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The effects of cementite particles and subgrain boundaries on work-
hardening behévior of spheroidized carbon steels were investigated by
making direct measurements of residual internal stresses. These intefnal
stresses developed‘ddé to plastic incompatabilitiesbetweén elaétic particles
and an elastic-plastic matrix. A continuum analysis of these internal stress
fields, based ubon a multiple slip model, is presented and is féund to be in |
good accord with the experiments. The internal stresses appear to saturate
in the plastic strain range of 3 -~ 5% where a transition in strain-hardening
behavior was observed ('double-n'" behavior), and to contribute approximately
20% to total work-hardening. The cementite~particle—pinnéd—subgrain—bounde
aries; formed during a post-quench annealing treatment, were found to lowef
the internal stress, thus indicating that they assisted theArelaxation pro-
cesses of entrapped Orowan loops by acting as sources of dislocations. The
flow stress increment in dispersion hardened alloys due to work-hardening
consisted of interﬁal stress, forest stress, and source-shortening stress.
The flow stress curves of spheroidized carbon steels were found to be de-
scribed by a modified mean—square—robt addition law of the form

, L/e
o, -0 rol e [a0H - (Acrss)2+(c7f)a] i
=0

The maximum normal interfacial stresses were estimated from the data. The
maximum values occurred in the tensile direction at the poles of particles
and the magnitude was found to be'approximatély one half of flow stress. The
significance of these stresses regarding interface cavitation is discussed
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1. INTRODUCTION

When work hardenable metals are cyclically deformed by forward and then
reversed loading, they typically exhibit a decrement in the magnitude of the
reversed yield stress l. The effect, which is found in a wide class of pure

metals and alloys, including both single crystals and polycrystals, is gen-

erally believed to be a consequence.of the internal stresses that develop due
to the inhomogeneity of plastic deformation

In ﬁolyérystélline alloys that contain large second phase inclusions,
especially inclusions that do not undergo any appreciable plastic deformation;

a large part of the overall strain-hardening results from directiocnal long-

'
v

range stresses. These stresses are the same kind that giQe rise to the afore-
mentionedBauscﬁiﬁéereffects and are caused by an incompatibility of plastic
strain between the particles and the surrounding plastic matrix 3 . In re-
cent years, continuum and dislocation models for this sort of anisotropic

455,657 have been developed (these models are reviewed and develcp-

hardening
ed in later sections) and they have been successfully applied to particle
hardened alloys. The models always predict enhanced Bauschinger effects and a
particularly.interesting manifestation of directional internal stresses'that
we call, following Wilson 8, permanent softening. Permanent spftening is
illustrated graphically in Figure 3.1 and because it plays a central role in
the present work, it is explained in detail in Section 3.1.

Now since the models we will use relate both the overall work-hardening
behavior and the Bauschinger effects t§ the details of the residual dis-

location structure left at the particle-matrix interfaces, it appears to be

possible to extract information from direct measurements of these effects




concerning, for example, the local stresses and elastic strains developed
within the inclusions and at the particle-matrix interfaces during_plastic
deformation. Such information would initurn be very heipful in explaining,
1) the observed changes in work-hardening behavior, which is found to occur

9’10, 2) the influence of particle size and particle

at certain strain levels
volume friaction on work hardening, and 3) the process of particle cavi-
tation (i.e. separation of the particle-matrix interface) which is knéwn to
be promoted by large values of the interfacial stresses. The research pro-
gram reported here is in fact concerned wiﬁh the use of these models and

the relevant.experimental data to explain the micro-mechanics of work-
hardening and internal stress development in dispersion hardened steels.

With the above objectives in mind, a series of experiments was conducted
on two plain carbon sfeels, heat treated to contain spheroidal carbides in
the 0.6~2um diameter size range. All the relevant strain-hardening param-
eters for simple teﬁsile straining, as well as the reversed deformation
characteristics fqr tension-compression cycling, were measured. The mag-
nitudes of the Bauschinger effect and the permanent softening were also
measured and were correlated with such microstructural parameters as particle
size and volume fraction.

In the quenched and tempered state, it is found that the carbides are
generally interlinked with a network of dislocation subgrain boundaries. To
determine the influence of these subgrain boundaries on the work-hardening
behavior and internal stress levels, additional tests were conducted on
alloys specifically heat treated to remove the subgrain boundaries while main-

taining the particle sizes within the range common to the alloys containing




subgfains. As was mentioned earlier, the directional long-range stresses
which tend to "harden" the métrix are causéd by the dense clustering of
dislocations at the particle-matrix interfaces. These clusters cause large
stresses within the particles which are counter-balanced in an average way
by stresses in the matrix. It will be explained later that the permanent
softeniﬁg is a measure of these stresses and can be used to estimate the
local stresses acting on the particles. In Section 5.1, an analysis of the
interfacial stresses for spherical inclusions is presented.

In Sections 2 -and 3 a brief but relevant review is given of the various -
nodellistic approaches to boundary and particle hardening. In particular
a thorough discussioﬁ is provided in Section 3 for particle strengtgening
and internal stresses; permanent softening is explained and its relation to
observed Bauschinger effects, and to the local stresses acting at the par- ”
ticles, is made clear. The experimental techniques that were used and the

results obtained are-presented in Section 4. Finally, the results are

discussed in Section 5.



2. BOUHNDARY STRENGTHENING

2.1 Grain Boundary Strengthening

It is well known that the presence of grain boundaries in all poly-
crystalline materials provides strength by interfering with the motion of
dislocations. A very useful relation between the yield stress and the grain

siZe,'viz.the Hall-Petch equation, is now well established for low carbon

steels 11’12;

—1/2
O =0 +k d . (2.1)
Y 0 Y

In Equation (2.1), cy is the yield stress, d 1s the average grain size, and

o, and k_ are constants. Equations (2.1) has been confirmed experimentally

0
13,14,15

for many materials other than steels and has been derived theoreti-

12, 16

cally from dislocation pile up models and dislocation interaction

work-hardening models 17’18.

In the pile up models, the grain boundaries are assumed to be strong
barriers to the glide dislocations, and thus the dislocations are queued at,
or "piled up" against,them. These pile ups intensify the net force on the
lead dislocation in analogy with the stress concentratioﬁs at the tips of
"shear cracks. Yielding occursvwhen this stress concentration at the leading

dislocation, 1 _._, exceeds a critical stress, T __. . For an isolated single
tip crat
ended dislocation pile up of n dislocations for example, Ttip is, as virtual

work implies,

T,. =n(7ﬂ—7b)

t,P . (2.2)

In Equation (2.2), T, is a frictional stress which fluctuates on the spatial

scale of the lattice parameter and TA is the applied shear'stress. n, in

ST

Y



turn, is expressable in terms of the slip line length, & (an experimentally

measurable quantity), as

n=(7A—TO)!Z/2A i - (2.3)
where A has the value of pb/27 and ub/2w(1l-v) for screw and edge disloca-
tions, respectively (p = shear modulus, b = Burgers vector, and v = Poisson's
ratio). |

Equation (2.3) is derived by assuming a continuous distribution of dis-
locations, although discrete dislocation models yield similar results 19.'

e}

Taking % equal to d and equating T Lo we obtain the above form of

tip t Teri

the Hall-Petch relation:

lre  -1/2 : -
T, =T +(2A7.) d . : (2.4)
y 0 crit
The analyses leading to Equation (2.1) can be extended to describe the flow
stress as long as the grain boundaries continue to act as barriers to moving

dislocations 2O; in this case the flow stress, Ocs is given by

-1/2
O;=O‘0f+kfd , (2.5)

where the parameter k_ now depends on the plastic strain.

f

The lack of direct evidence of pile ups at the grain boundaries in many
cases has motivated the development of strain—hardeﬁing models in which the
grain size is related to the dislocation density produced during deformation.
For example, Nabarro et al. 21 have reviewed a variety of proposed flow

stress and dislocation density, p, relationships and have shown that the

relation

1/2 : |
Te=TorCLbp ™7, ~(2.8)




where c is a constant whose value in the various model versions ranges from

1/3 to 1/5, is a general form which is derived from a wide class of work-
hardening theories. Aéhby 22 on the other hand in one particular study
related the dislocation density.to the structural parameters AG and AS -
cefined by him as the '"'geometric slip'" distance and "statistical slip"
distance, respectively. He assumed that the total dislocation density was
composed of both the dislocations which are '"geometrically necessary" to
accomodate the plastic non-homogeneities across the grain boundaries and
the "statistically stored dislocations" which would accumulate in a matrix
without particles as they do, éay, in single crystals. Taking pG and pS
as the densities of these two types of dislocations, Ashby writes for the
total density:

pT=pG+ps. (2.7)
Simple additivity in Equation (2.7), we note, is doubtful since it ignores
the interactions between grain boundary processes and grain matrix slip.
Thompson et al. 23 have suégested instead that each such term should be =
corrected by the respective area fractions so that the polycrystal is viewed
as a kind of composite structure with a hard boundary region and a softer
grain matrix. In the case where pG >> pS, however, it is always assumed

that pT = pG and pG is related geometrically to AG as

G G
p=4v,/bA", (2.8)
where Yp is the shear strain.
Ashby 22 has further assumed that AG, instead of the more commonly used

2425

dislocation slip distance , 1s proportional to the grain size. The



average Taylor orientation fac%ors,‘iM), whose values are calculated as

2 .
3.067 for f.c.c. polycrystals ® and as 2.733 for b.c.c. polycrystals ce-
fbrming by pencil glide 27, relate the shear stress, T, and strain, Yy, to

. . 26
the tensile stress, o, and strain, €, as

<M> =g/ 7=Ch’~P/d€P . : (2.9)

‘Substituting Equation (2.8) into (2.6) and converting to tensile stress and

tensile strain by utilizing a Taylor factor, we obtain again a Hall-Petch
type equation,

3/2 172 -1/2 y
g =g +cu M (e ) Td T, (2.10)

which in addition predicts a parabolic stress-strain relation.

