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ABSTRACT
The radiation'diffusion approximation greatly simpiifies'radiation
transport probleme. Yet the abplication of this method has often been
unnecessarily restricted to optically thick regions, orﬂhas been extended
through the uee of such ad hoe devices as flux limiters [13, 14]. The‘
purpose of this paper is to review and draw attention to,the use of the more
physically appropriate temperature jump boundery conditions for extending'

- the range of velidity of'the;diffusion approximation. "fioneering work by
Deissler [3], Slegel and Howell [7], and others [9,'i0 11] has shown that
temperature Jump boundary condltlons remove the 31ngular1ty 1n flux that
occurs in ordinary diffusion at small optical thicknesses. In this review
paper Deissler's equatlons for frequency—dependent Jump boundary conditions
are presented and §pec¢itic geometric ‘examples are calculated analytically
for steady state radiation transfer. When Jump boundary conditions are
applied to rediation diffusion,vthey yield exact solutions which are
naturally flux- limited and'geometry—corrected. We believe that the
presence of'tempefature Jumps on source boundaries is‘probably responsible
in some cases for the past need for imposing ad hoc flux-=limiting
constraints [13, 1L] on pure diffusion solutions. The solution for transfer
between plane siabe, which is exact to all orders of optical thickness, also

provides & useful tool for studying the accurecy of conputer codes.,
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I. INTRODUCTION: TEMPERATURE JUMP IN THE BOUNDARY LAfER OF RAREFIED GASES
Température jump [1] is a well-established phenomenon in the ﬁolecular
dynamics of rarefied gases (gaées vhose Knudsen number Kn.= A/L is not small,
where‘A is thé~molecular mean free path and L is a characteristic dimension
of the container). ‘In one of the most celebrated examples of this phenome-
non, Millikan found it necessary to correct for théH&ssoci&ted "velocity
slip" in his‘bil,drop experiments'[z]. In this introductory section,
temperatureAJumﬁ and velocity slip will be described qualitatively for the
case of raféfied‘gases, and then‘in the next section the quantitative equa-
tions for radiation transfer with‘teﬁperature Jump, as‘Aerived by Deissler

[3], will be presented and explored.

Consider a gas at'temperaturé Tg flowing past a well at temperature Tw
55 in Fig. 1. On the average, a gas molecule hits the wall as a result of
a collision thét occurred a distance A from the wall. First consider the
case of isentrbpic gas flow with gpecular feflection. Since the interaction
with the wall is elastiq,'tﬁe magnitudes of the velocity-comp&nents of a
molecule are not changed during thé specular reflectioﬁ, and therefore the
reflected molecuies display the.same Maxwelliah distribution as the incident
molecules. Tﬁat is, specular reflection does not perhit éﬁy adjustment of
the mass velocifj and temperature of the gas toward.that of the wall. It
implies perfect slip flow and no accommodation betweeﬁ the temperatures of

the gas and the boundary.

Now consider nonisentropic flow and diffuse reflection. In this case

the molecules strike the boundary with complete loss of the tangential
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components of velocity, and they escape from the wall after attaining either
partial or complete thermal equiiibrium with the wall. The direction of
emission is independent of the incident direction. Since the reflected
molecules come off the wall in a Maxwellian (or perhaps even non-Maxwellian)
distribution which corresponds to a temperature that is different from both
the gas temperéture Tg and the wall temperature Tw’ thére is formed adjacent
to the wall a'boundary layer with a non-Maxwellian molecular distribution.
The requirement that flux be continuous over the boundary results in a
discontinuity in temperature and velocity over the boundary layer. This

"temperature'jump" is shown schematically in Fig. 1.

In one of the first considerations of temperature'jump, Maxwell [L4]
introduced a coefficient f which is the fraction of incident molecules that
are diffusel& reflectéd, and therefore (1 - f) is the fraction that are
speéuiarly réflected._ Subsqueﬁt experiments by Millikan [2] verified the
existence of f’in rarefied gas flow. Preséntaday experiments measure this

"coefficient of slip flow" very accurately for various materials.

