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Summary 

An exact analytical solution is used ~or comparison with three wave­
codes. The computer wavecodes employed in the comparison were HONDO, 
TOODY, and THREEDY. HONDO is a two-dimensional code based on the 
Galerkin ~inite element method in a time di~~erenced ~orm; TOODY is a 
two-dimensional code based on the von Neumann-Richtmyer, arti~icial 
viscosity, ~inite d1~~erence method; and THREEDY is a three-dimensional 
code based on the operator splitting method. Re~erring the error to a 
dimensionless L1 norm, at a point in the plate, and ~or two transit times 
the errors ~ound vTere as ~ollows: Implicit THREEDY, .1315; TOODY, • 0800; 
HONDO, .o671; explicit THREEDY, .0569. 

l. Introduction 

In recent years, several computer codes have been developed to 
analyze wave propagatioh problems in linear and non-linear materials. 
This code development has been directed to problems ~or which the exact 
solution would be extremely di~~icult to ~ind. Although wavecodes have 
been used to obtain approximations to the solution o~ complicated and 
·important problems, there are many unanswered questions about their 
accur acy. 

The present work presents comparisons o~ wavecode generated approxi­
mations with an exact solution to a two-dimensional wave propagation 
problem in o.n elastic plate. TbP. P.XFt.~t Rolution was obtained in [1 ] by 
using integral trans~orms and Cagniard's method o~ inversion. The 
approximate solutions were ~ound by using the wavecodes HONDO, TOODY, 
and THREEDY. HONDO [2] uses the ~inite element method o~ Galerkin; TOODY 
[3] relies on the arti~icial viscosity method o~ von Neumann and 
Richtmyer [4]; and THREEDY [5] employs the operator splitting method o~ 
Bagrinovski and Godunov [6] to separate three-dimensional mechanics 
problems into one-dimensional problems which are solved numerically by a 
modi~ication o~ the conservative di~~erence method o~ Lax, Wendro~~, and 
Richtmyer [7]. HONDO and TOODY are wavecodes ~or two-dimensional 

I. This work prepared ~or the U. S. Energy Research and Development 
Administrat ion under Contract AT(29-l)-789. 

II. Computational Phys ics and Mechanics Divis ion I I - 5166, Sandia 
Laboratories, Albvqner<]_ue, New Mexico, 87115. 

III. Computational Physics and Mechanics Division I - 5162, Sandia 
Laboratories, Albuquerque, New Mexico, 87115. 

_______ o_I_S_TR- IBUTION OF THIS DOCUMENT IS UNLIMITED ~ 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



problems, while THREEDY is for three-dimensional problems, with explicit 
and implicit options, where the implicit option avoids the CFL (Courant, 
Friedrichs, and Lewy) constraint. The explicit version of THREEDY was 
modified into the version THREEDY-MOC by replacing its boundary value 
algorithm with the algorithm MOC based on the-method of characteristics 
(see [8]). MOC, together with the method of Lax, Wendroff, and 
Richtmyer in its one-dimensional form, made THREEDY-MOC highly accurate 
for the test problem (see [9,10] for further discussion). 

2. Statement of the Problem 

The sample problem selected for the comparison may be stated as 
follows: In a rectangular coordinate system, consider an elastic plate 
confined to 0 s: Y s: h and extending to infinity in the X and Z directions. 
(Herein X, Y, Z are Lagrangean and x, y, z are Eulerian coordinates.) A 
load is suddenly applied over a portion of the surface (Fig. 1), at time 
t = 0, normal to the surface Y = 0, arid the resulting motion in the 
interior of the plate is determined. The problem will be assumed to be 
independent of Z and thus the boundary co~ditions are given by 

LXY(X,h,t) = tyy(x,h,t) = ~(x,o,t)· = o 

and 

ryy<x,o,t) = ~PH(t)H(x) , 

where ~ is the shear modulus, H is the Heaviside unit step function, P 
is a load scaling constant, and ~ is the first Piola-Kirchoff stress 
operator (taken positive in compression). 

The solution to this problem by wavecodes corresponds to the solu­
tion of the conservation laws of continuum mechanics when the constitutive 
equation is the Lagrangean linearized elasticity relation. Only TOODY 
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does not have this relation as one of its D'lB.terial law options, but 
.TOODY's constitutive equation approaches this relation as the strains go 
to zero. The three codes were run with zero initial conditions for the 
velocity vector and the stress operator, using 20 or 21 zones or nodes 
through the thickness of the plate. 

