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Abstract

The finiﬁe differéhce methods of Godunov, Hymén, Lax-Wendroff
(two-step),.MacCormack, Rusanov, the upwind scheme, the hybrid
scheme of Harten and Zwas, the antidiffusion method of Boris
and Book; and the artificial compression-method of Harten are
comﬁared‘with the random choice metﬁod known as Glimm's method.

The methods are used to integrate the one-dimensional equations
of gas dynamics for an inviscid fluid. The results are compared

and demonstrate that Glimm's method has several advantages.

I. Introduction

In the past few years many finite difference schemes have -

been used for solving'the.bne-dimensional equations of gas

- dynamics for an inviscid fluid. Récently the random choice method

(Glimm's method) introduced by Glimm [6], has been developed for
hydrodynamics by Chorin [3]. Due to the noﬁstahdardness of
Glimm's method, as well as the difficulty in programming, its
acceptance as an effective and efficient numerical tool may be

restricted.




In thé following sections a brief discussion df the methods
‘is given;vtheir solution to a.sample one-dimensional problem is
comparéd, the advantages of Glimm's method are discussed, and"
| finaliy'the equationsfused by Glimm’svmethod are derived and a

flow chart for the programming of it is given.

Basic Equations, The one-dimensional‘equations of gas dynamics

~may be Writteﬁ in'thev(conservation) form:

3p +d(pu) =0, (1)
3ym +3, (- tp) =0, - (2)
dge +3, (2 (e+p)) =0 | )

‘where p is the density, u is the velocity, m = pu is momentum,
p is pfeséure, and e is energy per unit volume. We may write
e = pe-+% pu2, where € is the internal energy per unit mass.

Aséume the gas is polytropic, in which case

— p
E = m (ka)

. where y-is ‘& constant greater than one. Furthermore, from (4a)

we have

p = A(S)pY . - (bp)

where S denotes entropy.

Equations (1)-(3) may be written in vector form

U +E(U), =0 ) (5)

where
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In order to deal with solutions which contain shocks, we

write the equations in integral form, which is obtained by

integrating equations (1)-(3) (or equation (5)) over any region

in the upper half of .the (x,t) plane and applying Green's theorem

to obtaln the follOW1ng contour integrals

g,(:édx +g§mdt =0,
if:mdx +f (I-np3+p)dt
fedx +f (% (e+p))dt = O .

II. Description of the Methods

0,

The methods of Godunov [5], Lax-Wendroff (two-step)
MacCormack. [18], Rusanov [20], and the upwind difference
scheme [19] have been widely used and no benefit can be

obtained by describing them here. Hence, these schemes

(161,

will merely be listed in Table I. The remaining methods under

consideration will be briefly discussed.

Glimm's Method. Consider the nonlinear system of equations (5).

Divide time into intervals of length At and let Ax be the spatial

increment. The solution is to be evaluated at time nAx,

is a nonnegative integer at the spatial increments iAx,

i = 0,+1,+2,... and at time (n l)At at (i+ l)Ax.

where n



The method is a two-step method. Let g? approximaﬁe_

n+l/2 » . ]
Uisl/o approximate Q((1+1/2)Ax,(n+l/2)At).

' ’ n+l/2
. To find the solution Uis1/2

the system (5) along with the piecewise constant initial

U(iAx,nAt) and

and thus define the method, consider

data

2141, x > (i+1/2)Ax |
U(x,nAt) = : (9)
. 92 , x < (i+1/2)Ax

This defines a sequence of Riemann problems. If At< ETT%%:ET’

where ¢ 1s the local sound speed, the waves‘generated by the
different Riemann ﬁroblems will not interact. Hence the sol-
utioh'x(x,t) to the Riemann problem can be combined into
é singie'exact solution. Let En be an equidistributed

random variable which is given by the Lebesgue measure on

the interval [—%,%]. Define
ntl/2 _ 1
9.1.*.1/2 = K((i+5n)AX, (n+2)At). (10)

Af each time sﬁep, the scdlution is approximated by a piece-
wise éonstant function. The solution is then advanced in time
exactly and ﬁhe new values are sampled. The method depends
on the possibility of solving the Riemann problem exactly and

inexpensively.




Chorin [ 3] (see also Sod [.21]) modified an iterative method due
to Godunov [4] which will be described below.

Consider the systeﬁ (5) with the initial data

sz= (pzluzlpz> s X<OJ'
H(X:O) = ' . (ll)

SI‘

~

(Pr,ur)pr) :4 X >0 .

