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Summary

An exact analytical solution is used for comparison with three wave-
codes. The computer wavecodes employed in the comparison were HONDO,
TOODY, and THREEDY. HONDO is a two-dimensional code based on the
Galerkin finite element method in a time differenced form; TOODY is a
two-dimensional code based on the von Neumann-Richtmyer, artificial
viscosity, finite difference method; and THREEDY is a three-dimensional
code based on the operator splitting methed. Referring the error to a
dimensionless I, norm, at a point in the plate, and for two transit times
the errors found were as follows: Implicit THREEDY, .1315; TOODY, .0800;
HONDO, .0671; explicit THREEDY, .0569.

1. Introduction

In recent years, several computer codes have been developed to
analyze wave propagation problems in linear and non-linear materials.
This code development has been directed to problems for which the exact
solution would be extremely difficult to find. Although wavecodes have
been used to obtain approximations to the solution of complicated and
important problems, there are many unanswered questions about their
accuracy.

The present work presents comparisons of wavecode generated approxi-
mations with an exact solution to a two-dimensional wave propagation
problem in an elastic plate. The exact solution was obtained in [1] by
using integral transforms and Cagniard's method of inversion. The
approximate solutions were found by using the wavecodes HONDO, TOODY,
and THREEDY. HONDO [2] uses the finite element method of Galerkin; TOODY
[3] relies on the artificial viscosity method of von Neumann and
Richtmyer [4]; and THREEDY [5] employs the operator splitting method of
Bagrinovski and Godunov [6] to separate three-dimensional mechanics
problems into one-dimensional problems which are solved numerically by a
modification of the conservative difference method of Lax, Wendroff, and
Richtmyer [7]. HONDO and TOODY are wavecodes for two-dimensional

I. This work prepared for the U. S. Energy Research and Development
Administration under Contract AT(29-1)-789.

II. Computational Physics and Mechanics Division II - 5166, Sandia

Laboratories, Albhnquerque, New Mexico, 87115. % !ig‘
IIT. Computational Physics and Mechanics Division I - 5162, Sandia ‘!%AST
Laboratories, Albuquerque, New Mexico, 87115.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED ()




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



problems, while THREEDY is for three-dimensional problems, with explicit
and implicit options, where the implicit option avoids the CFL (Courant,
Friedrichs, and Lewy) constraint. The explicit version of THREEDY was
modified into the version THREEDY-MOC by replacing its boundary value
algorithm with the algorithm MOC based on the method of characteristics
(see [8]). MOC, together with the method of Lax, Wendroff, and
Richtmyer in its one-dimensional form, made THREEDY-MOC highly accurate
for the test problem (see [9,10] for further discussion).

2. Statement of the Problem

The sample problem selected for the comparison may be stated as
follows: In a rectangular coordinate system, consider an elastic plate
confined to 0 <Y < h and extending to infinity in the X and Z directions.
(Herein X, Y, Z are Lagrangean and X, y, z are Eulerian coordinates.) A
load is suddenly applied over a portion of the surface (Fig. 1), at time
t = 0, normal to the surface Y = O, and the resulting motion in the
interior of the plate is determined. The problem will be assumed to be
independent of Z and thus the boundary conditions are given by '

Ty (X)) = B (Xh,t) = B (X,0,8) = 0
and ‘
Z_:YY(X:O’t) = HH‘I(‘E)H(X) )

where |4 is the shear modﬁlus, H is the Heaviside unit step function, P
is a load scaling constant, and £ is the first Piola-Kirchoff stress
operator (taken positive in compression).

The solution to this problem by wavecodes corresponds to the solu-

tion of the conservation laws of continuum mechanics when the constitutive
equation is the Lagrangean linearized elasticity relation. Only TOODY
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does not have this relation as one of its material law options, but
TOODY's constitutive equation approaches this relation as the strains go
to zero. The three codes were run with zero initial conditions for the
velocity vector and the stress operator, using 20 or 21 zones or nodes
through the thickness of the plate.

