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ABSTRACT

The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heter-
ogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the
ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using compos-
ite gaussian quadrature rules, which permit accurate integration while minimizing computing time.

Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization,
and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within
the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be
defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides
satisfactory results even if some improvements are needed for very difficult configurations.

I. INTRODUCTION

Heterogeneous treatment of reactor subassemblies could play a very important role in determining the reactivity
level and power distribution of a reactor configuration. This is the case, for instance, when we want to calculate the
reactivity variation due to the insertion of control rod subassemblies in fast power reactors. Commonly in design cal-
culations, the absorber is diluted on the total surface of the subassembly—the so called “homogeneous calculation.”
Actually, the real “heterogeneous” description of the control rod subassembly leads to a reactivity variation that is, in
general, lower (in absolute value) with respect to the homogeneous calculation.

Many methods!™ are available to account for the heterogeneity effect. The non-explicit ones incorporate the het-
erogeneity effect at the level of the cross sections, and the homogeneous description is used to calculate the reactivity.
Each of these techniques rely on some type of reference calculation, where a heterogeneous cell (or supercell) descrip-
tion of the problem is used. Often, these methods also demand some iteration technique to find the homogeneous
equivalent solution that is a priori unknown.

It is evident that an explicit description of the heterogeneity will be the best way to tackle the problem; but
depending on the method adopted, a certain number of inconveniences can be encountered. Several finite difference
codes need to extend the local mesh refinement to the whole reactor, increasing in an enormous way the total number
of unknowns. Monte Carlo methods are very attractive due to the fact that an actual description of the heterogeneous
subassembly can be made without penalizing in a significant way the calculation cost. On the other hand, heterogene-
ity effects are often small enough, in terms of absolute variation, to be strongly affected by the uncertainty (i.e.
variance) of a non-deterministic calculation with a limited number of neutron histories.

In this paper, we propose the variational nodal method as a way to treat the explicit heterogeneous description of
a subassembly. Nodal transport methods have been used increasingly in neutron transport calculations,® with recent
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advances leading to methods with near Monte Carlo accuracy at a fraction of the computing time. These are the vari-
ational nodal methods (VNM),”~!2 based on a functional for the even-parity transport equation to which odd-parity
Lagrange multipliers are attached to enforce nodal balance. Response matrices are obtained by using a classical Ritz
procedure in which the flux and currents are expanded in complete polynomials in space and angle.

Because of the nature of this formulation, the variational nodal method allows us to treat the cross sections as a
function of the spatial variables inside the node. Therefore, an explicit description of the fine structure of the hetero-
geneous subassembly can be used. In this way, the heterogeneous variational nodal method (HVNM) will more
accurately reproduce the intra-nodal flux shape, while obviating some of the spatial cross section homogenization that
must be done.

In order to develop a methodology to treat heterogeneous nodes, the diffusion form of a functional for the even-
parity transport equation is considered. It is within this framework that a two-dimensional, multigroup diffusion code
has been written to examine the properties of treating heterogeneous nodes. Extending this treatment to the transport
equation should be straightforward.

II. FORMULATION AND IMPLEMENTATION
A. Heterogeneous Variational Nodal Method

The response matrices used in variational nodal methods are derived from the functional for the within-group,
even-parity transport equation.” With the problem domain spatially divided into nodes, the functional may be written
as a sum over the nodal contributions. The transport functional® for each node includes volume and surface contribu-
tions. For node i,
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where ¥ and y are the even- and odd-parity components of the angular flux and I'; = represents the m % surface of
node i. Scattering is assumed to be isotropic, and |dQ = 1. The remaining notation is conventional. Throughout
this discussion, it is assumed that the cross sections are functions of the spatial variable r, thus allowing for inhomo-
geneous nodes.

It can be shown?® that requiring Eq. (1) to be stationary with respect to variations in W within the node results in
the even-parity transport equation. We will limit here our discussion to the diffusion approximation of the Boltzmann
equation. In this case the functional becomes
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The diffusion functional, Eq. (2), is first cast into algebraic form by using the classical Ritz procedure, where the
unknown fluxes and currents are expanded in vectors of known functions. The fluxes and currents are then repre-
sented as a product between a vector of unknown coefficients and the vector of known functions:
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Here, ¢, and Jip are the vectors of unknown coefficients for node i, and f(r) and h(r) are vectors of orthonormal
basis functions that obey the orthogonality relations
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where I is the identity matrix.
Substituting Eq. (3) into Eq. (2) yields the reduced functional,
s T T T .
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where the matrices A i S B and M im are defined as
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In VARIANT, the current VNM code at Argonne National Laboratory,11 all nodes must be homogeneous; and
the above integrals are precalculated by factoring out the (constant) cross sections and converting the integrals to
dimensionless form. But when a node is allowed to be heterogeneous, the shape, size, and distribution of the various
homogeneous regions within a node are not known in advance. In order to introduce the heterogeneity treatment, each
node must be broken up into a set of rectangular regions as demanded by the heterogeneous structure within the node.
The result is to break up the integrals over that node into a set of homogenous integrals.

