
r/
Jj. I{?
. _(\ \

_..... v \ UCID- 17090 Rev. I

, · }~~L___-------------J
Lawrence Livermore Laboratory

USER'S GUIDE TO THE lLL BASIC INTERPRETER

Terry A 11 i son
Royce Eckard
Jerry Barber

June 9, 1977

"C --- ...

MtiST

Th is is an informal report intended
primarily for internal or limited
external distribution . The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Prepared for U.S. Energy Research &
Development Ad min istra t 1on under
contract No. W-7405-Eng-48 .

..,.

10!STR/8UTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

1·

FOREWORD

The BASIC interpreter described in this user's guide was developed at the

University of Idaho by John Dickenson, Jerry Barber, and John Teeter under a

contract with the Lawrence Livermore Laboratory. In addition, Jerry Barber,

as an LLL summer employee, and Terry Allison at LLL made significant contribu­

tions to this document and to implementing the BASIC language in an Intel-8080-

based MCS-80* microcomputer.

A BASIC program package is available from the Argonne Code Center. Con-

tact

M. tlutler, Argonne Code Center

Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439

The file uwuber for the program package is ACC 290.

Additional copies of this report may be obtained from the National

Technical Information Center, as described inside the back cover.

*

This repou was -NOT1ce~-----
SJ>onsorec1 b prepared as an
the United y S~e United States eo:::~nt of work

I Research and De tcs nor the Ututed Staent. Neither
their employees Velopmen1 AdmirtiJtration tes Energy
subcontractors • nor any of theu , nor any of
warranty, exp~eJSor t~eir employees ,:~trnctou,
Jiahil.ity or lt:l or implied, or a , cs any
or usefulnea ~R&lb~ly for the accura~11"'' :.ny legal
~~ di3cfoscdany mforrnation, apparar~ompJereneu

1 mfnnge Privately~:~=~,'' lha1 its We• :,'0~~c~:;

Reference to a company or product name here or elsewhere in this report does

not imply approval or recommendation of the product by the University of

California or the U.S. Energy Research & Development Administration to the

exclusion of others that may be suitable.

-ii-

DIST'RIBUTIONQF THIS DOCUMENT IS UNLIMITl/

. '

FOREWORD.

ABSTRACT.

INTRODUCTION.

USING THE BASIC INTERPRETER

Starting the Interpreter

Entering a Line.

Commands

Statements

Functions.

Error Messages

APPENDIX A: SAMPLE PROGRAMS.

CONTENTS

.•

APPENDIX B: DESCRIPTION OF.BASIC INTERPRETER

-iii-

..

.•

ii

1

1

4

4

5

5

6

10

11

13

18

. ' .

USER'S GUIDE TO THE LLL BASIC INTERPRETER

ABSTRACT

Scientists are finding increased applications for microcomputers as

process controllers in their experiments. However, while microcomputers are

small apd inexpensive, they are difficult to program in machine or assembly

language. A high-level language is needed to enable scientists to develop

their own microcomputer programs for their experiments on location.

nizing this need, LLL contracted to have such a language developed.

Recog­

This

report describes the result--the LLL BASIC interpreter, which operates with

LLL's 8080-based MCS-80 microcomputer system.

INTRODUCTION

The BASIC interpreter described in this user's manual was designed to

operate with the LLL MCS-80 microcomputer. It consists of a 6K-byte-ROM

resideul interpreter used for program generation and debug. This ROM inter­

preter must reside at 80H to 97H in your memory space.

The goal in developing the 8080 BASIC was to provide a high-level,

easy-to~use language for performing both control and computational functions

iii the MCS-80. To minimize system size and cost, the interpreter was

constrained to fit into 6K bytes. It was necessary, therefore, to limit the

commands to those considered the most useful in microcomputer applications.

A list of these commands is given in Table 1, and a list of the statements

making up the BASIC interpreter is presented in Table 2. Average assembly­

language execution times and the various operations allowed in the BASIC

floating-point package are given in Table 3.

-1-

Table 1. BASIC Interpreter Commands

Command Act ion

RUN Begins p~ogram execution

!:>CR ClOilJ;'6 proAr~m from mP.morv •
LIST Lists ASCI1 program in memory

PLST Punches paper-tape copy of pr.ogram

PTAPE Reads paper-tape copy of program using high­

speed reader

CNTRL S Interrupts program during execution (except for

floating point input)

-2-

; .

. '

Statement

0 to 32767

REM

END

STOP

GO to XX

DIM

LET

IF expression THEN XX

INPUT

PRINT

FOR

NEXT

GO SUB NN

RETURN

CALL

GET

PUT

Table 2. BASIC Statements

Function

Indicates BASIC line number (maximum range 0 to 32767).

Indicates a comment (spaces are ignored except when

enclosed in quotes, therefore, comments are generally

enclosed in quotes).

