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Abstract

The TFTR helium proportional counters are located in the central five 5)
channels of the TFTR multichannel neutron collimator. These detectors were
absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal
midplane of the TFTR vacuum vessel. The neutron generator position was scanned
in centimeter steps to determine the collimator aperture width to 14 MeV neutrons
and the absolute sensitivity of each channel. Neutron profiles were measured for
TFTR plasmas with time resolution between 5 msec and 50 msec depending upon
count rates. The He detectors were used to measure the burnup of 1 MeV tritons in
deuterium plasmas, the transport of tritium in trace tritium experiments, and the

residual tritium levels in plasmas following 50:50 DT experiments.

11,0s Alamos National Laboratory, Los Alamos, NM
2JET Joint Undertaking, Abingdon, Oxon OX14 3EA, United Kingdom.



1. Introduction

TFTR has performed several experiments where the DT neutron emission 18
less than or about equal to the DD neutron emission. These experiments have
included: the determination of optimal conditions for D-T fusion using trace
amounts of tritium; the study of trace tritium transport; the study of the burnup of
the 1 MeV triton from the d(d,p)t fusion reaction in deuterium plasmas; and the
study of tritium retention following full tritium plasmas. An important
measurement for each of these situations is the separate detection of D-D (2.5
MeV) and D-T (14.1 MeV) neutrons. One system which detects the D-T neutron
count rate in a mixed neutron field is a set of 4He proportional detectors [1,2].
These detectors have been installed along five sight-lines located in the TFIR
multichannel neutron collimator [3] that view the plasma from below.

This paper reports the calibration of the TFTR helium proportional counters
and also describes modifications to the detector usage which have resulted in better
14 MeV neutron signals compared to earlier work [2]. The component of the
signal originating from scattering off the vessel was estimated by observing the
count rates from small plasmas shifted out of the detector view. The analysis of
the neutron profiles has been accomplished by fitting the line-integrated data to a

Gaussian in order to derive the major and minor radii of the DT neutron emission

and the intensity of the neutron emission.

2. Detector System

The detector system consists of helium proportional counters located in the
five central channels of the TFTR multichannel neutron collimator [2,3] (Fig. 1).
The detectors are located approximately 8 meters below the midplane of TFTR and
are arranged vertically along sight-lines at major radii of 2.23, 2.47, 2.68, 2.99, and

3.15 m. For most TFTR plasmas, the tokamak major radius is in the range from



12.45 t0 2.62 m, and the observed full width (half maximum) of the DT neutron
emission ranges from 0.3 to 0.6 m. Thus, the ﬁve; channels of the collimator with
the 4He detectors are typically the only ones which receive detectable DT neutron
fluences. It can happen that the neutron profile is centered between the channels
and is narrower than the inter channel spacing, in which case, the 4He detectors do
not yield as useful information about the plasma. In analyzed cases to date, about
1% of the profiles were in this category. |

Each detector [4] has a circular detection head 5 cm in ‘diameter and is
oriented to point towards the plasma [2]. The detectors are filled with 20 atm of
helium and are operated at 2.8 kV. They produce large energy helium recoils from
the 14 MeV neutrons (Fig. 2) while the 2.5 MeV neutrons from D-D fusion
reactions and the reduced energy neutrons from scattering produce smaller energy
recoils. Counts due to gammas or hard X-rays are not significant for these
detectors. The signal from each detector is analyzed electronically with a pulse
height analyzer (PHA) and three single channel analyzers (SCAs). The PHA and
SCA thresholds allow for the discrimination of incident neutrons according to their
energy. The SCAs allow for time resolved detection of neutrons incident within
pre-set energy windows (Fig. 2) and effectively discriminate against DD neutrons.

In addition to the calibrations described in the following sections, the system

has undergone several improvements since its initial operation [1,2]. The first is

the addition of the fifth detector to the original set of four, effectively expanding
the radial view area of the tokamak plasma, and providing better characterization
of the DT neutron profiles.

Secondly, the frequency response of the detectors has been improved by the
replacement of the 2 ps amplifier shaping constant by a 0.5 s shaping constant.