If the homogeneous regions within the heterogeneous node are defined such that
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then the integrals in Eq. (6) can be written as
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There is no change in the surface integral, as it does not depend on heterogeneous quantities.

In the reduced functional [Eq. (5)], the variation is taken with respect to the vector of unknown flux coefficients,
¢, to arrive at the analytical approximation to the diffusion equation:
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Variations taken with respect to the vector of unknown current coefficients, jim = —jk ' between nodes i and k,
result in the flux continuity condition

T
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To solve Eq. (9), it is first recast into its response matrix form by defining partial current moment vectors:
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where j;’n and jl._" are the outgoing and incoming partial currents across surface m of node i . Using Eq. (11) to elim-
inate ¢, and j; = in Eq. (9) results in the response matrix formulation in terms of the partial currents:
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where [G it 21171 [G i 2I] is the response matrix for node i . The vectors ji— are partitioned vectors containing the
partial current moments for all the surfaces of node i. The matrix S ; is as before, while the matrices Gi and Bi are
partitioned matrices defined as
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B. Implementation

A stand-alone, two-dimensional multigroup diffusion code has been written to solve the heterogeneous varia-
tional diffusion problem in Cartesian geometry. (The current VNM code used at Argonne National Laboratory,
VARIANT, is limited to homogeneous nodes.) In order to allow heterogeneities in the nodal description, an efficient
mean;s3of calculating the integrals of Eq. (8) must be used. To achieve this, composite gaussian quadrature rules are
used.

The flux expansions, in terms of the basis functions f(r), are at most complete 8™ order polynomla]s in space.
Since the integrals contain the term f(r)f7(r) , the highest order polynomial in the integrals is 16™ order. Within each
region, the integrals are evaluated using a ten-point gaussian quadrature rule which permits exact evaluation (within
machine precision and roundoff) of up to 19% order polynomials. All the integrals are precalculated and stored for
later reference.

Once the integrals are in place, the initial fission source guess is made by assuming a flat flux distribution. The
source matrix for node i is found by combining the standard fission and scattering source expression with Eq. (8) and
Eq. (3) to arrive at
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Here, ¢,-T. are the flux moments from the previous source iteration. Although all the flux moments are required to eval-
uate the source, it is not necessary to explicitly evaluate the average flux in each homogeneous region within a
heterogeneous node. Once the initial source is defined, the incoming partial currents of each node are set to zero; and
the first set of inner iterations is begun.
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Figure 1: Core and Control Rod Models in X-Y Geometry

A red-black inner iteration scheme is used. During the first phase, the outgoing partial currents of the red nodes
are calculated using Eq. (12). By combining Eq. (11) with Eq. (10), the outgoing partial currents can be used to update
the incoming partial currents of the adjacent black nodes:

jl;lack = j:-ed (15)

Outgoing partial currents of the black nodes are calculated in the same manner as the red nodes, and the results are
used to update the incoming partial currents of the red nodes. This process is continued until all the moments of all
partial currents have converged to within a specified tolerance.

When the partial currents have converged, the flux moments for each node can be determined by using Eq. (9)
along with

Jim_Jim. (16)

Using the new flux moments, an updated fission source and k are determined and checked for convergence. At
present, no acceleration techniques have been employed to improve the computation time of either inner or outer

iterations.
III. COMPUTATIONAL RESULTS

In order to verify the method previously presented, we consider the calculation of control rod reactivity worth of
a typical large size fast reactor. The two dimensional X -Y model used is shown in Figure 1 along with the heteroge-
neous description of a control rod subassembly, consisting of a central strong absorber (B4C) surrounded by a Na/SS
diluted zone. A four group energy structure has been employed, and the related cross sections have been generated for




Table 1: Heterogeneity Effect for Different Configurations

Rod Worth Ap (%)?
Configuration Heterogeneous | Homogeneous Effect (%)°
AllRods In -12.174 -13.290 8.4
Center Rod In -0.235 -0.250 6.2
First Row In -1.106 -1.153 4.0
Second Row In -5.057 -5.204 2.8
All In Except Half Rod in Row 2 -9.968 -10.752 73

3Reactivity variation in percent Ap with respect to reference configuration where follow-

ers are present in all contro] rod regions.
bExpressed as (Aphom — Aphety /Aphom

all compositions, including the homogeneous control rod where the standard design approximation of volume
weighted densities has been applied.

In Table 1, the results obtained for the heterogeneity effect (in terms of percent variation of reactivity with respect
to the reference configuration, where a sodium follower is present in all the control rod zones) are shown for different
configurations of control rod insertions. Very large effects (more than 8%) can be observed for some configurations.
Actually, because these calculations have been performed using diffusion theory, those effects are generally underes-
timated, while transport calculations would have provided larger values. We can also observe that the heterogeneity
effects are space dependent. Depending on the position of the inserted control rod in the core, the heterogeneity effect
can be strongly different. The main reason for this is related to the different flux gradients at the positions of the con-
trol rods.

