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The Kinetic Description of Ponderomotive Effects in a Plasma

R. E. Aamodt
Science Applications, Inc., Boulder, Colorado 80303

and
M. C. Vella
United Technologies Research Center, East Hartford, CT 06108
The kinetic treatment of the ponderomotive force concept
is found from nonresonant quasilinear theory for waves with
spatially dependent amplitude. In general, the ponderomotive
effect appears as a velocity space diffusion term, not as just
a force. For an unmagnetized plasma, the quasilinear equations
are solved directly and the correct density modification ex-
hibited explicitly. Examples are considered for both a homo-
geneous and an inhomogeneous magnetic field, and aspects of rf

end plugging are discussed.



The effects of electromagnetic waves on a plasma are relevant to problems
in both laser fusion and magnetic confinement. In the former case, self-
focusing density modifications, parametric instabilities, and magnetic field
generation are of interest, and, in the latter, wave heating, end plugging of
open systems and impurity control. For many of these problems, the collision-
less regime is appropriate, and, in nonlinear single particle and fluid
treatments, a ponderomotive force often plays a role in nonresonant phenomena.
In this paper, the inadequacy of a kinetic approach using only a ponderomotive
force is demonstrated, and the proper collisionless, kinetic treatment of non-
resonant wave effects on a weakly inhomogeneous plasma is presented.

When autocorrelation times are short compared with diffusion times, the
lowest order wave modification of the particle distribution is given by quasi-
linear theory.”" Temporal damping of waves is easily shown to contribute only
fake thermal broadening to nonresonant particles. The self-consistent aspect
of spatially damped modes has been understood since the beginning of quasi-
linear theory;2 this problem is reconsidered here in a different context. Let

E denote a first order electrostatic wave with a weak, nonpropagating spatial

dependence, E = X Ea,(x)elajt, and let f (x,v,t) denote the slowly varying part
a;

of the distribution function. If the first order kinetic equation is ob-
tained in the usual way, by integrating along unperturbed orbit trajectories,
the slowly varying part of the nonresonant second order equation is found,

@Y
(at + vax) f + i/m (FOX —-ax |p) av f — v/m a* i// aj f

av(vax + fox/m av) avf = o.



As usual, the ponderomotive potential is denoted by,

ip(x) = q2m £  2/cu2

The slowly varying force, Fox, may include an external force, or the self-
consistent electric field. In the time asymptotic limit, the nature of the

various terms in (1) can be understood by seeking solutions which are Maxwel-
lian in the limi®t-">-0; depending on which terms are kept, the following

solutions are obtained:

f = (mO/X/Tr v) exp /2 + N +q<£) / (mv2/2)] ;
(2a)
f = nOm vZ-J-n (mv2/2 +2 V)l exp [-(mv2/2 +q<t) / (mv2/2 + 2i//)];
(2b)
JO -v2s2/4
f— (nOv/2.7r) J*ds (sv) exp(-v2s2/4)
N (1 + 2s2V///m)l1/2 (20)

The ponderomotive force term alone,l/m<3 =<f, has been used as a basis for a
kinetic treatment of parametric instabilities of an electromagnetic pump wave.
It gives, (2a), the usual exponential modification of the density,

n(x)=n0 exp [-1///(mv 2/2)]. 1If the effective mean square oscillation energy”™ is

included by also comsidering the term, (v/m) dx\J/dv f,a new power law density
dependence appears in the approximate solution, (2b), i.e.p(x)=n0 / (+ 4i///m V2) 12

Thus, for this example, the simple ponderomotive force problem exhibits neither

the oscillation energy (i.e., fake heating), nor the correct density dependence



(except to order S = v[//m v~ However, an exponential dependence on Y is recovered

by self-consistently solving for the electric field, - <X( «p), associated with

the ponderomotive perturbation of the electron density.” The last term in (1)

is higher order in 6, and usually neglected. For the case, O=—O0O, the solution,

(2c), is found to have an interesting property in the strong field limit; for

6 > 1 and v > v,

£~ n0/2 (27rS)/2 vl 3)

which illustrates that, for large amplitude waves, even nonresonant wave-
particle interactions can produce high energy non-Maxwellian tails. The wide
variety of velocity-space functionals obtained in this simple example indicates
a need for comnsidering the properly posed problem in more complex geometries.
For transverse electromagnetic waves with weak spatial dependence in the

direction of propagation, E = £ 'y E*, (x) neglecting the self-consistent
cu

field, the quasilinear equation is found to be

(dt + vxax)f - I/m dxO 3Vx f = (g/m)2 I (jEa,! /cu2) vx3x |Ejd2y f.

Although identical in appearance to the electrostatic case, the ponderomotive
force term here is new and arises from the time average of those terms with
a product of the fluctuating electric and magnetic fields.