Indicates end of program.

. Stops program.

Transfers to line number XX.

Declares an array (only one-dimensional arrays with

an integer number of elements are allowed);

DIM A(8) = A(0) through A(7).

Indicates an assignment statement (addition, ·subtraction,

multiplication, division, or special function may be

used).

Condition statement which transfers to line number XX

if the condition of the expression is met.

Allows numerical data to be input via a terminal.

Allows numerical data and character strings to be printed

on a terminal.

Causes program to iterate through a loop a designated

number of times.

Signals end of loop and at which point the comput~r

adds the step value to the variable and checks to see

if the variable is still less than the terminal value.

Transfers control to a subroutin~ that begins at line NN.

Returns control to the line after last GO SUB •

CALL (N ," A, B, •••) •.

N = subroutine No. as listed in assembly patch table.

A, B, etc. = parameters, constants, variables, or

expressions.

(X) read 8~8~ input port x,

(Y) output a byte of data to output port Y.

-3-

Table 3. BASIC Operations and Execution Times

Operation
ADD

SUBTRACT

MULTIPLY

DIVIDE

Execution Time
on 8080 (msec)

2.4

2.4

5.4

7.0

USING THE BASIC INTERPRETER

Starting the Interpreter

The BASIC interpreter is presented configured so that it is located in

memory pages 80H through 97H. The starting address is p~ge 80H. location 0,

This address begins an initialization sequence that allows the user to begin

with a clear memory. However, to avoid the initialization sequence, a second

starting address--page 80H, location 13H--can be used. This starting address

is used if the user wishes to retain any program that might exist in memory.

Before the system can be started the user must provide a set of addresses

and JMP instructions starting on Page 1, Location 0. These locations are refer­

enced absolutely from the interpreter, and must contain the following information:

Page Location Contents Meaning

1 0 XXH Low order 8 bits of stack-pointer location

1 1 XXH High order 8 bits of stack-pointer location

1 2 XXll Low order u bit6 oi !O(;dlioi1 of ui:;er-

.!ubroutir1e j uIU:f' tali le

1 3 XXH High order 8 bite of location of user-

subroutine jump table

1 4-6 JMP XX XXH JUMP to location of console input routine

1 7-9 JMP XX XXH JUMP to location of console output routine

1 A-C JMP XX XXH JUMP to location to read 1/0 status port

1 D-F JMP XX XXH JUMP to location to read a character from

high-speed paper-tape reader

NOTES:

1. For console output, character is passed in A-Register.

2. For console input character must be returned to BASIC in B-Register.

3. Console input and output status checking must be done in user's input

and output routine.

-4-

·''

4. For high-speed reader, character must be returned to BASIC in A-Register.

5. For I/O status checking, the user code must set the low order bit of the

A-Register to 1 if a console input character is present, otherwise set

equal to 0.
Once started the interpreter responds with READY.

Entering a Line

Each line entered is terminated with the carriage-return key. The line­

feed key is ignored. It is possible to correct errors on a line being entered

by either deleting the entire line or by deleting one or more characters on

the line. A character is deleted with either the rubout key or the sh'ift/O

key. Several characters can be deleted by using the rubout key several times

in succession. Character deletion is, in effect, a logical backspace. To

delete the line you are currently typing, use the CNTRL/Y key.

The above line-edited features can be used on command, program, or data

lines.

Commands

The following commands are available:

RUN

SCR

LIST

PLST

PT APE

Begins program execution.

Clears program from memory.

Lists program i.n memory.

Punches paper-tape copy of program.

Reads in paper-tape copy of program using high-speed reader.

The LIST and PLST commands can be followed by one or two line numbers to

indicate that only a part of the program is to be listed. If one line number

follows the command, the program is listed from that line number to the end of

the program. If two line numbers (separated by a comma) follow the command,

the listing begins at the first line number and ends at the second.

When a .command is completed, READY will be typed on the teletype. Once

initialized by a command, a process will normally go to completion. However,

if you wish to interrupt an executing program or a listing, simply strike

CNTRL S and the process will terminate and a READY message will be typed.

-5-

Statements

Each statement line begins with a line number, which must be an integer

between 0 and 32767. Statements can be entered in any order, but they will be

executed in numerical order. All blanks are ignored.

A program can be edited by using the line numbers to insert or delete

statements. Typing a line number and then typing a carriage-return causes the

statement at that line number to be deleted. Since the statements can be

entered in any order, a statement can be inserted between two existing state­

ments by giving it a line number between the two existing statement line

numbers. To replace a statement, the new statement should have the same line

nutnber a's the old statement. The following types of statements are allowed:

REM Indicates a remark (comment). The system deletes blanks from all
character strings that are not enclosed in quotes ("). Therefore, it
is suggested that characters following the REM key word be enclosed in
quotes.

END Indicates the end of a program. The program stops when it gets to the
END statement. All programs must end with END.

