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ABSTRACT 

Due to the development of high power tunable lasers, 

a series of interesting new laser interaction problems have 

emerged. These have to do with phenomena occurring when a 

high power pulsed laser is tuned near either a one-photon or 

a multiphoton resonance. In the latter situation, one finds. 

that the time dependence of the a.c. Stark shifts and power 

broadening leads to several novel effects. For instance, 

Grischkowsky and Loy have shown that a strong pulsed laser 

tuned between the ground state and a two-photon resonance 

can lead to a nearly completely inverted population. 

In,the present work we have utilized two mathemati- 

cal methods (one a form of adiabatic approximation, and the 

other closely related to the Zener method from collision 

theory) in order to calculate the probability of three- 

photon ionization when strong counter propagating pulses are 

tuned very near a two-photon resonant state. In this case 

the inverted populations predicted by Grischkowsky and Loy 

for smooth laser pulses lead to larger ionization prob- 

abilities than would be obtained for a square pulse of equal 
4 

peak power and energy per pulse. The line shape of the 

ionization probability is also quite unusual in the above 

problem. A sharp onset in the ionization probability occurs 

xiii 



as the lasers are tuned through the exact unperturbed two- 

photon resonance. Under proper conditions, the change can 

be from a very small value to one near unity. It occurs,in 

a very small frequency range determined by the larger of the 

residual Doppler effect and the reciprocal duration of the 

pulse. Thus, the line shape retains a Doppler-free aspect 

even at power levels such that power broadening would dwarf 

even the full Doppler ettect in the ease of a square pulse 

of equal energy and peak power. The same mathematical 

methods have been used to calculate line shapes for the.two- 

photon excitation of fluorescence when the atoms see a pulsed 

field due to their time of passage across a tightly focused 

cw laser beam. Thus, the mathematical methods used above 

permitted accurate analytical calculations under a set of 

very interestinq conditions. 

We have also utilized one of the mathematical methods 

in order to treat two-photon ionization by a pulsed laser 

tuned near a resonance transition. These works are believed 

to represent the first nonperturbational treatment of 

multiphoton ionization due to a pulsed laser tuned near a 

one-photon or multiphoton resonance. 



CHAPTER I 

INTRODUCTION 

1n recent years lasers have been applied in many 

fields of physics, particularly in atomic physics and 

precision spectroscopy. In addition, there have been 

many suggestions as to how to use lasers for isotope ' 

separation. Other applications of lasers have been 

suggested 14-15 and demonstrated,16 and numerous theoretical 

studies 17-*0 have been devoted to the use of cw lasers for 

these applications. 

Our present work involves theoretical estimation of 

photoionization probability and fluorescence due to tunable 

pulsed lasers, and the development of mathematical methods 

- which enable us to approach the problems with considerable 

ease. We find that by using proper pulse shapes and high 

power levels it is possible to enhance photoionization prob- 

abilities of atoms or molecules approximately 100% in 

comparison with the case of using square pulses with identi- 

cal energy per pulse, resulting in superior efficiency (see 

Figs. 3 and 4). In addition to higher efficiency, we will 

show that, in some cases, there is higher selectivity when 

smooth pulses are used for near resonance multiphoton 

processes due to a sharp onset of the process at the unper- 

turbed resonance which is totally masked at such power levels 

with cw lasers because of power broadening. In some cases 



it is possible to have a photoionization probability of 

unity with existing high power lasers (see Figs. 3 and 12). 

Some 21-24 have studied the case with cw lasers, but there 

has been no thorough understanding of the effect of the 

pulses with time-dependent amplitude until our present 

studies. 

In addition, w e  dlso emphasize the experimental 

applications in the production of very short but intense 

pulses of metastable atoms for crossed beam scattering 

experiments employing abrupt change of pulse amplitude, and 

in the lifetime measurement of excited states by way of the 

time-gating technique. Using a similar saturated photo- 

ionization concept, Hurst et a1.16 have developed and 

demonstrated a one-atom detection technique. 

Considerable effort has been devoted to verification, 

through the use of a computer, of the validity of our 

"Factorization Method," which is simple but powerful in 

solving a set of coupled differential equations. We have 

also applied a mathematical technique which we call the 

"Method of Isolated Curve Crossings" to laser-atom inter- 

action problems. The latter method is mathematically 

equivalent to Zener's method25 from collision theory. The 

Factorization Method and the Method of Isolated Curve 

Crossings complement each other such that many pulsed laser- 

atom interactions can be dealt with by applying one of these 

methods. 



CHAPTER I1 

MATHEMATICAL METHODS FOR LASER-MATTER 

INTERACTION PROBLEMS 

A. The Factorization Method 

We begin by describing a non-perturbative method for 

solving the time dependent Schr6dinger equation-in cases 

where the problem reduces to one for a system with a finite 

basis of state functions. For simplicity, we restrict the 

discussion to the case where a two-state description is a 

good approximation. The problems that we will discuss la- 

ter will show that this simplification is not as restrictive 

as it first seems. 