Vélocity slip occurs over a distance of the order‘qf the mean free
path., If the~Knudsen number is small, the temperatgre and velocity
discontinuitiés are neéligibly small and ordinary confinuum descriptions
such as pureAaiffusion are accurate. But when the Knudsen number is around
unity, the éffect of temperature jump becomes very important. In gases at
ektremely hiéh Knudsen numbers, the reflected stream of molecules does not
interact much with the incident stream. This repreéents yet another flow
regime generally referred to as 'free molecular flow'". In Fig. 2 these flow

regionis are illustrated schematically for a typical gas.
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Perhaps the simplest quantitative example,of-siip'flow is exhibited by
a'gas streaming.slowly through a tube. If the molecules are diffusely
reflected from the walls, kinetic theory shows that thé flux of molecules
hitting the ;all.ffom a gas at rest is ¢ = 1/4 nc.where n is the particle
density and c ié the mean velocity. If the moleculés-have an average mass

'motion v << ¢ parallel to the wali, the tangential momentum imparted to the
wall is 1/4 nemv. But éincé the boundary layer is made up half of incident
molecules enterihg with the tangentiel velocity v and half of diffusely

~reflected moiecules with zero average tangential velbcity, the. average tan-
gential velocity'of the layer is v, = v/2 and the tangential momentum

0
imparted to thé_wall is reallva'= 1/2 nmcvo.- If the viscosity away from
the wall is n aﬁd_?he effectivé ffiction of the bounaary layer is B, the
‘coefficient of éiip is defined by é = n/B. But the coefficient of friction
B is just thg tangential pressure P divided b& Voo i;e.,.s = 1/2 nme.

Since from kinetic theory n v nmcA we therefore find that ¢ ~ A. That is,

the coefficient of slip is proportional to the mean free path.

The above exdmples illustrate the physical meaning of temperature Jjump
and velocity'slip in molécular-flow. An analogous situation occurs when the
molecules are replaced by photons streaming through a'trénsparent medium. ‘
In a manner éhtiie;y similar to the molecular case, cqnservdtion of flux at
a source bound;ry can result in a temperature disconﬁinﬁity at that boundary.
In the simplest exémple, if the wails of the medium are black, the direc-
tionality of thg'incident flux is lost and the photoﬁs are diffusely re-

emitted. In the next simplest example, if the walls are grey (i.e., their

emissivity and absorptivity do not depend on angle or frequency, but do
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d?pend_on temperature),,thén since the grey surface is not a perfect absorber
only part of‘its incident photon flux is diffusely reflected. ‘When the
"photon Knud;en.number" AY/L is of the order of unity, the non-Planckian
distribution of diffusely reflected phqtoﬁs creates a boundary layer with
temperature jump.at a source boundary-. 'The flux aéroés the boundary is
continuous but the temperature'is not. In the nextAsection the radistive

transfer equations for such a "Knudsen radiation field" are examined.

II. TEMPERATURE JUMP iN THE RADIATION DIFFUSIOﬁ APPROXIMATION
4In this section exact soiutions to the diffusiéﬁ equation will be
explored in the light of jump boundéry conditibns. Although the emphasis
will be on steady state solutions, many of the radiative heat balances

considered here are not limited to steady state conditions.

The second-order steady state diffusion equation was first derived by

Rosseland [5] and can be written
de . '
e BRRLY .
qz T 3k, 9z (1)
v .

where qz is the'flux in the z~-direction, Ky is the absorption coefficient
at frequency v (opacity = 1/kp), and e, is the spectral emissive power

given by Planck's,distribﬁtion function.

Referring to the geometry shown in Fig. 3, conslder rudiulioua
originating at volume element dV and streaming through area dA at point

(xO Yo zo). Suppose dA is close to a wall in the x-y plane, Then the
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jump boundary conditions that apply to Eq. (2) at the wéll were derived by
‘Deissler [3] (see Appendix A) and they can be written in the following

frequency-dependént form for the temperature Jump to second order:

) A
+ ( - == o =
t (e, = ey <e 2>qzoi s\ | Y2 T2 (2)

where e, is @hé eéissive power (oTh) of the wall, e, ié fhe emissive
power at frequéhcy v of the transparent medium adjacent £6 the wall,
and e is the wall emiésivity’(i.e., the ratio»of the aétﬁal emitted energy
of the wall tc its emitted energy if the wall were‘a Blackbody). (Emissiv-
"~ ities afe normaliy deduceﬁ from the measured spectra of radiating objects,
and emissivities often apbroach unity as high tempefaturés are attained.)
The + sign appiies to a wall below dA and the minus;siéh to a wall above
dA. The subscfié# "0" implies evaluation in the traﬁsparent medium
infinitesimal;y ciose to the wall. Even when there ié no opéque wall,
similar équationsAfor discontinuities in emissive power betﬁeen two -
absorbing—emiftihg media with sources or sinks can be derived in the same
menner. On the other hand, boundéries between stagnant absorbing-emitting

regions with no sources or sinks do not generate a temperature Jump [6].

