations and output for the new mesh.
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Flow direction

K

Figure Al.

Swept wing on a wall.
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Flow direction

%

Figure A2. Yawed wing.
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APPENDIX B. LISTING OF THE PROGRAM

PROGRAM FLO22(INPUT,,UUTPUT,TAPEL» TAPE2, TAPE3,TAPESS

1 TAPES= INPUT» TAFt6=0UTPUT)

THREE DIMENSIONAL WING ANALYSIS IN TKANSONIC FLOW

USING SHUARED PARKAVGLIC CIOKLINATES '

wlTH STORAGE ON THt Ci>C

PRiJGRAMMED BY AMTGNY JAMESON,MAKCH 1974

REVISICNS BY De 4o CAUGHEY ANL ANTCONY JAMESONSDEC 1975-DEC i976

G IS RFDUCED VFLICITY POTeNTIAL

CUMMCN Gl193,265,4)»50(193,35),80(131),20(131)>»
IN(iG3,29),1121(35),1Tec(35),
AC(193),A1(163)982(193),A3(193),
BU(ZE)Y»RL(26)532(26)5B3(26))
2(35),012035)502035)5C3(35),
XCU35)sXZ(35)sX2Z155),YC(35)5,YZ(35)sYZZ(33))
NXs)NYpNZoKTELpKTE2, iSYMsKSYMySCALySCALZ,
YAWsCYaWsSYAns ALFHASCA»SA,FMACHINLISN2Z, N3,y (D

N SWRN

- COMMCN/FLGY STRIP;PL:PZ:P3;BETA9FR3IR;JR}KR;DG:IG:JG’KG’NS

1

DIMENSION XS(241511),5Y5(241511)>»

1 ZSC11) s KLE(La) s YLECLL)»SLOPT(L2)» TRAIL (1) »NP(LL)
< E1(L1L1)sE2(11)»E3(11)sE4(11)sED(11)) ’
3 XP(241),YP(241)501(241),02(241)5D3(241))
“ X(193),Y(iv3),5V(193),5M(1G3),CP(193)>»

5 CHOFD(35),5CL(35)5SC0(35),SCM(35), TITLE(2O),
6 FIT(3),CLVLI(3)sFiC(3),P20(3)5P30(3),BETAO(3))
7 SISEPO(3) ) FHALF(2),RES(S501)»COUNT(501)

NO = 241

NE = 163

IREAD = 5

IWRIT = 6

KPLUT = C

IPLOT = ]

ISTOP s ¢

N1 = 1

NE = 2

N3 = 3

REWIND 1
" REWIND 2

KEWIND 3

KEWIND 4

JC =0

RAD = 57.2957795130v823

WRITE (IwRIT»€CO)

whITE (IwRIT»2)

2 FORMAT(14HOPRGGRAM FLOZ2Z2s TGXs 32HANTONY JAMESONs COURANT INSTITUTE/

1 SOKOTHREE DIMENSIGNAL WING ANALYSIS IN TRANSCNIC FLOW»
4 36H USINC SHEARED PARABCLIC CGOKDINATES)

READ (IREAD,S3G) TITLE

WKITE (IWwkIT,63C) TITLE

READ (IREAD»S0C)

KEAD (IREAL,E1C) FNKyFNY ) FNZs FPLOT, XSCAL, PSCAL,FCONT, FXT

NX = ENX
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NY = FNY

N2 = FNZ

IF (NX.LTel1l) GG TO 2Gi
KPLOT = ABS(FPLCT)
READ (IKEAD,50C)

NM = 0

NM = NM ¢}

FEAD (IREAD,S5IC) FIT(NM)»COVOUINMISPLUINM),P20(NM),PIU(NM),

1 BETAO(NM) 9 STRIPOINM) p FHALF (NM)

62

IF (FHALF(NM) oNEeOososNDeNMelL142) GG TJ 11
FHALF(3) = 0.

READ (IPtAD,56C)

READ (IREAD»51C) FMACH, YA, AL,COC

YAW = YA/RAD

ALPHA = alL/FAD

CALL GEGM (NDyNCoNP»ZSoXSsYSeXiLcoYLEsSLIPT»TRAILY XPsYP,
1 SWEEPL,SwtcPcsSwtkPsyDIHEDLSCIHEDZ2,01HED,
l ‘ XTEGCsCHORDUPZTIP, iSYMUSKSYM)

ISYM = [SYMO

IF (ALPHANELQe) 1dYM = §
IF (KSYMeNEWO) YAW = 0.

CYAW = CCSUYAW)
SYAW = SIN(YAW)
Ca = CYAW*CUS(ALPHA)
SA & CYAW*SIN(ALPHA)

IF (FCONTWLTele) GO VU 9i
READ (4) NXsNYsNZpNMpRLpKZ2oNIT

MX = NX 4]
MY = NY +2
Mz = NZ +3

DG 62 K=1,MZ

READ (4) ((G(1sJsi)sl=1sMX)pJ=1,MY)
BUFFER OUTIN3»1) (G(1ls1ls1)sG(MXoMYs1l))
IF (UNITIN3)eGTe0s) GC TL 1

BUFFER DUTI(N1s1) (G(1lslsl)sG(MXyMYrl))
IF (UNIT(N1)eGT404) GU TC 1

CONTINUE

READ (4) (EO(K)yK=KLpK2)

REWIND N3

REWIND N1

FEWIND 4

91 CALL COOKC (NXsNYsNZsKSYMyXTEC» ZTIP, XMAXyZIMAX)

SY»SCALpSCALZyAXSAY 9ALS
ACsh19b2,23960,81y825B3525C19C2,C3)

CALL SINGL (NCsNZyKSYMyKTELsKTEZ» CHORDC
SWEEP1ySWEEP2»SwEEPSDIHEOL,DIHEDZ2,O1HED,
ZSoXLESYLESXCoX29XZLsYCrY2sY1s
29C19C2sC35clrE29€E35E45T551ND)

CALL SURF (NDsNESNCodXsNZyISYMyKSYMyKTEL,KTEZ2»SCALS
YAWs ACUs» 292359 KCoYCoSLOPT)TRATILS XS»YSsNPy
ITELy STE2s1VsSO»ZTsXPsYP»D1502,035X, Yy INV)

IF (INDeEUSO) GC TU 291 : ,

IF (FCONTLGE.1l.) GU TC 1C1

NM = ]

[N N N N =

Ny
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CALL ESTIM

IF (10.£Q.0) GC TO 1
REWIND N3

REWIND N1

WRITF (IwkITs»6CC)

FCONT 2 (o

MIT = FIT(NM) +NIT
KIT 3 MIT

IF (NMeGToeloAMNCoFHALF(NM) oEQeCo
JIT s NIT )
KRES = (#IT =NIT <=2)/500
JPES | =

NRES = C

cov = COVCGINM)
STRIP = STRIPO(NM)
BETA = BETAQ(NM)

MX = NX ~ +1

My = NY +#2

Mz 2 NZ- +3

KY = NY +1

Kl s 2

K2 s NZ. )

lF (KSYM,EQ42) GU_TO iu3
Kl = 3

K = N2 42

Lz s NI/Z2 +1

NIT = 0

IF (KSYM(NEGD) LZ = 3
WRITE (IwkIT,iva)

) KIT = 10

+2

104 FURMAT(48HOINUICATIGN GF LOCATIGN OF WING AND VORTEX SHEET,

1
2

27h IN CCCRUINATE PLANE
2THGOCIV(IsK)»KeK1sK2) ]
DG 1lu€ I=2,NX ‘

106 WFITE (IwkIT,65C) (IVIIsK)sK=K]

WRITE (IWKIT,€0C)
WRITE (iwkIT,112)

Y = Qo/
529NX))

sk2)

112 FGRMAT(49HOCHORCWISE CellL CISTRIBUTICN IN SQUARE ROOT PLANES
54H ANL MAPPEU SURFACE CCGCROINATES AT CENTER LINE AND TIP/

114

116

1
2

~ 15H0 X » 15H
GO 114 I=2s5NX

wRITE (IWRIT»61C) AO(I)»SO(IsLZ)»SULISIKTER)

WRITE (IwRIT,11€)

FORMAT(15HO TE LOCATICN s15H
WKITE (IRRIT,61C) XMAX,AX
WRITE (1wRkIT,€00C)

WRITE (IWRIT,11¢€)

RGOT PROFILE»15H

POWER LAW

’ .

TIP PROFILE )

116 FORMAT(46HONORMAL CtLL DISTRIBUTION IN SQUARE ROOT PLANE/

120

122

1

. 15H0 Y )
DG 120 J=25KY
WRITE (IWRIT,£10) BC(J)
WRITE (IWRIT,122)
FGRMAT(15H0 SCALE FACTORs 15H
WRITE (IWRIT,€1C) SY,AY
WwRITE (IWRIT,60()
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WRITE (IWRIT»124)
124 FORMAT(45HOSPANWISE CeLL DISTRIBUTION AND SINGULAR LINt/

1 15H0 z »15H X SING »15H Y SING )
2 15k xZ . »15H Y2 215H . X211 ’
3 15k Y22 ) '
DO 126 K=K1lsK2
12¢ WKITE (IWRIT»61C) Z(K)pXCUK)»YC(K)pXZAKI»YZAK)» XZZ(K)»YZZ(K)
WRITE (IWKIT,12&) : ,
128 FORMAT(15H0 TIP LOCATLINON,1EH POWER LAW )
WRITE (IWRIT,610) ZMaXsAlZ ‘
WRITE (IWKIT»600)
WRITE (IWRIT,»132)
132 FURMAT(19HOITERATIVE SOLUTICMN/
1l &3HOSTRIP WICTH FUR HOKIZONTAL LINE RELAXATION)
WRITE (IwkIT»61C) STKIP
WRITE (IWRITy»134) i
134 FORMAT(15HO NX » 15k NY » 15H B V4 )
WRITE (IwkIT,640) NXyNYsMZ
CALL SECOND(T)
WKITE (IwWkIT,»70C) T
. WRITE (IWKRIT,13¢) ' ‘ _ o ‘ ’
136 FCRMAT(1I5H0 . mACH NG » 15H YAw '»15H ANG CF ATTACK)
WkITE (IwRIT,01C) FMACH, Ya,sAL
WRITE (IWwkIT»138)
138 FURMAT(1O0HOITEFATIGNy15H COKRECTIGON s4H 1 s4H J s4H K
i 15H Kkt SIDUAL  s4H 1 s4H J s4H K
2 10H CIRCULATN,10H REL FCT 151CH REL FCT 2540H REL FCT 3,
3 - 10H BETA »1lUH SGKNIC PTS)
141 NIT = NIT +1
JIT = JIT +1
P1 = P1O(NM)
P2 = P2C(NM)
P3 = P3Q(NM)

IF (NIT.LE.1C) Pl = 1,
IF (NIT.LEe1C) F3 = 1.
CALL MIXFLO

IF (1Ce€QeC) 6C TO 151

JU = 0

REWIND N1

ReEWIND N2

N = N1

N1 = N2

NZ . . = N3

N3 = N

WRITE (IWRIT»660) NITrUGsIGrJUGrKGaFRYIR)JRIKRYED(LZ) S
1 A PlsPcsP3,sBFTASNS

JRES s JRES +1

IF (JRESCEQ.KRES) JRES =1
IF (JRES.NE.1) GO TO 143
NRES = NRES +]
COGUNT(NRES) = NIT =i
RESINRES) = FR

143 IF (JITLEQ.KIT) GO TO 251

IF (NITeLTeMITOANDGAES(DG) «GT+COVeANDSABS(DG)oLTe104) GO TU 141
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]

151

141

le2

164

171

172

162

184

185

63 TG 161

IF (JO.EGel) GC TO 1
RENIND N1
REAIND N2

JO = ]

N = N3
N3 = N2
NZ = N
N1 = N
GO TG 141

RaTE s (e

IF (NRESeGTel) KATE = (ABS(RES(NKES)/RES(1)))

#%(1e/(CCUNTANRES) =COUNT(1)))

WRITE ([WwRIT,162) < o

FCRMAT(15HU MAX KESICAL is15h MAX RESIDAL 2915H WGRK ’
150 KECULCTN/CYCLE)

WeITE (IWkIT,67¢) KES(i)sRE S(NPtS),CUUhT(hRES);RATE

Call SECOND(T)

WRITE (IwkIT,70C) T

WRITEL (IwFIT,6C0)

GO 164 L=1,3 : :
BUFFER IN (N1s1) (G(lslsl)sGIMXsMY,L))

LF (UNII(NI).GT 0.) GO TO 191

CUNTINUE .
Lx a nk/2 +1
K . ® .

K z K 44

IfF (ReEWeMZ) GO TO 161

DC 172 J=1,MY

DC 172 I=1sMx

C(Isdsl) = G(Isds2)

G(Isdsz) = 5(1lsdsr2)

BUFFER IN (N1s1) (G(lpls3)sGIMXsMYs3))
1F (UNIT(N1) «GTeCe) GG TG 151 -
IF (KelToekTEleDKeKeGl1exTE2) GC TC 171
i1 = TEl1(K)

12 s 1TE2(K)

CALL VELO (Kp2sSVsSMpCPrXsY)

CHOGRD(K) = x(I1) =x(LX)

CALL FOPRCF (Il:Ic»x’Y;CP;AL:CHDRD(K);XC(K);bCL(K);SCD(K),SCM(K))

IF (KPLOTeGTo1sANDKoeGToKTEL). GC TO 185

WRITE (IWR1T,»6CC)

WRITE (IwkIT,»182)

FLRMAT(24HOSECTION CHARACTERISTICS/
15HC MACH NG »15H YAw »15H ANG OF ATTACK)

WRITE (IWwkIT,61C) FMACH,»YAsAL

WRITE (IWRI[T,184)

FORMAT(L5H0 SPAN STATION,LlOH CcL » 15H Co )
15H o] )

WRITE (IWRIT»610C) Z(K)pSCL(K))SCD(K))SCM(K)

IF (KPLOTeLES1) CALL CPLOT (115125 FMACH» X5 YsCP)

1F (KPLOTelLTeleORKPLOTWGTL2) GO TO 471

CALL GPAPH (IPLCTollpl2sX XsYsCPsTITLEsFMACH YA AL s

Z(K)’SLL(K)’SCU}K)pCHORDO)XSCAL’PSCAL)
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191

192

194

196

201

WM = N -

202

6C TC 171

CALL TOTFOR(KTE1,KTEZ)CHGRD» SCL9SCDs»SC#»ZyXC>»
1 CLsCC1yCMPHCHMRSCMY)

cD1 = CYAW*(CD1

co = CD0 +CD1

ViDl = 0.

