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NOTICE

This report was prepared by Failure Analysis Associates as an account of
work sponsored by the Electric Power Research Institute, Inc. {EPRI).
Neither EPRI, members of EPRI, Failure Analysis Associates, or any person
acting on behalf of either: (a) makes any warranty or representation,
express or implied, with respect to the accuracy, completeness, or
usefulness of the information contained in this report, or that the

use of any information, apparatus, method, or process disclosed in this
report may not infringe privately owned rights; or {b) assumes any
liabilities with respect to the use of, or for damages resulting from
the use of, any information, apparatus, method, or process disclosed

in this report.




ABSTRACT

This report reviews the development and application of an influence function
method for calculating stress intensity factors and residual fatigue 1ife for
two-and three-dimensional structures with complex stress fields and geometries.
Through elastic superposition, the method properly accounts for redistribution
of stress as the crack grows through the structure. The analytical methods
utilized and the computer programs necessary for computation and application
of load independent influence functions are presented. A new exact solution
is obtained for the buried elliptical crack, under an arbitrary Mode I stress
field, for stress intensity factors at four positions around the crack front.
The IF method is then applied to two fracture mechanics problems with complex
stress fields and geometries. These problems are of current interest to the
electric power generating industry and include (1) the fatigue analysis of a
crack in a pipe weld under nominal and residual stresses and (2) fatigue
analysis of a reactor pressure vessel nozzle corner crack under a complex
bivariate stress field.
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1.0 INTRODUCTION

Linear elastic fracture mechanics analysis forms the basis for pre-
dicting the residual static strength for brittle failure and the fatigue life
of a cracked structure. For fatigue analysis, the material's crack growth
rate (da/dN) is usually related to the cyclic change in the crack tip stress
intensity factor (AK). The stress intensity factor (K) is a parameter which
embodies the effects of the stress field, the crack size and shape, and the
local structural geometry. Considerable effort in analytical fracture
mechanics is devoted to computation of K for complex stress/geometry combinations
of actual cracked structures. Traditional approaches have been to use litera-
ture solutions or to obtain numerical solutions of K with a finite element or
boundary-integral equation model of the actual cracked structure. There are
inadequacies in both of these approaches for a large class of problems.
Literature solutions lack generality, while repeated two-dimensional or three-
dimensional numerical stress analyses of cracked idealizations are costly,
time-consuming, and subject to errors due to poor program performance or user
inexperience. To reduce errors and minimize cost, a method involving the
use of influence coefficients or influence functions (h) to compute K has been
shown to provide a viable alternative for many geometries. The influence
function (IF) method has also been labeled the "weight function" or "Green's
function," method. The major features of the IF method are the markedly reduced
amount of stress analysis and the greater accuracy achieved for complex stress
fields, especially for three-dimensional problems. Once h has been determined
for a geometry, K can be calculated for any crack size and shape from the
"uncracked" stress field. Through use of elastic superposition, the IF method
properly accounts for stress redistribution as the crack dimensions increase

due to propagation through the structure. Thus, there is no need to include




the crack explicitly in the stress analysis for each crack size. Furthermore, ‘
the influence function, h, which depends only on geometry, can be accurately
obtained from relatively simple loading conditions and applied to complex stress

fields.

The following sections provide more detailed description of the IF
method. Section 2 presents the basic methodology and Section 3 and Appendices A
and B discuss methods for accurate and efficient computation of h and K for two-
and three-dimensional problems. Section 3 also reviews available h solutions
and computer programs including a new exact three-dimensional solution, derived
in Appendix C, for the K values of the four symmetry positions around the peri-
phery of a buried elliptical crack under arbitrary Mode I stress fields.
Section 4 describes the use of the IF method to predict residual fatigue 1ives

for two- and three-dimensional crack problems.

Finally, the IF method is applied to two engineering fracture mechanics
problems of interest to the electric power generating industry. Applicability
to two-dimensional problems is demonstrated in Section 5 with a fatigue analysis
example that accounts for both the nominal stresses and the non-uniform residual
stresses acting on a through-crack oriented perpendicular to a circumferential

weld in a large pipe, and in a finite width specimen.

A most important feature of the IF method is its applicability to three-
dimension problems. Here, the IF method accounts for the complications of
complex stress fields, crack shape, crack shape change during growth and K
variation along the crack front. Applicability to three-dimensional problems
with large stress gradients is demonstrated in Section 6 through a fatigue analysis

of a corner crack in the nozzle of a thick walled pressure vessel. .




2.0 GENERAL DESCRIPTION OF THE INFLUENCE FUNCTION METHOD

The IF method has been previously described in (1-9)* for two-
dimensional elastic crack problems and in (9-11) for three-dimensional problems.
This section reviews only the major concepts of the IF method. Fig. 1 illus-
trates the elastic superposition principle which is the basis of the IF method.
The superposition reduces the K solution of an arbitrary and, perhaps, difficult
crack problem to the solution of (1) the problem without the crack (i.e. uncracked
problem), and (2) a crack problem in which only the crack face is pressurized
so as to cancel the uncracked stresses (o(x) in Fig. 1) that would exist across
the crack locus in the absence of the crack. Influence functions are used to
solve this second, pressurized crack problem. An influence function h is simply
the K value arising from a unit point load at some position, usually on the

crack face. Thus h is independent of loading, as proven rigorously in (9), and

depends only on the crack face position and structural geometry.

To solve the pressurized crack problem, and, hence, the difficult original
problem, consider first the differential load o(x) dx (assuming constant thick-

ness) which causes a differential increment of K given by
dK(x) = h (x, geometry) o(x) dx (2.1)

so that the stress intensity factor is given by

K=f dK(x) f h(x,geo.) o(x)dx (2.2)

La La

where La is the straight crack face boundary parallel to the x axis.

*Underlined numbers enclosed in parentheses refer to references listed at the
end of the report.




To illustrate the utility of (2.2), consider the center-cracked ‘

plate under symmetric loading shown in Fig. 2. For the case of uniform stress

on an infinite plate (a/b ~ 0), the stress intensity factor is given by
K = oo/?ia_ (2.3)

where a is the half crack length and % is the applied uniform stress.

It has been shown by Paris (3) that, for any symmetric stress field, o(x) =

o(-x), the influence function for the infinite plate is given by

%

h = 2 2a 5 » 0 < x < a defines La (2.4)
T a“-x

Equations (2.2) and (2.4) reduce to Equation (2.3) for the case of constant

o(x) = Oy

Thus, we see by example that the IF method can correctly quantify the
crack-induced redistribution of the uncracked elastic stress field. The utility
of the influence function method for handling complex stress fields becomes
clear once it is realized that if h is obtained for a particular cracked geometry
with several variable dimensional parameters, K computation is reduced to:

A. Determination and specification of the uncracked stress field, and

B. Numerical integration of Equation (2.2), for the appropriate crack

geometry.

The next section documents the references, procedures, and methods required for
accurate computation of h for a variety of simple geometries sufficient to solve

a majority of structural problems.




3.0 BASIC EQUATIONS AND AVAILABLE SOLUTIONS OF THE INFLUENCE FUNCTION METHOD

The most direct method to solve for h is to obtain a solution for K due
to a point load at any crack face location. Table I outlines the published
sources of h solutions and the computer algorithms, developed and modified by
the author at Failure Analysis Associates, that use h to compute K. The table
shows that a formidable selection of h solutions already exists to handle cracks
in complex stress gradients. If a point load solution is not directly available
nor easily derivable, the formulations below provide practical methods to
determine h.

3.1 Basic Equations to Determine Influence Functions and Stress Intensity
Factors

The root-mean-square (rms) stress intensity factor, K, has been defined
in (10) as an integrated average of K(s) (the specific value of the stress
intensity factor K along the crack front at point s) over the new surface area
created by selected virtual displacement of the crack front. In the case of two-
dimensional elasticity problems, K(s) is constant, and K and K(s) are identical.
Consequently, K and K are used interchangeably for two-dimensional problems
throughout the remainder of this report. K and K are not exactly equivalent
for most three-dimensional problems, since K(s) is not, in general, constant.

However, K and K are similar enough for most three-dimensional crack problems

to lead to nearly identical static strength or fatigue life estimates (10).

Consider now a two- or three-dimensional crack problem for which there
are n degrees of freedom (DOF), where a DOF is defined as that scalar dimension
or variable which is free to increase (e.g. propagate in fatigue) and do work
independently of all other dimensions or variables. Then K due to a small

perturbation of the j-th DOF (Fig. 3) may be expressed as (10, 11)




KJ. = h (x;» geometry) o (x ) dA; j=1,n,1i=1,n (3-,

A 1 1

where A represents the crack area, X; are the appropriate coordinate directions,

(ni = 2 or 3) o is the uncracked stress field, and h is the influence function

J
for the j-th of n DOF's and is given by (10, 11) as

H ow*

. .y = — 3.2
hJ (x1 geometry) - BAj (3.2)
J
where
EK- i aii. s (3.3)
oA. .
j 9A an

In (3.1) and (3.2),

K: = rms stress intensity factor due to perturbation of

J
the j-th DOF only,

w = crack opening displacement for the top half of the crack only, and

H

appropriate modulus

H = E , for isotropic plane strain
1 - UZ
(3.4)

hs
i

E. for isotropic plane stress

and, for certain classes of orthotropic material problems, H is given

on page D-3 of (6). The superscript (*) indicates K: and w values determined
J

for the given geometry for some arbitrary reference state of loading.

K*., may be rewritten in terms of the strain energy, U*, as

N
B, = (R (3.’

J aAj

+In this report, repeated subscript indices do not imply summation.




Combining Equations (3.2, 3.3, 3.5) then gives the final form of the

influence function as

=%
h = _L _§.A— .alf_ _31”.* (3‘6)
J H aaj aaj 2a

It is seen from equation (3.6) that one need only determine
the strain energy and crack opening displacement for any single, simple
reference stress field applied to the given crack and structural geometry
to determine hj' For some simple problems these quantities are known
by exact closed form expressions. They can also be measured experimentally
(12) or, more commonly, can be determined using numerical stress analysis
techniques. The analytical and numerical methods are described in some
detail in Appendices A, B, and C for three cases of increasing complexity:
a two-dimensional crack with one DOF for crack propagation, a three-
dimensional crack with two DOF, (both size and shape may change), and
a three-dimensional crack with four DOF (size, shape, and centroid of

the crack may change).

3.2 Some Exact and Approximate Influence Function Solutions

Table I 1ists source information for influence functions for
many geometries of interest. For convenience, all influence functions

utilized in Sections 5 and 6 are given below.

3.2.1 Center-Cracked Strip

Fig. 2 shows a symetrically loaded center-cracked strip of width 2b.



The influence functions for all three loading modes for this two- ‘

dimensional problem are given in (6) as

1
2

2tan Ta
- h = 2b
111 Sos T,
b 1- 2b exact solution) (3.7)
cos TX
2b
hy = hyp = 1+0.2967 1—(x/a)2 (1-cos ma) hrit (+ 1% error)

2b
(3.8)

‘ In the Timit of infinite width (,& —> 0), the functions for

| all three modes reduée to (2.4). Equations (3.7, 3.8) have been programmed
and the subroutine (IF2-1) is listed as part of Appendix D and applied
in Section 4. Both IF2-1 and a published solution are used in Table II to com-
pute K for a finite width plate under uniform stress. The excellent agreement
between solutions confirms the accuracy of the two-dimensional IF computer

method for this geometry.

Reference (10) presents the exact h and KI solution to this problem
(Fig. 6) for the case of arbitrary Mode I loading, 9., (x, y), across the
elliptical crack with major and minor axes ay and a, in the x-y plane. The
solution is derived by substitution of the appropriate displacement and

|
3.2.2 The Two-Degree-of-Freedom Buried Elliptical Crack
strain energy expressions in Appendix B into (3.6) and (3.1) to obtain




2 1\ 5
- 2oF ( OE (k) + X a%o__ (x,y) dA
® f/[ e S

KX X f

Ta 2 -3 E(k) } L

3y aaxJ (3.9)
[f ( v )ocl/’c X,y) dA

o 3
Ky = Ek ay

m l 3 ( ) (—_' aa )

y

In (3.9), E(k) is the complete elliptic integral of the second kind with

k2 = 1-(ax/ay)2 and o = 1 - (x/ax)2 - (y/ay)z.