The solution at later times looks like (see [14]) Fig. 1, where
S1 2

and S
The_fegion Sy 1s.a steady state. The lines zi and 22 are slip

~areveithér.a shock or a centered rarefaction wave.
" lines separating -th.e..étates.° The slip line dx/dt = u, separates
the state Sy “into tﬁo parts with possibly different values of p*,
but.equai values of u*‘andbp*.‘

Using this iterative method we first evaluate p, in the
state S;;. Défine the quantity | |

_ Py Px

M, 5, | (12)

If the left wave is a shock, using the jump condition Uz[p] = [pul,

we obtain -

M, = pz(uE-Uz) = p,(u, - Uﬂ) : (13)

where Uz is the velocity of the left shock énd px 1s the density
in the portion of S, adjoining the left shock. Similarly, define

the quantity

M =r_o (lu)




If the right wave is a shock, using the jump conditions -

u.lpl = [pu], we obtain - ' B

3
M, = -pp(u,-U,) = _p*(u*;_Ur) ‘ (15)
where Ur is the velocity of the'right shock and p, is the density
in the portion of S, adjoining the right shock. '
In either of the two cases ((12) or (13) fo‘r‘Mz and (14)
and (15) for Mr) we obtain '
M. = V/p Py $(pe/P,) ~ - (16a)
M, =/p, 0, b(py/P,) (16b)
o g TPRy 2 | |
where ‘ ' : -
. P
jy;l X +'751 , x>1,
b(x) = 4 . . _ (17)
| y- -x <1 .
. F) . .
o/y 1L-x¥"1/2y 7 -
N T
Upon elimination of u, from (12) and (14) we obtain
P. P,
r )
(uz"'ur+'M_r'+M;) _
Py = T 1' . (18)
+ = : »
MZ M,
Equations (16a), (16b), ;nd'(18) represent three equations in three
unknowns for which it can be seen. that there exists a real solution.
Upon choosing a starting value pg (or MZ and MS), we iterate using ,
equations (16a), (16b), and (18). For details .of the starting
values see Chorin [3] and Sod [21]. |




After p,, M , and M, have been determined we may obtain u,

2’
by eliminating p, from equations -(12) and {14),

p,-p._+t+Mu +Mu
g r g ,
u = . (19)
* M2+Mr

The finite difference method due to Godunov [5] in Table

I is for the Eulerian form of the equations of gas dynamics.
The method developed by Godunov [4] for the Lagrangian form

is_aiSo a tw04step method where the second step is the second

' +
half step in Table I. However, the values of un+%;§ and
p?:ifg are replaced by uy (19) and py (18) from the Riemann

problem at i+1/2.

Artificial Viscosity. In the methods of Godunov, MacCormack,

and Lax-Wendroff (two-step) an artificial viscoéity term was

added. The artificial viscosity term uéed was introduced by

Lapidus [33]. It has the advantage that it is very easy to add to

an existing scheme and it retains the high order accuracy of the
+1

scheme. Let ﬁ? be the approximation at time (n+l)At obtained by

any one of the above schemes., This value is replaced by the new

approximation
n+l _ ~n+l  vAt ., ,mn+1 o+l
. = . +— *
2 2y Ax atila 1+l & i1 (20)
where A'E? = ﬁ? ﬁé-l and v is an adjustable constant.

This equation (20) is a fractional step for the numerical

solution of the following diffusion equation

A_‘ \)A




'it is shown (see Ladidus Ei3])that this new difference scheme
(obtained by adding.the artificial viscosity) satisfies the éame
conservatidn law that fhe pfevious equatioh did. The values of
the constanﬁ v used varied from mefhbd'to method. This is
discussed in the section on numerical results. This artificial

viscosity was not added in the smooth‘fegions.

Harten's Corrective Method of Artificial Compression. In this

seption we discuss the Artificial Compression Method .(ACM)
_dé&eloped by Harten [8]. This method is designed to be used in
conjunction with an already eiisting finite difference scheme.
. The purpose df this method is to sharpen the regions which contain
discontinuities'whether shocks or contact discontinuities.
'Only the basic idea of the ACM will be discusSed for the
case of a single conservation law. Let u(x,t) be a solutién,of

the conservation law .

u, +f(u), =0 | (@1)
which contains a discontinuity (uL(t), uR(t), S(t)), where up and

u, are the values on the left and right of the jump and S is the

R
speed of the discontinuity. The discontinuity is either a shock
or a contact. Assume, without loss of generality that at -any

given time t the solution u does not take on any values between

uL(t) and uR(t). Consider the function g(u,t) with properties
g(u,t) sgn [ug(t) -~u (t)] > 0" for we (u (t),up(t)) , - (22)

‘;g(ugtjvéﬁo;i' .. for u %.(uL(t)QuR(f))'e‘ (23)




This function g will be called an'artifioial compression fluxe.
It can be seen that u is also a solution of the conservation

law

,ut-+(f(u)+-g(u,t))x =0 . _ ' (2“)

By (23) we see that when u is smooth the equation (py) is identical
with equation (21 ) and the shock speed S(t) remains.the same.