3. Governing Equations

Iet x, X, and t be the spatial, material and temporal coordinates.
Let xyy be the motion function x = xy(X,t). In addition, let myy, Vyy
and pyy be the specific momentum, specific volume, and mass density
functions of X and t, with 4, V, and p their evaluations at (X,t); that
is, p=1/V, u ag/at. If t° is the initial time of interest and
ve = v(X,t°), then, in terms of the material deformation gradient
g = agfﬁx, one finds that v/vO = det(&)

Deflne Eyt and Ext to be the spec1f1c total energy and specific
internal energy functions, respectively, with E and € their evaluations
at (X;t) Then it follows that E = € + uI u/2, where the superseript T -
denotes the transpose. (The Xt subscrlpts are often suppressed to
simplify the notation.) ‘

In the Lagrangean divergence form, the conservation laws may be
written as follows. The conservation of volume is given by

e L -
.B(pov) i 3(u" cof '%I) |
ot - EXI

where cof KI is the I-th column of the cofactor matrix cof (&). The
conservation of momentum is expressed by

(1)

o
3(p ui) SR 4 :
% X (@)
The conservation of energy may be written as

3(u; Z;,)

ALE) . . - L ®)

I
. \ ‘
The material law in the test problem treated here is the Lagrangean
linearized elasticity relalivn und is given by '
Z=2Tr(L)I + 2uL - ' (1)

‘where A and u are constants and L is the Lagrangean 1nf1n1tes1mal strain
measure defined by
L=1-@+3)/2. .

Note that, if (4) is substituted into (2), then the linear partial
differential equations of elasticity result.



It seems appropriate at this point to indicate some differences
between TOODY and THREEDY. THREEDY differences the conservative form of
the conservation of volume (eqn. 1), while TOODY computes volume from
grid point positions. Also, THREEDY differences the conservative form
of the conservation of momentum (eqn. 2), while TOODY differences the
mixed Lagrangean-Eulerian equation for u given by

L2l Ly
- = H
ot X ng t

where o is the Cauchy stress operator. 1In addition, THREEDY differences
the conservative form of the conservation of energy (egn. 3), but TODY
differences the mixed Lagrangean-Eulerian equation for €

where'D'is the stretch measure. Another difference is that THREEDY has
optlons for stress-strain relations between the various well known stress
operators (Cauchy, Piola-Kirchoff) and strain measures (Euler-Almansi,
Lagrange-Green, Lagrangean infinitesimal, Eulerian infinitesimal), and
TOODY has one basic form for its stress-strain relation expressed by

W -+ Nr(@R)I + 2D , - (5)

~ ~
where W' is the spin measure.
~s .

The Lagrangean linearized elasticity relation cannot be cast into
the preceding form. However, as the strains go to zero, TODY's stress-
strain relation approaches the Lagrangean linearized elasticity relation.
The TOODY relation (5) is freme-indifferent and conserves angular
momentum; the Lagrangean linearized elasticity relation (4) does not
satisfy those conditions; however, (L) results in a system of linear.
PDE's whose exact solution can be obtained by linear transform techniques.
HONDO, just as THREEDY, has the lagrangean linearized elasticity relation
as one of its options. In addition, HONDO uses.the Galerkin finite-
element method in a time differenced form, where the linear elements are
the piecewise linear basis functions. It was found that TOODY's scaled
output did not change significantly below P = 10-2 Therefore, the
comparisons were _made with TOODY and THREEDY hav1ng P = 10~3 and HONDO
hed P = 8 x 1073,

4. The Test Problem

From eqns. (2) and (4) it follows that the equation to be solved

o aaxi | - ) 3 (axa) o"x; (6)
p =(v+u)— =]+ o ==
2 B\ T ) T X |



which is the familiar equation of linear elasticity theory. The
Helmholtz decomposition yields wave equations for the dilatational and
shear waves. The problem posed by egn. (6) and the boundary conditions
of Section 2 was solved by Norwood [l].using integral transforms. This
problem was modelled for the wavecodes by imposing symmetry boundaries
as shown in Figure 1.