It (ABS(CU1)eGTaleit=¢) VLODL = CL/CDL

viLD 2 0,

IF (ABS(CL)eGTeleE—-€) VLD = (CL/CO

WRITE (IwkITs00C)

WRITE (IWRIT»192)

FORMAT(21HOWING CHARACTEKISTICS/
1 15H0Q FACH MO »1YH YAW »15H AMG LF ATTACK)
WRITE (IWkIT»61C) FMACH,YAsal .

WKITE (IwkITy»194)

FGRMAT(15H0 cL - s IEH CD FCRM 2154 CO FKICTION ;
1 15t co » 15H L/0 FQRM L, 15H L/0

WRITE (IWFIT,61¢C) CLsCD1sCLUSCOHVLELy VLD

WRITE (IWRIT,196)

FORMAT(15H0 CM FITCH ,15H M RCLL 9154 CM Yas
WRITE (IWKkIT»61C) CMP,CMRsCMY

REWIND N1 :

IF (KPLOT.LT.1) GO TU c0l
CALL RPLAOT(IPLCTANRES,)KES»COUNT S TITLESFMACHI YAS AL NXsNYSNZ)
CALL THREED(IPLCTs3VeOSMsCPsXsYs TITLESYASALS

1 VLDsCLsCL»CHCRDCy XSCALSPSCAL)

IF (1C.EC.0) GC TO 151

IF- (ISTOPLEQe1) GO TOU 301

IF (FHALF(NM)LEC.0s) GUL TO 1

NX = NX #NX

NY = NY +NY

NZ = N2 +NZ

CALL COGKD (NXsNYsyNZsKSYMyXTEGs ZTIPy XMAX»ZMAXy
SY»SCALs» SCALZs»AXyAY»AZ,
AQOsAlsA25,A3,80sB19B29835729C1sC25C3)

CALL SINGL (NCyNZsKSYMyKTEL,KTLtZsCHOKDCY
SWEEP1lySWKEEP2s SWEEF,CIHEC1)OIHEDC,DIHED)
LSoXLE,YLESXCoXZ9X22sYCrYZsrY21,
19ClsC2sC3,€E19E2sE39E45E5,IND)

CALL SURF  (NDsNESNCoNAoNZos ISYMoKSYMsKTEL»KTE2»SCALS
YAWSIAUP ZsZSsXCroYC»SLUPT»TRAILS XSsYSHNP»
1TE1, ITEZ;lV:SO)Zb;XP,YP)Dl DZ;D3;X;Y:INC)

IF (INDJEULD) GC T0 <91

CALL REFIN

IF (10.EG.D) GO TO 221

REWIND N1 '

REWIND N2

NSMOC 3 =FHALF(NM)

IF (NSMOO.LTe1) GO TG 211

00 2G2 N=1,NSMCC

CALL SMQO

IF (ID.EQ.0) GO TQO 221

REWIND N1

KEWIND NZ

Ny -
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211 N s N1
N1 = N2
N2 = N3
N3 = N
NM = NM +1
NIT = 0
6o TG 101
221 NX - = NX/2
NY = NY/¢
NZ e NZ/2
CALL COUORD (NXsNYsNZsKSYMpXTEO»ZTiPs XMAX»ZMAX),
1 cY:SLAL}S(.ALZ)AX;AY,AZ’
2 AO)AI’AZ’A3,BJ’BI B2y B3525C1sC25C3)
CALL SINGL (NCsyNZsKSY4yKTELsXTE2,CHIKDO,
1 ShEEPl)SnLcPZ’SHEEP’DIHEDL)OIH*DZ'DIHCD’
2 ZSsXLEsYLEsXCoXZ9XZ2ZsYCsYZsYZZ,
3 75C15CzsC3yELsE2sE39E4pEESIND)
CALL SURF (ND)BE)NC’NX’NZ)ISYNJKSYM:KTCIDKTEZ)SCAL’
1 YAw’AO,ZpZJ’AL;YC:aLOPT TRAILsXS»YSsNP»
2 IT‘l:ITcinIV;5\’Zb)XP;YP:DI:DZ;D3)X;Y:IND)
1F (IND.EGLO) GC TU 291
GO TO 151
251 Kkl ' s KTE1 =1
KZ = KTEZ +ITE2(KTE2) ~=NX/2
00 252 M=1,3
WKITF (4) NXsNYsNZsNMoK1pK2pM1T
L0 2¢2 K=1,MZ
BUFFER IN (N1sY) (Gluslsi)s G(NX;NY;I))
1F (UNIT(N1).GT40.) GO TC 281
262 WRITE (4) ((G(Isgsl)sI=loMX)sJd=lryMY)
REWING N1 ' ' B
WKITE (4) (FO(K)»K=sK1,K2)
ENDFILE 4
252 CONTINUE
REWIND &
CALL SSWICH(1,1STOP)
IF (ISTOP EGel) GO0 TC L6l
J1T "2 D
I (NITLTeMITeANCAES(DG) oGT Cav, AND.ABS(OG).LT 10.) GU TJ0 141
G0 TO 161
281 REWIND 4
60 TO 151
291 WRITE (IleT:éOG)
WRITE (IN?IT’ZQZ)
292 FORMAT(24HOBAD ‘LATA, SPLINE FAILURE)
' G0 TO 1
301 IF (KPLOT.GT 0) CALL PLUT(O.)O.,QQQ)
©ST0P
50C FORMAT(1X)
510 FURMAT(8F1046)
530 FORMAT(20A4)
600 FORMAT(1H1)
610 FORMAT(F12.4s7F15.4)
620 FORMAT(8E15.5)



C

630

640
65C
660
670
700

1
2

1

FORMAT(1HC»20A4)

FORMAT(IB,7I13)

FORMAT(1X»3214)
FORMAT(I10,E15e553145b1545531455F10e5,112)
FORMAT(2E1S5¢492F15.4)

FORMAT(15HOCOMPUTING TIMEsF1lUeZ»10H SeCONDS)

END

SUBROGUTINE GEOM (Nb;NCoVPpZS;XS)Y))XLE:YLE’SLOPT’TRAILpKP,YF;
SHttPl:SwEEPZ;bNEEP;DIHtDlyDlHtDZ;DIHtu,
¥Tt0’CHDkL0)ZIIPlISYHO)KSYN)

GEOMETRIC DEFINITICON OF WING

DIMENSION XS(ND.l):Y)(ND;l)’Lo(l)9XLE(l)’YLE(1);

SLOPT(L), TRAIL(L)»XP(1)»YP(1)sNP(])

IKEAD = 5

IwkRIT s H

KAD 8 57.2957795130623
READ (IRtAD,5CC)

KEAD (IREAD,»S510) ZSYM;FNC’ShLLPl;SHEEPZ,ShEEPledﬁDlpDIthZ:EIHED

IF (FNCoelTe3s) KETURN
KSYM = ZSYM

NC = FNC

WRITE (IWKIT,2)

2 FORMAT(15HO SWEEP(1) »15H SWEEP(2)

11

12

1

: 15H LIHED()) 91YH DIHEL(2)
WRKITE (IWRIT»61C) XLsTLsCHURL ) THICKs AL

» 15H
» 15H

FINAL SWEEP »

"FINAL UIHED )

WRITt (IWKITs61C) SWECPLlySWEEP2sSwEEPSCIAEDL»UIHEVL2,LIHED

SWwEEP1 = SWEEP1/R4D
SWEEP2 SWEEP2/KkAD
SWEEP SWEEP/RAD

DIHEDL DIHED1/RAD
DIHEeD? DIHEDZ2/KRAD
DIHED DIHED/RAD

ISYMC 1

XTEOQ Oe

CHORDC O.

K 1

READ (IREAD»50G)

READ (IRtADs510) ZS(K)sXLsYLsCHOKD» THICKs AL s FSEC

ALPHA = AL/RAD

IF (KeGTaloANDGFSECeEG0e) 6L TO 31
READ (IREAD,S5CC)

READ (IREAD,S51C) YSYM,FNU,FML

NU . FNU

NL = FNL

N = NU +NL -1

KEAD (iREAD,500)

READ (IREAD»S51C) TRLySLT,»XSING,YSING
READ (IREADsS500) |
DO 12 I=NL»N

READ (IREAD,51C) XP(L),YP(I)
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L = ‘L +1

IF (YSYM.GT.O.) 63 TG 1>
READ (IRtAD» 5CC)

0O 14 I=1sNL -
READ (IRFAD»S1G) VALsOUM

J s { -1
xP(J) = VAL
14 YP(J) = DUM
6O TC 21
15 J ' = L
0C 1€ I=NLsN .
J =g =1
XP(J) s XP(i)
16 YP(J) = =YP(I)

21 WRITE (IWR1T,600)
WRITE (IwR1T,22) ZS(K)
22 FDRMAT(lénOPRUFIL: AT 2 = »F1Ceb/ .
1 15HO TE ANGLE s 12H TE SLOPE »15H X SING
2 - 1%H Y SING )
WRITE (TwkIT»610) TRLISLT» XSING» YSING
WRITE (IWRIT,24) _
24 FOGRMAT(1:HO R, » 1oH ' Y )
DO 2€¢ 1s1,N
26 WRITE (1wRIT,61C) XPUL)LYP(I)

31 SCALF = CHUFD/(XF(L) =XP(NL))

XLE(K) s XL +(XSING =XPINL))*THICK*SCALE

YLE(K) = YL +(YSING =YP(NL))*THICK*SCALE

AX s XP(M ) €(XSinC <=XP(NL))I*THICK

YY = YP(NL) +(YSING  =YP(NL))#THICK

CA = COS(ALPHA)

SaA = SIN(ALPHR)

UL 32 I=1,N .

XS(IsK) 2 SCALE#((XP(I) =XX)4CA <+THICK®(YP(I) =-YY)*5A)
32 YS(I,K) s SCALC*(THICK*(YP(I) ~=YY)*CA =(XP(1) =XX)*5A)
. SLOPT(K) = THICK*SLT ~TAN(ALPHA)

TRAIL(K) & THICK*TKL/RAL

NP(K) : N -

XTEOQ ® AMAXL(XTELOpX>(1pK)).

CHORDO & AMAXI(CHURDO»CHORD)

IF (YSYMeLEeQoeolRe “LP"‘A.N;—.C.) ISYHO i Q
WRIETE (IWPIT)52) IS(K)
52 FORMAT(2THOSE CTION UEFlhITIUh AT Z = )FlO 5/

1 1910 XLE 2150 YLE s 15H CHORD s
2 15HTHICKNESS KATIO»1%hk ALPHA )

WKITF (IWRIT»61G) XLsYLsCHCRD,THICKsAL

K = K #1 -

IF (roLE.NC) GO TO 11

20 i o5447S(1) +ISINC))

LF (KSYMJNEeD) ZU = ZS(LY
DG 6z K=1,NC

62 15(K) = IS(K) =10
ZT1P = ZS(NC)
RETURN

500 FORMAT(1X)
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510 FORMAT(EF1046)
600 FORMAT(1H1)
610 FORMAT(Flzeb4sTF1544)

END

SUBRCUTINE COCFD (NXsNYsNZsRSYPMsXTZCsZTIP»XMAX9IMAXY
1 SYsSCAL»SCALZsAXs LY AZ>
2 - B0»AlyAa29A3,809BLlsBEc»83,2,C15C25C3)

C SETS UP STRETCHED PAKASOLIC AND SPANwISE CUORDINATES

DIMENSION AQ(1))» Al(l);A2(1)9&3(1)’BO(l);Bl(l)p%d(1);53(1);
1 ZC61)sCLI1)»C2(4)»C3(1)

Lx - ® 2e/NX

DY s Le/NY

KY = NY +1

D2 = 24./N2

lC = 1, -0z

Kl s 2

K2 = NZ

IF (KSYN EQ.,0) CO TO 1

DZ s ]1./NZ

¢ s ),

Kl = 3

K2 = NZ +2

1 AX 2 44

AY = o5

AZ = .5

BX = 0.

62 = O,

XMAX = 0625

IMAX = L5625

SY = .5

SCAL = XTLC/(.EOCUI*KHAX*XMAX)

SCALZ 2 ZTIF/(LeCGUOOGL*#2MAX)

V2 = (DX/DY)#*#»2

Wl = SCAL/SCALL

W2 s (W1ls0OX/0Z)*%*¢

S73 = SQRT(73,.) , :

8BX = =BXXSQRT(3,%(7¢ ¢+ S73))/7((1e + ST3)*XMAXR®Y)
ABX 2 ], = HRBRX#*SQKT((7+ + ST73)/12.)%XMAXK%%*3

cBaX g (19e + ST3)&XMAXEXMAX/12.

~ ABBX w ABX 4 HBX#®(3,%CHBX = Goe*XMAXEXMAX)SXMAX®XMAX/

1l SQRT(CBX = XMAX*®*XMNAX)

DG 12 I=2,NX .

