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ABSTRACT

Due to the development of high power tunable lasers,
a series of interesting new laser interaction problems have
emerged. These have to do with phenomena occurring when a
high power pulsed laser is tuned near either a one-photon or
a multiphoton resonance. In the latter situation, one finds.
that the time dependence of the a.c. Stark shifts and power
broadening leads to several novel effects. For instance,
Grischkowsky and Loy have shown that a strong puised laser
tuned between the ground state and a two-photon resonance
can lead to a nearly completely inverted population.

In the present work we have utilized two mathemati-
cal methods (oné a form of adiabatic approximation, and the
other closely related to the Zener method from collision
theory) in order to calculate the probability of three-
photon ionization when strong counter propagating pulses are
tuned very near a two-photon resonant state. 1In this case
the inverted populations predicted by Grischkowsky and Loy
for smooth laser pulses lead to larger ionization prob-
abilities than would be obtained for a square pulse of equal
peak power and energy per pulse. The line shape of the
ionization probability is also quite'unusual in the above

problem. A sharp onset in the ionization probability occurs

xiii
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as the lasers are tuned through the exact unperturbed two-
photon resonance. Under proper conditions, the change can

be from a very small value to one near unity. It occurs'in

a very small frequency range determined by the larger of the
residual boppler effect and the reciprocal duration of the
pulse. Thus, the line shape retains a Doppler-free aspect
éven at power levels such that power broadening would dwarf
even the full Doppler ettect in the case of a square pulse

of equal energy and peak power. The same mathematical
methods have been used to calculate line shapes for the. two-
photon excitation of fluorescence when the atoms see a pulsed
field due to their time of passage across a tightl& focused
cw laser beam. Thus, the mathematical methods used above
permitted accurate analytical calcuiations under a set of y
very interesting conditions.

We have also utilized one of the mathematical methods
in order to treat two-photon ionization by a pulsed laser
tuned near a resonance transition. These works are believed
to represent the first nonperturbational‘treatment of
multiphoton ionization due to a pulsed laser tuned near a

one-photon or multiphoton resonance.
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CHAPTER I
INTRODUCTION

In recent years lasers have been applied in many
fields of physics, particularly in atomic physics and
precision spectroscopy.l_9 In addition, there have been
many suggestions as to how to use lasers for isotope

10-13

separation. Other applications of lasers have been

suggestedl‘l_15 and demonstrated,16 and numerous theoretical

studies!’ 20

have been devoted to the use of cw lasers for
these applications.

Our present work involves theoretical estimation of
photoionization probability and fluorescence due to tunable
pulsed lasers, and thé development of mathematicai methods
which enable us to approach the problems with considerable
ease. We find that by using proper pulse.shapes and high
power levels it is possible to enhance photoionization prob-
abilities of atoms or molecules approximately 100% in
comparison with tﬁe case of using square pulses with identi-
cal energy per pulse, resulting in superior efficiency (see
Figs. 3 and 4). 1In addition to higher efficiency, we will
show that, in some cases, there is higher selectivity when
smooth pulses are used for near resonance multiphoton
processes due to a sharp onset of the process at the unper-

turbed resonance which is totally masked at such power levels

with cw lasers because of power broadening. In some cases

;l_



it is possible to have a photoionization probability of
unity with existing high power lasers (see Figs. 3 and 12).
SomeZl'-24 have studied the case with cw lasers, but there
has been no thorough understanding of the effect of the
pulses with time-dependent amplitude until our present
studies.

Iln addition, we also emphasize the experimental
applications in the production of very short but intense
pulses of metastable atoms for crossed beam scattering
experiments employing abrupt change of pulse amplipude, and
in the lifetime measurement of excited states by way of the
time-gating technique. Using a similar saturated photo-

16 have developed and

ionization concept, Hurst et al.
demonstrated a one-atom detection technique.

Considerable effort has been devoted to verification,
through the use of a computer, of the validity of our
'“Facfprizatioﬁ Method," which is simple but powerful in
solving a set of coupled differential equations. We have
also applied a mathematical technique which we call the
"Method of Isolated Curve Crossings" to laser-atom inter-
action problems. The latter method is mathematically
equivalent to Zener's method25 from collision theory. The
Factorization Method and the Method of Isolated Curve
Crossings complement each other such that many pulsed laser-

atom interactions can be dealt with by applying one of these

methods.
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CHAPTER 1II

MATHEMATICAL METHODS FOR LASER-MATTER

INTERACTION PROBLEMS

A. The Factorization Method

We begin by describing a non-perturbative method for
solving the time dependent Schrodinger equation in cases
where the problem reduces to one for a system with a finite
basis of state functions. For simplicity, we restrict the
discussion tonthe case where a two-state description is a
good approkimation. The problems that we will discuss la-
ter will show that this simplification is not as restrictive
as it first seems.

As we shall see later, many interesting problems in-
volving either collisions or the interaction of a powerful
laser pulse with a low density gas involve the solution of
a special case of the following set of differential equa-

tions:

da .
Tﬂ? = jiu(t) elq(t) ay,
(1)
da .
2 _ _ X —ig(t)
4% - Y(t)az + iu (t)e ao.



In Egs. (1) we shall assume that gq(t) and Y(t) are real and

that

= 4§ + a

28

2 2

2 2
Y(t) = all g(slt) + (112 g (Slt) + ay3 f (Szt) + Y2/2'
(2)

2

where Sl and 82 are small positive numbers having units of
frequency, the aij's are constants having units of frequency,
and g(x) and f(x) are smooth functions having a single maxi-
mum of unit magnitude at x = 0 %hile dropping off monotoni-

cally to zero at x = + @, An example of a suitable g(x) and

f(x) is (1 + x2]7", n > 1.

0 and a2

would be probability amplitudes for being in states |0> and

Typically, in a laser interaction probhlem, a

|2> at t, 6'wou1d represent an amount of detuning in fre-.
quency from a resonance by the laser pulse, u(t) is a laser
or collision (or both) induced coupling term and y(t) is
partly a rate of collision or laser-induced ionization or
dissociation .out of state |2> and partly (i.e., Y2/2) spon-
taneous emission. The remainder of dg/dt would usually
represent a frequency detuning effect due either to col-

lisional interaction or a.c. Stark shift. We will not



be more precise about physical interpretation at this point
since examples where Egs. (1) arise will be discussed in
later chapters.

We will now discuss ﬁhe solution of Egs. (1) subject
to the initial conditions ao(-w) =1, az(-w) = 0. We pro-

ceed by eliminating ao(t) as follows:

2

d a2 da2
—<S + F,(t) == + F.(t)a, = 0, (3)
312 1 dt 2 2
wheré
*
F (t) = y(t) - £ Lnu (t) + i gitl , "
= dy - a * : dgq 2
F,(t) = qp(t) - v(t) Fx &nu (£) + iv(t) F + [u(t) | “.

As mentioned earlier, we want to solve in a way that takes

full advantage of the fact that S, and S, are very small.

1 2
Depending on the problem being investigated, SIl and S;l
are either related to a time of collision or to the length
of the laser pulse. Thus, the method would apply to laser
interaction problems with long smooth amplitudes for the
laser field or to slow collisions,

With very small S1 andASz the functions Fl(t) and

F,(t) are slowly varying functions of t with F,(¢ =) =



iy26/2, and Fl(t o) = ié-fyz/z. Both are generally complex

numbers. We want to take advantage of the slow variation

of Fl and F., with t.

2 To do this, we write

fer o) (e o) -0

where 9, and 9, must satisfy

(6)
dg
2 _
e * 919, = Fplb).

One scheme for finding a, is immediately obvious. In the

limit of exactly constant F, and F, (or in the limit

. . o if o

Sl + 0 and S2 + 0), 9, and 95 gaticfy (glo( o) i8, 95

Y

(=) = 12)
-~

910 * 920 T Fr(®)s
(7)

910920 = Fo(t).

Thus, when S1 and 82 are very small, but not zero, the

true g, and gi are expected to be close to 910 and 950"
We let '



3]

91 T 90 1’
(8)
9y = 930 * €3
and find
El = -52'
and
de dg
2 2 20
3t * (919 = 92082 T €2 = T ¢ - (9)

Now, 920 depends only on Slt‘and Szt and should yield a

small dgzo/dt; also, dez/dt and eg

even higher degree of smallness. The situation is sug-

are expected to be of

gestive of a rapidly converging iterative method. Take
the zeroth iterate of ez(i.e., €, o) to.be zero; then the
’

n + 1 iterate, €5 n+l’ satisfies
(4

2
2,n] - de /dt

€2,n+1 T °

dgzo/dt [E
+
9107920 910 ~ 920

Typically, one or two iterations are sufficient if

$,/6 € 0.1 and S,/6 ¢ 0.1, (11)
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can be relaxed a bit if the aij's are very large compared

with §; but, typically, to achieve convergence at all t,

assuming that |f a..| is order of | a21|. This condition
i i

one cannot deviate far from Eq. (11). If Eq. (1l1) is
satisfied, the method is valid for large or intermediate

a.. with greater accuracy being attained with large a...

1) 1]
Once 9, and g, are known, we let
da2
—at + gza2 = Z2(t), (12)

and find

t
(k) = iu (Bye ) yp [:{ (g (£") + d—‘é,- znu*(t'))dt'] X

(13)

Thus,

t t
az(t) = ie'iq('m)exp[—I gz(t“)dt“] [ u*(t')dt'

' (14)

d
x eXp [](gz(t")-gl(t“) - ggr.‘&nu*(t"))dt"] .

If t is not extremely large and positive, the same condi-

tions which make valid the method used to find gl'and g2



allow the approximate evaluation of az(t):

lay (0) [ = [u(t)/D(t) |? exp [2ReY (t)] if § #.0,
(15)
lay(0) |2 = Juce) |2 fexp [Y,(£)1/D(t) - exp [¥,(t)]/D(-=)]|?
. for all §,
where

D(t) = 920(t) - glo(t),

t
— " d * L L
Y, (k) = - I [gy (') + 3¢ ¢n u (t')]de’,
t
—_ L} d * L ]
Yz(t) = - J [92‘t ) + 3¢ nou (t )lat!' .