The area integrals of the above expressions are evaluated numerically
using a rectangular partitioning scheme with a refined grid near the crack
front, a — 0, to account for the oc'l/2 singularity. Trial-and-error has shown
that for all 30-40 test cases investigated, with exact solutions for P%, 300
rectangular partitions are sufficient to obtain K; and K& with less than 2.5%
error and in less than three seconds central processing unit (CPU) time on the
IBM 360-67 computer. Table III compares the three-dimensional IF computer code
(IF3-3) calculations with the exact solution for a circular crack under two

complex stress fields.

3.2.3 The Two-Degree-of-Freedom Quarter Ellipse Corner Crack in a Quarter Space

Reference (11) applies a three-dimensional boundary-integral equation
computer program (17) with Equations (3.1, 3.6) to obtain an accurate numerical
solution to this problem pictured in Figs. 5 and 7. Also, a fairly accurate
approximate solution can be obtained using a two-dimensional analog from (20).

‘ Appendix B presents the approximate solution method which, typically, leads to

K computations within 5% of those resulting from the rigorous, full three-

dimensional analyses used in (11).

—
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3.2.4 The Two-Degree-of-Freedom Half-Ellipse Surface Crack in a Half Space ‘

Appendix B uses the two-dimensional analog mentioned above to obtain

approximate solutions to this problem, illustrated in Fig. 7.

3.2.5 Three-Dimensional Problems with Finite Width and Other Effects That
Must be Evaluated Numerically

As discussed previously in this section, both analytical (11, 17) and

experimental (12) three-dimensional solution capabilities exist to obtain crack

face displacements to compute the h and K with Equations (3.6, 3.1).
J J

3.2.6 The Four-Degree-of-Freedom Buried El1liptical Crack

Appendix C presents a new exact solution for h' and Kl, j =1, 4 for the
four DOF buried elliptical crack shown in Fig. 8. Thig four gOF model allows
independent growth of the major and minor elliptical axes and also translation
of the crack centroid. In other words, opposite ends of both the major and minor
axes can grow at different rates. Four DOF are necessary to analyze crack growth

under stress fields o(x',y') that are not symmetric with respect to the elliptical

axes.
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4.0 RESIDUAL FATIGUE LIFETIME PREDICTION METHODOLOGY

The use of two- and three-dimensional fracture mechanics analysis to
predict the residual lifetime of sharply notched or cracked structures has been
described in many previous papers (e.g. 2, 10, 11, 18, 19). Previous literature
has defined the three basic inputs to fracture mechanics lifetime prediction
as: (1) the experimental eva]uatiqn of the material's crack propagation law
under the appropriate thermal-mechanical loading cycle, (2) methods for the
analytical calculation of crack tip strain intensity factors, and (3) methods
(e.g. nondestructive inspection) for accurately defining initial flaws and early
detection of crack initiation. A procedure that utilizes the IF method in
conjunction with these three elements is presented in general terms below and

is adapted for specific applications in the next two sections.

4.1 Two- or Three-Dimensional Crack Propagation Analysis Procedure

The basis of reported life analyses is the notion of a finite number,
n, of characteristic dimensions as3 i=1, n, to describe crack geometry.
Crack propagation is then described by keeping track of the a; which are called
degrees of freedom or DOF. The continuous stress intensity factor function K(s)
is similarly approximated with a set of discrete stress intensity factors Ki;
i =1, n, each associated with an a.. The applied general empirical model

i
of three-dimensional propagation is then expressed by n equations.

o

ﬁi = F (Ki’ Material, Environment, History) (4.1)

|

jal

where

N = residual Tifetime;

Ki = stress intensity factor associated with ass and

F = empirically determined function.




12

Each equation in (4.1) states that the instantaneous cyclic growth rate dai/d
of freedom a; is given by the empirically determined function F. Further, (4.1)
implies that all load and geometry information relevant to dai/dN is contained
in one and only one stress intensity factor Ki' The function F is independent
of load and geometry and may be obtained in the traditional way from simple
planar laboratory specimens. The stress intensity factors Ki each contain an
alternating component AKi and mean value Kmean. associated with the alternating

i

and mean components of the stress cycle, Ac and Omean”

Residual 1ife prediction is accomplished by formulation and solution of
(4.1) A four-step method is employed for 1ife prediction. The steps are:

(1) Obtain F from simple specimens. F is often expressed in the
)

form of piecewise power functions of AK (e.g. da/dN = CAK") for

given Kmean’ material, environment and history combinations.

(2) Determine the uncracked structural detail geometry, loads, and, to

the extent required by step 3, stress.

(3) Model the propagating crack. This task includes selection of a
model with an adequate number of DOF, specification of the initial

and final crack configuration ars and a.. and definition of Ki’

Fi
Further, an IF method-based algorithm is derived to compute all
of the Ki as functions of stress and geometry, especially the

changing crack geometry a;.
(4) Substitute Ki in (4.1) and solve for the 1ife N.

The above procedure has been successfully applied to predict fatigue
1ives in many instances where accurate uncracked stress and material crack ‘

growth rate data were available. Published examples of two-dimensional analyses
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in (21) and three-dimensional analyses in (11) exemplify the good agreement
obtained between calculated and observed fatigue crack growth. Additional
examples of fatigue growth calculations for a weld crack and a vessel or pipe

nozzle detail are described in the following sections.
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5.0 FATIGUE ANALYSIS OF A WELD CRACK

A weld seam under longitudinal (y-direction) load symmetric about
the y-axis, with a transverse through-thickness crack of length 2a is
illustrated in Fig.9. This section describes the analysis of fatigue
growth of the crack for two plate widths. The first width, 2b=10",
models a laboratory specimen while the second width, 2b > =, models
the case of a pipe with radius and length substantially larger than 2a.
The longitudinal stresses include uniform alternating and mean components,
Ac and o , respectively, and a complex residual stress field, o (x),
as i]]us?rated in Fig. 9, for the case of the ten-inch SpecimenTeSThe
residual stress function is slightly different for the case of a large

pipe because of the additional elastic constraint; both residual stress

distributions were estimated from measurements in (22).

Since the subject problem assumes only one DOF, a, (4.1)
reduces to only one equation for application of the four-part life pre-
diction procedure given in Section 4. Equation(4.1) must account for the
effect of R-ratio, R=Kmin/Kmax’ on da/dN. For simplicity, a crack growth
relation suggested by Forman (23) for positive values of R has been applied
below for all values of R, and, as is shown in (24), the relation over-

predicts da/dN for negative R. The applied crack growth relationship

is based on the weld region material data in (25) and is given by

-1

_ -7 .,2.74
%ﬁ' = 1.4 x 10 © AK KIc(l—R)-A . Kmax >0 (5.1)
%%‘ =0 ? Kmax <0
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where the force, length and time units in (5.1)are kilopounds, inches,
and constant-amplitude fatigue cycles, and Kmax= AK/(1-R). The initial
crack length is assumed to be Zai = 0.25" and the final crack length, Zaf,

is defined by the fracture toughness
ek
Kmax(af) = Kp. = 150 ksi(in) (5.2)

The above information and Fig. 9 comprise the first two parts of
the life calculation procedure and the crack problem model of the third
step. A computer program (IF2-1), with complete listing included in
Appendix A, has been written to accomplish the remainder of the procedure;
namely, thé computation of K components using Equations (3.1,3.7,3.8), and the
numerical integration of (5.1) to obtain the relationship between crack

length and number of fatigue cycles (a vs. N).

Three load cases were analyzed for each of the two geometries as
summarized in Table IV. Appendix A lists the tabular computer output
for all six cases, and Figs. 10 and 11 present the corresponding a vs. N
curves. Figures 10 and 11 both indicate that, for the case of zero minimum
stress, O = Ao/2=12.5 ksi, the residual stress significantly increases the
crack growth rate in the early stage and substantially reduces overall
fatigue life. The two figures also show that, even for the the case of
applied cyclic compression, corresponding to Oy = -17.5 ksi, the positive
residual stresses permit some initial growth of the crack followed by

subsequent arrest at KmaX <0 in Egn. (5.1).
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6.0 FATIGUE ANALYSIS OF A PRESSURE VESSEL NOZZLE CORNER CRACK

Figure 12 shows the normalized stress o (x,y) contours computed in ‘

(26) for a 1000 psi internal pressure at the pipe-nozzle junction represent-
ing an HSST program, intermediate test vessel. Figure 13 shows a hypothetical
corner crack of initial dimensions a, = ay = 0.5 in. at the peak stress
location and also gives an equation which, when divided by the factor

4.662, fits the stress contours of Fig. 12 with 0.165 ksi average error.

The above factor represents the ratio between the actual and normalized

peak stresses estimated in (26) for the heat-up and cooldown vessel
operation transient. For simplicity, and due to the lack of a full thermal
stress distribution, the stress contours in Fig. 12 are assumed to apply

for all loading components (e.g. thermal as well as the pressure loading).
However, as demonstrated in Section 5, the IF method is capable of
analyzing more complex cases with combined stress distributions and non-

proportional loading. The equation in Figure 13 was obtained by multi-

parameter least square fit.

Table V Tlists the vessel-nozzle junction, peak stress levels and
the frequencies associated with eleven types of plant operating transients.

The Table uses the conservative ASME Code (28) crack growth relation to sum

the individual da/dN contributions of all transients and obtain the final

crack growth relation

da.
j

dN

1.4 x 1077 AR

13.726, _i=x’y’ (6.1)

where the force, length, time units of (6.1) are kilopounds, inches, and

40-year increments of plant operation. .

-------------II-IIIIIIIIIIIllllllllllllllllllIlIIIIllllllllllllllllllllll‘
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The equations to compute AK} are derived from the approximate
‘ corner crack (Fig. 7) solution in Appendix B and are given by
2

2

1 -3 E (k) + X
T fjA a, E(k)aa ax3 «/a (fs( DEai (ys) 1)ozz(x,y) dA (6.2)

~
]

X
2 E
" E(_l a_ Zizlkja >J
H <a E (k) + xi 0 (£ (xg )+ (y)-1)o,,(x.y) dA (6.3)
K y
Y L

wEx a_y E(k) /1 - 3E (k).>]
3 ‘\ay E(k)%a,

where fs is defined in Appendix B.

Equations (6.2) and (6.3) have been incorporated in computer program
IF3-3 which also substitutes the K}, i = x,y values in (6.1) to compute

dq{dN. The computer program then obtains a, and ay as a function of N by

solving the two simultaneous differential equations in (6.1) with a modified

Hamming's predictor-corrector numerical technique.

Figure 13 gives the results of the three-dimensional fatigue
analysis. As seen, the nozzle is estimated to endure 20 to 25 times the
expected (28) number of load transients in the 40 year plant operation.

The infinite solid model used herein is expected to break down approximately

at the "20 N" crack front contour in Fig. 13. As a temporary measure,

FAA plans to incorporate appropriate forms of the ASME Code (28) approximate

finite width correction factors, such as the subprograms listed in (27), in
‘ all its three-dimensional computer programs. A long range goal is to apply

a three-dimensional BIE program (17) to compute h rigorously for 3-D finite

width geometries with the methods detailed in Section 3.
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7.0 CONCLUSIONS .

1. The influence function (IF) method is an efficient, general
procedure for elastic fracture mechanics analysis of structures

with cracks in regions of complex stress.

2. Once influence functions are obtained, the IF method requires
only the stresses in the uncracked structural detail and thereby
eliminates the need for full two or three-dimensional stress
analysis for each considered loading, crack size, shape, and

location, and increment of fatigue crack growth.

3. Since influence functions depend only upon geometry, they may be
computed from the crack opening displacements for any convenient
simple loading that can be accurately solved by analytical,
experimental, or numerical techniques. This eliminates the
numerical errors caused by inclusion of actual, complex

structural loading into computer stress analysis of cracks.

4. The IF method accounts for such three-dimensional complications
as complex crack shape, crack shape change during fatigue growth,

and variation of the stress intensity factor along the crack front.

5. The extension of the IF method to more complex geometric models
is direct, requiring only specification of a model with appro-
priate number of variable dimensions together with a minimum
number of two- or three-dimensional stress analyses to compute

the IF. Thus, the majority of crack problems are brought within

the scope of an efficient elastic fracture mechanics procedure. ‘




The significant effect of residual stress upon fatigue growth

of a weld crack has been demonstrated with the IF method.