DU = (I -=1)*DX <=1, ’

8 = 1, J‘
IF (ABS(OD)eGTeaXMAX) GO TD 13

A s CgX = DO=*DO

AS = SQRT(A)

c = ABX®AS + 3BX*(3.%CBX = &4+*%DD*CO)*DO*0DD

DC = ABX*¥DD + BBX*AS*DD*#3

D1 = AS/C
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L

N2 .
60 TG 14
13 IF (DD.LT.O.) B = -1,

BAX®(CoXe(—6e#CoX + 19.#LD200) - 124%0D%*4)#00/(A%C)

A = 1. =((D0C -=BEXMAX)/(lse =XMAX))*%*2
C = A%BAX o ’
0 = (A¥Y +4X ~=le)*(1le .=A)
Lo = BEXMAX ¢ AEHX$(DD = P#X4MAX)/C
Di = A%C/((1s + D)#ABEX)
D2 = —(AX 4AX)*(DD =—-BAXMAX)
1. *(3, +0)7((1s +D)*A¥(1ls =—XMAX)*#*2)
14 AG(I) = D0 '
AL(T) = o 5%(1/0X
A2(I) = 01#*01 ,
12 A3(1) . s (5*0X%D2
OC 22 J=2sKY '
D = (KY =J)*DY
A s 1. =DD*LD
C = A%NLY '
L = (AY  ¢AY =lel*(1le =)
Di = AXC/((1e +D)*SY)
B0(J) = 3Y*D0D/C ' ’
B14J) = J5%0U1/0Y
beld) = D1*DL*V2 _
22 B3(J) = ~AY¥DORDY®(3, +0)/((1le +0)*A)
BB = ~BZASORT(2.%(7e + ST3))/((1e # ST3)*IMAXR23)
ABZ = 1o = BBZASAURT((Te # STa)/Llce)¥ZMAX**3
caz = (1Gs ¢ ST3)SIMAXSIMAX/L124
ab82 = ABZ + BBZ*(3.%CBZ = 4 %ZFAX®IMAX)#INAX*ZMAX/
1 SQKTI(CBZ - ZMAXXIMAX)
DU 32 K=29K2
3o = (K =Kl)*DpZ =10
B = 10‘ .
1F AARS(DD) GTeZMAK) &G TO 33
A = Cbl = LD®DD
AS = SCRT(A)
C = ABI*AS ¢ 331*(3.¢cez - 4.#co*oo)tootoo
DO = A37#DC ¢ BBZ*ASeL0¥43
L1 = AS/C ;
D2 = BUZ#(CHZ*(-6.,#CBZ # 1G.#00%0D) = 12.%DD**4) DU/ (A%C)
6 TO 34 : - '

33 IF (DDelLTe0,) B = =1,

A = 1. =((DD =B*IMAX)/(1le —IMAX))®*#2
c = A%¥p2 '
v = (A #AL =lo)¥(le =A)
DG s BEIMAX ¢ ABBLZ*(OL = -B*ZMAX) /L
01 = ASC/((1e & D)*RBEZ)
02 . = =(AZ +AZ)*(DD .—B*IMAX)
1 T3, *D)I((l. A0V *AR(1,e  —ZMAX)%Z)
34 Z24K) = SCALZ*DO o " T
L 1AK) = «5%L1*W1/0Z
C2(K) = D1#01%*w2
32 .C34K) = «5¥D7%D2
RETUKN
EnD
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SUBRCUTINE

SINGL (NCoNZyKSYMIKTELSKTE2»CHORDOS

1 SwEEPLySwhtPRs SWEEPH»DIHEDLIDIHCcU2» DIHEL S
2 ISyXLEsYLEsXCoXZoRZZsYCsYZsY22»
3 25CisC25C39E1sb29E39E4sESHIND)
C GENERATES SINGULAR LINE FOR SCUARE RUUT TRANSFORMATION
CIMENSION ZSE1YoXLECLY s YLECL) pXCUL) o XZ(1) s XZZ(1)>»
1 YC(Y)sYZ 1) YZZ2(1)pi(Ll)sCLlU1)sC2(1)sC3(1)>
2 E1(1),E2¢(1)»E3(L)»E4(L1)»ES(])
DO 2 K=1,NC
E4(K) .= O
2 E5(K) = 0,
Kl = 2
Kz = NZ
1F (KSYMGEG.0Q) GO TO 11
Kl s 3
K2 = NI 42
KTEL = 3

11 DO 12 K=K1,K2
IF (Z(K)oLTeZS5(1)) KlEL = K +1
IF (Z(K)sLEWSZSINC)) KTc2 = K

12 CCONTINUE

8 = CHORDO

Si = TAN(SwctEPL)
52 s TAN(SWEEPZ2)
Tl = TAN(DIHECL)
T2 = TAN(DIHED2)

CALL SPLIF (1oNC»2SsXLEscis€E2sF391951915522050e5IND)
CALL INTPL (KTEY KTEcsploXCrlonNCyZ5sXLEstlsot2sE350)
CALL INTPL (KTEl1,KTe29Z9sXKZlslyNCsZSsclsE2sE35E450)
CALL INTPL (KTE1sKTE29ZsXZZr»1sNCsZS5sE22c35L45EDS50)
CALL SPLIJF (1sNCsZS»YLESELsE29E391sT1s15T2s0s0erInND)
CALL INTPL (KTE1,KTEZ»ZsYCslsNCsZS»YLESEL»E2»E3,0)
CALL INTPL (KTElpKTE2»2ZsYZs1lsNCrZlSsELsE2sE35E6450)
CALL INTPL (KTE1»KTiEzslsYIZs1sNCsZISst2st39E4sED»C)

S 2 BATAN(SWEEP)
si = 8#S] '
Se = 3%Sz
T = B*T£N(DIHED)
Tl = 3#T]
T2 = 3472
XC(2) = 3,4(XC(3) =XC(4)) +XC(5)
YC(2) = 3,%(YC(3) =YC(4)) +YC(5)
IF (KSYMJNELO) GO TO 31
N = KTE1 =1
D0 22 K=K1,N
217 = (Z(K) =Z(KTE1))/B
A = EXP(ZZ)
XC (K) s XC(KTEL) 4S#ZZ =(S1 =S)*(l. =A)
YC(K) = YC(KTEL) +T#ZZ =(T1 =T)#(l. =A)
XZ(K) = (S +(S1 =S)*a)/k
YZ(K) = (T +(T1 =T)*A)/B
XZZ(K) = (S1 =S)#A/(848)
22 YIZ(K) 2 (T1 =T)I*A/(5#8)
31 N = KTE2 +1
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32

-1

C
C
s
21
23

32

2

1
2
3

DG 32 KaNyK2

2z = (Z(K) =2(KTE2))I/B

A = EXP(=217) .

XC(K) = XCIKTEZ) #S*IZ +(52 =5)%(1le =A)
YC (K) = YCUKTE2) +T#27 +4(T2 <=T)%(le =A)
XZ(K) = (3 +(52 =-S)*A)/B '
YZ(K) = (T +(T2 <T)*a)/8

¥Z1(K) = ~(S2 =S)*a/(B*B)

YZZ(K) = =(Tz =T)*a/(349)

RETURN ' -

END

SUBROUTINE SURF (NE}NE)NL}RX,NZ.ISYH;KSYMDKTEI)KTEZ’SCAL’
' YAwsAOs5ZsZSsXCorYCoSLUPT,TRAILSXSSYS,NPy
I]E;;ITEZ’IV:SC)ZO)XP:YP;DI)DZ’D39X)Y)1ND)
INTERPULATES MAPPEL WING SURFACE AT MESH PUINTS
INTEFPOLATION IS LINeAR IN PHY)ICAL PLANE :
DIM:zNSION SCINES L) XD(NDs L)y YS(NO:A))ZS(l))SLOPT(l))TRﬁlL(l)’

XCU1)oYC(L)»AO(1)5Z(1)5ZC(1)sX 1)y Y(l):
xP(l)pYD(l):Dl(l)’L2(1);03(1)’
' IVINEF1)oNP(L)»ITELCL)ITEZ(L)

Pl = 3,14159265358979

TYAW & Tan(YAw)

Si s o5%5CAl

(03 § = 2¢/INA

LXx = NX/72 +1

MX = NX ¢1

Mz s NI 43 .

IvO = 1 -ISYM -ISYM =15Y¥F

vy & <] '-ISYh- ‘

DG 2 KEljshZ _

ITEL(K) 2 MX

ITE2(K) = MX

0GC 2 Isl, kX

IV(IsK) = =2

SC(IsK) s 0s

K s KTEL

K2 1 .

K2 £ K2 +#1

K1 i K2 -1

QZ s 1l

IF (2StK2) =Z(Kk)Y 21;32%,25

k2 s (Z(K) <ZSCKL))/CZS(K2) =ZS(K1l))
Ri = lo =R2 o :

C s R1#XS(1lpkl) #R2#XS(1,K2)

cc s SQRT((C +CI/SCAL)

‘DL 32 I=2,NX

1F ((AOCI) ~+45%0X)elTe=CC) 11 = I +#1
IF ((AO(I) =o¢5¢DX)eLlTuCLY I2 = 1
CONTINUE

ITEL(K) = 11
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41

42

45

44

ITE2(K)

c¢C

20(K)

KK

P

N

Q

DO 42 I=2,
x(1)

ANGL

U

v

DC 44 [=1,
R

IF (K.EQLC
ANGL

U

v

R

xp(I)
YP(I)

GG TO 44
ANGL

U :

v

XP(I1)
YP(I)
CONTINUE
ANGL
ANGL]
ANGLZ
ANGL1
ANGL?Z

Tl

Te ~
CALL SPLIF

HZR BN Z a8 00w

W N ooWH NN RNTEER NN R RN

I2

AQ(lc)/CC

Z(K) ~=TYAW*(XC(K) +S1¢a0([2)+%A0(12))
Kl

R1

NP (KK)

SORT(XS5(1sKK)/C)/CC

x .
A*A0(])

PI +P1

le

0.

SORT(XSII,KK)*##2 +YS(LsKK)we2)

) GG TUO 4

ANGL +ATAN2C(U*YS( I KK) =VEXS(IsKK)),
(U*XSCISKK)  4VEYS(1eKK)))

XS(1,kK) ' '

YS(I,KK)

SQRT((R +R)/3Cal)

R*¥COS(aS®ANGL)

R¥SIN(e5*ANGL)

PI
=-1l.
O.
Ce
o

ATAM(SLUPT(KEK))
ATANCYS(LlyRKDI/XS(1rKK))
_ATAN(YS(N’KK)/XS(N’KK))

ANGL —o5*%(ANGLL ~TRAIL(KK))

ANGL =oS5«(ANGL2 <+TRAIL(KEK))
TANCANGLL)

TAN(ANGLZ)

(LoNo XPsYPsD1sD2sC2351sTlsisT2sCsGesrlnd)

CALL INTPL (I1,129XsYsisneXPyYFPy0lyDesl350)
X1 : ‘

e 25#X35(1yKK)
SLOPT(KK)*(XS5(1,KK) =X1)
le/7(XS({1,KK) =X1)

Pl +PI

le

0e

I1 -1

e S*SCAL*¥X(1)*%2

B(XX =Al)

YS(1,KK) +A*ALOC(L) /D

SQRT(XXx#%2 ~+YY42) T :

ANGL +ATAN2((U*YY <=vaXX), (U*XX +V#YY))
XX, .

Yy

SCRTI((R +R)/SCAL)
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52

oy

Y(I) = R*SIN(eS*anNGL)
A = SLOPT(KK)®(XS{NskKK) =X1})
8 - = le/(XSINyKK) =-X1).
ANGL = Qo :
U % 1,
) = Qe -
M = J2 +1-
Du 564 - I=M,NX _
XX : z LEHSCAL*X(])*%2
L 8 3¥(xx  =x1)
YY = YSINyKK) +A%ALOG(D)/D
R = SQRT(Xx*%2. +YY*%2)

. ANGL = ANGL +ATAN2((URYY =vaXX)s (URkXX +V*YY))
U = xX i -
V. Yy S
P = SQPT((P +R)/SCaLl)

Y(I - = R¥SIN(.5*ANGL)

.54

62

71

12

74

76

81

82

Q s peC*CCHCC
DO 62 132,NX T :
SO(LsK) = SOCIsK) +Q#Y(I)

IF (KKeEQCe.K2) GO TD 71

KK = K2

P i Q2

GG TC 41

Lo 72 I=f1,12

IVUIsK) a 2 ,

M - = {1 =1

00 74 I=25M. . ‘ c ” o
2. - = LK) =TYAWK(XC(K) +S1*A0(1)*A0(I))
IF (22+6t¢Z0CKTELD)) LV(IsK) = 1VD

CCONTINUE ' o

M , - = 12 41

DG 7¢ I=myNX , : o 4

12 s Z(X) <=TYAW*(XC(K) +S1*40(IV*AQ(1))
IF (ZZ4GESZOCKTEL)) IV(IsK) = IVC

COCNTINUE - L :

K2 - - s K2 -1

K =K 4]

1F (KoLESKTE2) GO TU 21

K1 s 2

K2 = N2

IF (KSYMe£Qed) €O TG 81

Kl =3

K2 ' a2 NI 42

D0 82 I=2;NX _ : ' o

1 : e Z(K) <=TYAW#(XC(K) +S1€AQ(I)*AQ(I))

IF (ZZeLteZS(NC) vANGeZZ4GZ42C(KTEL)) LVII,K) = 1VO

CONTINUE

K = K +1

1F (KsLEen2) GO TO €1

N = KTE2

IF (YAW.LE.O(’<GU T0 qs

10 s ITEI(KTE2) 1
CO 92 I=1C,LX .
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92
93

104
102

112

12

21

~NOoOWwPHrwWwN -

N = N 4] : '
ZO(N) = 2(KTE2) ~TYAW*®(XC(KIEZ) +SL*=AC(I)*20(1))
1 = JTELI(KTEL)

ZO(KTELl=1) = Z(KTEl-1) ~=TYAW*(XC(KTE1l=1l) +S51¥AQ(1)*AC(I))

ZO(N+1) = Z(KTt2+1)

00 102 K=K]l,K2

DO 1C4 I=2,NX

IF (IV(IsK)eGT4C) GO TO 104

IF (IV(I41sK+1)eGTeOeUkaIV(I=1sk¢1)eCGTe0O) IVI(1yK) = 1V1
IF (IV(I+1,K=1)eGTe0e0ReIVII=1sK=1)eGToac) IVI(IsKk) = V1
CCNTINUE

IF (SO(LXsK)elTelel=05) IVILXsK) = O

IF (KSYMetQeQ) FETURN

00 112 Isc,NX

SClI»2) = 34%(SC(1,3) =S0(1ls4)) +35C([,3)

RETURN

END

SUBRCUTINE ESTIM

INITIAL tSTIMATE OF KeEDUCED POTENTIAL

COMMON G(193,26»54)550(193,35),€0(131),20(131)»
IV(193,35)ITEL(35),1ITE2(35),
AC(193),A1(193),A2(193),A3(193),
BO(26)sRB1(20),B2(2€6),B3(26),
2(25)15Ci(35)5C2(35)5C3(351),
XC(35)sX2(35)9XZ2Z(35)sYC(35)»Y2(35),Y22(35)>
NXsNYsNZoKTEL»KTE2» ISYMsKSYMeSCAL»SCALZ)
YAwsCYAW» SYAWs ALPHASCA) SASFMACH)N1Is N2, N3, [0
NX  +1 :

KY NY +i

MY NY . +2

MZ = NZ +3

DO 12 I=1,193

DO 12 J=1,26

MX

DO 12 K=ly4
G(IsdrsK) = O,
K = ]

DO 22 I=2,NX
G(IsKY+1,1) = O.
IF (IV(IsK)elLTe2) GO TO 22

DSI ’ = SO(141,K) =SO(i=1i,K)

DSK = SO(1l,K+1) =SO(l,K-1)

$X = Al(1)*DSI

Sz = C1(K)*DSK

FH 3 ACO(I)*AC(L) +S0(I,K)*SO(IsK)
H = le/FH

AL = —AO(I)*XZ(K) =SO0(I,K)*YZ(K)
BZ 2 ~AQ(I)*YZ(K) +SC(I,K)*XZ(K)
HZ = AZ#%SX =Bl <+FH#SZ :
FYY = Jo +SX%SX  +HRHZI®HZ

FXY = SX  +H¥AZ¥HZ
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22

41

O ¥ C <.

