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ABSTRACT

This report reviews the development and application of an influence function 
method for calculating stress intensity factors and residual fatigue life for 
two-and three-dimensional structures with complex stress fields and geometries. 
Through elastic superposition, the method properly accounts for redistribution 
of stress as the crack grows through the structure. The analytical methods 
utilized and the computer programs necessary for computation and application 
of load independent influence functions are presented. A new exact solution 
is obtained for the buried elliptical crack, under an arbitrary Mode I stress 
field, for stress intensity factors at four positions around the crack front. 
The IF method is then applied to two fracture mechanics problems with complex 
stress fields and geometries. These problems are of current interest to the 
electric power generating industry and include (1) the fatigue analysis of a 
crack in a pipe weld under nominal and residual stresses and (2) fatigue 
analysis of a reactor pressure vessel nozzle corner crack under a complex 
bivariate stress field.

iii





TABLE OF CONTENTS

1.0 Introduction 1

2.0 General Description of the Influence Function Method 3

3.0 Basic Equations and Available Solutions of the Influence

Function Method 5

3.1 Basic Equations to Determine Influence Functions

and Stress Intensity Factors 5

3.2 Some Exact and Approximate Influence Function

Solutions 7

3.2.1 Center-Cracked Strip 7

3.2.2 The Two-Degree-of-Freedom Buried

Elliptical Crack 8

3.2.3 The Two-Degree-of-Freedom Quarter Ellipse

Corner Crack in a Quarter Space 9

3.2.4 The Two-Degree-of-Freedom Half-Ellipse

Surface Crack in a Half Space 10

3.2.5 Three-Dimensional Problems with Finite

Width and Other Effects that Must be 

Evaluated Numerically 10

3.2.6 The Four-Degree-of-Freedom Buried

Elliptical Crack 10

4.0 Residual Fatigue Lifetime Prediction Methodology 11

4.1 Two- or Three-Dimensional Crack Propagation Analysis

Procedure 11

5.0 Fatigue Analysis of a Weld Crack 14

v



6.0 Fatigue Analysis of a Pressure Vessel Nozzle Corner Crack 16

7.0 Conclusions 18

Appendix A Computation of Influence Functions and Stress

Intensity Factors for Two-Dimensional Problems 20

A.l Calculation of Two-Dimensional Influence 20

Functions, h

A. 2 Calculation of Two-Dimensional K 22

Appendix B Computation of Influence Functions and Stress 25

Intensity Factors for Three-Dimensional Problems

B. l Numerical Methods for Three-Dimensional Analysis 25

B. 2 Estimation of h for Three-Dimensional Problems 28

From Analogous Two-Dimensional Solutions 

Appendix C The Four-DOF Buried Elliptical Crack 31

C. l Introduction 31

C.2 Problem Description and Definition 31

C.3 The K* Computation 32

C.4 The Computation of Influence Functions h^ 33

C.5 The Computation of Stress Intensity Functions 35

for Completely General Stress Field 0(x', y1) 

Appendix D Listing of Computer Program IF2-1, Data Listing and 37

Results of the Six Weld Crack Fatigue Analyses of 

Table IV

References 55

Tables 59

Figures 67



1.0 INTRODUCTION

Linear elastic fracture mechanics analysis forms the basis for pre­

dicting the residual static strength for brittle failure and the fatigue life 

of a cracked structure. For fatigue analysis, the material's crack growth 

rate (da/dN) is usually related to the cyclic change in the crack tip stress 

intensity factor (AK). The stress intensity factor (K) is a parameter which 

embodies the effects of the stress field, the crack size and shape, and the 

local structural geometry. Considerable effort in analytical fracture 

mechanics is devoted to computation of K for complex stress/geometry combinations 

of actual cracked structures. Traditional approaches have been to use litera­

ture solutions or to obtain numerical solutions of K with a finite element or 

boundary-integral equation model of the actual cracked structure. There are 

inadequacies in both of these approaches for a large class of problems.

Literature solutions lack generality, while repeated two-dimensional or three- 

dimensional numerical stress analyses of cracked idealizations are costly, 

time-consuming, and subject to errors due to poor program performance or user 

inexperience. To reduce errors and minimize cost, a method involving the 

use of influence coefficients or influence functions (h) to compute K has been 

shown to provide a viable alternative for many geometries. The influence 

function (IF) method has also been labeled the "weight function" or "Green's 

function," method. The major features of the IF method are the markedly reduced 

amount of stress analysis and the greater accuracy achieved for complex stress 

fields, especially for three-dimensional problems. Once h has been determined 

for a geometry, K can be calculated for any crack size and shape from the 

"uncracked" stress field. Through use of elastic superposition, the IF method 

properly accounts for stress redistribution as the crack dimensions increase 

due to propagation through the structure. Thus, there is no need to include



the crack explicitly in the stress analysis for each crack size. Furthermore, 

the influence function, h, which depends only on geometry, can be accurately 

obtained from relatively simple loading conditions and applied to complex stress 

fields.

The following sections provide more detailed description of the IF 

method. Section 2 presents the basic methodology and Section 3 and Appendices A 

and B discuss methods for accurate and efficient computation of h and K for two- 

and three-dimensional problems. Section 3 also reviews available h solutions 

and computer programs including a new exact three-dimensional solution, derived 

in Appendix C, for the K values of the four symmetry positions around the peri­

phery of a buried elliptical crack under arbitrary Mode I stress fields.

Section 4 describes the use of the IF method to predict residual fatigue lives 

for two- and three-dimensional crack problems.

Finally, the IF method is applied to two engineering fracture mechanics 

problems of interest to the electric power generating industry. Applicability 

to two-dimensional problems is demonstrated in Section 5 with a fatigue analysis 

example that accounts for both the nominal stresses and the non-uniform residual 

stresses acting on a through-crack oriented perpendicular to a circumferential 

weld in a large pipe, and in a finite width specimen.

A most important feature of the IF method is its applicability to three- 

dimension problems. Here, the IF method accounts for the complications of 

complex stress fields, crack shape, crack shape change during growth and K 

variation along the crack front. Applicability to three-dimensional problems 

with large stress gradients is demonstrated in Section 6 through a fatigue analysis 

of a corner crack in the nozzle of a thick walled pressure vessel.
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2.0 GENERAL DESCRIPTION OF THE INFLUENCE FUNCTION METHOD

The IF method has been previously described in (1-9)* for two- 

dimensional elastic crack problems and in (jJ-JJ.) f°r three-dimensional problems. 

This section reviews only the major concepts of the IF method. Fig. 1 illus­

trates the elastic superposition principle which is the basis of the IF method.

The superposition reduces the K solution of an arbitrary and, perhaps, difficult 

crack problem to the solution of (1) the problem without the crack (i.e. uncracked 

problem), and (2) a crack problem in which only the crack face is pressurized 

so as to cancel the uncracked stresses (a(x) in Fig. 1) that would exist across 

the crack locus in the absence of the crack. Influence functions are used to 

solve this second, pressurized crack problem. An influence function h is simply 

the K value arising from a unit point load at some position, usually on the 

crack face. Thus h is independent of loading, as proven rigorously in (9), and 

depends only on the crack face position and structural geometry.

To solve the pressurized crack problem, and, hence, the difficult original 

problem, consider first the differential load a(x) dx (assuming constant thick­

ness) which causes a differential increment of K given by

dK(x) = h (x, geometry) a(x) dx (2.1)

so that the stress intensity factor is given by

K = J dK(x) =J h(x,geo.) a(x)dx (2.2)

La La

where L, is the straight crack face boundary parallel to the x axis.a

*Underlined numbers enclosed in parentheses refer to references listed at the 
end of the report.



To illustrate the utility of (2.2), consider the center-cracked |

plate under symmetric loading shown in Fig. 2. For the case of uniform stress

on an infinite plate (a/b 0), the stress intensity factor is given by

K = a0/rfa (2.3)

where a is the half crack length and aQ is the applied uniform stress.

It has been shown by Paris {3) that, for any symmetric stress field, a(x) = 

a(-x), the influence function for the infinite plate is given by

Equations (2.2) and (2.4) reduce to Equation (2.3) for the case of constant 

a(x) = aQ.

Thus, we see by example that the IF method can correctly quantify the 

crack-induced redistribution of the uncracked elastic stress field. The utility 

of the influence function method for handling complex stress fields becomes 

clear once it is realized that if h is obtained for a particular cracked geometry 

with several variable dimensional parameters, K computation is reduced to:

A. Determination and specification of the uncracked stress field, and

B. Numerical integration of Equation (2.2), for the appropriate crack

defines L a (2.4)

geometry.

The next section documents the references, procedures, and methods required for 

accurate computation of h for a variety of simple geometries sufficient to solve 

a majority of structural problems.
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3.0 BASIC EQUATIONS AND AVAILABLE SOLUTIONS OF THE INFLUENCE FUNCTION METHOD

The most direct method to solve for h is to obtain a solution for K due 

to a point load at any crack face location. Table I outlines the published 

sources of h solutions and the computer algorithms, developed and modified by 

the author at Failure Analysis Associates, that use h to compute K. The table 

shows that a formidable selection of h solutions already exists to handle cracks 

in complex stress gradients. If a point load solution is not directly available 

nor easily derivable, the formulations below provide practical methods to 

determine h.

3.1 Basic Equations to Determine Influence Functions and Stress Intensity
Factors

The root-mean-square (rms) stress intensity factor, K, has been defined 

in (TO) as an integrated average of K(s) (the specific value of the stress 

intensity factor K along the crack front at point s) over the new surface area 

created by selected virtual displacement of the crack front. In the case of two- 

dimensional elasticity problems, K(s) is constant, and K and K(s) are identical. 

Consequently, K and K are used interchangeably for two-dimensional problems 

throughout the remainder of this report. K and K are not exactly equivalent 

for most three-dimensional problems, since K(s) is not, in general, constant. 

However, K and K are similar enough for most three-dimensional crack problems 

to lead to nearly identical static strength or fatigue life estimates (10).

Consider now a two- or three-dimensional crack problem for which there 

are n degrees of freedom (DOF), where a DOF is defined as that scalar dimension 

or variable which is free to increase (e.g. propagate in fatigue) and do work 

independently of all other dimensions or variables. Then K due to a small 

perturbation of the j-th DOF (Fig. 3) may be expressed as (U), Vl_)
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kj
h. (x., geometry) a (x ) dA; j = 1, n, i = 1, n 

J 1 i i

where A represents the crack area, x^ are the appropriate coordinate directions,

(n. = 2 or 3) a is the uncracked stress field, and h is the influence function
j

for the j-th of n DOF's and is given by (10, H) as

h. (x., geometry) =— (3.2)
J i kj 8Aj

where

3 a 3a_i 3_ (3'3>
3A • 9A 3a •

J J

In (3.1) and (3.2),

K = rms stress intensity factor due to perturbation of 
j

the j-th DOF only,

w = crack opening displacement for the top half of the crack only, and 

H = appropriate modulus

H = _E___  , for isotropic plane strain

1 - u2
(3.4)

H = E, for isotropic plane stress

and, for certain classes of orthotropic material problems, H is given

on page D-3 of (6). The superscript (*) indicates K and w values determined
j

for the given geometry for some arbitrary reference state of loading.

K*,, may be rewritten in terms of the strain energy, U*, as
J

^ ■ <H 1st) ^
J

fin this report, repeated subscript indices do not imply summation.
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Combining Equations (3.2, 3.3, 3.5) then gives the final form of the 

influence function as

hj
(3.6)

It is seen from equation (3.6) that one need only determine

the strain energy and crack opening displacement for any single, simple

reference stress field applied to the given crack and structural geometry

to determine h.. For some simple problems these quantities are known 
J

by exact closed form expressions. They can also be measured experimentally 

(12) or, more commonly, can be determined using numerical stress analysis 

techniques. The analytical and numerical methods are described in some 

detail in Appendices A, B, and C for three cases of increasing complexity: 

a two-dimensional crack with one DOF for crack propagation, a three- 

dimensional crack with two DOF, (both size and shape may change), and 

a three-dimensional crack with four DOF (size, shape, and centroid of 

the crack may change).

3.2 Some Exact and Approximate Influence Function Solutions

Table I lists source information for influence functions for 

many geometries of interest. For convenience, all influence functions 

utilized in Sections 5 and 6 are given below.

3.2.1 Center-Cracked Strip

Fig. 2 shows a symetrically loaded center-cracked strip of width 2b.
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The influence functions for all three loading modes for this two- 

dimensional problem are given in (6J as

2tan rra
h III 2b

COS 7TX I
2b'

|exact solution) (3.7)

h h II

In the limit of infinite width ----- > 0), the functions for

all three modes reduce to (2.4). Equations (3.7, 3.8) have been programmed 

and the subroutine (IF2-1) is listed as part of Appendix D and applied 

in Section 4. Both IF2-1 and a published solution are used in Table II to com­

pute K for a finite width plate under uniform stress. The excellent agreement 

between solutions confirms the accuracy of the two-dimensional IF computer 

method for this geometry.