The detectors had previously run into pulse-pileup in the most central channels at



total neutron emission rates of ~ 3.5 X 1016 peutrons/second. Now, similar
problems do not occur in mixed neutron emissions until about 5 x 1016 s-1.

The third improvement in the system was the resetting of the energy
windows viewed by the SCAs. The scaler windows are now set up in three
overlapping regions with a common upper level-discriminator setting (about 20
MeV), and three distinct lower-level-discriminator settings, all above 2.5 MeV at
about 5 MeV, 7.5 MeV, and 10 MeV. In this manner, the SCA discriminates well
against 2.5 MeV neutrons, and the ratios of the three SCA channels indicate when
pulse pile up occurs, since the count rates increase first in the lower energy settings
due to pileup by 2.5 MeV neutron counts. Excessive count rates from D-T
neutrons seem to reduce the gain of the pulse amplification causing a reduction in
the highest energy signals. There have not been enough TFTR plasmas with the
appropriate neutron emission levels for the details of the detector saturation to be

studied.

3. In-Vessel Calibration

Another improvement in the 4He detector system was the calibration of each
detector’s response to 14 MeV neutrons produced at the TFTR midplane. This is
necessary since: (1) the collimator channels contain construction flaws (primarily
curvature), (2) scattering from the channel walls occurs, and (3) the neutrons
arriving at the 4He detectors had to pass through a 7nS detector [5] which is
located about 1.7 m above (Fig. 1). The attenuation of the DT neutrons was thus
determined by measuring each detector’s response to a known-strength DT neutron
source that was scanned across the collimator aperture. In February 1993, an
absolute calibration was performed using a 14 MeV neutron generator placed
inside the TFTR vessel [6] (Fig. 3). The neutron generator accelerates 100 kV

deuterons onto a tritiated tungsten target forming a pulsed D-T neutron source



(turned on for about 10 msec at 10 pulses/sec) with an average neutron emission

rate of 4 x 107 s-1 [7]. The average count rate for the helium detectors was less
than 2 s-1 so that the calibration did not suffer from pulse pile-up. The neutron
emission from the DT generator was characterized with a ZnS detector [6], a
NE213 detector, and activation foils when the generator was operated in an open
room. The emission in the direction of the helium detectors was determined by
activation of 27Al(n,or) foils having a neutron threshold of about 6 MeV. The
activation determined the 14 MeV neutron flux and normalized the count rate of a
238U monitor detector attached to the generator (Fig. 3). The absolute fluence of
DT neutrons directed at the helium detectors was determined to about 6% accuracy

for each calibration exposure [6].

The generator was placed in the midplane of the machine on a track that
allowed it to be located accurately in various radial and toroidal positions (Fig. 3).
The neutron generator was moved across the view area of each collimator channel,
and the number of counts was recorded when the generator was operated at each 1
cm increment. Each calibration exposure lasted for 240 seconds, and the yield
from the generator was determined from the counts in the normalized monitor
detector. Scans in the radial direction were performed for all five collimator
channels (Fig. 4), and a scan along the toroidal direction was performed for the
most central channel.

The result of each irradiation was the detector point efficiency at that
position within the collimator view (Fig. 4). The shape of the scan would ideally
be a rectangle; however, curvature and misalignment of the collimator channels
causes some deviation from the rectangular shape [5]. In general, the shape of the
scans was similar for the 4He detectors as for the ZnS detector irradiated by DT

neutrons in the same scan and also for the ZnS detectors irradiated by Cf neutrons.



Tt is also the same in 1993 as it was in 1990 [3]. Apparently then, the transmission
of the collimator aperture is stable and (relatively) neutron energy independent.

The efficiency of each detector was obtained by finding the efficiency at
peak sensitivity (e.g., from -1 to 2 cm in Fig. 4) and applying a transmission
correction using the model for the collimator deviations based upon curve fitting to
the ZnS calibration data [8]. In this manner, an efficiency is obtained for the
nominal 7 cm diameter collimator aperture (Table 1). The peak efficiencies of
each detector are similar since the amplifier gains had been adjusted so that each
detector gave a similar pulse height spectrum when irradiated by Cf neutrons. The
sources of uncertainty in the detector calibration are outlined in Table 2, and the
total accuracy of the efficiency for each channel is about + 10% which was
obtained by adding the individual uncertainties in quadrature.

