LA-UR -77-1345 ' CLs J

TITLE: INGEN: A GENERAL PURPOSE MESH GENERATOR FOR FINITE
ELEMENT CODES

AUTHOR(S): william A. Cook, Q-13

SUBMITTED TO: ap1ta conference, August 4-5, 1977

Massachusetts Institute of Technology
. Cambridge, Massachusetts

(To be published in the proceedings of the
ADINA Conference).

By acceptance of this article for publication, the
publisher recognizes the Government’s (license) rights
in any copyright and the Government and its authorized
/ representntives have unrestricted right to repreduce in

whole or in part said article under any copyright
( secured by the publisher.

publisher identify this article as work performed under

The Los Alamos Scientific L.aboratory requests that the
> the auspices of the USERDA.

+ —— NOTICF
® Mo report woy prepared av an ot ol sk
spemsed By the Uaited Sates G v Newls
e Uaited States nor the
Hrwar hoamt Deselapment Adang

losN/\alamos R

scientific laboratory

ekl o

el amy e

Of 'he UniVEi"Si'y of Ccnliforniu R
LOS ALAMOS, NEW MEXICO 87545
An Allirmaltive Adion/Equal Opportunity Employer
R
S UNITED STATES v )
S1 No 26 ENFERGY RESEARCH AND Wil o o L"
DEVELOPMENT ADMINISTHRATION

15
CONTRAUT W.5105-ENG. 36

DISTIMGG T O Taila Do Ave b0t i e


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


INGEN: A GENERAL PURPOSE MESH GENERATOR
FOR FINITE ELEMENT CODES

by

William A. Cook

ABSTRACT

INGEN is a general purpose mesh generator for two- and
three-dimensional finite element codes. The basic parts of
the code are surface and three-dimensional region generators
that use linear-blending interpolation formulae. These gen-
erators are based on an i, j, k index scheme which is used
to number nodal points, construct elements, and develop dis-
placement and traction boundary conditions.

I. INTRODUCTION

Approximate numerical solutions to mathematical boundary value problems can
be calculated using finite element computer codes. These solutions are dependent
upon the mesh used to model the geomeztry of such problems. Since hand generating
simple meshes is a very cedious task and generating complicated meshes a very
difficult task see, for example Figs. 1 and 2, it is desirable to have a computer
code that will generate meshes that are functional for solving problems without
losing the flexibility that the finite element ~odes have. INGEN is a general
purpose meshing code to be used for gcnerating both two- and three-dimensional
meshes. The intent, in ceveloping INGEN, has been to include as many options as
possible and thus be able to generate a variety of meshes and still take full

advantage of the finite element method.



The philosophy involved in developing a nodal point mesh is to distribute
the nodal points according to the anticipated field variables. For large gradi-
ents, the nodal points should be dense, and for small gradients, the nodal points
should be sparse. Therefore, it is necessary to make an estimate of how the fiecld
variables change in the different regions of the problem when generating a mesh.
The user of the INGEN code accomplishes the corresponding mesh grading for this
estimate of the gradients by generatina the boundary edges of the mesh with the
desired spacing of nodal points using the line and circular arc generators and
then using surface ard volume (three-dimensional region) generator:, both of which
preserve this spacing. The surface nodal point. generator preserves this spacing
by using the nodal points as they are distributed along the boundary edges as the
criteria for spacing the surface nodal pcints, Similarly, the volume nodal point
generator calculates the interior nodal points using the surface nodal points as
the criteria for spacing of the interior nodal points. Both the surface and vol-
ume generators use linear-blending interpolation equations. as described in Ref. 1

for calculating nodal point coordinates.