3.2.2 The Two-Degree-of-Freedom Buried Elliptical Crack

Reference (10) presents the exact h and Kj solution to this problem 

(Fig. 6) for the case of arbitrary Mode I loading, azz (x, y), across the 

elliptical crack with major and minor axes a and a in the x-y plane. The
y *

solution is derived by substitution of the appropriate displacement and 

strain energy expressions in Appendix B into (3.6) and (3.1) to obtain
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9E (k) + \ *\z dA
E(k)3ax ________________

//« [- dE (k) +

E(k) a a 3 « )
*\z (x,y) dA

( 1 - 3E (k) V %
71 3

(ay E(K)3ay)

(3.9)

In (3.9), E(k) is the complete elliptic integral of the second kind with 

k2 = l-(ax/ay)2 and a = 1 - (x/ax)2 - (y/ay)2.

The area integrals of the above expressions are evaluated numerically 

using a rectangular partitioning scheme with a refined grid near the crack 

front, a —» 0, to account for the a 2 singularity. Trial-and-error has shown 

that for all 30-40 test cases investigated, with exact solutions for Kj, 300 

rectangular partitions are sufficient to obtain Kx and Ky with less than 2.5% 

error and in less than three seconds central processing unit (CPU) time on the 

IBM 360-67 computer. Table III compares the three-dimensional IF computer code 

(IF3-3) calculations with the exact solution for a circular crack under two 

complex stress fields.

3.2.3 The Two-Degree-of-Freedom Quarter Ellipse Corner Crack in a Quarter Space

Reference (21) applies a three-dimensional boundary-integral equation 

computer program (17) with Equations (3.1, 3.6) to obtain an accurate numerical 

solution to this problem pictured in Figs. 5 and 7. Also, a fairly accurate 

approximate solution can be obtained using a two-dimensional analog from (20). 

Appendix B presents the approximate solution method which, typically, leads to 

K computations within 5% of those resulting from the rigorous, full three- 

dimensional analyses used in (11).
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3.2.4 The Two-Degree-of-Freedom Half-Ellipse Surface Crack in a Half Space

Appendix B uses the two-dimensional analog mentioned above to obtain 

approximate solutions to this problem, illustrated in Fig. 7.

3.2.5 Three-Dimensional Problems with Finite Width and Other Effects That 
Must be Evaluated Numerically

As discussed previously in this section, both analytical (1_U 1_7) and

experimental (12) three-dimensional solution capabilities exist to obtain crack

face displacements to compute the h and K with Equations (3.6, 3.1).
j J

3.2.6 The Four-Degree-of-Freedom Buried Elliptical Crack

Appendix C presents a new exact solution for h and K , j = 1, 4 for the
j J

four DOF buried elliptical crack shown in Fig. 8. This four DOF model allows 

independent growth of the major and minor elliptical axes and also translation 

of the crack centroid. In other words, opposite ends of both the major and minor 

axes can grow at different rates. Four DOF are necessary to analyze crack growth 

under stress fields a(x',yl) that are not symmetric with respect to the elliptical

axes.
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4.0 RESIDUAL FATIGUE LIFETIME PREDICTION METHODOLOGY

The use of two- and three-dimensional fracture mechanics analysis to 

predict the residual lifetime of sharply notched or cracked structures has been 

described in many previous papers (e.g. 2, K), lj_, 181, 19). Previous literature 

has defined the three basic inputs to fracture mechanics lifetime prediction 

as: (1) the experimental evaluation of the material's crack propagation law

under the appropriate thermal-mechanical loading cycle, (2) methods for the 

analytical calculation of crack tip strain intensity factors, and (3) methods 

(e.g. nondestructive inspection) for accurately defining initial flaws and early 

detection of crack initiation. A procedure that utilizes the IF method in 

conjunction with these three elements is presented in general terms below and 

is adapted for specific applications in the next two sections.

4.1 Two- or Three-Dimensional Crack Propagation Analysis Procedure

The basis of reported life analyses is the notion of a finite number, 

n, of characteristic dimensions a.; i =1, n, to describe crack geometry.

Crack propagation is then described by keeping track of the a. which are called 

degrees of freedom or DOF. The continuous stress intensity factor function K(s) 

is similarly approximated with a set of discrete stress intensity factors ; 

i = 1, n, each associated with an a^. The applied general empirical model 

of three-dimensional propagation is then expressed by n equations.

= F (K^, Material, Environment, History) (4.1)

where

N = residual lifetime;

K.j = stress intensity factor associated with a.; and 

F = empirically determined function.
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Each equation in (4.1) states that the instantaneous cyclic growth rate da^/d

of freedom a., is given by the empirically determined function F. Further, (4.1)

implies that all load and geometry information relevant to daydN is contained

in one and only one stress intensity factor K^. The function F is independent

of load and geometry and may be obtained in the traditional way from simple

planar laboratory specimens. The stress intensity factors K. each contain an

alternating component AK^ and mean value Kmean associated with the alternating

and mean components of the stress cycle, Ac and aJ mean

Residual life prediction is accomplished by formulation and solution of 

(4,1) A four-step method is employed for life prediction. The steps are:

(1) Obtain F from simple specimens. F is often expressed in the
ftform of piecewise power functions of AK (e.g. da/dN = CAKP) for

given material, environment and history combinations,mean

(2) Determine the uncracked structural detail geometry, loads, and, to 

the extent required by step 3, stress.

(3) Model the propagating crack. This task includes selection of a 

model with an adequate number of DOF, specification of the initial 

and final crack configuration a^. and aFi. and definition of . 

Further, an IF method-based algorithm is derived to compute all

of the K. as functions of stress and geometry, especially the 

changing crack geometry a^.

(4) Substitute K^ in (4.1) and solve for the life N.

The above procedure has been successfully applied to predict fatigue

lives in many instances where accurate uncracked stress and material crack 

growth rate data were available. Published examples of two-dimensional analyses
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in (2J0 and three-dimensional analyses in (Vl_) exemplify the good agreement 

obtained between calculated and observed fatigue crack growth. Additional 

examples of fatigue growth calculations for a weld crack and a vessel or pipe 

nozzle detail are described in the following sections.
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5.0 FATIGUE ANALYSIS OF A WELD CRACK

A weld seam under longitudinal (y-directi on) load symmetric about

the y-axis, with a transverse through-thickness crack of length 2a is

illustrated in Fig.9. This section describes the analysis of fatigue

growth of the crack for two plate widths. The first width, 2b=10",

models a laboratory specimen while the second width, 2b ->• <», models

the case of a pipe with radius and length substantially larger than 2a.

The longitudinal stresses include uniform alternating and mean components,

Aa and a , respectively, and a complex residual stress field, a (x), 
m res

as illustrated in Fig. 9, for the case of the ten-inch specimen. The

residual stress function is slightly different for the case of a large

pipe because of the additional elastic constraint; both residual stress

distributions were estimated from measurements in (22).

Since the subject problem assumes only one DOF, a, (4.1) 

reduces to only one equation for application of the four-part life pre­

diction procedure given in Section 4. Equation(4.1) must account for the

effect of R-ratio, R=K ,-„/K , on da/dN. For simplicity, a crack growthmin max

relation suggested by Forman (23) for positive values of R has been applied 

below for all values of R, and, as is shown in (24), the relation over­

predicts da/dN for negative R. The applied crack growth relationship 

is based on the weld region material data in (25) and is given by

da = 0
dN

-7 2 74
da = 1.4 x 10 ' AIC'/4
dN

(5.1)
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where the force, length and time units in (5.1) are kilopounds, inches, 

and constant-amplitude fatigue cycles, and Kmax= AK/(1-R). The initial 

crack length is assumed to be Za^ = 0.25" and the final crack length, 2a^, 

is defined by the fracture toughness

' KIc = 150 ks,(1")‘'a (5-2>

The above information and Fig. 9 comprise the first two parts of 

the life calculation procedure and the crack problem model of the third 

step. A computer program (IF2-1), with complete listing included in 

Appendix A, has been written to accomplish the remainder of the procedure; 

namely, the computation of K components using Equations (3.1,3.7,3.8), and the 

numerical integration of (5.1) to obtain the relationship between crack 

length and number of fatigue cycles (a vs. N).

Three load cases were analyzed for each of the two geometries as 

summarized in Table IV. Appendix A lists the tabular computer output 

for all six cases, and Figs. 10 and 11 present the corresponding a vs. N 

curves. Figures 10 and 11 both indicate that, for the case of zero minimum 

stress, am = Aa/2=12.5 ksi, the residual stress significantly increases the 

crack growth rate in the early stage and substantially reduces overall 

fatigue life. The two figures also show that, even for the the case of 

applied cyclic compression, corresponding to am = -17.5 ksi, the positive 

residual stresses permit some initial growth of the crack followed by 

subsequent arrest at Kmax < 0 in Eqn. (5.1).
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6. 0 FATIGUE ANALYSIS OF A PRESSURE VESSEL NOZZLE CORNER CRACK

Figure 12 shows the normalized stress a (x,y) contours computed in 

(26) for a 1000 psi internal pressure at the pipe-nozzle junction represent­

ing an HSST program, intermediate test vessel. Figure 13 shows a hypothetical 

corner crack of initial dimensions ax = a^ = 0.5 in. at the peak stress 

location and also gives an equation which, when divided by the factor 

4.662, fits the stress contours of Fig. 12 with 0.165 ksi average error.

The above factor represents the ratio between the actual and normalized 

peak stresses estimated in (26) for the heat-up and cooldown vessel 

operation transient. For simplicity, and due to the lack of a full thermal 

stress distribution, the stress contours in Fig. 12 are assumed to apply 

for all loading components (e.g. thermal as well as the pressure loading). 

However, as demonstrated in Section 5, the IF method is capable of 

analyzing more complex cases with combined stress distributions and non­

proportional loading. The equation in Figure 13 was obtained by multi- 

parameter least square fit.

Table V lists the vessel-nozzle junction, peak stress levels and 

the frequencies associated with eleven types of plant operating transients.

The Table uses the conservative ASME Code (28) crack growth relation to sum 

the individual da/dN contributions of all transients and obtain the final 

crack growth relation

^ai = 1.4 x 10 ^ AK.3‘^6, i=x,y, (6.1)
dN 1

where the force, length, time units of (6.1) are kilopounds, inches, and 

40-year increments of plant operation.
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The equations to compute AK^ are derived from the approximate 

corner crack (Fig. 7) solution in Appendix B and are given by

where f is defined in Appendix B.

Equations (6.2) and (6.3) have been incorporated in computer program 

IF3-3 which also substitutes the , i = x,y values in (6.1) to compute

solving the two simultaneous differential equations in (6.1) with a modified 

Hamming's predictor-corrector numerical technique.

Figure 13 gives the results of the three-dimensional fatigue 

analysis. As seen, the nozzle is estimated to endure 20 to 25 times the 

expected (28J number of load transients in the 40 year plant operation.

The infinite solid model used herein is expected to break down approximately 

at the "20 N" crack front contour in Fig. 13. As a temporary measure,

FAA plans to incorporate appropriate forms of the ASME Code (28) approximate 

finite width correction factors, such as the subprograms listed in (27), in 

all its three-dimensional computer programs. A long range goal is to apply 

a three-dimensional BIE program (T7) to compute h rigorously for 3-D finite 

width geometries with the methods detailed in Section 3.

da/dN. The computer program then obtains ax and a^ as a function of N by
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7. 0 CONCLUSIONS

1. The influence function (IF) method is an efficient, general 

procedure for elastic fracture mechanics analysis of structures 

with cracks in regions of complex stress.

2. Once influence functions are obtained, the IF method requires 

only the stresses in the uncracked structural detail and thereby 

eliminates the need for full two or three-dimensional stress 

analysis for each considered loading, crack size, shape, and 

location, and increment of fatigue crack growth.

3. Since influence functions depend only upon geometry, they may be 

computed from the crack opening displacements for any convenient 

simple loading that can be accurately solved by analytical, 

experimental, or numerical techniques. This eliminates the 

numerical errors caused by inclusion of actual, complex 

structural loading into computer stress analysis of cracks.

4. The IF method accounts for such three-dimensional complications 

as complex crack shape, crack shape change during fatigue growth, 

and variation of the stress intensity factor along the crack front

5. The extension of the IF method to more complex geometric models 

is direct, requiring only specification of a model with appro­

priate number of variable dimensions together with a minimum 

number of two-or three-dimensional stress analyses to compute 

the IF. Thus, the majority of crack problems are brought within 

the scope of an efficient elastic fracture mechanics procedure. A
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6. The significant effect of residual stress upon fatigue growth 

of a weld crack has been demonstrated with the IF method.