- N n u

(IsKY+1y1
i
CONTINUE

SA%AQ(1)

CA®AG(])

SYAw +CA*XZ(K)

= GlIskY=1p1) -
+(v*(le =H®BIZPHZ)

~CA*¥SO(I,K)
+SA*SO(IsK)
+SA*YZIK)

BUFFER OUTIN3»1) (6(i,1,1)5GIPXMY,1))
IF (UNIT(N3).GTeGs) GO TG 41
BUFFER OUTINLsLl) (G(ls1s1)yGUMXsMYs1))
IF (UNIT(NL)+GTs0.) GO TC 41

SULUTION CF

K ¢l
60 T0 21
KTEl -1 :
KTEZ2 +1TE2(KTEZ) =NX/2
Qe
1

¢

K =
C1F (KJLEWMZ)
K1 =
K2 =
U0 32 K=R1,K2
EG(K) o=
1C =
" RETUPN

16 T
KETUFN

tND
SUBRCUTINE

MIXELO
EQUATIONS FOR MIXEC SUBSONIC AND SUPERSONIC FLOW

USING ROTATED DIFFERENCE SCHEME

CCMMON

~N WD S WN

CUMMUN/FLGY
CGMMCN/SWE/

SN

Lx
MX
kY
MY
TYaw
s1
DX
Tl
AAD
Q1
Q2
FR

6(193,2654)550(1635,35),E0(131),20(131),
IV(193,35)5sITcl(25),1TE2(35))
AG(193),A1(193),A2(193)5A3(1933),
BC(26)»B1(26)5B2(26),83(26)>
Z(3‘):C1(35),LZ($5)1C3(35)’
XC(35)sXxZ(35)sXZZ(35),YCL35), YZ(35),YZ2(35),
NXsMNYsNZoKTELSsXKTE2» ISYMsKSYM»SCALSSCALZ
YAWsCYAW,»SYAwsALPHASCA» SA9FMACHINL1YN2s N3 10
STQIP)PloPZ’P398€TA;FR;IR:JR!KR}DG;IG’JG)KG’NS
6r1(163,26)96K2(3193526),
SX(193)"Z(195),SXX(193)’SXZ(193))SZZ(193)9
20(193),F1(193),C(193),D(163),
610(26)5,620(26)5G3G(26)sG4C(26)561(26)562120)»
}I:IZIK:L’NO:LX’NX,KY)HY)Tl)dbO)erQZrTYAN’SI
NX/Z +1

N X +1

NY +1

NY 42

SYAW/CYAW

« 5¥SCAL

2e /KX

OX*CX

le/FMACH#*2 +,2

2./P1

1l./P2

O
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IR = 0

JR =0

KR s C.

DG 2 Q.

16 = 0

J6 = 0

KG -G

NS = 0

K1 . - 2 o

IF (FMACH.GE.le) K1 = 3

K2 = NZ

IF (KSYM.EQ.Q) 63 10 1

K1l = 3

K2 = NZ ¢#2

F ' 8 ABS(o5*STRIPENX)

L = F

I1 = LXx =L

I2 = L X 4L

IF (LeEQWG) I2 = LX =1
D0 2 L=1,3

BUFFER IN (N1s1) (G(1ls1lsl)sGUMXsmYsL))
IF (UNIT(N1)eGTeCe) GG TO lul

CONTINUE

DU 4 J=1l,MY

DU 4 i=1l,MX

G(Isdss) = G(IsrJdsrl)
GK1(IsJd) = G(lydsl)
GK2(IsJd) = G5(Iyxdsrl)
K = 2

L = 2 :
NO = KTE1l =1

IF (KeEQWeK1) GG TO 21

BUFFER QUTI(N2s1) (G(is1s4)sG(MX,MYr4))
IF (UNIT{(N2).GT.0¢) GU TC 101

BUFFER IN (Nl)l).(6(19154)’G(MXQHY;4))
IF (UNITI(N1)+4GT40.) GO TO 101

IF (KSYMsEQ.O) GU TC 51

I = LX
0SI = SO(I+1,2) =50(1-1,3)

DSK = S0(I,4) =SO(I,2)

SX(I) = AL(1)*DSI

SZ(1) = C1l(3)*0SK

R = AMING(1,1V(I,K))

J = KY

DG 12 Ma2,KY

YP ' = BO(J) +50(1,3)

H = R/(ls =R +YP*YP)

AZ = ~YP*YZ(3)

BZ = YP#XZ(3)

A = H¥AZ*AL1(]) . .

B = (H¥(BZ <=AZ*SX(I)) =SZ(I))*B1(J)
DGI = G(I+15J53) =G(I-1yys3)

DGJ s

G(IsJd+ls3) =G(IyJ=1,3)
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G(Isds2) = G(Tsds%) +(A*DGl =-B*DGY)/CL(3)
GK1(1,J) = G(I»ds2)
GCIsdsl) = 34%(G(I,us2) =GUIsds3)) +G(IsJsa)
GK2(1lsJd) = G(Irdsl)
[ = 1.
12 J = J -1
J = KY +1
G(Isds2) = GULrJds4) +(A®DG)] =B*0GJ)I/CL(3)
GKl(Isd) = G(Isdr2)
G(Isdsl) = 2.%(GlIrds2) =6(1rJds3)) +6(1sdr4)
GK2(JsJ) = G(Isdsrl)
y = NX/z =1
DG 1¢ [I=1,M
I = LXx =II
GO Tu 16
15 1 = LXx +1]
16 DSI = SG(1+1s3) =5C(1l=1,3)
DSK = S0(Is4) =35G(I»2)
SX(I) = £1(1)*D51 :
SZ(I) = Cl(3)*05Sk
DO 1& J=2,KY
YP = 80(J) +50(1,3)
H = 1o/ (a0(1)*A0(I) +YP*YP)
Al = =AC(I)*Xc(3) =YP%YZ(3)
BZ = —AU(L)I*YZ(3) +YP*XZ(3)
S = 5I6N(1lerAZ)
A = H¥AES(AZ)*AL(])
) = (H*(BZ -AZ#*SX(1)) =SZ(1))*81(J)
Ie = 1 <+IFIX(S) A
M = I =IFIX(S) .
DGI = G(Ilsdsd) =G(IMyJr4)
Loy 2 G(IsJd+1s3) =G(1l,Jd=1s3) ‘
G(Trdsr2) = (CL(3)#*GLLrdr4) +A*(G(IP,Jr2) +DGI) -B*0GJ)/
1 (C1(3) +aA) '
GK1(IsJy) = G(IsJs2) ' ' :
 G(Isdsl) = 3.%(G(Isygr2) =GlIrys3)) #G6UIsJs4)
18 GK2(Isd) = GlIsdsri)
J = KY +1
GUIsds2) = (CLU3)*C(Ipdrs) +AX(G(IP»J»2) +DGI) -B*DGUI/
1 (C1(3) +a)
GK1(1,J) = G(I»dsr2)
IF (1.LTelx) GL TO 15
14 CONTINUE
. Gu T€ 51 '
21 BUFFLER JUTIN2»s1) (Cl1lsls4)sG(MXsMYs4))
D0 22 J=1sMY
610:(4) = G(IZsdsr2)
G20(4) 2 6(I2-1sJ52)
G30(4) 2 6{I1lsdr2)
22 G40(J) = .G(11l+lsJs2)
- DO 3¢ I=2,NX :
D31 = S0(1+1sK) =SO(I=1sK)
DSK = $50(1sk¢l) =50(1sK=1)
DSII = SG(I+1sK) <=SOCI1,K)  =SO0(I,K) +S5C{1-1,K)
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c

32

42

51

52

6l

62

101

1
1

~NOWU S WN e~

+A3(]1)*DSL
DSKK = SO(I,Kk+l) =SOli»
+C3(K)*DSK
DSIK = SO(I+1,K+1l) =SOf
Sx(I) = A1(1)*DS1
SZ{(IL) = C1l(K)*DSK
Sxx(I) = A2(1)*D3S11
S22(1) = C2(K)*DSKK .
SXZ(I) = T1*al(1)*CL(K)*DS

IF (124GTe11) CALL YSAECP
IF (UNIT(N2)+G6Te0.) GO Tu 101
IF (keLTekg) BUFFER IN (N1,1)
IF (I1.GT42) CALL X3SwEEP
IF (UNIT(N1)«GT.0s) GU TC 101

K) =SO(IsxX) +5CU(I,K-1)

I=1sK+l) =SC(l+l,K-1)

IK

(G(lols&)sGiMXytY,4))

IF (KeNEJKTEZeCPoeYAmebLzole) GC 10 51
10 = JTE1(K) +1

LG 42 I=ICsLX

M = NX +2 =]

3 = G(MeKYs2) =G(lyrY,r2)

NO = NO ¢l

EO(NO) = ECING) +P3*(E <=EQ(NU))
IF (KJEQ.K2) GO TQ 61

DO 52 J=1,MY

DO £2 I=1,MX

G(Isusl) = G(I»ds2)

G(Isds2) = G(Isdsr3)

G(Isdr3) = .G(lsds4)

GlIsdss) = G(Isd»rl)

K s K +1

GO TO 21

D3 62 L=2,3

RUFFER OQUT(NZs1) (G(1lslsL)sGUMXMY,L))
IF (UNIT(N2)eGTeCe) GO TO 101
CONTINUE

FR s 1 .2%FR/AAD

10 = 1

RETURN

10 = 0

RETURN

END

SUBRCUTINE YSWEEP

RUwWw RELAXATION

CGMMON G(16352654)550(193,35),EG(131),20(131)»
' iV(163,35),iTEL(35),ITE2(35),
AU(193),AL(193),A2(193)»A3(192),

BUO(Z6)sB1(26),B2(

26),83(26),

Z(35)5C1(35),02(35),03(35),
XC(Z5)sX2(35),%xZ2(35),YC(35)9YZ(35),Y2Z(35)>»

NXsNYsNZsKTEL»KTE

29 ISYM)KSYM,SCAL»SCALZ,

+50(1-1,Kk-1)

YAK,CYAN:SYAW’ALPHA)CA’SA)FHACH’NI’NZ,N3)IU
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12

31

$H W

COMMEN/FLO/ STRIPsPLsP2sPIsBETASFRIIRIJRIKRI DGy 16s JGIKESINS

COGMMON/SWPY GK1(193,26)96K2(193,26),
SX(193),82(193),5xX(193),5%2(193),S2Z(193),
RG(193),K1(193)»C(193),0(193)»
610(26)9620(26)5C30(26)5G4G(2€6)9GL(26)562(26)),
I1512sKsLoNDsLXsMXsKYsMY s T1oAAQ»Q1sQ2s TYAW»S1

J1l = 2

IF (FMACH.GEosle) J1 = 3

CtIil-1) = 0,

0(Il-1) = Q.

Do 12 I=Il,12

RO(T) = 1.

R1(I) = 1,

GK1(I,1) 2 G(Islsl)

GKRI(I,J1=)) = G(Isdl=1sl)

J = Jl

13 s I2

BC = =T1281(J)*CL(K) -

DL 372 1=[1513 ‘ :

AB "= =T1281201)*31(J)

AC « T1%A1(I)*C1(K)

YP = 30(1,K) +80(J) , .

A s le <=RCG(L) <+AC(I)#£0(i) 4YP*YP

H = RO(I)/a :
“FH = RO(I)*A o

P = AQ(1)*(4.*YP*YP =FH)

¢ = YP*(4,%A0(1)#A0(1) <=FH)

A 2 XZ(K)I*XZ(K) =YZ(K)*YZ(K)

B8 a2 (XZ(K) +#XZ(K))*YZ(K)

AZ = =AQO(L)#*XI(K) <=YP®YZ(K)

B = <A0(1)¥YZ(K) +YP#XZ(K) o , _
c2 = H*H*(P*A =Q*3) <—AG(IV*XZZ(K) =YP*YZZ(K)
D2z = HaH*(Q*A +P*8) —AQ(I)#YZZ(K) +YP*¥XZZ(K)
DGI = G(I4lpdsol) =3(I-1sJdsl) :

DGJ 2 G(Llsd*lsl) =GKi(lsd=1)

DGK = G(I,Jdsl+l) =GKI(I,y) ’ ‘

DGII 2 G(I+1lsdol) =G(Isdsl) =G(Ilsdsl) +G(I=1rJ»L)
1 +A3(1)*%DG1

DG6JJ s G(IpJ*lsl) =G(lsdsl) =G(1lsdsl) +G(IsJ=1sl)
1 -83(J)*DGJ .