The fatigue growth of an elliptical corner crack in a geometry
representative of a reactor pressure vessel nozzle has been
analyzed, demonstrating the ease of use of the IF method for

a three-dimensional problem with complex stress distribution.



APPENDIX A .

Computation of Influence Functions and Stress

Intensity Factors for Two-Dimensional Problems

A.1 Calculation of Two-Dimensional Influence Functions, h

Consider a two-dimensional crack, oriented in the x-direction, for which
the one degree of freedom is the crack length, a. Then the area increment dA

in Equation (3.1) becomes t(x) dx and (3.1) becomes

K = / h(x, a, geometry) o(x) t(x) dx (A.1)
X

Since the area of the crack (assuming unit thickness, t = 1) is simply a, the

general equation to compute h (3.6) then becomes

h:

-k
1 aU* IW* (A.2)
H da oa

The influence function given by Equation (A.2) may be determined using
w* from known, closed-form solutions or calculated from any appropriate numerical
stress analysis method, such as finite elements (FE) or boundary-integral

equations (BIE), as in (11, 12).

To illustrate the use of analytical displacement solutions to determine
h, consider again the simple infinite plate case of the plane stress problem

shown in Fig. 2 for which
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‘ and the crack face displacements are known to be (9)

wx = —EQ- (a® - x (A.4)
Therefore
20 a
dw* 0
" - T 5L (A.5)
% E(a®-x%)*

and, from (A.2) we compute

o zna -2 20 a i
he= |-l © 9 = 2 a \2 (A.6)
E E 2 2\% 2 2 :
E(a®-x") v a“-x ,

which agrees with (2.4).

Numerical stress analysis to determine h, for each crack geometry of
interest, can be performed in one of two ways: (1) using two separate stress
analyses of slightly different crack size to determine h from incremental
differences, or (2) using one stress analysis to determine strain energy and
crack opening displacements as mathematical functions of the different DOF,
for substitution into Equation (A.2) to determine h. Both methods are illustrated

below.

The method of using incremental differences between two stress analyses
to obtain h can be illustrated by the problem of a through-the-thickness edge
crack in a finite width strip (Fig. 4a). This problem has been solved using
a boundary-integral equation program in (13). Special care was taken in
modeling the crack, perturbing the crack tip, and choosing the arbitrary
reference 1oading. Experience has shown that the optimum accuracy and efficiency

‘ results from a breakup of the crack into equal size segments over about 80%

of the total crack length and successively smaller segments near the crack tip,

—
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with approximately a mirror image of this breakup for some distance beyond the

crack tip. Perturbation of the crack tip is best accomplished by moving not og 1
the one node at the crack tip, but a series of nodes very near the crack tip

(see Fig. 4b). Finally, the most accurate results are obtained when the crack
surface is uniformly pressurized. Having solved these two nearly identical stress
analyses, the work done by the applied loads (strain energy) for each crack
configuration is calculated. Then the incremental changes in strain energy, AU,
and crack opening displacement, Aw, between the two analyses are computed and

these results are used in the incremental form of Equation (A.2) to calculate h,

-1
_ 1 A Aw
h = ( H Aa Aa (A.7)

The second numerical method to determine h requires only one stress
analysis for each crack length of interest. Then, U* and w* are determined as
mathematical functions of crack length (using, for instance, a least-square fit)

for substitution into Equation (A.2).

The two-dimensional influence functions can also be obtained using finite
element techniques, although such techniques in general require longer modeling
times, data preparation times, and computer run times than does the boundary-
integral equation method (13). However, for the specific choice of a uniformly
pressurized crack face loading, the finite element-computed influence function

results agree with boundary-integral equation results for a large class of

problems (no published reference available).

A.2 Calculation of Two-Dimensional K

The best way to use the influence function results, as determined abob
to compute K is to ratio those results to numerical results for some simple

reference problem geometry. This eliminates most systematic errors which might
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be inherent in the stress analysis and avoids the curve fitting of singular h
functions. The use of ratios also permits more accurate programming of the

stress intensity expressions (for purposes of 1ife calculations, such as in
computer programs listed in Table I) provided the solutjon to the simple reference
geometry is known in closed form. Using this method, a new function f may be

defined as

h
f = -—h'.— (A.8)

where h' represents the influence function for the reference geometry. Similarly,
two new functions 9 and g, may be defined as

- U = W
g] = U 92 W' (A.9)

where the superscript (') again refers to the reference geometry, and the
superscript (*) has been dropped for convenience. Combining (A.1) and (A.8)

gives

K = .I' f(x, a, geometry) h' o(x) dx (A.10)
X

and combining (A.2), (A.8) and (A.9) gives
-1 -1

- . 9U'Y 39 -5 v (W1 39, A1
£ (9]+U (aa)—é}; (92+W(3a)__Eﬁ (A.11)

Thus it is seen from Equations (A.10) and (A.11) that the best choice of a
reference problem is one for which h' (or U' and w'; from which h' could be

determined using Equation (A.2)), is known exactly.
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The most convenient two-dimensional reference problem for which a c]o'

form solution is known is a through-the-thickness center crack in an infinite

body for which h has already been given in (A.5).

Therefore, f may be determined by combining the results of stress analyses
of the actual problem and the reference problem as in Equation (A.8). This f

may then be used, with Equation (A.10) to determine K. Thus

K= -2 f(—zﬁ-—z-/ £ o(x) dx (A.12)
a

It is best to perform a number of stress analyses in order to determine f, 97>
and 9, values in terms of the necessary geometric parameters, and then to
employ a curve fitting procedure to define expressions for f, 9, and 95 which

may be used in (A.8 - A.11).
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. APPENDIX B

Computation of Influence Functions and Stress Intensity

Factors for Three-Dimensional Problems

Analytical calculation of h, K, and K(s) is restricted to a very small
class of three-dimensional problems, as indicated by Table I, because of the
scarcity of three-dimensional displacement solutions. However, Appendix C and
(10) do obtain exact solutions for the elliptical crack problem. Other three-
dimensional problems will be solved numerically and/or with approximations

derived from analogous two-dimensional solutions.

B.1 Numerical Methods for Three-Dimensional Analysis

The numerical methods described in Appendix A for two-dimensional problems
may be extended to three-dimensional problems. Consider a three-dimensional
elliptical crack, oriented in the x-y plane, for which the two DOF are the two

semi-axes of the ellipse, a, and ay. Then dA is dxdy and Equation (3.1)

becomes

~
1

" j f hx (x, ¥, a s ay, geometry) o(x,y) dxdy

(B.1)

Sl
n

f f hy (X, ¥ a,s ay, geometry) o(x,y) dxdy

Since the area of the crack is Waxay, the influence coefficients hX

and hy are given by Equation (3.6) as
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X X
(B.2)
Ta %
H 9 2a
y 3y y

To illustrate numerical methods to evaluate (B.2), consider the problem
of an elliptical corner crack in an infinite body (Fig. 5a). The most efficient
current stress analysis technique for three-dimensional crack problems is the
boundary-integral equation method (11). Modeling of this problem is illustrated
in Fig. 5b and discussed extensively in (11). If two analyses are performed to
calculate h, with the incremental difference techniques, care must be taken to

perturb only one degree of freedom (one axis) at a time. Equations (A.10) and

(A.11) may also be extended to three dimensions so that

and

K, = jr J( f oy, a, ays geometry) h, o(x,y) dxdy
(B.3)
K = f ’ b 9 b ' b ] d
Ky J{ _[ y (x, y a, ay geometry) hy o(x,y) dxdy
fos g u BT ag |TE g, v w' (w!) 1%
X 1 2a 1 2 5 5
X da_ Ay ax
X
(B.4)
V '1/2 [
A T R e P
Y y 5, y @
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The only three-dimensional problem with an exact crack opening displace-

ment solution is the buried elliptical flaw, under uniform pressure, Ob’ for

which the strain energy is (14)

2. 2
Ao Ta_"a
. 0 "x 'y
u 3AE(K) ’ (B.5)
where E(k) is the complete elliptic integral of the second kind with k2 =
1-(ax/ay)2. The crack opening displacement is given by (15) as
2c a
- __0X %
W HE(K o , (B.6)
where a=1—(x/ax)2 - (y/ay)z. Using Equations (B.5) and (B.6), Equation B.4)

then becomes

R
) '1} -1
g 3g 2
_ 1 2 1 dE(k) 2 1 1 oE(k) %
fo =499 * 53 |3 - 9y * 5= |3 - +
X 17 3 {%x E(K) 3a, J j 2 "% |a T E(k) %a ax3a
4 _1/2 FN (B'7)
-1 -1
f = { +39_ 1__ - 1 _J__HE k +§g_2 1 aE(kl_F y2
y 91 " 3a a E(k) oa 92 733 |E k) 2a 3
y y a,"a

The functions 9 and 9> defined in Equation (A.9) may be determined
by stress analysis of both the solution geometry and the reference geometry

using some least-square fit to determine these functions in terms of ax and ay.

The methodology given in this appendix has been applied in (11) to

solve the two DOF quarter-ellipse corner crack from only twelve full, three-

‘dimensional, boundary-integral equation stress analyses. Furthermore, the

methods described here could easily be extended to problems with more than one

or two DOF in order to solve much more complex geometries and loading states.
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B.2 Estimation of h for Three-Dimensional Problems From Analogous Two-
Dimensional Solutions ‘

Lacking the tools and time to perform numerical three-dimensional
stress analysis, three-dimensional h can sometimes be estimated from analogous
two-dimensional h values. The estimated results may be in error and must be

checked against known analytical and experimental results.

To illustrate a two-dimensional approximation, consider the elliptical
surface and corner cracks in Fig. 7. The correct way to solve either of the
problems in Fig. 7 is outlined above and performed in (11). However, an approxi-
mation was initially assessed to compute K for surface and corner cracks in
infinite solids. Fig. 7 illustrates the applied procedure. The influence
function due to Bueckner (20) for the two-dimensional surface crack in a semi-

infinite plate is applied to each cartesian line of the elliptical crack that

intersects a free surface.

For two-dimensional problems, Bueckner's equation may be rewritten as:

1
Ky = f ny, (X, a) o (%) dF (8.8)
° |
where:
h2$ ) h2e fs (x)
h2$ = two-dimensional surface crack influence function
h = two-dimensional internal crack influence function for o(x) = o(-X); given
26 in (2.4)
K25 = K-factor for two-dimensional surface crack for any o(x) L
X = x/a "I'
—— 2
and f_ (x) = "1 +x (1.3188 - .7884x + .1768x ) (B.9)

]
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By breaking up the surface and corner ellipses as shown in Fig. 7, inexact

three-dimensional analogs to (B.8) may be constructed for the surface crack.

(s) -
h X (Xsy9ax,ay)— 2hX fS (XS)

(B.10)

(s) _
h y (x,y,ax,ay)— 2hy fs (xs)

and for the corner crack

X

a(c) (x.y,a,.a )= 4h, ECS (xg) + f¢ (y) -ﬂ o)
B.

h(f,) (x,y,ax,ay)= 4hy E‘S (x) + f¢ (y,) -11

where

X
S max 2.1
a (1 -y")®

(B.12)

I pax = —

y
S 2)%

_
ay( X

Equations (3.9, B.1, B.9 -~ B.12) are being used to estimate K; and R& for
half-ellipse surface cracks and quarter-ellipse corner cracks. Table VI
compares normalized local values of K, ﬁ, with normalized K for several crack
geometries under uniform stress. The differences between Q and K follow

expected trends. For example, for the embedded circle,

A B B A

Ky = Ky = KX = KX = 1 (B.13)
For the surface cracks

A B B A

Ky > Ky > Kx > KX (B.14)
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and this occurs, as expected. For the corner crack .

_ A
K, = K

. Ky . y (B.15)

since, as shown by (11), the K level is highest near the surface.

Perusal of K and X results (11,28) for various points on the circular
periphery indicates that the K values computed here for surface cracks are
too high. The errors are up to 5% for the circular crack and less for

ellipses with b/a > 1.

For the elongated ellipse (b/a + =) the surface correction is expected
to increase R& by about 13% as for the two-dimensional crack. Table VI shows

this expected trend.
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APPENDIX C

THE FOUR-DOF BURIED ELLIPTICAL CRACK

c.1 Introduction

This report introduces a new technique for residual 1ifetime estimates
for structures with part-through cracks. The notion of a set of stress intensity
factors (F%) is introduced to predict crack growth rates. Each'Ki is related
to the strain energy release rate due to perturbation of only the ith crack

dimension or degree-of-freedom (DOF).