7. The fatigue growth of an elliptical corner crack in a geometry 

representative of a reactor pressure vessel nozzle has been 

analyzed, demonstrating the ease of use of the IF method for

a three-dimensional problem with complex stress distribution.
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APPENDIX A

Computation of Influence Functions and Stress 

Intensity Factors for Two-Dimensional Problems

A.1 Calculation of Two-Dimensional Influence Functions, h

Consider a two-dimensional crack, oriented in the x-direction, for which 

the one degree of freedom is the crack length, a. Then the area increment dA 

in Equation (3.1) becomes t(x) dx and (3.1) becomes

K = J h(x, a, geometry) a(x) t(x) dx (A.l)

x

Since the area of the crack (assuming unit thickness, t = 1) is simply a, the 

general equation to compute h (3.6) then becomes

h =[j^ au* \ 2 9w* (A.2)

The influence function given by Equation (A.2) may be determined using 

w* from known, closed-form solutions or calculated from any appropriate numerical 

stress analysis method, such as finite elements (FE) or boundary-integral 

equations (BIE), as in (1J_, 12).

To illustrate the use of analytical displacement solutions to determine 

h, consider again the simple infinite plate case of the plane stress problem 

shown in Fig. 2 for which
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and the crack face displacements are known to be (9)

* 2ao , 2 2»3sw* = -p- (a - x )

Therefore

9w*
9d

2a a o

Eta2-*2)18

and, from (A.2) we compute

i “oM'1" 2°
E E / Eta2-*2)18

which agrees with (2.4).

(A.4)

(A.5)

(A.6)

Numerical stress analysis to determine h, for each crack geometry of 

interest, can be performed in one of two ways: (1) using two separate stress

analyses of slightly different crack size to determine h from incremental 

differences, or (2) using one stress analysis to determine strain energy and 

crack opening displacements as mathematical functions of the different DOF, 

for substitution into Equation (A.2) to determine h. Both methods are illustrated 

below.

The method of using incremental differences between two stress analyses 

to obtain h can be illustrated by the problem of a through-the-thickness edge 

crack in a finite width strip (Fig. 4a). This problem has been solved using 

a boundary-integral equation program in (l^)- Special care was taken in 

modeling the crack, perturbing the crack tip, and choosing the arbitrary 

reference loading. Experience has shown that the optimum accuracy and efficiency 

results from a breakup of the crack into equal size segments over about 80% 

of the total crack length and successively smaller segments near the crack tip,
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with approximately a mirror image of this breakup for some distance beyond the^^ 

crack tip. Perturbation of the crack tip is best accomplished by moving not only 

the one node at the crack tip, but a series of nodes very near the crack tip 

(see Fig. 4b). Finally, the most accurate results are obtained when the crack 

surface is uniformly pressurized. Having solved these two nearly identical stress 

analyses, the work done by the applied loads (strain energy) for each crack 

configuration is calculated. Then the incremental changes in strain energy, AU, 

and crack opening displacement. Aw, between the two analyses are computed and 

these results are used in the incremental form of Equation (A.2) to calculate h.

h = Aw
Aa (A.7)

The second numerical method to determine h requires only one stress 

analysis for each crack length of interest. Then, U* and w* are determined as 

mathematical functions of crack length (using, for instance, a least-square fit) 

for substitution into Equation (A.2).

The two-dimensional influence functions can also be obtained using finite 

element techniques, although such techniques in general require longer modeling 

times, data preparation times, and computer run times than does the boundary- 

integral equation method (13J. However, for the specific choice of a uniformly 

pressurized crack face loading, the finite element-computed influence function 

results agree with boundary-integral equation results for a large class of 

problems (no published reference available).

A.2 Calculation of Two-Dimensional K

The best way to use the influence function results, as determined abo

to compute K is to ratio those results to numerical results for some simple

reference problem geometry. This eliminates most systematic errors which might
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be inherent in the stress analysis and avoids the curve fitting of singular h 

functions. The use of ratios also permits more accurate programming of the 

stress intensity expressions (for purposes of life calculations, such as in 

computer programs listed in Table I) provided the solution to the simple reference 

geometry is known in closed form. Using this method, a new function f may be 

defined as

f = -jj-r (A.8)

where h1 represents the influence function for the reference geometry. Similarly, 

two new functions g-j and may be defined as

9l
w_
w1 (A.9)

where the superscript (') again refers to the reference geometry, and the 

superscript (*) has been dropped for convenience. Combining (A.l) and (A.8) 

gives

K = / f(x, a, geometry) h1 a(x) dx (A.10)

and combining (A.2), (A.8) and (A.9) gives

(V' )'(
^ i / d\i1 \ 39^

92 + w (sr1 2 ) (A.11)

Thus it is seen from Equations (A.10) and (A.11) that the best choice of a 

reference problem is one for which h' (or U1 and w1; from which h' could be 

determined using Equation (A.2)), is known exactly.
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The most convenient two-dimensional reference problem for which a clos^^ 

form solution is known is a through-the-thickness center crack in an infinite 

body for which h has already been given in (A.5).

Therefore, f may be determined by combining the results of stress analyses 

of the actual problem and the reference problem as in Equation (A.8). This f 

may then be used, with Equation (A.10) to determine K. Thus

It is best to perform a number of stress analyses in order to determine f, g-j, 

and g^ values in terms of the necessary geometric parameters, and then to 

employ a curve fitting procedure to define expressions for f, g-j and g^ which 

may be used in (A.8 - A.11).

f a(x) dx (A.12)
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APPENDIX B

Computation of Influence Functions and Stress Intensity

Factors for Three-Dimensional Problems

Analytical calculation of h, K", and K(s) is restricted to a very small 

class of three-dimensional problems, as indicated by Table I, because of the 

scarcity of three-dimensional displacement solutions. However, Appendix C and 

(10) do obtain exact solutions for the elliptical crack problem. Other three- 

dimensional problems will be solved numerically and/or with approximations 

derived from analogous two-dimensional solutions.

B.1 Numerical Methods for Three-Dimensional Analysis

The numerical methods described in Appendix A for two-dimensional problems 

may be extended to three-dimensional problems. Consider a three-dimensional 

elliptical crack, oriented in the x-y plane, for which the two DOF are the two 

semi-axes of the ellipse, ax and a^. Then dA is dxdy and Equation (3.1)

becomes

hx (x, y, ax, a , geometry) a(x,y) dxdy

(B.l)

Ky hy (x, y, ax, a , geometry) a(x,y) dxdy

Since the area of the crack is iraxa , the influence coefficients h 

and h^ are given by Equation (3.6) as
x
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h x
3w*

h
y

!!x
H

9U*
\

3w*

y

Jo illustrate numerical methods to evaluate (B.2), consider the problem 

of an elliptical corner crack in an infinite body (Fig. 5a). The most efficient 

current stress analysis technique for three-dimensional crack problems is the 

boundary-integral equation method (1J_). Modeling of this problem is illustrated 

in Fig. 5b and discussed extensively in (1JJ. If two analyses are performed to 

calculate h, with the incremental difference techniques, care must be taken to 

perturb only one degree of freedom (one axis) at a time. Equations (A.10) and 

(A.ll) may also be extended to three dimensions so that

f (x, y, a , a , geometry) h' a(x,y) dxdy
A Ay A

J J fy (x’ y’ V V geonietry) hy dxdy

and

9l + U' (IT*"1

I

8av /

g„ + w' (3w') 

9ax

■1 89^

\ -%gi + u, -■ (g2 + w. ,^-1^

y 3a,

(B. 3)

(B. 4)
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The only three-dimensional problem with an exact crack opening displace­

ment solution is the buried elliptical flaw, under uniform pressure, o , for 

which the strain energy is (14)

2 2 4iTa a a o x y
3HE(k) (B. 5)

where E(k) is the complete elliptic integral of the second kind with k* 
2

l-(ax/a ) . The crack opening displacement is given by (1_5) as

2o a ,ox *§
W = -nr- / i.V" aHElkT (B. 6)

2 2where a=l-(x/ax) - (y/ay) • Using Equations (B.5) and (B.6), Equation B.4) 

then becomes
-h

gi+

’1 3a

2

ax
i

E(k)
3E(k) 

3ax ^
>

39o 
92 + 3ax

_1 _ 
a X

1 3E(k) ,
E(k) 3ax

1 1 3E(k)

/

N

-1
-h

> < n 4- ^ 1 3E(k) y2
a

L *
E(k) 3ay J g2 3ay E(k) 3a 3y ay aj

-1

(B.7) 

-1

The functions g^ and g^, defined in Equation (A.9) may be determined 

by stress analysis of both the solution geometry and the reference geometry 

using some least-square fit to determine these functions in terms of ax and a^.

The methodology given in this appendix has been applied in (!_]_) to 

solve the two DOF quarter-ell ipse corner crack from only twelve full, three­

-dimensional, boundary-integral equation stress analyses. Furthermore, the 

methods described here could easily be extended to problems with more than one 

or two DOF in order to solve much more complex geometries and loading states.
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B.2 Estimation of h for Three-Dimensional Problems From Analogous Two-
Dimensional Solutions

Lacking the tools and time to perform numerical three-dimensional 

stress analysis, three-dimensional h can sometimes be estimated from analogous 

two-dimensional h values. The estimated results may be in error and must be 

checked against known analytical and experimental results.

To illustrate a two-dimensional approximation, consider the elliptical 

surface and corner cracks in Fig. 7. The correct way to solve either of the 

problems in Fig. 7 is outlined above and performed in (1_1_). However, an approxi­

mation was initially assessed to compute 1< for surface and corner cracks in 

infinite solids. Fig. 7 illustrates the applied procedure. The influence 

function due to Bueckner (20) for the two-dimensional surface crack in a semi­

infinite plate is applied to each cartesian line of the elliptical crack that 

intersects a free surface.

For two-dimensional problems, Bueckner's equation may be rewritten as:

K2s = f
h2s (x, a) o (x) dx (B.8)

where:

h2s = h2e fs m

h„ = two-dimensional surface crack influence function 
2s

h0 = two-dimensional internal crack influence function for a(x) 
2e in (2.4)

l<2S = K-factor for two-dimensional surface crack for any a(x) 

x = x/a
_ J------ = _ J-

and f (x) = 1 + x (1.3188 - .7884x + .1768x )

a(-x); given

(B. 9)
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By breaking up the surface and corner ellipses as shown in Fig. 7, inexact 

three-dimensional analogs to (B.8) may be constructed for the surface crack.

h(xS> (x-**Vay>= 2hx fs 'V

My fs <XS>

(B.10)

and for the corner crack

‘x’ (x-l'-VV' fs (xs) + f$ (ys) -1_

(yl (x,y,ax>ay)= 4hy fs (xs) * % (ys) -il

where

x/xmax
ax(l - y2)h

y/ymax
X

a (1
y

x2)^

(B.ll)

(B.12)

Equations (3.9, B.l, B.9 - B.12) are being used to estimate K and K for
x y

half-ellipse surface cracks and quarter-ellipse corner cracks. Table VI
A

compares normalized local values of K, K, with normalized K for several crack
A

geometries under uniform stress. The differences between K and K follow 

expected trends. For example, for the embedded circle,

A _ _ A
K = K = K = K =1 (B. 13)y y x x

For the surface cracks

A _ _ A
Ky > Ky > Kx > Kx (B.14)
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and this occurs, as expected. For the corner crack

A A
Kx = Ky < Kx = K,y (B.15)

since, as shown by (H), the K level is highest near the surface.

Perusal of K and K results (1!_,28) for various points on the circular 

periphery indicates that the K values computed here for surface cracks are 

too high. The errors are up to 5% for the circular crack and less for 

ellipses with b/a > 1.

For the elongated ellipse (b/a -► °°) the surface correction is expected 

to increase 1< by about 13% as for the two-dimensional crack. Table VI shows
X

this expected trend.
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APPENDIX C

THE FOUR-DOF BURIED ELLIPTICAL CRACK

C.1 Introduction

This report introduces a new technique for residual lifetime estimates 

for structures with part-through cracks. The notion of a set of stress intensity 

factors (K.j) is introduced to predict crack growth rates. Each is related 

to the strain energy release rate due to perturbation of only the ith crack 

dimension or degree-of-freedom (DOF).

This appendix presents the exact solution for the case of a four DOF 

embedded elliptical crack, described in Section 3.2.6 and Fig. 8, which allows 

selective axis growth and also allows x' and y' translation of the ellipse center.

A new computer code (IF3-1) has been written to use both the two and 

four DOF results given in the report.

C.2 Problem Description and Definition

The x' -y' origin is the initial center of the four-degree-of-freedom 

(4 DOF) buried elliptical crack in an infinite solid shown in Fig. 8. All 

four DOF (a-|, a^, a^. a^) are measured from the x'-y' origin. The origin of 

the coordinate system 6(»y) that moves with the ellipse is the current ellipse 

center as illustrated in Fig. 8. As shown, the ellipse dimensions are 2a
X

and 23^.