If Eqs. (1) and (2) are required in a frequency-independent form, they
- can be integratgd'over all frequencies to obtain the total radiative flux
and the total éﬁissive power. Writing Planck's distribution function in

the form
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P —— 2rhy’ o ' (3)
v o c2‘exp [hval/h ! e-l/h] 1

where e with no subscript v represents the total emicsive power (oTh)

of the transparent medium, Eq, (1) can be integrated to yield
a, = T3 I W)
where e = c;Th and K is the Rosseland mean absorption coefficient

. 0o de :
1 _ i v : :
K. j(; c e - (5)

%4) () () (6)

where
re de i
1 f 1l v - :
5 —f 5 30 4V o (7).
s 0 xr . )

and

@ ’ :
. 1 aev .
, 2. 2 :
0 « . .
v .
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For a grey medium, K, is independent of v and I = 0. Equations (1)-(2)
can be used'directly in frequency-dependent diffusion codes; Egs. (4)-(8)

can be used in single group diffusion codes.

Thé Jump 5oundafy conditions (2) and (6) play tﬁe same role as flux
limiters, but iﬁstead of being ad hoc corrections tﬁey_are exact to secona
order (see Aﬁpendix A). It is our belief that the jump boundary conditions
represenﬁ a#:leést partly the.physical origin'of the'neéessity for imposing

flux limiting constraints on pure diffusion solutions.-.

In the next section we shall present three specific examples of the
use of these eduations for tﬁe prsblems of transfer féfween (1) plane slabs,
(2) concentric cylinders, and (3) concentric spheres. .

III.‘ TRANSFER BETWEEN PLANE SLABS, CONCENTRICvSPHERES, AND CONCENTRIC
CYLINDERS SEPARATED BY AN ABSORBING MEDIUM
‘The use éf Egs. (4)-(8) is straightforward. Cdnéidér first the
infinite paréllel'plane éiébs shown in Fig. U4(a). The éap between the
slabs, of widfh'L, is filled with an absorbing medium with Rosseland
abacrption ooéfficieﬁt Kr; Tn this case the steady‘state flux q is

independent Of‘Z'aﬁd Eq. (4) is integrated to give

Lo 3Kr ; .o
el.f e=-—Tp-az | : : : (9)
or
e - e . :
1° %2 3L , |
== | _ (10)

where e and é2'are the emissive powers of the transparent medium arbitrarily
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:close to walls 1 and 2 respect;vely.' The energy Jjumps at the walls become,

from Egs. (6)-(8),

wl 11 1.9 2 ' - ‘
T e = S
3 ;2% k. alI - ‘ (11)
at wall 1 and
e =~ € : :
2 w2 _ 1 }‘__9_2 ' .
q €5 2 32'Kr ql (12)
at wall 2. ‘

Assuming a grey medium (I = 0) and adding Egs. (10)=(12) gives

g9 - 1 (13)
)N by T o3xL .1 L1 -
»O(Tll- T2)v‘ < €y * €, -1

where Tl and T2 are the wall temperatures. This ratio represents an exact
éxpression fér thé’flux between parallel slabs througﬁ:é material of opacity
1/ep. . In this case all derivativés of order greater‘¥hgn second vanish, so
Eq. (13) is exact to all ordérs and for all optical £hiéknesses. If the

walls are perfect blackbodies (el = g, = 1) then this expression reduces to

2
the Milne bouhdary condition
59; " 3kL (1k)
_o(Tl - T2) -1+ 5 :

Equation (13) dlso reduces to the correct form in the case of infinitely'

small optical thickness kL. The exact solution for the flux as a function
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of optical thickness kL is'shgwn in Fig. 5. Also shown is the pure
diffusion solution without boundary conditions, viz. Eq. (10). At large
values of kL the pure diffusion solution becomes exact. The effectiveness -

of the Jjump boundary condition as a flux limiter is obvious.