STOP - Stops the program. This statement is used when the progrrim nppds to
be stopped other than at the end of the program text.

GOTO - Transfers to a line number. This statement is used to loop or jump
within a program.

DIM Declares an array. Only one-dimensional arrays with an intPgP~ ~onstant
number of elements are allowed. An array with N elements uses indexes
~ throJJgh N-1. All rirrriy lni:-.ation& arQ 6Qt to ccro. No c.hec.k is lllad!:!
on subscripts to ensure that they are within the declared array. An
array variable must be a single letter.

LET Indicates an assignment statement. Non-array variables can be either
a single letter or a letter followed by a digit. It is possible to
have an array and a non-array variable with the same name. The general
form of the LET statement is:

Line number LET identifier = expression,
where "identifier" is either a subscripted array element or a non-array
vari.able or function (see section on functions) and "expression" is a
unary or binary expression. The expression will be one of the following
ten types:

variable
-variable
variable + variable
variable - variable

-variable + variable

-6-

""".Variable
variable

-variable
variable

-variable

- variable
* variable
* variable
I variable
I variable

IF

INPUT

where "variable" is an identifier, function, or number. The subscript
of an array can also be an expression.

Numbers in a program statement or input via the teletype are handled
with a floating-point package provided by LLL. Numbers can have any of
the foJlowing forms:

4
4.
4.0

+4

+4.
±4.0

1. 23
+l. 23

.123
+.123
0.123

±0.123

and the user may add an exponent to any of the above forms using the
letter E to indicate powers of 10. The forms of the exponent are:

E+l
E 1

E±l5
E 15

The numbers are stored with seven-digit accuracy; therefore, seven
significant figures can be entered. The·smallest and largest numbers
are +6.46235E-27 and +4.61168El8. - -

This is the conditional statement. It has the form: line number IF
expression relation expression THEN transfer line number. The possible
relations are:

Equal
Greater than >
Less than <
Greater than or equal >= or =>
Less than or equal <= or =<
Not equal <> or ><

If the relation between the two expressions is true then the program
transfers to the line number, otherwise it continues sequentially.

('

This command allows numerical d~t.a to be input via the teletype. The
general form is:

Line number INPUT identifier list

where an "identifier list" is a sequence of identifiers separated by
commas. There is no comma after the last identifier so, if only one
identifier 1.-s pre::;ent, no comma j s needed. When an INPUT statement is
executed, a colon (:) is output to the teletype to indicate thar data
are expectetl. The data are Pntered as numbers separated by commas.
If fewer data are entered than expected, another colon 15 ourpuL to the
teletype, indicating again that data are expected. For example, where

50 INPUT I,J,K,P

is 11~..-Pr11tAci, a <;;olon is output to the teletype. Then, if only 3 num­
erical values are enreretl, another colon wlll be output to inrlicate

-7-

PRINT

FOR

NEXT

that more data are expected; e.g.,

4,4,6.2 C/R
H~. 3 C/R

where C/R is the carriage-return key. If an error is made in the
input-data line, an error message is issued and the entire line of
data must be re-entered. If, for the above exAmpl~,

:4,4,6M2,10.3 C/R

is entered, the system will respond

INPUT ERROR, TRY AGAlN

At this time, the proper response would be

4,4,6.2,10.3 C/R

This command allows numerical data and character strings to be printed
on the teletype. Two types of print items are legal in the print
statement: character strings enclosed in quotes (11

) and expressions.
These items are separated by either a comma or a semicolon. If print
items are separated by a comma, a skip occurs to the next pre-formatted
field before printing of the item following the comma begins. The
pre-formatted fields begin at columns 1, 14, 27, 40, and 52. If print
items art! separated by a semicolon, no skip occurs. If a semicolon or
comma is the last character on a print statement· 1.inQ, the apprtJl'Llate
formatting ui..:i..:urs and the carriage-return/linefeed is suppressed. A
print statement of the form

"0 PR!t>lI

wil"l ePnPratQ a ct1.rria15t!-n:!tUrn/ linefeed. Thus, thP two lines beluw

50 PRINT II INPUT A NUMBER II;
60 INPUT A

will result in the following output!

IN PUT A NUMBER:

For more examples, see sample programs in Appendix A.

Causes program ~o 1terAtP through a loov a designated number of times.

Signals end of loop at which point the computer adds the step value to
the variable and checks to see if the variable is still less than the
terminal value.

GOSUB NN - Transfer control to a subroutine that begins at line NN.

-8-

RETURN

CALL

Returns control to the next sequential line after the last GOSUB
statement executed. A return statement executed before a GOSUB is
equivalent to a STOP statement.