This kinematic description in terms of two coordinate systems is very 

useful. This is true because it is obvious that under the applied reference 

uniform stress field a*(x,y) = a , the crack opening displacement (COD) field
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is a function of only aQ, a^, a^, x, and y.

The COD function for the upper crack face is given in Appendix B

2 a a o x
HE(k) (C.l)

Expressions for K|, h., and K^. (i = 1, 4) are now derived. These are the 

reference (uniform stress) root mean square (rms) stress intensity (K) factors, 

the influence functions, and the general rms K-factors.

C.3 The Kt Computation 

From Section 3,

K* = (H Gt) * (C.2)

where the asterisk denotes the reference condition and the strain energy 

release rate is

G*
au* 9ai
8a ^ 3A (C.3)

and where the ellipse area is a A = 7rax (a-| + a^) (a^ + a^), and the

strain energy is

U* jaw* dA. 

JA °

(C.4)

By inspection, a perturbation of a-j will open half the new area and release 

half the strain energy that would equal perturbation of a . That is

aa-j

~3A
!!x

3A
22
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8U* = ^

8al ~ ^ 9ax

Thus, combination of (C.3), (C.5), and (C.6) gives

(C.6)

K1 = Kx

and

K* Kx*

K* = K| =
Ky

(C.7)

(C.8)

(C.9)

where K* and K* are derived by setting azz (x, y) = aQ in Equation (3.6) in 

Section 3, obtaining

k;

2ao

2%

1 2 9E(k)
L3E(k) ax E(k) 9

r a X ay 1 3E(k)
LE(k)

ay E(k) ^y)J

(C.10)

(C.ll)

C.4 The Computation of Influence Functions h^

The basic formula for influence functions is given in Section 3 and 

the influence function for some point (x1, y') in the fixed coordinate system, 

may be expressed as

hx (a. , x', y') 9w* 9al
9a ^ 9A (C.12)

Since w* depends only on a 

9w* . ^ 9w*

ll

o x y 

From Fig. 8,

x, and y. it is advantageous to express

in terms of
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a 1 = a - x + x
L X

al ' 2ax - a2

The differentials of (C.13) and (C.14) are

da ^ = dax - dx + dx'

=0

da^ = 2dax - da^

(C.13)^| 

(C.14)

(C.15)

(C.16)

where dx' is zero because the reference point is fixed in the stationary 

x'-y1 coordinate system in terms of which the stress fields a(x', y1) are 

defined. The term da2 is zero because "K| and h1 are quantities resulting from 

the perturbation of only the first freedom. The solution of (C.15) and (C.16) 

is

3a

3a
_x

1
^2

Application of the chain rule and (C.17) yields

(C.17)

3w* 3w* 3w* (C.18)

where the partial derivatives of (C.l) are

^ ax- ay)
3E(k)

E(k) 3aN 3
ax 01

(C.19)

and
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9w*
9x

-w*x (C.20)

Combining (C.18 - C.20), we obtain

3w* _ Vo*^ f 1 3E(k) x
8a1 - HE(k) Lax " a/a

(C.21)

Combination of (C.5), (C.10), (C.12) and (C.21) gives the influence function 

for the first freedom. Similar developments lead to similar expressions for 

the second, third and fourth freedoms, i=2,4. All h^ are given by the following 

expressions.

(C.22)

(C.23)

C.5 The Computation of Stress Intensity Functions for Completely General 
Stress Field g(x',y1)

The K.j, i=l,4 computations follow immediately from the definition of the 

h.j as given in Section 3 and Appendix B. The result is



36

Ki = JJ hi ^ax’ ay’ x’ a(xl>y,) dxdy (C.24)
A

where

x1 = x + ai " ax

y1 = y + a3 ' ay
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APPENDIX D

Listing of Computer Program IF2-1, Data Listing and Results of 

the Six Weld Crack Fatigue Analyses of Table IV.
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 O'

10 
11 
12 
13 
l'* 
15 
1< 
17 
1 £
19

20 
21 
22 
23 
2 < 
25 
21

27
28

2«
30
31
32

3<
35
30
37
38
39 
^0
91
92 
92

99
95

97
98
99 
5C 
51

$V<9TFIV
REAL KTH,K IC,KBIG,f»,N,L,KI,IF
DIMENSION 7(50),X( 100) ,DX(1001,DDN(8),L(8), C(30),BU(6)
SPY=C.7973895 

17 FN=0.
SUMW=0.
REAC(5,25) (Z( I),1=1,20)

25 FORMAT ( 20A9)
W R IT E ( 6, 60 )

60 FORM AT(//)
WRITE(6,25) (Z(I),1=1,20)
RE AD (5,1 ,E ND= 10D 0 ) L(l)
WR ITEI 6,21) Ul)

21 FORMAT (/28H THE INITIAL CRACK LENGTF IS,F10.5)
1 FORM AT(8E1C.5)

P E A D (5,l)(C(I),I = l,e)
RE AD (5,1) C (7 ) ,C ( 8 )
R EAD(5,1 ) C(9),C( 10)
V«RITE (6,109)

109 FORMAT(/• DELTA SIGMA REAN SIGMA EFFECTIVE FPACTI
ION OF RESIDUAL STRESS HALF PLATE WIDTH * )

WRITE (6,105) CI10), C 12), C(9),C(1)
105 FORMAT (2G20.5,15X, 2G20.5)

L( 2)=L(1)
RE AO(5,1) 0,N,KTH,KIC 
RE AD(5,1)F INKX ,C IN 
WR ITEI 6,90)

90 F0RM«T(/10X ,*THE CRACK GROWTH RELATION IS : DA/DN=C *( K IEFFEC Tt VE-KTH
D**M/iKIC*( 1 .-RE FF ) -KI EFFECTIVE) • )
WRITE(6»91)

91 FORMAT (08X,1 THE CCKSTANT'^S VALUES ARE: C M KTH
1 K IC )

WRITE(6,2) U.N, KTH, KIC 
WRITE!6,92) FINK X 
WRITE(6,66) CIN

92 FORMAT!/57H THE NUMBER OF INTEGRAT ICN POINTS TC COMPETE K-FACTORS 
IIS ,F5.0)

66 FORMAT! 71H THE NUMBER CF LIFE INTEGRATION PCINTS TO DOUBLE THE CR 
1ACK DIMENSION IS,F9.C)

READ ! 5,1) H
I F= H 4 .1
IFUH-3) 99,95,96 

99 WRITE!6,97) H 
GOTO 50 

95 CONTINUE 
GO TO 50

96 WR ITE!6,99) H 
50 CONTINUE
97 FORMAT!/58H THE STRAIN ENERGY RELEASE RATE CRITERION WAS USED WITH 

1 F=,F5.2)
98 F0RMATI/91H THE VON-MSES CRITERIA WAS USED WITH H= F5.2)
99 FORMAT(/52H THE MAXIMUM SHEAR STRESS CRITERION WAS USED WITH F*,F5 

1.2)
93 FORMAT!/* THE MULTI-MODE K-ESTI MAT I CN EQUATION IS: KIEFFECTIVE =

Initial Input/Output Including 
Extra Format Statements for Other 
(e.g. Multi-mode) Applications.

1SCRT (KI**24-H*KII 1**2) *) 
Cl N=2.** (1 . / I CIN-.CCCl )) 

2 FORMAT!33X,9G10. 3)
1 N KX =FINKX+ . I 
0 3 1=1,INKX 

F=I-.5

^ r

CO
00



52
53
54
55 
5 < 
5T
5 £ 
5S
6 C 
6 ] 
62
6 3 
64 
6 « 
66
67
68 
6 '
7 C
71
72 
72
74
75
76
77
78 
7<;
8 C 
81 
82 
£3
84
85 
8 ( 
87 
£ £ 
85 
SC
9 l 
92 
S3 
94 
9 £
96
97 
58 
5 5

ICC 
10 1 
1C2
103
104
105 
10 6 
1C 7
ice
109
nc
111

«

101
103

102

F*F/FINK > 
m=F* (2.-F)

M= INK X-l 
0 4 1=2, IXM 

DX(I)=(X(I+1)-X{I-1)J/2.
OX(l)=(X(l>*X(2) )/2 .
DX(1NKX)=1.-(X(INKX)4X(IXVJ)/2 .
W=C( 1 )
WRITEI6 ,60 )
WR ITE( 6,30)
WRIT E(6,31 )
WRITE(6,32)
FORMAT ( /, 8X, F20.7)
WINK=W/INKX
DO 6 1=1, INKX
XP=(I-.5)* WINK
CALL THICK!XP.TCALC ,CJ
SLMW=SUMW + TCAL C* WIAK
DO 8 IA=1 , 100
A=L(2)
S'JMA = 0.
SUNK = 0.
SK MIN = 0 
SMKIII=C.
AINK = A/ INKX
DO 9 1=1,INKX
XP=<I-.5)*AINK
CALL THICK(XP,TCALC ,C)
SUMA= SUM A4 TC ALC* A I N K 
P = SU MA / S LM V«
00 7 1*1,INKX 
X P=X (I )
XPA=XP*A
CALL THICK!XPA,TCALC,C)
CALL STL IN (S ,SXY , XPA,CT ----------------
RBE=A/R
PINT = HC SIR BE,A,XPA,1 ) *TCALC*C (.10 )^0X ( 
SKKIN=SKMIN 4 PINT / C(1C)* <S4C<2)) 
SUMK=SUPK4PINT 
CALL THICK(A,T,C)
ZZ=SUMK/T4A 
SKI I I=SMKIII/T*A 
K I =Z Z *♦Z + H *SKII 1**2 
K I = SCR T(KI )
SR KM IN=SKMIN/T*A 
SKMAX=SRKMIN 4 KI 
0Z ZM =C ( 5 >*ZZ*. 1 
Q K 3M = C ( 6 ) * S K I II 
OK IM=0ZZM**2 + H * 0K3 K**2 
QKIM= SCRT(OK IM)
1 F l SUMK + SKM IN ) 101,101,102 
WRITE (6,103)
FORMAT!/ • CRACK HAS ARRESTED;
GO TO 17 
CCNT INUE
RE = SKMIN/( SUMK 4 SKMN)
QK IX = K I •*------
KI=0KIX4CKIM 
0 OK 1=ZZ-0ZZM 
C0K3 =SKIII-0K3M

Break-up^for Numerical Integration of 

h(x, a, etc.) a(x) t(x) dx7
4^

Effective Width, Variable Thickness Calculations

co

Integration

Integration

LIFE IS INFINITE •

da
dN for K.max -< 0

Kmin/Kma



Forman's Rule" da/dN RelationHi
113
114

115
116
117
118 
119
12 C 
12 1 
122
123

124

125
126
127
128
129

130
13 1
132
133
134
135
136
137

DADN=Q* ( KI -KTH )##*!/ I KIC*( 1 .-Sc )-KI) IF(KI-KTt-) 10,10,11
10 DADN=0.