As we shall see later, many interesting problems in- 

volving either collisions or the interaction of a powerful 

laser pulse with a low density gas involve the solution of 

a special case of the following set of differential equa- 

tions: 



In Eqs. (1) we shall assume that q(t) and y(t) are real and 

that 

where S1 and S2 are small positive numbers having units of 

frequency, 
the 

's are constants having units of frequency, 

and g ( x )  and f (x) are smooth functions having a single maxi- 

mum of unit magnitude at x = 0 while dropping off monotoni- 3 
7 

cally to zero at x = + An example of a suitable g(x) and - 

Typically, in o laser interaction problem, a and a2 
0 

would be probability amplitudes for being in states 10> and 

12> at t, 6 would represent an amount of detuning in fre-j 

quency from a resonance by the laser pulse, u(t) is a laser 

or collision (or both) induced coupling term and y(t) is 

partly a rate of collision or laser-induced ionization or 

dissociationout of state 12, and partly (i.e., y2/2) spon- 

taneous emission. The remainder of dq/dt would usually 

represent a frequency detuning effect due either to col- 

lisional interaction or a.c. Stark shift. We will not 



be more precise about physical interpretation at this point 

since examples where Eqs. (1) arise will be discussed in 

later chapters. 

We will now discuss the solution of Eqs. (1) subject 

to the initial conditions ao(--) = 1, a2 (--) = 0. We pro- 

ceed by eliminating a (t) as follows: 0 

where 

As mentioned earlier, we want to solve in a way that takes 

full advantage of the fact that S1 and S2 are very small. 

-1 - 1 Depending on the problem being investigated, S1 and S2 

are either related to a time of collision or to the length 

of the laser pulse. Thus, the method would apply to laser 

interaction problems with long smooth amplitudes for the 

laser field or to slow collisions. 

With very small S1 and .Si the functions Fl (t) and 

F2 (t) are slowly varying functions of t with F'* (t a) = 



i ~ ~ 6 / ~ ,  and Fl (f a) = i6ty2/2. Both are generally complex 

numbers. We want to take advantage of the slow variation 

of F1 and F2 with t. To do this, we write 

where gl and g2 must satisfy 

One scheme for finding a2 is immediately 'obvious. In the 

limit of exactly constant F1 and F2 (or in the limit 

Sl + O and S2 + 0). g1 and g2 hatiafy (g ( - m )  = 16, 10 920 

Thus, when S1 and S2 are very small, but not zero, the 

true gl and g2. are expected to be close to g10 and g20. 

We let 



and f i n d  

and 

depends  o n l y  on Sit and S 2 t  and shou ld  y i e l d  a 

s m a l l  dg20 /d t ;  a l s o ,  d o 2 / d t  and 6: a r e  e x p e c t e d  t o  b e  o f  

even h i g h e r  d e g r e e  o f  s m a l l n e s s .  The s i t u a , t i o n  i s  sug- 

g e s t i v e  o f  a  r a p i d l y  converg ing  i t e r a t i v e  method. Take 

t h e  z e r o t h  i t e r a t e  of c 2 ( i . e . ,  e ) t o . b e  z e r o ;  t h e n  t h e  
2 ,o  

n  + 1 i t e r a t e ,  E ~ ~ ~ + ~ ,  s a t i s f i e s  

T y p i c a l l y ,  one o r  two i t e r a t i o n s  a r e  s u f f i c i e n t  i f  

S1/6 6 0.1 and s2 /6  3 0.1, 



assuming that I F  a I is order of I F  ci2,=1. This condition 
1 oi 1 

can be relaxed a bit if the aijls are very large compared 

with 6; but, typically, to achieve convergence at all t, 

one cannot deviate far.from Eq. (11). If Eq. (11) is 

satisfied, the method is valid for large or intermediate 

a with greater accuracy being attained with large aij. ij 

Once gl and g2 are known, we iet 

and find 

* -iq ( -=I  d * 
z ( t )  = iu (t)e exp [ g l t  + 1nu t . 

-a I 
Thus, 

t t 
-iq ( -m) 

a2 (t) = ie exp[- g2 (t")dtl'l u (t1)dt' I 
-OD 

I * 
-al 

d * 
x exp [j(g2(ttl)-gl(t'l) - s t n u  it'll Id tg l  I . 

If t is not extremely large and positive, the same condi- 

tions which make valid the method used to find gl and g2 



allow the approximate evaluation of a2(t): 

la2(t) l 2  = lu(t)/D(t) l 2  exp [2ReYl(t)] if 6 f .  0, 

for all 6, 

where 

Equations (15) are particularly useful when they are a prob- 

ability of an ionization or a dissociation that is desired 

2 2 and y2 = 0. In such a case, one desires 1 - laO/ -la2[ , 
and Eqs. (1) imply 

00 * * 
da u * da2 da 

+ a -  dtl + a2 dt' + a2 &)dt' 



~ h u s ,  o n e  o n l y  n e e d s  1 a  ( t )  1 w h i l e  Y ( t )  i s  l a r g e ;  conse-  2  

q u e n t l y ,  Eqs. ( 1 5 )  a r e  a d e q u a t e  f o r  c a l c u l a t i n g  R. I t  s h o u l d  

b e  n o t e d  t h a t  1 a 2  (a)  1 c a n n o t  b e  c a l c u l a t e d  from EqS. (15)  

s i n c e  Eqs. ( 1 5 )  p r e d i c t  z e r o ,  w h i l e  t h e  remainder  i n t e g r a l  

t h a t  is  n e g l e c t e d  i n  i n t e g r a t i n g  by p a r t s  i s  n o t  zero and i s  

c o n s e q u e n t l y  no l o n g e r  n e g l i g i b l e .  111 e v d l u a L i i ~ g  E q .  ( 1 4 ) .  

o r  E q s .  ( l 5 ) ,  one  d o e s  n o t  need t o  i n t e g r a t e  from t h e  

l i m i t i n g  v a l u e  -a, b u t  from t h e  t i m e  when v e r y  s m a l l  popu- 

l a t i o n  changes  b e g i n  t o  o c c u r ,  a  1 and a 2  0. Of c o u r s e ,  0  

f o r  t h e  squar-e p u l s e  c a s e s  one  needs  t o  i n t e g r a t e  o n l y  fur 

t h e  t i m e  span  o f  t h e  p u l s e  d u r a t i o n .  I t  s h o u l d  be  n o t e d  

t h a t  when u ( t )  + 0 ,  o n e  can assume 
L 

F, ( t )  - 0 ,  and Eq. ( 1 4 )  

a p p r o a c h e s  t h e  f l rs t  order. Lillie-dependent p e r t u r b a t  i o n  rccult .  