This can be seen

by considering purely propagating modes; the electrostatic case has no



ponderomotive force, while the ponderomotive force for a propagating electro-

magnetic wave, is given by,dx™>—Pk'//. As before, the time asymptotic solution

to (4) is obtained with a Maxwellian boundary condition

f (n0/77- vxvz) exp(-vx2/v2 —vz2/vi2) J" ds/27r exp [isvy-s2 vy2/4

0 &)
—(1/2 + I/s2v2)In(1+2s2

For 6 << 1, this becomes

- - T
% = (/nO //—rr?//é VX VZ ) jf m/2 I

Lmv 2/2 + 24SJ

) mvx/%/év/@ _ mi /Yﬁ/%xzw————vﬁ/vzﬂ

(6)
mv,?/2 + 2il/

which is similar to the electrostatic result, (2b), except that it has the usual

exponential modification of the density in the direction of the ponderomotive

force. As before, fake heating occurs in the direction of the oscillating

electric field. For a highly anisotropic temperature, vx << vy, equation (5)

gives an apparent thermal broadening in the y- direction, m vy2/2 —p m\7y2/2 +

2°(1 —2>j//mvx2)which is slightly reduced compared to the usual fluctuation

broadening.

The quasilinear equation for an arbitrary electromagnetic wave in a homo-

geneous external magnetic field, BO, has been obtained, and an example relevant

to rf plugging is presented here.

Let an electromagnetic field, E £ (s)

kiL>
X ei( k'x~ajt) , be parallel to BO, with k perpendicular to Bo and a nonpropagating

spatial dependence in the parallel direction, where s=e//-x. The nonresonant



quasilinear equation is found to be

(dt + vff3S) £ — I/m <8 V/

@)

where the ponderomotive potential is

N =(q/m)I (1EkKJ™v, ) dv, U2 T (Jn)2/~(cu-nn)] &)

the Bessel function argument is kj Vj /XI, and Q denotes the cyclotron frequency.
In view of the previous examples, the qualitative features of (7) are evident,

i.e., an effective force and nonresonant thermal broadening. In the cold limit,

(K~ =/1D>_.) » |, the usual single particle potential is found,

¥z = q2/m X |Ek,u;2/2(uj2~n'2)*
®

In the opposite limit, (kj.vg/.Q) << I, the potential, (9)5 is reduced by a factor
(g~/X1D), suggesting that nonresonant rf plugging is likely to be most effec-
tive in the long wavelength, cold particle limit.

For a plasma confined in an inhomogeneous magnetic field, the kinetic
equation can be obtained by the usual techniques, which include averaging over

the Vj. phase angle. However, in general, the analysis is extremely compli-

cated, and a single illustrative example is presented here. Consider left



circularly polarized waves, with weak variation in the parallel direction, and
(kxvl/II) << 1. To first order in all spatial gradients, except (BOxV)B0

the nonresonant quasilinear equation is

(dt + v,(3s) f +V/(/56f = (q/m)2 (D-tvt™ ) Z kajl VIS /(cu-fl)2 Df,

v 10
where f—f s,t), e = 1/2 mv2, /r = m vx2/2 BO,
V//~ x£[2(€-uB0)/nn]l/2, and F, = - q2/m ~ [B0/2cu(cu-1i)l 3S (BQ"'l |[EW|22),
cu>0 J

Operator D arises fromdvj*lv,, on a function of e and p and is given by,
D = (2BOm/r)'/2 (d€ + B'l d").
Equation (10) is the inhomogeneous analog of (7), for left circular waves in
the cold limit. However, the effect of the waves on magnetic confinement is
given by the ponderomotive force, which, in general, will no longer even be
the gradient of a scalar and depends on the sign of BOds(B0'l | EM]2) = V-(e IEw|2).

The apparent thermal broadening can now be estimated as, A/x — (q2/m BO) Z
CU

|Eu) |2/2 (cu-D.)2, from this model, it is apparent that some care is required
in evaluating wave plugging of open systems.
In conclusion, the ponderomotive effect in kinetic theory has been
analyzed by using nonresonant quasilinear theory for spatially dependent modes.
For an unmagnetized plasma, explicit time asymptotic solutions of the quasi-

linear equation have been obtained; typically, density modification due to the



ponderomotive force and thermal broadening were exhibited. Since the inter-
action is nonresonant, these effects are not cumulative i.e., no irreversible
changes occur, and, e.g., local fake heating depends on the local diffusion
operator, not on the history of the particles. "Real" irreversible heating is,
of course, only produced by resonant interactions, or collisions. This under-
standing has been applied to the magnetic plasma. Wave plugging of open systems
has been shown to be most effective for cold particles, and, for an inhomo-
geneous magnetic field, the ponderomotive force has been shown, in general, to
no longer be derivable as a simple gradient. The apparent thermal broadening
which has been obtained, here can now be used to correctly estimate the wave
energy losses to both cold and warm particles on a collisional time scale.
Finally, in comparing velocity moments of the kinetic equations with fluid
theories, it should be recalled that moments of f and the time average of

the fluctuating fluid quantities must both be considered.

*Research supported by the U. S. Energy Research and Development Administration
Under Contract No. ~"AT-(04-3)-1018 and +tEY-76-C-02-2277 *000123456

1. R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory (W. A. Benjamin,
New York, 1969), Chapter II.
2. W. E. Drummond, Phys. Fluids 7, 816 (1969).

3. J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu, and M. N.
Rosenbluth, Phys. Fluids 17, 778 (1974).

4. D. B. Chang, Phys. Fluids 7, 1980 (1964).
5. H. Motz and C. J. H. Watson, Adv. in Electronics 23, 153 (1967).

6. R. J. Hastie, J. B. Taylor, and F. A. Haas, Ann. of Physics 41, 302 (1967).