II. MODEL

To generate a three-dimensional mesh, study the body to be modeled and de-
termine which regions of this body can be conveniently encloscd by six separate
surfaces. These regions shall be called volumes. The interior nodal points of
these volumes can be generated using the volume generator when the surface nodal
points are known, Next, onto these volumes designate an i, j, k set of indexes
that specify in the different nodal points at the corners of these volumes.
Corners are designated as those points where three surfaces meet. Choour the in-
dexes such that one index does not change for each surface. The values of these
indexes are not critical since they can eesily bhe changed at any time with a built-
in expand option. For each of these volumes determine the surfaces that require
known nodal points for use by the volume generator. The nodal points on these
surfaces can be generated using the surface generator provided the nodal points
along the edges of the surface are known. Finally, for each of these surfaces,
determine the edges that require known nodal points for use by the surface gen-
erator and gene .ate these using the line and/or circular arc generators. Nc
nodal point associated with either a volume, surface, or edge either needs to

be input or generated more than once. When all edges, surfaces, and volumes are



determined they are then input into the code and calculated by the code in the
order of first the edges, second the surfaces, and third the volumes.
Two-dimensional meshes are developed in a similar manner using the surfaces
and edges only.
When boundaries are very irregular, the body being studied may be broken
into multiple regions, which have more boundary edges. This will give greater
control over the boundary surface nodal point calculations and conseguently over

interior nodal point calculations.

III. INGEN

The flow of the calculations in the INGEN code are shown in the following

chart.

FLOW OF CODE
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GENERATE SURFACES

GENERATE THREE-
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|
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TRACTICNS
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GeNeRATE ELEMENTS

Special features of INGEN are described in the following sections. IN( Y is

structured to be compatible with ADINA (see Ref. 7).

Line and Circular Arc Generators

Included in the code is a line gererator and a circular arc generator. These
are used to generate boundary edge nodal points and if desired can be used to
space the nodal points with a geometric progresision algorithm. The circular arcs

are generated using Eulerian angles as described in Ref. 6.



Boundary Surface Generator

Consider a three-dimensional surface; on the boundary of this surface
choose four separate space curves which will serve as boundary edges of
this surface (see Fig. 3). Upon this surface a set of noncrthogonal coordi-~
nates can be designated which will be called body (normal) coordinates
(see Fig. 3). Let these body coordinates ({, n) be defined such that along
each boundary edge one of the body coordinates is not changing and the
other coordinate is the ratio of the distance along that boundary edge
to the total length of the boundary edge. One coordinate will always
be 0 or 1 and the other coordinate will vary from 0 to 1 and this condition will

exist for all four boundary edges. Thus, given a set of nodal points on the

boundary edges, the body coordinates can be calculated for each of these nodal points.
To model a surface with a nodal point mesh it is first necessary to

desipnate nodal points along the boundary edges. Assuming these exist,

let a set of indexes be defined as follows: let 1 be a counter used for
designating the nodal points along the £ coordinate and let j be the counter
used for designating the nodal points along the 1n coordinate (see Fig. 4).
Then, all nodal points along the boundary edges can be designated with

an 1,j set of indexes. Thus for every nodal point on the boundary edges,
the cartesian coordinates (x,y,z) are krown as a function of body coordi-

nates and can be designated with a set of iudexes.
The criterion used in determining the interior nodal points on a surface

is that the rows and columns of nodal points change from the shape of one boun-~
dary edge to the shape of the opposite boundary edge as the rows and columns of
nodal polnts are ‘traversed (see Fig. 5). Using this ‘criterion linear blending
interpolation equations can be derived (see Ref. 1). These interpolation equa-

tions were first derived by Coons in Ref. 2.

x(€,n) = (1-n)x(£,0) + n x(£,1) + (1-£)x(0,n)
+ & x(1,m) - x(0,0)(1-§)(1-n) - x(1,0)E(1-n)

- x(0,1){1-E)n -x(1,1)En



[\

Similar equations exist for y and z. Therefore when the boundary edge nodal point
coordinates are known the interior nodal poir.c coordinates are known as a function
of the body coordinates. There are several ways that the body coordinates can be
chosen for the interior nodal points. For example, Gordon and Hall in Ref. 3
allowed the user to input body coordinates. However, in thi. surface generator

the body coordinates are calculated by considering them as.a mapping of the ori-
ginal surface onto a unit square. This is easily done sinre the body coordinates
vary from O to 1. Again, since the boundary edge nodal points are knnwn as a func-
tion of the body coordinates, the location of these points on the unit square are
known. Using lines to connect opposite boundary edge nodal points, the interior
nodal point body coordinates can be established as the intersection of these lines
(see Fig. 6). Once the body coordinates are established for these interior nodal
points, the cartesian coordinates can be calculated using the interpolation equations.