2 . . : ' .
Ashby 2 has also used Equation (2.10) to interpret results on strain-
‘ G

hardening for dispersion strengthened single crystals >*” by noting that A
is given by r/f for equiaxed inclusions, where r and f are the particle
radius and the particle volume fraction, respectively.

Thus, the particle hardening effect, AoP, is

1/2 .
) . (2.11)

P 1 372
b0 -c M wlbfE /2T
P

In Equation (2.10) and (2.11), c¢' is a constant having the value (0.25 + 0.15).
Although the Ashby model has had some success in describing the work-hardening
behavior of dispersion hardened crystals, this model does not account for
the detailed dislocation arrangements and so makes no predictions concerning
the Bauschinger effect.

On the other hand, we note that all these theoretical approaches seem

invariably to lead to a flow stress ( and yield stress) which varies as the



relevant microstructural distance, i.e. grain size, raised.to the inverse
square root power. The flow stress is then found to vary parabolically with

plastic strain. These two features are amenable to experimental verification.

2.2 Dislocation Substructure Strengthening

The mechanism of cell formation is now believed to be the formation of
dislocation tangles, which gradually join into three dimensional networks3o’3{
Subgrain boundaries, on the other hand, are generally observed to form under
conditions where significént dynamic or static recovery occurs either during
or after plastic deformation 32. Holt 33 has analyzed a model for cell
formation which assumes that the driving force for dislocation cell fopmation :
is a reduction in the total elastic energy of dislocations due to their
clustering in cell walls. The model has a clear analogy to the process of
spinodal decomposition 3“. He has shown that spatial fluctuations in an
initially uniform density of dislocations with certain periodicities can
grow faster than others and that the wave lengths of the fastest growing

density perturbations are proportional to the inverse of the square root of

the uniformly distributed dislocation density, p,

I__1=K pl/z . ' (2.12) ]
In Equation (2.12), K is a constant and L is the average cell size.
Substituting Equation (2.12) into (2.6), it is found that ~
O‘f'=0‘(oi)+k(i)l__l, | (2.13)
where kf(S) is another constant defined as cub/K. Equation (2.13) should
hold under conditions of steady state deformation such as are attained in hot
3536

working where the average dislocation density remains essentially constant
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Young and Sherby Z&jhave also shown that subgrain boundary strengthening be-
havior in a number of iron based alloys can be described.by Equation (2.13).‘
They have further asserted that subgrains can indeed play a dominant role in
the strengthening,especially in the range of subgrain sizes that are less
.than about 0.hum. |

- However, it has also been reported that much ef the data for yield

stress can be fitted to a Hall-Petch type equation 30,

(S) (S) (S) —1/2
g =0 +k L

y= o Ty, s (2.}4)-

" thus implying that the subgrains may Have a similar effect on-strain—hardén¥

ing behavior as do the grain boundaries. Theoretical approaches have been
made to rationalize Equation (2.14) by analyzing the stress fields of simple

b

tilt sub-boundaries based upon either the pile up 2 or forest hardenihg38

models. The absence of direct observation of dislocation pile ups at sub-
boundaries favors the forest models which are concerned with the stresses to
force dislocations through the dislocation debris formed as a result of un-

pinning of boundary dislocations 30. Li 17 has derived a Hall-Petch type

equation using such a forest model which has the form

T =T+ ub/em( - 1)) [8e /7] L (2.15)

The analysis predicts that the yield stresses depends on both the subgrain

size and the average misorientation of subgrain, 6.

A majority of the experimental data, however, shows that the yield

strength is independent of the misorientation'angle of subgrain boundaries

and only depends on their size via Equation (2.15) 30. An interesting point

" to be noted is that well-recovered materials tend to obey the relation of



Equation (2.13). That is, the observations 39 suggest'that the exponents of }
subgrain sizé change from values near -1 to values closer to -1/2 as re-
covery proceeds.

Another noteworthy feature of sub-boundaries is the fact that they
produce vanishing long-range stresses as has been suggested by Kuhlmann-

Wilsdorf 40,41.

She has constructed a "building block" model éf the terminated

loop hexapoles composed of edge and screw dislocations,'in which a conditional

minimum énergy criterion has been imposed and has suggested that the tilt

and twist cell walls in adjacent cells most likely consist of equal and _ e
opposife dislocation densities. From the results of simulated stress fields,
she has reported that there exist two kinds of long-range stresses: (1)
long-range multipolar stress fields which attract dislocations to4the cell
wall and eventually vanish and (2) rotational stress fields arising from the
rotational stresses of a single hexapole which have also been shown to be
cancelled by constructing a multi-hexapolar model in an alternating sense

of rotation u2. A variety of transmission electron microscopic observation
of dislocation substructure 43 supports the assumption of a reduced long-
range stress field along the sub-boundaries. A continuum analysis for the
elastic fields of periodic dislocation networks e has also shown that the
rotational fields in a periodic planar distribution of dislocation networks
decrease exponentially with distance and vanish on the average. There do
exist observations, however, that indicate that cell walls in the deformed
structure do produce some long-range elastic stress fields 43

Thus it is not clear from exiéting knowledge exactly how the sub-

boundaries contribute to strain-hardening behavior. Bearing this in mind,




we attempt here to understand the role of subgrain boundaries in

carbon steels on the hardening behavior from the internal stress

discussed in Section 5.4.

spheroidized

measurements
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3. PARTICLE STRENGTHENING

L . . . .
Orowan 5 has proposed a dislocation bypass model for dispersion
strengthened materials and has given the critical shear stress, Too to bow

a glide dislocation as

7.=2T /b | (3.1)
Wwhere T is the idealized dislocation "line tension'" and A is the interparticle
distance. In recent years, a number of theoretical approaches have been pro-
posed to analyze the strain-hardening behavior of dispsarsion hardenéd materials

which in fact are based on the original Orowan model us. For the purpose of

discussion we will classify them as; (1) forest type hardening models 47,48

which emphasize the interaction between glide dislocations and the "forest"

dislocations produced by certain dislocation relaxation mechanisms and (2)

back stress hardening models 3’4’6’7’8, which deal with the internal stresses

due to the Orowan loops. Furthermore, we note that the role of these internal

stresses in strain-hardening has been treated from two rather different points

of view. One approach deals with the back stress of a long-range character °

4’6’7’85 whereas the other is primarily concerned with the local fluctuating

49,50

stress around each particle The various dispersion hardening theories

based on internal stress concepts are reviewed and compared briefly in this
section.

3.1 FHP Model 43 and Revised Hart Model 50

The Fisher, Hart, and Pry (FHP) model is based on the assumption that
the strain-hardening process in the matrix proceed as they would in, for

example, a single crystal matrix without particles. They have further assumed

v
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that plastic flow occurs in a single slip fashion and thus, the glide dis-
locations are piled up against particles. We note that this is a somewhat

unrealistic assumption, especially in the light of recent work on deformation

1,52

process at large inclusions --a point we consider in more detail later

max

h , due to the,.

on. In the FHP model, the maximum hardening increment, Tt

elastically deforming, particles over the pure matrix flow stress was estimated.

max
h b

At large strains they obtained for t
max 372 .

Th =I.BBK[NCb/rSLuf s (3.2)

where B is a constant taken to be equal to 3. NC is the maximum number of
shear loops a particle can maintain, K is defined as [1 + v/2(1-v)] and r

is the mean square planar radius which is related to the mean particle radius

statistically as

re=3ré/2 . (3.3)

Since the number of shear loops is related to the shear strain as

YP=Nb/2f”, (3.4)
Equation (3.2) can be rewritten in the form
max - b 3/2
Th =l2)(LYP f A 4 (3.5)

where Y; is a critical shear strain at which the number of shear loops be-

comes saturated and the numerical constant 12 is obtained by setting v = 1/3.

Thmax is in fact identified as the saturation back stress and thus Equation

(3.5) predicts that the back stress hardening depends on particle volume

fraction raised to the 3/2 power. Ashby has obtained the same result from

a so-called "elastic peg'" model 53. The FHP model, however, does not account

ad
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for the Orowan stress and so it estimates only the maximum hardening incre-
ment due to the presence of particles.

Hart >0 has recently modified the FHP model to account for the Orowan
stress and has obtained.a stress-strain relation which assumes (1) that the
Orowan stress is simply additive to the matrix flow stress and (2) that the
back stress effect caused by the local fluctuating stresses of the Orowan
loops acts so as to raise the critical stress for subsequent dislocation
bowing. From the fundamental assumption of simple linearly additive flow
stress contributions, the hardening increment due to particles is defined as

71:=7Qp— 7M . : (3.6)

where Tup and Ty represent the flow stresses of the specimens containing
particles and without particles, respectively. Hart >0 has further médelled
the trapped shear loops as being infinitestimal in size and has taken for
their stress field the field of a shear dislocation dipole. The cri%ical

shear stress required to force a glide dislocation between two trapped loop

dipoles was calculated and can be expressed as

172 |
7h=70[1+2M +2M] , (3.7)
where M = 0.509 K(u/TO)Y; £3/2 (Y;: unrelaxed plastic shear strain). This
shear stress-shear strain relation .was then converted to a tensile stress-

strain relation using simple Taylor averaging, <M>, to obtain

172 3/4

0 -0+ 160 [wra) e (€) e 28M Tt e, e

u . . . " . .y
vhere ep is the unrelaxed tensile plastic strain and 0y 18 the tensile

equivalent of the Orowan stress.
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4 . . . .
Asaro  has refined the computation of the Orowan stress by considering
the effect of more complicated distributions of shear loops. The results are
consistent with those of Equation (3.7) and can be represented in the slightly

more general form as

ToT[trw(Mem ), (3.9)
where W is a constant ranging from 0.5 to 2.0 and M is a linear function of
strain. The experimentally measured value of the hardening increment in
general.includes an additional stress--the image stress, Tim,——which is a

long-range residual stress associated with the finite size of the body 4’7.

¢

This reversible residual stress has been shown to be a dominant contribution
to the strain-hardening at large strains--this effect is discussed in the

next section.