C KI CHECKS
11 IF (UKIX-KICI 12 ,12 ,13 
13 DADN=-1G0.*CADH

SPY =5.
12 DON ( 1) =CAON

CALL IN’T IIA, CI-v,FM,L,ODN)
CALL STL IN ( S,SXY,A,C)
CALL THICK(A,T,C)

3 C FORMA T(’ CRACK RESIDUAL STRESS THICKNESS
1 STRESS INTENSITY FACTORS EFFECTIVE CYCLIC CRACK CYCLIC!

31 FORMAT!* DEPTH AXIAL SHEAR KMAX
IK NIN DELTA K KMIN/K^AX GPCWTH BATE LIFE*!

32 FORMAT(* A SXX(A) SXY(A ) T (A) KMA X
1 KMIN KMAX-KMIN REFF DA/DN N •)

W R IT E(6,33) L(11 , S,SXY,T,SKMAX,SRKMN,KI ,RE,DAON ,FN
33 FORMAT(F11.5, F10.2, F14.2, FIO.5,2F 10.2,F16.2,F 1 3.3,E16.3 , F 1 0.0)

I F (L (2 )-V») 19,19,18
19 CONTINLE

15 F0RMAT(F20.7,F10.5,E15.5,2F15. 5,2F25.l)
: BREAK

IF (SPY-1.) 8,8, 18 
8 CONTINUE 

18 KRITE(6, 16)
16 FORM AT ( / 5 2 H PUN TERM IN ATED-FRACTURE TCUSHNESSHAS BEEN EXCEEDED) 

SPY=0.7978845 
GO TC 17 

1000 STOP 
END

-P»o



138 SUBROUTINE I M (I A , C I N, FN ,L » C T'll139 REAL L
1 AO DIMENSION L(2),DDNI2)
1A 1 IF ( IA-1 ) A, A t S
1A 2 5 DBIG = .5* IDDN ( 1 ) +DDM2 ) )
1A 3 FN=FN+Dl81G/03IG
l A A L ( 11=Lt1)+CLBIG
1 A J A DLBIG=L ( 1) * ( C l;J- 1 .)
1A6 DON!2> = DOM 11)
1A7 L( 2) =L( 1 H-DLBIG
1A £ RETURN
1A9 END

integrates

a

with Trapizoidal Rule

da
[da/dN]



15 C 
151 
15i
153
154

SUBROUTINE THICK(X,T,C) 
OIMENS ION Ct 30 )
T=CI71+C<8>*X ^- - - - - - - - - - -
RETURN
ENC

Variable Thickness



15! F UNC II OM HCS(R,ft .C.IFOOE)
C
C
C
C
C
C
c

156

151

156
155

C
160 
16 1 
162

C
163
16A
165
166 
16?
166 
165 
17C 
17 1 
172

C
172 
17 4
175
176
177 
176

I 'I FLU EMC 6 FUr'CTICNS FOR CENTER CRACK OF LENGTH 2A IN 
PLATE OF WIDTH 23 UNDER SYHVETPIC NODE I MODE (=1.2, OR 3) 
LOADING. SOURCE: PAGE 2.34 OF TAOA HANDBOOK.
EFFOP: LESS THAN 1% FOR INODE=l,2; EXACT FOR 1*006=3. 
PROGRAMMER: PHL BESUNER , NARCH 1975

FC T=.296717B 
P 12= 1 .5707963 
p A = PI2* A/.3 
PC = PI2*C/3

IS PA TOO SMALL FOR TRIGONOMETRIC FUNCTIONS? 
IF (PA-.016) 1,1,2

1 F3=PA/ (PA*PA-PC*PC )* (1-PC+PC!
HC S=SQR T(F3I

IF WE ARE IN MODE III, THE CALCULATION 
GOTO 13,3,4),I MODE

3 F 1= 1+FCT*SQRT( 1-C/A*C/A) *PA#PA/2 
HCS = HCS*FI
GO TG 4 

2 T A = T AN(PA)
C A=CO S( P A)
CC=COS(PC)
CACC=CA/CC 
F 3=TA/( 1-C ACC**2)
H CS= SORT ( F3 )

IF WE ARE IN MODE III, THE CALCULATION 
GG TC (5,5,4), IMODE

5 FI= 1 + FCT * SQRT<1-C/A*C/A) * (l.-CA)
HCS = FC S + FI

4 HCS = 1.4142135 ^HC S/SCRT (B)
RETURN
END

IS FINISHED

IS FINISHED

Influence Function Subroutine; to be 

Changed for Each General 2-D Problem 

Class.

CO



it? SUBROUTINE STLINt S*SXY.*X*Cl
DIMENSION CS ( 50) *CX ( 50 1 »DS (5 0) »DX(50 hC(20 )18C

la 1 1 F(C(6 1-1000.) 1 , 1,2
18 2 1 RE 80(5 *3 1 IN
182 3 FORMAT(15)
186 READ t 5,4 1 ICXU) ,CS(I), 1=1,IN)
185 4 FORMAT ( 2F10.0)
188 C(6)=12000 .
181 DO 5 I =2 ,1 N
188 Dsn )=csi ii-csii-i)
189 5 DX( I 1=CX(I )-CX(I -1)
190 2 CUNT INUE
191 DO 7 I=1 ,IN
19 2 D 1= X-C X ( 14-1)
193 J = I
196 IF (Cl) £,£,7
19 5 7 CENTINUE
1 5 £ 6 S=CS(J) + DS ( J + 1 ) / DXlJ+l) * ( X - CXU)
191 S = C (91 * S
19 8 SXY = 0.
199 RETURN
2 CC END

Linear Interpolation of ^res (x) Function 

Which is Input as a "Table."



229. 
?3C. 
231 . 
222. 
223. 
2 34. 
2 35.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253. 
2 54.
255.
256.
257.
258.
259.
260. 
261. 
262.
263.
264.
265.
266.
267.
268. 
269. 
270 .
271.
272.
273.
274.
275.
276.
277.
278.
279.
280. 
261. 
282.
283.
284.
285. 
266. 
287.

SCATA

4 = i 
1
#

RU-CRACK IN A WELD UNDER NOMINAL ANC RES IDUAL STRESS
i

Aa
n CEP--

Residual Stress Table for

(-X)"res <x) res

min
1. 25.^-----

1.4E-07^7TO_
30. s':
3.
00015
.4
.8
1.2 
1 .6 
1 .8
2.4
3 .
3.6
4 .5
5.5 
7.
2 C .
27.5

THRU-CRACK IN A !*EL 0 UNDER NOMINAL AND RESIDUAL STRESS 
. 125003
1CC0. -30.
1.
1. 25.

1.4E-072.74 150.
30. 5 .
3.
00015

52.5
.4 50.
.8 45.
1.2 32.5
1.6 19.
1.8 14.
2.4 7.
3. 2.8
3.6 0.
4.5 -2.
5.5 -2.8
7. -2.2
20. -7.
27.5 
10C0000.

THRU-CRACK IN A WELD UNDER NOMINAL AND RESIDUAL STRESS 
.125003
5.
1.
1. 25.

1.4E-072.74 150.
30. 5.
2.
CCC11

52

Lines 230-366

Input Data for Six Fatigue Analyses of Table IV.



268. .4 48.5
289. .8 38.
2SC. 1 .2 20.
291. 1.6 7.5
292. 1.8 3.7
292. 2.4 -9.
294. 2. -17.
255. 3.6 -22.
296. 4.5 -35.5
297. 5.5 -37.5
258. THRU-CRACK IN
299 . .125003
3CC. 5. -30.
301. 1 .
3 02. 1 . 25.
3C3. 1.4E-072.74
3C4. 30. 5 .
3 05. 3.
3 06. 00011
3 07. 52.
3 08. .4 48.5
305. .8 38 .
310. 1.2 20.
311 . 1.6 7.5
2 12. l.E 3.7
3 13. 2.4 -9.
314. 3. -17.
315. 2.6 -22.
316. 4.5 -35.5
3 17. 5.5 -37.5
318. THRU-CRACK IN
315. . 125003
320. 1000. 0.
321. 1.
322. 0. 25.
323. 1.4E-072.74
324. 30. 5.
325. 2.
326. 00015
327. 5 2. 5
328. .4 50.
329. . £ 45.
3 30. 1.2 32.5
331. 1.6 19.
332. 1.8 14.
3 33. 2.4 7.
334. 3. 2.8
335. 2.6 0.
336. 4.5 -2.
337. 5.5 -2.6
338. 7. -3.2
339. 20. -7.
340. 27.5
341. 1000000.
342. THRU-CRACK IN
343. .125003
344.
345.

•oA

346.
347. 4E-07 2.74

A WELD INDER NOMINAL ANC RESIDUAL STRESS

150.

A WELD UNDER NOMINAL AND RESIDUAL STRESS

150.

A WELD UNDER NOMINAL ANC RESIDUAL STRESS

150.



3^.e. 3 C. 5.349 . 3.
35C. 00015
2il. 52. 5
352. . 4 50.
3 5 3. . £ 45.
354. 1.2 32.5
355. 1.6 19.
3 56. 1.8 14.
3 57. 2.4 7.
3 5 8. 3. 2.8
359. 3.6 0.
360. 4.5 -2 .
361. 5.5 -2. 8
362. 7. -3.2
363. 2 C. -7.
364. 27.5
3 65. 1000000.
3 66. 
367. SSTCf

-p*'NsJ



JDATA

THRl-CKACK IN A WELD UNDER NOMINAL AND RESIDUAL STRESS « Case 1

PHE INITIAL HALF CRACK LENGTH IS 0.12500
OELTA SIGMA MIN SIGMA effective fraction of residual stress half plate width

25.000 0.00000 i-oooo cjooo.63 “■* ^ Large Pipe ~ Infinite Plate
THE CRACK GROWTH RELATION IS : C A/CN=C* t'K IEFFEC T IVE-K TH ) **M/t KI C* I l.-R EFF)-Kl EFF EC TI VE)

THE CONSTANT'S VALUES ARE: C M KTH KIC
0.140E-06 2.74 0.000 150.

THE NUMBER OF INTEGRATION POINTS TO COMPUTE K-FACTORS IS 30.
THE NUMBER OF LIFE INTEGRATION POINTS TO DOUBLE THE CRACK DIMENSION IS 5.

HALF
CRACK RES IDUAL STRESS THICKNESS STRESS INTENSITY FACTORS EFFECTIVE CYCLIC CRACK CYCLIC
LFNGTH AXIAL SHEAR KM AX K MIN DELTA K KMIN/KMAX GROWTH RATE LIFE

A SXX(A) SXY(A ) T ( A) KM AX KMI N KM AX-KM IN REFF DA/ON N
0.12500 51.72 0 .00 1.00000 4E.60 32. 82 15.78 0.675 0 .8I6E-05 0.
0. 1435S 51 .60 0 .00 l.coooo 52.04 35.13 16.91 0.675 C.102E-04 2026.
0. 1EHS4 51.47 0.00 1.0CCCC 55.71 37. 59 18.13 0.675 0.128E-04 3883.
0. 18947 51 .32 0 .00 1.00000 55.64 40.2 1 19.43 0. 674 0.16 IE-04 5579.
0.21764 51-14 0.00 1. 00000 63. 62 43.00 20 .8 2 0.674 0.2046-04 7121.
C.25CC1 50.94 0 .00 1.00000 68.29 45.97 22.32 0.673 C.26 0E-04 8516.
0.16718 50.71 o.oc l.COOOC 73.C5 49.13 23.92 0.673 0.333E—04 977 0.
0.32969 50.44 0 .00 1.00000 78.12 52.48 25.63 0. 672 0. 430E-04 1 0839.
0.37854 50.12 0.00 1.00000 83. 51 56.03 27 .48 0.671 0.56 IE-04 11879.
0.43525 49.56 0 .00 1.00000 89.19 59. 74 29.45 0. 670 0.73 9E-04 12746.
C.5CCC2 48.75 0.00 l.coooo 9 5.,09 63.53 31 .56 0.668 0.984E-04 13497.
0.57438 47.82 0 .00 1.COOOO 101.25 67.43 33.83 0.666 0.133E—03 14139.
0.65979 46.75 0.00 l.OOCOC 107.65 71.39 36.25 0.663 C.184E-03 14678.
0.75790 45 .53 0 .00 1.00000 114.26 75.40 38.85 0.660 0.261E-03 15119.
0.E 706C 42.79 0 .00 1.00000 120.66 79.02 41.64 0.655 C. 379E-03 15472.
1.CC0C5 38 .75 0.00 l.OOCOC 126.13 81. 50 44.63 0.646 0.549E—03 15751.
1. 14876 34.1 C 0 .00 1.00000 130.70 82.8 7 47.83 0. 634 0. 794E-03 15972.
1.31558 28.46 0.00 l.coooo 134.04 62.77 51.27 0.618 C. 11 IE-02 16152.
1.315EC 21.84 0 .00 1 .00000 135.65 80.70 54.95 0. 595 0.141E-02 16337.
1.74121 15.47 o.oc 1.COOOO 135.59 76,70 58.89 0.566 0. 158E-02 16458.
2.CCC12 11.67 0 .00 l.OOCOC 135.48 72.36 63.12 0.534 0.177E—02 16612.
2.25754 8.2C o.oc l.CCCOC 135.55 67.90 67.65 0.501 0.20 IE-02 16770.
2.63919 5.33 0 .00 1.00000 135.41 62. 51 72.51 0.465 0.224E-02 16930.
3.C2164 2.65 0.00 1.COOOO 135.27 57.55 77.72 0.425 0.250E-02 17096.
3.48244 0.55 0 .00 l.OOOOC 135.24 51.55 83.29 0.384 0.282E-02 17265.
4. CC C 28 -0.39 0.00 1.00000 135.50 46.23 £9.27 0. 341 0.3246-02 1 743 6.
4.59513 -2.08 o.oc 1.coooo 136.26 40. 55 95.67 0.298 0.388E-02 17603.
5-27643 -2.62 0 .00 1.00000 137.98 35.44 1C2.54 0.257 C.507E-02 17756.
6 . C 6 3 2 3 -2.95 0.00 1.coooo 14 C.39 30.49 109.90 0.217 0.7286-02 17883.
6.56455 -3.19 0.00 i.coooo 1*3.74 25.95 117.79 0.181 0.129E-01 17972.
8.CCC65 -3.49 0.00 l.CCCOC 147.79 21.55 126 .24 0.146 C.424E- 01 <^iabo9p

RUN T EPM INATEC-FRACTURE TOUGHNESS HAS BEEN EXCEEDED



THfu-CRACK^^k weld under ndminal /Nc residual stpess- Case 2, Negative Applied a 

THE INITIALCRACK LENGTH IS 0.12500
OELTA SIGMA MIN SIGMA EFFECTIVE FRACTION OF RESIDUAL STRESS HALF PLATE WIDTH

25.000 -30.000 1 .0000 1ooo.n
THE CRACK GROWTH RELATION IS :DA/DN<*( KIEFFEC TIVE-KTHJ**M/<kIC*( 1 .-REFF ) -KIEFFECTIVEJ

THE CONSTANT'S VALUES ARE: c M KTH KIC
C. 14CE-06 2. 74 0. COC 150.