Finally it is observed (from (22)) that if (u S) is g shock

upsu
or contact for eqoation (21) then it is a shock for the‘modified
equation (24). | | |

|  The artificial compression method solves the modified equa-
tlon (24) rather than the orlglnal equatlon (21). For a compléte
dlscu581on of the implementation of the method see Harten [8]

let u?’l' represent the approximate solution vector to (5)

obtained by using any one of the above finite difference'methodsy
In‘solving the modified system (analogous to (2&)) we use operator

splitting. We first define the difference representatlon -9 of

the artificial compression flux g,

& < “rél ? : (25)
where
8 =%y
“and
k k k
- min (|6, |,5% .sgn (5. ))
_ . i+l/2'27i-1/2 i+l/2/ 7
. ‘a; = max O,min [. ISk T ' (26)
i+1/2 i-1/2
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3 K
Let S, +1/2 represent the vector whose k-th component is sgn (6i+1/2)'
Then the difference scheme which applies the ACM to the given solu-
tion an+l is
=i
n+tl _ ~n+l At '
u =8 - oay (847 -8571)
At ‘ C '
T mx ('§i+1'i§i|§i+1/2"léi"§1-1|§i-1/2) (272)
_ wn+l n . ’ | ,' .
= 8" - 5y (G1+1/2 Gil17000 (27b)
.n n n- n :
where Gy, /> = & - Bis1 — |Bys1 - Bil Sy4q/p» applied component-

'wise See Harten [7]

The method of artiflcal compre531on is designed for first
.order schemes and cannot be applied-dlrectly to higher order
schemee. The idea of ACM is based on the existence of a viscous
profile. See Harten [8]. Higher order schemes introduce
other flux termsvso that one_obfains different (nonphysical)

speeds of propagation.

Self-Adjusting Hybrid Schemes. The idea of self-adjusting hybrid

- schemes was introduced by Haften,and Zwas [llj, Consider a

and a k-th order (k > 2)

nonoscillatory fifst order scheme L1.

scheme Lk’

N - R |
Lyuy = vy - 35 (Fi41,0 f1—1/2), (28)
_ At ok k
Lkul = u; - iy (fi+1/2 - fi-l/Z) (29)

1
their numerical fluxes. Define the hybrid operator L by

_So as not to violate the conservation; hybridize L, and Lk through
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At -

Luy = w5 - 5 (Fygayp = Fi3/00 (30)
where
£, =6 £l +(1-9,,.,) % (31)
i+l/2 i+1/2 “i+1/2 i+l/2 i+1/2 °? :
.6i+1/2 is a scalar qﬁantity (called a switch) which satisfies
08,1, < 1. 'Atldiscpntinuities‘phe automatic switch is

such that 6 T 1. Hence at the discontinuities the hybrid scheme
is essentially the nonoscillatory first order scheme.

Equation (30) can be written in the form

o . At . 1 _ ¢k '
Lug = Liug + 35 084410 (Flha/0 = Tiv1/2)
| | 1 Koy
=012 Figp - f A - 32

i-1/2

so that if 6 is o(Aip) where the solution is smooth, then for

p > k-1 we have

_ ookl
Luy = Loug + o(Ax ). (33)

There are many choices for such schemes. The scheme chosen
here 1is discussed in Harten [9]. Taking k¥ = 2 we choose
MacCormack's scheme and by adding the artificial viscosity
term

(8 (uy,q - uy) - 6 (uy = uy ) (34)

8 “Wi+1/2 tUi+l i i-1/2 Y71 T Fi-1

to MacCormack's scheme we obtain the-first order scheme.

The hybridized scheme becomes for the system (5)
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n+l _ At n n :
Yy = Uy - A% (Ei+1 - Ei) . (35)
ntl _ 1 ,.n+l _ ny, _ n+1 _ N+l
Uy T =3y T - Uy 2Ax (F Fi 1)
1 n n n n n n'
g Ogryo Wygy —Ug) =855, Uy - Uy 1)) (36)

=i =i-17
The stability éondition for the first order scheme is

V3

max(|ul+e) %% < —5,

this being strlcter than the stabillty condition for MacCormack'
.scheme. So thlS is the stability condition for the hybrid
schemé.

It remains to describe how the switch 6 is chosen. = There

~are many possible choices, the one selected is described in

Hartgn [9]. Let Ai+l/2 Pi4p — Py-. Define
F'|Ai+1/2| 18y_1/2] | |
,A T+ 12 15 for [8,,9,014184 1,01 > €
~ i+l/2 i-1/2
ei =
A (37)
\ 0" - , , otherwise.

In this case p =1 and'e:> 0 is chosen as a measure of negligible

variation_in the density p. We define the switch 6 by

~ A

) = max (8,8

i+1/2 i+l)'

Since in areas which contaln a discontinuity the hybrid

scheme is about first order we may apply the artificial
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compression method discussed above. However, the ACM must
not be used in smooth regions. For this purpose the switch

' ié used again, l.e. equation (27b) may be replaced with

' n+1 - wn+l
L 2Ax

n n n
Giyr2 = © G

G i-172 81-1/2) (38)

(ei+1/2

Antidiffusion Method of Boris and Book. In this section we.

shail‘discuss:briefly the'antidiffusion methodedeveloped by
'Boris‘end Book [1]. The purpose of this speeiai technique
known‘as."flux.eerrection" is to achieve high resolution

: Without osciilations,

It can be shown that a first order difference scheme

can be represented by an equation of the form

" (39)

