
C. T. Alonso 

December, 1976 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



TEMPERATURE JUMP 'BOUNDARY CONDITIONS I N  RADIATION DIFFUSION 

, Universi ty o f  Ca l i fo rn ia ,  Lawrence Livermore Laboratory 
I 

r - 
Livermore, Ca l i fo rn ia  94550 .- 

December, 1976 

ABSTRACT . . 

NOTICE 

WOnlorsd by the united Slates Comnmcnt.  Ncithcr 
the United SLnta nor the United S ln ta  Enngy 
Racprch and Den lopmnt  Adminirtntion, nor nay of 
their ~ m p b r e o .  nor any of their mntnctors. 
~ u b ~ ~ n M c t o m .  or their cmploym, m k a  any 
arPmnty, cxprus or implied or anurnel any Igpt 
hbil i ly  or rerpondbilily forth; ~ o u n c y  cornplctcnen 
or uvfulncn o f  any informtion. appmiw.  product OI 
PmDCU diYIosed, 01 represents that its we would not 

The r a d i a t i o n  d i f fus ion  approximation g r e a t l y  .s implif ies r a d i a t i o n  

t r anspor t  problems. Yet t h e  app l i ca t ion  of t h i s  method has o f t e n  been 

unnecessari ly r e s t r i c t e d  t o  o p t i c a l l y  t h i c k  regions ,  o r  has been extended 

through t h e  use of such ad hoc devices a s  f l u x  l i m i t e r s  [13, 141 .  The 

purpose of t h i s  paper i s  t o  review and draw a ' t tention t o  t h e  use of t h e  more 

physical ly appropr ia te  temperature jump boundary condit ions f o r  extending 

the  range of v a l i d i t y  o f ' t h e . d i f f u s i o n  approximation. 'Pioneering work by 

Deiss ler  [3 ]  , . .Siege1 and Howell [7]:, and o t h e r s  [g ,  10,  111  has shown t h a t  

temperature jump boundary condit ions remove t h e  s i r i g u l ~ r i t y  i n  flux t h a t  

occurs i n  o,r,dinary d i f f u s i o n  a t  s m a l l  o p t i c a l  thicknesses.  I n  t h i s  review 
. . 

paper D e i s s l e r ' s  equations f o r  frequency-dependent jump 5oundary condit ions 

are presenrea &id speciY-ic geometric 'examples a r e  ca lcu la ted  a n a l y t i c a l l y  

f o r  s teady s t a t e  r a d i a t i o n  t r a n s f e r .  When jump boundary condit ions a r e  

applied t o  r a d i a t i o n  d i f fus ion ,  , they  y i e l d  exact  so lu t ions  which a r e  

na tu ra l ly  flux- l i m i t e d  and geometry-corrected. We be l i eve  t h a t  t h e  

presence o f  temperature jumps on source boundaries i s  probably responsible  
A 

' v.- i n  some cases f o r  t h e  p a s t  need f o r  imposing ad hoc f lux- l imi t ing 

3 cons t ra in t s  [13, 1 4 1  on pure dif . fusion so lu t ions .  The s o l u t i o n  fo'r t r a n s f e r  
. . 

betwe'en plane s l a b s ,  which i s  exact  t o  a l l  orders of o p t i c a l  th ickness ,  a l s o  

provides a u s e f u l  t o o l  f o r  s'tudying t h e  accuracy of computer codes. 
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I. INTRODUCTION: TEMPERATURE JUMP IN THE BOUNDARY LAYER OF RAREFIED GASES 

~emperature jump [l] is a well-established phenomenon in the molecular 

dynamics of rarefied gases (gases whose Knudsen number Kn.= X/L is not small, 

where X is the molecular mean free path and L is a characteristic dimension 

of the container-). In one of the most celebrated e~gnples of this phenome- 

non, Millikan'found it necessary to correct for the .. associated . . "velocity 

slip" in his oil. drop experiments [2]. In this introductory section, 

temperature jump and velocity slip will be described qualitatively for the 

case of rarefied gases, and then in the next section.the quantitative equa- 

tions for radiation transfer with'temperature jump, as .derived by Deissler 

[3], will be .presented and explored. 

C0nsider.a gas at temperature T flowing past a wall at temperature T 
W 

as in Fig. 1'. On. the average, a gas molecule hits the well as a result of 

a collision that occurred a distance X from the wall. First consider'the 

case of isentropic gas flow with specular reflection. Since the interaction 

with the wall is elastic, the magnitudes of the velocity~components of a 

molecule are not changed during the specular reflection, and therefore the 

reflected molecules display the s&e Maxwellian distribution as the incident 

molecules. That is, specular reflection does not any adjustment of 

the mass velocity and temperature of the gas toward that of the wall. It 

implies perfect,slip flow and no accommodation between the temperatures of 

the ges and the boundary. 