3.2 Wilson's Construction and the Bauschinger Effect

It has already been noted that both continuum and microscopic models
predict the existence of long-range internal stresses and the accompanying
pronounced Bauschinger effects caused by plastic incompatibilities between
non-deforming inclusions.and elastic-plastic matrices. Asaro 4 has suggested
.at least three kinds of kinematic-type hardening behavior which might result
when the macroscopic internal stresses are relatedtto the details of micro-
structures. These macroscopic residual internal stresses developed during
unidirectional deformation can be removed by reverse straining. This kind of
behavior leads to the permanent softening effect 2 we discussed earlier. The

magnitude of this permanent softening simply appears as the difference in flow



stress for reversed and forward deformation evaluated at some large strain,

as illustrated in Figure 3.1. Wilson 8 hes shéwn that internal stresses are
linearly related to the magnitude of the permanent softening, OPS, by cor-
relating measureﬁents of the Bauschinger effect to the average ihternal
stress, gi; measured by monitering X-ray diffraction line shiftsf His experi-
mental results show that the residual internal stress is about one half of
the magnitude of permanent softening. Although he concluded that Gi and OPS
are the lower and thé upper limits of the back stress hardening'element,

Asaro 4 and Brown St took the internal stress to be equal to one half the
meésured permanent softening--this assumption is based upon a "'shake down"
model for dispersion hardened materials 55. To appreciate this point of view,
we consider the simple elastic-plastic element model of Figure 3.2. The
elastic regions (viz. strong elements, inclusions, or boundaries) support
stresses which are transmitted as residual stresses to the plastic region
(viz. weak elements or mgtrices) upon unloading. Thus, the model shows a
Bauschinger effect, manifested by a permanent softening whose magnitude, as
can be seen from the figure, is just twice the residual internal stress. The
inhomogeneous local stresses around the particles are believed to produce the
characteristically rounded part of the reverse stress-strain curve 5“. This
argument has been confirmed by Brown et al. St by defining a parameter B8

empirically as

172
o0, = BE. . (3.10)

B was fcound to be proportional to the inverse of the measured.value of per-

manent softening. Moan et al. 56 have also obtained the same. result by de-
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scribing the forward flow stress  and the backward flow stress as

i f
Cff=C75+CT'+CT
and ; P (3.11)
O =0 -0 +0 .
r 0
where cf stands for the "forest stress". Thus, o® can be expressed in the

form

i PS
| O—f[UF"IO}ﬂ/Z -o/2 . | (3.12)
It should be further noted that the internal stress is in fact a measure of
the Bauschinger energy parameter, BE, which has been proposed as a measurer

of the Bauschinger effect 57. BE has been defined as

s

BemEL/E = O/ ) 5 1
ES and ET are the élastic energy stored in forward deformation and the tota&
energy required to give forward deformation, respectively, and (o{} is the
average forward tensile stress. The average stress, <oé> » which is related
to elastic energy stored by ES ='<0B;>ET, is believed by the autho? to be
just another expression for the residual internal stress. Asaro 4 has further
indicated that regardless of the details of the initial reverse flow, the
difference between the forward and reverse flow stress curves asymtotically
approaches the value 20i for all three kinematic-type hardening cases. Since
these models, however, do not depend on the fine details of fhe microstructures,
as does the ”soufce—shortening” or "Orowan stress' contributions, they give the
sort of overall average internal stresses which are measured in the present

work.

- aww
7
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3.3 Tanaka and Mori Model

Instead of directly computing the forces écting on the glide dislocations,.

Tanaka and Mori 6 have computed the isothermal free energy change of an elastic-

plastic specimen containing elastic particles. If the elastic constants of the

!,

matrix and particles are the same , the free energy change during the deforma-

. . . A .
tion by a uniaxial tensile stress, Ta3 > is

DG=N[EE, J+a,e Vv, —[0h) V/eE-Te vV, (3.18)

33 P

where N is the number of inclusions, ¢, is the yield stress of the matrix

0

(identified as the Orowan stress), V, and V are the volume of the matrix and

M

the specimen, respectively, and Ep is the imposed uniform plastic strain in

, and the interaction energy, Eint’

58

the matrix. The elastic energy, Eel

are calculated according to the well known scheme devised by ;shelby
The specimen is  assumed to underéo a dilatation free extension correspond-

ing to a plastic strain, Ep’ in xa direcfion. Since the particles do not de-

férm plastically, Orowan shear loops are left around inclusions as a result

of the byéassing of dislocations. These loops give rise to plastic incompat-

ibility between the elastic-plastic matrix and the elastic inclusions. The

central assumptions in this model are that these'loops are distributed uni-

formly at the particle-matrix interface and that the plastic deformation in

the matrix occurs by uniform symmetrical multiple slip. This assumption

"Although accurate values of the elastic constants of cementite are not avail-

~

able, it is believed that the elastic constants of polycrystalline cementite

have "‘rather similar values to those of ferrite 52.

o
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enabled these authors to make use of Eshelby's "uniform transformation strain"
results 58 by identifying the’ transformation strain components, sijT,~with
the plastic strains as follows,
T T u T u
€,=€,=€,/2 €= & | (3.15)

and'e..T = 0 otherwise.

1]

The model is depicted in Figure 3.3(a) and (b). The dislocetion loop

distributions envisioned in the FHP and revised Hart models are also illustrated

in Figure 3.3(c¢c) for the sake of comparison. For spherical inclusions, the
i

e . . . . . c .
stresses inside the inclusion and the constrained strains, eij , are given

as

I C T
o =2ule -]
i 2}L Eu EU .
and ' (3.16)
C T ’
ef =[efa-sv)/i5(1-ve]
From Equations (3.15) and (3.16), we obtain the following stress components
inside the inclusion:
I u
=2Ma
] Cr33 Zfi EP
and (3.17)
1 I u '
oo - _ua
11 22 H 8P °
where a is the accomodation factor, which for the case of a sphere, is equal
to (7-5v)/15(1-v). The elastic energy stored during the deformation and
the interaction energy of the  internal stress field due to the applied stress

are

2
Eam- 2, gty dv-svpalel /2 .19
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- ‘ AT A u
and | E. = —SVIO_U. Eij dVv =633VI EP .

where VI is the volume of the inclusions.

Substituting Equations (3.18) and (3.19) into Equation (3.14) and

(3.19)

'using the stability conditions, a(AG)/a(ep“) = 0 and 82(AG)/82(eéu) > 0, the

following stress-strain relation was obtained

O‘;;=CTO+3fLOL(T”/1—f)E: . (3.20)
The procedure predicts a linear hardening behavior which depends on particle
volume fraction only and not on any other feature of the particle distribution.
The flow stress calculated in this manner certainly represents a lower bound
to the true value, since it is assumed that all the work done by the applied
Stress is stored as elastic energy (that is, dissipation is ignoréd). The
équivalence of this model to that of FHP has been discussed recently 59 and

it has been shown that the linear hardening behavior is not necessarily due

to the assumption of uniform plastic deformation. This continuum model, how-
ever, does not adequately take into account the stress required to bow dis-

locations around the particles, so that it fails to include a proper treat-

ment of matrix hardening behavior.

3.4 Brown and Stobbs Model

Brown and Stobbs 60 have attempted to describe the macroscopic properties
of their own dispersion hafdened materiéls in terﬁs of obsefved dislocation
microétructures. Their model is considered by the present author to be the
most realistic and complete of these proposed so far. They have computed

the. contributions to the flow stress arising from both the forest and the back
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stress hardening by aséuming these effects to be linearly additive. The
entrapped Orowan loops piastically relax by various méchanisms such as local
climb, cross slip of screw éegments to produce prismatic dislocation loops 48,
or by secoﬁdary slip processes as proposed by Ashby 47. A secondary plastic
zone with a high forest dislocation densit& is thus produced around the
particles, the precise form of which depends on the particular relaxzation
mechanism. This plastic zone directly hardens the matrix by a forest type
hardening and.also‘proﬂibits sﬁbsequent full plastic relaxafion of Orowan.

F'.

shear loops, thus stabilizing the localized elastic stress field which is «

Ry

the source of the back stress hardening.

3.4.1 Elastic Model

K]

In the absence of plastic relaxation, back stress hardening is seen as
to arise from the internal stresses and the stresses required to bow dis- |
location between particles 7. Following Asaro 3, we can estimate these

internal stresses by considering a structure whose surfaces are traction free.

For this structure we may write

g Tij dv =0 > ‘ (3..21)
v .

tnus satisfying the equilibrium condition. Dividing the integration limits
into the volume of the matrix and that of the particles, we arrive at the

result

<7;?>+(F/1—f)<’/"ilj>=0 .. (3.22)

Now "the traction free boundary conditions give

I DO,I .maI
<7ij>=<Tij >+<7ij' ). (3.23)
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In Equations (3.22) and (3.23), the angular brackets represent the average

- .
values, Tij,I are the particle stresses computed as if the medium were in-
finite in extent and Ti.lm’I are the so-called "image stresses'" of the parti-
cles or actually the corrections to this "infinite" field due to the traction
Fre . < im,q> .. . .
ree surfaces. Since Tij is itself proportional to particle volume

. . ) . 61< > - . '
fraction for ellipsoidal inclusions s Tij can be written, to first order

in f, as

M o1
__r _f‘ 3
(T )= A(u/l f] <TiJ. > (3.24)
<%i.&>.acts as an opposing stress to glide dislocations. The uniform shear

stress in a typical inclusion is found to be

E u '
T 7Y = LY (3.25)
(T7) = oy,
for the uniform shear model assumed 7——this is illustrated in Figure 3.3(d).
Equations (3.24) and (3.25), when combined with a Taylor factor,(tf?, used
- again to convert the predicted shear stress-strain relation to a uniaxial

tensile stress-strain relation give the stress just after yielding as

A 2 u
= =
T+ M7 ou(f/1-F| e (3.26)
In the case of multiple slip, the accomodation factor (a') has been estimated
as o' = ga for spherical inclusions 6. If we replace a with 3a/U4 and take

ety

<M> to be have the value 2 , then Equation (3.26) is identical to that of

oFaute
ww

Tanaka and Mori's continuum model essentially assumes that plastic flow oc-

. . . . 1
curs -on numerous slip systems simultaneously; this glves<M7 =2 0.
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. b . s .
Tanaka and Mori --Equation.(3.20). As plastic deformation proceeds, the
shortening of effective interparticle distance due to residual Orowan loops
| raises the bowing stress according to Equation (3.1) and thus the flow stress

in this stage of hardening is given, again assuming linear additivity 57 as

o*=a [+t e /o = 0 e f1-Flue, L seem

The "source-shortening' stress in Equation (3.27) has been calculated ap-
proximately by assuming a simple constant line tension of ub2/4. The stress-
strain relation is in fact similar to that computed by Asaro 4 and Hart 50,
One of the major results of this continuum analysis is that the mean local’
stresses around a particle vanish, contrary td that of Hart and that the
local fluctuating stresses give rise to the '"source-shortening' sfress.