This appendix presents the exact solution for the case of a four DOF

embedded elliptical crack, described in Section 3.2.6 and Fig. 8, which allows

selective axis growth and also allows x' and y' translation of the ellipse center.

A new computer code (IF3-1) has been written to use both the two and

four DOF results given in the report.

C.2 Problem Description and Definition

The x' -y' origin is the initial center of the four-degree-of -freedom
(4 DOF) buried elliptical crack in an infinite solid shown in Fig. 8. All
four DOF (a1, ays a3, a4) are measured from the x'-y' origin. The origin of
the coordinate system (x,y) that moves with the ellipse is the current ellipse
center as illustrated in Fig. 8. As shown, the ellipse dimensions are 2aX

d 2a_ .
and 2a,

This kinematic description in terms of two coordinate systems is very
useful. This is true because it is obvious that under the applied reference

uniform stress field o*(x,y) = o, the crack opening displacement (COD) field
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is a function of only o

e 3y ay, X, and y. ‘

The COD function for the upper crack face is given in Appendix B

as
2 9o L
w = —"mr— o} (C])

Expressions for K?, hi’ and K} (i =1, 4) are now derived. These are the
reference (uniform stress) root mean square (rms) stress intensity (K) factors,

~ the influence functions, and the general rms K-factors.

C.3 The K? Computation

From Section 3,

? = (H G?) 2 (C.2)

where the asterisk denotes the reference condition and the strain energy

release rate is

LR
* aux 1
63 %a; 9A (C.3)
i 1 = = _;[
and where the ellipse area is a A = ma, ay ;i (a] + az) (a3 + a4), and the
strain energy is
U* = *f' 9, w* dA. (C.4)
A

By inspection, a perturbation of 3, will open half the new area and release

half the strain energy that would equal perturbation of a. That is

da

- . _x - 2 (C.5
3A oA ﬂay
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= 4 v (C.6)

R S (C.7)
K; = R; (C.8)

and
Kg = Eﬁ = R; (C.9)

where R§ and R; are derived by setting o, (x, y) = 9, in Equation (3.6) 1in

Section 3, obtaining

Ny

7~
*
1

2 oE(k
a_ Eikg ga )] (€.10)

J (c.11)

= 20 a !
X 0 X 3E(k)

1)

a_ a
. X
K; 200 {}T?(ESQL‘

1 3E(K)
ay E(k) Bay

C.4 The Computation of Influence Functions hi

The basic formula for influence functions is given in Section 3 and
the influence function for some point (x', y') in the fixed coordinate system,

may be expressed as

da
' 1 _ H oW* 1
h (a; x'sy') = — 5 0 (C.12)
K 1

Since w* depends only on Ty 3ys ay, X, and y, it is advantageous to express

. aw* .
in terms of % From Fig. 8,
1 A

w*
da
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1 a, - X + X (C.IB)‘I')

Q
It

The differentials of (C.13) and (C.14) are

-

da, = dax - dx + dx' (C.15)

1 /o

da1 = 2daX ;/da2 (C.16)
where dx' is zero because the reference point is fixed in the stationary
x'-y' coordinate system in terms of which the stress fields o(x', y') are
defined. The term da

is zero because Ef and h, are quantities resulting from

2 1
the perturbation of only the first freedom. The solution of (C.15) and (C.16)

is

T o Tk (c.17)

[y
—

Application of the chain rule and (C.17) yields

* * *x
Mo (. ) (c18)
X

where the partial derivatives of (C.1) are

Wk 3E(K)

2
1 X
= w* (x, y,a,a) (—— - + > (C.19)
da, x> "y a, E(k) aax 3 o

and ‘II’
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ow* Wk
o= (C.20)

Combining (C.18 - C.20), we obtain

a_o_ais "
awx _ 3x00%% [_1 _ OE(k + X <2‘_ + 1>] (C.21)
93, HE(k) a, E(k) 2a 2a ay

Combination of (C.5), (C.10), (C.12) and (C.21) gives the influence function

for the first freedom. Similar developments lead to similar expressions for

the second, third and fourth freedoms, i=2,4. A1l hi are given by the following

o o 2 (O
OG- -mu—si;a}

[TLL <L® )|

expressions.

o

€Z> = (C.23)
m [:a a_ E(k 1 SE (K ;{]
E(k) aa
C.5 The Computation of Stress Intensity Functions for Completely General

Stress Field o(x',y')

The E%, i=1,4 computations follow immediately from the definition of the

hi as given in Section 3 and Appendix B. The result is




where

|
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ff hy (a,, as % y) o(x',y') dxdy
A

+ - a
X a] X

yt+ag-ay

(C.24)
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APPENDIX D

Listing of Computer Program IF2-1, Data Listing and Results of
the Six Weld Crack Fatigue Analyses of Table IV.




-
O wn 0w & tn bt

oo pes pe
PV R

$WATFIV
REAL KTH K ICKBIGeM Ny LyKILIF
DIMENSION 2(50),X{100) ,DX{100),DDN(8B),L (8)y C(30),BU(6)}
SPY=C.7678845
17 FN=0.
SUMH=O.
REAC(5,25) (Z{1),1=1,20)
25 FORMAT (20A 4}
WRITE(6y60)
60 FIRMATL//)
WRITE{6+425) (2(1),1=1,20)
READ(S,1,EMD=10001) L (1)
WR ITE(6,21) L(1)
21 FORMATI(/28H THE INITIAL CRACK LENGTF IS»F10.5)
1 FORMAT(EELC.S)
READ(S,1)(C(I),1=1,¢)
READ(5,1) C(T7),C(B)
READ(S5,1) C(9),C(10)
WRITE (&,104)
104 FIRMAT( /! DELTA SIGMA FEAN SIGMA EFFECTIVE FRACTI
10N OF RESIDUAL STRESS HALF PLATE WIDTH )
WRITE {&,105) Ct10), C (2), C(9),C(1)
1C5 FORMAT (2G20.54+15X, 2G20.51
L{2)=L(1)
READ(5,1) QyNKTH,KIC
READ{(5,1 }FINKX,CIN
WR ITE(6,40)
40 FORMAT (/10X y* THE CRACK GRCWTK RELATION IS:DA/DN=C*(KIEFFECTIVE-KTH
11 %M/ {KIC*{1.~-REFF)-KIEFFECTIVE) *)
WRITE(6,411)
41 FORMAT (C8X,'THE CCANSTANT!'S VALUES ARE: C M KTH
1 KICY)
WRITE(692) QyNy KTH, KIC
WRITEL6,42) FINKX
WRITEL6,65) CIN
42 FORMAT(/S7TH THE ANUMBER OF INTEGRATICN POINTS TC CCMPLTE K-FACTORS
1154F5.0)
66 FORMAT{ 71H THE NUNBER CF LIFE INTECRATICN PCINTS T0O DOUBLE THE CR
1ACK CIMENSION 1S,F4.C)
READ {(5,1)H
Ik=H+,.1
IFIIH=3) 44445,46
44 WRITELE,4T) H
GOTQ 50
45 COMNTINUE
GO0 7O 5¢C
46 WRITE(16,49) H
50 €INTINUE )
47 FORMAT(/58H THE STRAIN ENERCY RELEASE RATE CRITERIDON WAS USED WITH
l F='F5.2)
48 FORMAT(/41H THE VON-MISES CRITERIA WAS USED WITHR H= FS5.2)
49 FORMAT(/52H THE MAXIMUM SHEAR STRESS CRITERICN WAS USEC WITH Fk=,F5
1.2}
43 FORMAT(/* THE MULTI-VMODE k—=ESTIMATICN EQUATICN 1S: KIEFFECTIVE =
ISGRT (K I %42 4K 2] [%%2} )
CIN=2.%%x {1l ./1CIN=.CCCL })
2 FORMAT (33X:4G10.3)

INKX=F INKX+. 1
3 3 I=1,1NKX
Fzl-.5

Initial Input/Output Including
Extra Format Statements for Other
(e.g. Multi-mode) Appliications.

8¢




52 FEF/FINK X

53 (11=F* (2.=F) ] .
54 Q‘M:INKX-[ Break-up for Numerical Integration of ‘
55 04 1=2, IX4

5¢ 4 DX{I)=(X(I+1)=X{1=-111/2. =

57 OX(L)=(X(1)#X(2))/Z. K L h(x, a, etc.) o(x) t(x) dx
<g DXCIMKX)=] o= (X (INKX)4X {IXN)) /2., a

59 W=C(1)

6¢ WRITE(6 460)

6] WRITE( €, 30)

62 WRITE(6,31)

€3 WRITE(6,32)

64 5 FORMAT (/.8XyF20.7)

(.34 WIKNK=W/INKX

66 DY & I=1,1MKX

67 XP=i{I=.5)% WINK

68 CALL THICK(XP,TZALC,C)

€5 6 SUMW=SUMW+TCALC*® W IMNK

;f 32L?2)IA be 100 Effective Width, Variable Thickness Calculations
1z SUMA=0.

72 SUMK =0,

14 SKMIN=0

75 SMKIITI=C,

76 AINK=A/ INK X

77 DO 9 I=1,INKX

78 XP={I-.5)%AINK

7¢ CALL THICK(XP,TCALC ,C)

8c 9 SUMA=SUMA+TCALCRAINK

8l R=SUMA/SLMK

82 DO 7 I=1,INKX

€3 XP=X (1)

84 XPA= XP*A

85 CALL THICK({XPA,TCALC,C)

Y CALL STLIN (S ,5KY 4XPA,C]

87 RBC= A/R -

£¢ PINT = HCSISRE,LA yXPA,L )#TCALC*C (L101%DX (1) _ :

8s SKMIN=SKNMIN +  PINT 7/ C{LCI% (54C(2)) AK Integration

SC T SUMK=SUNMK+PINT

91 CALL THICK(A,T,C)

92 27=SUMK/T¥a

g3 SKII1=SMKIII/T*A

$4 KI=ZZ%%2+4H #SKII[%%2 .

9¢ KI=SQRT(KI) Kmin Integration

9¢ SRKM IN=SKMIN/T#A

<7 SKMAX=SRKMIN + K1

s8 QIIM=C(5)%Z7%.1

S¢ QK3M=C(6)%SKITI
16¢ OKIM=QZZMeE%2 +H % QKINBR2
101 QK IM=SCRT(OKIM)
1¢2 IFISUMK+SKMIND 10l 41CL,102 da

103 101 WRITE (6,4103) R 0 for K <0
104 103 FORMAT(/ * CKACK H2S ARRESTED; LIFE IS INFINITE * ) max -
105 GO TO 17
10¢ 102 CONTINUE
1C7 RE=SKMIN/(SUNK ¢ SKNIN) R
1c8 QK IX=K 1 -———R = .