The method descr ibed  dbuve w i l l  h e r e a f t e r  be d c s i g -  

n a t e d  aa t h e  f a c t o r i z a t i o n  method. I t  c a n  be  used ( w i t h  

more d i f f i c u l t y )  i n  cases where t h e r e  a r e  more t h a n  two 

s i m u l t a n e o u s  e q u a t i o n s  and t h e  equaLions  a r e  of a different 

form. For  i n s t a n c e ,  it i s  v e r y  u s e f u l  f o r  o b t a i n i n g  

s o l u t i o n s  o f  t h e  e q u a t i o n s  f o r  t h e  d e n s i t y  m a t r i x  e l e m e n t s  

i n  l a s e r  i n t e r a c t i o n  problems.  

The above method was f i r s t  used  by ~ a ~ n e ~ ~  i n  con- 

n e c t i o n  w i t h  i n e l a s t i c  c o l l i s i o n s  t h a t  a r e  swi tched  by t h e  

p r e s e n c e  o f  a n  i n t e n s e  l a s e r  beam. I t  was s u b s e q u e n t l y  

used  by Payne and ~ a ~ f e h ~ ~  i n  c o n n e c t i o n  w i t h  a  s c a t t e r i n g  



problem and the interaction of a laser pulse with a two- 

level atom. 

'\ 

B. Method of Isolated Curve Crossings 

We describe here a method that is closely analogous 

to the Landau-Zener method25 in scattering theory. At the 

time that most of the work described here was done the 

method had not been used in connection with laser inter- 

action problems. However, in a recent work ~ a u ~ *  has used 

the method to predict the transition probability for two 

photon excitation of the Na(3s) + Na(5s) transition. In 

a later chapter we will use the method to solve another 

laser interaction problem. 

In this case we desire a solution to the equations 

- 
where 

and F(t) as well as h(t) are slowly varying functions which 



satisfy F(+ - "1 = h(+ "1 = 0. Both F(t) and h(t) are real, 

positive and continuous functions having a single maximum 

of unit amplitude at t = 0. However, F(t) and h(t) need 

not be.symmetric about t = 0. We assume ao(-w) = 1 and 

a, (-") = 0. 

We deal here with situations where T~ is a measure 

of the smaller full width at half maximum of F ( e )  and h ( t )  

and 1 p 1 ~  >>1 where p is a real quantity having units of m 

angular frequency. It is typically a measure of the maxi- 

mum detuning due to the a.c. Stark shifts or, in collision 

problems, of the detuning due to the atom-atom interaction. 

When la/plccl ( (01-I is a measure of the shortest time over 

which a. or a2 can change appreciably), we see that, except 

for points where ph(t)-6, e i' (t) will oscillate many times 

over a time I a I so that no change in a. or a can occur, 2 

even in cases where lalrm>>l. Consequentially, a and a2 0 

change only at times very near t and tO2, where these are 01 

the two solutions of 

of course, tO1 is negative and tO2 is positive. Thus, when 

1 Ia/pI<<l, and 6 is not too small, changes in a U 

and a2 come from very short time intervals (compared with 

T ) about crossings which are isolated. The Landau-Zener m 



method is then applicable. The factorization method would 

require that at points where ~h(t)-6 = 0, the term,aF(t) be 

large enough so that changes in a. and a2 are saturated. 

However, in the present method, a can be rather small. 

Correspondingly, the factorization method does not require 

la/vl<<l so that the two methods complement each other and 

enable one to solve a rather wide range of laser interaction 

problems involving high power pulses.which vary smoothly with 

time. 

With the assumptions I P I T > > ~  and la/pl<<l, we expect 

2 that lao 1 and la2 l 2  remain 1 and 0, respectively, until 

just before the negative time at which ph(t) = 6. If 6 is 

not of the same sign as u ,  such a point will not exist; and 
2 

laO 1 and la2 1 * will remain near 1 and 0, respectively, 
throughout the pulse. If P and 6 are of the same sign, we 

can approximate near the negative time crossing by 

14 (toll M dh(tOl) 
where 'al = aF (tOl) e , B1= - I 7 , and V = t-tol- 



Thus, t o  f i n d  a. and a 2  j u s t  a f t e r  t h e  f i r s t  c r o s s i n g  we 

s o l v e  Eqs. ( 1 9 )  a t  V + u s i n g  a. ( V  = -m) = 1, a 2  (V = 

--) = 0. W e  have assumed t h a t  t h e  t i m e  i n t e r v a l  over  

which a. and a 2  change i s  s o  s h o r t  t h a t  t h e  damping ( i . e .  