A further discussion on the similérities and differences of the Hart, Tanaka

and Mori, and Brown and Stobbs models has recently been given in referencessg’G{

3.4.2 Plastic Relaxation

Plastic relaxation, in general, occurs at the onset of plastic flow, so
that any theory which does not properly consider plastic relaxation cannot
describe dispersion hardening behavior adequately. Brown and Stobbs 60 have
computed a forest hardening term and the back stress hardeniné term by noting
that plastic relaxation occurs in their alloys by secondary slip. They
assumed that this '"secondary plastic zone'" would be plate-like with a radius
R and of thickness r--this assumption being suggested by their observations.

From Equation (2.6), the local flow stress in the plastic zone can be written

in the form

_ 2
7]ocal'_ C}Jb Plocal : (3.28)
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If all the dipoles of prismatic loops which have been converted from Orowan
loops are contained in the zone, then the secondary dislocation density in

th i
e zone, P, .45 1S

Plocar =0D r/VP ’ (3.29)

where h is a constant taken to be approximately equal to 8. The plastic zone

volume, Vp’ for their assumed model is

s (3.30)

VP=7TR2r

in which the particle volume is also included. We will instead explicitly

note that- the particle volume should be subtracted from Vp, since the particle
size is typically of a comparable magnitude to the dimensions of this relaxa-

tion zone. The number of relaxed Orowan loops, n, is related to the relaxed

plastic shear strain statistically as

n=2r(TP—rP“)/b . (3.31)

When the particle—ﬁatrix interfacial stress, which is found to be uaypu
for the uniform shear model, exceeds the local flow stress, secondary slip
is presumed to occur. This condition, along with Equations (3.28), (3.29),

and (3.31), gives the unrelaxed plastic shear strain as

1/2
J

Tp“=[cb/o<] [Zh(YP—YPu)rZ/bVP \ (3.32)

where all the parameters are the same as defined previously. Equating the
particle stress at the outer edge of the plastic zone to the Frank-Read

type stressvacting on loop dipoles yields the following relation

pdTpu r/R®>=ub/r . o (3.33)
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Taking YP >> Ypu and_ignoring the particle volume contained in the plastic
zone, the plastic zone radius, R, and the unrelaxed tensile strain, corrected
by the Taylor averaging factor, are detefﬁined from Equations (3.30), (3.32),
and (3.33) to be

R=[(l\f’l>2hc2rgp/b7TJ ro (3.3u)

and

8;{1.3 c3/‘7<M>5/soc} [om/hr SP] e [‘n oe, /T r] v (3.35)

The fraction of bowing dislocations lying in the zone is approximately thé
square root of the plastic zone volume fraction, fp’ which can bg expressed
as 3

fp =3V, f/amr (3.36}
The "forest stress' caused by the 'forest" of secondary dislocations is,
by writing Tf = fp1/2 Tlocaf and correcting with Taylor averaging, thus

given by

O'F= <l\'DMC}1 [3h/7T}V-Z{b f'EP/Z T‘] /2 (3.37)

This is identical to the result of Ashby 22——Equation (2.11). Similary, the
residual internal stresses are obtained by substituting Equation (3.35) -into

(3.26) as

O—i= L3 <’VDWBC3/¢}J~[{/1 —d[bﬁ/h EPY"] l/8} [hbgp/wr]“? . (3.?8)

Equation (3.38) predicts that the back stress hardening depends on (1) the.

particle volume fraction almost linearly, (2) the plastic strain nearly



parabollically and . (3) the particle radius raised to the -5/8 power. The -
above predictions are compared with the results of the present work and are

discussed further in Section 5.2.
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4. 'EXPERIMENTAL PROCEDURES AND THE RESULTS

‘4.1 "Heat Treatment and Microstructures

Two steels with different carbon contents, which are listed in Table 4.1,
were heat treated to prepare tensile specimens, each steel being prepared
with two contrasting microstructures. Steel A was austenitized at 810°C
for 2 hours while in the form of round bars with a 5/8'" diameter, whereas
specimens of steel B were first machined into slightly oversized tensile
specimene and-theﬁ ausfenitized at 1020°C for 2 hours. Austenitizing, in
all casee, was followed by quenching in a 25% aqua oil-water solution. The
pre-machining treatment for steel B was used in order to achieve a more
homogeneous martensitic transformation throughout the specimen cross section
after quenching?ﬂv%he alloys which were tempered isothermally after quenching
contained a dispersion of spherical carbides that were interlinked with
dislocation subgrain boundaries. The microstructures with these subgrain
networks connecting cementite particles were produced by annealing at 700°C
for 1 hour, 8 houps, and 40 hours for steel A and for 3 hours for steel B,
and are designated as specimen numbers, AT1l, AT2, AT3, and BT, respectively.

Subgrain free microstructures, with particles inside the grain boundaries,

were produced by thermal cycling for 1 hour between 710° # 5°C and 735° + 5°C

with hold times at each temperature of approximately 3 minutes, and are

hereafter designated.as epecimens with the identifying prefix AC. Thermal
cycling was carried out using two lead bafhs, each maintainea at a fixed
temperature following the procedures described by Anand lO. Conventional
optical micrographs and standard two stage carbon replica photomicrographs
were taken using an optical microscope ('"Bauch and Lomb'") and an electron

microscope ("JEM 30'").
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The subgrain boundary free microsfructures are shown in Figure 4.1 and
typical examples of subgrain boundary connected spheroidized cementite
microstructures are shown in Figure 4.2 and Figure 4.3.

10,62

Quantitative metallographical methods were used to determine the

following microstructural parameters assuming that a uniform distribution of
spherical cementite particles was present:

(1) mean particle radius defined as, o

r=3f/4N, ; ' J (4.1)

(2) mean free path of cementite particles,

Ao=(1-F)/ Ny 3 . (4.2)

(3) mean intercept length of grain boundaries,

d =1/, ; (4.3)

(4) mean intercept length of subgrain boundaries,

L =1/N|_ ;A (4.4)

(5) mean free path of both particles and subgrains,

Ay p=(1-F)/N_ 3 | (4.5)
(6) mean-square-lattice spacing, -
/2
Neg = T [(W/f) —2] (4.6)
where |v~s=(2/3)'/2 ro. (4.7)

The measured values NP’ NG’ and NL’ are the number of intercepts per upit
length of random test lines with the cementite particles, the grain boundaries,
and the subgrain boundaries, respectively. These values are listed in

Table 4.2 for further reference.
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The difficulties involved in obtaining cyclic stress-strain curves are
well known and thus a special self-aligning "Woods Metal" grip of composition;
Bi-50, Pb-25, Sn-12.5, Cd-12.5; was constructed to facilitate lateral align-
ment in our push-pull cyclic tests. The tensile specimens had a 1/2"
gauge length and a 1/4" diameter gauge section. Threaded grips were used
to prevent slipping upon reverse loading. In some of the low strain amplitude
tests, 1" gauge length épecimens were also used. The specimens used for
low amplitude strain cycling were recovered at 400°C for 20 minutes and reuéed
in further cyclic testé.

All the tests were carried out on an MIS closed loop testing machine
. under strain control using a sinusoidal wave form as the centrol function.

The average extension rate in all the tests was 0.005 inch per minute. The
cyclic load-strain curves in each strain range were plotted on an X-Y re- |
corder. An additional forward tensile load-strain curve for each kind of
specimens was also obtained to complete the Wilson construction. All the
load—strain curves were later converted to true stress—true.strain curves

for analysis.

4.3 Stress-Strain Data Analysis and Results

Among the several empirical stress-strain relations, the so-called
Hollomon equation is most commonly used to explain strain-hardening behavior.
The basic form (i.e. power laws) were first proposed by Ludwick and later

A L 6
confirmed by Hollomon 6, among others, as

O=ke"
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t n .

o-k €&, , (4.9)
where k, n, k', and n' are material constants and ¢, €, and ;p represent the
true stress, the true étrain, and the true plastic strain, respectively.
True stresses and true strains have been computed from the load-elongation

curves and the true plastic strains have also been estimated as deviations

from linear elastic behavior

€Ep=€ -0/E , - (4.10)
where E is Young's modulus (E = 30 x 10° psi for iron).

The true stress-true plastic strain curves have been used to measure the
amounts of permanent softening at each giyen pre-strain through the use of.
Wilson construcggéﬁs 8 as illustrated in Figure 4.4 for specimens AC. The
measured values of Bauschinger effect at given plastic strains are also
plotted as a function of.reverse plastic strain, ef, in Figure 4.5 and it
shows that the differences between the forward and the reverse flow stresses
asymtotically approach'the values of permanent softening. The corresponding

internal stresses were taken to be equal to one half the magnitude of the

permanent softening.