The point X = h/2, Y = h/2 will be used for the comparison. At
this point the value , the y-component of velocity will be saved. If
Ll and 12 are long enough, then the solution for the geometry of Figure
1 will agree with the exact solution up to time t. In the present work,
£, and £, are set so that there is agreement for more than two dilata-
tion transit times. A dilatation transit time is the time it takes a
dilatational wave to travel the thickness of the plate; that is, the

transit time tl is given by

ty = h/cl s
where C1 is the dilatational wave speed.

The exact solution at time tn, :g(tn) will be compared with the

-calculated solutions u? by the non-diiensionalized Ll'norm defined as

Z u?(tn) _ un Atn
n=o 'Y Y
Error = .
: N
Z : u?(tn)‘Atn
y
n=0

where At = t® - t" 1. The initisl and boundary data for the calculations

are given by:
l=p =)\=u

o}
=0

=0

‘where Bo is the initial velocity vector and X is the initial stress
operator. The codes were set up with 21 zones through the thickness of
the plate (therefore h = 21) and 63 along the length with zl = 37
(1loaded) end L, = 26 (not loaded).

Consider a point X on the loaded surface and away from the edge of
the load. When the load is applied, a plane shock wave starts traveling
from X into the interior of the plate., The instant the load uP is
applied the value of V jumps from V© to V", the value of u jumps from
29 to Ef, the value of the traction 7 (in the Y—directioﬁ7 Jumps from

LN



-:? to lf, and the value of the longitudinal strain e¢ jumps from e to e*

where in general
e=1-v°=1-Z

because thereois strain only in one direction (Y). The shock impedance
is given by a , with
1
a® = [(x + 20)p°T/2

where a° is the dilatational acoustic impedance. From the shock Jump
relations :

o) % o) * o
a|lv -V = -lu_ -1u
L ] . y -Y].
or % (o) * o
-1 =T - T
& [uy YJ [ Yy YJ

*
where Tt = UP and % = 0 ve get -
y y
*
e =P/(\+2u)

because ¢ = 0. In the case at hand, when \ and u are unity, then the
instantaneous strain is P/3. The problem has been run with loads of
P=1.0, 0.1, .01, and .00l to see what effect the grid distortion has

on accuracy of the velocity profiles. When P = .00l, the grid distortion
after two transit times is not noticeable on a grid plot. However, when
P = 1.0, there is significant grid distortion after two transit times.
This means that as P increases the frequency of grid rezoning should be
increased.

5. Conclusions and Recommendations

For the comparison of HONDO, TOODY, and THREEDY to the exact solu-
tion, Poisson's ratio v (NU in Figure 2) was selected as 0.25. For this
value of v, the implicit version of THREEDY had an error of .1315; TOCDY
had an error of .0800; HONDO had an error of .0671; and the explicit
version of THREEDY had an error of .0569. THREEDY-MOC produced the best
calculation with an error of .0119. The comparison of THREEDY-MOC with
the exact solution is shown in Figure 2. ’

On the basis of these results it is recommended .that the MOC
boundary value algorithm be incorporated into THREEDY. Also, it is
recommended that TOWY be so modified as to include the option of
running the set of test problems with the Lagrangean linearized elasticity
relation. There are several features in TOMDY whose effects could be
“tested against the subset of problems for which there is a known solution.
This subset should be increased to encompass problems involving periodic
geometry, boundary values, and initial data corresponding to the geometry,
values, and data to be used in running a wavecode.
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Finally, it is rccommcnded that THREEDY continue to be based on

As seen in the test problem results presented here,
the operator splitting approach can yield accuracies jJust as good as the
nonsplit finite difference or finite element approaches, and, in addition,
operator -splitting schemes can be made more efficient than their ronsplit

operator splitting.
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Comparison of THREEDY-MOC with Exact Solution.

‘counterparts as pointed out in [11] ana [12].
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