Now consider nonisentropic flow and diffuse reflection. In this case 

the molecules .strike the boundary with complete loss of the tangential 



components of  ve loc i ty ,  and they escape from the  w a l l  a f t e r  a t t a in ing  e i t he r  

p a r t i a l  o r  complete thermal equilibrium with t he  wall .  The d i rec t ion  of 

emission i s  independent of t h e  incident  d i rec t ion .  Since t h e  r e f l ec t ed  

molecules come o f f  t h e  wal l  i n  a Maxwellian ( o r  perhaps even non-~axwell ian) 

d i s t r i bu t i on  which corresponds t o  a temperature t h a t  i s  d i f f e r en t  from both 

t he  gas temperature T and t h e  wal l  temperature Tw, there  i s  formed adjacent 
g 

t o  t he  wal l  a  boundary l aye r  with a non-Maxwellian molecular d i s t r ibu t ion .  

The requirement' t h a t  f l u x  be continuous over' t he  boundary r e s u l t s  i n  a 

d iscont inui ty  i.n temperature and ve loc i ty  over t h e  boundary layer .  This 

I t  temperature jump" i s  shown schematically i n  Fig. 1. 

In one of t h e  f i r s t  considerations of temperature jump, Maxwell [ b ]  

introduced a coef f ic ien t  f which i s  t he  f r ac t i on  of h i d e n t  molecules t h a t  

a re  d i f fuse ly  r e f l ec t ed ,  and there fore  (1 - f )  i s  t h e  f r ac t i on  t ha t  a r e  

specularly rd f lec ted .  Subsequent experiments by Millikan , [2 ]  ve r i f i ed  the  

existence of f  i n  r a r e f i e d  gas flow. Present-day experiments measure t h i s  

"coeff ic ient  of s l i p  flow" very ,accurately f o r  various 'mater ia ls .  

Velocity s l i p  occurs over a dis tance of the  ord=r  of t h e  mean f r e e  
. . 

path. I f  the.Knudsen number i s  small ,  t h e  temperature and veloci ty  

d i scon t inu i t i es  a r e  negl igibly  small and ordinary continuum descr ipt ions  

such as pure d i f fus ion  a r e  accurate.  . But when t he  Knudsen number i s  around 

unity,  t h e  e f f e c t  of temperature jump becomes very iml~ortant .  In  gases a t  

extremely high Knudsen numbers, t h e  r e f l ec t ed  stream ;f molecules does not 

i n t e r ac t  much with t h e  incident  stream. This represents  ye t  another flow 

regime general ly  r e f e r r ed  t o  as  "f ree  molecular flow". In  Fig. 2 these  flow 

regions a r e  i l l u s t r a t e d  schematically f o r  a t yp i ca l  gas. 



. .  .Perhaps t h e  . s imples t  . .  q u a n t i t a t i v e  example, of s l i p  flow is  exh ib i t ed  by 

4 
a gas streaming slowly through a tube .  I f  t h e  molec-des a r e  d i f f u s e l y  

r e f l e c t e d  from:the w a l l s ,  k i n e t i c  theory shows t h a t  t h e  f l u x  of molecules 

d 

h i t t i n g  t h e  w a l l  from a gas a t  r e s t  i s  4 = 1 / 4  nc.where n i s  t h e  p a r t i c l e  

. . 
density and c i s  t h e  mean ve loc i ty .  I f  t h e  molecules have an average mass 

motion v << c p a r a l l e l  t o  t h e  wa l l ,  t h e  t a n g e n t i a l  montentum imparted t o  t h e  

wall i s  1 / 4  ncmv. But s ince  t h e  boundary l a y e r  i s  made up ha l f  of inc iden t  

molecules enteri.hg wi th  t h e  t a n g e n t i a l  v e l o c i t y  v and ha l f  of d i f f u s e l y  

r e f l e c t e d  mole.cules with zero average t a n g e n t i a l  ve loc i ty ,  t h e .  average tan- 

g e n t i a l  ve loc i , ty 'o f  t h e  l a y e r  i s  v = v/2  and t h e  t a n g e n t i a l  momentum 
0 

imparted t o  t h e w a l l  i s  r e a l l y  P =  1 / 2  nmcvo. I f  t h e  v i s c o s i t y  away from 

the  wa l l  i s  TI and t h e  e f f e c t i v e  f r i c t i o n  of t h e  boundary l a y e r  i s  6, t h e  
. . 

coef f i c ien t  of s l i p  i s  defined by 5 = q /B .  But t h e  c o e f f i c i e n t  of f r i c t i o n  

i3 i s  j u s t  t h e  t a n g e n t i a l  pressure  P divided by vo, i . .  B = 1 / 2  nmc. 

Since from k i n e t i c  theory  rl Q nmcX we the re fo re  f i n d  t h a t  5 A .  That i s ,  

the  c o e f f i c i e n t  of  s l i p  i s  propor t ional  t o  t h e  mean ' f ree  path. 