Calls user-written assembly-language routines of the form

CALL (N , A, B , •••) ,

where N is a subroutine number from 0 - 254 and A, B, ••• are param­
eters. The parameters ca_n be constants, variables, or expressions.
However, if variables and constants or expressions are intermixed,
all variables should have been referenced before the CALL statement.
Otherwise, the space reserved for newly referenced variables may
overwrite the results of constants and expressions. A memory map of
one configuration of the system is shown below:

Page 0 ODT

Page 1 JUMP TABLE

Page 2 USER SUBROUTINES
-

Page 4 USER SOURCE

)
VARIABLES

Page 80H BASIC
INTERPRETER

Page 97H T°
The subroutine table contains 3-byte entries for each subroutine. The
table is located at the address specified in the JUMP-TABLE for SUBAD.
(Page 1, Location 2)

DB 1 Subroutine Ill

DW SUB! Starting address of
Subroutine Ill

DB 4 Subroutine 114

DW SUB4 Starting address of
Subroutine 114

DB 5 Subroutine 115

DW SUBS Starting address of
Subroutine 115

-9-

Functions

DB 2 Subroutine 112

DW SUB2 etc.

DB 377Q end of subroutine table

SUBl: Subroutine Ill

RET

SUBS: Subroutine 115

RET

RET Return last subroutine

Addresses to passed parameters are stored on the stack. The user must
know how many parameters were passed to the subroutine. These must
be taken off the stack before RET is executed. Addresses are stored
last-parameter-first on the stack. Thus, on entry to a subroutine,
the first POP instruction will recover the address to the last param­
eter in the call list. The next will recover the next to last, etc.

Each scalar variable passed results in the address to the first byte
of a four-byte block of memory. Each array element passes the address
to the first byt_e of a (N-M) x four-byt~ memory block, where N is the
number of elements given the array in the DIM statement and M. is the
array subscript in the CAT.T. statement.

Parameters returned from user subroutines to be used in expressions
with BASIC must be in the proper floating-point format.

Two special functions not found in most BASIC codes are available to input

or output data through Intel 8080 ports. The function GET allows input from a

port and the function PUT allows output to a port. Their general forms are:

GET (expression)

PUT (expression)

The function GET may appear in statements in a position that implies that a num­

erical value is used. The function PUT may appear in statements in a position

that implies that a numerical value will be stored or saved. This is because

GET inputs a number and PUT outputs a number. For example,

LET PUT(I) = GET(J) is valid

while

LET GET(I) = PUT(J) is invalid.

-10-

These functions send or receive one byte of data, which in BASIC is treated as

a number from 0 to 255.

Error Messages

If an unrecognizable command is entered, the word WHAT? is printed on

the teletype. Simply retype the command. The response may also have been

caused by a missing line number on a BASIC statement, in which case you should

retype the statement with a line number.

If an error is encountered while executing a program, an error message

is typed out that indicates an error number and the line number in which the

error occurred. The meanings of the error numbers are given in Table 4.

Table 4.

Error Number

1

2

3

4

5

6

I

8

9

l~

11

12

13

14

15

16

17

18

19

20
21

111-INTERPRETIVE-BASIC ERRORS

Definition

Program has no END statement

Unrecognizable key word at beginning of statement

Source statements exist after END statement

Destination line number is improperly formed in a r.oro,

GOSUB, or IF statement

Destination line number does not exist

UnP-xpected character

Unfinished statement

Illegally formed statement

Error in floating-point conversion

Illegal use of function

Duplicate array definition

Array referenced before it is defined

Error fixing a number--number too large

Invalid relation in an IF statement

No subroutine by this number

'=' expected in FOK statement (no array elements)

Bad syntax near TO or STEP

FUR-NEXT nested > 20
NEXT exec..:uted before FOR

Nesting error within FOR-NEXT

Bad index in FOR-NEXT

-11-

During program execution, and whenever new lines are added to the program,

a test is made to see if there is sufficient memory. If the memory is full,

MEMORY FULL is printed on the teletype. At this point, you should enter one of

the single digits below to indicate what you wish to do:

Number entered

0
1

2

3

4

Meaning

(RUN) Runs the program in memory

(PLST) Outputs program in memory to paper-tape punch

(LIST) Lists program in memory

(SCR) Erases program in memory

None of the above (will cause WHAT? to be printed on

the teletype).

To help you select the best alternative, a brief description of how the

statements are manipulated in memory may be helpful. All lines entered as pro­

gram are stored in memory. If lines are deleted or replaced, the originals

still remain in memory. Thus, it is possible. if a great deal of line editing

has been done, to have a significant portion of memory taken up with unused

statements. If a MEMORY FULL message is obtained in these circumstances, then

the best thing to do is punch a tape of the program (entering number 1), then

erase the program memory with a SCR command (or a number 3, if memory is too

full to accept commands), and then re-enter your program using the high-speed

paper-tape reader with the PTAPE command.

-12-

APPENDIX A: SAMPLE PROGRAMS

The program below gives a few examples of the use of the print statement.