- 00

Equations (15) are particularly useful when they are a prob-

ability of an ionization or a dissociation that is desired
and Y, = 0. In such a case, one desires 1 - |a0l2 —|a2|2,
and Eqgs. (1) imply

*
da da da2 da

- (a*—9+ —+a*—+a —E)dt'
o3’ @ 2 2 3t

oo

3 ac 3
=1 - lag(=) |? - Ja, (=) |? = 2 J vie) lay(en % aer, (16

= R.
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Thus,.one only needs |a2(t)|2 while Y (t) is large; conse-
quently, Eqs.(lS) are adequate for calculating R. It should
be noted that |a2(°°)|2 cannot be calculated from EgsS. (15)
since Egs. (iS) predict zero, while the remainder integral
that is neglected in integrating by parts is not zero and is
consequently no longer negligible. In evaluating Eq. (14)
or Egs. (15), one does not need to integrate from the
limiting value -«, but from the time when very small popu-
lation changés begin to occur, a0 =~ 1 and a2 ~ 0., Of course,

for the square pulse cases one needs to integrate only for

the time span of the pulse duration. It should be noted
F,(t)

that when u(t) » 0, one can assume Fot) =~ 0, and Eq. (14)
1

approaches the first order time-dependent perturbation rcsult.

The method described abuve will hereafter be dcsig-
nated as the factorization method. It can be used (with
more difficulty) in cases where there are more than two
simultaneous equations and the egualidons are of a different
form. For instance, it is very useful for obtaining
solutions of the equations for the density matrix elements
in laser interaction problems.

The above method was first used by Payne26 in con-
nection with inelastic collisions that are switched by the
presence of an inteﬁse laser beam. It was subsequently

used by Payne and Nayfeh27 in connection with a scattering
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problem and the interaction of a. laser pulse with a two-

level atom.

N\,
\

B. Method of Isolated Curve Crossings

We describe here a method that is closely analogous

to the Landau-Zener method25

in scattering theory. At the
time that most of the work described here was done the
method had not been used in connection with laser inter-
action problems. However, in a recent work Lau28 has uséd
the method to predict the transition probability for two
photon excitation of the Na(3s) » Na(5s) transition. 1In

a later chapter we will use the method to solve another

laser interaction problem.

In this case we desire a solution to the equatibns

da

Tﬂg = iaF(t) ei¢(t) ays . (17)
da .
—7% = =y(t)a, + ia"F(t)e 10 () ags
where
t
o(e)=-u [ h(eh) at' 4 e, (18)

- 00

and F(t) as well as h(t) are slowly varying functions which
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satisfy F(+ ©) = h(+ @) = 0. Both F(t) and h(t) are real,
positive and continuous functions having a single maximum
of unit amplitude at t = 0. However, F(t) and h(t) need
not be symmetric about.t = 0. We assume ao(—w) = 1 and
az(-w) = 0.

We deal here with situations where T 1s a measure
of the smaller full width at half maximum of F(t) and h(t)
and |u|1m>>l where u is a real quantity having units of
angular frequency. It is typically a measure of the maxi-
mum detuning due to the a.c. Stark shifts of, in collision
problems, of the detuning due to the atom-atom interaction.
When |a/u]|<<l (ImI-1 is a measure of the shortest time over
which a, or a, can change appreciably), we see that, except
for points where uh(t) =6, ei¢(t) will oscillate many times
over a time Iozlml so that no change in a, or a, can occur,
even in cases where |a|1m>>l. Consequentially, a, and a,

change only at times very near tol and t02' where these are

the two solutions of

wh(t) - &

n
o

of course, t01 is negative and t02 is positive. Thus, when
|u|Tm>>l, |a/u|<<l, and § is not too small, changes in a,
and a, come from very short time intervals (compafed with

Tm) about crossings which are isolated. The Landau-Zener



-13-

method is then applicable. The factorization method would
require that at points where uh(t)-6 = 0, the term aF(t) be
large enough so that changes in a, and a, are saturated.
However, in the present method, a can be rather small.
Correspondingly, the factorization method does not require
|a/u|<<1 so that the two methods complement each other and
enable one to solve a rather wide range of laser interaction
problems involving high power pulses -which vary smoothly with
time.

With the assumptions |u|t>>1 and Ja/p|<<l, we expect
that |a0|2 and |a2|2 remain 1 and 0, respectively, until
just before the negétive time at which uh(é) = 4. If ¢ is
not of the same sign as yu, sgch a point will not exist; and
|a0|2 and 1a2|2 will remain near 1 and O,Arespectively,
throughout the pulse. If u and § are of the same sign, we

can approximate near the negative time crossing by

dao . iBlv2
Jv T 1% € ays
(19)
da2 * —iBlV2
av " % e 49’
Cid(tg,) dh(ty,)

whe;‘e'al = aF(tOI)e ' Bl= i M ol and V = t-t01.
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Thus, to find ab and a., just after the first crossing we

2
solve Egs, (19) at V » « using a, (V = -») = 1, a, (V=
-») = 0, We have assumed that the time interval over

which a, and a, change is so short that the damping (i.e.

—Y(t)az) can be neglected during the crossihg. In order

to replace F(t) by a constant and h(t) by h(tnl) +

dh(t;;) .
—3r—— V we must be able to choose a |Vm|<<|t01| which

satisfies |2Blvm|>>|a1|. The latter condition leads to

dh(tOl) . ' ~
lal/u|<<|——az——— tyyls which will be true for la/u|<< 1
and |u Tt |>> 1 until either | §| becomes very many times
smaller than |u| or § approaches u and t,, becomes too

small.

We eliminate a, from Egs. (19) and let

a, = U exp (-61V2/2) (20)
and
z & (20017 exp (-i n/4)-V (21)
then .
2
2 .
§2_l21.+(i o1 | +_1__§)U = 0. (22)
az’ 284 z 4

Eq. (22) has a general solution in terms of parabolic

éylinder functions (Weber functions) Dn(Z), where

L))
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a’p_(z) L g2
3 + (n + 5 - 7r) Dn(Z) = 0. " (23)
dz
Applying ghe boundary conditions laz(V = -°°)|2 = 0 and
Iao(v = -°°)|2 =.1, we find the asymptotic solution??
' 2
o |

2 2 2
lu(v » »)|© =1 - exp [-27|2,|"] where |Zl| = 7T§IT .

Thus, just after t01 we have

lazl2 =1 - exp [—2n|Zl|2]. (24)

When t <t <t we can neglect coupling between a, and

01 02 0
a, and
da2
gt 5 T v(t)a,,
‘ t
la2|2 = [1 - exp (-2nlzl|2)] exp [-2 J y(that'l.  (25)
t

01l

02’ the values of a0 and a2 will start

to change again and equations analogous to Egs. (19) will

When t approaches t

apply.
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Then,

da .

0 _ . ig,v2
—_ =i e 2
dv ¢ a,,

(26)

da * : 2

2 =18,V
e - 2
av i“z ¢ ag,

with Vv = t - t02' a, = aF(toz) exp [i¢(t02)] and 82 = -

% dhét ) The relative phase of a and a, at the second

crossing is very sensitive to the exact details of the first
crossing. Different pulses having nearly the same |le can
lead to very different relative phases at the second crossing.

5
Let |a2(t02-)|2 and |a0(t02-)|2 be values of |a and |a0|2

5l
just before the second crossing. Averaging over pulses that
are repeatable on [Zj|, but a bit different we [ind for

| a |2'just after the crossing
2

2

2 2(,__-2m|2,]"

|a2(t02+)| = |ag(tpy-) | (l-e 2 )

2
) 2 2zt 27
+ Idz(to2 ARG (27)
here |2,]2 = [a.|2/(2]|8.]) and |a,(t..-)|% is determined
where 14, 2 2 2'%02

from Eqs.(25) but |a0(t02_)|2 depends on the interpretation
of y(t). (i.e., whether it repopulates the initial state or

represents a loss).
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The cohsiderations given above can be generalized
considerably, but we have given all that will be needed for

our application.



CHAPTER III

DOPPLER-FREE CONTRIBUTION TO THREE-PHOTON

IONIZATION BY PULSED LASERS

A. INTRODUCTION

We consider an atom bathed in counter propagating
laser beams of frequency wi‘and wé. The laser beams are

assumed to be pulsed with the counter propagating pulses at
frequencies wi and wi overlapping in both spaée and time.
The ‘laser pulses are very monochromatic with the band width
being limited entirely by the pulse length. A fairly
tractable mathematical situation is obtained if the pulses
are of nearly equal length with the timing being such that
one pulse begins to arrive at the atom's location at about
the same time as the other and if tbe peak power density is
~ 105 w/cm2 so that the laser field can be treated classi-
cally.*

The case where wi = wé has been studied fairly ex-
tensiveiyl7-2o for cw lasers in cases where 2hwi is nearly
equal to E, - Eg = N(w, - wg), with E, and E, being the

energies of two levels of the atom which are connected by

»
Semiclassical treatment is valid if SA3/C >> 1, where C is

the speed of light and § and X are the photon flux and the
wave length of the laser field. J.J. Sakuri discusses more
details in Ch. 2 of his pbook, Advanced Quantum Mechanics.

-18-
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an allowed two-photon transition. In such a case, two-photon
absorption is dominated by a Doppler-free contribution in
the region very near the two-photon resonance, providing

(1) the lifetime of the upper state, Ty is such that
e
2

power broadening does not approach V wi/c. Intuitively, the

<< U wi/C; (2) the peak power is sufficiently low that

reason for the Doppler-free contribution is obvious. By
absorbing one photon going one ‘direction and another going

the opposite direction, the total energy intake by an atom

. . - ] - ] ~ ]
of velocity Vz is = A wl(l Vz/C) + Hh wl(1+v=/C) 2h Wy -
Thus, . if 2h wi i's very near the excitation energy, this pro-
cess is resonant for any Vz. On the other hand, the

absorption of photons with the same propagation direction

leads to an energy mismatch = (Vz/C) 2h Wy which, for typi-
cal Vz’ is sufficient to suppress the contribution unless
power broadening or the line width due to the state's life-
time can overcome the energy defect.
If two lasers of frequencies wi and Qé {such thaf
l+ _ )
Wity - (wymwg
satility.7’8 Firstly, the coupling for a two-photon transi-

-w =~ () are used, one achieves far greater ver-

tion can be made far greater at a given power level by tuning

w! to be rather near an intermediate state. Thus, a.c.