An example of a mesh generated with this surface generator is shown in Fig. 5.

Volume Generator

Consider a three-dimensional region. Visualize how such a region may be :
modeled with six connecting boundary surfaces. For an example, see Fig. 7. Upon
this three-dimensional region & set of nonorthogonal coordinates can be designated
which will now be cal” 'd the body coordinates. Note that this is an extension of
the body coordinates used for a boundary surface. These body coordinates (£,1),Y)
can be defined as before as proportional values of the length of the boundary
edges. With these coordinates, each boundary surface is a function of two of the
three body coordinates with the third being a constant.

Just as the body coordinates were exteaded in going from a boundary surface
to a three-dimensional region, the index scheme can also be extended. 1In addition
to the i and j iudexes serving as counters for £ and n coordinates, let k be a
counter for the Y coordinate. Then the surface nodal points will be defined as
those nodal points for which one of the indexez does not change. From using the
surface generator each nodal point on a boundary surface can be generaced; thus
each volume boundary nodal point is known as a function of both cartesian coordi-
nates (x,y.,z), and body coordinates (§,1,Y) and is desiounated with indexes. The
criteria used in determining the interior nodal points is that the surfaces of
nodal peints change from the shape of one boundary surface to the shape of the
opposite boundary surface as the surfaces of nodal points are transversed (note
the similarity to bouncaxy surfaces). Using this criterion linear blending inter-

polation equations can be derived (see Ref. 1).



x(E,n,y) = %{(1-n)x(£,0,Y)Mx(E,1,Y)
+(1-Y)x(5 .n.o)'*T!(E.ﬂpl)
+(1-E)x(0,n,Y)+Ex(1,n,Y)}

+ €(€,n,Y)

where .
c(E,n,y) = -H{(I-E)(1-ﬂ)(1—Y)x(0.0.0)+(1-E)(1-n)YX(0.0.1)+(1-E)ﬂ(1—Y)x(0,1,0)
+(1-E)HYZ(0.1.1)+E(1—H) (1"Y)x(1'0|0)+E(1’H)Yx(l90.1)

+En (1~v)x(1,1,0)+Enyx(1,1,1)}

Similar equations may be defined for y(g,n,y) and z(£,n,y). From these equations
it can be seen that when the boundary surface nodal point coordinates are known.,
the interior nodal point coordinates are known as a function of the body coordi-
nates. Again there are several ways that the body coordinates can be chosen for
the interior nodal points. In this generator these are calculated by considering
the body coordinates as a mapping of the original volume onto a unit cube. This
is easily done since the body coordinates vary from 0 to 1. Also, since the
boundary suiface nodal points are known as a function of the body coordinates,
the location of these on the unit cube are known. Using lines to connect
opposite boundary surface nodal points ( from an index point of view) the
interior nodal point body coordinates can be established as the point with

the minimum distance to the three lines (see Fig. 8). The details of this
approach are explained in reference 1. With the body coordinates established

for these interior ncdal points the cartesian coordinates can be calculated

using the interpolation equations.

i, j, k Index Scheme

The i, j, k index scheme is very useful. This scheme is used for generating
nodal points, generating elements, generating boundary conditions (both displace-
ment and traction), eliminating midside nodal points, and calculating surfaces
and volumes.

Most of the uses of this index scheme are to set up "DO" loops within the

code. However, it also creates contcol over elements. For example, consider

the three-dimensional pacabolic element.



(a;

When all three indexes are odd the designated point is a corner nodal

point.

(b) When two indexes are even and one index is odd there is no nodal point
at that point.

(c) When all three iné:xes are even the designated point is a center point

(d)

and may or may not be a nodal point as desired.
When two indexes are odd and one even the designated point is a midside

nodal point and may be eliminated or centered as desired. Depending

upon which index (i, j, or k) is the even inde«,

the midside nodal

points may be eliminated on a preferential basis.