= ae [ acu At
L * T, = At [g(u,AX)u

xJx ?
where g(u,A ) is the coefficient of the diffusion term

The basis of the antidiffusion method is to use a stable
modification of a diffusive difference scheme. Let the
eriginal scheme bé represented by.(39), the modification is

represented by

+r(u), = ot [ (g(u,hD) - r@,g5)u (40)

U.t xlx ?

where r is a positive function. One can introduce the anti-
diffusion term‘by operator splitting. The first step consists

of solving
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ug + flu), =0, - (41)

with the original difference scheme, say 32+1 = Lu?.vTheh
in the second step let A be a difference operator approximating

the,diffusion.equation
- At P
u, + At[r(u,Z;) ux]x = 0. o (42) |

The second step is the antidiffusion step, which is unstabie

by itself since it approximates the backward heat equation

We define
n+tl _ ,wvn+l _ ... n
- uy = Aui = ALui.
It can be seen that if .
A | ~
g(u,Ax> Mz% >0, W)

then the combined,scheme AL is stable. However, (43) places

Ax
We ehdse for L the two-step Lax-Wendroff scheme. Following

more ef a restriction on At than the stability condition for L.

Boris and Book [ 2], the precedure is

n+l/2 _

Uinye = 3 @+ Uiy - AL(EYyy - By o (uta)
RS X7 R v N Cavw)

ﬁgfl = U3+ ”(Ui+1 - 2uy + UY ), (Ble) |

Pt = O - (50 - 500 (tka)

where
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A "— ~n+1 ~n+1

Biyrso =0 Wiy -9 )s
- _ An+i n+1l
Bivi/2 = 0441 - Y s

c

A .

YA YA

A
min Sg?(Ai+1/2_

i+3/2]l'

1-172°18341/015580(8y 41 /5
. The .parameter n is‘the.diffusion/antidiffusion_coefficient.i The
. stability condition is ‘ ‘

max([u|+c),%§ < 1.

Hyman's fredictor-Corrector Method. 1In [12] Hyman describes'
a predictdr—corrector'type scheme. The spatial derivatives |
.aré'approximated by a second order diffefence operator while
the timeAderivative (or time integrator)-useé the improved
Euler scheme. The improved Euler écheme combines a first
order exbliéit predictor with a seqond order trapazoidal
rule corrector.

For stability and'to insure proper er.tropy production an
érﬁificial viscosity term is added. The artificial viscosity
tefm used is similar to that used by Rusanbv [20].

The scheme 1s given by

n+1/2 _.n _ n n _ an ‘
n n
= uy - At Pi
ntl _ n At n+l/2 _n o - y
u; o=y - T3 (PEy * Ry, | | (45b)
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where

1l p? 4 gp? . _gp" _ 4+ FO

o
PE; = Toax (“Eieo ¥ OByyy -OE; 5 + By o),

n - 1 n n. n n
1412 = Tax (@341 *ooy) (Ui - uy),

n n
a, = (u-
i (u -+ c)i,

and ¢ is the local sound speed.
The stability of the scheme dependsloh the number of

applications of the corrector (45b) and on &§. We took as the

stability condition

at

" max (ful +c) Ay < 1.

.In order to maintain stability, the artificial viscosity must

‘not be‘completeiy removed in the smooth regiohs. However, it

can bé reduced in these regions by using a type of switch.

The one chosen was suggested by Hyman [12]. Replace §2+1/2 in’
. n' ’ ’ ’

(452) by B ¢4, ,, where

n 5 n . Ax
%417 %1 T 73

, otherwise.

1
=, if
B = 3
1

This typé of .switch greatly reduces the smearing of the
contact discontinuity as well asvthe shock wave. 'This switch

is a type of artificial compression.

- ITI. The Shock Tube Problem

Figure 2 represents the initial conditions in a shock tube.
A . . ' - '
diaphragm gt X, separates two regions (regions 1 and 5) which
have difference density and pressures. The two regions are in a

constant . initi onditior |
‘ stgte The 1n1t1alAcond1tlops‘are Py > Pgs pp > Y and
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U = U =0, i.e. both fluids are initially at rest. At time
t >0 (see Fig. 3) the diaphragm is broken. Consider the case
before any wave has reached the left or right boundary. Points
Xq and Xy represent the location of the head and tail bf the
rarefaction wavé (moving to the left), Although the solution is
continuous in this region-(region 2) some of tﬁe derivatives of
the fluid quaﬁtities may not be continuous. The point x

3
has reached by

is the
position that an element of fluid initially at Xq
time t. x3>is célled a ;ontact diSContinuity.. It is seen that
acroés a contact discontinuity the pressure and. the normal
qomponentAbf velocity are»continudus.i However, the_density and
‘the.tdngehtial'compbnent of'velocity are not continuous across a
contgct discontinuity. The point Xy is the location of the shock
wave (moving to the right). Across a shock éll'of the quantities
(p, m, e, andvp)_will in generai be discontinuous.