LIST
lPRINT"THE PRE-FORMATTED COLUMNS ARE SHOWN BELOW"
2PRINT1,2,3,4,5
4PRINT
10PRINT"INPUT lST NUMBER";
20INPUTA
3~Pl:UNT"INPUT 2ND NUMBER",
40INPUTB
50PRINT
60PRINT"A IS";A
70PRINT"B IS",B
80PRINT"A IS";A;"B IS",B,"A+B IS";A+B
100END
READY
RUN
THE PRE-FORMATTED COLUMNS ARE SHOWN BELOW
l.0000E 00 2.0000E 00 3.0000E 00 4.0000E 00

INPUT lST NUMBER:2
INPUT 2ND NUMBER : 3

A IS 2.0000E 00
B IS 3.0000E 00
A IS 2.0000E 00B IS 3.0000E ~~ A+B IS 5.0000E 00
READY

The following program plots a function on a display. It uses four

user-written assembly-language subroutines. The display works as follows:

The contents of memory locations on pages 2748 to 2778 are displayed as 16 rows

of 64 characters each. Thus, if location 2018 on page 274 contains 3018
(ASCII A), an A appears in column 2 of Row 3. An example of this program's

execution is shown below:

RUN

WHAT SHOULD PLOT BE LABELED? MCS80 - BASIC INTERPRETER

READY

The BASIC and assembly-language programs and the display output are

shown on the following page.s.

-13-

BASIC Program
LIST
lREM" THIS ROUTINE WILL PLOT A SET OF AXIS AND A QUADRATIC FUNCTION
2REM" ON A DISPLAY AND THEN LABEL IT. IT USES A 4 USER WRITTEN
3REM" SUB-ROUTINES:
4HEM
SREM" ·CALL (l,X,Y,C) - PLACES C IN COLUMN X, ROW Y OF THE DISPLAY
6REM" WHERE C IS AN ASCII CODED CHARACTER
7REM
8REM" CALL (2 ,A(0)) - READS A CHARACTER STRING FROM THE TTY AND STORES
9REM" IT"IN ARRAY A
lOREM
llREM" CALL(3,A(0)) - WRITES THE CHARACTER STRING STORED IN ARRAY A
12REM" TO THE DISPLAY
13REM
14REM" CALL(4) - CLEARS THE DISPLAY
lSREM
16REM" START OF PROGRAM
lTR.EM
lOilI;H" IlE::JERVE ::JTORAGE AREA FOR TITLE
20DIMA(l0)
30REM" CLEAR SCREEN
40CALL(4) .
S0REM" ASK FOR AND INPUT TITLE
SSPRINT"WHAT SHOULD PLOT BE LABELED?";
60CALL (2 ,A(0))
70REM" DRAW AXIS
80GOSUBS00
90REM" PLOT FUNCTION
100LETX=-29
110GOSUB1000
120CALL(l,3l+X,8-Y,248)
130LETX=X+l
1'10IFX><31 THEN110
150REM" OUTPUT TITLE
160CALL(3,A(0))
16SREM" WE'RE DONE
170STOP
S00REM" THIS SUB. WILL DRAW A SET OF AXIS
.'.i0.'.iLETX=l
Sl0LETY=7
S20LETC=l73
S30CALL(l,X,Y,C)
S40LETX=X+l
SS0IFX><6STHEN530
S60LETX=31
570LETY=l
575LETC=252
S80CALL(l,X,Y,C)
590LETY=Y+l
600iFY><l7THENS80
610RETURN
1000REM" GIVEN X THIS SUB. CALCULATES .(17/900)*X**2-8
100SREM" FIRST CHECK IF.X=0 AS IT WILL UPSET FLT. PNT. PACK.
1010IFX=0THEN1045
101SREM" WE'RE OK - CALCULATE FUNCTION
1020LETY=X*X
102SLETt<=l7/900
1030LETY=Y*K
1035LETYrY-R ---------
1040RETURN
1045LETY=-8
1050RETURN
2000END
READY

-14-

Assembly-language program
! ! ! ! ! ! !

l
8080 MACRO ASSEMBLER VER 2 2 ERRORS = 0 PAGE l

;DEFINE EXTERNALS
014012 FIX EOU 14012Q ;FIX ROUTINE
013212 COP DH EOU 132120 ;COPY ROUTINE
016567 F'REGl EOU 165670 ;FLOATING PNT REGISTER