-y  ( t ) a Z )  can  be n e g l e c t e d  d u r i n g  t h e  c r o s s i n g .  I n  o r d e r  

t o  r e p l a c e  F ( t )  by  a c o n s t a n t  and h ( t )  by h ( t n l )  + 
d k ( t O l )  

at V w e  must b e  a b l e  t o  choose  a  1 v m l < < l t o l l  w h i c h  

s a t i s f i e s  12f31~mI>>Ia11. The l a t t e r  c o n d i t i o n  l e a d s  t o  

dh ( t o l l  
l a l  1 1  d, toll, which w i l l  be t r u e  f o r  l ~ / ~ ) c c  1 

and p T 1 u n t i l  e i t h e r  ( 6 1  becomes v e r y  many t i m e s  

s m a l l e r  t h a n  I p )  o r  6 approaches  p and t becomes t o o  01 

s m a l l .  

W e  e l i m i n a t e  a. from Eqs. ( 1 9 )  and l e t  

and 

then . 

a = u e x p  ( - B ~ v ~ / z )  
2 

E q .  (22)  h a s  a  g e n e r a l  s o l u t i o n  i n  terms o f  p a r a b o l i c  

c y l i n d e r  f u n c t i o n s  (Weber f u n c t i o n s ' )  Dn ( 2 )  , where 



2 
Applying the boundary conditions la2(v = -a) I = 0 and 

lao(V = -a) l 2  =,1, we find the asymptotic solution 
25 
- - 
Z 

2 2 - lall IU(V + a) l 2  = 1 - exp [-2n1z11 I where lZll 
- TB7 

I 

Thus, just after t we have 01 

2 
la212 = 1 - exp [-2n1z11 1 .  

When tO1 < t L we can neglect coupling between a and - 0 

a and 2 

2 
la21 = [1 - exp (-21~12~1 1 1  ~ X P  [-2 I y(t')dt11. (25) 

When t approaches tO2, the values of a. and a2 will start 

to change again and equations analogous to Eqs. (19) will 



Then, 

w i t h  V = t - t = o F ( t O 2 )  exp l i $  ( tO2) 1 and B 2  = - 02' 

p d h ( t 0 2 )  - . The r e l a t i v e  phase o f  a  and a 2  a t  t h e  second 
2  d t  0  
c r o s s i n g  is  ve ry  s e n s i t i v e  t o  t h e  e x a c t  d e t a i l s  o f  t h e  f i r s t  

c r o s s i n g .  ~ i f f e r e n t  p u l s e s  having n e a r l y  t h e  same 1 zl 1 can 

l e a d  t o  very d i f f e r e n t  r e l a t i v e  phases a t  t h e  second c r o s s i n g .  

2 2  L e t  l a 2 ( t O 2 - ) 1 2  and l a O ( t O 2 - ) I  be va lues  o f  l a 2 [  and l a o [  
2 

j u s t  b e f o r e  t h e  second c ros s ing .  Averaging o v e r  p u l s e s  t h a t  

are r e p e a t a b l e  or1 I Z I I ,  b u t  d L i t  JiIIere~lL we I i i id Tor 

2 1 a2 1 , j u s t  a f t e r  t h e  c r o s s i n g  

2 2  
where 1 z 2  1 = 1 a2 1 / ( 2  1 f32 1 ) and la2  (to*-) 1 i s  determined 

2 
from Eqs.  ( 2 5 )  b u t  1 a. (to*-) I depends on t h e  i n t e r p r e t a t i o n  

o f  y ( t ) .  ( i . e . ,  whether it r e p o p u l a t e s  t h e  i n i t i a l  s t a t e  o r  

r e p r e s e n t s  a l o s s ) .  



The considerations given above can be generalized 
* .  

considerably, but we have given all that will be needed for 

our application. 



CHAPTER I11 

DOPPLER-FREE CONTRIBUTION TO THREE-PHOTON 

IONIZATION BY PULSED LASERS 

A .  INTRODUCTION 

W e  c o n s i d e r  an  atom b a t h e d  i n  c o u n t e r  p r o p a g a t i n g  

laser beams o f  f r e q u e n c y  w i  and w;. The l a s e r  beams a r e  

assumed t o  be p u l s e d  w i t h  t h e  c o u n t e r  p r o p a g a t i n g  p u l s e s  a t  

f r e q u e n c i e s  w i  and w; o v e r l a p p i n g  i n  b o t h  s p a c e  and t i m e .  

The .laser p u l s e s  a r e  v e r y  monochromatic w i t h  t h e  band w i d t h  

b e i n g  l i m i t e d  e n t i r e l y  by t h e  p u l s e  l e n g t h .  A f a i r l y  

t r a c ' t a b l e  m a t h e m a t i c a l  s i t u a t i o n  is o b t a i n e d  i f  t h e  p u l s e s  

a r e  o f  nearly e q u a i  l e n g t h  w i t h  t h e  t i m i n g  Being such that 

o n e  p u l s e  b e g i n s  to a r r i v e  a t  t h e  a t o m ' s  l o c a t i o n  a t  a b o u t  

t h e  same t i m e  a s  t h e  o t h e r  and i f  t h e  peak power d e n s i t y  i s  