The log-log plots for both the u-e& curves and the o—ep curves show a
""double-n" type strain-hardening behavior with the transition in the index n
occuring at a strain level of 3 ”‘5% true strain. The constants- of the
Hollomon type equations were determined by the least square analysis method
for each range of strains. The calculated values of the constants, designated
for Equafion (4.8) and k'l, n'

as k k,s and n

IS R 2
Equation (4.9) are listed in Table 4.3.

k'2, and n', for

1, 2



. . . . ~ . . 10
Since plastic flow begins in the pre-macro-yield region , the stresses

at the beginning of plastic flow (08 - O) were obtained by extrapolating

4 P :
the initial portion of the homogeneous part of the stress-strain curves
back to zero plastic strain. At the intersection point of the elastic line

and the extrapolated curve, the flow stress for the unstrained specimens are -

determined using the relatioﬁ'
4 Nyt 1/1-n
O’EP=O—[kl/E ] (4.11)

The calculated values oone - O‘are also listed in Table 4.3. ﬂ
p

i



5. DISCUSSION

5.1 'Elastic Stress Field of a Particls

The stress fields enhanced in and around a partiéle during plastic de-
formation, which are caused by plastic incémpatibilities between the elastic
particle and the plastic matrix are now believed to give rise to a back
stress hardening. This sort of internal stress has recently been computed
from a uniform shear model 7. The plastic flow, however, in a number of
dispersion strengthened materials has in fact been observed to occur on
several slip systems simultaneously Sl—‘—especially in spheroidized carbon
Steels lO. Thus, we estimate the internal stress fields, formed during uni-
form plastic flow by symmetrical multiple slip;by making use of Eshelby's
transformation results 58.

Let the specimen undergo a uniaxial tensile deformaticn with imposed

. . u . . .
plastic strain, Ep , along the x3 axis; then the transformation strains

(Figure 3.3) are

and : (é.l)

= 0 otherwise.

. . . c . . . . .
-The constrained displacement field, ui’ in a dilatation free deformation is

now calculated as

uf=[1/8rru—\))] SJ-kT llf,ijk + [I/Zv]eikT P, (5.2)

with the already known harmonic, ¢, and biharmonic, Y, potentials for a

spherical inclusion:
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(5.3)

Equations (5.1), (5.2), and (5.3) yield the following displacement fields:

in the matrix,

2.2
I 6>m»_§£f_3x§T3x3r} ‘
LT 20-m RGO 3 5 R? ° R? R¥ [
u 2 2 .2
ery? G-4v) 3 r° Xy o X7 }
— P . _ —3 (5.u)
Y2 T i) R’ Xa{ 3 s TSRS TR [
v e, T @v-1) 9 1° Xs X2 v
Uy = 4(1-) ? Xa 3 "g—R‘g— 3— + 3 R4, s

and inside the particles,

I RIS
u‘1= —(1/2) lel EP )

ur- -(1/2) %y €5
(5.5)

I 78

7 - 5v

where o = lS(T\)—)-

The corresponding stress fields in an isotropic medium computed from

0 = M by Ly ) | | (5-6)



are:

in the matrix,

Mo UE, ﬁ{su-av) 3(6V-49°-)) 2 - ana}
o, = ———E(l_w[R3 3 o2 N, +(4p-5)N +15N1 N3
r°r 3 ,30-4p) 2 2 2 ?_}}
—_ - + —
+ R{ 5+(I—EV) n, +3n -2 g,
u 3 gA' ‘
M ME r/(50-2v)  3(6y-4v™1) e 2 o2 a}
- P | I -
G20 T 2(\-V)[R3{ 3 (—evy 3tV 5m2+,'5”2n3
i ,
b T2 al=mlnd g gyl nﬁni‘ﬂ ,
5 (t-2V)
u 3 2
M_ Mep TP((@v-1)  4(5p+vi-2) 12 .+X
933 7 20 [R3{ 3 TERZ R
rfg 9 [ 6(3-Tv) 2 +}

Mo Mg [ . xS 2
Ts = 3020 E{(M—S).n,naﬂsmnam% ?{311,712—8[71'?12713}] ,
Mmoo oug [ s 1t 3]
0—‘3 = ‘ﬂl‘j\i’)—) L—R—a{—(2v+5)nln3+ l5nln3sl+ 'F;{Cf Yl,n3—21ﬂm3} 3
M MELL ra N Y_; u
O,y = ﬁ E{—(zws)nanawsnzn%—R—S{ﬂn?_ns Elﬂam} ,

L j

the particles,

L 1 u
G, =0,, = —(X}LEiP s
I o u
Ty = 20M Ep
1 .
.. = (0 Otherwise.
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(5.7)

(5.8)
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~ . . _ . th
A and u are the Lamé constants and n, represents.the 1™ component of the
unit normal vector or the sphere of radius R.. The summation convention is

used throughout and a comma implies differentiation with respect to the
: ..ou,
corresponding spatial coordinate, i.e. u, : means s;iu The interfacial
s .
: ]
stress components can be obtained from Equation (5.7) by setting R = r as -

W
_ Mg, [(8-25V) 2 2 2 2
Gn‘”'(l—v\{ T +(2V—l)ﬂ' +3vn3—3n‘n3} ,
(8 -25%) 2 ‘

M= { +<2v—»)n§+ 3vn3—3njn§} , ;
, 5y —(6)
<733r [ +6E-v)n —-3n } .

¢ (5.9)

M 2 )
O qn = (T_ve)_{ a‘3nlnan3} )
O“‘(r) {(2 u)nn3—3nn}
G'M (2-y) 2“3—-3”1”3}

" The normal stress,g , shear stress, Ths? and hydrostatic stress, Oys at the.
»

ni

particle-matrix interface in the plane of n, = 0 are now written in the sim-

ple form

o (r‘)=o(p£:(3n§—\) )

hn

- l 2' .
. ;‘) / (5.10)

t
Tps(ri=0cu e, 3v5(1-n

” o, ) =,ue:f{(|+v)/3(1—v)} (3f\§”—l) .
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These stresses are plotted in Figure 5.1. The maximum shear stress is

U at

shown to be g-auepu at'n3 = 1/V/2 and the maximum normal stress is 2uaeD

ng = 1. The stresses inside an inclusion can also be computed more easily

from Equation (3.14) and the results are, as expected, found to be identical

to those of Equation (3.17). One interesting fesult of the present computa-

tion is that the mean values of GllM’ UnQM, and 0331\J do net vanish as they

do in the uniform shear -model. Since the mean value of (ﬁi)2 is 1/3 and
(ni)z(nj)2 have mean values of 1/15 and 1/5 for i £ j ard i = j respectively,

the mean stresses are

Mo My My u Y r r
O =0 =0, = ME O-wv1-2v] RS (I_F{E) (5.11)

and <O]?>=O lotherwise.

These mean stresses are plotted in Figure 5.2 as a function of R. Although
the mean stresses fall off rapidly as 1/R3, there are, as shown, relatively
high stresses near the particle with a maximum value of f0.3uepu (for v=1/3)
at R = ~1.3r. We then feel that these kind of fluctuating stresses shculd

be considered in the analysis of the back stress hardening.

5.2 Back Stress Hardening

A number of theories for dispersion hardening have recently been pro-
posed and almost all of them predict the existence of back stress hardening
as discussed earlier in Section 3. Among them, the model of Brown and
Stobbs is considered to be the most accurate. These models, however, have
been concerned with particles of radii less than 3000 Z, so that the particle

volume itself has been ignored in the process of computing plastic zone
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volume--Equation (3.30). 'This cannot be justified in tﬁe present case of
large particles. Furthermore, since the plate-like plastic zone shape is a
consequence of the uniform shear aséumption, for our axi-symmetric deforma-
tion we feel that the plastic zone shape in spheroidized carbon steels should
be approximately annular around the particles. This assump%ion is in fact'
.supported by observations of uniform secondary dislocation distributions

around such particles lO' Thus, the plastic zone volume, accounting for

these facts, should have the form

3 3
Vo=@/3)m(R™-r") . (5.12)
The critical stress to start secondary slip is the maximum shear stress at
the particle-mat?ik’ interface. From Equation (5.10) we obtain the maximum

shear stress as

max

T

ns

(3/2) e, . (5.13)

The local flow stress in the plastic zone can now be written in the form

T, =cub {éhrzfr /aﬂb(RS—.r3)} e . | fS,lu)

focal
Finally, the Frank-Read type stress criterion is
: w, 3 3 1 5.15
B/ ouy, (r/R)=ubsr . ( )

_Equations (5.13), (5.14), and (5.15) yield a cubic equation for epu

(M) /2)(30/2) riesy - bro EP“)Z—(2/<M>)(zcb/3d)2(3hg},/n)=o. (5.16)
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To obtain the relation between Ep and r, Equation (5.15) was solved nu-

merically at various ep taking <H> = 2, The results are plotted in Figure 5.3
for the case of ep = 0.03, Ep = 0.04, and ep = 0.05. The least équare
analeis gives the relation between the particle radius and the unrelaxed
plastic strain as

u -0.7
Ep =K (E) T (5.17)

where Kl(ep) is a constant at the given plastic strain, ep. Substituting

Equation (5.15) into (3.20) yields for the back stress,

ol - 3ua(f/i-f) K (€,) r T, (5.18)

tthen the meésured internal stresses are plotted against the particle radius
(Figure 5.4), it is seen that the internal stress dependsiinversely on the

particle rédius. 'Since the particle size dependence of the internal stress

is directly related to the plastic relaxation mechanism and thus to the f
plastic zone shape, it is difficult to predict the particle size depehdence

more accurately than is done using Equation (5.18) without further details

on the dislocation distribution. However, we.note that the overall predicted

. values of internal stresses are in.good accord with the measurements for

particle radii in the range éxceeding 0.5um. .We therefore feel that Equation
(5.18) can be applied more generally as long as the particle size is large
enough to give a uniform distribution of secondary dislocations.

To obtain the relation between the internal stresé and the plastic
strain,.Equation (5.16) was again solved numerically for each experimental

value of r. The results, plotted in Figure 5.5, again show a pover relation

of the form
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u m
o =Ko (N ELT (5.19)

&
where K2(r) is now a constant at given particle radius and m is approximately
obtained as 0.3 for all three particle radii used. The measurements, how-
ever, give the value of m as about 0.6 for the tempered specimens (Figure 5.6),
which is in fact a factor of two higher than the predicted one. The failure
in predicting the plastic strain dependence on internai stress is felt to be
due to the reasons already discussed for the particle size depencence. If
we substitute Equation (5.19) into (3.20), we can represent the internal
stress in the form

i .3
Ol =30 (£/1-F) K ) €, . (5.20)

The values of oi computed from Equation (5.20) are plotted in Figure 5.7
together with the measured values.. We again note that the predicfed values,
are nearly coincident with the measured values in the range ep = 0.01 ~ 0.05.
The form of Equation (5.19) has been reported by Kishi and Tanabe 63. They
have observed in their experiments that the permanent softening can be ex-

pressed in the form

. .
ofs —k Epm . (5.21)

PS is linearly re-

This is identical with Equation (5.19) if we note that ¢
lated to € ". m has been défined as a Bauschingér.effect parameter and
Kishi and Tanabe's data 63 show good agreement with the present work.