The corresponding temperature distribution in an absorbing material

between two slabs is given by

This dis.t‘,‘r\il‘)ution‘ixs shown as a function of z and of the optical
thickness KL‘injFig. 9. The definition of témperaﬁﬁre‘in a vacuum
(kL = 0) is,oﬁscure, but these equétions yieid the avérage wall
temperature thrbﬁghout in‘that liﬁit. The actual temperature jump at the

wallS‘is'givén in.Fig. 10 as a function of optical thickness:

In the case of radiating concentric spheres such as in Fig. (bb), the

flux q is prdpqrtional to l/r2 and so integration of (k4) gives

—~
—

v
\¥) |
~

T
1 4 1\r r,

where ql is the steady state flux emitted by surface 1. Using

B .
£ = x2 + y2 + 2z°, the derivatives in the jump boundary conditions (6) may

be evaluated at walls 1 and 2 to give

e - e_ . K
L_i=<l__£>+% S TR (26)
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and

2 .
r Kr [r
Y 31 _9_ R
)<r> "8 2 3 x:4h “rI<r> ()
s "2

Adding Egqs. (15)-(17), the final expression for the inverse of the steady

state flux betWeén concentric radiating spheres is

TR " 2
22 8- D)

' | n r, e, 2 € 2/ \r,

e . 3 - L

< 3/Kr>21 <1) 5 2[‘ <l>

+ = — 1l ~{— + =1 q K_. R (18)

- 8 \Ks KTy \r, 32 1y r,

Note that this is parameterized in terms of the ratio of the radii (rl/ro)

-r.)

and the quant}ty Kr 2 1

. In terms of the optical thickness kL = k(r
1 : '
Eq. (18) becomes (where x is meant to be the Rosseland absorption

coefficient Kr)

L L 2
) (-9 (-9
a4y Y r, e, 2 e, 2/\r,
‘ 3
3 K \2 1 r2 rl ‘
e\ o \r Y|t -\%
s’ 1 2
r 2 T 4
9 2 2 2 1
+—3—_51 q, (L) zjl<;-l—-1> l,'(r:,) . (19)

The correct solution for the flux between empty concentric spheres

is [7]

c(Ti - T
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"~ For cbmpafison, in the limit of small optical thickness and a grey

medium (I = 0), Eq. (19) reduces to -
S | 2
1 S )4
kL -+ 0' 9 ' €1 2 €5 2 r;
. 3 [k 2 iim 1 (2 > 1 ° .
*E(T> KL&o'.a(?- 1'(?) ~ (21)
‘ s - 1 27 1

This should be identical to -Eq. (20). Therefore the second-order solution

(19) is exactly correct‘only for r, > Ty,
2
)

. The second-order sphere solution is not exact, as it was in the

aﬁd its accuracy goes as
(rl/r2 '
case of slab flow, because the higher order derivatives do hot vanish in the

case of concentric spheres.

The steady state temperature distribution can be calculated from

(15)-(17) with the use of (18) for q,

' h. h' - 2
) - T e <.l_- _1_> . <£_‘_ ;.><i>
ay L "1 \r r, €, 2 r,
K r2 r Ll'
3_r’1 _9 2 (1
"B o 3" wmYy T r2\) (22)
s "2 '

In the limit of blackbody walls (el =g, =1) and a grey medium

2

- ) ‘ 1 . i '\l
(I = 0) the solullun fur concentric sphcrec becemes, assuming Ko = ¥

ol = o r. 2

. r
gl (2)
9 Ts To

w31 (X2 I | |
* 8 kL <rl - l) 1= <r2> - (23)




-13-

for the flux (q(r) = q; ri/re).and
Lo b S, 2 - 3
ofT" = T5) ~ 3 o(1 1 1(%1 31 (N1
—= Chn\r-5)re\s) se\s (24)
! 2/ <\'2 1 \T2

for the temperature distribution. -These temperature &isfributions, which

are hyperbolae in Th and r, are shown in Fig. 11 for the. case rl/r2 = 0.75.

The flux from Eq. (23) is plotted as a function of optical thickness
kL in Fig. 6 for several values of rl/fe. Again thé'jump boundary condi-

tions provide a very effective flux limiter. When ¥ = r, the Milne condi-

1-= ¥

tion is retrieved.