 In the study of the abpve numerical methods the‘followiné
test problem was'considered: Py - 1., p;y = 1., u

= O., = 0.125,

1 Py

Ps =‘o.i, and ug = Q. The ratio of specific heats y was chosen to

be 1.4. In all of the calculations Ax = 0.01. For the

Rusanov scheme the value of w was taken to be 1;0. In the

scheme of Boris and Book the parametef n was taken to be 0.125.

For'Hyman's schéme the value of & was taken to bg 0.8. The constant

in the artificial viécosity term v Was taken té be 1.0 in all

but one case. Also the value of o (see Table I) was taken to be 0.9.
In Glimm's original construction a new value of . £ was

chosen for each grid point i and each time level n. The

practicél effect of such a choice with finite Ax.is

disasterous; since our initial data is not close to constant

(which was an assumption made by Glimm). In fact, if g is

chosen for each i and n, it is possible that a state will
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propagate to the left and to the right and thus create a spurious
state.' An improvement.due to Chorinv[B] is to choose ﬁn only once
per time step (hence the'subscripf n). The details of the method
of selection of the random number aré found in Chorin [3] and
Sod [21]. |

Figure 4 indicates the results'using the firsf order accurate
Godunov scheme. The corners at the endpoints of the rarefaction
wave'are rounded. The constaﬁt state between the contact dis-
continuity and the ‘shock has ndt been fully realiZed; The transi-
tion of the.contact.diSContinuity occupies 7-8 zones while the
'tran51t10n of the shock occupies 5-6 zones. |

Figure 5 indicates the results using the Godunov scheme with
A.artificial compression. It should be noted that for this case the
constant ih the artificial viscosity term wés taken to.-be 2.0 to
insure that the solution before app;ication of artificial compres-
sion was oscillation'free° For the artificial compression cannot
be appliéd in the presence of oscillations. The corneré-at the
endpoints of the rarefaction wave are still rounded, sirice the
.artificial compression method is nOtvéppliéd in smooth regions,
There- is a slight'undershoot at the right corner of the‘farefaction.~
Also there are oscillations at the contact discontinuity. The
| tranSifion of the contacf discontinuity occupies 3-4 zones while
the transition of the shock occupies only 1-2 zones.

Figure 6 shows the resﬁlts of'the twb—step Lax Wendroff scheme.
There are very slight overshoots at the contact discontinuity and
morélﬂoticeable overshoots af the shock. The rarefaction wave 1s

quite accurate. The corners at the éndpoints of the rarefaction
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are only slightly rounded. The transition of the contact dis-
continuity occupies 6-8 zones while the‘shock wave occupies 4-6
zones. It is observed that the plots in Figure 6 are quite similar
to those in Figure 7 obtained by MacCormack's mefhod.
| Figure 7 represents the results of the second order MacCormack
schemé.v There are slight overshoots at the contact discontinuity
and more noticeable overshoots atjthe shock wave, The rarefaction
wave is quite accurate. . The corners‘at the endpoints of the rare--
_factioh are oﬁly slightly rounded;  The transitionlof the éontact
discontinuity occupies'7-8“iones while the transition of the shoék
'_oCcubies 5-6 zones.

'Figufe 8 represents the fifst order accurate Rusanov scheme.
‘The éontaét'discontinuity is barely visible in the dénsity profile.
The corners at the endpoints of the rarefaction»wave are extremely
roundéd; The constant state between the contact discontinuity and
the”shOCK wave is barely existent. .The transition of the contaét
discontinuity océupies 14-16 zones and the transition of the shock
occupies 6-8 zones. This scheme is extremely diffusive. This
scheme will even diffuse entropy for zero flow fields. |

Figure 9 represents the Rusanov scheme with artificial com-
bression. The reéults-with artificial_compression are greatly
improved. The corners at the endpoints of the rarefaction wave are
still rounded since the artificial compressidn method is not applied
in this area. The constant state between the contact discontinuity
and the shockAis much more visible. The transition of the contact
discontihuity occﬁpies 2-3 zones while that of the shock wave

occupies only 1-2 zones.
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Figure 10 represents the upwind difference scheme. It
.1s observed that between the left constant state and the
left endpoint of the rarefactlon wave is ‘a shock’ (discontinuity)
This is clearly a nonphysical solutlon This is a result of
the method used to stabalize the scheme, by using centered
differences for the pressure term in the momentum equation.

Figure 11 shows the results of the Glimm scheme. The shock
wave and the.contact discontinuity have been computed with infinite
‘reSOlution, i.e. the number of zones over which the variation
occurs is zero. Due to the randomness of the method the positions
.of the shock and the contact discontinuity‘are not exact. However,'
on the average their positions are exact.-.The corners at the
,éndpoints of the rarefaction wave are perfectly snarp. It is
observed tnat the:rarefaction'is not smooth, yet it 1s’extrene1y
close to .the exact solution. ‘The constant states are perfectly
realized;

‘Tne Glimm scheme requires between 2 and 3 times aS‘much
time.(see below) as the other finite difference schemes tested.
However,‘the Glimm scheme requires far less spatial grid points
for the same resolution. This is displayed in Table II, where
9 interior grid points(are used. All details are visible.

