S A
9/7

ks

,qﬂ uciD- 17090 Rev. I

. Lawrence Livermore Laboratory

-

]

USER'S GUIDE TO THE LLL BASIC INTERPRETER

Terry Allison
Royce Eckard
Jerry Barber

June 9, 1977

MASTER

This is an informal report intended
primarily for internal or limited

external distribution. The opinions
| . : and conclusions stated are those of
i P the author and may or may not be
i HL’ ; those of the Iabora‘;or i
iy I~ E y-
| i b i ~— - i
T _\‘ - Prepared for U.S. Energy Research &
‘ i i Ek- i Sl Development Administration under
{lg f ; f“LJJﬁ J' contract No. W-7405-Eng-48.
i | i .ﬁﬁﬁ‘ﬂ o
i o L‘; r
i
| ey
d] oot

L =

RISTRIBUTION OF THIS OOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

FOREWORD

The BASIC interpreter described in this user’s guide was developed at the
University of Idaho by John Dickenson, Jerry Barber, and John Teeter under a
contract with the Lawrence Livermore Laboratory. 1In addition, Jerry Barber,
as an LLL summer employee, and Terry Allison at LLL made significant contribu-
tions to this document and to implementing the BASIC language in an Intel-8@8@-

based MCS-8@* microcomputer.,

A BASIC program package is available from the Argonne Code Center. Con-
tact

M. Butler, Argonne Code Center

Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439
The file nuuwber for the program package is ACC 290.

Additional copies of this report may be obtained from the National

Technical Information Center, as described inside the back cover.

an sccount of
work

nor the U,.?;;""'"”" Neim:,

velopment Admin;, States Energy

Process g of any information, apparat, Completeness

iy sclosed, of tus, pr,
g ity g gt 1 T o

* Reference to a company or product name here or elsewhere in this report does
not imply approval or recommendation of the product by the University of
California or the U.S. Energy Research & Development Administration to the

exclusion of others that may be suitable.

—ii-

DISTRIBUTION'OF THIS DOCUMENT IS UNLIMITE

FOREWORD. « « « o« « &
ABSTRACTC L L . L] L L]
INTRODUCTION. . . .

USING THE BASIC INTERPRETER .

Starting the Interpreter

Entering a Line.
Commands
Statements . o .
Functions., . . .
Error Messages .
APPENDIX A:
APPENDIX B:

SAMPLE PROGRAMS.
DESCRIPTION OF.BASIC

CONTENTS

INTERPRETER

-iii-

ii

(VR .

11
13
18

USER’S GUIDE TO THE LLL BASIC INTERPRETER
ABSTRACT

Scientists are finding increased applications for microcomputers as
process controllers in their experiments. However, while microcomputers are
small and inexpensive, they are difficult to program in machine or assembly
language. A high-level language is needed to enable scientists to develop
their own microcomputer programs for their experiments on location. Recog-
nizing this need, LLL contracted to have such a language developed. This
report describes the result--the LLL BASIC interpreter, which operates with

LLL’s 8@8@-based MCS-8¢ microcomputer system.

INTRODUCTION

The BASIC interpreter described in this user’s manual was designed to
operate with the LLL MCS-8f microcomputer. It consists of a 6K-byte-ROM
residenl interpreter used for program generation and debug. This ROM inter-

preter must reside at 8@H to 97H in your memory space.

The goal in developing the 8¢8@ BASIC was to provide a high-level,
easy-to-use language for performing both control and computational functions
~in the MCS-8@. To minimize system size and cost, the interpreter was
constrained to fit into 6K bytes. It was necessary, therefore, to limit the

commands to those considered the most useful in microcomputer applications.

A list of these commands is given in Table 1, and a list of the statements
making up the BASIC interpreter is presented in Table 2. Average assembly-
language execution times and the various operations allowed in the BASIC

floating-point package are given in Table 3.

Table 1.

BASIC Interpreter Commands

Action

Command

RUN ‘Begins program execution

ECR Cloars program from memory

LIST Lists ASCIT program in memoty

PLST . Punches paper-tape copy of program

PTAPE Reads paper-tape copy of program using high-
speed reader

CNTRL S

Interrupts program during execution (except for

floating point input)

Table 2. BASIC Statements

Statement Function

@ to 32767 Indicates BASIC line number (maximum range @ to 32767).

REM Indicates a comment (spaces are ignored except when
enclosed in quotes, therefore, comments are generally

. enclosed in quotes).

END Indicates end of program.

STOP . Stops program.

GO to XX Transfers to line number XX.

DIM Declares an array (only one-dimensional arrays with
an integer number of elements are allowed);
DIM A(8) = A(@) through A(7).