3. Governing Equations 

Let ;s, ~' and t be the spatial, material and temporal coordinates. 
Let ·;sxt be the motion function ;s = 2Sxt(X,t). In addition, let ~Xt' Vxt 
and Pxt be the specific momentum, specific volume, and mass density 
fUnctions of~ and t, with~' V, and p their evaluations at (!,t); that 
is, p = 1/V, ,E =%fat. If t 0 is the initial time of interest and 
V0 = V(X,t 0 ), then, in terms of the material deformation gradient 
;; = ex ~'"'ox; one finds that V/V0 = det (;;) • ,..., ~ fJ,_,., I"W 

Define Ext and ~t to be the specific total energy and specific 
internal energy fUnctions, respectively, with E and e their evaluations 
at (!,t). Then it follows that E = e + ~T ~2, where the superscript T 
denotes the transpose. (The Xt subscripts are often suppressed to 
simplify the notation.) 

In the Lagrangean divergence form, the conservation laws may be 
written as follows. The conservation of volume is given by 

o(uT cof ~r ) 
~ -I 

~. 
(1) 

where cof ~I is the I-th column of the cofactor matrix cof (;;). The 
conservation of momentum is expressed by "" 

(2) 

The conservation of energy ma.y be written ~'tS 

= -
o(u. r. I) 

1 1 

OXI 
(3) 

\ 

The material law in the test problem treated here is the Lagrangean 
linearized elasticity rt:!laLluu und is given by 

~ = ATr(~)I + ~l , · 
,.., #'W ,.., ,..., 

(4) 

where A and I..L are constants and l is the Lagrangean infinitesimal strain 
.measure defined by "" 

Note that, if (4) is substituted into (2), then the linear partial 
differential equations of elasticity result. 

, 



It seems appropriate at this point to indicate some differences 
between TOODY and THREEDY. THREEDY differences the conservative form of 
the conservation of volume {eqn. 1), while TOODY computes volume from 
grid point positions. Also, THREEDY differences the conservative form 
of the conservation of momentum (eqn. 2), while TOODY differences the 
mixed La.grangean-Eulerian equation for u given by ,.... 

au. 
p ___! 

at X 
= - 2X1 ij 

Ox. t ' .J 

where cr is the Cauchy stress operator. In addition, THREEDY differences 
the conservative form of the conservation of energy (eqn. 3), but TOODY 
differences the mixed Lagrangean-Eulerian equation for e 

oe 
p ~ = -CT • • D • j ' 

01, l.J l. 

where -n· is the stretch measure. Another difference is that THREEDY has 
option~ for stress-strain relations between the various well known stress 
operators (Cauchy, Piola-Kirchoff) and strain measures (Euler-Almansi, 
Lagrange-Green, Lagrangean infinitesimal, Eulerian infinitesimal), and 
TOODY has one basic form for its stress-strain relation expressed by 

(5) 

where·w: is the spin measure. ,.... 

The Lagrangean linearized elasticity relation cannot be cast into 
the preceding form. However, as the strains go to zero, TOODY's stress­
strain relation approaches the Lagrangean linearized elasticity relation. 
The TOODY relation ( 5) is fre.me-indifferent· and conserves angular 
momentum; the Lagrangean linearized elasticity relation (4) does not 
satisfy those conditions; however, (4) results in a system of linear. 
P.DE's whose exact solution can be obtained by linear transform techniques. 
HONDO, just as THREEDY, has the Lagrangean linearized elasticity relation 
as one of its options. In addition, HONDO uses.the Galerkin finite­
element method in a time differenced form, where the linear elements are 
the piecewise linear basis functions. It was found that TOaDY's scaled 
output did not change significantly below P = lo-2 • Therefore, the 
comparisons were made with TOODY and THREEDY having P = 10-3 and HONDO 
had P = .8 x lo-3. 