1
Stark shifts and two-photon transition rates can be large'at

moderate power without the necessity of an intermediate state

lying almost exactly halfway between the initial and final
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states. Secondly, if the two laser beams propagate in
opposite directions and wi and wé are different by at least
a few percent, then the only resonant situation corresponds
to absorbing one photon propagating in one direction and
another propagating in the opposite direction. (Generally,
absorption of two photons propagating in the same direction
is far out of resonance.) In such a situation the only
remaining Doppler shift for the two-photon transition is
Iwi—wé|V2/C, which is very small if wi and wé differ by
only a few percent. In the present case we write the field

in the general form

E(e,t) = E  (t) cos (wit - kv t)

~ [ ]
+ Ez(t) cos (wzt + k V=t+8). (28)

2

The Doppler-free aspect of both the one-laser and two-laser
situations with counter-propagating beams was first recog-

nized by Vasilenko et al.5 In the two-laser beam case,

Doppler effects can be neglected if (1) T;l >> |wi - wél x

1

>> |w. - w.||V_|/C, where 1 is laser pulse

1 Z I
length; (3) a.c. Stark shifts or power broadening-are large

1V, l/c: (2

compared with the residual Doppler shift. The Doppler-free
two-photon process has been studied experimentally by
Levinson and Bloembergen,3 Biraben et al.,6 and others.‘l—5

In the present work we will assume counter-propagating beams.
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‘However, much of the present work will emphasize high power
levels where the line widths for the two-photon process is
larger than the full Doppler width. We will show that even
in the above case, sharp features in the line shape remain
which are characteristic of the near absence of Doppler
effect. |

The present work differs from other work by simul-
taneously taking into account the pulsed nature of the
laser field (which is necessary if high power levels are to
be reached) and the calculation of three-photon ionization
in the neighborhood of a two-photon resonance. The
ionization provides an extremely sensitive way to monitor

the line shape of the two-photon transitions.

B. STATEMENT OF MODEL

The atom interacting with the highly monochromatic
counter propagating laser pulses is assumed to be part of
a very low density gas or vapor so that it can be considered
isolated. We further assume that it has energy levels some-
thing like that shown in Fig. 1. 1In Fig. 1 the states |0>
and |2> are assumed, for convenience, to be s states and no
p states are closer than a few Hundreths of an electron volt
to being in resonance for a one-photon transition driven by
either pulse. In particular, hwi is most resonant for the
transition l0> to |p,j>, and hwé is most resonant for a

transition |p,j> to |2>. Generally, only a few intermediate

states ,p,j> will dominate because, by choice, wi and wé are
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Figure 1. Energy Level Diagram, 3-Photon Transition with
Lasers at wl'and w2'.
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chosen to be rather close to resonance, but far enough
away so that line broadening due to the state's lifetime
or due to power broadening do not permit real transitions.

We write the state vector of the atom as

-iwot -iwzt
lp(t)> = a (t) e 0> + a,(t) e | 2>
‘ -iw__.t

+ ) a_ .(t) e P |p,j>

> P.J

]

-iwct

+ ) J dEcCp,k(Ec,t) e |EL k>, (29)

where |0>, |2>, and |p,j> are all orthogonal discrete
states and ]Ec,k> is a continuum state. The continuum
states are normalized so that:
Y. o ' '
<En,k|Ec,k >= 8(E, Ec)ék’k. . (30)
Assuming that the wavelength is very large compared with
the size of the atom and treating the EM field classically,

we have

y
~ " ~ . 2
H=H - P E(2(t),t) - ih — 2> <2]. (31)

~

In Eq. (31), HO is the electronic Hamiltonian of the isolated
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atom, ﬁx is the x-component'of the electric dipole operator
for the.atom, Y, is the spontaneous decay rate of the state
|2> (we treat this phenomenologically), e(t) is the 2 coordi-
nate of the atom evaluated along a straight lihe classical
path, and |p,j> are sufficiently far off resonance so that
their spontaneous decay can be neglected (i.e., |Aw_ | =

J
amount |p,j> are off resonance satisfies |ij|/yp. >> 1),

]
The laser fields are assumed to be plane polarized along
the x-axis and pulses propagate parallel to the + 2 axis.
Applying the time-dependent Schradinger equation to
Egs. (29) and (31) and keeping only the least rapidly oscil-

lating couplihg terms, we find

da_  iE, (t) i(w-w_. +w.-k,V )t
0= — J<olplpj>a e O P L1l
dt 2h 3 X P.J
da_ . iE, (t) iw .-w-w.+k .V )t
_Pad_ 1 PR pj 0 1 1’z
" S P.ilp, |0> e a,
iE, (L) iR i (w_.~wotwotk.Vo)t
2 S pJ 2°72'e
+—— @ilp e e 2y (32)
da, iE,(t) . -iB —i(w_~wawork V)t Y
2=-2 J<plpira e e P12 272 2,
t 2k 3 X P.J ' 2 72
<2|p_|E _,k> 1w wyw kg Vo)t

. X C
+1i) JdEcEp,k(Ec,t)—T—[El(t) e

=

iR -i(w -w.~w'-k.V )t
+ Ez“ﬂ e e c 2 27 2e 1,
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<E_,k|p_|2> i(w_-wy-w +k

dc V.t
p.k _ . c X c l 2
3t i T aZ[El(t) e

-if i(Ww ~w.-w!-k.V )t
+Eyt) e e © 2 72 "2

In the above equations it is important to reemphasize that
the states |p,j> include only those which are rather close

to resonance for allowed dipole transitions driven between

|0> and |p,j> by the laser at wi, and that these states
are much farther from resonance for the laser at wé. Fur-
ther, such states must not exist for the transition |0> to

|p,3'> for the laser at w Similar comments apply to the

]
2 .

' being much closer to resonance for the tran-

2
sition |p,3j> to |2>. Without these restrictions, other

laser at w

intermediate states must be included and both El(t) and
E, (t) must couple |0> to |p,j> and |p,3j> to |[2>. Further,
the rotating wave29 approximation used above must be
refined to generate more accurate a.c. Stark shifts.

We will now show how Egs. (32) can be simplified.

— - ' - — - - ' —
Let Alj = ij + LA + Wy klvz’ A2j ij + W, W, k2Vz

and integrate the second of these equations

i A t -iAljt'
= . . A [ ] [}
a, .5 = 35 <p,3|px|0> J E;(tay (t') e dt

- 00

i ~ ' iB t . . —iAzjt' .
+ 2 515,020 ™ [ B (eha, e e at'.

— 00

(33)
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If we assume that A_ (the smaller of |A,.| and |4, .|) is
m 13 2j

much greater than E, (t) §|<0|§xlp,j>|(2ﬁ)_l, Yor -1,
J

A . _l ~
E, (t) §|<2|px|p,j>|(2ﬁ) , and i / dEc|<2|px|Ec,k>|[El(t) +

1

‘ - d a
E,(t)](2f) , then we also have 6L > IEE 2na0|, Jaf 2na2|,

[é% lnEl(t)I and [é% lnEz(t)l. Thus, we can do the time

integrations by parts and neglect the remaining integrals:
<p'lex|0> —1Aljt

: = - E '
ap,j (%) I 1(8) e

ao(t)

<P, 3 [P, (2> -1 (8, t-6)
- 2ﬁA2j Ez(t) e az(t). (34)

Thus, all of the apj(t) can be eliminated, leaving a set of
equations for ao, ayr and Cpk" If the continuum malrix
elements <Ec,k|§x|2> vary so slowly with Ec that they are
highly constant over a region of energy 2AE such that

AE/R = Am' we can eliminatc the Cpk' We note

<E_ . |p_|2> ia ot
s c,k'x ' ' cl
Cp,k(Ec't) =1 o I az(t )[El(t ) e
i(A t‘—é)
+Ey () e 2 ar, - (35)

- - - ' = - —tgy ! - . =
where Acl = W, w2 wl+klvz’ Ac2 w_ v, v, k2VE 1f EC ﬁwc
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is such that both |A_;|> 8E/h = 4 and |8,51> 8, we can inte-

grate by part and find

o bt
<Ec’k|px|2> El(t) e
C E ,t) = t
p,k( c ) o az( ) [ Acl
i(A _.t-B)
E,(t) e O
+ X ]. (36)
c2

In either the interval IAclliA or |Ac2|:A, we can replace
<chk|§x|2> by its value at the center of the interval and
otherwise keep the integral form of Eq. (35). If we use

the above simplifications in the third of Egs. (32) and
further assume |wi-wé| >> A, we can show that conétancy of
<Ec’kl§x|2> over IAclliA and |AczliA leads to a Dirac delta
function contribution in the integration over these inter-
vals, while the integration over dEc outside these intervals
leads to a principle value integration. After some algebra,
we obtain (Ao differs only by a phase factor from a0 and A2

differs only by a phase factor from a2)

. t
da
159 = iQ, (t)A,(t) expli J (Qz(t')-Q3(t')+Aw(t')+26)dt'],
dAz Y2 . K -
¢ = - (z +p(t)) A, + 194(t)A0(t) | : (37)

t
x expl-i J (@, (') -85 (£") + dw(t') + 28)dt'],

’
= 00
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.where
2 nEz(t) N : 2
et = 1 = [<21By [Eqq, g k> "
2 JI<E_,k|p |2>|2dE
2 Ez(t) k c' T Fx c
Aw(t) = ) >~ P x '
2=1 4h cl
LA 2.\
|<p,]|px|2>|2E2(t)
ay(t) = - ] - 2 (38)
v j 4% AZj
|<0|ﬁx|p,j>|2Ei(t)
Qy(t) = -1 5 :
<0|§ Ip!j> kP!jlﬁ |2> 3
,(8) = - ] — X— £ (Ey(e)et’
j 4R°A .
and
28 = wl+w - w2+w0 - (kl-kz)va'

The quantity 2hé is a measure of the excess energy available
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_in the two-photon process. O0Of course, 6§ must be restricted
so that the states |p,j> can be eliminatéd as described
earlier. The quantity p(t) represents a damping of the popu-
lations of [0> and |2> due to photoionization, Aw(t) is an.
a.c. Stérk shift due to coupling with continuum states, Qz(t)
is the a.c. Stark shift of the state |2> due to the states
Ip,3>, Q3(t) is the a.c. Stark shift of state |0> due to
states |p,j> and 2,(t) is the two-photon coupling co-
efficient. ‘

Except for the inclusion of photoionization by a
pulsed laser the 3-level atom problem discussed above has
been formulated and discussed by several authors.30-37 In
particular if Yo and p(t) are neglected even the pulsed na-
ture of the field can be dealt with by using conventional
adiabatic perturbation theory of the type used in atom-atom
collisions. Much of the above work has been formulated in
fe;ms of tﬁe optical Bloch equations; which is equivalent to
the Schrédinger equation approach except for the possibility
of including incoherent sources for the population, as well

as collisional relaxation, by phenomenological parameters.