LET Indicates an aésignment statement (addition, subtraction,

IF expression THEN XX

INPUT
PRINT

FOR

NEXT

GO SUB NN

RETURN
CALL

GET
PUT

(Y)

multiplication, division, or special function may be
used).

Condition statement which transfers to line number XX

if the condition of the expression is met.

Allows numerical data to be input via a terminal.

Allows numerical data and character strings to be printed
on a terminal. _

Causes program to iterate through a loop a designated
number of times.

Signals end of loop and at which point the computer

adds the step value to the variable and checks to see

if the variable is still less than the terminal value.
Transfers control to a subroutine that begins at line NN.
Returné control to the line after last GO SUB.

CALL (N, A, B,...).

N = subroutine No. as listed in assembly patch table.

A, B, etc. = parameters, constants, variables, or

expressions.

() read 8Y8Y input port K.

1

output a byte of data to output port Y.

-3~

Table 3. BASIC Operations and Execution Times

Execution Time

Operation ___on 8(8¢ (msec)
ADD 2.4
SUBTRACT 2.4
MULTIPLY 5.4
DIVIDE 7.9

USING THE BASIC INTERPRETER

Starting the Interpreter

The BASIC interpreter is presented configured so that it is located in
memory pages 8@H through 97H. The starting address is page 8@H, location 0.
This address begins an initialization sequence that allows the user to begin
with a clear memory. However, to avoid the initialization sequence, a second
starting address--page 8@H, location 13H--can be used. This starting address

is used if the user wishes to retain any program that might exist in memory.

Before the system can be started the user must provide a set of addresses
and JMP instructions starting on Page 1, Location f}. These locations are refer-

enced absolutely from the interpreter, and must contain the following information:

Page Location' Contents Meaning
1) XXH Low order 8 bits of stack-pointer location
1 1 XX High order 8 bits of stack-pointer location
1 2 KXl Low order U bits ol locativn ul user=

subroutine jump table

1 3 XXH High order 8 bite of location of user-
subroutine jump table

1 4-6 " JMP XX XXH JUMP to location of console input routine

1 7-9 JMP XX XXH JUMP to location of console output routine

1 A-C JMP XX XXH JUMP to location to read 1/0 status port

1 D-F JMP XX XXH JUMP to location to read a character from
high-speed paper-tape reader

NOTES:

1. For console output, character is passed in A-Register.

2. For console input character must be returned to BASIC in B-Register.

3. Console input and output status checking must be done in user’s input

and output routine.
A

4, For high-speed reader, character must be returned to BASIC in A-Register.

5. For 1/0 status checking, the user code must set the low order bit of the

A A-Register to 1 if a console input character is present, otherwise set
equal to @.

Once started the interpreter responds with READY.

Entering a Line

Each line entered is terminated with the carriage-return key. The line-
feed key is ignored. It is possible to correct errors on a line being entered
by either deleting the entire line or by deleting one or more characters on
the line. A character is deleted with either the rubout key or the shift/0
key. Several characters can be deleted by using the rubout key several times
in succession. Character deletion is, in effect, a logical backspace. To
delete the line you are currently typing, use the CNTRL/Y key.

The above line-edited features can be used on command, program, or data

lines.

Commands

The following commands are available:

RUN - Begins program execution.

SCR - Clears program from memory.

LIST - Lists program in memotry.

PLST - Punches paper-tape copy of program,

PTAPE . = Reads in paper-tape copy of program using high-speed reader.

The LIST and PLST commands can be followed by one or two line numbers to
indicate that only a part of the program is to be listed. If one line number
follows the command, the program is listed from that line number to the end of
the program. If Lwo line numbers (separated by a comma) follow the command,
the listing begins at the girst line number and ends at the second. ‘

When a command is completed, READY will be typed on the teletype. Once
initialized by a command, a process will normally go to completion. However,
if you wish to interrupt an executing program or a listing, simply strike

CNTRL S and the process will terminate and a READY message will be typed.

~5-

Statements

Each statement line begins with a line number, which must be an integer
between @ and 32767. Statements can be entered in any order, but they will be
executed in numerical order. All blanks are ignored.

A program can be edited by using the line numbers to insert or delete
statements. Typing a line number and then typing a carriage-return causes the
statement at that line number to be deleted. Since the statements can be
entered in any order, a statement can be inserted between two existing state-
ments by giving it a line number between the two existing statement line
numbers. To replace a statement, the new statement should have the same line

number as the old statement. The following types of statements are allowed:

REM -~ 1Indicates a remark (comment). The system deletes blanks from all
character strings that are not enclosed in quotes ('"). Therefore, it
is suggested that characters following the REM key word be enclosed in
quotes.

END =~ 1Indicates the end of a program. The program stops when it gets to the
END statement. All programs must end with END.

STOP

Stops the program. This statement is used when the program needs to
be stopped other than at the end of the program text.