The above examples i l l u s t r a t e  t h e  physica l  meanink of temperature jump 

and ve loc i ty  s l i p  i n  molecular flow. An analogous si . tuat ion occurs when t h e  
I 

molecules a r e  . replaced . by photons streaming through a t ransparent  medium. 

In  a manner e n t i r e l y  s i m i l a r  t o  t h e  molecular case, conservdtion of f l u x  a t  
. . 

a source boundary can  res l r l t  i n  a temperature d i scon t inu i ty  a t  t h a t  boundary. 

In  t h e  simplest  example, if t h e  wal ls  o f  t h e  medium a r e  black,  the  d i rec-  

t i o n a l i t y  of  t h e  inc iden t  f l u x  i s  l o s t  and t h e  photons a r e  d i f f u s e l y  re- 

emitted. I n  t h e  next  s implest  example, i f  t h e  w a l l s  a r e  grey (i . e . ,  t h e i r  

emiss iv i ty  and a b s o r p t i v i t y  do not  depend on angle o r  frequency, but  do 



depend on temperature) ,  . then s ince  t h e  grey surface '  is '  not a pe r fec t  absorber 

3 only p a r t  of i t s  inc iden t  photon f l u x  i s  d i f f u s e l y  re f l ec ted .  When t h e  

"photon Knudsen number" X /L i s  of t h e  o rder  of un i ty ,  t h e  non-Planckian 
e 

Y 

d i s t r i b u t i o n  of d i f fuse ly  r e f l e c t e d  photons c r e a t e s  a boundary l a y e r  with 

temperature jump a t  a  source boundary. The f l u x  across t h e  boundary i s  

continuous bu t  t h e  temperature i s  not .  I n  t h e  next sec t ion  t h e  r a d i a t i v e  

t r a n s f e r  equations f o r  such a  "Knudsen r a d i a t i o n  f i e l d "  a r e  examined. 

11. TEMPERATURE JUMP I N  THE RADIATION DIFFUSION APPROXIMATION 

I n  t h i s  s e c t i o n  exact  so lu t ions  t o  t h e  d i f fus ion  equation w i l l  be 

explored i n  t h e  l i g h t  of jump boundary condi t ions .  Although t h e  emphasis 

w i l l  be on s teady s t a t e  s o l u t i o n s ,  many of t h e  r a d i a t i v e  hea t .  balances 

considered h e r e . a r e  not  l i m i t e d  t o  steady s t a t e  condit ions.  

The second-order steady s t a t e  d i f fus ion  equation was f i r s t  derived by 

Rosseland [5'] and can be w r i t t e n  

where q  i s  t h e  f l u x  i n  t h e  z-di rec t ion,  K i s  t h e  a3sorption c o e f f i c i e n t  
2 " .  

a t  f r e q u e n c y . ~  (opaci ty  = l / ~ p ) ,  and e  i s  t h e  spectral.  emissive power 
V 

given by Planck' s .  d i s t r i b u t i o n  funct ion.  

Referring t o  t h e  geometry shown i n  Fig.  3, cvnslder radialiurl 

or ig ina t ing  at  volume element dV and streaming through a rea  dA a t  po in t  

(x0 yo z O ) .  Suppose dA i s  c l o s e  t o  a  wa l l  i n  t h e  x-y plane. Then t h e  



-6- . .  
. . 

jump boundary condit ions t h a t  apply t o  Eq.' ( 2 )  a t  t he  wall were derived by 

, ~ A i s s l e r  131 ( see  Appendix A )  and they can be wr i t t en  i n  the  following 
3 

frequency-dependent form fo r  the  temperature jump t o  second order:  

. .. 
4 

. . 

where e i s  t he  emissive power (UT ) of t h e  wall ,  ev i s  t h e  emissive 
0 

power at  frequ&cy v of t h e  t ransparent  medium adjakent t o  t h e  wall ,  

. . .  
2 

8 ev 

;e w .  - e vo,  I = - q z o  - 
4K2 2 v 

and E i s  t h e  wal l  emissivity ' ( i . e . ,  t h e  r a t i o  .of the' ac tua l  emitted energy 

2 
a e v  + -  

2 
0 . 3 ~ .  

2 

+ -  a 2 'V 

0 
ax 

of t he  wal l  t c  i t s  emitted energy i f  t h e  wall  were a blackbody). (Rnissiv- 

) ( 2 )  

0 

i t i e s  a r e  norinally deduced from the  measured spectra  of rad ia t ing  ob jec t s ,  

and emiss iv i t i es  o f ten  approach un i ty  a s  high temperatures a r e  a t ta ined.  ) 

The + s ign appi ies  t o  a wal l  below dA and t he  minus 'sign t o  a w a l l  above 
.: 

dA. The subscr ipt  "0" implies evaluation i n  the  t ra r~sparen t  medium 

inf in i tes imal ly  c lose  t o  t he  wall .  Even when there  i s  no opaque w a l l ,  

s imi lar  equations. f o r  d i scon t inu i t i es  i n  emissive power between two 

absorbing-emitting media with sources o r  sinks can be derived i n  the  same 

manner. On t h e  o ther  hand, boundai-ies between stagnant absorbing-emitting 

regions with no sources o r  sinks do not generate a temperature jump [ 6 ] .  

