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INGEN: A GENERAL PURPOSE MESH GENERATOR

FOR FINITE ELEMENT CODES

by

William A. Cook

ABSTRACT

INGEN is a general purpose mesh generator for two- and
three-dimensional finite element codes. The basic parts of
the code are surface and three-dimensional region generators
that use linear-blending interpolation formulae. These gen-
erators are based on an i, j, k index scheme which is used
to number nodal paints, construct elements, and develop dis-
placement and traction. boundary conditions.

I. INTRODUCTION——

Approximate numerical solutions to mathematical boundary value problems can

be calculated using finite element computer codes. These solution~ are dependent

upon the mesh used to model the geometry of such problems. Since hand generating

simple meshes is a very tedious task and generating complicated meshes a very

difficult task see, for example Figs. 1 and 2, it is desirable to have a computer

code that will generate meshes that are functional for solving problems without

losing the flexibility that the finite element codes IIave. INGEN iS a general

purpose meshing code to t]eused for gcnerat.ing both two- and three-dirnen:;ional

meshes. The int-entr in developing INGEN, has been to include as many o~:tjons

Imss’ble anclthus be nblc: to generate a variety of meshes and still take full

advantage of the finite element method.

as
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The philosophy involved in developing a nodal point mesh is to distribute

the nodal points according to the anticipated field variables. For large qradi-

ents, the nodal points should be dense, and for small gradients, the nodal pints

should be sparse. Therefore, it is necessary to make an estimate of how the field

variables change in the difterent regions of the problem when generating a mesh.

The user of the INGEN code accomplishes the correswnding mesh grading for this

estimate of the gradients by gerieratino th~ boundary edges of the mesh with the

desired spacing of nodal paints using the line and circular arc generators and

then using surface ard volume (three-dimensional region) generators, both of which

preserve this spacing. The surface nodal point generator preserves this spacing

by using the nodal points as they are distributed along the kmundary edges as the

criteria for spacing the surface nodal p6ints. Similarly, the volume nodal point

generator calculates the interior nodal points usi,~gthe surface nodal points as

the criteria for spacing of the interior nodal points. Both the surface and vol-

ume generators use linear-blending interpolation equations; as described in Ref. 1

for calculating nodal point coordinates.

II. MODEL

To generate a three-dimensional mesh, st~ldy the bociy to be modeled and de-

termine which regions of this body can be conveniently encloszd by six separate

surfaces. These regions shall be called volumes. The interior nodal points GE

these volumes can be generated using the volume generator when the surface nodal

pints are known. Next, onto these volumes designate an i, j, k set of indexes

that specify in the different nodal points at the corners of

Corners are designated as those points where three surfaces

dexes such that one index does not chanqe for each surface.

indexes are not critical since they can c?sily be changed tit

these volumes.

meet. Choo~(?the in-

The values of these

any time with a bllilt-

in expand option. For each of these volumes determine the surfaces that require

known nodal points for use by the volume generator. The nodal points on these

surfaces can be generated using the Surface generator provicled the nodal points

along the edges of the surface are known. Finally, for each of these surfaces,

determine the edges that require known nodal points for usc by the surface gen-

erator and gent ate these using the line ancl/or circular arc generators. Nc

nodal paint assocj.ated with either a volume, surface, or ed~e cit~~er needs to

be input or generated more than once. When all cclgc~, surfaces, and volumes are



determined they are then input into the code and calculated by the code in the

order of first fie edges, second the surfaces, and third the volumes.

Two-dimensional meshes are developed in a similar manner using the surfaces

and edges only.

When boundaries are very irregular, the body being studied may be broken

into multiple region> which have more boundary edges. This will give greater

control over the boundary surface nodal point calculations and consequently over

interior nuclalp9int calculations.

III. INGEN

The flow of the calculations in the INGEN code are shown in the following

chart.