GOTO Transfers to a line number. This statement is used to loop or jump

within a program.

DIM - Declares an array. Only one~dimensional arrays with an integer constant
number of elements are allowed. An array with N elements uses indexes
f through N-l. All array locations are set to scro. Ne check is made
on subscripts to ensure that they are within the declared array. An
array variable must be a single letter.

LET - 1Indicates an assignment statement. Non-array variables can be either
a single letter or a letter followed by a digit. It is possible to
have an array and a non-array variable with the same name. The general
form of the LET statement is:)

Line number LET identifier = expression,

where "identifier'" is either a subscripted array element or a non-array
variable or function (see section on functions) and "expression" is a
unary or binary expression. The expression will be one of the following

ten types:
variable -variable - variable
-variable variable * variable
variable + variable ' -variable * variable
variable - variable variable / variable
—variable + variable A ~variable / variable

IF

INPUT

where 'variable" is an identifier, function, or number.

of an array can also be an expression.

Numbers in a program statement or input

with a floating-point package provided by LLL.

the following forms:

4 +h.
b +4.0
4.9 1.23

+4 +1.23

and the user may add an exponent to any
letter E to indicate powers of 1@. The

E+1 E+15
E 1 E 15

The numbers are stored with seven-digit

The subscript

via the teletype are handled
Numbers can have any of

.123
© +.123
9.123
+8.123

of the above forms using the
forms of the exponent are:

accuracy; therefore, seven

significant figures can be entered. The -smallest and largest numbers
are +6.46235E-27 and +4.61168E18,

It has the form: line number IF
The possible

This is the conditional statement.
expression relation expression THEN transfer line number.
relations are:

Equal =
Greater than >
Less than <
Greater than or equal >= or =>
Less than or equal <= or =<
Not equal <> or ><

If the rclation between the two expressions is true then the program
transfers to the line number, otherwise it continues sequentially.

o
This command allows numcrical data to be input via the teletype. The

general form is:

Line number INPUT identifier list

where an "identifier list" is a sequence of identifiers separated by

commas. There is no comma after the last identifier so, if only one

identifier is present, no comma is needed. When an INPUT statement is

executed, a colon (:) is output to the teletype to indicate that data

are expected. The data are entered as numbers separated by commas.

If fewer data are entered than expected, another colon is ourpul to the

teletype, indicating again that data are expected. For example, where
5¢ INPUT 1I1,J,K,P

is evernted, a colon is output to the teletype. Then, if only 3 num-

erical values are entered, another colon wlll be output to indicate

-7=

PRINT -

FOR -

NEXT -

GOSUB NN -

that more data are expected; e.g.,

s 4,4,6.2 C/R
1¢.3 C/R

where C/R is the carriage-return key. If an error is made in the
input-data line, an error message is issued and the entire line of
data must be re-entered. I1f, for the above example,

t4,4,6M2,16.3 C/R

is entered, the system will respond

INPUT ERROR, TRY AGAIN

At this time, the proper response would be
4,4,6.2,1¢.3 C/R

‘This command allows numerical data and character strings to be printed
on the teletype. Two types of print items are legal in the print
statement: character strings enclosed in quotes (") and expressions.
These items are separated by either a comma or a semicolon. If print

items are separated by a comma, a skip occurs to the next pre-formatted

field before printing of the item following the comma begins. The
pre-formatted fields begin at colummns 1, 14, 27, 40, and 52. If print
items are separated by a semicolon, no skip occurs. If a semicolon or
comma is the last character on a print statement line, thc appruprlate
formatting uvecurs and the carriage-return/linefeed is suppressed. A
print statement of the form

Sf PRINT

will generate a carriage=recurin/linefeed. Thus, the twe lincs beluw

5¢ PRINT "INPUT A NUMBER"; §

6@ INPUT A
will result in the following output:

INPUT A NUMBER:
For more examples, see sample programs in Appendix A.
Cayses program to iterate through a loop a designated number of times.
Signals end of loop at which point the computer adds the step value to
the variable and checks to see if the variable is still less than the

terminal value.

Transfer control to a subroutine that begins at line NN.

-8-

1Yl

RETURN

CALL

Returns control to the next sequential line after the last GOSUB
statement executed. A return statement executed before a GOSUB is
equivalent to a STOP statement.