DGKK = G(Igdsl+1l) =G(IspJdsl) =GlIsJdsbL) +G(I»JsL-1)

: +C3(K)*DGK

LGIJ = G(I+lsd+1lsL) =GlI-1sJ+lsl)
1 ~C(I+lsJd=1sL) +G(I=lrJd=1sl)

DGIK a2 G(I+1sdsl+l) =G(I+1lsdsLl-1)
1 =G(I=1pJdolL+1l) +G(I=-1sJdyl-1)

DGJIK s GUIsJ+lsl+l) =G(lyd=1sL+1)

o «~G(Isdtlsl-1) <#G(IsJd=1sL=-1)

GX 2 AL(1)*DGY

GY = =A1(J)*DGJ S

U = GX =SXC1)*GY <+CA*AQ(I) +Sa#*YP

v = GY +SA%A0(I) <~CA*YP

W = ROUID*¥(CL(K)*DGK =SZ(1)*#GY +SYAW
1 - 4CAXXZ(K) +SARYZ(K) . +H¥(U%AZ +V*B87))
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AU
AV
Qxy
QQ
AA
HZ
FXX
Fyy
FXY
Bv
uu
vv
WW
Uv
Uw
Vw
AXX
AZZ
AXxz

W -

33

AXT
AYT
AZT
A
AXT
AYT
AZT
IF (QQ.GE.
AXX
AYY
ALZ
AXY
AXxZ
AYZ

- BP

BM
B
R

GO TC 35
NS

S

IM

IMM

AXX

AYY

ALl

AXY

AXZ

00 0 a8 8K B 0 N N 8 >0 N % 8 U8R

(RICI)  +RL(L))I*(aZ*Ar  =Uw)

U  +W*AZ

V. +W*BZ

He(URU  +V#V)

OXY 4wk

DIM(AAOy+2%QQ)

AZ*SX(1) <=BZ +FH*SZ([)
le +H*AZ*AZ .
loe 4SXCID#SX(I). +H*HZ*nHZ
SX(I) +H®AZ#¥HZ

AV =AUXSX(L) =FR*W*SZ(.1)
H*AL %AU

HeBY*BV

FHEW*W

H*AU*BV

AU*w

BV*k

RL(I)*#(FXxX*aa =LU)

FH*AA  <Wi

= (AXX*SXX(I) +a7Z%S.ZZ(L) +4XxZ*SXZ([))*GY
+T1*#(AA*(CZ*GX +(UZ =SX([)*CZ)*GY)
~H® (CA®(AUSAU =~AV*aV) +(SA +SA)*AU*AYV

“QXY®(URAC(]) +vrYP ‘

+(W  +w)*(AC(L)*AZ +YP*BZ)))
~ww? (CA®XZZ(K) +SA®YZZ(K)) =wew*(U*CLZ +V*D1))
ABS(AU*AL(L))
ABS(BV*B1(J))
ABS(FH*W*CL1(K)) _
RO(L)#BETA*AA/AMAXL(AXT,AYT,A2Ts(1s =RO(I)))
AxAXT
A*AYT
A*AZT

A) GU TO 33

AXX#42(1)

(FYY#AA =VV)#B2(J)

AZZ#C2(K) :
“R1(I)®{FXY#AA +UV)#(AB +A3)
AXZ*AC

~R1(I)*(HZ*AA +VW)*(BC +BC)
AXX .
AXX ‘

—AXX =AXX =Qi®*(AYY +AZZ)
AXX*DGIT +AYY*DGJJ +AZZ*DGKK
CAXY#CGIJ  #AYZSDGJUK +AXZADGIK 4R

NS 41
SIGN(1lesVU)

I <=IFIXx(S)
IM =IFIX(S)
VU*A2( 1)
VV%B2(J)
WW*C2(K)
Se*xS*¥UVHAS
Be%¥SkUW*AC
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32

43

B
8

ce
Ct
6
I

CU
6
If
DG
16
J6
KG
6K
GK
6

8e*Vu*BC

(FXX*#QQ  =UU)*a2(I)

(FYY$0C =VV)*B2(J)

(FH¥QQ =wW)*CZ(K)

—(FXY#GG +UV)¥(AB +AB)

(AZ#GQ  ~=Uw)*(aC +AC)

~(AZ%QQ +VW)*(&C +8C)

AA/QQ

EXX4DGIL +BYY*DGJJ +BZZ*DGKK
+BXY#DGIJ +EYZ*DGJK  +3RZ*DGIK

<
no%N U B ownoan

[
—
[

+A2(1)*0GI

G(Isdst) =GULIMyJsL) =—=GUIMsJdsL) +GUIMMsJsL)

JJy = G(Isdsl) =G(Iyd=1sL) =G(I,J=1sl) +GK1(I,J=2)

=B2(J)*DGy

KX 2 G(lsdsl) =G(Isdsl=1) =G(IsdrL-1) +GK2(I,J)

+C3(K)*0GK
1J = G6{Isdsl) ~=G(1MyJslL)

=GlIsd=1sL) +G(IMrJ=1sL)
IK = G(IsJdsl) =GUIsdsl-1)

~G(IMydsl) +6(IMsJsl-1)
JK = G(T1pdsl) =GtIsdsrl=1)

-G(Isd=1sL) +G(Is»d=1sL-1)
S = AXX*0GII +AYY®DGJYJ +AZZ*D6KK
' +AXY®DGIJ  +AYZ2DGJK +AXZ*DGIK
oS50 (AC =Ls)®(AXX +AXX +AXY +AXZ)
aC*bXxXx =(le =S5S)2*8
AG¥EXX <=(le +S)*B
~AC*(BXY +#BXX +Q2*(BYY +8Z1))
$(AG =le)®(2e%(AXX +AYY +AZZ) +AXY
(AQ =1.)%GSS +AQ*DELTAG R
LESABS(FR)) GC TC 37
R

"N nn

(ARS(R)

I
J
K - : .
R =AYT#(GK1(I,J=1) =C(I,J=1sL))
~AZT#(GK1(I»J) ~G(IsJsl=1))
g =AXT =avl =pI7
&M +AXT
le/(8 =8M#C(I-1))
B*BP
8% (R <=EM*D(I-1))
Co
=13

42 MaIl,I3
_ = D(I) ~C(I)*(C&
(ABS(CG)eLESABSI(DG)) GT TU 43
CG6 '
1
J

K

GK1{I»J)
GLI»rdsti)
GlIsusl) =CG

Q)
I)

2(isJ)
1{I,4)
IsJdsl)

: 73_

+AXZ)



42 1 =1 -1
J s J 4]

o IF (J 0 =KY) 315519561

51 IF (124GToITE2(K)) I3 = 1Te2(K)
IfF (ITE2(K)+EQeMX) I3 = LX
00 52 1=]11,13 :

LV = [ABS(1l =IABS(IV(I,K)))
-RO(I) = AMINO(LVs IABS({IV(1lsK)))
52 R1(]) = LV
60U TC 31
61 N = NO
I = Lx 41
IF (KoelToeKTELoOReKeCToKTE2) GO TO 71
I0 = NX +2 =3
DO 62 I=I0,I3
A 2 le =RO(I) <+AG(IN*ACLI) +52(1sx)%*SU(I,K)
H = RC(1)/78
FH s RO(])*A
AZ s —~AC(I)*XZ(K) =SCllsK)*YZ(K)
82 = =AGUI)*YZ(K) +SO(I,K)*XZ(K)
HZ s AZ*SX(I) =82 <+FH*SZ(])
FYY = le +SX(1)#SX(f) <+H*HZI*HZ
FXY s SX(1) <+H*AZ#¥HZ
DGI = G(I+1lsKYylL) =C(I=1,XxYsLl)
DGK 2 GlIsKYsL4l) ~=CGKZ2(1sKY)
'} = SA*AG(I) —=CA*SC(I,K)
U = A1(I1)*0G]1 +CA*AC(Y) +3A%S3(]»rK)
W = Cl(K)*DGK +SYAW +CAXXZ(K) +3A%*YZ(K)
62 G(IsKY+1sL) = G(IsKY=1lytL) -
1 +(ve(]l, ~H*BZ%*HZ) ~U*FXY =WweHZ)/(FYY#B1(KY})
I = [0

1F (IJ.NE«ITEl(K)) GC TQ 71
E GII3sKYsL) =GUIOsKYsL)
NC = NO +1

EG(NO) = EQINQ) +P3x(c <-EQ(ND))
N = NO .
71 IF (IsLEsIl) RETURN
1 s I =l
E 2 Qo
IF (IV(I,K)eNEs1l) GO TG 77 ' A
1 = Z(K) =TYAw*(XC(K) +S1*a0(1)#*A0(I))
73 IF (ZZ.GE«Z0(N=1)) GC TO 75 :
N = N =] '
GO 70 73
75 R = (I27 =70(N=L1))/(ZCIN)  <=20(N=-1))
€ = R*EGIN) +(1le =R)*EOQO(N-])

77 M = NX 42 =]
G(I»KY#1lsL) = G{(MsKY=1lsL) ~f

G(MyKY+1lsL) = G(IpKY=1sL) +E
GK2(MrKY) = GKL(MsKY)
GK1(rMsKY) = G(MsKYyL)
G(MpKYyL) s G(IsKYsL) +E
GC T0 71 :

END
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SUBRCUTINE XSWLEP

COLUMN RELAXATICH -

COMH4CN 6G(192,2654)»50(163535),E0(131),20(131)»
IV(193,35),IT21(35),1TE2(35)>
A0(1G93)81(193),42(193),4A3(193)»
BC(z5)»B1(26)962(26)5,83(20))
2(35)5C1(35)5C2(35),C3(35)»
XC(35),XZ(35)1XZZ(3b),YC(3‘)9YZ(35)9YZZ(35)»
NXsNYsNZsKTELokTE2, ISYMsKSYMy SCAL,SCALZY
YAN)CYAhpsYAN)ALPHA:CA’SA;FMACH’NI;NZ)N3’10

COMMUN/FLGY SIR1P, Pl:P&)Pi’btTA:FR)IR:JR,KR’DG’IG;JG)KC’NS

CUMMCN/SWP/. GK1(193,26)96K2(193,26)»
SX(193))51(193))5XX(193))5’1(193))511(193)’
R0(193)’R1(193);C(193))0(195): ’
51G(26), GZQ(26)1C3U(ZD)’GQC(26)061(26)’GZ(ZO)’

‘ Il:ld:KpL’N))LA:NX;KY!MY;TI:AAO;QI:QZ:TYAH:SI

N = NO

Ji s 2

IF (FMACH.GEZsle) J1 = 3

C(Ji-1) a2 O,

D(JI=1) = G

N OoOWMRrWLND -

S LN

S = 1.
11 s 1
1 = 12 +1
DG lg J'Z,KY
RC(J) = Je
R14J) = 1.
6144) = G10(J)

12 6etd) s G2C(J)

21 1P = 1 <+Ii

IM = I -1l
J2 = KY
1F (IVCIsK) oL TeZeAND eI eGToLX) J2 = NY
Lv _ = [ABS(] -I\BS(IV(I’K)))
RLEKY) = AMINO(LVDIABS(IV(I;K)))
K1{(KY) = LV.
.C = T1#A1(I)*C1l(K)
DU 32 J=dlyrde
Ab = «=T1*AX(])*81(J)
BC = =T1%B1(J)*C1(K)
YP e SO(IsK) +80(J)
A 5 1o =RG(J) <+ACLII*AQ(]L) +YP®*YP
H = RG(J)/A A
FH = RO(J)*A
P = AQ(I)*(4o*YP*YP =FH)
¢ s YP‘(Q.*AL(I)‘AO(I) -FH)
A = XZ(KI$XZ(K) =YZ(K)*YZ(K)
B s (XZ(K) #XZ(K))*YZ(K)
AZ 2 =AQ(I)#XZ(K) =YPAYZ(K)
BZ a3 «AC(1)%*YZ(R) +YP#*XZ(K)
CZ = HeH#*(P*A =Q#B) <—AC(L)*XZ2(K) =YP*YZZ(K)
Dz = H¥H?(Q*A +P#8) —AG(I)*YZIZ(K) +YP*XZZ({K)
el = S#(G(IPsdsl) =6LAJ)) :
DGJd = G(Iyd+lstl) <=G(Isv=lsl)
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DGK
DGII

DGJJ
DGKK

AZY

-

DGIK

DGJIK

AU
AV
exXy
QQ
Ap
HZ
FXX
FYY
Fxy
Bv
uu
vv
W
uv
Uw
VW
AXxX
AZZ
AXZ

[C R0 SR VUR S

AXT
AYT
AZT
A

AXT

AYT
AZT

N8 0 0 8 8 N B W BB 68U N BB NN NN

G(IsdsrL+1l) =GR1(IsJ)

GlI+lsJdsl) =GlIsdsil) =G(LlsdslL) +G(I=1yd»sl)
+A3(]1)*DG1

GllsdtlsL) =G(lsdrl) =G(Isdrl) +G(Isd=1sL)
-83(J)=*DGJ '

G{IsJdol+l) =G{lsJdslL) <=G(IsJdsL) +G(lrdrlL=-1)
+C3(K)*DGK

G(I+lyutlrl) =CG(I=-1lsJ¢1lst)

=G(I+1lsJd=lsl) +C(I=isy=1»sl)

GC(I+l,JdsL+l) =G(I+1l,dsL-1)

=G(I=1sJdsltl) +GlI=1sJsL~1)

G(IsJd+lrL+]l) <=G(lsd=1,L+l)

“G(IsJdtlsl=1) +G(lss-1sl~-1)

AlJ(]1)*DG1

-B1(y4)*DGJ '

GX =SK(I1)*GY +CA*AL(I) +SA*YP .
GY +SAa*23(1) =CA=*YP
RO(JI*(CL(K)I*DGK  =S5Z(1)*GY +35YAW

+CA*XZ2(K) +SA*YZ(K) +He(U*A/ +Vv*g2))

U  +wkal .