FLOWOF CODE

EEF---’i’’:’’’””’.-~ ‘-lGENERATE SURFACES

GENERATE THREE- CALCULATE SURFACE

DIMENSIONAL AREAS
. CQKULATE VOLUMES

J

L.GENERATE NOD:L GENERATE NODAL

?OINTS
. GENERATE ELEMENTS bOS FROM

TRAc71cNs Ji

Special features of INGEN are described in the following sections. INc !/ is

structured to be compatible with ADINA (see Ref. 7).

Line and Circular Arc Generators—.—-.

Incloded in the code is a line ger.era;or and a

are used to gc~nerate boundary edge nodal points alld

space the nodal points with a geometric progression

arc generatctd using Eulerian angles as described in

circular arc generatol. These

if desired can be used to

algorithm. ?’h? circular crcs

Ref. 6.
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Boundary Surface Generator

Consider a three-dimensional surface; on the boundary of this surface

choose four separate space curves which will serve as boundary edges of

this surface (see Fig. 3). Upon this surface a set of nonLrthogonal coordi-

nates can be designated which will be called body (normal) coordinates

(see Fig. 3). Let these body coordinates (~, II)be defined such that along

each boundary edge one of the body coordinates is not changing and the

other coordinate is the ratio of the distance along that

to the total length of the boundary edge. .~e coordinate

be O or 1 and the other coordinate will vary from O to 1

exist for all four boundary edges. l’bus,given a set of

boundary edge

will always

and this condition will

nodal points on the

boundary edge~the body coordinates can be calculated for each of these nodal poir)ts.

To ❑odel a surface with a nodal point mesh it is first necessary to

designate nodal points al~ng the boundary edges. Assuming these exist,

let a set of indexes be defined as follows: let i be a counter used for

designating the nodal points along the ~ coordinate and let j be the counter

used for designating the nodal points along the IIcoordinate (see Fig. 4).

Then , all-nodal points along the boundary edges can be designated with

an i,j set of fnde-xes. Thus for every nodal point on the boundaq edges,

the c.artesian coordinates (x,y,z) are kl~.ownas a function of body coordi-

nates and can be designated with a set of indexes.

The criterion used in determining the interior nodal points on a surface

is that the rows and columns of nodal points charlge from the shape of ~ne boun-

dary edge to the shape of the oppasite boundary edge as the rows and columns of

nodal points are traversed (see Fig. 5). Using this ‘criterion linear blending

interpolation equakions can be derived (see Ref. 1). These interpolation equa-

tions were first derived by Coons in Ref. 2.

x(E,n) = (1-ll)x(E,o) + n X(E,l) + (1-c)x(o,n)

+ E F(l,n) - X(o,c)(l-c)(l-rl) - X1.o)c(l-n)

- x(o,l)(l–~)1-l–X(l,l)(rl
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Similar equations exist for y and z. Therefore when the boundary edge nodal point

coordinates are known the interior nodal poir,i coordinates are known as a function

of the body coordinates. There are several ways that the body coordinah.es can be

chosen for the interior nodal ~ints. For example, Gordon and Hall in k-f. 3

allowed the user to input body coordinates. However, in thi. surface generator

the body coordinates are calculat~ by considertig them as a mapping of the ori-

ginal surface onto a unit square. This is easily done since the bcdy coordinates

vary frcunO to 1. Again, since the boundary edge nodal poi~ts are known as a funct-

ion of the body coordinates, the location of these points on the unit square are

known. Using lines to comect opposite boundary edge nodal points, the interior

nodal point body coordinates can be established as the intersection of these lines

(see Fig. 6). Once the body coordinates are established for these interior ndal

~tits, the cartesian

An example of a

co~rdinates can be calculated using the interpolation equatians.

mesh generated with this surface generator is shown in Fig. 5.

Volwe Generator---

Consider a three-dbensional region. Visualize how such a region may be

modeled with six connecting boundary surfaces. For an example, see Fig. 7. Upon

this three-dimensional region a set of nonorthogonal coordinates can be designated

which will now be cal- d the body coordinates. Note that this is an extension of

the body coordinates used for a boundary surface. These body coordinates (~,rl,y)

can be defined as before as proportional values of the length of the boundary

edges. With these coordinates, each boundary surface is a function of two of the

three body coordinates with t_hethird being a constant.