If Eqs. (1) and ( 2 )  a r e  required i n  a frequency-independent form, they 

can be i n t eg ra t e i .  over a l l  frequencies t o  obta in  the. t o t a l  r ad i a t i ve  f l ux  
. . 

and the  t o t a l  emissive power. Writing Planck's d i s t r i bu t i on  function i n  

the  form 



4 
where e  with no subsc r ip t  v  represents  t he  t o t a l  emissive power (UT ) 

of t he  transparent  medium, Eq ,  (1) can be in tegrated t o  y i e l d  , . 

4 
where e  = UT and K~ i s  t h e  Rosseland mean absorption coef f ic ien t  

Similarly Eq. ( 2 )  can be in tegra ted  with t he  help of ( 3 )  t o  give 

3  2nhv 
e  = I - 1  - 4  - '. v c2 ' exp [hvo 

where 

and 



For a grey medium, K i s  independent of  ' v  and I = 0. Equations ( 1  )- (2 )  
v 

can be used 'd i rec t ly  i n  frequency-dependent d i f fus ion codes; Eqs. (4 ) - (8 )  

can be used i n  s ing le  group dif fus ion codes. 

The jump boundary condit ions (2.) and (6 )  play t h e  same r o l e  as  f l ux  

l im i t e r s ,  but  ins tead  of being ad hoc correct ions  they a r e  exact t o  second 

order ( see  Appendix A ) .  It i s  our be l i e f  t h a t  t h e  jump boundary conditions 

represent a t '  l e a s t  p a r t l y  t h e  physical  o r i g in  of t h e  necess i ty  f o r  imposing 

f lux l imi t ing  cons t ra in t s  on pure d i f fus ion  s,olutions. 

I n  t h e  next sec t ion  we s h a l l  present t h r ee  spec i f i c  examples of the  

use of these  equations f o r  t h e  problems of t r ans f e r  between (1 )  plane s labs ,  

(2) concentric cyl inders , '  and (3) concentric spheres. 

111. ' T R A N S F ~ .  BETWEEN PLANE SLABS, CONCENTRIC SPHERES, AND CONCENTRIC 
CYLINDERS SEPARATED B Y A N  ABSORBING MEDIUM 

The u'se of Eqs. (4)-(8). i s  s traightforward. '  consider f i r s t  t he  

i n f i n i t e  para l l e l '  plane s labs  shown i n  Fig. 4 ( a ) ,  The gap between t h e  

s labs ,  of width L,  i s  f i l l e d  with an absorbing medium with Rosseland 

absorption oooffiaiont. r: , T n  t.hi s case t h e  steady ' s t a t e  f l u i  q is  
. . r 

independent of z and Eq. ( '4)  i s  in tegra ted  t o  give 

where e and e a r e  t h e  emissive powers of t he  transparent  medium a r b i t r a r i l y  
1 2 



'close to walls 1 and 2 respectively. The energy jumps 'at the walls become, 

from ~qs. (6)-(81, 

at wall 1 an6 

at wall 2. 

Assuming a grey medium (I = 0) and adding Eqs . (10 1-(12) gives 

where T and T 2 are the wall temperatures. This ratio represents an exact 
1 

expression for the flux between parallel slabs througha material of opacity 

1 In this caseall derivatives of order greater than second vanish, so 

Eq. (13) is exact to all. orders and for all optical thicknesses. If the 

walls are perfect blackbodies (cl = E 2 = 1) then this expression reduces to 

the Milne boundary condition 

Equation (13) also reduces to the correct form in the case of infinitely 

small optical thickness KL. The exact solution for the flux as a function 



of optical thickness KL is shown in Fig. 5. Also shown is the pure 

--, diff'usion solution without boundary conditions,. v i z .  Eq. (10). At large 

values of KL the pure diffusion'solution becomes exact. The effectiveness 

of the jump boundary condition As a flux limiter is obvious. 

. . 

The corresponding temperature distribution in an' absorbing material 

between two slabs is given by 

. . 

This diitribution'ik shok as a function of z and of the optical 

thickness KL '.in..Fig. 9. The definition of temperature' in a vacuum 

(KL = 0) is o%sc.ure, but these equations yield the average wall 

temperature throughout in that limit. The actual temperature jump at the 

. . 
walls- i s  given in.Fig. 10 as, a function of optical thickness. 

. . 
1; the case 'of radiating concentric spheres such as in Fig. (4b), the 

. . 

flux p is pripqrtiona~ to l/r2 and so integration of (4) gives 

. . 

where q is the steady state flux.emitted by surface 1. Using 
1 .  