THE NUMBER OF INTEGRATION POINTS TC COMPUTE K- FACTORS IS 30.
THE NLMBER OF LIFE INTEGRATION POINTS TO DOUBLE THE CRACK DIMENSION IS 5.

HALF
CRACK RESIDLAL STR ESS THICKNESS STR ESS INTENSITY F ACTORS EFFECTIVE CYCLIC CRACK CYCLICAX 161 SH EAR KMAX K Ml N DELTA K KMI N/KMAX GROWTH RATE . IFEA SXXCA) SXY (A ) T (A ) KM AX KM IN KMA X-KMIN P EFF DA/DN N0.12 SCO 51.72 0.00 l.COCCC 25.67 13.89 15.78 0.468 0.419E-05 0.C.14359 51.60 0 .00 1.00000 31.75 14.83 16..91 0.467 0.5I5E-05 3977.0. KASA 51.47 0 .00 1.CCCCC 33.96 15.84 18.13 0.466 0.634E-05 7693.0.18947 51 .32 0 .00 1.00000 36.32 16.90 19.43 0.465 0.781E-05 11161.0.217fc4 51.14 o.oc l.CCCOC 38.84 13.02 20.82 0.464 0.963E-05 14392.0.250C1 50.94 0 .00 l.CCCOC 41.51 19. 19 22.32 0.462 0.119E- 04 17399.0.28718 50.71 0.00 l.OOCOO 44.34 20.43 23.92 0.461 0. 147E-04 20191.0.32989 50.44 o.oc l.COOOC 47.35 21. 72 25.63 0.459 0. 183E-04 22781.C.276S4 50.13 0 .00 1.00000 50.54 23.06 27.48 0.456 C. 227E-04 25177.0.43529 49.56 o.oc 1.COCOC 53.85 24.41 29 .45 0.453 0.282E-04 27390.C.5CCC2 48.75 0.00 1.00000 57.22 25.66 31.56 0.448 0.351E-04 29436.0.S7438 47.82 0 .oc 1.CCCCC 60.66 26.83 33.83 0.442 C.435E-04 31328.0.65979 46.75 a .oo 1.00000 64.14 27.89 36.25 0.435 0.540F-04 33079.0.7575C 45.53 o.oc l.COCOO 67.63 28.78 38.85 0.425 C.67CE-04 34700.0.87060 42.79 0.00 l.CCCOC 7C.69 29.04 41.64 0.411 0.82 IE-04 36212.1.CCCC5 38.75 0 .00 l.OOCOC 72.57 27.94 44 .63 0. 385 0.9 74E-04 3 765 5.1.14876 34.10 o.oc l.CCCOC 73.30 25.47 47.83 0.347 0. U2S-03 39075.1.21S5E 23.46 0 .00 1.COOOO 72.52 21.25 51.27 0.293 C. 124E-03 40525.1.51580 21.84 0.00 1.CCCCC 65.71 14.76 54.95 0.212 0. 130E-03 42074.1.74121 15.47 0 .00 1.00000 64.92 6 . C? 58.89 0.093 0.1288-03 43822.2.CCC12 11.67 0 .oc 1.CCCCC 55.73 -3.39 63.12 -0.057 C.126E-C3 45861.2.29754 8.2 0 0 .00 l.OOOOC 54.37 -13.28 67.65 -0.244 0. 122E-03 48265.2.63919 5.33 o.oc l.CCCOC 48.41 -24. 10 72 .5 1 -0.498 0. 115E-03 51149.3.03164 2.65 0 .00 l.CCCOC 42.01 -35. 7C 77.72 -0.850 0.106E-03 54697.
3.48244 0.55 0.00 i.OOOCC 3 5.29 -48.00 83.29 -1.360 0.946E-04 59139.4.00028 -0.89 o.oc l.CCCOC 28.38 -60.89 89.27 -2.146 0.8 10E-04 65087.4.55513 -2.C8 0 .00 l.OOCOC 2 1 .46 -74.22 55.67 -3.459 C.653E-C4 73219.5.27843 -2.62 o.oc 1. CCCCC 14.93 -87.61 102 .54 -5.867 0.488E- 04 85189.6. C6333 -2.95 0 .oc 1.00000 8.51 -1C1.40 109.90 -11.921 0.300E-04 105117.6.56455 - 3 ; 19 0.00 1. OOOOC 2.39 -115.4C 117.79 -48.234 C.911E-05 151278.

CRACK HAS ARRESTED; LIFE IS INFIM TE C^>

-nto

THRU-CRACK IN A WELD UNDE R N3M IN AL AND RESIDUAL STRESS

THE INITIAL HALF CRACK LENGTH IS 0.12500
Case 3



OELTA SIGMA MIN SIGMA EFFECTIVE FRACTION OF RESIDUAL stress HALF '’LATE WIDTH
25.000 0.00000 L.oooo, 5.0000 10" Wide Specimen

THE CRACK GROWTH RELATION IS :OA/ON=C*l'K I EFFECT! VE-KTH) **M/I KIC*( l.-REFF) -KIEFFECTIVE)
TFE CONSTANT'S VALUES ARE: C M KTH KIC

C.1ACE-06 2.7 A C.CCO 150.

THE NUMBER OF INTEGRATION POINTS TC COMPUTE K-FACTORS IS 30.
THE NUMBER CF LIFE INTEGRATION POINTS TO DOUBLE THE CRACK DIMENSION IS 5.

HALF
CRACK RESIDUAL STR ESS THICKNESS STRESS INTENSI TY FACTORS EFFECTIVE CYCLIC CRACK CYCL IC

AX IAL SHEAR KMAX K MN DELTA K KMIN/KMAX GROWTH RATE LIFE
A SXX t A ) SXY(A ) T < A ) KMAX KM l N KMAX-KMIN P.FFF DA/ON N

0.125CO 50.91 0.00 1.CCCOC 4 7.97 32. 25 15.72 0.672 C. 754E-C5 0.
0. 14359 50.74 0.00 1.00000 51.43 34. 55 16.87 0.672 0.997E-05 2075.
0 . U 4 S 4 50.56 0.00 1.00000 55.07 36.9 8 18.10 0.671 C.125E-04 397 3.
0. 18947 50 .34 0 .00 l.CCCOC 59.03 39. 60 19.43 0.671 0.155E-04 5700.
0.2 17E4 50.1 C 0 .00 1.00000 63.13 42.30 20.8 3 0. 670 0. 200E-C4 727 C.

0.25001 49.81 0.00 1. 00000 67.59 45.24 22 .35 0.669 0.256E-04 8609.
C.2E713 49.49 0 .00 1.00000 72.25 48.29 23.95 0.668 C. 327E-04 9965.
0.22969 49.11 O.OC l.CCCOC 77.26 51.56 25.70 0.667 0.422E-04 11105.
0.37894 49.68 O.OC 1.COOOO 82 .58 55.01 27.57 0.666 0.550E-04 12114.
C.43529 47.57 O.OC l .00000 88.13 58.54 29 .59 0.664 0.724S-04 1299 3.
0.S0CC2 45 .87 0 .00 l.OOCOC 93.67 61. 9 1 31.76 0.661 0.956E-04 13759.
C. *.743E 43.92 o.oc 1.COCOC 99.27 65.16 34.11 0.656 C. 127E-03 14436.
0.C5979 41.68 0 .00 l.CCCOC 104.94 68.28 36.66 0.651 0.172E-03 15008-
C.75790 39.11 0 .00 1.00000 110.60 71.17 39.4 3 0. 643 0.235E-03 15490.
0.87060 34.82 o.oc 1. ocooo 115.82 73.36 42.47 0.633 0.323E-03 15894.
1.CCCC5 29.00 0 .00 1 .00000 119-84 74.03 45.80 0.618 C. 4 32c - 03 16237.
1. 14876 22 .31 0 .00 1.00000 122 .64 73.13 49.50 0. 596 0.55BE-03 165 J 8 .
1.31953 16.26 o.oc 1. 00000 124.59 70.94 53.66 0 .569 0. 702E-03 16B09.
1.515EC 10.13 0 .00 l.COOOC 126.13 67.76 5 8.38 0. 537 C.P76E-03 1705 8 .
1.74121 4.8 2 o.oc l.coooo 127.35 63.50 63.85 0.499 0. I09E-02 17237.
2.CCC12 -0.54 0 .00 l.COOOC 128.96 5R. 64 70.33 0.455 0.14 08-02 17495.
2.25754 -6.83 0 .00 l.OOCOO 130 .27 52.01 7« .26 0.399 C.1B2E-02 17679.
2.63919 -12. 19 o.oc l.CCCOC 122.44 44. C6 88.39 0.333 0.257E-02 17835.
3.C2 1E4 -17.26 0 .00 1.00000 137.43 35.20 IfV. 15 0. 257 C.480E-02 17941.
3.48244 -21.02 o.oc 1. CCCCC 149.31 26.58 122.74 0.178 0.1326 00 17948.
4.CCC28 -23.00 0 .00 1.00000 174.96 15.45 159.51 0. C88 0.668E 00 Q_79V9T"}

RUN TEFMINATEO-FRACTURE TOUGHNESS FAS BEEN EXCEEDED

cno

THRU-CRACK IN A WELD UNDER NOMINAL AND RESIDUAL STRESS - CdSO 4

THE INITIAL HALF CRACK LENGTH IS 0.12500

DELTA SIGMA 
25.CCC

MIN SIGMA EFFECTIVE FRACTION CF RESIDUAL STRESS 
-30.000 1.0000

HALF PLATE WIDTH 
5.0000

THE CRACK GROWTH RELATION IS : D A/DN=C * t K IE FFECTI V E-K TH> ** M/1 KIC* < 1. 
THE CONSTANT'S VALUES ARE: C M KTH KIC

C.IACE-Of 2.7A 0.000 150.

■REFF)

THE NUMBER 
THE NUMBER

! r E GP A TICN PCI NT S TC COMPUTE K-FACTORS IS 
CF-LIFE INTEGRATION POINTS TC DOUBLE THE CRACK

3 C.
DIMENSION

—KIEFFECTIVE)



CRACK ES IDUAL STRESS THICKNESS STRE SS INTENSITY FACTORS EFFECTIVE CYCL IC CRACK cycli:
DEPTH ^^XIAL SHEAR KMAX K MIN DELTA K KMIN/KMAX GROWTH RATE LIFE

A SXX<A J SXY(A) T( A) KHAX KMI N K«AX-KM IN REFF DA/ON N
0. I25C0 50.9 1 0 .00 l.CCCOC 29.11 13. 39 15.72 0.460 0.407E-05 0.
0.14359 50.74 0 .00 l.CCCOC 31.18 14.31 16 .87 0.459 0.5C2E-05 4092.
0.16494 50.56 0.00 1.coooo 33.36 15. 26 16.10 0.457 0.618E-05 7908.
0. 1 £947 50.34 0 .00 1.00000 35.71 16.28 19.43 0.456 C. 764E-05 11458.
0.21764 50.1C o.oc 1.CCCCC 3 E . 14 17. 31 20.83 0.454 C.940E-05 14765.
C. 25001 45.81 0 .00 1.00000 40.77 18.42 22.35 0. 452 0.116E-04 17842.
C.287 18 49.49 0.00 U 00000 43. 50 19.54 23 .96 0.449 0. 144E-04 20701.
0.325E9 49.11 0 .00 1 .00000 46.42 20.72 25.70 0. 446 C.178E-04 23354.
0.37894 48.68 o.oc l.COCOC 49.50 21.93 27.57 0.443 0.22 IE-04 25810.
C.43529 47.57 0 .00 l.CCCOC 52.62 23.03 25.59 0.438 0.2 75E-04 28033.
C.5CCC2 45.87 0.00 l.CCCOC 55.56 23.79 31.76 0.428 0.33 86-C4 30197.
0.57438 43.92 o.oc 1.OOOOC 58.34 24.23 34.11 0.415 0 • rn 1 o 32174.
C.65579 41.68 0 .00 l.COOOC 60.95 24.29 36.66 0.398 C.5C5E-04 34033.
0.75790 39.11 o.oc l.CCCOC 63.29 23.85 39.43 0.377 0.61 IE-04 35791.
0.87060 3 4.82 0 .00 1.00000 64.87 22.40 42.47 0. 345 0. 72 6E-C4 37477.
1.CC0C5 29.00 0.00 1. 00000 64. 87 19.07 45 .80 0.2 94 0.828E-04 39144.
1.14676 22.31 0 .00 1 .OOOOC 63.23 13.73 45.5C 0.217 0.907E-04 40853.
1.31558 16.26 o.oc 1.CCOCC 60.20 6.55 5 3.66 0.109 C.960E-04 42689.
1.515EC 10.13 0 .00 L.CCCOC 56.C8 -2.30 58.38 -0.041 0.990E-04 44703.
1.74121 4.82 0.00 l.CCCOC 5 0.73 -13.11 63 .85 -0.258 C.59CE-04 46980.
2.CCC12 -0.54 0.00 l.COCOC 44.57 -25.76 70.33 -0.578 0.969E-04 49624.
2.25754 -6.83 o.oc l.CCCOC 36.36 -41 .90 78.26 -1.152 C. 8 8 3E-04 52836.
2.63919 -12.19 0 .00 l.CCCOC 26.38 -62.00 88.39 -2.350 0.728E-04 57078.
3.C3164 -17.26 0 .00 1.00000 14.85 -87.29 102.15 -5.876 C.482E-04 63565.
3.48244 -21.02 o.oc 1.CCOOC 2.03 -120.7 C 122.74 -59.410 0.829E-05 79519.