VvV  +w*B7Z

H*(L*U +Vry)

QXY 4kt

DIM(AAG), «2¥%TC)

AZxSX(I) -8 +FH*SZ(])

le ¢H®AZ®AZ . '

le +SX{I)%SX(I) <4+H*HI*HI

SX(I) +H*AZ*HZ

AV  —=AU*SX([) ~—FH*W*xSZ(1)

H*pLU*AU

H*B\V*Bv

FHEW*W

H*AU%*BYV

AU*y

BV*W

R1I(J)*(FXX®AA =UU)

FUXAA =WW

(R1I(J) +Ri(J))*(AaZ=aa ~Uw)

“(AXX®SXX(L) +AZZ%SZZ(I) <+AXZ*S5XZ(1))#GY

+T1*(AA*(C2%GXx +(LZ ~=SXx(1)¢CZ)*GY)

“H®(CA®(AUXALU =AV#AV) +(SA +SA)*AU*AV

~QXY®R(U*AC(I) +V*YP ‘
+(w +w)*(A0(I)*AZ <+YP=BZ)))

~WWH*(CA®XZZ(K) +SA®YZZ(K)) =—weijd(UsCZ +V*DZ))

ABS(AU*ALLI)) '

ABS(BV*B1(J))

ABS(FH*W*C1(K)})

TRUG(J)I*BETA*AA/AMAXYI (AXT»AYT,AZT,(1s =RC(J)))

A*AXT
A¥AYT
A*¥AZT

IF (0Q.GE.AA) GO TC 33

AXX
AYY

AXX®AZ(])
(FYY*A4A =VV)%82(J)
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AZZ
XY
AXZ
AYZ
BP
BM
B

R

GG
33 N3

A XX
AYY
Azl
AXY
Axl
AYZ
BXxX
BYY
BzZ
Bxy
Bx2Z
BYZ
AG
CeL
1
DGI
1
DGJ
1l
BEK
1
GGI
1

TL 35

TAG

I

J

K

J

0GIK

1
DGJ
1
G3S
1
14
BM
8
1
K
35 IF
FR
IR

K

(ABS(R)

Hon e n e

AZZ#C2(K)

—K1(J)#(FXY®AA +UVI®(AB  +A3)
AXI*AC .
~R1(J)*(HI*AA +VW)*(BC +BC)

AYY

AYY ,

—AYY =AYY —ULl*(AXX +AZZ)
AXX#0GIT  +ATY#DGJ)  +AZZ*DGKK
$AXY#DGIJ  4AYZHLGJK +AXZ#DGIK +R

NS +1]

vu*a2(1)

vv(gZ(J)

wweCz(K)

Eo*S*Uv#AB

Be*¥S*UW*AC

Be*VuwxE( , .

(FXX$0Q =Ju)*a2(1)

(FYY*CQ =-vV)*32(J)

(FH*QU —wW)*C2(K)

~(EXY*QG +UV)*(AB +AB)

(AZ*CG  =UwW)*(AC +al)

-(HZ#CQ +VW)*®(BC +BC)

AA/GQ ‘ o

AXX*UGIT +BYY*DGJJ +BLI*DGKK:

+3XY$0Gly 4BYZSCGJK +3XI*DGIK

G{lpdsl) =G(IMpJsL) =G(IMyJdrL) +G2(J)
+A3(1)*0G1 | ;
Gllsdsl) =G(I»J=1,l) “G(Isd=lsl) +6(I,Jd=2sL)
-B3(Ji*0Gy ) . ,
G(Isdsl). =G(Isdsil=1) =G(IyJdsl=1) +GK2(IsJ)
+C3(K)*DGK ,

G(Isdsl) =G(IMsdsl)

-G(1sd=1sL) +G(IMsJ=1,L)

G(Isdsl) =G(IsrJdsl-1)

-G(IMsJdsl) +6(IMsdsrLl-1)

G(Isdsol) =G(IsdsL=-1) )

=G(IsJ=1sL) +G(IsJd=1sLl~-1)

AXX*DGII +#AYY*DGJJ +AZZ*LGKK

+ARY*DGIJ +AYZA[LGJIK C+AXZI*¥DGIK

AQ*HBYY

8P =(AQ =le)2(AYY +AYY +AXY +AYZ)

-RP ~=BP =Q2%AQ*(EXX +BZZ) o _
+(AC =le)®(2+%(AXX +AYY +AZZ) +AXY +AYZ +AXZ)
(AG =1e)%GSS +AQ*CELTAG +R

LELABS(FR)) GO TG 37

R

I
J
K R
K =AXT*(Gl(J) =G(IMsJdrl)) .
~A2ZT*(GKL(Is»J) =G(IrdsL-1))
8 =AXT =AY1 =AZl

BM  +AYT :
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32

43

42

51

53

55

|
) ﬁ
8 = 1./7(8 -BM®C(J~1))
CwJ) s B*RPp :
D(J) = Bx(k =BM*D(J-=1))
C6 = (O,
J = J2
D0 42 M=Jl,42
CG = D(J) =C(J)*CG
IF (ABS(CG)eLELABS(DC)) GO TC 43
DG = CG
I6 = ]
Jo = J
KG = K
G2(J) = G1l(J)
6G1(J) = G(Irdsl)
GK2(1sJ) = GK1l(I,J)
GKR1I(Isd) = G(IsJsl)
G(Isdrl) = G(Isrdst) =CG
J = J -]
IF (IVIIsK)eLTe2) GO T3 51
A = le =rO(KY) +A0(1)*A0(L) +5C(IsK)*SO(I,K)
H = RO(KY)/ZA ‘
FH = RC(kY)=*A
AZ g2 =AQ()Y)*XZ(K) =SC(l,K)2YZ(K)
82 & =AQ(I)*YZ(K) +SOU(IsK)*EXZ(K)
HZ = AZ*SXx(]) =-BZ #FH%SZ(1)
FYY = ]leo #5X(4)*>3X(i) +H*HZ*H2
FXY = Sx(1) +H*AZ*HZ
DGT = S*x(GUIPsKYsL) =CG2(KY))
D6K e G(IsKYslL4l) =GK2(1l,KY)
v = SA*AC(I) =Ca*50(],X)
L = A1(1)*DGI +CA=AG(]I) +32%50(]1,K)
W = Cl(K)*DGK +SYAW +CA%XZ(K) +SA*YZ(K)

GEIsKY#+1lsl) = G(IsKY=1yL)
+(Vv¥(le =H®BZ*HZ) =U*FXY —=W*HZ)/(FYY*81(KY))
IF (I.NEJLTEL(K)) GO TU €1

M = NX - +2 -1
& = GIMpKYsl) <=G(IsKYrL)
NG a NO +1
CEOING) = EO(NC) +P3%(E =EC(NC))
N = NQ
GO TC 61 : ‘
IF (1.6TeLX) GO TO €1 :
E 2 Qe
IF (IV(IsK)eNEWl) GO TO 57
2 2 Z(K) ~—TYaws(XC(Kk) +Si*p0(I)*A0(1))
IF (2ZZ.GE4ZO(N-1)) GO TO 5%
N =N -1 -
60 TO 53
R s (21 =Z0(N=1))/(ZO0(N) =Z0(N=1))
E 2 R*¥EGI(N) +(le =R)I*EQ(N=i)
M = NX +2 -1

57

G(IsKY+1lsl) = G(MyKY=1pL) ~E
GIMsKY#1sL) = G(1oKY=1sL) <+¢E
GK2(M,KY) = GK1(MyKY)
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11

72

00 72 Js25KY

L e JAE I R VLRI

1

GKL(MsKY)
GIMskY,L)

IF (I.ECJNX)

IF (I.EQ.2)

1 :
G0 TC 21
3

I

1

61(J)
G2(J)

GL TC 21
tND

SUBRCUTINE

G(MyKY,L)
3 G(I,KYsL) +E
GG TG 71
RETURN
I +Il

’10
-1 .
IR -1

630(J)

-64C(J)

VELG (KsLsSVsSMyCPaXsY)

CALCULATES SURFACE VELOCITY

CGMMCN

DIMENSION
11

12

J

Q1

Tl

G(193,2€,4)»50(193,35),E0(131),20(131)»
IVI1G3,35),ITEL(38)5ITE2(3E),
0(193),01(193),82(193),A3(193),
BO(26)»B1(26)582(26)s83(26))
2(35)15C1(35),C2(35),C3(35),
XC(35)sXZU35)sX2Z(35)sYC(35)s¥2(35),YLL(35)>
NXp)NYsNZsKTELsKTEZS» LSYMsKSYMySCALSSCALZy ~
YAW)CYAN))YAWQALFHA9CA)SA;FHACH:N13N2’N3:IU
SV(I))S“(I))CP(l)’X(l):Y(1)

ITEL(K)

ITEZ (K)

NY 41

W C¥FMACH®®2

le/(o7T*FMACH®*2)

DU 12 I=Il,1I2

FH
H

AC(1)*AC(]) +350(1,K)*SO( 1K)
Ve

IF (IVCIsK)eNEGC) H = Llo/FH

AZ
B2
0SI -
DSK
Sx
hy4
06GI
DGJ
DEK
v
vV
W

0
SV(I)

<~AC(I)*XZ(K) =SCUI;K)I*YZ(K)
<AC(I)*YZ(K) +30(I,K)*XZ(K)
SC{I+1,K) =53(I-1,K)
SO(IsK+l) -=SQ0(isK-=1)
Al(]I)*DS1

Cl(K)*USK :
G(I+lsdsl) =GlI=isdsl)
GClsaJd+lsLl) ~=GlLisJd=1sl)
G(IsJsL+l) =G(IsJdsl=-1)

A1(])#DG] +SX#BL(J)#DGJ +CA®AO(I) +SA*SO(IsK)

~B1(J)¥DGJ +SA*AC(I) =CA*SA(I5K)
Cl(K)*DGK +5Z#81(J)*DGJ +5YAW =~
+CARXZ(K) C#SA*YZ(K) +H®(L¥AZ +V*BZ)
HE(U%U +VEV)  +Wrw

SIGN(SQRT(QQ)»U)

IF (IVGIsK).EQe0) SV(I) = SV(I=1) +SV(i=1) =SV(I=2)
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12

2

12

22

610

QQ = 1, +Ql#*(1l. =-QQ)

SM(I) = FMACH#*SV(I)/SQrT(CQ)

crP(I) = T1*(QQ**3.,5 ~-1l.)

x(I) = XC(K) +o5%SCAL*(AQ(I)*AQ(I) =SU(I,K)*SQ(I,K))
Y{Ir) = YC(K) +S5CAL*AQ(1)=*50(1,K)

KETURN ' ‘

END

SUBRQUTINE CPLCT (IlsIzsFMACHs X»YsCP)

PLOTS CP AT EQUAL INTERVALS IN THE MAPPED PLANE
DIMENSION =~ KOOE(2) s LINECLCC)oX (L) Y(1)sCP(]Q)

DATA KODE/Z1H s 1H+/

IwRIT = 6

WRITE (IwklT,2)

FORMAT(S0+HOPLGT CF CF AT tQUAL INTcRVALS IN TH: MAPPED PLANE/
1 10HO X » 1UH Y 2 ILH cep )

(of 29 = ((le +e2*FMACH®#2) 23,5 <1,)/(.7*FMACH#**2)
00 12 I=1,100"

LINE(]I) = KODE(1)

DO 22 I=11,1I2

K =2 304%(CPO ~CP(I)) +4.5

K = MING(1005K)

LINE(K) = KCCE(2) '

WRITE (IWRIT,61C) X(I)pY(I)’(P(l):Llht

LINE(K) = KODE(1)
RETURN
FORMAT(3F10.4510CA1)
END :

SUBROUTINE FORCF (I15125XsYsCPsALsCHORDs XMpCLyCDy CH)
CALCULATES SECTICN FGRCE COcFFICIENTS
DIMENSION  X(1),Y(1)sCP(L)

RAD s 574295779513C823

ALPHA = AL/RAD

CctL s (e

CD = D,

C" s 00

N a ]2 -1

DO 1z I=I1,N

DX = (X(I+1) =X(1))/CHGRD

DY = (Y(I+1) =Y(1))/CHORD

XA~ - m (¢5%(X(141) #+Xx(I1)) -XH)/CnURD
T YA " G5%(Y(I+1) +Y(I))/CHORD

cPaA = ,5%(CP(I+1) +CP(D))

DCL = ~CPA*DX

DCD s CPA%DY-

cL = CL +0CL

cD = CO +DCD
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i2 Crv CM +DCD*YA =0CL®*XA

oCL = CL*CUS(ALPHA) =CD*SIN(ALPHA)
co = CL*SIN(ALPHA) +CD*COS(ALPHA)
CL = DCL

RETJKN

END

SUBROUTINE TCTFUS(KTEL;KTEZ;CHUNC’bctnbCD’S»M’Z;XC’~
1 CLsCOUsCMPsCMRHCMY) o
CALCULLATFS TOTAL FORCE CGSFFICIENTS™ . o L%
CIMENSION CHPFD(l);SCL(l),\CD(l):SCW(l);Z(l);XC(l)

SPAN = Z{KTE2) -Z(KTEL) ‘ Lo

cL = Co . . “‘ ’ J

CMP = 0o ’ . ? » -

CMR = G ' e

CfiY s Oo ' ( oL

S =z O,

N = KTEe =1

DU 12 K=KTEi,N RS

02 = (5 (2(K+l) <=Z(K))