5 10 w/cm2 s o  t h a t  t h e  l a s e r  f i e l d  can  be  t r e a t e d  c l a s s i -  

c a l l y .  * 
The c a s e  where w i  = w i  h a s  been s t u d i e d  f a i r l y  ex- 

tensively' 7-20 fur u w  lasers  i l l  c a s e s  where 2 h w '  i s  n e a r l y  
1 

e q u a l  t o  E2 - E o  = n (w2 - w ,) , w i t h  E2 and Eo b e i n g  t h e  

e n e r g i e s  of  two l e v e l s  o f  t h e  atom which a r e  connec ted  by - 3 Semiclassical t r e a t m e n t  i s  v a l i d  i f  S h  /C > >  1, where C i s  
t h e  speed  of l i g h t  and  S  and X a r e  t h e  photon f l u x  and t h e  
wave l e n g t h  o f  t h e  l a s e r  f i e l d .  J.J. S a k u r i  d i s c u s s e s  more 
d e t a i l s  i n  Ch. 2 o f  h i s  uook, Advanced Quantum Mechanics.  



an allowed two-photon transition. In such a case, two-photon 

absorption is dominated by a Doppler-free. contribution in 

the region very near the two-photon resonance, providing 

(1) the lifetime of the upper state, -r2, is such that 
- 

r ' c c  w;/c; (2) the peak power is sufficiently low that 
2 

power broadening does not approach 'T w;/c. Intuitively, the 

reason for the Doppler-free contribution is obvious. By 

absorbing one photon going one direction and another going 

the opposite direction, the total energy intake by an atom 

of velocity Vz is fi w; (1-Vz/C) + fi w; (l+VE/C) = 2f1 w;. 
1 ~ 

Thus, if 2h wl ik very near'the excitation energy, this pro- 

cess is resonant for any Vz. On the other hand, the 

absorption of photons with the same propagation direction 

leads to an energy mismatch = (Vz/C) 2fi w; which, for typi- 

cal Vz, is sufficientto suppress the contribution unless 

power broadening or the line width due to the state's life- 

time can overcome the energy defect. 

I 
If two lasers of frequencies w; and w2 (such that 

I 1  
w +w - (w2-wO) = 0) are used, one achieves far greater ver- 1 2  

satility. '-* Firstly, the coupling for a two-photon transi- 

tion can be made far greater at .a given power level by tuning 

w' to be rather near an intermediate state, Thus, a.c. 
1 

Stark shifts and two-photon transitian rates can be large at 

moderate power without the necessity of an intermediate stak 

lying almost exactly halfway between the initial and final 



states. Secondly, if the two laser beams propagate in 

opposite directions and w; and w; are different by at least 

a few percent, then the only resonant situation corresponds 

to absorbing one photon propagating in one direction and 

another propagating in the opposite direction. (Generally, 

absorption of two photons propagating in the same direction 

is far out of resonance.) In such a situation the only 

remaining Doppler shift for the two-photon transition is 

-w' I V  /C, which is very small if w; and w; differ by Iw; 2 c 

only a few percent. In the present case we write the field 

in the general form 

E(t,t) = El (t) cos (wit - k V t) 
- 1 t  

The Doppler-free aspect of both the one-laser and two-laser 

situations with counter-propagating beams was first recog- 

nized by Vasilenko et a1.5 In the two-laser beam case, 

-1 Doppler effects can be neglected if (1) r 2  > >  lw; - w;l x 

; (2) - r l  >>  lw' - w.! I Iv I / c ,  where r is laser pulse 
1 L t  

length; (3) a-c. Stark shifts or power broadening.are large 

compared with the residual Doppler shift. The Doppler-free 

two-photon process has been studied experimentally by 

Levinson and Bloembergen, Biraben et a1. , and others. 4-5  

In the present work we will assume counter-propagating beams. 



However, much of the present work will emphasize high power 

levels where the line widths for the two-photon process is 

larger than the full Doppler width. We will show that even 

in the above case, sharp features in the line shape remain 

which are characteristic of the near absence of Doppler 

effect. 

The present work differs from other work by simul- 

taneously taking into account the pulsed nature of the 

laser field (which is necessary if high power levels are to 

be reached) and the calculation of three-photon ionization 

in the neighborhood of a two-photon resonance. The 

ionization provides an extremely sensitive way to monitor 

the line shape of the two-photon transitions. 

B. STATEMENT OF MODEL 

The atom interacting with the highly monochromatic 

counter propagating laser pulses is assumed to be part of 

a very low density gas or vapor so that it can be considered 

isolated. We further assume that it has energy levels some- 

,thing like that shown in Fig. 1. In Fig. 1 the states 10> 

and 12> are assumed, for convenience, to be s states and no 

p states are closer than a few hundreths of an electron volt 

to being in resonance for a one-photon transition driven by 

either pulse. In particular, fiw; is most resonant for the 

transition 10, to p , ,  and fiw; is most resonant for a 

transition Ip,j> to 12>. Generally, only a few intermediate 

states lp, j> will dcxninate because, by choice, w' and w; are 1 
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Figure 1. Energy Level Diagram, 3-Photon Transition with 
Lasers at wl' and w2' . 



chosen to be rather close to resonance, but far enough 

away so that line broadening due to the state's lifetime 

or due to power broadening do not permit real transitions. 