Calls user-written assembly-language routines of the form
CALL (N, A, B, ...),

where N is a subroutine number from ¢ - 254 and A, B, ... are param-
eters. The parameters can be constants, variables, or expressions.
However, if variables and constants or expressions are intermixed,
all variables should have been referenced before the CALL statement.
Otherwise, the space reserved for newly referenced variables may
overwrite the results of constants and expressions. A memory map of
one configuration of the system is shown below:

Page § 0DT

Page 1 JUMP TABLE

Page 2 USER SUBROUTINES

Page 4 USER SOURCE
VARIABLES

Page 8@H BASIC
INTERPRETER

~ Page 97H &\}

The subroutine table contains 3-byte entries for each subroutine. The
table is located at the address specified in the JUMP-TABLE for SUBAD.
(Page 1, Location 2)

Subroutine #1

DB 1 H

DW SUB1 ; Starting address of
Subroutine #1

DB 4 3 Subroutine #4

DW SUB4 ;s Starting address of
Subroutine #4

DB 5 3 Subroutine #5

DW SUBS ; Starting address of

Subroutine #5

DB 2 Subroutine #2

-e

DW SUB2

; etc.
DB 377Q ;s end of subroutine table
SUB1: : 3 Subroutine #1

RET
SUBS: 3 Subroutine #5

REi

éET H Retﬁrn last subroutine

Addresses to passed parameters are stored on the stack. The user must
know how many parameters were passed to the subroutine. These must

be taken off the stack before RET is executed. Addresses are stored
last-paramcter-first on the stack. Thus, on entty to a subroutine,
the first POP instruction will recover the address to the last param-
eter in the call list. The next will recover the next to last, etc.

Each scalar variable passed results in the address to the first byte
of a four-byte block of memory. Each array element passes the address
to the first byte of a (N-M) x four-byte meumory block, where N is the
number of elements given the array in the DIM statement and M is the
array subscript in the CALL statement.

Parameters returned from user subroutines to be used in expressions
with BASIC must be in the proper floating=point format,

Functions
Two sbecial functions not found in most BASIC codes are available to inpﬁt

or output data through Intel 8¢8@ ports. The function GET allows input from a
port and the function PUT allows output to a port. Their general forms are:

GET (expression)

PUT (expression)
The function GET may appear in statements in a position that implies that a num-
erical value is used. The function PUT may appear in statements in a position
that implies that a numerical value will be stored or saved. This is because
GET inputs a number and PUT outputs a number. For example,

LET PUT(I) GET(J) 1is valid

while

It

LET GET(I1) PUT(J) 1is invalid.

=10~

These functions send or receive one byte of data, which in BASIC is treated as

a number from @ to 255.

Error Messages

If an unrecognizable command is entered, the word WHAT? is printed on
the teletype. Simply retype the command. The response may also have been
caused by a missing line number on a BASIC statement, in which case you should

retype the statement with a line number.

If an error is encountered while executing a program, an error message
is typed out that indicates an error number and the line number in which the

error occurred. The meanings of the error numbers are given in Table 4.

Table 4. LLL-INTERPRETIVE-BASIC ERRORS

Error Number Definition
‘l Program has no END statement
2 Unrecognizable key word at beginning of statement
3 Source statements exist after END statement
4 Destination line number is improperly formed in a GOTO,

GOSUB, or IF statement

5 Destination line number does not exist
6 Unexpected character
) / Unfinished statement

8 Illegally formed statement

9 Error in floating-point conversion
19 Illegal use of function
11 Duplicate array definition

12 Array referenced before it is defined
13 Error fixing a number--numher too large
14 Invalid relation in an IF statement

15 No subroutine by this number

16 ‘=" expected in FOR statement (no array elements)
17 Bad syntax near TO or STEP

18 FOR-NEXT nested > 20

19 NEXT executed before FOR

20 Nesting error within FOR-NEXT

21 Bad index in FOR-NEXT

~11-

During program execution, and whenever new lines are added to the program,
a test is made to see if there is sufficient memory. If the memory is full,
MEMORY FULL is printed on the teletype. At this point, you should enter one of
the single digits below to indicate what you wish to do:

Number entered Meaning
] (RUN) Runs the program in memory
1 (PLSf) OQutputs program in memory to paper-tape punch
2 (LIST) Lists program in memory
3 (SCR)' Erases program in memory
4 None of the above (will cause WHAT? to be printed on

the teletype).

To help you select the best alternative, a brief description of how the
statements are manipulated in ﬁemory may be helpful. All lines entered as pro-
gram are stored in memory. If lines are deleted or replaced, the originals
still remain in memory. Thus, it is possible, if a great deal of line editing
has been done, to have a significant portion of memory taken up with unused
statements. If a MEMORY FUiL message is obtained in these circumstances, then
the best thing to do is punch a tape of the program (entering number 1), then
erase the program memory with a SCR command (or a number 3, if memory is too
full to accept commands), and then re-enter your program using the high-speed

paper-tape reader with the PTAPE command.

-12-

APPENDIX A: SAMPLE PROGRAMS

The program below gives a few examples of the use of the print statement.