CRACK HAS ARRESTED; LIFE IS IMFINI IE

THRL-CPACK IA A WELD UNDER NO«INAL AND RESIDUAL STRESS - Case 5

THE INITIAL HALF CRACK LENGTH IS 0.12500

DELTA SIGMA MIN SIGMA effective fraction qf residual stress half plate width
25.000 0.00000 (fo. ooooo 1000.0

------- Nn Residuals
THE CRACK GROWTH RELATION IS :DA/CN*C*(KI EFFECT IVE-KTHJA + y/ (KIC*UEFF)-KI EFFECT IVE}

THE CCNSTANT'S VALUES ARE: C M KTH KIC
C.lACE-06 2.7A 0.000 150.

THE ALHBER CF INTEGRAT ICN POINTS TC CONFUTE K-FACTORS IS 30.
THE NLVEER Of LIFE INTEGRATION POINTS TO DOUBLE THE CRACK DIMENSION IS 5.

HALF RESIDLAL STR FSS THICKNESS STP ESS INTENSITY FACTORS EFFECTIVE CYCLIC CRACK CYCLIC

CRACK AXIAL SHEAR KMAX K MIN delta k KMIN/KMAX GROWTH RATE LIFE
A SXX(A) SXY(A ) T ( A ) KMAX K^I N KMAX-KMIN REFF da/dn N

0.125C0 0.00 0.0 0 1.CCCCC 15 .73. 0 .00 15.78 0. COO 0.200E-05 0.
0.14359 0 .00 J .00 l.OOOOC 16.91 0. 00 16.91 0.000 0.2446-05 8373.
0.1£4S4 0.00 0.00 1.COOOO 18.13 0.00 1H. 13 0.000 C.298E-05 16258.
0.189R7 0 .00 0 .OC 1.CCCCC 15.43 0. CO 15.43 0.000 0.364E-05 23677.
0. 21764 C.CC 0 .0 0 1.00000 20.82 0.00 20 .82 0. 000 0. 444E-05 3 065 2 .
C.25CC1 0 .00 0.00 1. 00000 22. 32 O.CO 22.32 0.000 C. 544E-05 37204,



C.2 £ 71S 0.00 0.00 1.00000 23.92 0.00 23.92 0. COO C. 666E-05 43354.0.32S89 0 .00 0.00 1. CCCOC 25.63 O.CO 25.63 0.000 0.816F-O5 49119.
0.S7894 0.00 0 .00 1.00000 27.48 0.00 27.48 0. cco 0. 100E- 04 54518.
C.42529 0.00 0.00 1. coooo 29.45 0.00 29 .45 0.000 0.123E-04 59567.
C.SCCC2 0. JO 0 .0 0 1 .OOOOC 31.56 0.00 31.56 0. 000 0.151E-04 64234.
0.S743E 0.00 o.oc 1.COCOC 3 3.83 0.00 33.83 0.000 0. 187E-04 68681.
0.65579 0.00 0.00 l.CCCOC 36.25 0.00 36.25 0.000 0.23 IE-04 72775.
C.7 57 SC o.oc 0.00 1.CCCCC 38.85 0.00 38.65 0. cco 0.285E-04 76578.
0.87060 0 .00 o.oc l.COOOC 4 1.64 0. CC 41.64 0.000 0.354E-04 80104.
1.CCCC5 0.00 0 .00 l.OOCOC 44 .63 0.00 44.63 0.000 C.44CE-C4 83365.
1.14876 0.00 o.oc 1.CCCOC 4 7.83 0. 00 47.83 0.000 0.549E-04 86373.
1. 2 IS 58 C.CC 0.00 1.00000 51 .27 0.00 51.27 0. coo 0. 687E- 04 89H9.
1.51580 0 .00 o.oc 1. OOOOC 54.95 0.00 54 .95 0.000 0.862E-04 91673.
1.74121 0.00 0 .00 1.COOOO 58.89 0.00 58.89 0. 000 0.1C9E-03 93935.
2.CCC12 0.00 O.OC l.COCOO 6 3.12 O.CO 63.12 0.000 C. 138E-03 96084.
2.2S754 0 .00 J .00 l.COOOC 67.65 o.oc 67.65 0.000 0.176E—03 97979.
2.62S IS O.OC 0.00 1.COCOC 72.51 0.00 72.5 1 0. OGO C.226E-C3 99678.
3.C2164 0 .00 0 .00 l.COOOC 77.72 0. CC 77.72 0.000 0.293E-03 101190.
3.4E244 o.oc 0 .00 1.00000 8 3.29 0.00 83.29 0.000 C. 384E-03 102521.
4.CCC28 O.CO o.oc l.CCCOC 65.27 0.00 89.27 0.000 0.51CE—03 103679.
4. 595 13 o.oc 0 .00 1.00000 95.67 0.00 95 .67 0. 000 0.6BSE-03 1 04671 .
5.27643 0.00 o.oc 1.CCCCC 102-54 0. CC 102.54 0 .000 C.554E-03 105503.
6.C6323 o.oc 0 .00 l.OOCOC 109.90 0.00 1CS.50 0. 000 C. 13 7E-02 106130.
6.S64S5 0.00 O.OC 1.COCOC 117.79 0.00 117.79 0.000 0.206E-02 106707.
8.CCC65 0.00 J .00 l.CCCOC 126.24 0.00 126.24 0.000 0.337E—02 107088.
5.1SC35 o.oc 0.00 1.CCCCC 135.30 0.00 135.30 0.000 0.658E-02 107327.

10.55696 0 .00 o.oc l.OOOOC 142.71 0. oc 143.71 0.000 0.182E-01 10 7438.
12.12679 0.00 0 .00 l.COCOO 154.73 0.00 154.73 0.000 C.256E 01 i£1074 39.^

RUN TERMINATED—FRACTURE TOUGHNESS H/S EEEN EXCEEDED

THRl-CRACK IN A WELD UNDER NOMINAL /ND RESIDUAL STRESS " Case 6

THE INITIAL HALF CRACK LENGTH IS 0.12500

MIN SIGMA 
0.00000

CELT A S IGNA 
25.COC

EFFECTIVE FRACTION OF RES1lESIOUM SO
(DTcoooc^)

STRESS HALF PLATE WIDTH 
5.0000

No Residuals
THE CRACK GROWTH RELATION IS:DA/CN=C*CK IEFFECTIVE-KTH)**M/IK IC*( I.-PEFFI-KIEFFECTIVE)

THE CONSTANT *S VALUES ARE: C M KTH KIC
O.IAOE-Ofc 2.74 0.000 ISO.

THE NUMBER CF INTEGRATION POINTS TO COMPUTE K-FACTORS IS 30.
THE NIMBER CF LIFE INTEGRATION POINTS TO C0U9LE THE CRACK DIMENSION IS 5.

HALF
CRACK RES IDUAL 

AXIAL
STRESS

SHEAR
THICKNESS

KMAX
STRESS 

K MIN
INTENSITY FACTORS 

DELTA K
EFFECTIVE 
KMIN/KMAX

CYCL IC CRACK 
GROWTH RATE

CYCLIC
LIFE

A SXXIA) SXY(A ) T( A ) KMAX KM IN KMAX-KMIN R EFF DA/DN N
0.12500 0.00 0 .00 1.00000 15.72 0. 00 15.72 0.000 0.1S8E-05 3.
0.14355 o.oc 0 .00 l.CCCOC 16.87 0.00 16.87 0.000 C.242E-05 8 449.
0. 16 4 54 o.oc 0 .00 l.COCCC 18. 10 0. CC 18.10 0.000 0.296F-05 16377.
0. 18947 O.OC 0 .00 1.00000 19.43 0.00 19.43 0. 000 C.364E-05 23807.
0.21764 0.00 0.00 1. COCOC 2C. 83 0. 00 20 .0 3 0.000 0.445F-05 30777.
C.25CC1A^ 0.00 0 .0 0 1.00000 22.35 0.00 22.35 0.000 C. 546E-05 37312.
0.28713VV o.oo o.oc l.CCCOC 23.56 O.CO 23.96 0.000 0.669E-05 43433.
0.32589 0.00 0 .00 l.COCOO 25.70 O.CO 25. 70 0.000 0.8222-05 49163.



0.2TESA 0.00 o.oc l.CCCCC 27. 57 O.CC
0.43529 0.00 0 .00 1.00000 29.59 0.00
0.5CCC2 0.00 o.oc 1.coooo 31.76 0.00
C.57438 0.00 0 .00 l.COOOC 34.11 O.CC
0.65979 O.OC 0.00 l.CCCOC 36.66 0.00
0.75750 0 .00 o.oc l.OOCOC 35.43 0. CC
c. ncfc 0.00 0.00 1.OCOOO 42i47 0.00
1.CC0C5 0.00 o.oc 1.OCCOC 45.80 0.00
1. 14876 O.OC 0 .00 1.00000 49.50 0.00
1 .2 1 ss.e O.OC o.oc 1.CCCCC 53.66 O.CC
1.5156C 0.00 0.00 1.00000 58.38 0.00
1. 7 4 1Z 1 0.00 o.oc 1.CCCOC 63.85 0.00
2.CCC12 0.00 0.00 l.COOOC 7C.33 O.CO
2.25754 o.oc 0.00 1.CCOOC 78.26 0.00
2.63919 0 .00 o.cc 1. 00000 £8.39 0. CC
3.C3164 0.00 0 .00 l.COOOC 102.15 O.CO
3.48244 0.00 o.oc 1. CCCCC 122.74 O.CO
4.CCC28 0.00 0 .00 1.00000 159.51 O.CO

RUN TEPMNATEO-FRACTURE TOUGWESS FAS BEEN EXCEEDED

CORE USAGE 

COPPUE TIKE*

OBJECT CODE* 9880 BYTES,ARRAY AREA* 2012 

0.80 SEC,EX ECUTICN TIKE* 20.61 SEC, WATFIV

27 .57 0.000 C. 1C IE-04 54513.
2 5.55 0. 000 0.125E-04 59499.
31 .76. 0.000 0. 154E-04 64135.
34.11 C.CCO 0.19 IE—04 68435.
36.66 0.000 0.235E- 04 72407.
35.43 0.000 0.299E-04 76060.
42.47 O.OCO C. 376E-04 79400.
45.80 0.000 0.478E-04 82433.
49 .50 0. cco 0. 613E-04 85160.
53 .66 0 .000 C.757E-04 87583.
58.38 0.000 0.1066-03 89701.
63.85 0.000 C. 144E-03 91511.
7C.33 0.000 0.2026-03 93008.
78.26 0. 000 0.3015-03 94190.
88.39 0.000 0.489E-03 95055.

102.15 0. 000 C.536E-03 95605.
122.74 0.000 0.272E-02 95852.
159.51 0. cco 0. 160E 01

ES,TOTAL AREA AVAILABLE* 196680 BYTES 

VERSION 1 LEVEL l JANUARY 1970 DATE* 75/397
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Table I. List of Available Crack-Face Influence Function Solutions to Allow 
K-Computation for Complex, Arbitrary Stress Distributions

2 3FAA Computer Codes Name /Status

Problem Description(s)

Dimensionality 
of Elastic 
Solution Modes DOF/M1

Error
(Maximum Value 
Quoted by Source)

Published Source(s) 
(not necessarily 
comprehensive) K-Calculation

Constant
Amplitude
Fatigue

Other Capabilities
1 2

Center Cracked Plate 
Under Symmetric Loads 
(y-axis symmetry,
Fig. 2)

2 I,II,III 1/1 III (exact)
I,II (±U)

(6j, Section 3 
(See Fig. 2)

IFS2-1/A IF2-1/A Residual 
Mean o/A

Variable Thick­
ness Approximation

Center Cracked Plate 
Under Any Loading

2 I,II,III 1/2 III (exact)
I,II (±1%)

(6), p. 2.33 — — — —

Single Edge Crack in 
Finite Strip

2 I,II,III 1/1 III (exact)
I,II (±25S)4

(6),4 pp. 22T4- 
228,
(20)

IFS2-2/B IF2-1/A Combined 
Modes I 
& II 
Cycling

Variable Thick­
ness Approx.