There are two sets of ZnS detectors located in the flight path of the neutrons
to the helium detectors (about 1.7 m above the helium detectors). Tests were made
of the attenuation of the Cf and 14 MeV neutrons by removing the ZnS detectors
on some irradiations. It was found that the total count rate was reduced, when the

7nS detectors were present, by a factor of 5.2 for Cf neutrons and by 2.8 for DT

neutrons. The DT neutrons were attenuated by a factor of 2.05 for counts above
2.5 MeV, by 1.86 above 5 MeV, and by 1.53 above 10 MeV. Evidently, the ZnS
detectors have a significant effect upon the efficiency of the helium detector
signals. This further indicates the necessity of performing the absolute calibration
with the DT neutrons. The larger effect on the lower energy helium recoil counts
probably indicates that some degradation in neutron €nergy occurred in the
collimator system. Further evidence for this is found in the He recoil spectra
themselves.

The energy spectra obtained with the Cf source, 2.5 MeV neutron source,

and 14 MeV neutron source are sufficiently different that the He detectors count 14



‘MeV neutrons and not 2.5 MeV neutrons (Fig. 2). The detector response to 14
MeV neutrons generated by the neutron generator is nearly identical (Fig. 5) to that
when the neutrons are generated by the plasma, indicating that for recoils created

above an equivalent neutron energy of 5 MeV, the detector is responding as if to a

pure 14 MeV neutron source. Furthermore, the spectra indicate that all the

detectors have been balanced fairly well since each response to the 14 MeV
neutron generator is similar (Table 1).

The TFTR detector response has some significant differences from that
determined experimentally by Birch [9] for a helium recoil detector. The main
differences between the Birch detector response and the TFTR detector response
are the existence of a few counts above 14 MeV in the TFTR spectra and of a
factor-of-two more counts below about 12 MeV. Possible reasons for these
differences include:

(1) The detectors have different designs. The detector characterized in Ref.

9 had a fill pressure of 6 atm of 4He and 6 atm of Argon while the
TFTR detectors have 20 atm of He. The detector of Ref. 9 had the same
diameter as the TFTR detector but was shorter (30 cm vs. 70 cm). The
effect of these differences on the neutron spectra have not been
evaluated.

(2) Pulse pile-up effects for the counts above 14 MeV could occur since the
count rate is much higher in the TFTR plasma case than in the
calibration. The magnitude of this tail indicates that pile-up has an
insignificant effect on the helium recoil count rate above 5 MeV.

(3) The TFIR spectra have more counts below 12 MeV which may be an
indication of the existence of neutrons of degraded energy due to
scattering from the TFTR vessel, the collimator aperture, and the ZnS

detectors above the He detectors. Since the spectral shape is identical



for 14 MeV neutron generator and TFTR plasma operation, this means
that the generator calibration is effective at determining the detector
response to those scattering processes.

(4) The counts above 15 MeV may be due to high energy neutrons created

in beam-beam reactions in the plasma which do not occur in the

generator.

4. Backscattered Correction

The helium proportional counters measure the flux of 14 MeV neutrons
which travel down each collimator channel. Previously [3], it was found that for
the ZnS detectors, the channel cross talk is negligible but that = 5-10% of the
measured neutron signals could arise from neutrons that enter the collimator after
scattering from the collimator entrance aperture or from the TFTR vacuum vessel
and other machine components within the view of each channel [10]. This
scattered component is more important for the channels which view the outer
portions of the plasma since the directly-viewed plasma neutron emission can be
greatly reduced off-axis while the scattered component will tend to be about
constant.

The scattering correction was estimated by the method described in Ref. 10.
Several small minor radius TFTR plasmas were operated in a manner which
resulted in each channel observing only scattered neutrons. An in-shifted R = 2.15
m, 1.0 MA TFTR plasma meant that channels 6,7, and 8 (Figs. 6 and 7) did not
view the plasma while an R = 3.00 m, 0.7 MA TFIR plasma meant that channel 4
did not view the plasma and channel 5 viewed only the edge of the plasma (and
presumably not the neutron emitting region of that plasma). These plasmas were
heated by 2.2 MW of deuterium neutral beams having a nominally 2% tritium

concentration yielding a D-T neutron emission in the range of 1015 D-T



" neutrons/sec for 0.5 sec. Three each of these plasmas were run to accumulate
counting statistics. The D-T neutron emission was measured by the TFIR fission
detectors and activation system whose sensitivify to plasma position have been
determined.