In Table 2, reactivity variations are compared between the reference solution using the explicit representation of
the heterogeneity within a refined mesh and HVNM, where only one node is used but the cross section spatial depen-
dence is taken into account to describe the heterogeneity. Note that in the reference solution, because a refined mesh
is used, the increase in number of nodes per subassembly is propagated to all subassemblies lying in the same band,
leading to a total number of nodes over two times greater than the standard meshing.

Results are shown for different approximations of the surface and intra-node variables. We can observe that little
is gained increasing the order of the expansion on the surface of the node. On the contrary, the accuracy is improved
by going to higher order polynomials inside the node. We recall that, currently in VARIANT, only up to fourth order
expansion is allowed within the node for Cartesian geometries. The comparison looks quite satisfactory, except per-
haps, the configuration with all control rods inserted where, even using an eighth order expansion, a 2% error was
found with respect to the reference solution.

In order to better understand the difficulty of the problem, we can look to Figure 2 where the total flux traverse
along the x axis is plotted for different solutions in the case of all control rods inserted. A zoom to the “half” control
rod of the first ring shows that the reference flux is very difficult to be reproduced by an eighth order polynomial
expansion. Moreover, the flux gradient is discontinuous where material changes inside the node occur. HVYNM shows
a smooth flux because only one basis of polynomials is used over the entire node. In any case, the HVNM solution
presents a large improvement with respect to the homogeneous representation.

Table 3 shows the computational time required by the various solutions. As can be seen in the table, the addition
of the heterogeneity treatment used by HVNM imposes virtually no penalty to the computational effort as compared

g



Table 2: Comparison of Control Rod Worth between an Explicit Description and the HVNM Code

= Reference HVNM
E oy
e ?‘C_{’ Surface 2 1 2
20
& Volume 6 4 6 8 6
All Rods In -12.174 -12.694 -12.527 -12.445 -12.539
4.3) 2.9 2.2) (3.0
Center Rod In -0.235 -0.240 -0.239 -0.238 -0.239
< _ 24 a.7n (1.3) (1.8)
V_QH
g 2 First Row In -1.106 -1.129 -1.122 -1.118 -1.123
‘3’ o 2.1) (1.4) (1.1) (1.5)
=
é’ Second Row In -5.057 -5.137 -5.111 -5.099 -5.114
(1.6) (1.1) (0.8) 1.1
All In Except Half -9.968 -10.350 -10.227 -10.166 -10.235
Rod in Row 2 (3.8) (2.6) 2.0) 2.7

“Reactmty variation in percent Ap with respect to reference configuration where followers are

present in all control rod regions.
bCalculated as (ApH ApRefercnce) / ApReference
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Figure 2: Total Flux Along x Axis (Inset Shows Flux in Half Rod of Row 1)




Table 3: Timing resuits for the Various Solution Methods

Total Time by Solution Type?® (sec)

Configuration Reference | Homogeneous HVNM
AllRods In 1960 940 873
Center Rod In 766 314 317
First Ring In 909 379 387
Second Ring In 1660 690 717
All In Except Half Rod in 3240 1390 1413

Ring 1

3Times are shown for sixth order internal expansions and linear surface expan-
sions.

to the standard homogeneous treatment. The reference solution, on the other hand, requires twice as much time due to
the increase in number of nodes.

At present, the HVNM code enforces the same order of internal approximation for all the nodes. An obvious
improvement will be to have selected nodes (in particular, the ones we want to treat heterogeneously) with different,
more accurate expansion orders (up to 10 or 12). The iteration scheme and total number of surface unknowns will not
change because the expansion order on the node surface will be kept the same (linear) everywhere. This option will
allow improved results without penalizing the computation time in a significant way. Most of the nodes (i.e. the
homogeneous ones) will keep the standard fourth order internal approximation. Other possible improvements might
employ the use of a different basis of functions or the possibility to deal with piecewise functions inside the node.

IV. CONCLUSIONS

Because of its formulation, the variational nodal method is well suited to be employed in the explicit description
of the fine structure of heterogeneous nodes. We have presented the formulation modification with respect to the orig-
inal method to take into account the spatial dependence of cross sections inside a node. The HVNM method has been
implemented in a two-dimensional Cartesian code using multigroup diffusion theory.

Calculational comparisons have shown quite satisfactory results even if some improvements are needed for very
difficult configurations. For this purpose, in the future, the code will be extended to allow different orders of internal
approximations by node. Transport theory will also be implemented in order to provide more realistic results.

In addition, different geometries, including curvilinear ones like circles inside subassemblies, have to be treated
to better represent the real fine structure of heterogeneous subassemblies. Finally, in the case where a continuous basis
of functions inside the node will not be accurate enough to represent the shape of the intra-nodal flux, the use of piece-
wise polynomials may be necessary.
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