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M EASUREM ENT OF AC ELECTRICAL CHARACTERISTICS  
OF SSC SUPERCO NDUCTING  DIPOLE M AGNETS
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and

ROBERT E. SHAFER  
Los Alamos National Laboratory 
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A b stract

Experim ents were conducted to  m easure the  AC electrical 
characteristics o f SSC superconducting dipole m agnets over 
the frequency range of 0.1 Hz to  10 kHz. A m agnet equiv­
alent circuit representing the m agnet DC inductance, eddy 
current losses, coil-to-ground and tu rn -to -tu rn  capacitance, 
was synthesized from th e  experim ental data . This m agnet 
equivalent circuit can be used to predict the  current ripple 
d b tribu tion  along the superconducting m agnet string and 
can also provide dynam ic inform ation for the design of the 
collider current regulation loop.

1 In trod u ction

The SSC collider is designed to have a circumference of 
87 km. The superconducting magnets along the collider 
ring are grouped into ten sectors. Each sector, a string 
of average length of 8.7km, is powered by one power 
source located near the center of the sector. Due to the 
AC electrical cheiracteristics of the magnets, the magnet 
string behaves like a transmission line; the ripple cur­
rents and transients from the power supply form a time 
and space distribution along the magnet string. Addi­
tionally, since the power supply load is a magnet string, 
the design of the current regulation loop is highly de­
pendent upon the AC electrical characteristics of the 
magnets.

In order to understand the ripple effect on the parti­
cle beam motion and assist the current regulation loop 
design, it is necessary to accurately determine the AC 
electrical chciracteristics o f superconducting magnets. This 
paper develops a method of measuring the AC charac­
teristics and obtaining a magnet equivalent circuit of su­
perconducting magnets. The measurement method and 
the circuit synthesis technique are detailed in Section 2;

magnet testing experiments are shown in Section 3; and 
a summary is given in Section 4.

2 M easurem ent M eth od

A typical superconducting dipole magnet includes a beam 
tube, a superconducting coil, four heater strips, a lam­
inated collar, a laminated iron yoke, and a cryogenic 
shell. When the magnet is superconducting, the DC re­
sistivity of the coil disappears; therefore, the magnet be­
haves like a pure inductor at low frequencies. If the mag­
net current contains AC components, however, it will in­
duce eddy currents in the beam tube, magnet coil, and 
other metallic components; the magnet will show some 
resistivity. A high frequency resonance occurs between 
the magnet inductance and coil-to-ground and turn-to- 
turn capacitance. The AC electrical characteristics of 
the magnet are therefore frequency dependent.

2.1 Magnet Equivalent Circuit

The eddy current phenomenon of the beam tube can be 
analyzed by a coupled inductor circuit shown in Fig. 1. 
The primary inductance L\  represents the n turn super­
conducting coil; the secondary inductance L^ represents 
the one turn eddy current path in the beam tube; and 
Ri  represents the beam tube resistance. Suppose the 
mutual inductance is M and the coupling coefficient is 
• /k  =  . The circuit equations are derived as:

t J i  =  s L i i i  — s M i 2  , 

Rii2 =  s M i i  — 5X2*2 •
( 1)

( 2 )

The voltage and current relationship of the primary wind­
ing are found from the circuit equations:

'T h is  work is su p p o rte d  by U niversities Resetu'ch A ssociation 
Inc. an d  U.S. D ep artm en t of Energy.

s M
—  =  sL i  — s M — —
*1 Rb -l- sXt

( 3 )



Let L =  Li ,  L 2 =  ^ ,  and R  =  n^Ri, and reorganize the 
impedance function,

Z  =  5 i ( l  — i )  +
s k L R

(4 )R  +  skL

Further, with coil-to-ground and turn-to-turn capaci-

Figure 1: Eddy Current Circuit

taince taken into account, a magnet equivalent circuit 
is obtained as shown in Fig. 2. The impedance of the 
magnet equivalent circuit is

 ^-^(1 +  ____________

 ̂ (1 +  +  ( l -  ■
(5)

a

(l-k)L kL

.n n n r '— L r in n n .