109 KT=QKI X+ CKI M Km1n/KmaX
1ic QDK 1=22-02LN
111 COK3=SKII1[~QK3M

6€




112 DADN=Q*(K§-K'TH)**M/(KIC*(1.—RE )=K1) -——— "Forman's Rule" da/dN Relation
1

113 IF{KI=-KTH CelOs11l
114 10 DADN=0.
C KI CHECKS

1te 11 IF (QKIX-KIC) 12 412,13
11¢é 13 DADN=~1GC0.*CANM
117 SPY=5.
118 12 DONI(1)=CADN
119 CALL INTA(IA, CIMyFN,LyODN)
12¢ CALL STLIN { S,SXY,A,C)
121 CALL THICK(A,T,C}
122 3C FORMATH(Y CRACK RESIDUAL STRESS THICKMESS

1 STRESS INTENSI TY FACTIRS EFFECTIVE CYCLIC CRACK CycLIc*
123 31 FORMAT(® DEPT H AXTAL SHEAR KMAX

1K MIN DELTA K KMIN/ KFMAX GRCWTH RATE LIFE")
124 32 FORMATI(?® 4 SXX(A) SXY(A) TL4) KMA X

1 KMIN KMA X=KMIN REFF DA/ DN NoY)
125 WRITE(6933) LIL)+1SsSXY T ySKMAXySRKNINGKI y REyDADNFN
12¢ 33 FORMAT(F11.5y F10.2y F14.2y F10.592F10.29F16.2yF13.3,E16.3,F10.0!
127 IF(L(2)-KW} 19,19,18
12¢ 16 CONTINLE
125 15 FORMAT(F20.7,F10.5,E15.592F15. 5+42F25.1)

C BREAK

130 IF {SPY-1.) 848,18
131 8 CONTINUE
132 18 WRITE(6,y16)
132 16 FORMAT (/52H FUN TERMINATED-FRACTURE TCUSHNESS HAS BEEN EXCEEDED)
134 SPY=0. 7573845
13¢S G3 TC 17
136 1000 sS7CP

137 END

o



SUBROUTINE [NT(IA,CIN,FN,4L,CCY)
REAL L

DIMENSION L{(2),0DN(2)
IF (TA-1) 4y4,%
DBIG=.5*{DDN(1)+DDN(2))
FN=FMN+DLBIG/C316
L{L)=L{1)+CLBIG

DLBIG=L (LI *{(CLi-14)
DDN(2)=D0N (1)
L{2)=L{1}+DLBIG

RETURN

END

Integrates N(a) =

with Trapizoidal Rule

i

i

da
[da/dN]

Ly
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SUBROUTIMNE THICK(X,1,C}
DIMENSION C(30)
T2Cl7)4C{8)#X e
PETURN
ENC

Variable Thickness

ey
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172

172

OO OON

.F UNC TIOM HCS(R,A 4C ,IM3DE)

IFLUENCE FUMCTICNS FOR CENTER CRACK OF LENGTH 2A 1IN

PLATE OF WIDTH 28 UNDER SYMVMETPIC MCDE IMODE (=1,2, CR 3)

LNDBDING., SQURCE: PAGE 2.34 OF TADA HANDRQOOK.
ERFOP: LESS THAN 1% FOR IMCDE=1423 EXACY FOR INCDE=3.
PROGRAMMER . PRIL BESUNER, MARCH 1975

FCT=.2967178
PI2= 1.57C7963
PA=DI2% A/Y
PC=p122C/3
IS PA TOO SMALL FOR TRLGONOMETRIC FUNCTIOMS?
IF(PA-.016)1y1,42
F3=PA/ (PA*PA-PCxPC)* (1-PC*PC)
HCS=SQRT(F3)
I1F WE ARE IN MODE IIl, THE CALCULATION IS FINISHED
GOTO (3+3,4),IMODE
FI= 14FCT*SQORT(1-C/A%C /A) *PpxPA/2
HCS = HCS*F{
GO TC 4
TA=TAN(PA)
CA=COS(PA)
cc=Cces(rC)
cacc=CascCC
F3=TA/{ 1-CACC=*#2}
HC(S=SQRT(F3)
IF wE ARE IN MODE 11I, THE CALCULATION IS FINISHED
GG TC (545441, 140D€E
Fi= 1 + FCT % SQRT(1-C/A%*C/A) * (1.-CA)}
HCS=FC S*FI
HLS=1.4142135*HCS/SCRT (B)
RETURN
END

Influence Function Subroutine; to be
Changed for Each General 2-D Problem
Class.

ey
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SUBROUT INE STLINL S, SXY.

l YeX,cl
DI MENSION C5(50) yCX{501,05(50)40DX(50}4C(20)

IFIC (6 )~1000.) 14142

READIS5,3) IN

FORMAT(15)

READIS5,s4) (CXU{I),CSUIYy I=14IN)
FOPMAT (2F10.0}

Cl6)=12000.

DO 5 1=2,IN

DS{L)=CS{1)=-CS(I-1)
OX(I1=CX(1)-CX(1-1}

CINT INUE

D3 7 1=1,IN
DI=X-CXx{1+1}
J=1

IF (CI) €1€&491
CCNT INUE
$=CS({J) +

S = ((9) xS
SXY = 0.
RETURN

END

DS(J41) / DX {(J+l)

* (X = CX{Il]}

Linear Interpolation of Opas

Which is Input as a "Table."

(x) Function

14




229.
23C.
231.
222,
233.
234,
235,
236,
231.
238.
239.
240,
241,
242,
243.
244,
245,
24¢.
2417,
248
249.
250.
251.
252
253,
254,
255.
256,
257
258.
Z59.
260.
2¢€l.
262,
2¢€3.
cb4.
265.
2¢€éa
267.
268,
2¢9.
270.
211,
272.
273,
274.
275,
27¢€.
277,
218,
279.
280.
281.
282,
283,
284,
285,
2tb.
287.

n

$CATA

‘J}ZU-CRA(K IN A WELD UNDER NOMItIAL ANC RES IDUAL STRESS
. 3 d.
1 0w g

1‘EIIIL'— KIe

Residual Stress Table for

Oves (x) = %res (-x)

THRU-CRACK IN A WELD LNCER NOMINAL AND RESIDUAL STRESS

150.

THRU=-CRACK IN A WELD LNDER NOMINAL AND RES IDUAL STRESS

1. min
l. 25. & Ag

1.4E-01C T
30. 5% n
3.
00015

52.5

o4 50.
.8 45,
1.2 32,.%
1.6 15.
1.6 14.
2.4 7.
3. 2.8
3.6 0.
4.5 -2.
5.5 -2.8
7. -3.,2
2C. -7.
7.5
1¢C0000.
. 125003
1CCO. -30.
l.
1. 25.

l.4E-0T72.74
20. 5
3.
0CC15

5245

ok 50.
.8 45.
1.2 32.¢
1.¢ 16.
1.8 14.
2.4 7.
3. 208
3.6 0.
1‘0-5 _20
5.5 -2.8
7. -2.2
20. -7.
27.5
10€0000.
. 125003
5.
10
1. 25.

1.4E-0172.7¢%
30. 5,
a,
¢CClil

52.

150.

Lines 230-366 ‘

Input Data for Six Fatigue Analyses of Table IV.

. GY




288.
289.
26C.
291.
292.
292,
294.
255,
296.
297.
268,
299.
3CC.
301.
302.
3C3.
3C4.
3(s.
306.
307.
3Cs.
310.
311.
212.
313.
3l4.
315.
316.
317.
318.
316.
320.
321.
322.
323.
324,
325.
326.
321.
328.
329.
330.
331.
332.
333.
334,
335.
336.
337.
3138.
339.
340.
341.
342.
343,
344,
345,
346.
347.

THRU=~CRACK IN A WELD LNDER NOMIMAL ANEC RES IDUAL STRESS

150.

THRU-CRACK IN A WELD LNDER MNOMIMAL AND RESIDUAL STRESS

.4 48.5
-8 38.
1.2 20.
1.¢ P
1.8 3.1
2.4 -9,
3. "170
3.£ -22.
4.5 -35.5
5.5 -37.5
«125003
Se ~30.
1.
l. 25,

1.4E-072.74
3C. 5.
3.
00011

52«

o & 48,5
.8 38.
1.2 20.
1.6 1.5
1.t 3.7
2e4 -9.
3. -l7¢
2.¢ -22.
4.5 -35.5
5.5 -37.5
«125C03
1000. 0.
l.
G. 25.

le4E-072.74
3¢C. Se
3.
00015

52.5%

4 5C.
o £ 454
1.2 32.5
1.6 19.
1.8 l4.
2.4 7.
3. 2.8
2.¢ 0.
4.5 ~2.
5.5 -2.€
Te -3.2
2C. -7.
275
1000060.

THRU-CRACK INM
125003
Se 0.

'4!5-07 2.74

25.

WELD UANDER NOMIMAL ANC RESIDUAL

150.

STRESS

150.

v



34¢,
349.
35¢C.
36y,
352.
ELER
354.
355,
356.
357.
3cs.
359,
360.
361,
362.
3¢3.
3¢e4.
365.
366.
367.

w
(o]
. ‘

W
.

00015

N O Ay

LI BN R P+ I oY

NN S WOWR et e
w o

~N
()
.

2745
1000000.

$STCF

LYy




$DATA

THRL-CRACK IN A WELD UNDER NOMINAL AND RESICUAL STRESS = (ase 1
HE INITIAL HALF CRACK LENGTH IS 0.12500

OELTA SIGMA MIN SIGMA EFFECTIVE FRACTION OF RESIDUAL STRESS 4ALF PLATE WLDTH
25.000 0.00000 10000 “— |arge Pipe =~ Infinite Plate

-

THE CRACX GRCWTH RELATION IS:LA/ IN=C*UKIEFFECTIVE~KTH) **M/{X]I C*{ 1.-REFF)=-KIEFFEC Y] VE)
THE C(ONSTANT 'S VALUES ARE: o KTH KIC

M
0.140E-06 2.74 0.000 150.

THE MUMBER OF INTEGRATION POINTS TO COMPUTE K-FACTORS IS 30.
THE NUMBER OF LIFE INTEGRATION POINTS TO DOUBLE THE CRACK OIMENSION IS 5.

HALF
CRACK RES IDUAL STRESS THICKNESS STRESS INTENSITY FACTORS EFFECTIVE CYCLIC CRACK cycLic
LFNGTH AXTAL SHEAR KMAX K MIN DELTA K KMIN/KMAX GROKTH RATE LIFE
A SXX (A) SXY(A) T(A) KMAX KMIN KMAX=KMIN REFF DA /DN N
0.12500 S1.72 0.00  1.00000 48,60 32.82 15.78 0.675 0.816E=05 0.
0.1435$ 51.60 0.00 1.€0000 52.04 35.13 16.91 0.675 C.102E-04 2026.
0. 16454 51.417 0.06  1.0CCCC 55.71 37. 59 18.13 0.675 0.128=-04 3883.
0. 18947 51.32 0.00  1.00000 55.64 40.21 19.43 0. 674 0.161E- 04 5579.
0.21764 51.14 0.00  1.00000 63.€2 43.00 20 .82 0.674 0.204E-04 T121.
c.25¢C1 50.94 0.00 1.00000 68.29 45.97 22.32 0.673 C.260E-04 8516,
0.:£718 50.71 0.0C  1.6000C 73.05 49.13 23.92 0.673 0.333e-04 9770.
0.225¢€9 50444 0.00 1.00000 78.12 52.48 25.63 0. 672 0. 430E- 04 10839.
0.378¢4 50.12 0.00  1.00000 83.51 56 .03 27 .48 0.671 C.56 1E-04 11879.
0.4352¢ 49.56 0.00 1.00000 89.19 59.74 29.45 0.670 0.739E-0% 12746,
C.5CCC2 48.7¢ 0.00  1.C0000 95.09 63.53 31.56 0.668 0.984E-04 13497,
.£7438 47.82 0.00 1.CC000 101.25 67.43 33.83 0.666 0.133€-03 14139.
0.€5915 46,75 0.00  1.00C0C 107.65 71.39 26425 0.663 C.184€- 03 14678.
0.75790 45.53 0.00  1.00000 114.26 15.40 38.85 0.660 0.261€-03 15119.
0.£70€C 42.79 0.00  1.00000 120.66 79.02 41.64 0.655 C.37S€-03 15472,
1.ccoc5 38.75 0.00  1.00C0C 12€.13 €1.50 44 .63 0.646 0.549¢-03 15751.
l. 1487¢ 34.1C 0.00  1.00000 130.70 82.87 47.83 0. 634 0. 794E-03 15972.
l.21¢558 28.4¢ 0.00  1.€0000 124,04 £2.77 51.27 0.618 C.111E-02 16152,
S E15EC 21.8% 0.00 1.00000 135.65 80.70 54.95 0.595 0.141E~02 16317,
l.74121 15.47 0.0C  1.C0000 135.59 76,70 58.89 0.566 0.158E=-02 16458,
2.¢CC12 11.67 0.00 1.0CCOC 135.48 12.36 63.12 0.534 0.177e=-02 16612,
2.251¢%4 8.2C 0.0C  1.CCCOC 135.55 67.90 €7.¢5 0.501 0.201E-02 16770.
2.€3919 5.33 0.00  1.00000 135,41 62461 72.51 0.465 0.224€-02 16930.
3. (2164 2.65 0.00  1.€0000 135.27 57.55 77.72 0.425 0. 250E-02 17096.
3.48244 0.55 0.00  1.0000C 135.24 51465 83.29 0.384 0.282E=-02 17265.
4. CCC28 ~C. 95 0.00  1.00000 135.50 46.23 £5.27 0.341 0.324E-02 17436,
4.59513 -2.08 0.06  1.C€0000 126.26 40.59 95.67 0.298 0.388E~02 17603,
5.27€43 ~2362 0.00 1.00000 137.98 35.44 1€2.54 0.257 C.507E=-02 17756,
6.Ce227 -2.95 0.00 1.C0C0C 14C.39 30.49 109.90 0.217 0.72€E-02 17883,
6.56455 -3.19 0.00  1.060000 143,74 25495 117.79 0.181 0.129€-01 17972,
8.CCCE5 ~3.49 0.00 1.cccoc 147.79 21.55 126 .24 0.146 C.%24E-01

RUN TERMINATEC-FRACTURE TOUGHNESS HAS BEEN EXCEEDEC .