A = 9% (2(K+1) +1(K)) ' ,

cL 3 CL  +DZ*(SCLUK*1)*CHLRDO(K+1) +SCL(K)*CHORD(K))

co = 0D +02#(5CD(K+1)*CHCRU(K+1) +SCD(K)*CHORD(K))
< CMP = CMP +UZ¢(CHDRD(K*1)*(JLM(K+1)*CHDRD(K+1)

1 ~SCLIK+L)*#XC(K+1))
2 +CHIRD(K) *(SCH(K)#CHGRD(K) N
3 ~SCL(K)*XC(K)))

CMR = MR +A7%02%(SCL(K+1)*CHURD(K+1) *SCL(K)*CHURD(K))
CMY = CMY +AZ#0UZ*(SCO(K+1)#CHORD(XK+1) +SCO(K)*CHORD(K))
12,8 = S *DZ*(LHORD(K+1) +CHO&D(K))
-+ CL = CL/S
o)) = CD/S
CMP u CMPRIPAN/S**2
CMR = (CMF +CMK)/(S*SPAN)
cMy = (CMY +CMY)/(S*SPAN)
KETURN - g ;

CEND L

¢

SUBRCUTINE KREFIN

HALVES MESH S1Zt

COMMCN /G(193:2694)’50(193;3))’CU(131)9ZD(131)’
CTIVE193,35)511E1(35),1TE2(35),
A0(193),4A1(193),£2(193),4A3(133)»
BO(26),B1(2€)5B2(26),83(26))
2(35)5C1(35),C2(35)5C3(35),
XC(35)5XL(35)9X2Z(35)9YC(3E)y YZ(35),5YZ2(35),
NX:BY:VZ:KTEI;KTFZ;ISYNtKSYH;SCAL:SCALZ}

e

jo JB G, NSV RAC I o

o | ' . | ) . . 8l




11

21

31

42

54
52

111

112

YAWsCYAWs SYAws ALPHE 9 CA»SA»FMACH, N1, N2s N3, IC

mMX = NX +1 '
KY ‘= NY 4]

MY = NY +2

MZ s NZ +3

Mx9 = NX/2 +1°

MYD = NY/2 +2

MZO s NI/2 +1

K = i

IF (KSYM.EQ.Q) GO TO L1

m20 = NI/2 +3

BUFFER IN (N1,1) (G(1ls1s1)sG(MXQsMYO»1l))
IF (UNIT(N1)4GTe0e) GO TO 4C1

K s 2 .
BUFFER IN (N1y1) (G(1s1s1)sG(MXCHMYO0,1))
IF (UNIT(N1)e«GTeUe) GU TG 4CI

J e NY/Z +1
Jy - KY
i = MXO

S Il a MX
G(II,JJsl) = Gllydsl)
I el -1
11 s 11 -2
IF (1.6T+G) GO 10 31
J = J -1
Ji = 44 -2

IF (J.GTWG) GU TO 21

D0 42 J=1sKY,2

DO 4z I=2,NXs2

G(Isdsl) = (5%(G(I+1lsdsl) +G(1=15J5i))
DO 52 I=],MX

DO 54 J=2)NYs2

G(Isdrl) = o9%(G(LpJ+lsl) +G(I»J=151))
GUIsNYs1l) = 0.

BUFFER DUTI(N2»1) (G(lsisdi)sG(MX,MY, 1))
IF (UNIT(N2).GT.0.) GO TO 4C1l

K = K +1

IF (KeLEWMZO) GO TO 11
REWIND Ni

KEWIND N2

BUFFER IN (N2s1) (G(1lslsl)sG(MXsMYsl))
IF (UNIT(N2).6T40s) GO TO 401
BUFFER IN (N2,1) (G(1s193)sG(MXsMYy3))
IF (UNIT(N2)eGTeGe) GO TGO 4061
BUFFER OUT(N1,1) (G(1,151)5G(MrsMY,s1))
IF (UNIT(N1)«GTeCe) GO TU 401

K = 1
IF (KSYMeNESO) K = 2
K = K+l

DC 112 J=1,MY

D0 112 I=l,MX

G(IsJds2) = o45%(G(Isdsl) +G(1sJs3))
00 122 L=2,3

BUFFER OUTI(N1»1) (G(lslsL)sG(MXsMY,sL))
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122

132

2G1i

2C2

211

IE (UNIT(N1)LGT40e) GO TO 401

CONTINUE

IF (KeEQeM20) G TG 201

DU 132 J=1,MY

CG 122 [=1,MX

G(Isdrl) = G(lydsr3)

BUFFER IN (MN2s1) (G(lsls3)sGIMXIMY,3))
IF (UNIT(NZ2)eGTe0e) GO TO 4Ul

GC TG 111

REWIND M1

RewWihND N2

CO 2G2 L=1»3

BUFFER IN (N1s1) (G(3slsl)sGIMXsMYsL))
IF (UNITIM1)eGTe0s) Gu TU «0Cl

CONTINUE :

BUFFER OQUTIN2s1) (G(lpolsl)sGIMX,MYsli))
IF (UNITIN2)4GTo0e) Gu TU 401

Traw . 3 SYAW/CYAw

51 = +5*SCAL

NU = KTl -1

EGINC) = G

K - =2 -

IF (KSYMeNLoO) GG TU 251

N = NO

1 = MXO +1 _

Ik (KoLToKTEl.DpoKoGTQKTEZ) Gu YU 251
Il = JTE1(K)

I2 = ITE¢(K)
00 212 1=11,12

DS1 =z SO(I+1yK) =S52(1=irK)

DSK : 2 SO(IsK+l) =S5S0(1rK-1)

SX = Al1(1)*CS]

S = C1(K)*DSK

R = AMINC(L, JVII,K)) ’

A = 1e =R 4AJ(1)*aG(I) +SC(I,K)*SO(I,K)
H = R/A

FH a R*A

AZ 2 =AQ(I)*XZ(K) =SC(Il,K)*YZ(K)
B2z s <AQ(IN*YZI(K) +SO0(I,K)®xXZ(K)
HZ s ALl*¥SX =871 +Fh%*S$Z '
FYy 2 le #5X*SX  +H®HZIPHZ

FxY z SX  +H*pZ#%HZ

DGI 3 G(I+1sKYs2) =G(I-1,KY,»2)
DGK a G(IsKY»3) =G(IrkYsl)

v s SA%PC(I) =CA*SG(I,K)

U = AL(I)#DGI +CA%AC(1) +35A*SC(I,K)
W = Cl(K)*DGK +SYAW <+CA*XZ(K) +SA*YZ(K)

)

212
1

= G(IsKY=1y2)

G(IsKkY+1,2 ‘
+(VE(1l, ~H*BZ¥HZ) =U*FXY ~=W*HZ)/(FYY*B1l(KY))

NC = N0 41

ECING) = G(IZsKYs2) =G(L11,KYs2)
N = NO

1 s Il

IF (KoNEJKTE2eCFeYAWeLzoe0s) €0 TO 231
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221

231

233

235

237

241
251

252

261

262

302

401

I = [ +1

M s NX +2 =]

NG = NO +1

EC(NC) = G(MyKY»2) <=G(IsKYy2)

IF (1.LT.MXC) 60 TO 221 .

| = I1

1 = I -l

£ a 0o

IF (IV(I,K)eNEWl) GO TQ 237

11 = Z(K) =TYAW*(XC(K) +S1*A0(1)*A0(1))
IF (2Z.GE«Z20(N=-1)) GU TU 235

N a N -1

GG TC 233 .

K = (21 =ZCIN=1))/7(Z0(N) =ZC(N-1))
t = R*cC(N)  +(1l. =PI*EQIN-1)

M .= NX +2 -]

G(IsKY+1l,y2) = GIMyKY=1,2) -E
G(MsKY®1,2) = G(IsKY=1,2) <&
IF (IV(IsK)eNEW-1) GG TO 241

G(IsKYp2) = JE¥G(IoKYsl) +:25%(G(I1sKYs»3) +GI(MsKYs»3))

IF (IV(IsK+1)elTel)

1G(I,xY,2) * JEH¥G(INKY»3) +.25%(6(IsKkYs1) 4G(MsKYy1))

G(MykYs 2) = GllskY,2)

G(IsKY=4s2) & E#(C(IsKYp2) +G{lsKY=2,2))
GIMoKY=152) = (L% (GIMIKYS2) +G(MrKY=¢52))
IF (1.6Tez) GO TU 231

K = K 41

IF (KJEG.MZ) GO TO 2¢1

00 252 Js=lyMY

DC 252 I=1,Mx

G(Isusl) = G(Iypdsr2)

G(Isds2) = G(Iyds3)

BUFFER OUTIN2,1) (G(1lyLlsl)sG(MXpMYs1l))
IF (UNITIN2)eGTeGe) GU TO 401

BUFFER IN (N1»l) (G(lsls3)sGI{MXsMYs13))
IF (UNIT(N1)«GT.0e) GU TO 401

60 TC 211

ECGI(NCG+1) = 0.

00 262 L=2,3 :
BUFFER QUTINZ2,1) (G(lylsLl)sGEMXyMYsL)) -
IF (UNIT(N2)eGTe0s) GO TS 401

CONTINUE

REWIND N1

REWIND N2

00 3C2 K=1,MZ

BUFFER IN (N251) (6G(1s1s1)sG(MXsMYs1))

IF (UNIT(N2)eGTaGe) GG TO 401

BUFFER CUT(N1s1) (G(1s1lsl)sG(MXsMYyl))

IF (UNIT(N1).GTs0e) GU T 401

CONTINUE

IC = 1

RETURN

10 =0

RETUERN

END
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SUSRCGUTINE  SMGO
SMCOTHS PUTENTIAL “
COMMON 6(193,2654)550(193,35),E0(131),20(131)»

1 IV(193,35)sITEL(35),ITE2(35))
2 Au(193),A1(193),42(193)543(193)>
3 BO(Z6)sE1(26)5E2(2€¢)5B3(26),
4 2(35),C1(35)5C2(35),C3(35),
5 XC(35))XZ(35),XZZ(35):YC(35);Y2(35):YZZ(35))
6 NX;NY;NZ;KTEI;KT:Z:ISYM:KSYM;SCAL)SCALZ)
7 YAN;CYAW;SYAN;ALPHA:CA;SA:FMACH’NI’NZ:N3’IU
mMX = NX +]
KY = NY +4
MY = NY +2
MZ e NI +3
K1 2 2
Ke - = NZ
IF (KSYM.EQ.G) GO TO 1
Kl s 3
Ké = NI #2
1 PX s |le/Co
PY = e/t
Pi s 14/€Ce
DG 2 L=1,3

BUFFER IN (Nl»1) (GlLlplol)sGUEMYaNMYsL))
IF (UNIT(NL)GT40s) GO TG 351
2 CUNTINUE
BUFFER OUT(NZ»1) (G{Lrlrl)sG(MXsMY,1))
IF (UNIT(N2)eGTabe) GU TO 51
K = K1
11 Kk = K +1
00 12 J=3,NY
LU 14 I=2,NX
14 G(Isdsae) = (ls =PX =PY ~PZ)*G(1rds2)
1 toSePXE(G(LI41sds2) +6(LI-1sy»2))
2 +oH5*PYR(G(LyJ+ls2) +G(I,d=1r2))
3 +e5%P2%(G(1pJdr3) +G(I»dsrl))
G(lsus4) = G(lyJds2)
12 G(MXsJdse) = G(MXsJdsr2)
OC 1€ I=1,MX '
G(Islsa) = G(I,1,2)
GlIs2s4) = G(I»252)
GlIskYs &) = G(IyKYs2)
16 G(I,MYy4) = G(I,MY,2) '
BUFFER OUTIN2s1) (G(1lsls4)sGIMXsMYy4))
IF (UNIT(N2)eGTe0s) GC TO 51
IF (ke FQsK2) GO TG 31
00 22 J=1sMY :
DC 22 Ll=1sMX
G(Isdsl) = G(lsds2)
22 G(Isds2) = G(I»ds3)
PUFFFR IN (N1»1) (G(1ls1s3)sG(MX,MY,3))
IF (UNIT(N1).GT.0.) GO TO 51
60 TC i1
31 BUFFER NUTINZ2,1) (G(1s193)»GIMXsMY»3))
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IF (UNIT(N2)eGTe0s) GC TO 51
REWIND N1

REWIND N2

00 42 Kel,MZ

BUFFER IN (N2s1) (G(ls1ls1)sGUMXsMYsy1))

IF (UMITIN2)4GTeUe) GO TG 51 :

BUFFER OQUT(NL1s1) (G(lsisl)sGiMX,MmY,1))

IF (UNIT(N1).GT.0s) GO TO 51

CGNTINUE

10 = ]

RETUEN :

10 = 0

RETUKN

END -

SUBRCUTINE SPLIF(MyN»SorFsFPoFPPyFPPPsKMpVMoaKNy VNe MCUZ» FUMS IND) .

SPLINE FIT = JAMESUN
. INTECRAL PLACED IN FPPP 1F MGD: GRSATER THAN C
IND SET TGO ZeRO IF DATA ILLEGAL

11

- 12

13

. 60
14

21

23

25

DIMENSION S(1)sF(1)sFPUL)sFPP(Ll),FPPP(])
IND =
K. = 1ABS(N  =M)
IF (K =1) 81,61,1
K = (N =FM)/K
J = M +K
DS ‘= S(J) =S(1)
D = DS
IF (CS) 11,81,11
DF . = (F(J) =F(I))/0S
IF (KM =2) 12513514
U & .5
v 2 3.%(0F =VM)/0S
60 TO 25
U = Qo
v a VM
TC 25
U s =],
v = =LS*VM
GO TG 25 - ’
1 _ =y
J a4k
DS =2 S(J) =S(I)
IF (C*NDS) 8l,81,23
DF = (F(g) =F(1))/0S
B = 1./(DS +DS +U)
U : s g*DS :
v = 34(e *DF =V)
FP(I) = U
FPP(I) sV
] = (2.