C. APPLICATION OF THE FACTORIZATION METHOD

In this section we will apply the factorization
method described in Chapter II to three-photon ionization -
as described by Egs. (37).

We take
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2

Ej (t) = Efjq(t),
2 2

Ez(t) = Ezog(t)l

where g(t) is a smooth, slow varying function as described

in Eq.(2). We then get

dA0
-l iag(t)Azexp [i1(26t=y »g(t')dt')],
(39)
dA, Y2 y
=& - -(-2-—+pog(t))A2+ia*g(t)A0eXp[-i(2<St-uf g(t')at") ],
where § and Y, are as defined earlier and
- .22 : 2.2
| <0lpylp/3>["Byg i |<p,ilp, |22 |7E,
y == g
- 2 . 2
j 4n Aij 3 4n A2j
2 " 2
2 E L|<E_,k|p_|2>|“dE ,
- 3 20 ij c’ ; X c (40a)
£=1 4h c
<0lp, |p,i><p,jlp, |2 -
M X x E gEpge © »  (40D)
i 4h ‘A2j
2 nEz A *
P, = I 20 4 |<2|px|EcO 2,k>|2 . (40c)
¢=1l 4R k !

* P _ 1s proportional to the photon flux of the laser field
times photoionization cross section of the state |2>. The
crosg sestion is, in general, order of 10-17 cm® to
1020 cme,
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If we let

g% = 2§ - ug(t):

u(t) = ag(t),

\
y(t) = 32 + pg(t),

the factorization method is immediately applicable. We get

Gc + 9 NG + gp(tday = 0, (41)
where
. d Y2
gl+g2 i(28-ug) - 3t ing + pog + 5 0 (42)
dg Y Y
2.2 . 2 2 d
9192+—3% = |a|%g® + 1(26-ug)(pog + —5) - 3 FEing-

We choose: 9; = + €10 9, = 950 + Y where we have

910
defined

glO + 920 = i(26~ug),

22
910920 = lal®g”.
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We obtain

_ i(26-ug)+ied
glO - 2 ’ (433)

_ 1(26-ug)-ieJd
gzo - 2 ’ (43b)

where
J = /q;;-ug)z + 4lu|2g2 , (43c)
and
e = &/|8]-

Intuitively, we expect that if g(t) is a very slowly varying
function of time and if |a| is large then ¢; and ¢, can be
treated as small slowly varying function of time. Thus,
neglecting € €, and de,/dt compared with g,,e,,9,qe; and
dgzo/dt we find

6(276- )] + l d

73 5 3+ 4nd

Y
_ )2 1
e, = (=5 + p9) (7 + 7 at

€Y
w8l oLy 22y oy, (44a)
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A iey
(; +[>g)[2- -39114 4 -8l 1,2 4 (44b)

€ = T & 7 vzt 3! & e
The above method is not exactly equivalent to the iterative
scheme described in Chapter II, but it is more convenient
for analytical work.

The expressions obtained for 9, and g, by using 90"
950 and our approximate values of €y and €, are not always
accurate. The most severe restrictions are related to
obtaining accurate 9, and 9, functions when g(t) is small or

" when t is near a value at which 26=ug. In order to obtain

accuracy when g(t) is small, we must restrict § such that
|6t > 10, (45)

where f is the full width at half maximum of g(t).k The con-
dition |[§]t > 10 is not obvious, but its enforcement yields
excellent accuracy in a large variety of numerical examples.
The approximate 9, and q, functions are accurate near times

such that 26=pg, providing that at these times

ul g2 93 <<

2|a| dt

|Po/al| << 1, (46)

and
Y2

—_— << 1.
lalg(t)
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The above conditions arise because it is obvious that

when 26=ug, unless |a|g is large, the values of 970 and 950
will become small, while € and €, take on their largest
values. Thus, the expressions are obtained by requiring
that the neglected terms €165 and dez/dt be small compared
with 910%2¢ 920°1 and dgzo/dt which were retained. Thus,
if Jult >> 1, Jalt >> 1, [|al/y, >> 1, la/P | >> 1 and

|86t > 10, we will obtain accurate solutions as long as

| 6] does not become so small that the validity conditions
fail or unless |a/u| is very small. Very crudely, we can

rewrite conditions (46) as

2{a/ul?luyt] = 412126t > 1,

IPo/a| << 1, (47)
and

Yo/ loy | << L,
where t is a time such that 26 = ug(to), |al| = |a|g(t0),
and |u.| = |u|g(t0). Conditions (45) and (47) are sufficient

1

for all times as long as (47) is satisfied at all "crossings."
The validity equations all indicate that the results apply

to long pulses and very high power levels. However, we shall
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.see later that the power levels and pulse lengths are
easily available with present nitrogen laser pumped dye
lasers. Further, the factorization method enables one to
calculate accurately almost all of the lineshape for
ionization.

After applying Egs. (15) of Chapter II we find

2 _ e{26-ug)
Ay (e) |7 = (172 - 2255340

t

Y - '
x exp [~2 J (—%-+ pog(t'»(% - E(zazg%éEYJ))dt'].

A |
= |A2°(t)|2 exp -2 j ‘(—% + pog(t'))|A20(t')|2dt'],(48)

- 00
wherc

1a0(6) 1% = 2 - e (28-ug) (20) 7L, (49)

|A2°(t)|2 is the probability of the upper resonance state
being populated at time t in the absence of spontaneous decay
or photoionization. |A20(t)|2 has some very interesting
properties that are worth pointing out. We write Eq. (49) as

26
et (&2 - g) .
Aygte) % = 3 - 2 , (50)

2
z/QZ% - g)%+4122%4?
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where ¢' = §u/|6u|. From the last equation we see that if
IEI2 <. 0.1 then lAzo(t)I2 remains small at all times if
§/u < 0; but that when 6/u > 0 it remains zero until the
first "crossing" (i.e., 26 = ug), then rapidly rises to a
value near unity until the second crossing where it falls
again to a value near zero. Thus, for reasonably small
values of § a large populatién inversion is induced and it
persists for a large portion of the pulse. When |a/u|2 is
near unity a population inversion still exists for §/u > 0
but it is smaller.

In order to calculate R, the probability of an atom

being ionized, we use
R = le c_  (E_=)]|%E_. (81)
K p,k "¢, c

Cp k(Ec t) was eliminated, but we can return to the iﬁitial
[ ¥

coupled equations and with the same requirements for

elimination of Cp'k(Ec’L) shuw Lhal

R = 2p I g(t)lAz(t)lzdt(

@©

= 2p 2
) o J_m g(t) [A,q(t) |

t
x exp[-2j (Y2/2+pog(t'))|A20(t')|2 dt'ldt. (52)
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We choose g(t) = [1«0-(t:/r)2]-3 and V = t/t. Then, noting

that [A, (t)|? = F(V) we find

R = 2por ] avg (V)F (V)

YZT
cexp -2 [ -

+ Prg(V))F(V)av'],

: )
= R(pT oyt sz, 5] (53)
In many cases Y T << 1 and we find
R = 1-exp[-pora<§/u,|§|>1, (54)
where
H(6/u, |a/u]) = 2 J g(v')F(y')dav', (55)
with
. e (2 - gw)
F(V) = 5 = £ (56)
2 2 2 2
27 (28 /u = g(v)) “+4la/u| g% (V)
In the special case E,,=E,, the ratio la/u| is independent
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of power and we see that a graph of —(pOT)-lln(l - R)
versus §8/p should yield the same curve for all peak power
and pulse length such that YT << 1 and such that the other
validity conditions are met. (See Appendix A for tabu-
lation of the H function.)

To illustrate the validity of the above results,

we have chosen T = 10~ 8 sec, p = 1.38 x 103 I , and

a = 3.7 x lO2 Io' Figure 2 shows a graph of a numerically

1

calculated plot of —(poT)_ 2n(l - R) versus §/u for

7 2 8

I =10" w/cm~ and 10

° w/cm2, where Io is the peak power

density of the laser pulse. On the same graph we have shown
the result calculated from Eq. (54). Note that the only

discrepancy occurs when |8T1| < 10. When § = 0, Egs. (39)
t
can be solved by letting u = J g(t')dt' (see Appendix B).

== Q0

Using g(V) = (1 + V2)_3, we find
R=1-exp [- 3 p,tlo/m|? + ala/u|®)7h . (57)

This simple expression was used to check thée numerical cal-
culations at § = 0, and agreement was excellent.
Egs. (39) can also be solved exactly if the two

lasers give identical sguare pulses (see Appendix B). Lel
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g(t) =0, t < 0;
= 2%, 0 <t <rt;
=0, t > 1.