Finally, the corresponding equations for concentric cylinders, as

shown in Fig. U(c), are

L-Ftm 2 | S (25)

e . - e -
_91__1=(_1__;>+_3g__+9_,<2;[q1, (26)
q, r R :

and

.. . . ' 2
%2 7 w2 =»(;__ ;) (f;) S N 9_<f.1.) 2 g, I (27)
. Q- .€2 2 T>/) . 16 Ki r2 32 T2 r
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which give for the final flux‘fof‘concentrié cylinders;[3]

o(T) - T,) _ 3L ) 1 1\, T1f1 1
T = — In{—] + ———-é- +.r -E—:——;
9 h(fg 1) \n £y Tp\& 2

1
K\
3 r 2
(EZ)(=-1 2
16 \k r, (r2>
+ = —) -1
. 2. T
r, 1
(2
1
- 2 2 - y »
PRI Sl 1) IY o)
T2 T2 2 [\r 1 -
g L r 1
2
. ry
In the limit kL + O this reduces to
Lok ' '
o(T" - T.) - r _ o
_'_"2_,:1'—‘*‘1.—1(3;—“) . - (29)
- 1 T2 \fo :

which is exactly éorrect as ry > r2 and which has an accuracy proportional

B0 (rz/rl). In the limit r, * T the plane slab solution resppears:
bk

oty = T) g 1 1

=Wt te,

4 1 fe

m

This cylindfical geometry was studied by Howell and Perlmutter using
a NASA Monte Carlo code [6]. Their exact computational results are com-
pared in Fig. 7 with the results of Eq. (28). As ry divérges from r, the

solution given by (28) falls off from the exact Monte Carlo solution below
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'cértain critiégl values of optical thickness. This is due to the increasing
contribution of(higher-order terms. Howgver to obtain fast computations
that would cloSély.yield the correct results; one could computationally

'extrapolate fhe solution to unity after the turnihg point, as shown by the

dotted lines in Figs. 5 and 6.

IV. TEMPERATURE DISCONTINUITIES ON THE BOUNDARIES OF SOURCE . REGIONS
Consider-two adjacent semi-infinite regions withftheir common boundary

in the x-y plane and with absorption coefficients Ky and Ko respectively, as

in Fig. 8. Applying Eqs. (A6) and (A8) in Appendix A, the net flux over the

interface is

dEabove _ dEbelow

n=0 v=0 s=0 Ky Ay 1
. n - . .
C de \ -
- v - (31)
P\ Y 5 VTS oS ‘
*2 L 2 I '

Neglecting térms of higher order than two, Siegél and Howell give

the corresponding emissive power jump as [T]
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. 2
e, - e =4q +(- 3 .
2 ‘1 vz 3 1 1 5 5
2 2 2
. 1 3 ev . 1 9 ev N l_a ev
@ \az2 2 ay® 22
a1 y 1
: 2 2 w2
2 3 e, . l_a e, . l_a e,
'2K2 az2 2 3 2 2 3 2
2\ y x 72

Under certain conditions this jump can be nonzero. In ﬁarticular, as

we show below,xthere is a temperature jump at the bouhdary of a source

region.

First consider the case of two adjacent regions with no sources or

 sinks. Continuity of flux over the boundary requires that

. =_L<de_v> =__h_<ﬁ>’
z ' '3Kl dz 1 3K2 dz >
dqg -

But ¢ must bé constant since no sources are present (i.e., —Z = 0) and
Z . dz

therefore dgev/dz2 = 0. That is, the second derivatives in (32) vanish

and (32) reduces to

e

That is, there is no temperature Jump uver a stagnant boundary.

Oh the other hand, consider the presence of sources in the two regions

and define the-sourceé by the flux gradients

(32)

(33)
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» | 3% ‘

S. == dJ- = - )4 v - (35)
i \dz/. 3k, 2

i i i \oz . :

. i A
In this case the emissive power jump given by (32) becomes

e -e=q -2 L(fz) +l_<afy_>

2 1 VZ 3 Ky 3z 1 Ky 9z 5

S 2% 3% o
. 111 v 1 v .

+§—< 42>-—§< 2) (36)
R S 02 92 5 . »

1 %2

But since (33) is still valid on either side of the boundary this becomes

e eg 2| )+_1_<_3_‘_g )
€ T .4 Lz ~. 3] « T4y K L 4

1 2 |
- 3k, 3k = :
R S I S S I S L
T2 2 ( L Sl) 2 < L S2> : (37)
, Ky Ko o
which reduces to
S S :
2 3 ( 1 2)
e, -9 =2|—- — (38)
2 1. 8 ST A -

Thus at source boﬁndaries there is a temperature jump. This fact was noted
in 1967 by Howell [8] in his more exact calculations in terms of integral

equations, which'yield a factor of % insteaa of the %-above.