2 2 2 
r = x + y2 . + . .  z , the derivatives in the jump boundary conditions (6) may 

be evaluated at walls 1 and 2 to give 



and 

~ d d i n ~  Eqs. (15)-(IT), the final expression for the i.nverse of the steady 

state flux between concentric radiating spheres is 

Note that this. is parameterized in terms of the ratio of the radii (r1/r2) 

and the quantity K . In terms of theoptical thickness KL = r(r2 - rl) 
r, 
I 

Eq. (18) becomes (where K is meant to be the Rosseland absorption 

coefficient K ) , r 

The correct solution for the flux between empty concentric spheres 



For cbmpa+ison, i n  t h e  l i m i t  of small o p t i c a l  thickness and a grey 

medium (I  = 0 ) ,  Eq. (19) reduces t o  

. 4  4 o1 - l i m  
KL -t O 

q1 

This should be i d e n t i c a l  t o  -Eq. (20) .  Therefore t he  second-or,der solut ion 
. . 

(19) i s  exactly cor rec t  only f o r  r + r and i t s  ac.curacy goes as 
1 2' 

2 
r r  , The second-order sphere so lu t ion  i s  not exact ,  as  it was i n  t he  

case of s l ab  flow, because t h e  higher order derivativ.es do not vanish i n  t h e  
. . 

case of concentric spheres. 

. . 

The steady s t a t e  temperature d i s t r i bu t i on  can be calcula ted from 

(15)-(17) with t h e  use of (18) f o r  ql: 

I n  t h e  l i m i t  of blackbody walls  (c l  = c2 = 1) Ad a grey medium 

'lJ 

(I = 0 )  t h e  sol:u4lurl f'irr crsi~ctlltric sphcrec beoomes, assuming K = v 
. . r s ' 



2 2 
for the flux (q(&) = ql rl/r ) and 

for the temperature. distribution. .These temperature distributions, which 

4 
are hyperbolae in T and r, are shown in Fig. 11 for the. case rl/r2 = 0.75. 

The flux from Eq. (23) is plotted as a function of optical thickness 

KL in Fig. 6 for several values of r /r Again the. j G p  boundary condi- 
1 2'  

tions provide a very effective flux limiter. When rl:= r2 the Milne condi- 

tion is retrieved. 

Finally,,the corresponding equations for concentric cylinders, as 

shown in Fig. 4(c), are 

e - e  3 , ~ r ~  
1 

r 2 ' =  4 1n r 
q1 1 

with boundary conditions 

. . 

and 



which give for the final f lux  'for Concentric cylinders ..I31 

In the limit KL -+ 0 this reduces to 

which is exactly correct as r -+ r and which has anacc'uracy proportional 
1 2  

ku (y2/r1). In the l i m i +  r p  -P r 1 the plane slab solution reappears: 

!This cylindrical geometry was studied by Howell and Perlmutter using 

a NASA Monte ~arlo cbde [ 6 ] .  Their exact computatibnal results are com- 

pared in Fig. 7 with the results of Eq. (28). As r diverges from r2 the 
1 : . 

solution given by (28) falls off from the exact Monte Carlo solution below 



, c e r t a i n  c r i t i c a l  va lues  of  o p t i c a l  th ickness .  This i s  due t o  t h e  increas ing 

- contr ibut ion of  higher-order terms. However t o  ob ta in  f a s t  computations 

t h a t  would c l o s e l y . y i e l d  t h e  c o r r e c t  r e s u l t s ,  one couid computationally 

, extrapola te  t h e  s o l u t i o n  t p  u n i t y  a f t e r  t h e  tu rn ing  po in t ,  as shown by t h e  

dot ted  l i n e s  i n  Figs.  5 and 6. 

I V .  TEMF'EKATURE DISCONTINUITIES ON THE BOUNDARIES OF SOURCE REGIONS 

Consider.two adjacent  semi - in f in i t e  regions w i t h . t h e i r  common boundary 
. . 

i n  t h e  x-y plane' $nd wi th  absorption c o e f f i c i e n t s  K and K respec t ive ly ,  as 
. .  . 1 . , ,  2 

i n  Fig.. 8. ~ ~ ~ l ' y i n ~  Eqs . (A6) and ( ~ 8  ) i n  Appendix A ,  ' t h e  n e t  f l u x  over t h e  

i n t e r f a c e  i s  

below - dE1 
- - 

qv z dA 

, - _ ._ - 4n 2 f 2 ~ ( n v s )  ["117(: a - v  anev v - s  
n=O ' v=O s=O .a z 

Neglectiag terms of higher order  than two, Siege1 and Howell give 

the  corresponding.emissive power jump 'as [ 7 ]  
. . 



Under c e r t a i n  condi t ions  t h i s  jump can be nonzero. I n  p a r t i c u l a r ,  as  

we show below, t h e r e  i s  a temperature jump at  t h e  boundary of a source 

region. 