Just as the body coordinates were exte;lded in going from a boundary surface

to a three-dimensional regio’1, the index scheme can also be extended. In addition

to the i and j iudexes sening as counters for C and rlcoordinates, let k be a

counter tor the Y coordinate. Then the surface nodal points will be defined as

those nadal pints for which one of the indextiz does not cha~ge. From using the

surface generator each nodal point on a boundary surface car,be generated; thus

each volume boundary nodal point is kncwn as a function of both cartesian coordi-

nates (x,y,z), and body coordinates (~,~1,Y) and is designated with indexes. The

criteria used in determining the interior ndal points is that the surfaces of

nodal points change from the shape of one boundary surface to t-he shape of tie

opposite boundary surface as the surfaces of ncdal points are transverse (note

the similarity to boundary surfaces) . Using t-hlS criterion linear blending inter-

polation equations can be derived (see Ref. 1).
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x(~, q,y) - %{(l-ll)x(c,o,y)+nx(c,l,y)

+(1-y)x(c,n.o)m(csnDl)

+(1-g)x(o,ll,Y)+&(l,n,Y)}

+ C(c,n,y)

where

C(c,n,y) = -+{(1-0(1-n)(l-Y)x(o,o,o)+(l-E) (1-n)Yx(o,o,l)+(l-E)n(l-y)x(o,l,o)

+(l-g)~yx(o,l,l)+~(l-n) (l.-y)x(~,o,o)+L(l-n)Yx(l*o.l) .

+gn(l-y)x(l,l,o)+grlyx(l.1,1)1

Sfmilar equations may be defined for Y(C,q,Y) and z(~,~,Y). From tiese equations

it can be seen that when the boundary surface nodal point coordinates aze known,

the interior nodal point coordinates are known as a functian of the body coordi-

nates. Again there are several ways that the body coorti”nates can be chosen for

the interior nodal points. . In this generator these are calculated by considering

the body coordinates as a mapping of the uriglnal volme onto a unit cube. ThiB

is easily done since the body coordinates vary from O to 1. Alno, since the

boundary surface nodal points are known as a function of the body coordinate,

the location of these on the unit cube are known. Using lines to connect

opposite boundary surface nodal points ( from an index point of view) the

interior nodal point body coordinates can be established as the point with

the minimum distance to the three lines (see Fig. 8). The details of this

approach are explained in reference 1. With the body coordinates established

for these interior ncdal points the cartesian coordinates can be calculated

using the interpolation equations.

i, j, k Index Scheme

The i, j, k index scheme is very wefti. This scheme is use.3 for generating

nodal points, generating elements~ generatfi9 boundary conditions (bath displace-

ment and traction) , eliminating midside nodal points? and calculating surfaces

and VOIUIWS.

Most of the uses of this index scheme are to set up “~” loops within the

code. However, it also creates control over elments. For ex=wle, consider

the three-dimensional pafabolic element.
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(a;

(b)

(c)

(d)

When all three indexes are odd the designated point is a corner nodal

point.

When two indexes are even and one index is odd there is no nodal pint

at that point.

When all three inZ:xes are even the designated point is a center pint

and may or may not be a nodal point as desired.

When two indexes are odd and one even the designated point is a midside

nodal point and may be eliminated or centered as desired. Depending

upon which index (i, j, or k) is the even index, the midside nodal

points may be eliminated on a preferential basis.

Expansion or Contraction Option

One of the most useful options in the INGEN code is the ability to change

a mesh without altering all of the input. This option is illustrated in Fig. 9

where the geometrical model on the left was generated and then f.twas decided to

refine the mesh

Occasionally it

}~edcne in most

of the mesh and

in this option.

(expansion). The geometrical model on the right was generated.

is desirable to make a coarser mesh (contraction) ; this can also

cases. It is also possible to use contraction fc~rsome Prtions

expansion for other portions. Thus there is great flexibility

The ability to use expansion and contraction orImeshes is made Wssible by

using the input of indexes as iocation counters for index arrays. Thus if *&ere

is no expansion or contraction and the index i = 5 is input, the code will use

i=5. However if the 1 index array is modified with the expansion option when

i = 5 is input the code will use the value which has been substituted in the 5th

location of the i index array for i.