We have solved analytically for R in cases where o t >> 1,
In Figs. 3-8 we have graphed R versus § for various Io

and v = 1078 sec, p = 1.38 x 10° I, a= 3.7x 102 I_ and

Po = 0.08 I_. Both the square pulse and g = [l + v2)~3
cases are shown in Figs. 3-5. The reader should note

that the square pulse result peaks at 2§ = pyg and the only
width is due to power broadening which is approximately 2|aL
The line shape for g(V)==(l+V2)_3 is extremely different

due to the curve crossings (i.e., 26 = ug(V)) which occur

for 6/u > 0 and for |8] < |p/2

. When |u| >> |a| the width
is almost entirely determined by |u| and is many times wider
than the width for the square pulse case. With smooth pulses
the values of R are larger due to the fact that inverted
populations exist in this case. For square pulses and

| at | >> 1 Rabi floppin%9000urs and when |A2|2 is averaged

N -

over several cycles it is always < 3; thereby, leading to
smaller R.
The analytical expression for [A2|2 is discontinuous

at § = 0; being small on the §/4 < 0 side and larger than 1/2

on the §/y > 0 side. The discontinuity is due to deviations

\
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from -adiabatic behavior when |6§|t < 10. When non-adiabatic
effects are taken into account R rises sharply, but con-
tinuously in a region Aé§ given by |as| = 10/r. Thus, for
long pulses the rise can be very sharp compafed with the
full Doppler width. In this sense a Doppler-free aspect
of the line shape survives even at very large power levels.
Making use of this sharp rise, one could selectivelv ionize
one atom in the presence of another with a very nearby two-
photon resonance. By most methods high R is impossible
without a correspondingly high value for the nearby level
due to power broadening effects.

We have noted in condition (47) that the case of
small |a/u| requires extremely large values of |a|T (the
present method requires fairly large values of |a|t even when
|a/u| = 1). In the next section we require |a/u| << 1 but
we will not require |a|t >> 1. The latter situation is very
interesting if one of the laser pulses is much more powerful

than the other.

D. APPLICATION OF THE METHOD OF ISOLATED CURVE CROSSINGS
TO THREE-PHOTON IONIZATION

We consider the same situation as in Section C except
now |a/u| << 1 and |pr| >> 1. 1In comparing with Chapter II,
Section B we note that h(t)=F(t)=[l+(t/r)2]_3=g(t). We take

72=0 so that y(t) = pog(t). We have for all t
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1A, (t)|% = 0, if 6/u < 0 or 28/u > 1. - (58)
2
When §/u > 0 and 26/y < 1 we obtain

2 _ ,

t
=T exp[-2po J g(t')dat'j], tgp £ t < tyor (59)
“to2

. to2
= T(l-T)[1+exp(-2po J g(t')dt")]

“to2

L

x exP[’zpo I g(t')dat'), t » t02;

where

2
2,17 = Ll g™ @812 26)173y-172 g

T = l-exp(—zrlzllz).



-49-

As explained in the mathematical discussion of Chapter 1II,
the only appreciabie changes in A2(t) occur in a narrow fime
interval about times where 2§ = ug. Except in these time
intervals the lasers are far out of resonance  and only
photoionization and spontaneous decay are effective in
changing Az. In our case we éssume \PY <<‘1 and the only
effect in changing the popﬁlation of either |0> or |2> is
photoionization.

Using Eqs. (58) and (59)-(60) we find
R=20if &§/u < 0 or 26/u > 1; - (61)

and for 0 < 26/u < 1 we have

e
I

2 2 Q (=)
T[1-Q°(VA,)]+T(1-T) [1+Q°(VA,) ] [1 - 1, (62)
02 02 QTVE;)

|

2 8
R(|%||ur| , pdr,:)
where
V = t/t

Q(V) = exp(-2porm(V)) ' (63)
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and

av'!
m(V) = J 53
(1+v )
1 3V 2V -1
= = [ + + 3tan V] (64)
8 ey (1evd)?

. . 2
Thug, if one fixes |a|“t/|u| and P,t, Plotc of R versus

28/y are the same curve for all u. (Ihe term Pyt is fixed
by producing most of the ionization by a third laser pulse
' _ 1/2 ) ' .
E3(t) cos (w3t—k3vzt+83) = E30g (t) cos (w3t k3vzt+63),
with w; being far from resonance as far as participation

in the two-photon resonance is concerned.) This is

illustrated in Figs. 9-12.
A second interesting application of the present
mathematical problem is to consider a situation identical to

that described above except that we now assume Yq # 0. ‘Thus

for all t:

A, (£) 1% = 0, 1f 6/u < 0 or 26/u > 1 (65)

when 0 < 26/u < 1 we obtain

2 — -

t
=T exp[-yz(t+t02) - 2po J g(t')dt'l,

“t92
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Figuré 9. Photoionization Probability (isolated crossings),
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Figure 10. Photoionization Probability (isolated crossings),
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02 02°
o2
= T(1-T) [1+exp(-2y,t,,-2p J g(t')dat')]
“%o2
t
x exp[-yz(t-t°2)+2po j g(t')dt'], (66)
to2

t > t02' The probability of emission of a fluorescence

photon per unit time at t is then
2
s(t) = yzlAz(t)| . (67)

If |a/u|2 lﬁ%l >> 1, we see that T =~ 1 for nearly all §
satisfying 0 < 26/u < 1. In such a circumstance nearly all
fluorescence occurs in the time interval “to2 i t < tyyr By
adjusting §/p the time interval during which the fluorescence
occurs can be changed as indicated by Eqgs. (60). If Y U << 1
and PoT << 1l we have a situation where the entire population
jumps from the state |0> to the state |2> at time “tgor
fluoresces until time ty,s and then almost all atoms return to
the ground state. All fluorescence occurs in a time short
compared with the excited states lifetime; but during this
time all atoms in the state |2> are fluorescing. Such an

effect should be relatively easy to demonstrate with

commercially available electronic time gating equipment.
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Jut |
In the situation |%|2 3 >> 1 the population is

completely inverted in passing through the first crossing. By
using slowly growing pulses which are terminated abruptly'

it may be possible to have situations where T is nearly unity
at a first crossing and small compared with unity at a
second. In such a circumstance one should be able to produce
very large populatione of metastable atoms in elements such
as those in the second column of the periodic table. Such

a possibility might be of interest as a way to produce very
short but intense pulses of metastable atoms for crossed

beam scattering experiments.

E. CROSSING EFFECTS DUE TO TIME OF PASSAGE ACROSS
TIGHTLY FOCUSED LASER BEAMS

In this section we consider two counter propagating
cw laser beams at frequencies wi and wé. The beans are
brought to a common focus in a-small ceil occupied by a low
concentration of atoms having enerqy levels simi;ar to those
described in Section A‘of the present chapter. If the laser at
Qi is much more powerful as well as more tightly focused, we
have a situation in which two-photon excitation is only‘pos-
sible in the region of space where both laser fields are
strogg. This region can be as small in radius as +10~4 cm;
so that at therﬁal equilibrium the time of passage of atom

across the high field regionis~ 10-85econd. Thus, in such

a situation every atom moving through the beam sees a pulsed
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field of very high intensity. With the most powerful tun-
able cw dye lasers, the peak power density may reach a
level- 2 106 w/cm2 at the beam center.

We begin by assuming that the laser at wé is much
iess tightly focused so that in the region of overlap its
amplitude can be takgn as a constant given by E20' The
laser beams propagate parallel to the Z axis and the radial

dependance of the amplitude of the laser at wi is
)

2

El(t) = E exp [- 42/20l ],

10

Thus, an atom approaching the beam sees El(t) given by

’ 2 V. “t
_ _ b _ X
El (t) = Elo exP [ 2 2 2]1
cl 201

where b is the distance of closest approach to the beam'axis
and V, is the component of velocity perpendicular to the z
axis. Obviously the probability of ‘being in |2> at time t,

if initially in |0>, can be obtained by solving Egs. (37) with
the present interpretation of El(t) and E2(t). Further, here
we can have |ut| >> 1 but |cx/u|2 << 1 so that the method of
isolated curve cfossing can be applied. The same restric-
tions (for permitting the derivation of Egs. (37)) apply here
as in the previous sections of the present chapter.

The number of photons emitted per second per unit
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length of the laser beam is given by (using collisionless

kinetic theory and assuming thermal equilibrium)

2mN {m 2 : 2
R = T J dVx dex exp(-mVx/2kT)

x P(vxibrgzolp'locqlinrza) (68)

.where N, is the atom concentration, m is the mass of an
"atom, T is absolute temperature, k is the Boltzmann's con-
stant and bm is the maximum value of b, p(vx,b,Ezo,Elo,ol,yz,
28) is the probability that a passage at Vx and b will lead
to the emission of a photon with the laser parameters E, .,
E10'°1 and 26 and with the spontaneous decay rate. Here we
have assumed that photoionization does not occur. It re-
mains for us to find p and to use it in Egqg. (68)., Using the
same considerations as in Section D of this chapter we find

P and obtain
R - an /2T (ansly1/2 H(|z_[%,r) (69)
- o m 1 A ol 1)y

where

2 K39,

— !

K / 2kT
2009 Y%/ T
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Y,0 K
I = 21 (&n 7%)1/2 , hote 1 = L ;
/ 2T 2T

m m
. 2, 2
- [<o[P_|P>|°E,,
1 : 2 ’
4n A1
- 2, 2
o o _ 1Pl 2>]"Eyg
2 45512 |

Note that we have assumed that there is a single dominant
virtual state and leF and kZVa in Al and A2 are ignored; and

also note that u= Ky exp(-bz/olz) and |a|=/KlK2 exp(-b2/2012),

A= K, + 28,

2
K <<
2/Kl 1,

0 < A/K, < 1,
2
- , 1 _2n|Z°|

H(|z |%,P) = 2 f y2eY f —_udu__ 4 _ e YU

0 Yl - u

2Pu _ 2Pu _ 2n|zo|

X (1 - e Y + e y yu )dy
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if the spontaneous decay feeds the ground state immediately

(case 1) and
2
-2m|2z |

2 1 —_—
- u
yze Yy J udu (1-e b4 )
0

[--]

2 =
n(lz,12,0) = |
0

/ 1-u2

2 2
~oru & %] -2ru _ 2n |2, |

x (l-e ¥ +e YU +e Y yu ) dy

if the spontaneous decay does not appreciably repopulate
|0> state during the duration of the laser pulse (case 2).

Fig. 13 and Fig. 18 show H(|Zo|2

,T) for the two

cases. Figs. 14-17 and Figs. 19-22 show some of the examples of
R/(4N001/—§f575) versus A/Kl for various Vaiues of

roo = yzcl//iif7ﬁ and Zoo = %Kzol/ /5?575. The general line
shapes are similar to the one which was observed by Liao and
Bjorkholm.7 Fig. 14 and Fig. 19 show an interesting aspect
which was discussed earlier in Section D of this chapter.