V. CONCLUSION
Recent developments in the literature of thermal radiation transfer have

indicated the imﬁprtance of temperature jump boundary conditions at walls
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.and on source boundarie§ in general. In diffu§ion éppfoximations, either
analytic or from computer codes, these boundary conditions rightfully belong
in the solution and indeed’at low optical thicknesses they can have a
drastic influence on the amount of radiative flux that ié transferred ffom

one region to another.

The equations presented in this paper involve ;everal assﬁmptions and
approximations that should be explored. No attempt has been made to suggest
hﬁw the wall emissivity sdmight be calculated, although for most high-
temperature caseé_a blackbod& assumption (e = 1) is reasonable. The jump
boundary conditiohs need to be derived for nongrey §Cattering media. Non-
isotropic fiuxes‘$hould be considered more explicitly:' Analytic soclutions
can be derived for geometries other'fhan those considered here.' The effects
of large variatiéns in the absorption. coefficient, such as are often
encounﬁered in rea1 materials, need to be explored. Thus there is a great
desl of intereéting work thaf can be done to extend this'theory. Some of
it already exisfslin the numerous papers on the spbjéét'that haye appeared

in the last decade [3, 6, 7, 8, 9, 10, 11, 12].

In spite of all these complications, the basic idga remains clear:
that the application of tempe}ature jump boundary conditions, even in crude
approximation; can correct a pure diffusion solution at low optical thick-
nesses to give a solution that is much close; to the correct solution.
Their application markedly extends the range of validity of the diffusion

approximation.
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APPENDIX A: THE GENERAL EQUATIONS OF ENERGY FLUX AND TEMPERATURE JUMP
- IN THE DIFFUSION APPROXIMATION
We present here the derivation of Deissler [3] for the temperature
Jump boundary copditions in the photon diffusion approximation. Consider
'radiation streamiﬂg through an area element aA in a tfansparent medium at
point (xo, yo; zo) as in Fig. 3. The radiation is emittéd fromAvolume
element 4V at (x;:y, z). The spéctral emissive power ev~(e.g., ergs/cm2 sec)
is defined by Planck's equation writteﬁ in a differen£ form:
a2 hv3

(Al) .. e = - .
VoGP exp [hv ol/h kT eél/h] -1

where v is the frequency, ¢ is the speed of light, h is. Planck's constant,

o is the Stefan—Boltzmann constant, k is the Boltzmann constant and

- . Y.

eg = ¢T . Expand e, in a Taylor series about (x0 yo zo).
= L . _ 3 .a'.

(a2) e=.z-—,(z—2)(— + - vy (&
, v &y n! 0" \dz/, 0" \dy/q

| f (# —Axo) (%E>o ’ e, -

Applying the binomial theorem twice to the factor in brackets,

)v-s'

o i i c (z - z'Q)n-v (y -y 7 (x - xq)°
(A3) % (n - v)! (v -s)! s!

ol
I}
o
<
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Let KvArepresent'the spectfal absorption coefficient df the material
; . :

in the transpafent medium. The opacity u is then u = 1/kp (e.g., cmg/gm).

. =K. T

From Bouguer's. law the emltted 1nten81ty diminishes as e v , and the flux

from dV at frequency v which passes through the thin element dA is then

(Ak) aE. = be e av e V|
: ) v by
(In using_Bouguer's law the éSSumption has Beeﬁ'made that K, is
effectively uniform over a mean ffee path. This assumption will not

‘always be justified.)

. The solid.aﬁgle is dy ;'dA cos e/r2 and the volume element is

av = r2 sin 0drdfd¢. 1In sphefical coordinates

X - X, = r sin 8 cos ¢
R = yo = r sin 6 sin ¢

z~2,=1rcos ¢

Thus the energy flux from above dA (0 < 6 < 1/2) is

':'»g B o= D | :‘. "
(A5) dEvl = .\,)T ‘ Z z z (n - v)! (\]r- - §)! Sl'

n=0 v=0 s=0
"'< ol . > '
] A% ! '
5,8V 3 v-s s o
n/2 2n S .
[ j f (r cos 6)* 7V (r sin 6 sin $)V S
0 0 0 '

- : . _ o -K T
« (r sin 8 cos ¢)° cos © sin © e V¥ ardede .
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The solﬁtion to this integral is

' ‘ | ;A = & c .l '. e
. v
mey —..H nZO VZO sZo Ansvss) E(azn"v ay S axs>0
where 11'
- o [l + ( 1)V- s][} + (<1) ] ( n - v + 2)r(v - s + 1>F<é.+ l)