LIST

1PRINT"THE PRE-FORMATTED COLUMNS ARE SHOWN BELOW"
2PRINT1,2,3,4,5

4PRINT

1@PRINT"INPUT 1ST NUMBER";

20INPUTA

3@PRINT"INPUT 2ND NUMBER”,

4LPINPUTB :

S@PRINT

6@PRINT"A IS'";A

7@PRINT"B IS",B

8@PRINT"A IS";A;"B IS",B,"A+B IS'";A+B

1P@END .

READY

RUN

THE PRE-FORMATTED COLUMNS ARE SHOWN BELOW

1.0000E 00 2.0000E 0¢ 3.000GE @08 4.GQ00E 09 S.GGPOE P9

INPUT 1ST NUMBER:2

INPUT 2ND NUMBER :3

A 1S 2.00Q@E @0

B IS 3.0000E 00 .

A IS 2.000@E @@B IS 3.0000E B¢ A+B IS 5.0@00E 00
READY :

The following program plots a function on a display. It uses four

user-written assembly-language subroutines. The display works as follows:

The contents of memory locations on pages 2748 to 2778 are displayed as 16 rows

of 64 characters each. Thus, if location 2018 on page 274 contains 3018
(ASCII A), an A appears in column 2 of Row 3. An example of this program's
execution is shown below:

RUN
WHAT SHOULD PLOT BE LABELED? MCS80 - BASIC INTERPRETER
READY '

The BASIC and assembly-language programs and the display output are

cshown on the following pages.

-13~

BASIC Program

LIST

1REM" THIS ROUTINE WILL PLOT A SET OF AXIS AND A QUADRATIC FUNCTION
2REM" ON A DISPLAY AND THEN LABEL IT. 1IT USES A 4 USER WRITTEN
3REM" SUB-ROUTINES:

4KREM

SREM" -CALL (1,X,Y,C) - PLACES C IN COLUMN X, ROW Y OF THE DISPLAY
6REM" WHERE C IS AN ASCII CODED CHARACTER

7REM

8REM" CALL(2,A(@)) - READS A CHARACTER STRING FROM THE TTY AND STORES
9REM" IT"IN ARRAY A

10REM .

11REM" CALL(3,A(#)) - WRITES THE CHARACTER STRING STORED IN ARRAY A
12REM" TO THE DISPLAY

13REM

14REM" CALL(4) - CLEARS THE DISPLAY
15REM

16REM" START OF PROGRAM

17REM

18RIM" REJERVE 3TORAGE AREA FOR TITLE
2@¢DIMA (10)

3@REM" CLEAR SCREEN

4BCALL (4) .

SPREM" ASK FOR AND INPUT TITLE

55PRINT"WHAT SHOULD PLOT BE LABELED?'";
6@CALL(2,A(9))

7@REM" DRAW AXIS
8¢GOSUB5@@

9@PREM" PLOT FUNCTION
1P@LETX=-29
11$GOSUB1P@8
12@CALL(1,31+X,8-Y,248)
13@LETX=X+1

14@IFX><31 THEN11¢
15@¢REM" OUTPUT TITLE

16@CALL(3,A(9))
165REM" WE'RE DONE
17¢STOP

S@PREM" THIS SUB. WILL DRAW A SET OF AXIS
S@5SLETX=1

S1@LETY=7

52@LETC=173

53pCALL(1,X,Y,C)

S4@LETX=X+1

55@TIFX><65THEN530

56@LETX=31

57@LETY=1

575LETC=252

584CALL(1,X,Y,C)

SOPLETY=Y+1

6@@IFY><17THENS8¢

61@RETURN .
1P@@REM" GIVEN X THIS SUB. CALCULATES (17/9¢@)*X**2-8
1@@5REM" FIRST CHECK IF X=¢ AS IT WILL UPSET FLT. PNT. PACK.
1¢1PIFX=@gTHEN1B45 4
1¢1S5REM" WE'RE OK - CALCULATE FUNCTION
1@2@LETY=X*X

1#25LETK=17/90¢

1@3@LETY=Y*K

1035LETY=Y-8_

1@4@RETURN

1P45LETY=-8

195@RETURN

2¢G@END

READY

-14-

Prrrr

1
8088 MACRO

014912
13212
P16567
pl6614
016614

p16616
016617
Ble621
016622
016624
616625
016627
916630
16632

016633
016634
016637
016642
016643
016646
016647
016650
916651
016652
016653
N16654
016657
016662
016663
016666
16667
016670
816671
#16672
916673
016674
916677
816782
016703
216706
9167067
016710
816711
016712
916715

ASSEMBLER VER 2 2

027

001
233
P2
334
003
364
o4
083
377

321
041
315
353
315
023
023
023
032
167
321
P4l
315
353
315
023
023
023
832
117
321
241
315
353
315
023
823
D23
832
041
821