F i r s t  consider t h e  case of .two adjacent  regions wi th  no sources o r  

s inks.  Continuity ' o f  f l u x  over t h e  boundary requ i res  t h a t  

dq . 
z But q must be ,constant  s ince  no sources a r e  present  ( i . e . ,  - = 0 )  and 

z dz 
2 2 the re fo re  d e /dz = 0 .  That i s ,  t h e  second der iva t ives  i n  (32) vanish 

. v 

and (32) reduces, t o  

That i s ,  t h e r e  i s  no temperature jump uver tt s.tagnant boundary. 

On t h e  o the r  hand, consider t h e  presence of sources i n  t h e  two regions < 

and def ine  t h e  sources by t h e  f l u x  gradients  



I n  t h i s  ,case t h e  emissive power jump given by (32) becomes 

.. . 
But s i n c e  ( 3 3 )  i s  s t i l l  v a l i d  on e i t h e r  s i d e  of t h e  boundary t h i s  becomes 

which reduces t o  

Thus a t  source boundaries t h e r e  i s  a temperature jump. This f a c t  was noted 

i n  1967 by Howell [ 6 ]  i n  h i s  more exact  c a l c u l a t i o n s  i n  terms of i n t e g r a l  

1 equations,  which y i e l d  a f a c t o r  of T; i n s t e a d  of t h e  

V. CONCLUSION 

Recent developments i n  t h e  l i t e r a t u r e  of thermal r a d i a t i o n  t ~ a n s f e r  have 

ind ica ted  t h e  i lGortance o f  temperaturd jumg boundary condi t ions  at  wal ls  



.and on source boundaries i n  genera l .  I n  d i f fus ion  approximations, e i t h e r  
I 

ana ly t i c  o r  from computer codes, t h e s e  boundary condit ions r i g h t f u l l y  belong 

i n  t h e  so lu t ion  and indeed a t  low o p t i c a l  thicknesses they can have a 

d r a s t i c  5nfluence. on t h e  amount of r a d i a t i v e  f l u x  t h a t  i s  t r a n s f e r r e d  from 

one region t o  another.  

The equations p resen ted ' in  t h i s  paper involve severa l  assumptions and 

approximations t h a t  should be explored. No attempt has been made t o  suggest 

how t h e  wal l  emiss iv i ty  E might be ca lcu la ted ,  although f o r  most high- 

temperature cases a blackbody assumption ( E  = 1) i s  reasonable. The jump 

boundary condit ions need t o  be' derived f o r  nongrey s c a t t e r i n g  media. Non- 

i so t rop ic  f luxes.  should be 'considered more exp l i c i t ly . '  ' Analytic so lu t ions  

can be derived f o r  geometries o t h e r . t h a n  those 'considered here.  The e f f e c t s '  
. . 

of l a r g e  v a r i a t i o n s  i n  t h e  a b s o r p t i o n . c o e f f i c i e n t ,  such a s  a r e  o f t e n  

encountered i.n r e a l  ma te r i a l s ,  need t o  be explored. Thus t h e r e  i s  a g rea t  

deal of in teres t i 'ng  work t h a t  can be done t o  extend t k i s  theory.  Some of 

it a l ready exist's i n  t h e  numerous papers on t h e  subject '  t h a t  have appeared . . 

i n  t h e  l a s t  dec.ade [ 3 ,  6 ,  7 ,  8, 9, 10 ,  11, 121. 

I n  s p i t e . o f  a i l  these  complicat ions,  t h e  bas ic  idea  remains c l e a r :  

t h a t  t h e  app l i ca t ion  of temperature jump'boundary condit ions,  even i n  crude 

approximation, can c o r r e c t  a pure d i f fus ion  s o l u t i o n , a t  low o p t i c a l  thick- 

nesses t o  give- a '  so lu t ion  t h a t  i s  much c l o s e r  t o  t h e .  co r rec t  so lu t ion .  

Their app l i ca t ion  markedly extends t h e  range o f . v a l i d i t y  of  t h e  d i f fus ion  

approximation. ' 



APPENDIX A: THE GENERAL EQUATIONS OF ENERGY FLUX AND TEMPERATURE JUMP 
IN TKE: DIFFUSION APPROXIMATION 

We present.'here the derivation of Deissler [3] for the temperature 

jump boundary conditions in the photon diffusion approximation. Consider 

radiation streaming through an area element dA in a transparent medium at 

point (x z ) as in Fig. 3. The radiation is emitted from volume 
0' Yo' .o 

element dV at (x, ,  y , z) . The spectral emissive power e v (e.g. , ergs/cm2 sec ) 

is defined by ~lanc'k's equation written in a different form: 

27~ hv" 
e = v 

c2 exp [hv o 114 ,-I e-1/4] - 
g 

, .  . 

where v is the frequency, c is the speed of light, h is:Planckls constant, 

o is the Stefan-Boltzmann constant, k is the Boltzmann constant, and 

4 
e = oT . Expand ev in a Taylor series about ( x  y z 1: 
g 0 0 0 

Applying the binomial theorem twice to the factor in brackets, 

n-v v-s s 2 i: i: (z - z ~ )  
(Y-Y0) (x-xn) 

( ~ 3 )  e =.  v (n - v)! (V - s)! S! n=O v=O s=O 



Let' K . represent '  t h e  s p e c t r a l  absorption c o e f f i c i e n t  of t h e  mate r i a l  
v 

I 2 
i n  t h e  t r ansparen t  medium. The opaci ty  p is  then p = 1 / ~ p  (e .g. ,  cm /gm). 