(n - v)! (v_— s)t s (n+h

Similarly the energy flux from below dA (n/2_< 6 < n)'is given by

o - = ;Y
(A8) I z 2 (-1)"" a(avs) =
C n=0 v=0 s=0. : K
. . ) \)
( 3% >
azn-v ayv—s axs
0
The net flux inlthe z direction is then
(A9) . = dE\)z - dE\)l
Yz A dA
© n v A
2 Z 2 - UM et A
s=0 : K

. ﬂ; n=0 v—O
. < 3% >
. . v
) azn—v ayv-s axs :

Next the jump'boundary conditions will be derivéd for a grey wall

(i.e., one whose absorptlon and emission coefficients are 1ndependent of
frequency) which is below the area dA. The energy comlng from the wall

and passing through dA is made up of the radiation emitted by the wall
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and the radiation originating in the transparent medium and reflected by the
1 { . e

wall. From Kirchhoff's law

- = . + -

(A10) dE , = ee . daa + (1 - €) dE, s
where € is the wall emissivity (i.e,, the ratio of the actual emitted
energy of the wall to the emitted energy of the wall.if it were a black-
body) and b is the emissive power for a black wall.’ Solving this

equation for e

vb?
1) e =i(D2- ), Tw
vb € dA ' dA
(1 1 s . dE, )
€ 2 qu P qu dA

Substituting (A6) and (A9) into (All) and removing the term from n = 0

gives the jump:

" (1.1 Ly
(a12) (cvb ‘ evO)below <e - 2> 99z0 * Br

- ‘ an o
[1+ (-1)"77] a(avs) 1~'< . s)
: R <

Similarly if the wall is above rather than below dA,

~.; ’ ® .ﬁ, v
(A13) (e\{d - eVb)abov¢ = <%- lé‘) - %‘ 2 z ' z

n=1 v=0 s=0

K oy

de
[1+ (=1)®V] a(nvs) ( v_ )
n n-v V=S 5]
v 32z oX. 0
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Thus Egs. (A75, (A9), (Al2), and (A13) give the genefﬁl expressions

for the energy flux in the medium and for the energy Jumps at the walls,

If terms of higher order than second are neglectéd, Eqs. (A7) and

and (A9) reduce to the usual Rosseland steady state diffusion equation

"‘ )4 Bev
(Ah) ey, = - 375

but now it is constrained by the jump boundary conditions

| 2% 7% 2%e
(1 1\ ~ 1 v 1 v 1 v
(M15) ey - eyO'(e' 2)"\)zo+ 2.<2<a 2) ¥ u.<2-<a 2 > +Lu<2<a 2)
) v 2 0 v Y 0 v X

for a wall belév the transparent medium and

) , ' 2 ) 2
(116) . _;‘e. . l._ 1 A 0 e, _ 1 ] e, ! ] e,
' vO -~ vb ..\ € 2 l\)ZO 2 2 2 2 2 2

2, \ 3z hKvA'ay hKv 3x

0 -

for a wall above the medium.

These equations apply to a single tredquency v,  By uslug Bg. (A1)
these equations can be integrated‘ofer v to obtain equations for the total
one-group radiative flux and the total emissive power. Then the opacity

becomes the Rosseland mean «  and Eqs. (AT)-(A1l3) become

de

U
‘ =" 5

where e, = oTh in the transparent medium, and



1 1\ 1 9 e I /9e
(A18) * (eb'ego)=(2"2') Q0 * 2( == ) .ig(-‘g‘az>
oK YA
S 0 0
2 2 2
LA (2% 1(?.5) R tl(f’.‘*s)
th 3 2 L\ 3y hK2 8x2 . L \3x 0
N oy 0 0 s ..0 g

where the + sign is for a wall below the transparent medium, the - sign is
for a wall above the medium, the subscript "0" implies evaluation in the

transparent medium infinitesimally close to the wall, and

[+
‘ de
1 : -1 v
(A20) 2‘[ S 3o av
K 0 «
[ , SV
) i 1 82ev
(A21) ‘ i=1]. =3 dv
: 0 Kk 3e
. \’ g

The derivatives of e, with respect to eg are obtainea from Eq. (Al).

For a grey gas, K, is independent of v and (A21) becomes

o© 2
1 9 ' 1 %
(A22) I =—"—~ e dv==———B=0 |,
.2 2 v 2 2
Tk de 0 K de .
vVog v g

For a nongrey gas it is necessary to know k, as & function of v and eg

in order to calculate Koo Kgs and I.
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FIGURE CAPTIONS .