.) 016614 ORG 166140
016614 027 036 ow SB END ;FWAM

;ENTRIES IN SUB TABLE
016616 001 DB l
016617 233 035 ow SCOPE
016621 002 DB 2
016622 33 4 035 ow SUB~

016624 003 DB 3
016625 3~4 035 ow SUB3
016627 004 DB 4
016630 003 036 ow SUB4
016()32 37 7 DB 3770 ;NO MORE ENTRYS

;THE CALL TO THIS ROUTINE IS OF THE FORM
; CALL (1 X Y C)
;THE VALUE OF C IS PLACED IN COLUMN X LINE Y
;OF THE DISPLAY

016633 321 SCOPE: POP D ;ADDRESS OF CHARACTER
016634 041 167 035 LXI H FREGl ;COPY TO FREGl
016637 315 212 026 CALL COP DH
016642 353 XCIIG ;ADDRESS TO DE
016643 315 012 030 CALL FIX ;FIX IT
016646 023 INX D ;PNT TO 4TH BYTE
016647 023 INX D
016650 1:123 INX D
016651 032 LDAX D ;GET CHARACTER
016652 107 MOV B A ;SAVE IN B
016653 321 POP D ;ROW ADD
016654 041 167 035 LXI H FREGl ;COPY TO FREGl
016657 315 212 026 CALL COP DH
016662 353 XCHG
016663 315 012 030 CALL FIX ;FIX IT
016666 023 INX D ;GET BYTE 4 TO A
016667 023 INX D
016670 023 INX 0
0Hib71 032 LDAX D
016672 117 MOV C A ;SAVE IN C
016673 321 POP D ;GET COLUMN ADD
016674 041 167 035 LXI H FREGl ;COPY TO FREGl
016677 315 212 026 CALL COP DH
l'.llt5711i2 353 >CCHG
016703 315 012 030 CALL FIX ;FIX IT
016706 023 INX D ;PNT TO 4TH BYTE
016707 023 INX D
016710 023 INX D
016711 032 LDAX D ;GET IT TO A
016712 041 377 273 LXI H 1357770 ;CALCULATION OF ADDRESS

"' 016715 021 100 000 LXI D 1000

-15-

Assembly-language program (continued)

l
8080 MACRO ASSEMBLER VER 2 2 l::RRORS 0 PAGE 2

016720 015 LUP: OCR c
016721 . 312 330 035 JZ AD INC
016724 031 DAD D
016725 303 320 035 JMP LUP
016730 137 AD INC: MOV E A
016:31 031 DAD D ;ADD IN COLUMN LOC
016732 160 MOV M B ;STORE CHARACTER
016733 311 RE1' ;DONE

;SUB2 READS A TI'rLE FROM T·ry VIA ODT l'
000333 READ EQU 333Q ;ODT ROUTINE
016734 341 SUB2: POP H ;GE1' STORAGE AREA ADD
016735 345 PUSH H
016736 016 000 MVI c 0 ;!NIT CNTR
016740 043 LUP2: INX H ;DUMP .PNTR
016741 315 333 000 CALL READ ;READ A CHARACTER
0lb/44 3/b :n~ L: l' 1 Ll~U ; Ll<.i'
016746 312 356 035 JZ DUN2 ;YES - DONE
016751 014 INR c ; !NCR CNT
016752 167 MOV M A ;SAVE CHARACTER
016753 303 340 035 JMP LUP2
016756 341 DUN2: POP H ;STORE CNT
016757 161 MOV M c
016760 076 212 MVI A 212Q ;SEND A LF
016762 367 RST 6
016763 311 RET ;DONE

;SUB3 WRITES TITLE TO DISPLAY
016764 341 SUB3: POP H ;GE·r ADD
016765 021 341 277 LXI D 137741Q ;SCREEN ADD
016770 116 MOV c M ;CNT
016771 043 INX H
016 77 2 176 LUP3: MOV A M ;SEND STRING
016773 022 STAX D
016774 043 INX H
01677 5 023 INX D
016776 015 OCR c
016777 302 372 035 JNZ LUP3
017002 311 RET ;DONE

;SUB4 CLEARS SCREEN
017003 041 000 274 SUB4: LXI H l36000Q ;SCREEN ADD
01700 (j 076 240 MVI A 2400 ;SPACE
017010 02G 000 MVI D 0 1CNTil C.
017012 016 004 MVI c 4
017014 167 LUP4: MOV M A ;CLEAR IT
017015 043 INX H
017016 025 OCR D
017017 302 014 036 JNZ LUP4
017022 015 OCR c
017023 302 014 036 JNZ LUP4
017026 311 RET ;DONE
017027 SB END EQU $

END
NO PROGRAM ERRORS -·

-16-

1
8080 MACRO ASSEMBLER VER 2 2 ERRORS 0 PAGE 3

SYMBOL TABLE

* IO!

A 0!00007 AD INC 016730 B 000000 c 000001
COP DH 013212 D 000002 DUN2 016756 E 0!00003
FIX 014012 FREGl 016567 H 000004 L 000005
LUP 016720 LUP2 016740 LUP3· 016772 LUP4 017014
M 0!000.06 PSW 000006 READ 000333 SB END 017027
SCOPE 016633 SP 000006 SUB2 016734 SUB3 016764
SUB4 017003

x x
x x

x x
x x

x x
xx xx

--------------------------------------T--------------------------------------
xx xx

xx xx
x x

xx xx
xx xx

xx xx
xxx xxx

·. xxxxxxx,xxxxxxx
~ MCS80 BASIC interpreter

Display output for preceding program.