As shown in Fig. 7, the scattering correction is small for the helium
proportional counters (= 1% of the unscattered flux for a channel viewing the
plasma center), making the correction negligibly important for unfolding the data.
The helium proportional counters are more effective than the ZnS detectors at
discriminating against scattered neutrons, since the He detectors have energy

resolution while the ZnS detectors do not.

5. Applications

For TFTR data, the five point profiles of the line-integral neutron emission
have been fit to a Gaussian. The major radius, minor radius, and total emission
intensity of the Gaussian are determined [1,2]. Typically, it has been important to
determine gain shifts between the February 1993 calibration and the November
1993 to February 1994 plasma operation by comparing the pulse height spectrum
taken during plasma operation with the pulse height spectrum taken during the
calibration. Several validity checks on the profile data are useful including that the
major radius is similar to the Shafranov shifted plasma center, and that the
magnitude of the 14 MeV neutron yield is comparable to the 14 MeV neutron yield
measured by the other TFTR detectors such as the activation system [10].
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TABLE 1. Detector Efficiencies in Counts
above 5 MeV per 14 MeV Neutron

Channel R Peak Efficiency reff Average Efficiency
(m) (10-9 cts/DTn) (cm) _ (10-9 cts/DTn)
4 2.26 2.92 6.79 2.75
5 2.47 2.92 6.46 2.49
6 2.68 2.61 6.63 2.34
7 2.99 2.71 5.71 1.80
8 3.15 3.02 6.99 3.01
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TABLE 2. Typical Sources of Error

Uncertainty in Calibration of Individual Channels

(a) Source Uncertainty +6%

(b) Statistics of Monitor Detector +0.5%

(c) Statistics of 4He Detector +6% —* 7%

(d) Aperture Deformation Modeling +5% —+10%
Total +10% — +13%

Use During Plasma Operation
(a) Stability of Electronics (gain changes) *4% — +£10%
(b) Statistics of 4He Detector + 5% (typical)

(¢) Gaussian Profile Assumption +5%

Total Accuracy for Determining the
Neutron Intensity +12% — + 15% (typical)
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Figure Captions

Layout of the TFTR multichannel collimator indicating the poloidal
cross-section of the TFTR plasma, the helium detectors, and the lines-of-
sight of the collimator channels into the plasma.

Pulse height spectra from the helium proportional counter in the sixth
collimator channel when irradiated by the 14 MeV neutrons (data points
with error bars), and by the 2.5 MeV neutrons (solid line). The SCA
lower level discriminator settings are at channels 100, 150, and 200
indicating excellent discrimination between 14 MeV and 2.5 MeV
neufrons.

The 14 MeV neutron generator located inside the TFTR vessel during the
absolute calibration of the helium proportional counters. The accelerator
target is located at the near end and the 238U monitor detector is
mounted on this side of the generator. The monitor detector is wrapped
in braid to avoid electronic noise pick up from the generator.

The efficiency of the 4He detector to the neutrons from the DT generator
when the generator was scanned across the aperture of the fifth collimator
channel. The error bars on the 4He counts are due to counting statistics
and due to the positioning accuracy of the DT generator.

He detector counts for collimator channel #6 (normalized at PHA channel
250) versus pulse height when exposed to 14 MeV neutrons from a TFTR
plasma shot (solid points), when exposed to 14 MeV neutrons from the

DT generator (situated in the TFIR vessel), (open squares), and as

predicted for 14 MeV monoenergetic neutrons from Ref. 11 (x-points).
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Fig. 6.

Fig. 7.

Plasma location of the in-shifted and out-shifted TFTR trace tritium

plasmas used to estimate the backscattered neutron contribution in each
channel.

Detector counts normalized to total D-T neutron emission in the
backscatter calibration. The open squares are for the in-shifted position

and the closed squares are for the out-shifted position.
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