- An illustration of the temperature jump at a wall at tempera-

" ture Tw caeused by diffuse reflection of molecules from a gas

at temperature Tg and mean free path X'flowing along the

wall.

Schematic representation of how the slip velocity or alter-

natively_the temperature jump at -a wall varies with Knudsen

number K = A/L, indicating roughly the transition regime

befween free moiecular flow and no—slip flow where tempera-

ture jump is important.

. Schematic of the geometry used for derifing the diffusion

equation with temperature jump boundary conditions.

‘Illustration of the three geometries for which explicit

'solutions to thé diffusion equation with temperature Jump

" boundary conditions have been obtained. - In each case the

region between the walls is filled with an absorbing

" material of opacity 1/kp.

' Analytic solutions for the noimalized flux between two

infinite parallel blackbody source walls as & function of

optical thickness kL of the material between the walls.

"fThe upper curve gives the diffusion solution with no boundary



- Figure 6.

Figure T.
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conditions and the lower curve gives the solution with

temperature jump boundary conditions. The latter solution

- is exact to all orders.

i Analytic solutions for the normalized flux between two

conéentric spherical blackbody source walls as a function

of optical thickness of the mgtérial'between the walls and

+in terms of the parameter rl/r2. Thé,solid curves are the

solutions of the diffusion equation with temperature Jjump

boundary conditions accurate to second order. The accuracy

of these curves is good until they tﬁrn over; beyond the
t@rning point an extrapolation such as the dashed curve is
vefy close to the analytic solution given by Monte Carlo

calculations. . For comparison, the dot-dash curve gi#es the

~ pure diffusion solution for rl/ré = 0.75 and no boundary

" conditions.

. ~Analytic solutions for the normalized flux between two
'fcoﬂcentrié cyiindrical blackbody éource'walls as a function
of'dptical thickness of the material between the walls and
'lin terms nf fhe parameter rl/ré. The solid curves are solu-

tiops of the diffusion equétion with temperature Jump

boundary conditions accurate to second order. ‘The dashed

‘curves are Monte Carlo results from the NASA reseérch of

Howell and Perlmutter [6].
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Figure 8. "Illustratidn of the temperature jump at the boundary
. between two absorbing regions one or:bdth of which contains

a source or' a sink.

Figure 9. ‘ Temperature distributions between two parallel radiating
'élabs'aSAa function of optical thickneésAbf the material

‘befweén.

Figure 10. 'Temperature jump at the walls of two parallel radiating
slabs as a function of optical thickness‘bf the material
between. Note that while ATh is the same at either wall,

' the actual temperature jump AT is not.

Figure 11. - .Temperaturé distributions between'éoncentric radiating
‘spheres as a function of optical thickness «L for the case

'ri/re = 0.75.
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TEMPERATURE JUMP AT A WALL

Molecule

Figure 1

Temperature
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VARIATION OF TEMPERATURE JUMP WITH KNUDSEN NUMBER

l .
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Figure 2
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SPECIFIC GEOMETRIES FOR CALCULATIONS

() 3 Opacity 1/xp
4 y ' ]z
. Wall 2 .
' Wall 1 : -
o Parallel slabs X.
A 4 Wall 2
(b) -
N 2
Opacity 1/«kp.
y
:x . : Concentric spheres
(c)A v Opacityjl/mp
o z .
Wall 2 4 y

Concentric cylinders

Figure 4
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NORMALIZED FLUX.FOR PARALLEL SLABS

1.2 T — T T T

1.0

Analytic pure diffusion solution.
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o <1"
e
=
o 0.6 ]
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x Solution with jumg boundary
.E L .conditions (exact . -

0.4
0.2 |-
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Optical thickness kL.

Figure 5
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NORMALIZED FLUX FOR CONCENTRIC SPHERES

Optical thickness «lL

Figure 6
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NORMALIZED FLUX FOR CONCENTRIC%CYLINDERS

kL = Optical thickness

Figure 7
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TEMPERATURE JUMP AT A SOURCE BOUNDARY
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. TEMPERATURE DISTRIBUTION FOR PARALLEL SLABS
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TEMPERATURE JUMP VS OPTICAL THICKNESS

FOR PARALLEL SLABS
(T, =1.0 T, =0 ¢ =¢, = ].Q)
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TEMPERATURE DISTRIBUTIONS BETWEEN SPHERES

Figure 11
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