836

935
035
035

036

167
212

012

167
212

012

167
212

812

377
160

b35
026

230

B35
026

030

035
926

030

273
voo

Assembly-language program

ERRORS = 0 PAGE 1

;DEFINE EXTERNALS

FIX
COPDH
FREG1

; ENTRIES IN SUB TABLE

EQU 146120
EQU 132120
EQU 16567Q
ORG 16614Q
DW SBEND
DB 1

DW SCOPE
DB 2

DW SUB2
DB 3

DW SuB3
DB 4

DW SUB4
DB 3770

; FIX ROUTINE
;COPY ROUTINE
; FLOATING PNT

: FWAM

s NO MORE ENTRYS

;THE CALL TO THIS ROUTINE IS OF THE FORM
CALL(1 X Y C)
E OF C IS PLACED IN COLUMN X LINE Y
;OF THE DISPLAY

i
; THE VALU

SCOPE:

POP
LXI
CALL
XCHG
CALL
INX
INX
INX
LDAX
MOV
POP
LXI
CALL
XCHG
CALL
INX
INX
INX
LDAX
MOV
POP
LXI
CALL
XCHG
CALL

INX
INX
LDAX
LXI
LXI

D
H FREG1
COPDH

IX

OCmpooouom

H 135777Q
D 1068Q

-15-

REGISTER

; ADDRESS OF CHARACTER

;COPY TO FREG1

;ADDRESS TO DE

;FIX IT

;PNT TO 4TH BYTE

;GET CHARACTER

;SAVE IN B
;ROW ADD

;COPY TO FREG1

sFIX IT

;GET BYTE 4 .TO A

;SAVE IN C

;GET COLUMN ADD
;COPY TO FREG1

;FIX IT

;PNT TO 4TH BYTE

;GET IT TO A

; CALCULATION OF ADDRESS

1

8680 MACRO ASSEMBLER VER 2 2

016720 015
016721 . 312
016724 931
016725 303
016730 137
916731 931
916732 160
816733 311
600333

016734 341
016735 345
p16736 016
316749 043
016741 315
Plo /44 3/6
816746 312
916751 014
816752 167
£16753 303
216756 341
016757 161
016760 076
pl6762 367
016763 311
016764 341
016765 021
016770 116
816771 043
016772 176
816773 022
016774 043
816775 23
016776 015
016777 302
8617002 - 311
917003 041
017906 076
017016 826
017012 0l6
017014 167
917015 043
817016 025
017017 392
017922 815
017023 302
0179026 311
0179027

330

320

009

333
215
356

349

212

341

372

oo
2490
000
o4

014
014

NO PROGRAM ERRORS

Assembly-language program (continued)

035

035

000

B35

835

277

035

274

036 .

036

ERRORS = @ PAGE 2
LUP: DCR C
JZ ADINC
DAD D
JMP Lup
ADINC: MOV E A] o
DAD D ;ADD IN COLUMN LOC
MOV M B ; STORE CHARACTER
RET ; DONE
;SUB2 READS A TITLE FROM TTY VIA ODT 0
READ EQU 3330 ;ODT ROUTINE
suB2: POP H : ;GET STORAGE AREA ADD
PUSH H
MVI co ; INIT CNTR
LUPp2: INX H ;BUMP .PNTR
CALL READ ;READ A CHARACTER
1 215y PUR?
Jz DUN2 ;YES - DONE
INR C :INCR CNT
MOV M A : SAVE CHARACTER
JMP LUP2 ‘
DUN2: POP H :STORE CNT
MoV M C
MVI A 2120 ;SEND A LF
RST 6
RET : DONE
;SUB3 WRITES TITLE TO DISPLAY
SUB3: pop H ;GET ADD
LXI D 1377410 : SCREEN ADD
MOV cC M ;CNT
R INX H
LUP3: MOV A M ;SEND STRING
STAX D
INX H
INX D
DCR C
JINZ LUP3
RET ; DONE
;SUB4 CLEARS SCREEN
SUB4: LXI H 1360000 ; SCREEN ADD
MVI A 240Q ; SPACE
MVI DB ;CNTR ©
MVI C 4
LUP4: MOV M A ";CLEAR IT
INX H
DCR D
INZ LUP4
DCR C
JINZ LUP4
RET : DONE
SBEND EQU $
END

-16-

1

8080 MACRO ASSEMBLER VER 2 2 ERRORS = @ PAGE 3
SYMBOL TABLE

* 1
A pUeoe7 ADINC 016730 B 8000600 C 000001
COPDH 913212 D 0000602 DUN2 816756 E 000003
FIX 14012 FREGl 016567 H 0000064 L 00608005
Lup 016720 LUP2 016740 LUP3 016772 LUP4 017014
M pVOB06 PSW 000006 READ 0908333 SBEND 817027
SCOPE 916633 SPp P00OBO6 SUB2 016734 SuB3 016764
sSuB4 017003

X X

X 1 X
C ok = "
X X
X X
XX
_—— - S,
__________ ——— ————— +
XX XX
XX XX
X X
XX XX
XX XX
XX XX
XXX XXX
XXXXXXX | XXXXXXX

x MCS8(@ BASIC interpreter

Display output for préceding_program.