8v



mRL-caACKQ WELD UNDER WIMINAL INC RESIDUAL STRESS — (ase 2, Negative Applied o
THE INITIAL F CRACK LENGTH IS 0.12500

DELTA SIGMA MIN SIGMA EFFECTLVE FPACTIOMN CF RESIDUAL STRESS HALF PLATE WIDTH
_ 1.2000 100
25.000 30.000 60 1000.0
THE CRACK GROWTH RELATION IS :DA/DN=C*( KIEFFECTIVE -KTH)%%M/(KIC%(1.~REFFI=KICFFECTIVE)
THE CCNSTANT'S VALUES ARE: € M KTk KiC
C.14CE-0& 2.74 0. COC 150.

THE NUMBER OF INTEGRATIOM POINTS TC COMPLTE K-FACTCRS 1S  30.
THE NLVMBER CF LIFE INTEGRATIGN POIANTS TO DCOUBLE THE CRACK CIMENSION 1S 5.

HALF
CRACK RESIDLAL STRESS THICKNESS STRESS INTENSITY F AC TIRS EFFECTIVE CYCLIC CRACK CrcLiC
AX IAL SHEAR KMAX K MIN DELTA K KNVIN/KMAX GROWTH RATE - IFE
A SXX(A) SXY (A) T(A) KMAX KMIN KMA Xx=KMIN PEFF DA /DN N
0.125C0 5172 0.00 l1.C0CCC 2%.67 13.89 15.78 0.468 0.419€-05 0.
C. 14359 51.60 0.00C 1.00000 31.75 14.83 16.91 0.467 0.515€6-05 3977.
0.1€4¢%4 51.47 0.00 1.CCCCC 33.96 15. 84 18.13 0.466 0.£34E-05 7693,
C. 18947 51.32 0.00 1.00000 3¢€.32 16 .90 15.43 0. 465 0.781E-05 11151,
0.217¢4 51.14% 0.0C 1.CCCOO0 38.84 18.02 20.82 0.464 0.963E~-05 14392,
0.z50C1 5C.94 0.00 1.CC0QC 41.51 19. 19 22.32 0.462 C.116E-04 17339.
C.z8718 50.71 0.00 1.00C00 44.34 20.43 23.G2 0.461 0.147E-04 20191.
0.32989 50.44 0.0C l.C0COC 47.35 21. 72 25.63 0.459 0.183E-04 22781.
C.27€¢%4 50.13 0.00 1.00000 50.54 23.06 27.48 0e456 C. 227E-04 25177,
0.43525 49.5¢& 0.00 1. CC0CCC £3.85 24.41 29 .45 0.453 0.282E-04 27390.
C.50CC2 48.75 0.00 1.00000 57422 25 .65 3l.5%6 0.448 0.351E-04 29436,
«£7428 47.82 %2.0C 1.CCCCC 6C.66 26483 33.83 0.442 C.4356-04 31328,
0.€£976 46475 0.00 1.00000 €4.14 27.89 3€.25 0.435 0.54C0F-04 33079.
0.757sC 45453 0.0C 1.00¢0¢C 67.63 28.178 38.85 0.425 C.67CE-04 34700.
0.£7C¢€0 42.76 0.00 1.CCC0C 70.69 29.04 41.64 0.411 0.821E-04 36212
l.CCCCS 38.75 0.00 1.00CCC 72,57 27.94 44 .63 0.385 0.974E-04 37655.
1.14876 34.10 0.0C 1.CCCOC 72.30 25.47 47.83 0.347 0.1125-03 39075.
l.216%¢ 28.46 0.00 1.C0000 T2.52 cle.28 51.27 0.293 Ce 124E-03 40525.
1.£15¢€0 21.84 0.00 1.CCCCC €S.71 14.76 54.595 0.212 0.1306~03 42074,
1.74121 15.47 0.00 100000 64.92 6.C2 58.89 0.093 0.1285-03 43822,
2.0CC12 11.67 0.0C 1.CC0CCC 5%.73 -3.39 63.12 -0.057 Ca126E-C3 45861.
2425754 8.20 0.00 1.0000C 54.37 -13.28 €1.65 ~0.244 0.122E-03 48255.
2.¢3519 5.32 0.0C 1.CC00C 48.41 -24.10 T2.51 -0.498 0.1156-03 51149.
3.021¢4 2.65 0.00 1.CCCOC 42401 -35.7C 17.72 -0.850 0.106E-03 54697,
3. 48244 0.55 0.00 1.000CC 35.29 -48.00 €3.29 -1+ 360 0.94¢6E~-04 59189,
4.00028 -0.86 0.0¢C 1.CCCCC 28.38 -¢€0. 86 89.27 =2.146 0.810E-04 65087,
-£SE13 -2.(8 0.00 1.00C00 21.45 -74.,22 $5.67 ~-3.459 C.653E-Ch 73219.
5.¢7843 ~2.62 0.00C l.CCCCC 14.93 -£7.61 102 .54 -5.867 Q0.488E~-04 85189,
6.0€333 =~2.95 0.0C 1.00000 €.51 =1Cl.40 10990 -11.521 0.300E-04 105117,
€.%€455 -3:19 0.00 1.0000¢C 2439 -115.4C 117.79 -48.234 C.S11E-05 151278.

CRACK HAS ARRESTED; LIFE IS INFINIITE

THRU-CRACK IN A WELC UNDER “OMINAL AND RESIDUAL STRESS =~  (Case 3
THE INITIAL HALF CRACK LENGTH IS 0.12500

6t




DELTA SIGMA MIN SIGMA  E£rrecTIVE FRACT 10N OF RESINUAL STPESS  HALF O(ATE WIDTH
25.000 0. 00000 1.0000_ 5.0000 10" Wide Specimen
THE COACK GROWTH RELATIOM IS:DA/ON=C*UKIEFFECTIVE=KTHI*&M/ (KIC*(1.~PEFF) -KIEFFECTIVE)
THE CONSTANT'S VALUES APE:  C M K TH KI1C
C.14CE-06 2.74 €.CCO 150.

THE NUMBER OF INTEGRATICN PSINTS TC CCMPULTE K-FACTORS IS 30.
THE N(NMBER CF LIFE [NTEGRATIGN PIINTS TO DOUBLF THE CRACK DIMENSICN IS 5.

HALF
CRACK RESTDUAL STRESS THICKNESS STRESS INTEMNSITY FACTIRS  EFFECTIVE CYCLIC CRACK creLic
AX 1AL SHEAR KMAX K MN DELTA K KWIN /KM AX GROWTH RATE L1FE
) SXX(A) SXY(4) TLA) KMAX KMIN KMAX=KMIN FEFF OA/DN N
0.125C0 50.91 0.00 1.CCCOC 47.917 32.25 15.72 0.672 C.754E~C5 0.
0.1435%9 50474 0.00  1.00000 51.43 34.55 16.87 0.612 C.S97E=-05 2075.
0.1€454 5Ge50 0.00 1.00000C 55.07 36.58 18.10 0.€71 C.125E~04 3973.
0418547 59.34 0.96  l.cCCcc 56.C3 29, 6C 18.43 0.671 0.156E=04 5700.
Oezll€4 5G.1C 0.00 1.00000 €3.13 42.30 20.a3 0. 670 0. 200E- 04 727C.
0.25001 49 .81 0.00 1.06C000 €1.59 45.24 22 .35 0.669 0.:256E~06 8689.
C.2E713 49,49 6.0C 1.00000 72.25 48.29 23.95 0.668 C.3275-04 9955,
0.225€9 49.11 0.0C 1.0CCCC 17.26 51.56 25.70 0.667 0.4226-04 11105.
0.37894% 49,68 0.0C 1.00600 B2 .58 55.01 27.57 C. 666 0.5508~04 12114,
Ce43529 47,57 0.0C 1.00000 88.13 58 .54 29 .59 0.664 0. 7245 -04 12998,
0.%06C2 45 .87 2.00 1.6060¢C 63.67 61. 51 31.76 0.661 0.556E=04 13759.
C.742E 43.9; 0.GC 1.€0C0C 99.27 £5,.16 36,11 0.¢56 C.1275-03 14416.
0.€5915 41.68 0.00  1.€CCCC 104.94 68.28 36 .66 0.651 0.172E-03 15009 .
€. 75750 39.11 0.00  1.00000 110.60 T1.17 319,43 0. 643 0.235E-03 15490,
0.87060 34.82 0.00 1.0C000 11€.82 73.36 42.47 0.633 0.323E~03 15894.
1.CCCCS 29.00 0.00 1.00000 119.84 74.03 45.80 0.618 C.4328-03 16237.
1. 148786 22.31 0.00 1.00000 122 .64 73.13 49.50 0. 556 0.558E-03 16538.
1.31958 16.26 0.0C 1.00000 124.59 70.94 53 .66 0.569 0.702E=-03 16809.
<S15EC 10.13 0 .00 1.co000C 12¢.)3 67.76 £g.32 0.537 C.8TGE-03 17058,
174121 4.82 0.0C 1.€C000 127.35 €3.50 63.85 0.499 0.109%-02 17287.
2.CC012 -0.54 0.0C 1.C060C 128.56 58. 64 70433 0.455 0.140r=02 17495.
2.257%4 -6.83 0.00  1.00CCC 13C.27 52.01 78.2¢ 0.399 C.182E-02 17679.
2.€3919 -12.19 0.00  1.CCCGC 122,44 44, C6 £8.36 0.333 0.257€-02 17835.
3.021¢4 -17.2¢6 0.006  1.00000 137,43 35,28 162415 0.257 C.480E=-02 1794 1.
3.48244 -21.02 0.00  1.CCCCC 146.31 26.58 122.74 0.178 0.1326 00 17948.
4.0CC28 -23.00 0.0G  1.00000 174.96 15.45 159.51 0.Ce8 0.668E 00

RUN TEFNMINATED-FRACTURE TOUGHYESS +AS BEEN EXCEEDED

THRU-CRACK IN A WELD LNDER NIMINAL ANC RESIDUAL STRESS -  Case 4
THE INITIAL HALF CRACK LENGTH IS 0.12500

DELTA SIGMA MIN SIGMA EFFECTIVE FRACTION CF RESICUAL STRESS HALF PLATE WIDTH
25.CCC -30. 000 1.0000 5. 00C0
THE CRACK GROWTH RELAT ION IS :DA/DN=C #{KIEFFECTIVE-KTHI**M/(KIC*{ 1 .~SEFF)=K[EFFECTIVE)
THE CCNSTANT'S VALUES ARE: C M KTH K1C
C.14CE-0€ 2.74 0.000 150,

THE NUMEER TEGPATION PNINTS TC COMPLTE K-FACTCRS 1S 13C.
THE NUVMBER CF LIFE INTEGRATICY PCINTS TC CCURLE THE CRACK CIMENSIOM IS 5.