Now the secondary plastic zone size, n, can be obtained by substituting

Equation (5.17) into (5.15) as




nN=R-r
[{<M> 3! K(EP\/4b}'/a - l] r. (5.22)

in

Noting that K(sp) is a slowly varying function of Ep and taking, for example,
K(ep = 0.05) = 1.8 x 10-3, we see from Equation (5.22) that n is approximately
constant and equal to the particle radius.

It can be concluded from the above discussion that the continuum model
can predict the overall values of back stress fairly accurately in the strain
ranges in which secondary slip occurs profusely--that is above ~1% plastic

strain for large particles in spheroidized carbon steels.

£.3 The Fole of Subgrain Boundaries

Ashby 53 has related the yield stress of single crystal containing non-
deforming particles to the number and size of the particles by a consideration
of the Orowan dislocation bowing mechanism. His derived expression for the

yield stress, in shear, is

7=t r AL NS () (5.29)

where A’ has the value 1/2.36m or 1/2.36w(1l-v) for edge and screw dislocations
respectively, uM is the matrix shear modulus, NS is the number of particles
intersecting a unit area of slip plane, 3 is defined as (2/3)/2r and v, is
the inner cut-off radius. Converting Equation (5.23) to a tensile stress-
tensile strain relation for polycrystals, the modified Orowan equation can

be stated in the form

0= 0, {0.830) b /2w (-w TP/} dn (21 r,) (5.24)
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In Equation (5.24), the .relation between f. and NS,

fezmr, N,/3 | (5.25)

was used and As was defined as (n/f)l/zrs. A previcus work has interpreted
the lower yield stresses of spheroidized carbon steels on the basis of the
Orowan model 65. The yield stresses of tempered steels, however, do not
follow Equation (5.24), they instead obey the following Hall—?etch type

relation in which Az D have been used as a structural parameter (Figure 5.8),
,. : . .

[

-2 '
O’y=l3.5+5‘3.'7 7\2.}’ . (5-%6)

However, even with this correlation, it is still not clear whether the sub-
grain boundari;;.éct as barriers to dislocation motion or instead act‘as )
dislocation sources, since the Hall-Petch relation for the yield stress has
been rationalized for both cases. In other words, subgrain boundaries may
contriktute to the flow stress by acting as barriers to glide dislocations,
in which case we expect that the subgrain boundaries will give rise to
internal stresses. On the other hand, they may simply act as an array of
forest dislocations and provide added frictional-like resistance to glide
dislocations. The mode of behavior is, in general, believed to depend on
both the nature of substrpcture and the extent of carbon segregation to
subgrain boundaries in iron based alloys 43. To understand the role of
particle pinned subgrain boundqries in spheroidized steels, the measured
values of internal stresses in spheroidized carbon steels with and without
subgrain boundaries were compared. For this éomparison, the particle.size
and the gfain size in the specimens with and without sub-boundaries were

maintained approximately equal (viz. the specimens AC and AT2). The results

i
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. show that the internal stress values are higher in the thermally cycled
specimens than in the specimens containing sub—boundaries.(Figure 5.9). To
compare these microstructures more clearly, the unrelaxed portions of the
total plastic stréin estimated from the measured values of internal stresses

and from the relation

€:=((|—F)/ 3uolf) o (5.27)

are plotted as a function of plastic strains in Figure 5.10. The maximum
valﬁes of unrelaxed plastic strains are ~ 3.1 X 1073 and ~ 2.75 x 1073 in
specimens AC and AT2, respectively. Then the maximum shear stresses at the
interface, where we consider the sécondary slip will start to occur, are
found to be approximately 3%6' in AC and>§%6-in AT2. This suggests that

the subgrain bounderies in spheroidized steel assist plastic relaxaticn

and therefore lower the critical stress level to enhance plastic relaxation.
lIt is clear néw that subgrain boundaries do not contribute to internal stress
and that they rather act as sources of dislocations to help reduce the
residual internal‘stresses around particles. Furthermore, the cyclic stress-
strain curves (Figure 5.11) for a thermally cycled and a tempered specimen
provide additional confidence for the above point of view. Both specimens.
have reached an initial saturation value in about 8 cycles. The specimenA
AT2 exhibits cyclic softening behavior both in the tension-and compression
portions of the cycle, while the specimen AC shows softening in compression
but with-the saturated hysteresis loops still above the monotonic tensile

curve. This again suggests that the role of particle-pinned-subgrain

boundaries is that of sources of ‘dislocations.
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However, it should be.noted here that the hardening exponents (n or n')

are approximately the same in both céses,talthough the internal stress harden-

ing effect is lower in the tempered case. It is difficult to rationalize
this fact quantitatively, so that we suggest the following qualitative ex-
planation: According to the particle éfrengthening model discussed previous-
ly in Section 3.4, the flow stresses are composed of the back stress effects
and the forest type hardeniﬁg effect caused by the secondary dislocations
generatea dufing blasfic relaxation. The forest stress has been shown to be
proportional to the density of secondary dislocations in Equation (3.28).

If the subgrain boundaries assist the relaxation of Orowan loops, then tgé

secondary dislocation density will be increased and this process essentiéily

lowers the inté;hél stress. Thus, it is suggested from the similar hardening
exponents in both the tempered and the cycled specimén that the back stre;s
hardening effects and the forest hardening effect may compensate each othér
to produce a similar overall strain-hardening behavior, with the further
understanding that the tempered specimens will have lower values of the

Hollomon constant kl and k' After'attainiﬁg the saturation values of

1
internal stress, the forest hardenihg effects will control strain-hardening
behavior. Table 4.3 shows that the tempered specimen, AT2, again has a

higher hardening index than the cycled one, AC, which is consistent with

the previous discussion.

5.4 Strain-Hardening Behavior in Spheroidized Carbon Steel

5.4.1. "Double-n" Strain-Hardening Behavior

Morrison 66 has observed the transition in the strain-hardening behayior

of low carbon steels at a strain of ~ 8% and loosely attributed this transi-

-



- 44 -

tion to.the:formation of well defined cell walls and the possible easier
motion of dislocations in the celi structure than in fhe'homogeneously
distributed dislocation structure. Liu and Gurland 9 also observed the
"double-n'" hardening behavior in spheroidizéd medium and high carbon steels
with a transition occurring at approximately 4% strain. Théy ekplained it
-as follows: The rapid entaglement of str;in generated dislocations initially
gives larger values of n--after the transition strain, a particle pinned
dislocation cell structure forms and governs the strain-hardening behavior
with lower value of n. Since the above explanations both fail, to ellucidate
the transition behavior in spheroidized carbon steels, which already contain
the dislocation subgrain boundaries eveﬁ before deformation, Anand and
Gurland 67 have recently attempted to explain this transition in terms of the
internal stress development at the particle-matrix interf%ce during the

first few percent of plastic deformation. The values of internal stresses,

however, were estimated by taking the differences of the Hall-Petch con-

for the pure iron and the spheroidized carbon steel. This

’

stants, 0.,
will ignore dislocation interactions. The directly measured values of.
internal stresses of the present study are plotted in ﬁigure 5.9 together
with the estimates of Anand and Gurland 67. It is seen that the estimated
values are a factor of 2 ~ 5 higher than the measured values. This, we
consider, is a natural consequence of ignoring the interactions between

the primary dislocations and the secondary dislocations generated by

plastic relaxation. To see the direct relation betweem the internal stresses
and the transition behavior, the flow stresses and the internal étresses

are plotted on a log-log scale in Figure 5.6 This shows a transition in

strain-hardening behavior in the strain range of 3 ~ 5% consistent with the
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. . 9,67 . s .
previous observations ~’ ', Moreover, the transition strain ranges are

always coincident with the strain ranges'of internél stress saturation,

Thus, we conclude that the "double-n" strain—hardénihg behavior in both the
cycled and tempered carbon steels is a &irect consequence of the interral
stress. A general explanation can be given as follows: The relaxed por-

tion of the imposed plastic strain develops a plastic zone around the secoﬁd"
phase particles extending approximately equal to the particle radius.

This zone prohibits complete relaxation of the entrapped Orowan loops and

thus stabilizes the localizéd elastic strain fields due to the unrelaxed‘y .
part of the total plastic strain. The.resulting stresses increase rapidly |
during the early stages of plastic flow, that is below strains of 3 ~ 5%.£n
spheroidized carbon steels, and accordingly give rise to an initially highér
hardening exponent n. After these internal stresses reach a certain satu%a—
tion ievel, only the "forest type" strain-hardening will continue and thig

is characterized by a lower hardening exponent than when both back stress

and forest hardening contribute together.

5.4.2 Addition of Flow Stress Contributions

As we have already discussed, the contributions to strain-hardening in
a dispersion strengthened material consist of internal stress, oi, "'source -
shortening" stress, AUSS, "forest stress", of, and finally the stress due
to "statistical dislocation" density, Ac®. The internal stress was found

to be in the form

ol =38/ 1-f) (&, /") (5.28)

where § 1s a constant.
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. . o omp? . _ 2., S8 .
Noting the relation f = . using T = 1/2ub“,Ac”" now can be written as
3A :
SS w /72
A0 =(3 ubf/mr) [{ 2 rey /o) — 1] . (5.29)

It seems reasonable to assume that Ac® is given by the work-hardening
increment of pure iron. One of the major difficulties, however, in describ—
ing strain-hardening behavior is in determining just how to suﬁerimpose the
various hardening contributions. The most common assumption is to ignore

interactions and to sum the contributions linearly to obtain

O=0+0,+ - - - +0, . (5.30)
Koppenaal and Kuhlﬁann—Wilsdorf 68, on the other hand, have proposed a
‘mean-square-root addition.law, i.e.,

O-2=(;'|2'+o‘:+. C ol . (5.31)
for the case where the various obstacles to glide dislocations have a similar
strength 69. A previous study on spheroidized carbon steel explored the
use of the first assumption of linear additivity lO’ but; as we noted earlier,
the estimated‘valﬁes for, as an example, internal stress that were obtained
using this assumption show a significant discrepancy with the presently
measured values of internal stresses. This was attributed to the neglect
of interactions between the various hardening contributions. This author
feels that for the present case the mean-square-root addition law is the
more reasonable, as is now explained.