The Glimm scheme on'the average.is conservative. One
other check on the accuracy is to use'the conservation laws

(mass, momentum, and energy) . For‘exahple, the total mass is




21

evaluated by

Q, = Zp(im;) AX.

i
‘In TableAiII the values of,the,total mass, momentum, and
eneréy are displayed{ The'mass and the energy are seen to
.be. cOnserved on the average,'i.e. there are fluctuations
but they are contalned w1th1n a small interval The momentum
is seen- to increase linearly on the average (allow1ng for
.fluCtuations)

Figure 12 shows the results of the antidiffu51on method
of Boris and Book applied to the two -step Lax—Wendroff scheme.
There is a sllght overshqot at the rlght corner of the
rarefaction . The rarefaction wate is Very'aceurately coﬁputed,
The corners at the endpoints of the rarefaction are only slightly
rounded. The constant state between the cohtact discontinuityv
and the shock wave is enly‘partially realized. The transition
of the_contéct discontinuity Qccuhies 5—7,zones and the
transition of the shock occupies i—2 zones. The resolution is
much better than the two-step Lax~Wendroff scheme alone
(see Fig. 6). |

. Figure 13 repsents the hybrld scheme (35) and (36) of
Harten and Zwas. The solution is free of 050111at10ns The
corners at the endp01nts of the rarefaction wave are only -
slightly rounded. The constant state between the contact

discontinuity and the shock is only partly realized. The trans-
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ition of the contact discontinuity occupies 8-9 zones and the
transitioh of the shock occubiés 5-6 zones.

Figure 14 represents the hybrid scheme of Harten and Zwas
with the use of artifical compression. Since the artifiCai
comﬁression is not applied in smooth'regions the rarefaction
is the same as4in'Fig. 13. The transition of the contact
.discdntinuity occupies 3—h zones and the transition of the

shock wave occuples 2-3 zones.
Figure 15 represents the results of Hyman's predictor-

corrector sbhéme, wheére the corrector has been applied once.
The solution is oscillation free. Theé corners at the endpoints
.of the rarefaétion are almost pérfectly sharp. The constant
states between the rarefaction and the contact discontinuity
.and between the contact discqntinuity'are extremely well
defined. Tﬁe transition of the contact discdntinuity*OCcﬁpies
6&8'zénes while tﬁe transition of the shock occupies 3-4 zoﬁés.
The timing results for all of the methods are listed in
Tablé Iv. Thé times are for 100 spatial grid points. . The only
substantialxdifferenCe in timing is between Glimm's scheie |
and the other finite difference schemes. For Glimm;s scheme
requires between.2 and 3ltimes és much time. However, Glimmfs
scheme can give the same resolution with far less points
-(és seen 1in Table II). From the point of view of the least
number'of grid points per desiréd resolution, the Glimm Scheme

can-be seen to be much féster.

IV. Conclusions

Of all the finite difference schemes tested, without the

use of corrective procedures, Godunov's and Hyman's methods
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produced the best results.

It 1s obvious from the figuresvthat the Glimm scheme gives the

best resolution of the shocks and contact discontinuities.
Glimm's‘scheme is at best first order accurate (see

Chorin [3]) so that boundary conditions are easily handled.
It is possible that the rarefaction wave obtained by
Glimm's method can be smoothed out by a type of averaging.

This is presently being considered.

The hybrid method of Harten and Zwas combines first and
high order schemes in such a way as to extract the best
features of both. The high order scheme prodﬁces better
approx1mations to the smooth parts of the flow

The corrective procedures of Borls and Book and Harten
improve the resolution of a given scheme. The artifical com-
préession method being festricted to'first order schemes except
when used in conjunction with the hybird type schemes
produces far better results thanAthe'antidiffusion method of
Boris'and Book. Both methods are eesily added to existing
programs (as a subroutine). The antioiffusion method requires
slightly more storage than the artificial compression method
since the former must retain two‘time levels of information
for the computation of intermediate results (equation (4h4e)).

A major dissdvantage of the antidiffusion method of
Boris and Book, the hybrid_scheme‘of Harten and Zwas, and
the artificial compression method of Harten is that there
are a number of parameters to be chosen, which depend'on the
given problem. In the antidiffusion method the coefficient
of diffusion/antidiffusion must be chosen. The value of this

parameter can greatly affect the results. In the hybrid
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scheme a tolerance must be chosen for the automatic switch which
is taken to be a measure of negligible variation in entropy or
density for example; This tolerance depends on the given prdblem.
In the artificial compression method'a"test must be inéluded to
locate the rarefaction (and other émooth regions). Many of the
standard tests fail to work well enough for the use of artificial
combression, | | |

| With the method described for solving the Riemannlpfoblem
ih thé Glimm séheme, it can only be used fdr the eqﬁéﬁions of gas
dynamics in reéténgular coordinates. It is possible to geheralize
.Glimm's method to other coordinate systems and diffefentiequaf
tions. See Harten and Sod [10].