0S




CRELK ‘? ES IDUAL STRESS THICKNESS STRESS INTENSITY FACTO2S EFFECTIVE CYQ 1C CRACK CriLrd ‘
A

DEFTH XTAL SHEAR KMAX K MIN DELTA K KMIN /KM AX GRCWTH RATE LIFE
A SXX(A) SXY(A) T(8) KN AX KM N KMAX-KMIN REFF CA/DN N
0.125¢C0 50.91 0.00  1.C000C 25.11 13.39 15.72 0.460 0.407E=05 0.
0.14359 50.74 0.00 l.ccecc 31.18 14.31 1€ .87 0.459 0.5C2E-05 4092.
0.16494 50 .56 0.00 1.00000 332,36 15. 26 18.10 0.457 0.618E=05 7908.
0.16647 50.34 2.00  1.00000 35.71 16.28 19,43 0.456 C. 764E=-05 11458.
0.217¢t4 50.1C 0.0C  1.0CCCC 3E.14 17. 31 20.83 0.454 C.940E~05 14765.
C. 25001 45.81 5.00 1.00000 40.77 18.42 22.25 0s %52 0.11¢E-C% 17842,
C.28718 49,49 0.00  1.00000 41.50 19.54 23.96 0.449 0. 144E-04 20701.
0.226S¢9 49.11 9.00  1.0000C 46442 20.72 25.70 0.446 C.172E-04 23354,
0.27854 48.68 0.0  1.C0COC 49,50 21.93 27.57 0.443 0.2215-04 25810.
£.42526 47.57 0.0C  l.cCCCOC 52462 23.03 75,59 0.438 0.275E-04 28083.
c.cccC2 45.87 0.00  l.CCCCC 55.56 23.79 311.76 0.428 0.3386~C4 30197.
0.57428 43.92 0.CC  1.00C0C 58.34 24.23 34.11 0.415 "0.414E=04 32174,
C.€567S 41.68 0.00 1.CCOOC 60.95 24 .29 .6 .798 C.5055=04 34033,
0.7575C 39.11 0.0C l.cccoc €1,29 23.85 39.43 0.377 0.611E~04 35791,
0. 870€0 34.82 3.00 1.00000 €4 .87 22.40 42,47 0. 345 0. 72¢E-C4 37477,
1.€C0C5 29.00 0.00  1.00C00 €4.87 19.07 45.80 0.294 0.828E-04 39144,
1. 14816 22.31 0.00 1.0000C 63.23 13.72 46.5C 0.217 0.907E-04 40858,
1.21¢5¢8 16.2& 0.0C  1.CC0CC 60.20 6.55 51,66 0.109 C.9605-04 42689.
.S15¢€C 10.13 2.00  1.CCGOC 5¢.C8 -2.3C 58,38 ~-0.041 0.390E~-04 44703.
1.74121 6,82 0.00  l.cccce 50.73 -13.11 63 .85 -0.258 C.SSCE- 04 46980.
2.CCC12 -0.54 0.00  1.06000C 44.57 -25.76 7033 ~0.578 0.569E=04 49624,
2.2¢7%4 -6.812 0.0C 1.CCGCC 36,36 -41.90 78,26 —1.18%2 C.883E~04 52836.
2.€2519 -12.1% 0.0C 1.0CG0C 26.38 -€2.00 €8.39 ~2.350 0,728E=-04 57078.
3.C21¢€4 -17.2¢ 0.00  1.00000 14.85 -87.29 102.15 ~5.876 C. 482E-04 63565.
3.45244 ~21.02 0.0C  l.CCOOC .03  -120.7C 122.74 -59.410 0.829E-05 79519.
CRACK HAS ARRESTED; LIFE IS INFINIIE

THRU-CRACK IN A WELD UNDER MJVMIMAL AND RESIDUAL STRESS =~ Case 5
THE INITIAL HALF CRACK LENGTH IS 0.12500
DELTA SIGMA MIN SIGMA EFFECTIVE FRACTION OF RESINUAL STRESS HALF PLATE WIDTH
25.000 0.00000 W 1000.0
Nao Residuals
THE CRACK GROWTH GELATION I1S:DA/CN=C*{KIEFFECT IVE-KTH}#*#M/ (K1C=(1.~3EFFI-KIEFFECT IVE)
THE CCNSTANT®S VALUES ARE: c M KTH KIC
C.14CE-06 2.74 0.000 150.

THE NUFMBER CF INTEGRATICH POINTS TC CCMFUTE K=FACTORS 1S 30.
THE NUMEER OF LIFE INTECFATICY POINIS TO COUBLE THE CRACK DIM¥ZNSICN IS 5.

HALF RESIDLAL STRFSS THICKNE §S STRESS INTENSITY FACTORS  EFFECTIVE CYCLIC CRACK cveLic
CRACK AXTAL SHEAP KW AX K MIN DELTA K KMIN/ZKMAX GROWTH RATE LIFE
A SXX (A} SXy(a) T{A) KMAX KMIN KMAX=KMIN REFF DA/DN N
0.125C0 0.00 0.00  le.cCCCCC 15.78. 0.00 15.78 0.C00 0.200E-05 0.
0.14359 0.00 J.00  1.0000C 1€.51 0. 00 16.51 0.000 0.244E-05 8373,
0.1€4%4 0.00 0.00  1.00000 18.13 0.00 18.13 0.000 C.2G8E-05 16258.
0.18947 0.00 0.0C  l.CCCCC 15.43 0.c0 19.43 0.000 0.364E=-05 23677,
0. 21784 G.CC 0.00  1.00000 20.82 0.00 20.82 0. GO0 0. 444E-05 30652.

C.2SCClL 0.00 2.006 1. 00000 22432 C.CO 22.32 0.000 C.544E-05 37204,

LS




Ce2t18 0.00 0.00 1.00000 23,92 0.00 23.92 0,CCO0 C. 666E-05 43354,
226¢9 0.0C 0.00 1. CCCOC 2%.63 0.C0 25.63 0.G00 0.816E-05 49119.
Ce 27894 0.00 C.0N 1.00000 27.48 0.00 27 .48 0. CCO 0.100E- 04 54518.
C.42529 0.00 0.00 1. COQ00C 25445 0.00 29 .45 0.000 0.123E~04 59567,
C.c5CCC2 0.90 VIR 1.0000C 31.56 0.00 3l.56 0.000 C.151E~04 64234,
S142E 0.00 0.0C 1.C0COC 33.83 0.00 33.83 0.000 C.187€~04 68681.
Ce.€2657S 0.00 0.00 1.CccocC 3¢.25 0.00 36425 G.000 0.231E~04 72775.
C.7517SC 0.0C 2.00 1.CCCCC 38.85 0.00 3e.85 0.CCO 0.285E~04 76578
0.870¢€0 0.00 0.0C 1.CC00C 41.64 C. CC 4la64 0.000 0.354E~04 80104.
l.CCCCE 0.C0 0.00 1.00C0C 44,63 0.00 44,€3 0.000 C.44CE-Co 83365,
1.14876 0.00 0.0C 1.CCCOC 47.83 0.00 47.83 0.000 0.549E-04 86373,
1. 215¢%8 C.CC J.00 1.00000 51 .27 0.00 51.27 C. GO0 O.¢€87E-Co 89139.
1.51580 0.00 0.0C 1. 06000C £4,55 0.00 54 .95 0.0C0 0.8626-04 91673,
l1.74121 0.00 3.00 1.C0000 58.89 0.00 58.89 0.000 C.1C9E-03 93935.
2.CCC12 0.CC 0.0C 1.cccoo 63,12 0.CO 62,12 0.000 C.138E-03 9¢084,
2.25154 0.00 J.0C 1.CC0CC 67.65 0.CC 6T.¢€5 0.000 0.1762-03 97979.
2.€2G16 C.CC 0.00 l.cccoC 72 .51 0.00 72.¢51 0.0CO C.22€¢E~C3 996738,
3.C21€¢4 0.00 0.00 1.0000C 17.72 0.CC 77.72 c.000 0.293E-03 101190.
3.48244 0.0C 0.0¢C 1.00000 83.29 N.00 83.29 0.000 Ce384E~03 102521.
4.CCCz8 0.CC 0.0C l.CCCCC €<.27 0.00 89.27 0.000 0.510E=~03 103679.
4055513 0.CC 0.00 1.30000 9L.e7 0.0¢C SE .67 0. 000 0. 685E~-03 104671
£a21843 0.00 0.0C l.CCCCC 102.54 0.CC 102.54 0.000 C.S54E~03 105503.
€.0€323 c.0C 0.00 l.0CcOcC 1C9.90 0.00 1(5.50 0. 000 Cel37E-02 106130.
6.S€455 g.CC 0.0C l.c00¢CC 117.79 0.00 117.79 0.000 C.206E-02 106707,
8.CCCE5 0.00 V.00 1.CCcoC 12€.24% 0.CC 126.24 0.0CO 0.337€~02 107088.
S.18C35 c.0C 0.00 1.CGCCC 13£.30 0.00 12.20 0.000 0.€658E~02 107327.
10.£5656 0.00 0.0C 1.00000 142.71 0. GC 143.71 0.000 0.182€-01 107438,

12.12¢75 0.00 0.00  1.€0C00 154.73 0.00 154,73 0.000 C.256E Oi
RUN TERMINATED=FRACTURE TCUGHNESS HIS EEEN EXCEEDEC

THRU-CRACK IN A WELD UNDER NOMINAL #NC RESICUAL sTRess - Case 6
THE INITIAL HALF CRACK LENGTH IS 0.12500
CELTA SIGMA MIN SIGMA EFFECTIVE FRACTINN OF RESIDUAL STRESS 4ALF PLATE WIDTH
25.CCC é _5.0000
0.00000 No Residuals

THE CRACK GRCWTH RELATION IS:CA/ ON C*(KIEFFECTIVE —KTH)*"M/ (K] C*{ 1.~FEFF)-KIEFFEC TIVE)
THE CONSTANT 'S VALUES AREZ c KTH KIC
"0.1406-06 2. 74 0. 00C 150.

THE NUMBER CF INTEGRATIOCN POINTS TQ CCOMPUTE K-FACTORS I S 30.
THE NUMBER COF LIFE INTEGRATIOCH POINTS TO COUSBLE THE CRACK DIMENSION IS 5.

HALF RES IDUAL STRESS THICKNESS STRESS INTENSITY FACTORS EFFECTIVE CYCLIC CRACK cyctic
CRACK AXTAL SHEAR KMAX K MIN DELTA K KMIN/KMAX GRCWTH RATE LIFE

A SXX(A) SXY(A) T(A) KV AxX KMIN KMAX-KMIN REFF NDAMN N
0.12500 0.00 2.00 1.0000¢C 18.72 0. 00 15.72 0.000 0.168E~05 J.
C.143¢s 0.0C 0.0C l1.cCcccec 16.87 0.00 16.87 0.000 C.242E~0C5 8440,
0.1€454 0.0C 0.00 1.€occc 1€.10 0.¢CC 18.10 0.000 0.2%€E-05 16377,
Ce 1€547 0.CC J.00 1.00000 15.43 C.CO 16.43 0. 000 « 3€4E-05 23807.
0.217¢4 0.00 0.00 1. C0go¢ 2C. €3 ¢. 00 20 .83 0.000 0.445F-05 30777.
C.22CC1 3.00 0.20 1.00000 22435 0.00 22.35 0.000 C.546E-05 37312.
0.26718‘ Q.00 0.0C 1.CCCCC 22.66 0.€0 23.96 0.C00 C.669€~-05 43433, .

226¢£9 0.00 0.00 1.C0C0C 25,70 0.CC 25.170 6.CCO 0.8225-05 43163,

¢S



0.27€%4
0.4352%
0.5CCC2
C.57438
0.€59179
0.75750
C.87CeC
1.c00cC5
1. 14876
l.21¢c5E
+£15€EC
1.741z21
2.0CC12
2.2517¢%4
2.€3919
3.021¢4
3.48244
4.(CCz8

oloo
0.00
0.00
0.00
Cc.0C
0.00
0.00
0.00
0.0C
0.0C
0.00
OQOO
0.00
0.0C
0.00
0.00
0.00
0.00

0.00C
0.00
N.0C
0.00
0.00
0.0¢C
0.00
0.0C
0.00
0.0C
0.00
0.0C
0.00
0000
0.CC
0.00
0.0C
0.00

1. C0CGC
1.06000
1.CC0C0
1.C000C
l.CCCOC
1.C0COC
1.0C000
1.0CccCo0C
1.00000
l.CCCCC
1.00000
1.CCCOC
1.CCOO0C
l1.cC00C
1. 00000
1.C0c0¢C
1. €CCCC
1.00000

21.57
29.59
31.76
34,11
36.66
36.43
4247
4£.80
49.50
53.66
58.38
62.85
7C.23
T8.26
€8.39
102.15
122.74
159%.51

RUN TERNMINATED-FRACTURE TOUGHNESS FAS BEEN EXCEEDED

CORE USAGE

COMPILE TIME=

0BJECT CODE=

9880 BYTES,ARRAY AREA=

0.80 SEC,EXECUTICN TIME=

20.61 SEC,

0.CC
0.00

0.00
0.CC
0.00
C.CC
0.00
0.00
0.00
0.GC
0.00
0.00
0.Co
0.00
Cc.cC
0.C0
0.CO
0.CO

27 .57
2G.KS

21.76.