Firstly, we note that since all the glide dislocations sample the long-
range internal stresses, oi can be added linearly to the flow stress. - If
we assume that the other three contributions interact mutually, we may

then write the hardening increment, th, in the form
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ACY, =0, -0,
=O’i L [(AO‘S)Ei-((T{.)E*-(AO'SS)Z:I 1/2 . (5.32)

p=0

In Equation (5.32), Ce‘ instead of the lower yield stress Oy’ is

= ¢°
taken to define the haédening increment, because éy is generally affected
by transient hardening effects associated, for example, with initial dis-
location locking. To demonstfate tﬁe validity of Equation (5.32), the
measured values of the flow stress were compared with the values estimated
by Equation (5.32). In the process of computing ¢ Ac® was obtained from

f’

‘ . 66 ss ' . .
the work of Morrison and Ao~ was computed from Equation (5.29). Since
the "forest stress" does not depend on the plastic zone volume and shape,z

we can still use Equation (3.37) to estimate of. According to Ashby,

AG = E' and AG, for the tempered specimens, was found to be equivalent to
Al o in the Hall-Petch equation for the lower yield stress; thus, we may
2

compute of by writing

oot

I/ "
(b&p/Ay) 2 (5.33)
All the results for specimen AT2 are contained in Table 5.1 and ¢ (computed)
is plotted in Figure 5.12 along with Oc (experimental). The very good
correspondence between Ue (computed) and Og (experimental) supports the use
of Equation (5.32) for the tempered specimen.’ A similar process was carried
out for the thermally cycled specimen AC except that we now take <M> =2
instead 2.733 to estimate of by‘Equationl(3.37);—the rational for this was
~ discussed in Section 3.4.1. The results are included in Table 5.2 with

of(experimental). If we bear in mind the uncertainty in the value of the
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constant h, figure 5.12 again shows good agréement with the addition law
expressed in Equation (5.32). It then seems that Equation (5.32) can be
applied with reasonable precision.to both the tempered and the cycled

carbon steels to predict the flow stress level.

5.5 Cavity Formation at Particle-Matrix Interface

.One other important aspect of the internal stresses that have just
been described is that they seem to contribute to the formation of cavities.
Decohesion along pafticle—matrix interfaces is suspected to occuf when the
marximum normal stress at the interface exceeds some assumed fracture -
stress 70 (i.e. a stress criterion) or when the elastic strain energy stored *
during plastic deformation exceeds the energy of the new surfaces formed

71,72,73

by cavitation (i.e. energy criterion) The stress criterion is

believed to be more plausible in the case of large particles for which the

energy criterion is always satisfied. The maximum interfacial normal

stress is obtained from Equation (5.8) as

Ur:nnax —2ude, . ©(5.34)
However, plastic relaxation occurs from the beginning of plastic deformation,
as we discussed earlier in Section 3.4.2. Thus, there will be other con-
tributions which arise from the interactions among the secondary plastic
zones of neighboring particles. Ashby u7.has computed the stresses caused
by these kinds of interactions by using his secondary slip model. Argon

et al. 70 have further developed Ashby's simple shear model and their re-

sults show that the maximum interfacial tensile stress is about twice the
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boundary shear traction for the case of rigid inclusions. Since it is not
the primary intent of this present work to estimate thé stresses caused

by particle-particle iﬂteractions, we shall just present here a brief
discussion. We note that the maximum normal interfacial stress due to
inhomogeneity effects, which incidently was ignored in the Ashby model,
amounts to 30 ~ 40 ksi--this is equivalent to approximately half the flow
stress. These values are obtained from Equation (5.34) by using the uﬁ—
relaxed plastic strains as estimated from the measured internal stress.

. T . . . -
Thus, the total normal interfacial stress, onn , can be written in the: }

approximate form

max

T
L T T OB Oy Oy 8) - (5.35)
although the stress caused by particle-particle interaction, Uint(e), has

obviously to be determined by further study. According to Equation (5.8),
'cnnmax occurs at the X3 pole of particle (see Figure 3.3.b). The optical
micrograph of Specimen AT?2 (Figure 5.13.a) shows cavities formed at such

poles together with particle shearing. It is found that Onnmax decreases With
increasingparticlesize(i.e. 23 ksi-AT3, 32 ksi-AT2, and 38 ksi-AT1l). This
then implies that the interfacial normal stresses of large particles can

be relieved to a greater extent than in the case of small particles. Thus, ‘
it is suggested that large particles tend to be sheared, whereas small
particles develop‘cavities in the tensile direction at the particle-matrix
interféce. Figure 5.13.b clearly supporté this e#planation, because it

shows only the cavities formed at the poles of particles in the tensile

direction. This observation also suggests the validity of the particle
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strengthening model illustrated in Figure 3.3.b. Further analytic and
experimental work is required to obtain reliable estimates of the inter-
facial stresses caused by particle-particle interactions. This together

with the present work, we hope, will enable us to predict cavity formation

more clearly.



6. CONCLUSIONS

"'1l. 'Internal Streéss

The residual internal stresses ae§eloped around the second phase parti-
cles are caused by plastic incompatibilities between the elastic particles
and the elastic-plastic matrik. Thése stresses give rise to the large
Bauschinger effects observed in the present experiments. The continuum
model, based on the assumption of multiple slip, predicts that the magnitude

" of these internal stresses is given by the relation,

0.7 )

o =3 80(/1({/1—?) (8P°'3/r

The predicted values are in a good agreement with the measurements provided
that secondary slip occurs profusely. The back stress hardening contributions
were found to reach approximately 20% of the total work-hardening in sphe-
roidized carbon steels. The model further suggests that there exists the

locally flucfuating stresses which fall off inversely with the 3rd power

of distance from a particle. It was further found that the so-called second-
ary plastic zone extended a distance from the particle interface approxiﬁately

equal to the particle radius.

2. '"Double-n" Strain-Hardening Behavior

The transition in power law strain-hardening behavior of spheroidized
carbon steels from a larger to a reduced value of the index n occured in the
plastic strain range of 3‘~ 5% in which the internal stresses were found to
reach a certain saturation level. The-initiélly higher yalue of hardening

exponent is caused by the combined long-range internal stress .and the short-
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range forest §tress. When.the internal stress saturates only the forest
stress continues to increase thus accounting for the lower hardening ex-
ponent. It therefore can be concluded that the internal stress is directly
responsible for the transition in strain-hardening behavior of spheroidized

carbon steels.

3. The Nautre of Subgrain Boundaries

The internal stresses in the specimens containing subgrain boundaries

were lower than in the specimens without subgrain boundaries. That is, the

existence of subgrain boundaries lowered the critical stress, T , required

ofe
v

to start the secondary slip process. 1 was found to be approximately 5%6
in AT2 and 3%6' in AC. The cyclic stress-strain curves also suggest that

the subgrain boundaries, formed by heat treatment in carbon steels, act

és sources for dislocations. Furthermore, they assist in the process of

relaxation of entrapped Orowan loops and thus lead to a reduction in the

maximum internal stress level.

4, Flow Stress Contributions

In dispersion strengthened alloys, there was found to be four hardening

. . . . i .
contributions, viz. (1) internal stress, ¢ ; (2) !'source-shortening"

Ss -
stress, Ao~ 3 (3) '"forest stress", of; and (4) the stress arising from
dislocation in relaxation zone, rc®. Among the several addition laws, thé

equation

i 2
o= Oyt gl o+ [(AO_S)2+ (AO‘SS)2+ (O’f)a] 1/
P
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showed good agreement with the experimental flow stress curves of both

tempered and thermally cycled.carbon steels.:

5. 'Cavity Formation at Particle-Matrix Interfaces

The maximum normal interfacial stress occurs in the tensile direction
at the poles of particles. It was also found that cnnma* depends upon the

MaX of 23 ksi, 32 ksi, 38 ksi, and 40 ksi

particle size. The values for %
for specimens AT3, AT2, AT1l, and AC, respectively were found. We suggest

that the total interfacial normal stress, onnT’ can be written as

u . max

O—n: =2/.lo((£P) "'O—;(E)"‘O—int(E) . !

i
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TABLE 4.1 Specimen cémposition (wt. %) .
Steel C Mn Si P S
A 0.83 0.04 - 0.07 0.006 0.01
B 1.40 0.04 0.05 0.006 0.01
* Chemical analysis by Walter M. Saunders,
Inc., Providence, R.I.
TABLE 4.2 Structural parameters and yield stresses.
Specimen | r * dF  A* L * NS N f g,
AC 0.52 :8.64 L,75 - - 1.26 0.127 57.2
ATI1 0.29 - 2,66 1.51 1.32 0.70 0.127 59.8
AT 2 0.51 - L,66 2.56 2.23 1.24 0.127 53.4
AT 3 0.97 - 8.87 L.76 4,16 2.36 0.127 37.1
BT 0.51 - 2.51 2.0 1.57 0.76 0.214 69.9
“unit; ¥ - um, ' - ksi.
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. 4 n
TABLE 4.3 Constants of the Hollomon-type equations, O =K€
’ n
and O'=k'EP , and the stresses at zero plastic
strain, J€P= 0

Specimen O_GP::.. n 'k n k n k' n' k,”