. -K r 
From Bouguer I s .  l a w  t h e  emit ted  & t e n s i t y  diminishes a s  e , and t h e  f l u x  

from dV a t  frequency v which passes through t h e  t h i n  element dA i s  then 

11n us ing Bouguerls law t h e  assumption has been' made t h a t  K i s  
v 

e f f e c t i v e l y  uniform over a mean f r e e  path.  This assumption w i l l  not 
. . 

always be j u s t i f i e d .  ) 
' , 

2 The solid. angle i s  dw =.' dA cos 8 / r  and t h e  volume element i s  

dV = r2 s i n  '?drd8d+. I n  spher ica l  coordinates 

x - x = r' s i n  8 cos + .o. . . . 

y - y '  = r s i n  0 s i n  + . . , .  

0 .  

z - z  = r c o s +  , . 
0 

This t h e  energy f l u x  from ebove dA ( 0  < 8 < n/2) is  

. . 

(A5 = .  1 .  
71 ( n . -  v ) !  ( v  - s.)! s! 

n=O v=O s=O ' 

. . 

Cr i o s  e)n-V (r s i n ,  s i n  +)V-S 

-K r 
. * ' ( r  s i n  8 cos $1' cos 9 s i n  9 e - v drd+d9 , 



The sg l< t ion  t o  t h i s  i n t e g r a l  i s  

. . 
where . ,  

. . 

Similar ly  t h e  energy f l u x  from below dA (n/2 < 8 < n,) ' i s  given by ' 

The ne t  f l u x  i n  t h e  z direc t , ion  i s  then 

- n-v .. 1 
- - - G  1 - (-1 ] Q(nvs)  y 

K 

Next t h e  jump boundary condi t ions  w i l l  be de r ivec  f o r  a grey w a l l  

(i. e .  , one whose absorption and emission c o e f f i c i e n t s  a r e  independent of 

frequency) which i s  below t h e  a r e a  dA. The energy coming from t h e  wa l l  

and passing through dA i s  made up of t h e  r a d i a t i o n  emitted by t h e  w a l l  



. . 

and t he  r a d i i t i o n o r i g i n a t i n g  i n  t h e  t ransparent  m e d i 4  and r e f l ec t ed  by t he  
1 .  

w a l l .  From Kirchhoff's law 

where E i s  t h e  w a l l  emissivity ( i . e . ,  t he  r a t i o  of ' the  ac tua l  emitted 

energy of t h e  w a l l  t o  t h e  emitted energy of t he  wal1:i.f it were a black- 
. . 

body) and evb i s  t h e  emissive power f o r  a black wall.; Solving t h i s  

equation f o r  e 
vb' 

Subst i tu t ing ( ~ 6 )  and ( ~ 9 )  i n t o  (A l l )  and removing t he  term from n = 0 
. . 

gives t h e  jump: 
. . 

. . 
(Al2 ) (\b - e 1 vO below n=l  0 s=O 

Similarly i f  t h e  wal l  i s  above r a t h e r  than below dA, 

(A131 ( e v ~  - e  vb > above = ( -  Q) qvz0 - 
n=l  v = O  s = O  



Thus Eqs. ( ~ 7 ) ' ,  .(Ag), (A12), and (A13) give t he  expressions 

for t he  energy'flux i n  the'medium and fo r  the  energy jumps at the  wa,lls, 

I f  terms of higher order than second a r e  neglected, Eqs. ( ~ 7 )  and 

and ( ~ 9 )  reduce t o  t h e  usual  Rosseland steady s t a t e  d i f fus ion  equation 

but now it i s  constrained by t h e  jump boundary condit ions 

fo r  a wal l  below . . t h e  t ransparent  medium and 

for  a wal l  above t h e  medium. 

These ewa t ions  apply t o  a s ing le  irequency v . '  By .uslug Eii. (Al) 

these  equations can be in tegra ted  over v t o  obtain .equations fo r  t h e  t o t a l  

one-group rad ia t ive  f l ~ &  and t h e  t o t a l  emissive power. Then t he  opacity 

becomes t h e  Rosseland mean ar and Eqs . ' ( ~ 7 ) -  ( ~ 1 3 )  become 

. . 