Figure 2: Magnet Equivdent Circuit

2.2 Impedance Measurement

An HP network analyzer (HP 3563A) is used to pro­
duce a swept frequency signed in the frequency range 
from O.lHz to lOkHz. A Kepco power amplifier (BOP  
36-12M) is used to boost the current level (peeik-peak 
36V, 12A ) o f the swept signal in order to achieve high 
measurement precision. The output of the amplifier is 
connected to the two terminals of the coil through an 
external resistance. The voltage v, across the magnet 
terminals, and the current i, through the external resis­
tor of (1% precision and very low inductance), were

measured by the network analyzer to generate the se­
ries impedance transfer function. The series impedance 
measurement circuit is shown in Fig. 3. To measure 
the shunt impedance between the magnet and ground, 
the two terminals of the magnet are shorted. The out­
put of the amplifier is connected across the shorted coil 
and ground through an external resistance. The volt­
age V from coil to ground and the current i through the 
resistor are measured to generate the shunt impedance 
transfer function. The measurement data are frequency 
response traces. Curve fitting techniques are used to de­
rive a linear system  model from the measurements. The 
pole/zero model is determined by calculating the least- 
squares fit of the frequency response data to the linear 
system  model. The model has the following form:

A s ( l +  S/UJ2 )
( 6 )(1 - I -  s /w i)( l  + s / Q u 3 -f- s^ /(w |))

The circuit parameters L, R, k and C  can be determined
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Figure 3: Series Impedance Measurement Circuit

by comparing the predicted impedance function (5) and 
the measured impedeince function (6),

Often, the measured impedance transfer function may 
have some additional poles and zeros due to eddy cur­
rents in other metallic components; therefore, it may be 
necessary to adjust the equivalent circuit according to 
the understanding of the magnet properties.

3 M agn et T ests

Superconducting magnet DCA 208, 50mm aperture, 15m 
length, was tested in Brookhaven National Lab at 4.2® A'. 
A transfer function impedance model is derived from the 
cold dipole DCA 208 measurement data by curve-fitting:

0 .0 6 5 7 s(l-

4- 2735 )( I +  2 j t 2 8 7 )(^ 4" 57^

s
2 t 9723________ (2t 13324):̂  >

'.^1338  4" (2 jt2025)=  4" 2ir6743 '

(7)
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Figure 4: Synthesized Magnet Equivalent Circuit

The curve-fitting impedance function has some addi­
tional poles and zeros. Since the frequency bandwidth 
of the magnet string system  is below IkHz, the pole 
at 6.7kHz and and zeros at 13kHz are neglected. The 
impedance circuit model is simplified to:

z =
0 .06575(1+ 2 5 f e ) ( l  + 5 ^ )
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(8)
A circuit shown in Fig. 4 is synthesized from the impedance 
function (8). The existence o f the additional pole at 
38Hz and the additional zero at 48Hz might be due to 
eddy current in the collar or the iron yoke. This model 
matches the measurement data very closely at low fre­
quencies. Some discrepancies at high frequency ture in­
troduced by dropping the high frequency pole and zeros. 
The measured trace and the trace generated by the syn­
thesized circuit are plotted in Fig. 5. The parameters 
calculated from the transfer function are L =  65.6mH,
R  =  273.5fi, ki  =  0.207, Ri  =  3.3f^, =  0.317,
i?2 =  45.6Q, C l  =  74n F , C  =  898nF. The shunt 
capacitjince between the coil and ground is unusually 
large, which is due to the external circuitry connected 
to the magnet. Shunt impedance measurements of mag­
net DCA 207 (warm at Brookhaven) and magnet DCA 
318 (cold at Fermi Lab) suggest a modification of the 
coil-to-ground capacitance of C  =  280nF.

4  S u m m a ry

The frequency dependent AC electrical characteristics 
were measured using network analyzer. Curve fitting is 
used to find the transfer function of the magnet impedance 
from the measured data. The electrical circuit model is 
obtained by synthesis of the transfer function. The cir­
cuit model reveals the information of the magnet induc­
tance, eddy current resistance, coil-to-ground and turn- 
to-turn capacitance. The AC characteristics of magnets

f req u e n cy  (Hz)

Figure 5: Adjusted Curve Fitting to the Measured 
Impedance Data of Cold Dipole DCA 208

can be used to predict the ripple distribution of super­
conducting magnet strings. The AC characteristics of 
the magnets can also provide dynamic information for 
the design of the collider current regulation loop. This 
measurement method shows great promise as a standard 
method for testing all the SSC superconducting mag­
nets, due to its high accuracy, excellent repeatability, 
and ease of use.
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