-17-

APPENDIX B: DESCRIPTION OF BASIC INTERPRETER

The following is a brief description of the BASIC interpreter:

Formats

Source statements are stripped of blanks on input (character strings

enclosed in quotation marks are an exception) and stored "as is" in memory, using

the following format:

Binary equivalent
of line no.
(2 bytl!9)

Forward pointer to
next sequential line

(2 bytes)

Length of ASCII
source statement

(1 byte)

D ~~I----
ASCII source statement

(1 byte/character)

The forward pointer links statements by ascending line numbers. The last line's

forward pointer (supposedly an END statement) has value 1777778 to indicate the

end of the list.

The symbol table is built up at run time and begins after the most recently

entered source statement (the variable STSPAC points to where the symbol table

will start). Symbol table entries are shown below:

ASCII 0-9 ASCII lettM bin~
Variable.name

(2 bytes)

Bin ASCII
~etter

LLJ '----~ Array
name

(2 bytes)

Forward
pointer

(2 bytes)

Scalar~variable Format

Forward pointer
(2 bytes)

Array-Variable Format

I

Variable value
(4 bytes)

~LI __ J
Array elements

(N x 4 bytes)

-18-

,,

;

_,

Subroutines

Following is' a list of potentially useful subroutines, with a brief descrip­

tion of each subroutine.

The list contains those subroutines most likely to be used by someone modi­

fying BASIC. If you plan on using one of the routines, you should examine it

and its comments carefully.

ALPHA

NUMB

CHAR2

CHARS

CHKl

CONV (CVRT)

COPDH

COPY

CVB

DCOMP

DFXL

EVAL

Value pointed to by HL register pair is tested to see if it is an
ASCH letter.
CY 1 => Yes
CY 0 => No

Same as above but tests for a decimal number (ASCII 0-9).

Inputs a character from the teletype to a register.

Same as above for HSR.

Checks to see if HL are equal to 1777778 (-1).
CY. l => Yes.
CY = 0 => No.

One of the floating-point routines. Converts floating-point
number to a cha'racter string. Output is padded to the output
buffer.

Copies floating-point number pointed to by D,E to location
pointed to by H,L; uses COPY.

One of the floating-point routines. Copies float~ng-point value
pointed to by A,L to location pointed to by H,C.

Converts the integer-character string pointed to by H,L to its
binary equivalent. Value returns in D,E registers.

bauble-byte comparison routine. Compares value in CB to that in
ED •
. z 1 => CB ED
CY 1 => CB > ED
CY 0 => CB < ED.

One of the floating-point routines. Used to float an unsigned
integer. H,L point to first of four bytes; integer is right
justified in first three bytes.

Evaluates an expression the first element of which is pointed to
by H,L and the length of which is in C. Used to evaluate express­
ions wherever they are legal in BASIC. C usually contains the
length of the source statement line containing the expression.

-19-

FIN PT

FIX

FSYM

LADD

LSUB

LDIV

LMUL

LMCM

MCHK

MEMFUL

MULT

NSRCH

OUTR

PAD

One of the floating-point routines. Converts character string
to floating-point number. The variable HLINP contains a pointer
to the character string, and the variable CREG contains the length
of line containing character string. Mode = 0 => data comes
from teletype (i.e., only delimiters are commas). Mode= 1 =>
data comes from source statements.

Fixes a floating-point number. DE points to number to be fixed.
Error code 13 is given if number-is too big to fix.

Finds symbols in symbol table. BC contains symbol. Returns
with HL pointing to symbol value.
CY = 1 => symbol was found.
CY = 0 and a scalar => symbol not found, but inserted and
initialized to 0. ,
CY = 0 and an array => not found, no action taken: HL are
meaningless.

Floating-point add routine.

Floating-point subtract routine.

Floating-point divide routine.

Floating-point multiply routine.

One of the floating-point routines. Compares two floating­
point values. HL points to first--HB points to second.
Z=l => Equality
CY=l => First < second
(Note: Compares absolute only, dues not reference mantissa sign.)

Waits for flag from port 3. Proper mask is sent in register B.

Checks to see if memory is full. HL point to location of memory
to be checked. Memory is considered full if it is within 50 1~
locations of the current value of stack pointer.

Multiplies two two-byte binary numbers. HL point to last byte
of four bytes. First two contain fin;t number. Last two contain
second number. Answer returns in BC and DE.

Routine to locate source line in memory. Binary value of line
number passed in DE. Returns address of line in HL, CY=l => not
found.

Used by CONV (CVRT) to pad output to output buffer.