-17-

APPENDIX B: DESCRIPTION OF BASIC INTERPRETER

The following is a brief description of the BASIC interpreter:

Formats

Source statements are stripped of blanks on input (character strings

enclosed in quotation marks are an exception) and stored "as is" in memory, using

the following format:

Binary equivalent ' Length of ASCII
of line uno. source statement
(2 bytes) (1 byre)
Forward pointer to ASCII source statement
next sequential line (1 byte/character)
(2 bytes)

The forward pointer links statements by ascending line numbers. The last line’s
forward pointer (supposedly an END statement) has value 1777778 to indicate the
end of the list. -

The symbol table 1s built up at run time and begins after the most recently
entered source statement (the variable STSPAC points to where the symbol table

will start). Symbol table entries are shown below:

Sc;lar4Var1ab1e Formact

ASCII P-9 ASCIL
letter | [or bin @
1TV

Variable -name Forward pointer Variable value
(2 bytes) (2 bytes) (4 bytes)

Array-~Variable Format

Bin ASCII
) , ‘ letter
] j
Array Forward Array elements
name pointer
(2 bytes) (2 bytes) (N x 4 bytes)

-18=

Subroutines

Following is" a list of potentiélly useful subroutines, with a brief descrip-
tion of each subroutine.

The list contains those subroutines most likely to be used by someone modi-
fying BASIC. If you plan on using one of the routines, you should examine it

and its comments carefully.

ALPHA ~ Value pointed to by HL register pair is tested to see if it is an
ASCIL . letter.
CY =1 => Yes
CY =@ =>No

NUMB ~ Same as above but tests for a decimal number (ASCII ¢-9).
CHAR2 | - Inputs a character from tHe teletypé t§ a register.,

CHARS - Same as.above for HSR. | |

CHK1 - Checks to see if HL are equal to 1777778 (-l);

CY. =1 => Yes.
CY = ¢ => No.

CONV (CVRT).— One of the floating-point'routines. Converts floating-point
number to a character string. Output is padded to the output
buffer. ’

COPDH - Copies floating-point number pointed to by D,E to location
pointed to by H,L; uses COPY.

COPY - One of the floating-point routines. Copies float&ng-point value
pointed to by A,L to location pointed to by H,C.

CVB . - Converts the integer-character string pointed to by H,L to its
binary equivalent. Value returns in D,E registers.

DCOMP ~ Double-byte comparison routine. Compares value in CB to that in
ED.

Zz =1 => CB = ED
cY =1 - = CB > ED
cY =¢ = = CB < ED.

DFXL - ~ One of the floating-point routines. Used to float an unsigned
integer. H,L point to first of four bytes; integer is right
justified in first three bytes.

EVAL - Evaluates an expression the first element of which is pointed to

by H,L and the length of which is in C. Used to evaluate express-
ions wherever they are legal in BASIC. C usually contains the
length of the source statement line containing the expression.

-19-

FINPT

FIX

FSYM

LADD
LSUB
LDIV
LMUL

LMCM

MCHK

MEMFUL

MULT

NSRCH

OUTR

PAD

One of the floating-point routines. Converts character string

to floating-point number. The variable HLINP contains a pointer
to the character string, and the variable CREG contains the length
of line containing character string. Mode = ¢} => data comes

from teletype (i.e., only delimiters are commas). Mode = 1 =>
data comes from source statements.

Fixes a floating-point number. DE points to number to be fixed.
Error code 13 is given if number "is too big to fix.

Finds symbols in symbol table. BC contains symbol. Returns
with HL pointing to symbol value.

CY =1 => symbol was found.

CY = ¢ and a scalar => symbol not found, but inserted and
initialized to @§. ‘

CY = @ and an array => not found, no action taken: HL are
meaningless.

Floating-point add routine.

Floating—-point subtract routine.

Floating-point divide routine.

Floating=-point multiply routine.

One of the floating—~point routines. Compares two floating-

point values. HL points to first--HB points to second.

=1 => Equality

CY=1 => First < second

(Note: Compares absolute only, does not reference mantissa sign.)
Waits for flag from port 3. Proper mask is sent in register B.
Checks to see if memory is full. HL point to location of memory
to be checked. Memory is considered full if it is within 5¢]¢
locations of the current value of stack pointer. ’
Multiplies two two-byte binary numbers. HL point to last byte

of four bytes. First two contain first number. Last two contain
second number. Answer returns in BC and DE.