The applicabilify of Glimm!s method to othef geometries-has

only Just started to be explored. One'successful application is
fo thé equationS»bf gas dynamics for a cylindrically or spheri-

cally symmetric‘flow. See Sod [ 22].
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Appendix: Implementation of Glimm'é Method

In this appendix we discuss‘the equations required for the
computer implementatibn of Glimm's method.

As in Fig. 1, the fiuid initially at x < O is separated
from the fluid initially at x > O by‘a slip line %% = Uy There
are a total of 10 cases to consider. |
TI. ) The sample point 5nAx lies toﬁthé left of the slip line
(6.0% < uat/2). | | | R

"(a) If’the left wave is a éhock‘wave“(p*A>.p£) and (1) if.

. ..o dx
gnAx }1es to the left of- the shockline IF = Uz, we have p = Py

U =uy; and p = Py (2) if &nAx lies to the right of the shoékline
%% = sz we,have p = P> g = Uy, P = DPys where'p* bah be obtained
from (13)
M .
-t . (46
xS T, | | (46)

(b) If the left wave is a rarefaction wave (p, < pz){

Define the sound speed to be c = J%?. The rarefaction wave 1is

bounded on the left by the line defined by 3£ = u, -c

It 2 PE where

- YR, . , . o dx _ :
c, = , and on the right by the line defined by T = Uk~ Cwo

£ Py
[Py : . . . .
where c, = W—5_° The flow is adiabatic in smooth regions, so 1n
. ¥* . .

this region A(S) in (4b) is a constant, denoted by A, and we

obtain the.isentrépic law p = Apy. px 1s obtained by using the

isentropic law

pzpzy = P*P;y =4 . 4 : : (’47)
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Then we obtain from (-46)

l/v

= (——) (48)

(1) If g Ax lies to the left of the farefaction-wave, thén
P‘Pz’“‘“z and p = p- :

(2) If g Ax lies inside the left rarefactlon wave, we equate
the slope of the characterlstlc —f u-cCc to the slope of the line-

through the origin and (g Ax,At/Q) obtaihing

28 AX | - ‘
T - | - (49)

With the constancy of the Riemann invariant

_20‘(.7_-1)-1'-!—11=.2_cz‘(y—l,)-l+ w, s ' _ o (50)

‘“the isentropic,law, and the definition.of_c;Lwé-ganlobtain Py WU,
and p. Using the isentropic law we obtain

,Using:équation (50) we obtain, by solving for c
¢ =c,+X3L (u, -w) ; - ( ) 
- I | 192
_ABy-sﬁbstituﬁiOn of (52) inﬁo.(MQ)AaﬁdlsolVing for u wé bbtaiﬁf
.2€ Ax‘

n (y=1) _
o .+cz+—7-2—.—.u£-) . » (53)

u = 2 (:
,_y+l

: By'subsfitution of (53) 1nto (52) c isAobtainéd° by substitution .

of (52) into the deflnltlon of ¢ and solv1ng for p we obtaln
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2.1/y-1
= (&)
P (v—ﬁ (53)
(3) 1If g 0x lies to the right of the left rarefaction wave

we obtain p = py» u = Uy, and P = Pye

ITI. The sample point gnAx.lies to the right of the slip line

(g A% > u,At/2).

(a) If the right wave is'a.shock_wéve (p, > pr) and (1) if

EnAX lies to the left of the shockline defined by‘%% = U,., we have

D= pys W= Uy, and-p = Dy, where p, is‘thained from (15)
Pe = TTT C B (54)-

(2) 1f ghAx lies to the right of the shockline defined by

= U, we have p = p,, U =u, and p = P

r

EES

(b) If the righ£ wave is a rarefaction wave-(p*A: pr)° The

rarefaction wave is bounded on the left by the line defined-by

ax YPx : . .
JE = Y T Cxo where ¢, = v and p, can be obtained from the
) *

isentropic law

Py = Pupx’ A . | G5 )
Then we obtain from (55)
Py 1/y
Px = (jg) ; ' 66=)
and -n the right by the line defined b dX _ u_+c c_. = jypr~
nd o ig y : Yy3gE =™ Ym Gy tr Pr

(1) If £,0x lies to the left of the rarefaction wave, then

P = Pxs U = Uy, and p = Pyeo
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(2) 1f enAx lies inside the right rarefaction wave, we
equate the slope of the characteristic %% = u+c to the slope of

the line through the origin and (£,A%,4t/2), obtaining

u+c.=ﬂn—. : - . (57)
With the constahcy of the Riemann invariant

-1 - -
2¢(y-1)""- u = 2¢_(y-1)"" - u,

- (58)

thé isentrdpic law, and the definition of c, we can obtain'p, u;

and p. - Using the isentropic law we obtain
e A
 Using equation (58) we obtain, byvsblving for c
ezt (uou) L ko)
c Cr+'_2 (uA ur) - | 6o )
Substitution of'(500 into (.57) and solving for u we obtain
28 _Ax s
_ 2 n -1 )
u=y (Fe— -t u) S 61)
‘By subétitution of (') into (50) c is obtained; by substitution
of (59) into the definition of .c and solving for p we obtain
_‘(02)1/y-1
P = \Jx * S (62)

(3) 1f € 0x lies to the right of the right rarefaction wave

we obtain'p = pyp U=1U "and p = D.s

ald .
quations.(4u5) - (62) are the key to' the programming of

Glimm's method. For a summary~s¢e the flow chart, Fig.16 .