Expansion or Contraction Option

One of the most useful options in the INGEN code is the ability to change
a mesh without altering all of the input. This option is illust-ated in Fig. 9
where the geometrical model on the left was generated and then it was decided to
refine the mesh (expansion). The geometrical model on the right was generated.
Occasionally it is desirable to make a coarser mesh (contraction); this can also

ba dcne in most cases. It is also possible to use contraction for some portions

of the mesh and expansion for other portions. Thus there is great flexibility

in this option.
The ability to use expansion and contraction on meshes is made possible by
Thus if there

using the input of indexes as location counters for index arrays.

is no expansion or contraction and the index i = 5 is input, the code will use

i = 5. However if the i index array is modified with the expansion option when

i = 5 is input the code will use the value which has been substituted in the 5th
location of the i index array for i.
This ontion is further illustrated in the following table which was used to

generate a coarser (contraction) mesh of the model in Figs. 1 and 2.

TABLE J

Demonstration Model (Fig. 1 and 2)

1 ? 3

[ “‘h ]
Index Number (1 2 3 4 5/6 7890|1234 ETQ 7890123457890
Indexes used 1 2 5 0 5 Il L

for the
Original  J P 2 1 0 —

Mesh k f1 2 6 8 0 4 7 __0
&Eﬁéxes used 1|1 5 7 9

for the




From the table, notice how the indexes that were used in the input of the

original mesh are the only indexes that need to be modified for the modified mesh.

Elements

The following elements can be generated with this code:

(1) Tv>-dimensional continuum elements with 4 to 8 nodal points.

{2) Three-dimensional continuum elements with 8 to 21 nodal points.

(3) Truss or beam elements with 2 nodal points.

Material properties for these elements are designated with the i, j, k index

scheme and can be changed as desired.

IV. EXAMPLE PROBLEMS

Demonstration Model

This example problem is for the geometrics shown in Figs. 1 and 2. The
indexes used in generating a mesh of these two bodies and the interface between
them are shown in Fig. 10. Yo generate the mesh of these bodies there were 35
lines and 14 circular arcs generated and there were 23 surfaces and 4 volumes

generated. A coarser mesh was also generated as shown in Table I.

Pressurized Concrete Reactor Vessel (PCRV)

The geometric body this mesh represented is essentially the mesh shown in
Ref. 4 on page 165. The generated mesh is shown in Fig. 11, which also shows
some of the indexes used for this mesh. MOVIE.LASL (Ref. 5) was used to display
this mesh. The mesh shown in Fig. 11 was generated with 64 lines, 24 circular
arcs, 4 surfaces and 7 volumes. Both a coarser (contraction) mesh and a refined
(expansion) mesh was generated from the original mesh. These are compared in
Table II. Since displacement and traction boundary conditions are input with
indexes, these boundary conditions are generated correctly for both the con-

traction-and expansion.



TABLE II

PCRV MESHES

ITEM COARSER ORIGINAL REFINED

NODES 2E0 707 3925

ELEMENT 26 96 704
(20 Node)

i INDEX 1 1l 1l

3 5 9

5 9 17

j INDEX 1 1l 1

2 2 3

3 3 5

5 5 9

7 7 13

k INDEX 1 1l 1

2 5 7

3 7 11

7 11 19

13 25

11 19 35

15 23 43

16 25 47

17 29 53




Controlled Thermonuclear Fusion Reactor (CTR) 2 Pinch Machine

This mesh was generated s B node elements and used the geometric progression
opiion for generating nodal points on the boundary edges. The geneirated mesh is
shown in Fig. 12 along with the indexes that were used. It was generated with
18 lines, 25 circular arcs, 18 surfaces, and 3 volunes. This mesh was used to
solve a magnetic potential problem and used truss elements (not shown in Fig. 12)

for non-zero potential boundary conditions.
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FIGURE CAPTIONS

Demonstration model

Demcnstration model

Cartesian and body co-ordinate systems for a surface

Cartesian and body .o-ordinate systems with i, j, indexes

Int.erior nodal points calculated with the surface generator

Body co-ordinate system mapped on a unit sguare

Cartesian and body co-ordinate system: for a three-dimensional region
Body co-ordinate system mapped on a unit cube

Two finite clement meshes of the same geometry illustrating the
expansion and contraction option

i, 3, k indexes used for the demonstration model (see Figs. 1 and 2)

Pressurized Concrete Reactor Vessel (PCRV) mesh showing the corner
nodal points (20 node elements).

Controlled Thermonuclear Fusion Rzactor (CTR) mest (R node elements).
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