Double Edge Crack in 
Finite Strip

2 I,II,III 1/1 III (exact)
I,II {±2%)

(6) p. 2.31 — — — —

Infinite Crack,
Infinite Plate

Infinite Collinear 
Cracks, Infinite
Plate:

2 I,II,III exact (6) p. 3.6

One Crack Loaded 2 I,II,III 2/2 exact (6) p. 4.5 -- .. _ _
Two Cracks Loaded 
Symmetrically

2 I,II,III 1/1 exact (6) p. 4.6 ” “ “ “

Finite Collinear Cracks 
in Infinite Plate,

2 I,II,III 1/1 or 
1/2

exact (6) pp. 7.6-7.7 — — — —
Various Loadings of 
All Cracks



Table I (Cont'd)

Program Description(s)

Dimensional ity 
of Elastic 
Solution Modes DOF/M1

Error
(Maximum Value 
Quoted by Source)

Infinite Crack
Approaching Edge of 
Hal'f-Space

2 I,II,III 1/1 III (exact)
I,II (±1%)

Rows of Infinitely
Col 1 inear

Infinite Cracks in 
Infinite Plate

2 III 1/1 exact

Assorted Finite Width 
and Height Straight
Plate Problems

2 — 1,2/
1.2

Worst Case = ±2%

Assorted Finite Width 
and Height Curved 
Structure Problems

2 — Worst Case = ±5%

Infinite Crack in
Infinite Solid;
Straight Crack Front

3 I,II,III 1/co exact

Circular Crack, Arbitrary 
Mode I Loading, Infinite 
Solid

3 I 3/- exact

Circular Cracks, Internal 
and External Various 
Special Cases of Loading, 
Infinite Solid

2-3 I 1/1 Most are exact

Buried Elliptical Crack 
Arbitrary Mode I Loading 
(Infinite Solid)

3 I 4/4 exact

2 3
________FAA Computer Codes Name /Status___________

Published Source(s) Constant
(not necessarily Amplitude Other Capabilities
comprehensive)______ K-Calculation Fatigue 1 ______2______

(6) p. 9.5

(6) p. 13.2

(6),(8), (1-5)

(8)

(6) p. 23.1

(6), p. 24.2

(6), Chap. 25

This report, IFS3-1/A IF3-1/A
App. C (See 
Fig.8 )



Table I (Cont’d)

Program Description(s)

Dimensionality 
of Elastic 
Solution Modes DOF/M1

Error
(Maximum Value 
Quoted by Source)

Published Source(s) 
(not necessarily 
comprehensive)

FAA Computer Codes 
Constant 
Amplitude

K-Calculation Fatigue

Name^/Status'*

Other Capabilities
1 2

Buried Elliptical Crack 
Arbitrary Mode I Loading 
(Infinite Solid)

3 I 2/2 exact (10) (See Fig. 8 ) IFS3-2/C — —

Corner Crack, 1/4 
Elliptical Crack, 
Arbitrary Mode I Loading 
(Infinite Solid)

3 I 2/2 Three-Dimensional 
Numerical Stress 
Analysis

(11) (See Fig. 5)

"

Surface Cracks, 1/2
Elliptical ;Corner Crack, 
1/4 Elliptical, Arbitrary 
Mode I, Infinite Mode

3 I 2/2 Combined 3-D and 
2-D Eng. Approx.

This report, App. B 
(See Fig. 7)

IFS3-3/C IF3-3/C

M * The number of distinct stress intensity factors that may be computed with the IF solution (e.g., two K values, one for each of two crack tips).2
Current FAA computer program and subprogram names.

3
Status symbols: A = program nearly complete; lacks documentation and user features

B = major portion of program complete but substantial cleanup work is required 
C = incomplete program, existing code has been checked out

^Refs. (1_3) and (20) results indicate that Ref. (6J solution is in error.



a/b

K(a,b)/

Near Exact Values ( 0.1% error (6)) IF Calculated Values Error

0.0005 1.0000 1.0073 0.7%

0.2 1.0246 1.033 0.8%

0.5 1.1867 1.200 1.1%

0.8 1.8160 1.821 0.3%

0.9 2.5776 2.628 2.7%

Table II. Comparison of Published and IF Method-Calculated Stress 
Intensity Factors for Center-Cracked Plate Under Uniform 
Stress
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1

2

4

(l-r2/a2)5 ksi, r = (x2+y2)^

K(a) " 117T (Tra)'5 ksi /Tn, i = x,y

IF Calculation

Exact K(a) *i Error Error

0.07253 0.0719 -0.9% 0.0718 -1.1%

0.10258 0.1016 -0.9% 0.1015 -1.1%

0.14507 0.1438 -0.9% 0.1435 -1.1%

0.20516 0.2033 -0.9% 0.2030 -1.1%

Penny-Shaped Crack Cross Section 
(Lower Half of Stress Field Not Shown)

z azz = r3 ksi

K(a) = (ira7)^ ksi /Tn

axisymmetric

(a, r in inches) IF Calculation

a Exact K(a) Kx Error Ky Error

0.5 0.05875 0.0599 +1.9% 0.0595 +1.3%

1 0.66467 0.6774 +1.9% 0.6730 +1.3%

2 7.51988 7.6639 +1.9% 7.6141 +1.3%

4 85.07777 86.7073 +1.9% 86.1441 +1.3%

Penny-Shapec Crack Cross Section
(Lower Half of Stress Field Not Shown)

Table III. Comparison of Exact (6J and IF Method-Calculated Stress Intensity 
Factors for Penny-Shaped Crack in Infinite Solid Under Two Complex 
Symmetric Stress Fields.



Table IV. Summary of Six Fatigue Analyses of the Weld Crack in Figure 9

Case #
Width of 
Structure (in.)

Alternating
Stress, Aa (ksi)

Mean Stress
Components (ksi)

Uniform Residual

Fig. # for 
Fatigue Anal. 
Results

Calculated Cycles From 
2a=0.25" to Failure

1 2000 25 12.5 See App. D 11 18009

2 2000 25 -17.5 App. D 11 00

3 10 25 12.5 Fig. 9 + App. D 10 17949

4 10 25 -17.5 Fig. 9 10 00

5 2000 25 12.5 0 11 107439

6 10 25 12.5 0 10 95852



Table V. Cumulative Damage Analysis of Nozzle Alternating Stresses 
Caused by Eleven Distinct Types of Load Transients

ith Load Transient
Peak Aa. 
(ksi) 1

Expected Number of Damage Measure 
Transients in 40 
Year Life = n'i

i ^ ln-8 . 3.72610 n.j Aa.

1 Heatup-Cooldown 31.7 200 0.7834

2 Plant Loading and 
Unloading

7.4 18400 0.3188

3 Power Step Change 4.2 2000 0.0042

4 Steam Drop 11.5 200 0.0179

5 Steady State 
Fluctuations

0.2 1,000,000 0.0000

6 Loss of Load 0.9 80 0.0000

7 Loss of Flow 22.6 80 0.0888

8 Reactor Trip 7.3 400 0.0066

9 Turbine Roll Test 11.0 10 0.0008

10 Cold Hydro Test 45.7 5 0.0765

11 Hot Hydro Test 31.2 40 0.1477

Z 1.4447

For each Heatup-Cooldown cycle, the upper bound crack growth rate is (i

so that for the 40-year 1ifetime increments N^ = 368.9 N-j: da
dNr = 368.'

Equivalent # of Heatup- 
Cooldown (i=l) Transients 
in 40 Years

Vi/yi'i

200

81.4

1.1

4.6 

0

0

22.7

1.7

0.2

19.5

37.7 

368.9

,-9x ..,3.726

)5xl0~9 AKj'726 

1.4x10"7 AKj’726

as in Equation (6.1) of the text.
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TABLE VI

COMPARISON OF k AND K FOR SEVERAL CASES OR SURFACE AND CORNER CRACKS

UNDER UNIFORM NORMAL PRESSURE oq VALUES GIVEN ARE 2a

GEOMETRY r K
X Ky

Embedded Ellipse 1 1.00 1.00 1.00 1.00

CO 1.46 1.57 1.03 0.0

Surface Half-Ellipse 1 1.11 1.04* 1.16 1.26*

00 1.65 1.77 1.17 ?

Corner Quarter-El 1 ipse 1 1.26 1.28* 1.26 1.28*

00 1.89 ? 1.22 ?

*Taken from Tracey (31)
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THERMAL STRESSES 
RESIDUAL STRESSES

(a)

K = K' + K"

THERMAL 0 
RESIDUAL 0

K (Compressive Loading 
on Actual Crack Face)(Tensile Stress 

on Crack Face 
Locus)

Fig. 1. The Reduction of a Problem, (a). Into Two Simpler 
Problems, (b) and (c), for Computations of Stress 
Intensity Factor (from Reference 3, Illustrated 

for a Center-Cracked Infinite Plate)
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Fig. 2. Center-Cracked Plate Under Symmetric Stress
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Fig. 3. Schematic of Prescribed
Normal Perturbation [5lj(s)] of Crack Front



a

a

Fig. 4a. Through-The-Thickness Edge Crack in a Finite Width Plate



----------------------------------CRACK AREA--------------------------------------------► ,

J______ |______ |________ i________ |________ |______ |______ l i l i 111 iiiiuii l

Fig. 4b. 2-D Bie Crack Surface Break-Up

NODES TO 
BE PERTURBED
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Fig. 5a. Symmetric Three-Dimensional Boundary-Integral
Equation Model of a Corner Crack in an Infinite Body
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Fig. 5b. 3-D Bie Crack Surface Break-Up
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FREEDOM ax :

Fig. 6. A Two DOF Buried Elliptical Crack
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HALF-ELLIPSE SURFACE CRACK

INFLUENCE FUNCTION CORRECTION FACTOR
fs(xs) 2a

QUARTER-ELLIPSE CORNER CRACK

INFLUENCE FUNCTION CORRECTION FACTOR
fs(x$) + fsW_s) —^

WHERE xs = ,y« =
xmax. y(max.

fs = 2-D CORRECTION FACTOR FOR 
SURFACE CRACK

- >

laxx-max,=V^

■ay ymax.=Vi”

Fig. 7. Approximate Near-Surface Correction Factors 
for 3-D Surface and Corner Crack Influence Functions

X 
I
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Fig. 8. Dimensions of a 4 DOF Buried Elliptical Crack



- x or a (in)
(y = 0)

Fig. 9. Weld-Induced Symmetric Residual Stress,
a(x), in an Uncracked Specimen and Resulting Stress Intensity
Factor K(a) When a Center-Crack of Length, 2a is Introduced
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Failure Point 
Crack Arrest

AO= 25 ksi

Residual Stress 
G m — A(J/2

Residual Stress 
am = —30 ksi + A 0/2

No Residual Stress 
am = AO/2

100,00050.000

Cyclic Life, N

Fig. 10. Weld Crack Propagation in a 10-Wide Specimen for Three Mean Stress Distributions
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Failure Point 

Crack Arrest

Ad = 25 ksi

No Residual Stress 
crm = Ad/2

Residual Stress 
dm = Ad/2

Residual Stress 
am = -30 +A(j/2

50,000 100,000

Cyclic Life, N

Figure 11. Weld Crack Propagation in a Large Pipe for Three Mean Stress Distributions
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NOZZLE
Y

\\\\\\\\

o o a

- PIPE

- X

Fig. 12. Circumferential Stress Contours, a (x,y) (psi) 
for 1000 psi Internal Pressure zz



81

Initial Crack Size = ax = 3y = 0.5".
N Represents 40 Years of Loading Transients. 
Complex Stress Field:

Nozzle
Radius = 4.5"

Nozzle Wall

6.0"

ozz (x, y) = .4662 [-44.68 + 8.46 x + 199.55 y 

+ 6.88 x2 - 157.12 y2 + 6.69 x4 

+ 28.20 y4 + 22.95 x y]

where x = 2/(2 + x) 
y = 2/(2 + y) in cross section.

Fig. 13
Growth of Elliptical Corner Crack 

at a Symmetric Cross Section of an HSST 
Program, Intermediate Test Vessel, Pipe-Nozzle Junction