Table I

. . ‘ ‘ , . N - o N " s . . *'.
'ORIGINATOR ORDER SCHEME | | _ . STABILITY
| | . .n#l/2 _ 1 ;n ny, . At ,on o ony
Godungv 1 Uiyl =3 (Qi+1 + Uy - Ax (Ei+1-. Fi), o <'1
n+l _ on At ,on+l/2 _ ontl/2
Us T = Uy - ax Eiaaye - Eilig)
' . . +1/2 _ 1 ,.n ny- At ,-n .. on
Lax-Wendroff 20 Ut =z (Ul .+ U - 52 (Fy,, = FD) o <1
(two-step) =i+1l/2 0 2 =i+l 0 i Ax C=i¥l 0 =1 =
‘ ntl _ .n At ,.—n+l/2  _n+l/2
Uy "= U - ax Eiergn - E1-1/2)
- n#l _ .n At ,.n _ny 4
MacCormack - 2 | Uy =Yy - A (Fipq - Ey) | o'i 1 8
n+l 1l ,.n n+l At n+l n+l
U ot =3 Uy r U -y (BT - By
; ' n+l n At n .
: = - - +
Rusanov . 1 Uy Uy 2Ax (E1+1 F, 1) o<1
n g < w < ;"
n 11 n
n-_ At n
o = wgy (ute)y

*
0 = max (|u| + ¢) x’ where ¢ denotes the local sound speed.




- Upwind

sfu) =

’.  Table I continued

n+l. _ nv; ny At ,.n _ . n- S 4
gi gi -sgn(ui) Ax‘(gﬁ. I—J-i+s,(u),)‘ ' AoAi.;
At n n o\
2 x?(§i+l'- §151)’

Awhere-§;= .(O,p,O)T énd

-1 if'u? >0

1 if u

n ;
1 <0

0€
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Table II

x  _P  _u T e 5
0.1 1.000 ©0.000  1.000 2.500  2.958
0.2 1.000° - o.oooA 1.000 2.500 2.958
0.3  0.869 0.164 . 0.822  2.363 2.958
0.4 . 0.426 0.927 o 0.303 | 1.778 2;958
0.5  0.426 | 0.927  0.303 . 1.778 2.958
0.6 ‘o.u26;A 04927 . .0.303 . 1.778“’ 2.958
0.7 l0.426 0.927 0.303 ©1.778 - 2.958
0.8 0.266 © 0.927 . 0.303 ~ 2.853  3.624
6;9' 0.125 - 0,000- :_ 0.100 $2.000 - 2.646
* r, is the Rieménh invafiant V%T + % » where c is the local

" sound speed.
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Tabie III
Q-P Qm:

 0.547 .0.018
0.550  0.019
o.ssﬁ‘  0.032
0,550  ) 0.039
0.552 . - 0.047
0.550 0.059
0.54  0.070
0.550 0.079
'o.5u5 ©0.090
0.546 0.097
0.548 - 0.116
0.545 0.119
0.549 0.122
0,552 . . 0.136"
0.549 0.143
0.553 0.149
0.550  0.158

. 0.546 o.isy'
0.550 0.178

0.543 - 0.190
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Table IV
'SCHEMES  WITHOUT ACM WITH ACM

'AGodﬁhbv“ . 0.226 . 0.247
Lax-Wendroff . 0.226 -
MaéCormaék: ' ,'  0.224 -
Rusanov . 0.22h - . 0.240
'Upﬁind o 0.225 . -
61imm 0.364 -
Ant1diffusion o.242. -
:Hybrid- f 10.258 n 10.269
| Hyman o R . 0276 S N _';

Times include computation of exact solution, calls to printing and

plotting_routines,'which were the same for all cases.



34

. . Figure 1.
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List of Captions

Standard finite difference methods.

Profiles obtained by Glimm's method for 9 interior

grid points.

Total mass, momentum,

Running time per time

Solution of a Riemann

- Shock tube at t = 0.

Shock tube at t > 0.
Godunov's method.
Godunov's method with
Two-step Lax-Wendroff
MacCormack's method.
Rusanov's first order

Rusanov's first order

and energy for Glimm's scheme.

step (in seconds).

problem.

ACM.

method.

method.

method with ACM.

Upwind difference method.

Glimm's method.
Antidiffusion method.

Hybrid method.

Hybrid method with ACM.

Hyman's predictor-corrector method.

Flow chart of Glimm's

method.
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