With large Zo and omall Foo a largc population inversion

o
occurs at the first ¢rossing, a small decay occurs between
crossings and |2> population becomes nearly null at the
second crossing, thereby leaving almost nothing to decay
thereafter. With smaller Zoo (but noF too small), there
remains more upper state population just after the second

crossing. Thus, the latter case produces more fluorecence

than the former case.
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CHAPTER 1V
TWO-PHOTON RESONANCE IONIZATION WITH PULSED LASERS

We consider a problem solved earlier by Beers and
Armstroné4 for a fully quantitized single mode electro-
magnetic field of the square pulse type. 1In the present
work the atom is treated quantum mechanically but the EM
field is treated classically. ‘This.approximation shoyld
be valid for the high power levels that will be emphasized
here and which were emphasized in Ref. 24 . The present

work allows for the more general pulses of the form

->
E = field intensity at (xo,yo,zo) at time t

<>

= Eoi g(Slt) cos (wt - kzy + R).
where g(slt) is a function of the type described (and named
the same way) in Section A of Chapter II. The atoms Ehat
interact with the laser beam are assumgd to be very dilute
in density (so that propagation effects and attenuation can
be neglected) and to have no component of velocity parallel
to the direction of propaéation of the laser beam. The
atoms are initially in the grouﬁd state (i.e. |[0>) and RAw

is nearly resonant for excitation of a state |l>, and a

-71-
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second photon can photoionize state |1> as in Fig. 23. 1In

the latter situation, |¢(t)> is approximately of the form

-n%t nﬁt —n%t
I\p(t)>=ao(t)e |o>+al(t)e |1>+§ I dEcCu(Ec’t)e |Ec’“>
(70)
where
[} L} ¢ .
<0|1> = 0,<Ec,u|Ec,uu>= G(Ec_Ec)Gu,u ,<1|Ec,u> = 0.
Now,
i 2 [u(e)> = Hly(r)>, (71)
where
H=H, - PxEog(Slt) cos(wt-kzo+6) - i TT'I1><1|' (72)

~

and Hy is the electronic Hamiltonian of the isulated atom,
gx is the x component vl Lhe electric dipolec opcrator and
E is plane-polarized parallel to the x-axis. We do not
follow Beers and Armstrong in including other states which
are far off resonance by an effective Hamiltonian method.

This will, of course, lead to errors on the far wings of

the line shape for photoionization.
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Using the rotating wave approximation [i.e., keeping

only the low frequency oscillating part when cos x = (elx +

e-lx)/z combines with the complex exponentials], we find

da i(w-w, + w,.)t
0 . a 1 0
T 1ng(olt)e a,,
da Y -i(w-w, + w,.)t
1 _ _ 1 * 1. 0
5 = 5 a; + wpg(slt)e a,
(73)
i(wl—wc+w)t ‘
+ i E J dEcCu(Ec't)e au(Ec)g(Slt),
dCu ' —i(wl-wc+w)t
ﬁ' (Ec,t) = 1au (Eo)g(Slt)e al

where wp = <0|Px|l>E0/2h, o (B = <Ec,u|Px|1> E,/2%i. Choos-
ing A such that au(Eco + ha) = au(Eco) where Ec0=ﬁw0 + 2hw
and |A| >> |da1/dt|, we show that Cu(Ec't) can be elimi-
nated.

To eliminate C“(Er,t), we integrate the last of

Eq. (73)

. t -i(wl-wd+w)t' '
Cu(Ec't) = lau(Ec) J g(Slt e al(t yat'.

=00

(74)
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We now consider |wc-w1-w|'zA. With the restrictions
|da1(t)/dt|<< A and S,/4<< 1 we can integrate by parts
and neglect the remaing integral.

au(Ec)g(Slt)al(t) . 1(wc-w1-w)t (75)

C, (E_,t)= —
e R '

i W =W W oW, W
if Iwc 1%l 2 4. When | c¥1™¥| < b we can treat a, (E.)
as a constant given by au(Eco). We have
t .
-3 (wl-wcw )t

Cu(Ec't) = iau(Eco) j.g(Slt')e al(t‘)dt',

- 00

(76)

if |w_-w_ -w|< A,
c

1

On substituting Eqs. (75) and (76) into second Eq. (73)

the term involviny Cﬁ(zc,t) becomes

i(w

N =W W)t *
EjdEc C (Est)e

1
au(Ec)g(Slt)

(]
It

2

la, (E.) | “AE

=5f 3-31-w S g%(s;t)a, (¢) (77)
o o]

E_.+nA
t c0 i(w

tig Inu (Eco)|2g(51t)fg(51t')al(t')dt'f‘mce

- ECO_EA

1

W W) (t-t")
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where f means to delete the region of Ec implied by

lwc-w -w|<A. Since a (E.) is extremely constant over the

1
létter interval, { can be replaced by a principal value

integration. Thus,

I = Wgl (s;t)a, (t)

t

‘ 2 —i(wbo-h&-w)(t-t')

- 2in oy el P515,0) [ atsjena; e 78)

sin A(t-t") ..,

x _“?;Er——_-dt

with
. 2
dE_ Y|a (E)
R (79)
Yo ™

With the assumptions that [§]<<A (§ = w_,=w,=w) and that
(t-’(:')"1 sin A(t-t') behaves like a Dirac delta function

with its peak at t'=t, we find

t
J g(5,t"a, (t'e

Q0

-i6(t-t') sin A(t-t') ... .

m
e F (s, t)a, (t).

Thus,

I = Wg (s t)a, (t) + ip g% (s t)a, (t), (80)
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where

|2 -
o . (81)

P =R "Slau(Eco)
In several other problems in the previous chapter

we were faced with the inclusion of continuum states. A

procedure which is completely analogous to the one described

above was used to eliminate the continuum amplitude in each

case.
With Egqs. (73) and (80)
da .
0 idt

R A R K

da . Y

1 _ .. * -iét = 2 _n
r-ru 1wp g(slt)e ag + (1w-po)g (Slt)al 5 a9

with § = w - (w, - Wqo). Thus, we now have an effective

t
two-state problem. Let al_(t) = bl(t)exp[iﬁfgz(slt')dt'],

- 00

and

da

0 - » iGt

t
exp[in g?(s,t"at by,

dbl ' *

N 2 . -ist  (82)
a3 - ~(5 + Pg"(5;t))b; + 1Wp g(s,t)e

t
X exp[-iﬁ]'gz(slt')dt']ao.

- 00
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t

The coupling terms wpg exp[ift + i?llgz(slt')dt']
have the property that the oscillating exponential is in-
effective in decreasing the effectiveness of the coupling
if |wpg|>>|6 + Wg?|. Essentially, this means that |wpg|
is so big that ab and bl'can be changed by large amounts
in a time which is small compared with the time for
4exp[i5t'+ iW;/gz(Slt')dt'] to oscillate once. Thus, if
|wp|>>|W| thema.c. Stark shift due to coupling with the
continuum states can be neglected for all §. We note fur-
ther that unles <0|ﬁx|l> is extremely small we will have
both |wp|>>|W| and |wp|>>}>o in any problems of this type.
We also take the peak power to be very large so that
rwp|>>Yl and |wp|/sl>>1. In this situation the factoriza-

tion method of Chapter II can be used as follows:

(calf‘” ‘31) (%E* ‘32) by = 0

with

‘ . d Y
9y * 9, = i - FF £ng + (¢ Pogz)’
(83)

2 2,4

Y Y
2. . 1 2 1 d
g +id ( 5 + P9 ) (1r + Pog‘ ——2ng4-%)a€g

dg
LN e

2 _
9,92%3c = ¥

If Yl/lwp| << 1 and Po/|Wp|<<].we can neglect some of the

terms and use

2
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_ a Y1 2
9+ 9 = 18 - Fp g ¥ [+ BT,
(84)
dg Y
2 2 2 . 1 2
9192 * g 7 IWpl7e" + 180 + Pt

With our assumptions the following 9, and g, are adequate

for good accuracy (we take Yl/Sl << 1 for simplicity)

a

2
a—EEHK,

_ is+iek _ 1 ], a_ 1 _ 5] 1
91 = —3 (3 + lf_LK) geing +(z - SgIP.9 3

_ ié-iek_ 1 _ ]6§], a 1 | 8] 2 .14
g, = —5— (5 ) =—4L&ng+ (3 + 7)P9° + 5 dt‘EnK,

where

Egy. (15) of Chapter II yields
2 1 8 t § 2
= - - - ]
la, (8112 = & - Lehyexp p,[ 1 l—LK yglae].
The ionization probability R is given by .

R =1 -exp [-POTf(l - J%L)gzdlvl, (86)

- oo
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where 1 = 1/Sl, VvV = tSl. R can be put in the form
R =1 - exp [-POTLg(|6/(2wp)|)], (87)

where; assuming g(-V) = g(V),

Lg(x) - 2-{(1 - x/(xz + g2 ) qzdv. (RR)
0

Any smoothly varying function having a single maximum of
unit amplitude at t = 0 and approaching zero sufficiently
rapidly at t—+*® can be used. We take g(v) = [1+V2]-3/2

and tabulate Lg(x). A graph of (—POT)-lﬁn(l—R) versus
|6/(2wp)| is a graph of the function Lq' For our choice

of g a graph of Lg is given in Fig. 24. We note that

Ly(0) = 37/8 and for X 2 6 we have L_(x) = 0.3866/x°. Thus,
at high power levels the entire line shape has been cal-

culated accurately by the factorization method.

With the same approximations and a square pulse

92 (V) ,

2
g (Slt)

|

I
=
A
<
IA
)

we find



YIn (1-R)
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ORNL—-DWG 76 —18163

1.2

1.0

0.8

0.6 \\

~(FyT)
o
H
/

\.
0.2 ‘\\\\~

“-.~__~.h---s-

O - -
o) 0.5 1.0 1.5 2.0 2.5 3.0
18/(2wpl
Figure 24. "Photoionization Probability, g(t) = [1 +

(t/1)2]-3/2, 2-Photon Transition.
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PgT _ _~A _ _-B
R .= ; (o) 5 [l Ae + 1 Be ] (89)
l + x
where
X = |5/(2wp)|,

A = Pong [1 %x/v1 + x2],
B = Pong [1 + x//1 + x°].