AC ~-| 35.20.228 164.0 0.147 127.5 0.216 159.2
AT 1 | 41.6 0.204 159.4 0,144 131.2 0.184 151.2 0.143 131.8
6

AT?2 30.9 0.229 150.1 0.163 123.1 0.21 A 142 0.167 125.0
AT3 21.0 0.25 129.1 0.163 97.5 0.24 126.1 0.162 98.1
BT b6.7 0.268 265.8 0.133 165.7 0.266 278.8 0.130 166.0
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TABLE 5.1 Caloulated values of 0C°°, 80%, o' |
and CZF for specimen ATZ2 .
: ‘ s *¥% *%
€, o' ac®® o0 o T P
measured eq.5.29 : eq.5.33 computed experiment

0.01 k.1 3,31 12.44 13.24 53.5 55,0
0.015 5.2°" 3.89 14,41 16.22 58.2 59.0
0.02 6.0 L.28 16.21 18.73  62.1 62.6
0.025 6.5" 4.53 17.73 20.94  65.2 65.6
0.028 6.9 4.65 18.88 22.16 67.3 67.6
0.035 7.1°" L.82 20.25 24.78 70,4 70.5
0.039 7.1 L,oh 21.45 26.15 72.2 72.3
0.045 7.2° k,oh 22,64 28.1 74,6 74,5
0.05 7.3 L,o9h 23,56 29.6 76.4 76.2

! ; obtalned from Fig. 5 9 032

Yo CTP 0%, OTc,=72.03 €”", and

CTi_o—h 06 ksi for a 28O;m1gra1n size "Ferrovac-
. 10,66
E" iron’

*% 5 c'=0. 25, =11, 25 x 10° psi, (MD =2.733 and

Pt b=2,42 A.

wRE CE¢=0 30.9 ksi..
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DABLE 5.2 Caleulated values of AC S, 00°, O
and CTF for specimen AC.

c o AQ_SS AO_s * Ao_{-‘*-x- o o
P measured eq.5.29 : 'eq.3.37 computed experiment
0.01 | 5.30 4.0  12.44% 11.95  58.7 59.8
0.017 | 7.00  4.85 15.31 15.35  64.4 65.2
0.02 D5t 5.07 16.21 16.9 66.7 68.0
0.028 | 8.3 5.28 18.88 20.0 71.5 73.5
0.035| 8.6'  5.39 20.25 22.36  7h.h. 77.0
0.038 | 8.65  5.44 21,24 23.3 75.8 78.0
0.045 8.8" 5.44 22,64 25.36 78.9 80.5
0.048 8.94 5.44 23,11 26.05 79.4 - 81.5

; obtained from Fig. 5.9.
; the same with in TABLE 5.1.
; c=1/4, h=8, (M) =2,

i Ogpo=35:2 ks




3.1

3.2

b.,1

‘ ¢ . . -'62 -

FIGURE CAPTIONS. -

Wilson's construction. A schematic illustration of the relation between
Bauschinger effect and permanent softening.
Elastic-plastic model which provides a theoretical basis for the pe-

PS = 26, The dotted round curve is a consequence of inhomo-

lation o
geneoué local stress.

Particle strengthening model:

(a) Dislocation loop distribution in multiple slip model.

(b) Eshelby's transformation problem equivalent.to (a).

(¢c) TFHP model;

(d) Brown and Stobbs model .

(a) Optical micrograph of thermally cycled Specimen AC: magnification
1,800 times.

(b) Two stage carbon replica electron micrograph of Specimen AC,

shows that particles are contained in grain boundaries; mangification

6,000 times,

(a) Optical‘micrograph of Specimen AT2, quenched and tempered at 700°C
for 8 hours; magnification 1,800 times.

(b) . Two stage carbon replica electron micrograph of (a) reveals the
particle-pinned-subgrain boundaries: magnification 6,600 times.

(a) Optical micrograph of Specimen AT3, quenched and tempered at 700°C
for 40 hours: magnification 1,800 times.

(b) Replica electron micrograph reveals cléarly the particle inter-
iinked subgrain boundaries: magnification 4,000 times.

An exampie how the magnitude of the permanent éoftening is measured

(for Specimen AC).
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The amount of permanent_softening as a.function of reverse plastic
strain at the giveﬁ pre-plastic.strains.

The variations of the stresses developed at a particle-matrix inter-
face on the plane of Xy = 0. The polar plot of stress takes the
particle boundary as the zero of stress.

Mean normal stresses in the matrix with a maximum value of‘~0.3uspu.

at R 2 1.3r and falls off as 1/R3.

Graphical solutions of Equation (5.16) at sp 0.03, 0.04%4, and 0.05.

b = 2.422 , v =1/3, h = 8, ¢ = 1/3, and {M) = 2.

Particle size effect on internal stresses for a given volume fraction
(Specimen AT, f = 0.127, Ep = 0.05)

Graphical—solutions of Equation (5.16) at r = 0.29, 0.51, and 0.97un,
Numerical constants are the same as in 5.3.

The relation between "double-n'" sfrain—hardening behavicr and perman-
ent softening.' The plots also suggest the relation of oP® = kspm
for quenched and tempered specimens. The transition starts to occur
at ‘the poinfs marked by arrows.

Unrelaxed strains as a function of plastic strains. Predicted values
from the continuum model show a good fit to the measured ones (Speci-
mens AT2 and AT3).

Lower yield stresseé in tempered specimens are plotted as a function
of Az,gl/z as a structurai parameter of Hall-Petch equation. |
The measured valués of internal stresses are compared with the values

: . . . i
used in a previous work of Anand and it shows that ¢~ also depends.on

the microstructure.




5.10

5.11

5.12

5.13

~ . 1
'

‘ _ Soeh -
Unrelaxed plastic strains computed from the:measured values of in-
ternal .stresses vsﬁ'plastic strains.

Cyclic stress-strain.curves:

(a) for the specimen, quenched and thermally cycled

(b) and for the specimen, quenched and tempered at 700°C for 8 hours.
The experimental and the predicted flow stress curves.

Optical micrographs: of the longitudinal section of:

(a) Specimen AT2, white arrows indicate cavities, formed at the
particle-matrix interface. Double arrow represents tensile direction.
Magnification 2,200 times.

(b) Specimen AT1l. Double arrow represents tensile direction.
Magnification 2,200 times.

Both specimens loaded until necking occurred.




FIGURE 3.1

O- “. O-i —

-

my

7
ELASTIC %

/

PLASTIC

'

FIGURE 3.2

- 65 -



[ S TS 0 W 1y ¢

INCLUSION
MATRIX y X2 =0

(b)

TTTTT

(c) - - (d)

FIGURE 3.3



(b)
FIGURE 4.

67



'.°

e
Py
o O°

%)o
: ;

<
:70

‘.?og
’ {8
Y

oV
Qo
]
Qo
&
o

.. " B w 0

° <
hwo_ F ,000 i #en
o Oﬁ (8 &L
(] S e 0
R 8 &
NS ooo?oo LeR 050

FIGURE 4.2



FIGURE

4.3

- B9 -



TRUE.STRESS, @, KSi

00
O

)
)

D
@)

n
O

| |1 1]

I

PS

|

O

002" 100 0.04

0.05

TRUE PLASTIC STRAIN, €

FIGURE 4.4

0.06

0.07

—|0L_



Ot - 10,1, KSI

- 71 -

0.02 0.03 004
REVERSE STRAIN, €

FIGURE 4.5

0.05




0.8

0.4

CJ"/ILLGP

-0.4

MATRIX INTERFACE

PARTICLE-

-0.8

g°
FIGURE 5.1



(1-v)(1-2v) <oy

PARTICLE

2r

4 R
i
FIGURE 5.2

I
~
w

I



} -2 -1.0 -08 -06 -04 -02 O
i | jﬂr(,um)

FIGURE 5.3




INTERNAL STRESS, o', KSI

\  ——=—— COMPUTED .
oF N —x— MEASURED

l |

0.2 0.5 1.0
PARTICLE RADIUS (um)

FIGURE 5.4

- 75 -



] ] ] 1 . ] :
-70 -60 -50 -40 -30 -20 .

In e,

FIGURE 5.5



PERMANENT SOFTENING AND FLOW STRESS (o "So%), KSI

100

50

20

- 77 -

2 /a |

0.00l 0.005 00l 0.030.05 0.l

TRUE STRAIN, €

FIGURE 5.6



Sa
W
=
<
(0 e
-
10))
©
[....
4p)
<
.|
Q.
()
Ll
P4
<
|
L
het
=
oD

0.003

0.002

0.001

- 78 -

—8— AT2 MEASURED
— -0~ AT2 COMPUTED
. h: 4
V-
- —»— AT3 MEASURED
- AT3 COMPUTED
| | | ! |
0 0.0 0.02  0.03 0.04 005

PLASTIC STRAIN, €p

FIGURE 5.7



YIELD STRESS, Oy, KS!

oo / W3
1
‘ . 69'

| ~ ™ :

AT I
AT2
AT 3

BT

ANAND (10)
IRANI| (64)

X O € P & B

20 ' Ll |

0.5 ‘ . 1.0 : 1.5

|

-1/2.  _=1/2
Agp ' pm

FIGURE-5.8 ..

b -
G A

_6L..



INTERNAL STRESS, O, KSI

- 80 -

24

20 -

— T — —

\

\
«4BO PO
W>>>>
A4~ —HO

s —-—— ANAND (10)

wWN—

0

0.0l

002 003 004 005
PLASTIC STRAIN, €,

FIGURE 5.9

0.06



- 81 -

—am
Ok k-
g ac<am

408 »>»eQ

0.005
0.004

J> “NIVYLS 01LSV1d Q3aXVI3¥NN

0.03 0.04 0.05
PLASTIC STRAIN, €p

0.02

0.0l

FIGURE 5.10




 (b)
FIGURE 5.11

_‘82_




FLOW STRESS, 0% , KSI

80

70

60

50

40

=O- EXPERIMENTAL AC
—-— PREDICTED AC

-8— EXPERIMENTAL AT2
--—- PREDICTED AT2

l | l | l

0.0l 0.02 0.03 0.04 0.05

PLASTIC STRAIN 1 €p

FIGURE 5.12

(06}
w



=g

FPIGURE &.15