We write the state vector of the atom as 

where lo>, 12>, and Ip,j> are all orthogonal discrete 

states and I E ~ , ~ >  is a continuum state. The continuum 

states are normalized so that, 

Assuming that the wavelength is very large compared with 

the size of the atom and treating the EM field classically, 

we. have 

A 2 fi = H - pxE(e(t),t) - ifi - 12, ~21. 
0 2 

(31) 

A 

In Eq. (31) , Ho is the electronic Hamiltonian of the isolated' 



A 

atom, px is the x-component of the electric dipole operator 

for the atom, 
2 is the spontaneous decay rate of the state 

12> (we treat this phenomenologically) , e (t) is the a coordi- 

nate of the atom evaluated along a straight line classical 

path, and I p, j > are sufficiently far off resonance so that 

their spontaneous decay can be neglected (i.e., ldwjl = 

amount Ip,j> are off resonance satisfies l~w.l/y > >  1). 
I PI 

The laser fields are assumed to be plarrt! pulal- ized along 

the x-axis and pulses propagate parallel to the - + e axis. 

Applying the time-dependent ~chrodin~er equation to 

Eqs. (29) and (31) and keeping only the least rapidly oscil- 

lating coupling terms, we find 



In the above equations it is important to reemphasize that 

the states Ip,j> include only those which are rather close 

to resonance for allowed dipole transitions driven between 

101 and 1 p, j > by the laser at w;, and that these states 

are much farther from resonance for the laser at w;. Fur- 

ther, such states must not exist for the transition 10> to 

Iptjt> for the laser at w;. Similar comments apply to the 

laser at w; being much closer to resonance for the tran- 

sition Ip,j> to 12>. Without these restrictions, other 

intermediate states must be included and both El(t) and 

EZ(t) must couple 10, to lp,j> and lp,j> to 12,. Further, 

the rotating wave2' approximation used above must be 

refined to generate more accurate a.c. Stark shifts. 

We will now show how Eqs. (32) can be simplified. 

Letb = - w  
11 

+ wO + W' - klVz, 1 A = - w  +w2-w;-k2vt PI 21 PI 
and integrate the second of these equations 
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where 

and 

I I 
26 = w +w 1 2  

- wz+w 0 - (k1-k2)Vm. 

The quantity 256 is a measure of the excess energy available 



in the two-photon process. Of course, 6 must be restricted 

so that the states Ip,j> can be eliminated as described 

earlier. The quantity p(t) represents a damping of the popu- 

lations of I.0> and 12> due to photoionization, ~w(t) is an 

a.c. Stark shift due to coupling with continuum states, Q2(t) 

is the a.c. Stark shift of the state 12> due to the'states 

Ip,j>, n3(t) is the a.c. Stark shift of state 10, due to 

states Ip,j> and Q (t) is the two-photon coupling co- 4 

efficient. 

Except for the -inclusion of photoionization by a 

pulsed laser the 3-level atom problem discussed above has 

been formulated and discussed by several authors. 30-37 In 

particular if y2 and p(t) are neglected even the pulsed na- 

ture of the field can be dealt with by using conventional 

adiabatic perturbation theory of the type used in atom-atom 

collisions. Much of the above work has been formulated in 

terms of the opticalBloch equations; which is equivalent to 

the ~chrgdin~er equation approach except for the possibility 

of including incoherent sources for the population, as well 

as collisional relaxation, by phenomenological parameters. 

C. APPLICATION OF THE FACTORIZATION METHOD 

In this section we will apply the factorization 

s method described in Chapter 11 to three-photon ionization 

as described by Eqs. (37). 

We take 



where g(t) is a smooth, slow varying function as described 

in Eq. (2). We then get 

&2 
t 

y 2  - = - ( 4 p  g (t) ) ~ ~ + i o * ~  ( t ) ~ ~ e x ~ [ - i  (26t-us g (tg)dtg) 1 , dt 2 0 

where 6 and y2 are as defined earlier and 

& is proportional to the photon flux of the laser field 
tlmes photoionization cross section of the stat 12>. The 

se tion is, in general, order of 10-17 cm4 to ;;"s ems. 



If we let 

the factorization method is immediately applicable. We get 

d 
+ g 1  d + g2(tNA2 = 0 1  (at ( 4  1) 

where 

We choose: g1 - - g10 + €1' g2 - - g20 + E where we have 2 ' 
defined 



We obtain 

where 

and 

~ntuitively, we expect that if g(t) is a very slowly varying 

function of time and if ) a )  is large then and E*  can be 

treated as small slowly varying function of time. Thus, 

neglecting E c and dr2/dt compared with g 1 0 ~ 2 1 g 2 0 ~ 1  1 2  and 

dg20/dt we find 



The above method is not exactly equivalent to the iterative 

scheme described in Chapter 11, but it is more convenient 

for analytical work. 

The expressions obtained for gl and g2 by using glO, 

92 0 and our approximate values of cl and c2 are not always 

accurate. The most severe restrictions are related to 

obtaining accurate gl and g2 functions when g(t) is small or 

when t is near a value at which 26=vg. In order to obtain 

accuracy when g(t) is small, we must restrict 6 such that 

where T is the full width at half maximum of g(t). The con- 

dition 1 6 1 ~  > 10 is not obvious, but its enforcement yields 

excellent accuracy in a large variety of numerical examples. 

The approximate gl and q2 functions are accurate near times 

such that 26=pg, providing that at these times 

J L  g-2 (t) << 1 
21a12 

and 



The above conditions arise because it is obvious that 

when 26=pg, unless lalg is large, the values of g10 and g20 

will become small, while and E~ take on their largest 

values. Thus, the expressions are obtained by requiring 

that the neglected terms and d~ /dt be small compared 2 

with g10~21 g20~l and dg,O/dt which were retained. Thus, 
L 

if P >> 1 T > >  1 lal/yZ > >  1, la/pol > >  1 and 

1 6 1 ~  > lo, we will obtain accurate solutions as long as 

161 does not become so small that the validity conditions 

fail or unless Ia/pl is very small. Very crudely, we can 

rewrite conditions (46) as 

and 

where t is a time such that 26 = pg (to) , 1 al 1 = 1 a lg (to) , 
0 

and lull = 1 ~ 1 ~ ( t ~ ) .  Conditions (45) and (47) are sufficient 

for all times as long as (47) is satisfied at all "crossings." 