If x >> 1, we obtain an asymptotic solution
R=1 - exp[-Pngr/(2x2)].

In the square pulse case, and PO can be included without

"1
the approximation Yl/lwpl and Po/lwpl <<l [see Eqs. (91),
Appendix B].

It is interesting to note that if POT >> 1, then both
the smooth pulse and the square pulse yield similar line
shapes— R being ~ 1 for both cases if x <<«/§;?, with the
smooth pulse R dropping a bit faster on the far wing. Also,

we note that when POT >> 1 we can use the asymptotic forms

of Egs. (87) and (89) for all 6.
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APPENDIX A
TABULATION OF THE H FUNCTION
In Section C of Chapter III we have derived analyti-

cal expression for photoionization probability

- § |
R=1-exp [ POTH(U' IU)]'

where
a a e'(28/u=-g(v))
H(Ur I'ﬁl) = (1 - 5 3 2 lg(v)av,
—w /(26 /u-g(v)) +4 |a/u|® g% (v)
if 8§ # 0;
= 32—" la/u|? (1+a]a/u|? 7L,
if 6§ = 0;
and €' = 8u/|8ul.
8 a _ 2,-3
We have tabulated H(ﬁ' ‘EI) for g(v) = (1+4V%)

and the results are given in the following table in the

$ a 8 a
2 |12 =, 12D,
order 0 |u| and H(u, |u|,
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TABLE 1
HE, 2]

° N HE 2]
0.10000000 01  0.1000000D 00 0.9712551C-02
0.1000000D 01  €.20000000 CO 0.36581%2C-C1
0.1000000p 01  0.30000000 CO  0.7524913C-01
0.1000000D oi- 0.4000000D 00 ~ 0.12000890 GO
0.10000€0D 01  0.5000000D CO 0.1665224D 00
0.1000000D 01  0.60000000 CO 0.2121147C 00
0.10000C0D 01  0.7000000D CO 0.2553891C 00
0.1000000D 01  0.8000000D 00 0.2957536C 00
0.9600000D 00  0.1000000D 00 0.11266950-01
0.9600000D 00  0.2000000D 00 0.4202336D-01
0.96000C0D 00 0.3000000D €O 0.8534175D-01
0.9600000D 00  0.4000000D 00 0. 1343135C CO
0.9600000D 00  0.5000000D 00 0.1841085D 00
0.9600000D 00  0.6000000D 00 0.2320302D 00
0.9600000D 00  0.7000000D 00 0.276B452r (O
0.9600000D 00  0.8000000D 00  0.31815S0T 00
0.9200000D 00  0.10000000 GO 0.1322724D-01
0.92000C0D 00  0.2000000D CO 0.4873299C-01
0.92000C0D 00  0.3000000D CO  0.9744327D-01
0.9200000D 00  0.%000000D 00 0.1510110C 00
0.9200000D 00  0.5000000D 00 0.2041698D 00
0.92000 00D bo 0.6000000D 00  0.2543275D 00



0. 92000€0D
0. 92000 00D
0.88000 COD
0. 88000 COD
0. 88000 COD
0. 88000 COD
0.8800000D
0. 88000 COD
0.88000 00D
0.88000¢0D
0.8400000D
0.8400000D
0.8400000D
0. 8400000D
0.8400000D
0.8400000D
0.8400000D
0. 84000 COD
0.8000000D
0.80000C0D
0.8000000D
0.8000000D
0.8000000D

- 0.80000C0D

0.8000000D

0.80000C0D

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
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C.7000000D
0.8000000D
0.1000000D
0.2000000D

- 0.3000000D

0.4000000D
0.5000000D
0.6000000D
0.7000000D
€. 8000000D
0.10000000
0.2000000D
0.3000000D
€.4000000D
0.5000000D
U.b60U0UC0UD
0.7000000D
6.8000000D
0.1000000D
€.2000000D
0.3000000D
0.4000000D
0.5000000D
0.6000000D
0.7000000D

C.8000000D

co
00
00
00
00
co
00
00
00
00
co
00
00
00
00
oo
00
00
co
co
00
co
00
00
00

00

0.3005113C 00
0.3425718C 00
0. 15747€3L-01
0.57116520-01
0.1120644D 00
0.1705727p 00
0.2270846C 00
0.27929137c 00
0.3266019C CO
0.3691653D €O
0.19062500-C1
0.67746137D-01
0. 1298612C 00
0.1935585c 00
0.25327%6D CO
0.3072351D 00
0. 35533¢0D 00
0.3980950D 00
0.2354120C-01
0.8143u481D-01
0.1516726D 00
0.22062240 00
0.2832081C CO
0.3384720D 00
0.38694733D 00

0.42953¢7C 00



0.76000C0D
0.7600000D
0.7600000D
0.7600000D
0.76000C0D
0.7600000D
0.7600000D
U. 76000000V
0.72000C0D
0.7200000D
0.72000C0D
0.7200000D
0.72000¢C0D

0.7200000D-

0.72000C0D
0.72000C0D
0.6A00000D
0.6800000D
0.6800000D
0.68000 00D
0.68000COD
0.68000 00D
0.68000 COD
0.6800000D

00
00
00
00
00
00
00
00
00
00
00
00
0o
no
00
00
00
na
00
00
00
00
00
00

-86-

€.1000000D
C.2000000D
0.3000000D
0.4000000D
6.5000000D
€c.6000000D
0.7000000D
0.8000000D
0.1000000D
0.2000000D
€.3000000D
0.4000000D
€.50000C0D
0.6000000D
€.7000000D
¢.8000000D
0.1000000D
0.2000000D
C.3000000D
0.4000000D
0.5000000D
0.6000000D
C.7000000D

0.8000000D

co
co
00
00
co
00
0o
)
co
00
co
00
co
co
00
00
0o
00
oo
00
00
00
00
00

0.29790770-01
0.99352¢1C-C
0.1785566D 00
0.25251070 00
0.3173647D 00
0.3733255C 00
0.4216491D 00
0.46363170 00
0.3885827D-01
0. 12318€5D CO
0.2118172D 00

0.29004<8D 0O

0.3562585C 00

0.4121267D 00
0.4596575C 00
0.50054380 00
0-5265032D-01
0. 15535560 CO
0.2529955C 00
0.33I408E1E 00
0.40037€6D 00
0.4551620C 00
0.5011686C 00

0.5404048D 00



0.6400000D
0.64000CCD
. 0.6400000D
0.6400000D
0.6400000D
0.64000C0D
0.6400000D
0.64000C0D
0.6000000D
0.60000CO0D
0.6000000D
0.6000000D
0.6000000D
0. 60000C0D
0.6000000D
0.6000000D
0.5600000D
0.5600000D
0.5600000D
0.5600000D
0.5600000D
0.5600000D
0.5600000D

0.5600000D

00

00 -

00

00

00

00

00

00

00

00

00

00

00
00
00
00
00
00
00
00
00
00
00
00
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0.1000000D
€.2000000D
C.3000000D
0.4000000D
0.5000000D
€.6000000D
c.7000000r
€.8000000D
0.1000000D
0.2000000D
0.3000000D
0.4000000D
0.50000600D
0.6000000D
0.7000000D
0.80000600D
0.1000000D
¢.2000000D
0.3000000D
c.4000000D
0.5000000D
0.6000000D
0.7000000D
0.8000000D

00
¢o
00
00
00
o
00
00
00
00

00
00
00
00
00
00
Y
0o
0o
00
¢o
00
]

0.7483823D-

0.1991815D
0.3037919D
0.3854716D
0.4501622D
0.5026971D
0.54635400D
0.5833401D
0.1127920D
0.2588850C
0. 36587560
0.00591170
0.5059723p
0.558494060D
0.5953527D
0.6294547D
0. 18096 11C
0.33891329n
0.44056132D
0.5128952D
0.56803$1D
0.6120330D
0.6482703D

0.6788332D

01
00
co
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00



O.SZOOOCOD
0.5200000D
0.52000C0D
0.52000000
0.5200000D
0.52000C0D
0.52000C0D
0.5200000D
0.4800000D
0.4800000D
0.48000CCD
0.4800000D
0.4800000D
0.4800000D
0.48000C0D
0.4800000D
0.4400000D
0.4400000D
0.4400000D
0.4400000D
0.4u4000cC0D
0.4400000D
0.44000C0D

0.4400000D

00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
0o
0n
00
00
00
00
00
00
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0.1000000D
0.2000000D
€.3000000D
0.4000000D
€.5000000D
0.6000000D
€.7000000D
C.8000000D
0.1000000D
0.2000000D
0.3000000D
0.4000000D
0.5000000D
0.6000000N0
£.7000000D
C.8000000D
€.1000000D
0.2000000D
€.3000000D
0.4000000D
0.5000000D
0.6000000D
0.7000000D

0.8000000D

00
co
co
0o
00
00
co
00
co
00
co
co
00
ca
co
00
co
00
00
00
¢o
00
00
00

0.3014181D
0.4423623C
0.5284195D
0.589%770D
0.63643€2D
0.67&01363D
0.7051656D
0.7315391D
0.48427340D
0.5685455D
0.6289377D
0.6747142D
0.71107260
0.7409302D
0.7660609D
0.7876164D
0.70094 34D
0.7123428D
0.7404925D
0.76766E87D
0.7916772D
0.81261670D
0.8309406D

0.84709135¢C

00
00
00
00
00
00
co
00
00
co
00
00
00
00
)
00
00
00
0o
¢o
00
00
00

60



0.4000000D
0.40000€0D
0.4000000D
0.40000C0D
0.4000000D
0.40000C0D
0.40000 COD
0.4000000D
0.3600000D
0.3600000D
0.3600000D
0.3600000D
0.3600000D
0.3600000D
0.3600000D
0.36000CCD
0.32000€0D
0.32000C0D
0.32000C0D
0.32000€0D
0.32000COD
0.32000C0D
0.32000C0D
0. 32000C0D

00
00
00
00

00

00
00
00
00
00
00
00

00

00.