34.11
2086
36.43
42,417
45.80
49,50
53 .66
£€.38
63 .85
7C.33
78,26
88.39

102.15

122.7%

159.51

0.000
0. 000
0.000
c.CCo
0.000
0.000
0.0C0
0.000
0., CCO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.0CO

2012 BYTES,TOTAL AREA AVAILABLE=

WATFIV = VERSION 1 LEVEL 1 JANUARY

196680

1970

C.1C1E-04
0.125E-04
0.154E-04
0.191E-0%&
0.226E- 04
0.299E-04¢
Ce376E-04
0.478E-04
0.612€-04
C.757€~04
0.106E-03
Ce 144E-03
0.202E~03
0.201E-03
0.489E~03
C.S36E-03
0.272E-02
0. 160E 01

BYTES

DATE=

54513.
59433 .
64135,
68435,
T2407.
T76060.
79400.
82433,
85160.
87583.
89701 .
91511.
93008.
$4190.
95055.
95605 .
05852«

15/397

€S
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Table I.

List of Available Crack-Face Influence Function Solutions to Allow
K-Computation for Complex, Arbitrary Stress Distributions

FAA Computer Codes NameZ[Status

3

Dimensionality Error Published Source(s) Constant
of Elastic 1 (Maximum Value {not necessarily Amplitude Other Capabilities
Problem Description(s) Solution Modes DOF/M Quoted by Source) comprehensive) K-Calculation Fatigue 1 2
Center Cracked Plate 2 I,II,IIT /1 11Tl (exact) (6), Section 3 IFS2-1/A IF2-1/A Residual Variable Thick-
Under Symmetric Loads 1,11 (£1%) (See Fig. 2) Mean o/A ness Approximation
{y-axis symmetry,
Fig. 2)
Center Cracked Plate 2 I,IL,I11 172 11T {exact) (6), p. 2.33 -- -- - -~
Under Any Loading 1,11 (£1%)
Single Edge Crack in 2 I,ILIIT Nl TIT1 (exact (§),4 pp. 2274- IFS2-2/8 IF2-1/A Combined Variable Thick-
Finite Strip 1,11 (£2%) 228, Modes I  ness Approx.
(20) & 11
Cycling

Double Edge Crack in 2 IL,ILLIIL Nt IT1 (exact) {6) p. 2.37 -- - - --
Finite Strip I,IT (x2%)
Infinite Crack, 2 1,I1,111 exact (6) p. 3.6 - -- -- .-
Infinite Plate
Infinite Collinear
Cracks, Infinite
Plate:

One Crack Loaded 2 I,II,IIT 272 exact (6) p. 4.5 -- -- -- --

Two Cracks Loaded 2 I,II,III /1 exact {(6) p. 4.6 -- -- -- -

Symmetrically
Finite Collinear Cracks 2 I,IL,LIII  1/1 or exact (6) pp. 7.6-7.7 - - -- --

in Infinite Plate,
Various Loadings of
A1l Cracks

172




Dimensionality
of Elastic

Program Description(s) Solution Modes DOF/M‘l

Table I (Cont'd)

Error
(Maximum Value
Quoted by Source)

Published Source(s)
{not necessarily
comprehensive)

FAA Computer Codes

Name?'jStatus3

K-Calculation

Constant
Amplitude
Fatique

Other Capabilities

2

Infinite Crack 2
Approaching Edge of
Half-Space

I,II, 11T N

Rows of Infinitely 2
Collinear

Infinite Cracks in

Infinite Plate

III N

Assorted Finite Width 2 -- 1
and Height Straight 1,
Plate Problems

Assorted Finite Width 2 --
and Height Curved
Structure Problems

Infinite Crack in 3
Infinite Solid;
Straight Crack Front

LILIID /=

Circular Crack, Arbitrary 3 I
Mode I Loading, Infinite
Solid

3/

Circular Cracks, Internal
and External Various
Special Cases of Loading,
Infinite Solid

in

Buried Elliptical Crack 3 I
Arbitrary Mode 1 Loading
(Infinite Solid)

4/4

111 (exact)
1,11 (£1%)

exact

"
i+
N
R

Worst Case

n
H
wu
E33

Worst Case

exact

exact

Most are exact

exact

{6) p. 9.5

(6) p. 13.2

(6) p. 23.1

(6), p. 24.2

(6), Chap. 25

This report,
App. C (See
Fig.8 )

IFS3-1/A

IF3-1/A




Table I (Cont'd)

FAA Computer Codes NameZ/Status3

Dimensionality Error Published Source(s) Constant

of Elastic 1 (Maximum Value (not necessarily Amplitude Other Capabilities
Program Description(s) Solution Modes DOF/M~ Quoted by Source) comprehensive) K-Calculation Fatigue 1 2
Buried Elliptical Crack 3 I 2/2 exact (10) (See Fig.8) IFS3-2/C - - --
Arbjtrary Mode I Loading
{Infinite Solid)
Corner Crack, 1/4 3 I 2/2 Three-Dimensional  (11) (See Fig. 5) - - - --
Elliptical Crack, Numerical Stress
Arbitrary Mode I Loading Analysis
(Infinite Solid)
Surface Cracks, 1/2 3 1 2/2 Combined 3-D and This report, App. B 1FS3-3/C 1F3-3/C
Elliptical;Corner Crack, 2-D Eng. Approx. (See Fig. 7)

1/4 Elliptical, Arbitrary
Mode I, Infinite Mode

TM = The number of distinct stress intensity factors that may be computed with the IF solution (e.g., two K values, one for each of two crack tips).

2Current FAA computer program and subprogram names.

3Stat:us symbols: A
B
C

program nearly complete; lacks documentation and user features
major portion of program complete but substantial cleanup work is required
incomplete program, existing code has been checked out

4Refs. (13) and (20) results indicate that Ref. (6) solution is in error.



‘1x'¢11¢
e p—rie—b—r
b
K(a,b)/’ro(wa)ﬂ

_a/b Near Exact Va]ués ( 0.{% error (6))
0.0005 1.0000
0.2 1.0246
0.5 1.1867
0.8 1.8160
0.9 2.5776

IF Calculated Values Error
1.0073 0.7%
1.033 0.8%
1.200 1.1%
1.821 0.3%
2.628 2.7%

Table II. Comparison of Published and IF Method-Calculated Stress
Intensity Factors for Center-Cracked Plate Under Uniform

Stress
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)5 ksi, r = (x2+y2)l/2

1
3

(a) = K, (a) = K(a) = 75— (ma)® ksi /im, i = x,y

exact i 11
?; IF Calculation
(a_in inches) Exact K(a) K Error Ky Error
N

axisymmetric 0.5 0.07253 0.0719 -0.9% 0.0718 -1.1%
1 0.10258 0.1016 -0.9% 0.1015 -1.1%

2 0.14507 0.1438 -0.9% 0.1435 -1.1%

4 0.20516 0.2033 -0.9% 0.2030 -1.1%

Penny-Shaped Crack Cross Section
(Lower Half of Stress Field Not Shown)

z o (r) = r3 ksi

3 7\% .
K(a) = 3 (ma”)™? ksi Vin

IF Calculation

(a, r in inches)

\ a Exact K(a) Ky Error Ky Error

0.5 0.05875  0.0599  +1.9% 0.0595  +1.3%

> 1 0.66467  0.6774  +1.9% 0.6730  +1.3%

-~ 3 > 2 7.51988  7.6639  +1.9% 7.6141  +1.3%
—! 2 4 85.07777 86.7073  +1.9% 86.1441  +1.3%

axisymmetric

Penny-Shaped Crack Cross Section
(Lower Half of Stress Field Not Shown)

Table III. Comparison of Exact (6) and IF Method-Calculated Stress Intensity
Factors for Penny-Shaped Crack in Infinite Solid Under Two Complex

‘ Symmetric Stress Fields.



Table IV. Summary of Six Fatigue Analyses of the Weld Crack in Figure 9
Mean Stress Fig. # for
Width of Alternating Components (ksi) Fatigue Anal. Calculated Cycles From
Case # Structure (in.) Stress, Ag (ksi) Uniform Residual Results 2a=0.25" to Failure
1 2000 25 12.5 See App. D 11 18009
2 2000 25 -17.5 App. D 11 o
3 10 25 12.5 Fig. 9 + App. D 10 17949
4 10 25 -17.5 Fig. 9 10 o
5 2000 25 12.5 0 1 107439
6 10 25 12.5 0 10 95852




Table V. Cumulative Damage Analysis of Nozzle Alternating Stresses
Caused by Eleven Distinct Types of Load Transients

Expected Number of Damage Measure

Equivalent # of Heatup-
Cooldown (i=1) Transients

Peak Ac. Transients in 40 _ 108 3.726 in 40 Years

i jth Load Transient (ksi) Year Life = n, y; =10 n; Aoy e, = n1yi/y]
1 Heatup-Cooldown 31.7 200 0.7834 200
2 Plant Loading and 7.4 18400 0.3188 81.4

Unloading
3 Power Step Change 4.2 2000 0.0042 1.1
4 Steam Drop 11.5 200 0.0179 4.6
5 Steady State 0.2 1,000,000 0.0000 0

Fluctuations
6 Loss of Load 0.9 80 0.0000 0
7 Loss of Flow 22.6 80 0.0888 22.7
8 Reactor Trip 7.3 400 0.0066 1.7
9 Turbine Roll Test 11.0 10 0.0008 0.2
10 Cold Hydro Test 45.7 5 0.0765 19.5
11 Hot Hydro Test 31.2 40 0.1477 37.7
z 1.4447 368.9
For each Heatup-Cooldown cycle, the upper bound crack growth rate is (28): %%} (in/cyc) = .3795x10"9 AK%%726
so that for the 40-year lifetime increments NZ = 368.9 N1: %%i = 368.9 (.3795x10—9) AK?1726 = 1.4x10'7 AK?i726

as in Equation (6.1) of the text.
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TABLE VI

COMPARISON OF Q AND K FOR SEVERAL CASES OR SURFACE AND CORNER CRACKS
K

UNDER UNIFORM NORMAL PRESSURE % VALUES GIVEN ARE 200’7575——“

K:
GEOMETRY X X y
r K, K, Ky K,
Embedded E1lipse 1 1.00 1.00 1.00 1.00
o 1.46 1.57 1.03 0.0

ot

Surface Half-Ellipse 1.11 1.04* 1.16 1.26%*
o 1.65 1.77 1.17 ?

1.26 1.28* 1.26 1.28*

ey

Corner Quarter-Ellipse

© 1.89 ? 1.22 ?

*Taken from Tracey (31)
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Intensity Factor (from Reference 3, lllustrated
for a Center-Cracked Infinite Plate)
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Fig. 2. Center-Cracked Plate Under Symmetric Stress
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Fig. 3. Schematic of Prescribed
Normal Perturbation [81;(s)] of Crack Front
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Fig. 4b. 2-D Bie Crack Surface Break-Up
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Fig. 5a. Symmetric Three-Dimensional Boundary-Integral
Equation Model of a Corner Crack in an Infinite Body
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Fig. 6. A Two DOF Buried Elliptical Crack
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Fig. 9. Weld-Induced Symmetric Residual Stress,
a(x), in an Uncracked Specimen and Resulting Stress Intensity
Factor K(a) When a Center-Crack of Length, 2a is Introduced
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Weld Crack Propagation in a 10-Wide Specimen for Three Mean Stress Distributions
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Figure 11. Weld Crack Propagation in a Large Pipe for Three Mean Stress Distributions
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Fig. 12. Circumferential Stress Contours, o ZZ(x,y) (psi)
for 1000 psi Internal Pressure ’
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N Represents 40 Years of Loading Transients.

=a

Complex Stress Field:

Nozzle Wall 02z (X, y) = .4662 [-44.68 + 8.46 X + 199.55
) +6.88 %2 — 157.12 y2 + 6.69 4
- 6.0" +28.20 y4 + 22.95 x y|

where X = 2/(2 + x)

v=2/2+y) in cross section.

—

Fig. 13
Growth of Elliptical Corner Crack
at a Symmetric Cross Section of an HSST

Program, Intermediate Test Vessel, Pipe-Nozzle Junction