4 .. 
where e = uT i n  t h e  t ransparent  medium, and 

e 



where t h e  + sign i s  f o r  a wal l  below t h e  transparentmedium, t h e -  s ign i s  

fo r  a w a l l  above t he  medium, t he  subsc r ip t  "0" implies evaluation i n  t he  
. . 

t ransparent  medium in f in i t e s ima l ly  c lose  t o  the  w a l l ,  and 

The der ivat ives  of e with respect  t o  e a re  obtained from Eq. (M) .  
v  g 

For a grey gas,  r V  i s  independent uf v  and ( ~ 2 1 )  becomes 

For a nongrey gas it i s  necessary t o  know K v as  a function of v  and e g 

i n  order t o  ca lcu la te  K K and I .  . . 
r s '  
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Figure 1. 

FIGURE CAPTIONS <; 

illustration of the temperature jump at a wall at tempera- 

, ture Tu caused by diffuse reflection of molecules from a gas 

at temperature T g and mean free path X flowing along the 

Figure 2. Schematic representation of how the slip velocity or alter- 

natively the temperature jump at.a wail varies with Knudsen 

number Kn = A ,  indicating roughly the transition regime 

between free molecular flow and no-slip flow where tempera- 

ture jump is important. 
. . 

Figure 3. . Schematic of the geometry used for deriving the diffusion 

equation with.temperature jump boundary conditions. 

Figure 4. '~llustration of the ' three geometries for which explicit 

'solutions to the diffusion equation with temperature jump 
, . .  

, boundary conditions have been obtained. In each' case the 

region between the walls is filled wit,h ,an absorbing 

' . material of opacity l/~p. 

. . 

Figure 5. Analytic solutions for the . . noimalized flux between two 

infinite p.aralle1 blackbody source.wal.1~ as a function of 

U optical thickness KL of the material between the walls. 

The upper curve gives the diffusion solxtion with no boundary 



. . -27- 

conditions and the lower curve gives the solution with 
\ 

temperature ,jump boundary conditions. The latter solution . . 
. . 
is 'exact to all orders. 

. . .  

. . Figure 6. . Analytic solutions for the normalized flux between two 

concentric spherical blackbody source walls as a f'unction 

of optical thickness of the material between the walls and 

in terms of the parameter rl/r2.   he solid curves are the 

solutions of the diffusion equation with temperature jump 
. . 

boundary conditions accurate to second order. The accuracy 

of these curves is good until they t q n  over; beyond the 

turning point an extrapolation such as the dashed curve is 

very close to the analytic solution given by Monte Carlo 

calculations.. For comparison, the dot-dash curve gives the 

pure diffusion solution for r /r' = 0.75 m d  no'boundary 
1 2  

conditions. 

Figure 7. Analytic solutions for the normalized f l u  betwean two 

, ' '$oncentric cylindrical blackbody source .walls as a function 

of dptical thickness of the material between the walls and 

in terms n f  the parameter rl/ri. The solid curves are solu- 
.tions of the diffusion equation with temperature juinp 

boundary conditions accurate to second order. The dashed 

'curves are Monte Carlo results from .the NASA research of 

Howell and Perlmutter 161. 



Figure 8., ~llustratio'n of the temperature a, jump at -the boundary 

* . between two absorbing regions one or ',both of which contains 
, . 
. . "... a source or' a sink. 

~igure 9 .  Temperature distributions between two -parallel radiating 

slabs as .a function of opticai thickness "of the material 

between. 

Figure 10. Temperature jump at the walls of two parallel radiating 

.slabs as a function of optical thickness'of the material 

4 . .  . 

between. Note that while AT is the same' at either wall, 
. . 

.the actual temperature jump  is is not. 
. . 

. . . . 

Figure 11. Temperature distributions between' concentric radiating 

.spheres as a function of optical thickness KL for the case 
. . .  
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VARIATION OF TEMPERATURE JUMP WITH KNUDSEN NUMBER 
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GEOMETRY FOR D I F F U S I O N  EQUATIONS . 
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SPECIFIC GEOMETRIES FOR CALCULATIONS 
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NORMAL I ZED FLUX FOR PARALLEL SLABS 
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NORMALIZED FLUX FOR CONCENTRIC SPHERES 

D i f f us i on  theory w i t h  

Ex t rapo la ted  a't 
t u r n i n g  p o i n t  - 
Pure d i f f u s i o n  theory (rl/r2 = 0.75) 

mperature jump boundary - 

. . 

0 J 1 I I I I I I I I L 

0 ' 1 2 3 4 5 6 .  :7 . . 8 9 10 
. . Op t i ca l  th ickness KL 

Figure 6 



NORMALIZED FLUX FOR CONCENTRIC.'CYLINDERS 

- -- -Monte Car lo  ( c l  = c Z  = 1) 
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KL = Op t i ca l  thickness 

F igu re  7 



. . TEMPERATURE JUMP A T  A SOURCE BOUNDARY 

~ernpera ture . . 
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Figure 8 





. . TEMPERATURE JUMP vs OPTICAL THICKNESS 

FOR PARALLEL SLABS * 

KL = Opt ica l  thickness,. 

/ 

Figure 10 



TEMPERATURE DISTRIBUTIONS BETWEEN SPHERES 
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