Routine to locate source line in memory. Binary value of line
number passed in DE. Returns address of line in HL, CY=1 => not
found.

Used by CONV (CVRT) to pad output to output buffer.

Pads characters to output buffer. A contains character; B contains

number of pads.

-20-

SYMSRT

TTYIN

VALUE

VAR

WRIT

ZROL

Variables

variable.

Checks a character string to see if it is a BASIC symbol. HL
contains address pointing to first character of symbol, C contains
length of line that contains symbol. A contains type of symbol
sought.

" §=command l=key word

2=operator or delimiter 3=function

Returns with 377, in a register if nothing found. Otherwise, A
contains symbol number in appropriate KDAT table. Thus, for
symbol type 2, if a 4 is returned, the symbol found was the
fourth one (starting with @) in table KDAT3 (KDAT concatenated
with 2 and 1 or A")". C is updated, but HL is not.

Inputs a line from teletype. Stores starting at location
pointed to by HL. Line edits. Returns length of line in A
register (maximum line length is 72 characters).

Called with HL pointing to a variable, constant, or function;
C contains line length, returns with DE pointing to floating-
point value. HL, C are updated.

Called with HL pointing to character string, C has line length.
Determines if character string is a variable. If so, returns
with CY=1, DE pointing to value (subscripts of arrays are eval-
uated, etc.). HL, C updated. If not, a variable returns CY=@,
HL,C untouched.

Dumps contents of output buffer to teletype. Uses entry WRITL

~with D register equal to one to suppress CR/LF.

Part of floating-point subroutines. Writes a floating-point
zero, starting at location pointed to by HL.

Following is a list of interpreter variables, with a description of each

Note that some of the variables below occupy the same area of memory.

This is because some variables are used only in the command mode and others only

at run time. To conserve space, they share the same memory locations.

MEMST

OBUFF

IBUF

Assembly time variable. Contains the first available RAM
location. This is where active variables start. (Set to
Page 4, Location @).

Output buffer, the first location contains .the number of
characters in the buffer + 1.

Input buffer, occupies same arca as OBUFF,

~21-

STLINE
NLINE,NL2,
NL4 ,NL6

KLINE,KL2,
KL4,KL6

PLINE,PL2,
PL4,PL6

KASE,LEN
MULT]1,MULT2
SREAV

STSPAC

LDNT
CPNT

KFPNT
FREG1, FREG2
HLINP,CREG
NXTSP

GREG
MODE

MESCR

VARAD

VEND

FWAM

Points to first source line to be executed. If no source,
contains 1777778.

Contain address, binary-equivalent line number, forward pointer,

and length of next input line.

Same as above, but used by a subroutine that inserts lines in
sequential order (insert).

Subroutine insert to order statements sequentially.

Temporary storage for command mode routines.
Used to store binary values to be multiplied.
Temporary storage for call-statement processor,

Next available location in memory; symbol table starts
here at run time.

Pointer to the current line at run time.

Pointer to cufrent charaéter in current line at run time.
Point to next sequential line at run time.

Two floaging-point registers.

Temporary storage for HL and C registers for routine INP.
Pointer to next available space of memory for symbol table.

General register, in and out instructions are stored here
and executed for GET and PUT functions.

Indicates to INP routine whether input data comes from source
or teletype.

Temporary storage for call-statement processor. Points to
next availahle space after oymbol table. Area after the
symbol table is used to store intermediate results of ex-
pressions or constants passed to user subroutines,

Temporary storage space for input-statement processor.

Assembly time variahle. Indicatoo cnd of iulerprerer vari-
able~storage area and where FWAM pointer is to go.

First word of available memory pointer. This is where user
source programs go.

-22=

R

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Energy Research
& Development Administration, nor any of their
employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its wuse would not infringe
privately-owned rights.

NOTICE

Reference to a company or product name does not
imply approval or recommendation of the product by
the University of California or the U.S. Energy Research
& Development Administration to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service

UJ.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

Price: Printed Copy § : Microfiche $3.00

Domestic Domestic
Page Range Price Page Range Price
001-025 § 3.50 326-350 10.00
026—-050 4.00 351-375 10.50
051-075 4.50 376400 10.75
076-100 5.00 401-425 11.00
101-125 5.50 426-450 11.75
126150 6.00 451-475 12.00
151-175 6.75 476—-500 12.50
176200 7.50 501-525 12:75
201-225 TS 526-550 13.00
226-250 8.00 551-575 13.50
251- 275 9.00 576-600 13.75
276-300 9.25 601 —up *
301-325 9.75

*Add $2.50 for each additional 100 page increment from 601 to 1,000 pages;
add $4.50 for each additional 100 page increment over 1,000 pages.