00
00
00
00

00
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0.1000000D
0.2000000D
0.3000000D
0.4000000D
0.5000000D
0.6000000D
0.7000000D
€.8000000D
0.1000000C
0.2000000D
0.3000000D
0.4000000D
0.5000000D
0.6000000D
0.7000000D
€.8000000D
0.1000000D
€.2000000D
0.3000000D
0.4000000D
0.5000000D
0.6000000D
0.7000000D

€c.8000000D

co
co
00
00
co
co
co
00
0o

0.91374670D
0.8660309TC
0.8606446D
0.8674847D
0.87784730D
0.8889336D
0.89976 17D
0.9099853C
0. 11077 12D
0.1022407D
0.9866663D

0.97302330D

0.9690859D
0.9696770D

0.9724665D
0.9763241D
0. 12823200
0.11765720D
0.1116046D
0.1083118C
0. 10648640
0.10546320D
0.1049002D

0.1046133C

00
00
00
00
co
00
00
00
01
01
00
00
co
00
00
00
01
01
C1
01
01
01
01

01



.0.28000600
0.2800000D
0.28000C0D
0.28000000D
0.2800000D
0.28000C0D
0.2800000D
0.2800000D
0.2400000D
0.2400000D
0.24000C0D
0.2400000D
0.2400000D
0.2400000D
0.24000C0D
0.2400000D
0.20000CON
0.2000000D
0.20000C0D
0.2000000D
0.20000C0D
0.20000C0D
0.20000C0D
0.2000000D

00
00
00
00
00
00

00

00
00
00
00
00
00
00
00
nn
00
00
00
00
00
00
00
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C.lOOOOOdD
0.2000000D
€.3000000D
0.4000000D
€.5000000D
0.6000000D
€.7000000D
¢.1000000D
0.2000000D
€.30000000D
0.4000000D
0.5000000D
0-60000600
C.7000000D
0.8000000D
t.1000000D
¢.2000000D
0.3000000D
0.4000000D
0.5000000D
€.6000000D
€.7000000D
0.8000000D

co
00
Co
0o
co
00
Go
00
00

00
00
00
00
co
Cco
a0
0qQ
00
00
0o
00
00
00

0.14407798D
0. 13259788
0.12468060D
0.1196715D
0.116U6E7D
0.1143608D
0.112934¢8C
0.1119488D
0.1586389D
0.1469730D
0.1377603D
0.13129¢€00
0.1268159D
0. 123AUEAD

0.1213547D

- 0.11965270

0.1721868D
0.16079 14
0.15077178
0.1431382D
0.1375064D
0.13332€8¢C
0.1301765D
0.1277503D

01
c1
01
01
01
01
01
01
01
01
01
01
01
€1
01
01
01
c1

01

01
€1
01

01



0. 16000000
0.1600000D
0. 16000COD
0.16000C0D
0.1600000D
0.1600000D
0. 1600000D
0.1600000D
0.12000CO0D
0.12000G0D
0. 1200000D
0.12000C0D
0.1200000D
0. 12000C0D
0.12000C0D

0.12000€C0D

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00

0.8000000D-01

0.80000€0D-01

0.8000000D-01

0.8000000D~-01

0.8000000D-01

0.80000C0D-01

0.8000000D-01

0.8000000D-01

~g]l-

0. 1000000D
0.2000000D
6. 30000000
€.4000000D
0.5000000D
€.6000000D
0.7000000D
€.8000000D
0. 1000000D
€.2000000D
0.3000000D
€.4000000D
0.5000000D
0.6000000D
€.7000000D
0.8000000D
0.1000000D
€.2000000D
0.3000000D
0.4000000D
0.5000000D
0.6000000D
0.7000000D

€.8000000D

co
00
00
00
0o
co
00
co
co
¢o
00
00
00
co
00
¢o
00
co
co
co
co
0o
00
co

0. 1849404D
0.1741172D
0.16369S2p
0.1551762D
0. 1485454D
0. 14342560
0. 13943758CL
0.1362872°C
0.19708¢€6D
0.1870550D
0. 17658560D
0.1674480D
0. 15998 134pD
0. 1540048D
0.1492156cC
0. 14534650
0.20882370D
0.1997643D
0. 18955690
0.18007820D
0.17195850D
0.1652185D
0.15967C5D

0.1550928D

01
01
01
01
01
01
01
01
01
01
1
01
01
01
1
01
01
01
01
01
01
01
01

01



0.4000000D-01
0.“0000000-61
0.40000CO0OD-01
0.4000000D-01
0.40000C0D-01
0.4000000D-01
0.4000000D-01

0.4000000D-01

-0.4000000D-01
-0.4000000D-01
-0.40000C0D-01
-0.4000000D-01
°0.0000600D-01
-0.4000000D-01
~0.40000C0D-01
-0.4000000D-01

. =92-

C.1000000D
0.2000000D
€.3000000D
0.4000000D
0.5000000D
0.6000000D
C.7000000D
0.8000000D
¢.1000000D
0.2000000D
€.300000¢D
0.4000000D
€.5000000D
0-6000000D
€.7000000D
0.8000000D
¢.1000000D

C.2000000D

¢.3000000D
0.4000000D
€.5000000D
0.6000000D
€.7000000D

0.8000000D

co
¢o
00

co
00
o
00
co
00
¢o
co
co
00
00
00
co
00
Y
00
00
00
co
00

0.2204289C 01
0.2125541D 01
0.2029397C 01
0.1934162D 01
0. 18484820 01
0.1774603C 01
0.1712022p 01
0.1659231D 01
0.4531139c-01
0.1624960C 00
0.3118490D 00
0.4597449p 00
0.5890481C 00
0.6952699C 00
0.78009C8LC 00
0.84717030 00
0.1680226C-01
0.6295332C-01
0.12837820 00
0.20237630 00
0.2770011¢ 00
0.3476276C 00
0.4121711LC 00

0.4700652c 00

c.



-0.8000000D~01
-0.8000000D-01
-0.8000000D~01
~0.80000C0D-01
~0.8000000D-01
~0.8000000D-01
~0.8000000D-01
-0.8000000D-01
-0.1200000D 00
~0.1200000D 00
~0.12000€0D 00
-0.1200000D 00
-0.1200000D 00
~0.12000€0D 00
-0.12000C0D 00
-0.12000€0D 00
-0.1600000D 00
-0.1600000D 00
-0.1600000D 00
-0.16000C0D 00
-0.1600000D 00
-0.1600000D 00
-0.1600000D 00

~-0.1600000D 00

P
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0.1000000D
0.2000000D
0.3000000D
€.4000000D
0.5000000D
0.6000000D
0.7000000D
€.8000000D
0.1000000D
0.2000000D
0.3000000D
€.4000060D
0.5000000D
0.6000000D
0.7000000D
€.8000000D
0.1000000D
0.2000000D
0. 3000000D
€.4000000D
0.5000000D
0.6000000D
€.7000000D
.8000000D

00
co
00
00
00
00
co

0.13593830-01
0.5144832D0-01
0.1063956D 00
0.1703532C 00
0.2367458C 00
0.3013095D 00
0.36174€1D 00
0.41710830 00
0.11350180-01
0.4328351D-01
0.90482€8D~01
0.1466447C 00
0.2063089D 00
0.2656157D 00

- 0:.32224470 00

0.3750238p 00
0.9668576C-02
0.37092450-01
0.7821542D-01
0.1280378¢C 00
0.1819917p 00
0.23662€83D 00
0.28969%7D CO

0.3399124rC QO



~0.20000€0D
~0.2000000D
~0.20000¢0D
-0.2000000D
-0.20000C0D
-0.2000000D
~0.20000€0D
~0.20000€0D
-0.24000€0D
~0.2800000D
-0.2400000D
~0.2400000D
-0.28000C0D
~0.2400000D
~0.2300000D

-0,2400000D

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

-94-

€.1000000D
0.2000000D
6.3000000D
0.4000000D
c.5000000D
0.6000000D
¢.7000000D
0.8000000D
0.1000000D
0.2000000D
€.3000000D
0.40000C0D
€.5000000D
0.6000000D
€.7000000D

0.80000Q00D

00

00

00
00
co
00
00
00
co
co
o
00
00
00
0o

00

0.8358339D-02
0.32222%9D-01
0.6843412D-01
0.1129718C 00
0.1619953LC 00
0. 21244 40D 00
0.2621847D 00
0. 30989550 €0
0.73101480-02
6.2829575n-01
0.6045593D-01
0. 10051500 00
0.1452413C 00

0.1919171D QO

' 0.2385568D 00

0.2838431C 00

o
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APPENDIX B

EXACT SOLUTIONS FOR SQUARE PULSES, AND FOR THE
GENERAL PULSES WITH &=0 AND Y2=0

<

Egs. (39) for square pulses can be written as

dAa

0 _ . ; -
5t = oA, exp {i(28-u)t},
(90)
da, o
I - -YAZ + iq AO exp [-1(28-p)t].
Y2
- where y = 5 + P0 .

With the boundary conditions AO(O) = 1 and A2(0) = 0 we
solve the second order differential equation and find the

exact solutions

* m,t
ia 1 myt

A = = - (e -'e )r
2 m-m,
(91)

i(28-u)t m. t mot

A =2 [(m,+y)e 1o (m,+Y)e 2 )|
0 ml"m 1 2 ’
2
where
m_ —ly+i2e-ml*+ifa]al? - y-i(26-uw)1°2

2

and we choose ¥ such that its real value is positive.
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If y<<|a|, then we can make an approximation and find

2 -yt
Iy ey ]2 = —2lel e fcosn _y(26-we
(26-u)“+4|al /ﬁ|a|2+(26—u)2
(92)
- cos /gia|2+(26-u)2t].
1f . Y(28-1)t _ <<1,(0 £t < 1), then cosh Y(28-u)t

Jala|2+(26-1) 2 /ala|2+ (26-p)2

=« 1dropping 2nd order smallness.
In the case of the pulse shape g(t) with Y, = 0
t

and 6§ = 0 and with the substitution U ='/ g(t')dt' Eq. (39)

-0

bécomes

dAO
35 - 1o A, exp (- iwl),
(93)
dA2 . * .
S = " PRy t ia A, exp (Luvu),

which is the same type as Egs. (90).
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