4. The Test Problem 

From eqns. (2) and (4) it follows that the equation to be solved 
is 

2 . 2 
o x. -::. (ox ) o x~ 0 l. . . 0 a. l. 

p -2- = (A + 4l) dx -:>.v + 1.1 OX OX ' 
?rt . - i <.na. . ~ s 

(6) 



which is the familiar equation of linear elasticity theory. The 
Helmholtz decomposition yields wave equations for the dilatational and 
shear waves. The problem posed by eqn. (6) and the boundary conditions 
of Section 2 was solved by Norwood [ll using integral transforms. This 
problem was modelled for the wavecodes by imposing symmetry boundaries 
as shown in Figure 1. 

The point X = h/2, Y = h/2 will be used for the comparison. At 
this point the value lly' the y-component of velocity will be saved. If 
t 1 and t 2 are long enough, then the solution for the geometry of Figure 
1 will agree with the exact solution up to time t. In the present work, 
Ll and L2 are set so that there is agreement for more than two dilata­
t1on transit times. A dilatation transit time is the time it takes a 
dilatational wave to travel the thickness of the plate; that is, the 
transit time t 1 is given by 

where c1 is the dilatational wave speed. 

The exact solution at time tn, u!Ctn) will be compared with the 
calculated solutions ~ by the non-difuensionalized L1 norm defined as 

n n n-1 where ~t = t t • The initial and boundary data for the calculations 
are given by: 

0 
l=p =A.=~ 

and 

:where u0 is the initial velocity vector and E is the ·initial stress 
operator. The codes were set up.with 21 zones through the thickness of 
the plate (therefore h = 21) and 63 along the length with t

1 
= 37 

(loaded) and L2 = 26 (not loaded). 

Consider a point X on the loaded surface and away from the edge of 
the load. When the loid is applied, a plane shock wave starts traveling 
from X into the in-terior oi' the plate. The instant the load ~p is 
applied the value of V jumps from V0 to v* ~ the value of u jumps from 
u0 to u*, the value of the traction T (in theY-direction) jumps from ,., ""' ,..., 



· 'T
0 to T*, and the value of the longitudinal strain e jumps from e 0 to e* ,... ,.., 

where in general 

e = 1 - V/V
0 

because there is strain on!y in one direction (Y). The shock impedance 
i~ given by a 0

, with 

where a0 is.the dilatational acoustic impedance. From the shock jump 
relations 

0[ * OJ a V - V = 

0[ * a u 
y 

* 0 where 'T = 1-!P and 'T = 0 we get · y y 

* 0 -[u - u ] 
y . y . 

* e = P / ( A + 21-l) 

0 because e = 0. In the case at hand, when A and 1-l are unity, then the 
instantaneous strain is P/3. The problem has been run with loads of 
P = 1.0, 0.1, .01, and .001 to see what effect the grid distortion has 
on accuracy of the velocity profiles. When P = .001, the grid distortion 
after two transit times is not noticeable on a grid plot. However, when 
P = 1.0, there is significant grid distortion after two transit times. 
This means that as P increases the frequency of grid rezoning should be 
increased. 

5. Conclusions and Recommendations 

For the comparison of HONDO, TOODY, and THREEDY to the exact solu­
tion, Poisson's ratio ~ (NU in Figure 2) was selected as 0.25. For this 
value of ~, the implicit version of THREEDY had an error of .1315; TOODY 
had an error of .0800; HONDO had an error of .o671; and the explicit 
version of THREEDY had an error of .0569. THREEDY-MOC produced the best 
calculation with an error of .0119. The comparison of THREEDY-MOC with 
the exact solution is shown·in Figure 2. 

On the basis of these results it is recommended.that the MOC 
boundary value algorithm be incorporated into THREEDY. Also, it is 
recommended that TOODY be so modified as to include the option of 
runnine the set of test problems with the Lagrangean linearized elasticity 
relation. There are several features in TOODY whose effects could be 

· tested against the subset of problems for which there is a known solution. 
This subset should be increased to encompass problems involving periodic 
geometry, boundary values, and initial data corresponding to the geometry, 
values, and data to be used in running a wavecode. 
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Figure 2. Comparison of THREEDY-MOC with Exact Solution. 

Finally, it is recommended that TfiDEEDY continue to be based on 
operator splitting. As seen in the test problem results presented here, 
the operator splitting approach can yield accuracies just as good as the 
nonsplit finite difference or finite element approaches, and, in addition, 
operator splitting schemes can be made more efficient than their nonsplit 
counterparts as pointed out in [11] and [12]. 
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