Pads characters to output buffer. A contains character; B contains
number of pads.

-20-

.)

y

'

SYMSRT

TT YIN

VALUE

VAR

WRIT

ZROL

Variables

Checks a character string to
contains address pointing to
length of line that contains
sought.

· 0=command
2=operator or delimiter

see if it is a BASIC symbol. HL
first character of symbol, C contains
symbol. A contains type of symbol

l=key word
3=function

Returns with 377 8 in a register if nothing found. Otherwise, A
contains symbol number in appropriate KDAT table. Thus, for
symbol type 2, if a 4 is returned, the symbol found was the
fourth one (starting with 0) in table KDAT3 (KDAT concatenated
with 2 and 1 or A·)·. C is updated, but HL is not.

Inputs a line from teletype. Stores starting at location
pointed to by HL. Line edits. Returns length of line in A
register (maximum line length is 72 characters).

Called with HL pointing to a variable, constant, or function;
C contains lirie length, returns with DE pointing to floating­
point value. HL, C are updated.

Called with HL pointing to character string, C has line length.
Determines if character string is a variable. If so, returns
with CY=l, DE pointing to value (subscripts of arrays are eval­
uated, etc.). HL, C updated. If not, a variable returns CY=0,
HL,C untouched.

Dumps contents of output buffer to teletype. Uses entry WRITl
with D register equal to one to suppress CR/LF.

Part of floating-point subroutines. Writes a floating-point
zero, starting at location pointed to by HL.

Following is a list of iuter.preter variables, with a description of each

variable. Note that some of the variables below occupy the same area of memory.

This is because some variables are used only in the command mode and others only

at run time. Tu conserve space, they share the same memory locations.

MEMST

OBUFF

IBUF

Assembly time variable.
location. This is where
Page 4, Location 0).

Contains the first available RAM
active variables start. (Set to

Output buffer, the first location contains .the number of
characters in the buffer + 1.

Input buffer, occupies same area as OBUFF.

-21-

STLINE

NLINE,NL2,
NLl1,NL6

KLINE,KL2,
K.L4,KL6

PLINE,PL2,
PL4,PL6

KASE,LEN

MULT1,MULT2

SR8AV

STSPAC

LPNT

CPNT

KFPNT

FREG 1, FREG 2

HLINP ,CREG

NXTSP

GREG

MODE

MES CR

VARAD

VEND

FWAM

Points to first source line to be executed. If no source,
contains 1777778•

Contain address, bj,nary-equivalent line number, forward pointer,
and length of next input line.

Same as above, but used by a subroutine that inserts lines in
sequential order (insert).

Subroutine insert to order statements sequentially.

Temporary storage for command mode routines.

Used to store binary values to be multiplied.

Temporary storage for call-statement processor.

Next available location in memory; symbol table starts
here at run time.

~ointer to the current line at run time.

Pointer to current character in current line at run time.

Point to next sequential line at run time.

Two floating-point registers.

Temporary storage for HL and C registers for routine INP.

Pointer to next available space of memory for symbol table.

General r~gister, in and out instructions are stored here
and executed for GET and PUT functions.

In.dicates to INP routine whether input data comes from source
or teletype.

Temporary storage for call-statement processor. Points to
next availah]P. sp~ce after oymbol taLle. Area after the
symbol table is used to store intermediate results of ex­
pressions or constants passed to user subroutines.

Temporary storage space for input-statement processor.

Assembly time variable. Indicatoo end of iuleq1r:l;c'.c:er Vati­
able-storage area and where FWAM pointer is to go.

First word of available memory pointer. This is where user
source programs go.

-22-

' 'I

..

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Energy Research
& Development Administration , nor any of their
employees, nor any of their contractors , subcontractors,
or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its use would not infringe
privately-owned rights.

NOTICE

Reference to a company or product name does not
imply approval or recommendation of the product by
the University of California or the U.S. Energy Research
& Development Administration to the exclusion of
others that may be suitable.

Page Range

001 - 025
026- 050
051 -075
076- 100
101 - 125
126- 150
151-175
176-200
201-225
226-250
251 275
276-300
301-325

Printed in the United States of America
Available from

National Technical Information Service
US. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $: Microfiche $3.00

Domestic
Price Page Range

$ 3.50 326- 350
4.00 351 - 375
4.50 376- 400
5.00 401 - 425
5.50 426- 450
6.00 451 - 475
6.75 476-500
7.50 501 - 525
7.75 526-550
8.00 551 - 575
9 .00 576- 600
9.25 601 - up
9.75

Domestic
Price

10.00
10.50
10.75
11.00
11.75
12.00
12.50
12.75
13.00
13.50
13 .75
•

•Add $2.50 for each additional 100 page increment from 601 to 1,000 pages ;
add $4.50 for each additional t 00 page increment over 1,000 pages.