The validity equations all indicate that the results apply 

to long pulses and very high power levels. However, we shall 



see later that the power levels and pulse lengths are 

easily available with present nitrogen laser pumped dye 

lasers. Further, the factorization method enables one to 

calculate accurately almost. all of the lineshape for 

ionization. 

After applying Eqs. (15) of Chapter I1 we find 

~(26-P (t'))) dt11, 
x exp [ -2  + Pog(t~))(+ - .+- 

(t) 1 is the probability of the upper resonance state 

being populated at time t in the absence of spontaneous decay 

2 or photoionization. InZ0 (t) 1 has some very interesting 

properties that are worth pointing out. We write Eq. ( 4 9 )  as 



where E '  = 6 p / ) 6 p ) .  From the last equation we see that if 

a 
< 0.1 then I A ~ ~  (t) l 2  remains small at all times if 1;l . 

6/p < 0; but that when 6/p > 0 it remains zero until the 

first "croesing" (i.e., 26 = pg), then rapidly rises to a 

value near unity until the second crossing where it falls 

again to a value near zero. Thus, for reasonably small 

valuee of 6 s large population inveroion io induced and it 

persists for a large portion of the pulse. When 1 o/p l L  i, 

near unity a population inversion still exists for 6/p > 0 

but it is smaller. 

In order to calculate R, the probability of an atom 

being ionized, we use 

C (Ec t) was eliminated, but we can return to the initial 
p i k  I 

coupled equations and with the same requirements for 

ellmination of C (LC L )  s l r u w  LhaL 
prk t 

x exp [-2 
2 ( (v2/2+pog(t')) l ~ ~ ~ ( t ~ )  1 dt'ldt. 



2  - 3  We choose  g ( t )  = [1+ ( t / ~  ) 1 and V = t / ~  . Then, n o t i n g  

t h a t  I A 2 0 ( t )  l 2  z F ( V )  w e  f i n d  

I n  many c a s e s  y 2 ~  << 1 and w e  f i n d  

where 

w i t h  

In  t h e  s p e c i a l  c a s e  EIO=EZO t h e  rat io  la/ul i s  independent 



-1 of power and we see that a graph of -(par) kn(1 - R) 
versus 6/11 should yield the same curve for all peak power 

and pulse length such that y 2 ~  << 1 and such that the other 

validity conditions are met. (See Appendix A for tabu- 

lation of the H function.) 

To illustrate the validity of the above results, 

3 we have chosen r = sec, p = 1.38 x 10 In, and 

2 
a = 3.7 x 10 Io. 

Figure 2 shows a graph of a numerically 

calculated plot of - (par) -lkn (1 - R) versus 6/11 for 

7 
I0 = 10 w/crn2 and lo8 w/cm2, where I. is the peak power 

density of the laser pulse. On the same graph we have shown 

the result calculated from Eq. (54). Note that the only 

discrepancy occurs when 16~1 < 10. When 6 = 0, Eqs. (39) 

t 

can be solved by letting u = g (t' )dtl (see Appendix B) . I 
-Q) 

"sing g(V) = (1 + v ~ ) - ~ ,  we find 

2 2 -1 n = 1 - exp 1- ?porlu/uI (1 + 41a/~I 1 1 .  
L. 

( 5 7  1 

 his simple expression was used to check the numerical cal- 

culations at 6 = 0, and agreement was excellent. 

Eqs. (39) can also be solved exactly if the two 

lasers give identical square pulses (see Appe~idix B) . LeL 
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Figure 2. Photoionization Probability Comparison, - for 
the analytical solution, o for the numerical 
solution with IQ = 108 w/cm2 and for the numer- 
ical solution wlth I, = 107 w/cm2. 



We have solved analytically for R in cases where a T > >  1. 

In Figs. 3-8 we have graphed R versus 6 for various I 
0 

-8 3 and T = 10 sec, p = 1.38 x 10 Io, a = 3.7 x 10 * and I0 
2 -3 po = 0.08 I . Both the square pulse and g = [l + V ] 

0 

cases are shown in Figs. 3-5. The reader should note 

that the square pulse result peaks at 26 = pg and the only 

width is due to power broadening which is approximately 21al. 

The line shape for g(V) = (1+v2lm3 is extremely different 

due to the curve crossings (i.e., 26 - wg(V)) which occur 

for 6/u > 0 and for 161 < Ip/21. When )pI > >  la1 the width 

is almost entirely determined by 1 p 1  and is many times wider 

than the width for the square pulse ease. With srnootll pulses 

the values of R are larger due to the fact that inverted 

populations exist in this case. For square pulses and 

2 9  1 ar I > >  1 Rabi flopping occurs and when IA2I2 is averaged 

1 over several cycles it is always < -; thereby, leading to - 2 

smaller R .  