This ontion is further illustrated in the following table which was used to

generate a coa~ser (contraction) mesh of the model in Figs. 1 ad 2.

TABLE 1

Demonstration Model (Fig. 1 and 2)

—— .—.—.. ——-

234567890J_2345 6789_0 12345

EE~ ~:~g: ,Ei9 -:-’ ::: ~

.—.—. _.— —..

.—. —.—
for tile .
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From the table, notice how the indexes that were used in the input of the

original mesh are the only indexes that need to be modified for the modified mesh.

Elements

The following elements can be generated with this code:

(1) ~~o-dimensional continuum elements with 4 to 8 nalal points.

(2) Three-dimensional continuum elements with 8 to 21 nodal points.

(3) Truss or beam elements with 2 nodal points.

Material properties for these elements are designated with the i, j, k index

scheme and can be changed as desired.

Iv. EXAMPLE PROBLEMS

Demonstration Model—

This example problem is for the geometries shown in Figs. 1 and 2. The

indexes used in generating

them are shown in Fig. 10.

lines and 14 circular arcs

generated. A coarser mesh

a mesh of these two bodies and the interface between

‘l-ogenerate the mesh of these bodies there were 35

generated dnd there were 23 surfaces and 4 volumes

was also generated as shown in Table I.

Pressurized Concrete Reactor Vessel (PCRV)—

The geometric body this mesh represented is essentially

Ref. 4 on page 165. The generated mesh is shown in Fig. 11,

some of the indexes used for this mesh. MOVIE.IJASL (Ref. 5)

the mesh shown in

which also shows

was used to display

this mesh. The mesh shown in Fig. 11 was generated with 64 lines, 24 circular

arcs, 4 surfaces and 7 volumes. Both a coarser (contraction) mesh and a refined

(expansion) mesh was generated from the original mesh. These are compared in

Table 11. Since displacement and traction lmundary corlditions are input with

indexes, these boundary conditions are generated correctly for both the con-

traction and expansion.



TABLE II

PCRV MESHES

ITEM C3ARSER ORIGINAL REFINED

NODES 250 707 3925

ELEMENT 26 96 704

(20 Node)

j INDEX 1 1- 1

2 2 3

3 3 5

5 5 9

7 7 13

k INDEX 1

2

3

7

11

15

16

17

1

5

7

11

13

19

23

25

29

1

7

11

19

25

35 6

43

47

53



Controlled Thermonuclear Fusion Reactor (CTR) Z Pinch Flachine

‘rhismesh was generated ‘[sB node elements and used the geometric progression

option for generattig nodal mints on the boundary edges. The gene~atcd mesh is

shown in Fig. 12 along with the indexes that were user?. It was generated with

18 lines, 25 circular arcs, 18 surfaces, and 3 volums. This mesh was used to

solve a magnetic potential problem and used truss elements (not shown in Fig. 12)

for non-zero potential boundary conditions.
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Figure 2 --

Figure 3 --

Figure 4 --

Figure 5 --

Figure 6 --

Figure 7 --

Figure 8 --

Figure 9 --

Figure 10--

Figure 11--

Figure 12--

Demonstration

gemcnstration

Cartesian and

Cartesian and
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FIGURE CAPTIONS— —

model

model

body co-ordinate systems foz a surface

hdy io-ordinate systems with i, j, indexes

Inl:erior nodal po!nts calculated with the surface generator

Bcd;tco-ordinate system mapped m a unit.square

CarLesian and body co-ordinate system: for a three-dimensional region

Body co-ordinate systeinmapped on a unit cube

TWO finite clement meshes of the same geometry illustrating the
expansion and contraction option

i, j, k -indexes used for the demonstration model (see Figs. 1 and 2)

Presst,rized Concrete Reactor vessel (PCR”V)mesh showing the corner
nodal points (20 node elements) .

Controlled Thermonuclear Fusion Reactor (CTR) Tleski (R node elements).
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