=U)*DS
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eNeXal

61

11

8l

11

vV o = G tLF +DS®V
IF (J =N) 21,31,21
IF (KN =2) 32,33,34

v (6e*VN =V)/U

6G TC 35 A

'} = VN

GG TC 35 _

v = (DS*VN  +FPP(L))/(1s +FPLI))

B =y

0 = DS

DS s S{J) -=S(I)

L = FPP(1) =FP(l)4V

FpPP(I) e (V =U)/LS

FPP(I) = U ]
FE(I) = (F(g) =F(I))/DS ~=DS*(v +U +U)/E,
' =

J = 1

I = ] =K

IF (¢ =M) 41,511,441

I s N =K

FPPP(N) = FPPP(I])

FPP(N) = g

FP(N) = DF  +¢D*(FrP(1) 4L +B)/Co

IND = 1 :

IF (MDCGE) 81ls81,61

FFPP(J) = FQOM

v = FPP(J)

1 = J

J =y +K

Cs = 35(J) =S(1)

u s FPP(J) '

FrPePP(J) = FPPP(I) +.5%DS*(F(L) +F(J4) =0S*DS*(U +V)/124)
v . = U . . .
IF (4 =N} Tlstl,71

KETUKN

END

SUBRLUTINE INTPL(MLIsNI»SIsFlsMsNySsFsFPsFPP,FPPP,MODE)
INTERPOLATION USING TAYLOR SERIES - JAMESON

ACDS CORRECTION FOR PIECEWISE CONSTANT FOURTH DERIVIATIVE
IF MODeé GREATER THAN O _ .
DIMENSION SI(1)sFL(1)sSCL)sF(L)sFP(L),FPP(1),FPPP(L)

K = JABS(N =M)

K = (N =M)/N

I = M

MIN s MI

NIN = N1

0. ~ = S(N) =S(M)

IF (D*#(SI(NI) <=SI(MI))) 11,13,13
MIN = N]

NIN = Ml
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13
15
21
23
31
33

35

3
-

41

11

KI = [ABS(NIN =MIN)
IF (K1) 21,21,15

K1 = (NIN <=MIN)/KI
11 = MIN =KI

C s 0,

IF (MODE) 31,31,23

C ’ = 1,

11 s I1  4KI

SS = SI(II)

I = [ 4K

IF (1 =N) 35,37,3%
IF (C*(S(I) -=SS)) 33,33,37

J = 1
1 = ] =K

$S =SS -S(1)

FPPPF = CH(FPPP(J) =FPPPLI))/(S(y) =S(1))
FF e FPPP(I) +.25%5S*FPPPP
FF = FPP(1) +SS*FF/3,

FF = FP(I) +.5+SS*FF

FI(II) = F(L) 4SS*FF

IF (11 =NIN) 31,41,3]

RETURN

END

SUBRCUTINE RPLLT (JPLOTsNRESHRESsCOUNT,TITLZ)FMACHSIYA» ALY
NisN2sN3)

PLOTS CONVERGEMCE RATE

DIMENSION RES(1)sCOUNT(L)» TITLE(2G)IR(20)

IF (MNRESeLE«Ll) KETURN

IF (IPLOY.EQ.D) GU TO 11

CALL PLOTSBL(10C0s24HANTUNY JAMESON 1096G4R)

CALL PLOT(1le255145-3)

IPLDT = )

RATE = (ABS(RES(NRES)/RES(1)))
¥*(1./(COGUNT{NRES) -COUnNT(L)))

CENCODE(80,12,R) TITLE

12

14

16

18

20

FORMELT(20A4)

CALL SYMBOL(lese5s5e14sRyTesrBC)

ENCODE(50514sR) FMACH) YAs AL

FORMAT(SHMACH »FGe394Xs5HYAW »FGe354Xs5HALPHASF9,3)
CALL SYMBUL(lo!o(i’oi“’RiOo)ﬁC)

ENCO[E(325,16sR) RES(1)sRES(NEES)

FORMAT(YHRES]L »£J9e394X)5HRESEZ »EGe3)

CALL SYMBGL(10,00’014’R’00’32)

ENCODE(S50518sK) COUNT(L1)»COUNT(NRES)»RATE
FORMAT(S5HWORKLy FTe294Xs SHNGRKZ2FPe29 4 X SHRATE »F9e &)
CALL SYMBOL(les=e259e14sR9Cay50)

ENCODE(245205R) N1sN2sN3

FORMAT(O6HGRID »I453H X »[4s3H X »14)

CALL SYMQOL(lo”oS’olQ’R’Oo’ZQ)

RMIN = 0,

88




T

RMAX = 0,

COUNTL = COUNTI(1)

ReS1 = RES(1)

O 2¢ I=1sNRES

COUNT(I) = COUNT(I) <=COUNT1

RES(I) = ALOG(ABS(RES(I)/KESL))

RMAX = AMAX1(RMAX,RES(I))
22 RMIN = AMINLI(RMINSRES(I))

YSCAL = l.IALGG(ln.

YINT ) = 1,

IF (YSCAL*RMINGLTe=Ce) YINT = 2,

YLOW 2 =64t YINT

YSCAL - = YSCALIYINT

XINT s 50

IF (CSUNT(NRES) «GTe3C0s) XINT = 1G0.
IF (CCUNT(INRES)eGTe6C0s) XINT = 200,
IF (CUUNT‘NRES)QGTOIZGOQ) XJNT = 509
IF (COUNTUINRES)«GT«6000.) XINT = 1000.
~ xSCal e 1./XINT
. CALL PLOT(W® IQQJ"B)
CALL AXIS(Oes=3¢» IOHLLG(ERKDOR)»1Cs 849 9Ces YLOWs YINT,»C)
CALL PLOT(3e9=3.9-3)
CALL AXIS(=3450e944NCYCr=2506090e900s XINT,0)
DC 32 Is1,NRES |
 CGUNT(I) = XSCAL®*COUNT(I) =3, |
32 keS(]) = AMIMNL(2esYSCAL®KRESLi)) +6.
CALL LINE(COUNT,FES)NRES»isUs1sCeslerQosls)
CALL PLCT(BebYs=1e55-3)
RETUFN
£ND

SUBROUTINE GRAFH (IFLUTsI11sI29XsYsCP,TITLESFMACHs YASALS
1 , Z!bL’bODCHGKUO)X)CAL’PSCAL)
C GENEFATES CALCOFP PLUTS
- DIMENSION X(l):Y(l))LP(l)’TIYLE(ZO))R(ZO)
IF (1PLOT€Q,0) GG TG 11
CALL PLOTSHBLE1I0CO 24HANTONY JAMESON 1CG9¢C4R)
CaLL PLOT(le255145-3) :
11 IPLGY = )

ENCOLE(B0,12sR) TITLE
12 FCRMAT(2044)
CALL SYMROL(e55CeselsRrUerbL)
ENCUDE(44p1l4sR) FMACH,»YAsAL
14 FOGRMET(SHMACH »FT7e394Ks5HYAW sF7e394Xs5HALPHASFT743)
CALL SYMBCL(e59=e259414sRs0L0es44)
ENCODE(44»165R) Z5CL,CD

1¢ FORMET(SHZ . sFTe2s4Xy5HCL sFTe4s4X,5HC0 sF7e %)
CALL SYMBOL(e59=e554145R906s044) ‘
XMAX = X(I1)
XMIN = X(I1)
YMIN = Y(I1)
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22

24

26

00 22 I=11,12
XMAX s AMAX1(X(I)yXMAX)

XMIN = AMINLI(X(I)sXMIN)
YMIN = AMINI(Y(1),YMIN)
SCALX = 54/ (XMAX =XMIN)

IF (XSCALGTeGe) SCALX = XSTAL/(XMAX =XMIN)
IF (XSCALeLTe04) SCALX = ABS(XSCaL)/CHOKOO

PINT = =4

IF (PSCALNE«Ce) PINT = =ASS(FSCAL)
SCALF 3 1./PINT

PMIN = =3 ,%PNT

PMAX 3 G4%PINT

00 24 1=11,12

X(I) = SCALX*(X(I) =XMIN) +,°%
Y(I) s SCALX*(Y(I) =YMIM) <445
CPMAX = Qe :

IMAX = (12 +]11)/2

N = (I2 -Il1)/8

N1 s [MAX =N

N2 s [MAX +N

00 2¢ I=N1,N2
IF (CP(I)JLEsCPrAX) GOJ fU 2¢

CPMAX = CP(])

IMAX = ]

CONTINUE

N = [2 =11 +1

CALL LINE(X(Il))Y(Il))‘ll)b)l)bo)lo’boll )
CALL PLOT(0esr4e8s5=3)
CaLl AXIS(O.)'3.!2HCP}Z:8.;900)PﬂIN}PIhT)G)

. CpC = (((5 +FMACH®*#2) /64 )*¥%300 =14)/(7T%FMACH**2)

32

34

1
C

S W -

IF (CPC.GE.PMAX) CALL SYMBSL(CesSCALP*CPCre4UslosUesr~-1)
D0 3¢ I=I1,IMAX

IF (CP(I)eLT.PMAX) GO TOQ 32

caLtl SYMBOL(X(I)’SCALP*CP(I)’ou7;3’ Ses-1)
CONTINUE

00 34 I=IMAX,I2

IF (CP(I).LT.PMAX) GSU TO 34

CALL SYMBOL(X(I)s»SCALP4CP(1)»e0753500s=1)
CONTINUE

CALL PLOT(1lZesr=4e55-3)

RETURN

ENOD

SUBRCUTINE THREED(IPLOT,»SVsSMsCPsXsYsTLTLESYAs AL,
VLD sCL»CDsCHGRUU XSCALsPSCAL)

GENEKATES THREE JDIMENSICGNAL PLOTS

CUMMON 6(19352654)950(163,55),20(131),20(131)»
IV(193,35),ITEL(3E)»1TE2(3E8),
A0(193),A1(4193),82(193),5,A3(193),
BU(26)»B1(26)982(26),83(6),
2(35),C1(35)5C2(035),C3(35),
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11

12
21

22

32
34
36

41

42

XCU3%),XZ(35
NXsMNY NZsKTE o XKTEZs ISYMsKSYMsSCALSSCALZ) ,
YAWNSCYAws >YAWs ALPHESCAySA)FHACHINLSIN2s»N3» 10
x(l):Y(l):SV(l);SM(l):CP(l)pTITLE(ZG)’R(ZO)

Vs XZ2(35),YC(35),YZ(35),Y22(35),

- U

DIMENSTON

e S*EBS(XSCAL)/CHGRDO
-Z(KTEL))

(XSCAL. NE Ge) SCALX =
LF (PSCALeGEeCe) SCALX = 54/(Z(KTE2)
( s =1s25
IF (FSCAL.NEWCW) -«H/ABS(PSCAL)

~SCALX*®XC(KTEL)

(IPLUT.sC C) ¢h 10 i
caLt PLOTSBLI10CU)Y 24HANTONY JANEJON

- 109¢04R)
CaLL PLCT(1.2=.1.,-3) ‘

ENCOLE(12520R) -
FORMET(12HVIEW GF wING)
CaLL <YreoL(7......la,a,o.,xz)

BUFFLK Ik (N1s1l)
1F (LNITINL1)eGToCe) GO To 101
CUNTINUE

(G(l;l’L)iG(NX

1F (K.uT.KT&Z) ¢3a TD 6l
DG 22 JaisMY

Co 2z I= 15 MX

"G(Isd»rl)
G{ILyJds2):
BUFFER IN (N1s1)
IF (UNIT(NL).GTe0s) GO TG 101
IF (KoLTokTEL)Y 60 TO 2

= G(Isds2)
= GlIsd»3) |
(G(Lloin3)sB(MXsMY,s3))

.= ITE2(K)
CalLlL VELD (K925 SVseSM,;C
IF (KeGTWKTEl) GO TO 41
eENCIALE(8C»32,R)
FORMAT(2CA4)
CALL SY"‘BOL(QE)CQ)OI.Q)R)CQDEQ)
ENCOCE(44s345R) FMACH, YA, AL
FORMeT(5HMACH sFT7e394Xe SHY AW
CALL SYMBOL(eS9=e2590149k90er4é)
ENCOCE(44»365R) VLLs»CLSCC
FORMAT(S5HL/D

sFTe394Xy5HALPHA,FT743)

sF7e29aXsHHCL sF7, 4:4X:5HCD
CALL SYMBCL(e59=e594145Rs0Deré4)

s S.%(2(K)
D0 4z I=s11,12

' = SCALX#*X(1)
= SCALX*Y(])
= SCALP*CP(J)
(.EQse2) GC 10 51

-Z(KTEl))/(Z(KTtZ) -Z(KTE1))



51

52

61

62
64

71
161

N s [2 -11 +1 .
CALL LINE(XK(IN)»Y(I1)sNolsCrlsCasrlerCesle)
G0 TCL 21

N = [2 =LXx +1

CALL LINEUX(LX)pCPULX)sN»1rGrls0esles0asrls)
N = LXx =-Ii +1 :

DO 52 Isll,LX

X(I) = X(I) +TX

CALL LINE(X(I1)sCP(I1)sNs1sGrlsCersesCesrls)
G0 TCU 21

REwWIND N1 _

M = M +1

CALL PLUT( 120900)’3)

IF (FeGTa2) GU TC 71

SX s =SCeLX*XC(KTEL)
ENCOCE(24562»R)

FORMAT(24HUPPER SURFACE PRESSUPE )
CALL SYMBOL(Oese55e1l4sRsCes24)
ENCODE(24564,R) :

FOCRMAT(24HLOWER SURFACE FRESSULRE )
CALL SYMBCL(3e55e55e¢145Ry04r24)

60 TC 11

16 . = 1

RETUEN

I0 : = G

“CALL PLOT(12¢5C0es=3)

KETURN
END
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This report was prepared as an account of’
Government sponsored work. Nelther the
United States, nor the Administration,

nor any person acting on behalf of the
Administration: -

A. DMakes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information, '
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights, or

B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report ‘ ’

As used in the above, "person: acting on behalf

. of the Administration"” includes any employee

or contractor of the Administration, or
"employee -of such contractor, to the extent

that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or:
contract with the Administration, or his
employment with such contractor.
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