2 The analytical expression for lA21 is discontinuous 

at 6 = 0; being small on the 6 / p c  0 side and larger than 1/2 

on the 6/p > 0 side. The discontinuity is due to deviations 
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Figure 3. Photoionization Probability (I0 = 5 x 1 0 ~  w/cm2, 
T = 10-8 sec) , - for g(t) = [l + (t/.c)2]-3 and --- for g(t) = 31~/8. 
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F i g ~ r e  4. Photcionization Probability (I, = lc18 w/cm2 
T = 10-8 secl, - for g (t) = [l + (t/r] 21-3 and --- for g(t) = 31~/8. 
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Figure 5 .  Photoionization Probability (Io = 107 w/cm2, 
T = 10-8 sec), - for g(t) = [l + ( t / - r )  21-3 and --- for g(t) = 3n/8. 



Figure 6. Blow-u? Graph Near 6 = 0 {I0 = 107 w / m 2 ,  T = 10'~ 
sec), --- for the numerical solution and x for 
the analytical solution. 



Figure 7. Photoionization Probability (Io = 106 w/cm2, 
T = 10-8 sec), x for the analytical solution and 

for the numerical solution with g(t) = 
[l + ( t / ~ )  * ] - 3 -  





from .adiabatic behavior when 16  I T  < 10. When non-adiabatic 

effects are taken into account R rises sharply, but con- 

tinuously in 3 region A6 given by ) A &  1 = lo/+. Thus, for 

long pulses the rise can be very sharp compared with the 

full Doppler width. In this sense a Doppler-free aspect 

of the line shape survives even at very large power levels. 

Making use of this sharp rise, one coul?. selectively ionize 

one atom in the presence of another wibh a very nearby two- 

photon resonance. By most methods high R is impossible 

without a correspondingly high value for the nearby level 

due to power broadening effects. 

We have noted in condition (47) that the case of 

small la/vl requires extremely large values of l c l l ~  (the 
present method'requires fairly large values of 1orl-r even when 

1 a 1 = 1 . In the next section we require 1 a/p 1 < < 1 but. 

we will not require la I T  > >  1. The latter situation is very 

interesting if one of the laser pulses is much more powerful 

than the other. 

D. APPLICATION OF THE :ITTHOD OF ISOLATED CURVE CROSSINGS 
TO THREE-PHOTON IONIZATION 
-- - -  - 

We consider the same situation as in Section C except 

now I a / ~  1  <<  1 and I  PT 1 > >  1. In comparing with Chapter 11, 

Section B we note that h(t)=F(t)=[l+(t/~)~]-~=~(t). We take 

y2=0 so that y(t) - pog(t). We have for all t 



When 6/p > 0 and 2 6 / ~  < 1 we obtain 

whcro 



As explained in the mathematical discussion of Chapter 11, 

the only appreciable changes in A2(t) occur in a narrow time 

interval about times where 26 = pg. Except in these'time 

intervals the lasers are far out of resonance,and only 

photoionization and spontaneous decay are effective in 

changing A2. In our case we assume y 2 ~  << 1 and the only 

effect in changing the population of either 10> or 12, is 

photoionization. 

Using Eqs. (58) and (59)-(60) we find 

and for 0 c 2 6 / ~  < 1 we have - - 

where 

Q (V) = exp (-2por m(V) 



and 

2 
Thu8, if one f i x o p  1 u 1 T ,/ I P I and P ~ T ,  plotc of R vcrouo 

2 6 / p  are the same curve for all p .  (The term p T is fixed 
0 

by producing most of the ionization by a third laser pulse 

Ej (t) cos (~;t-k~V~t+f3~) = ~ ~ ~ g ~ / ~  (t) c*s  ( ~ ; t - k ~ V ~ t + ~ ~ )  : 

with w; being far from resonance as far as participation 

in the two-photon resonance is concerned.) This is 

illustrated in Figs. 9-12. 

A second interesting application of the present 

mathematical problem is to consider a situation identical to 

that described above except that we now assume y 2  j 0. Thus 

for all .t: 

when 0 < - 36/v - .: 1 wc obtain 
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Figure 9. Photoionization Probability (isolated crossings), 
la/U121U~I = 1, Por = 1 and g(t)=[l+(t/r)Z]-3. 
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Figure 10. Photoionization Probability (isolated crossings), 
la/P1*1PTl = 1, P,T = 0.1 and g(t)=[l+(t/r)2]-3. 
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Figure 11. Photoionization Probability (isolated crossings), 
 la/^ 1 2 1 1 ~ ~  l=lr P&~=0.001 and g(t)=[l+(t/~)?l-3. 
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Figure 12. Photoionization Probability (isolated crossings), 
la/lJ121~~l= lo, POr = 1 and g(t)=[l+(t/r)2]-3.- 



t > tO2. The probability of emission of a fluorescence 

photon per unit time at t is then 

If I d 1 1 1  I 1, we see that T = 1 for nearly all 6 6 

satisfying 0 < - 26/11 c - 1. In such a circumstance nearly all 

fluorescence occurs in the time interval -tO2 5 t < - t02* By 

adjusting 6 / p  the time interval during which the fluorescence 

occurs can be changed as indicated by Eqs. (60). If v 2 r  << 1 

and p O ~  < <  1 we have a situation where the entire population 

jumps from the state 10, to the state 12, at time -tO2, 

fluoresces until time to*, and then almost all atoans return to 

the ground state. All fluorescence occurs in a time short 

compared with the excited states lifetime; but during this 

time all atoms,in the state 1 2 >  are fluorescing. Such an 

effect  should be relatively easy to demonstrate with 

commercially available electronic time gating equipment. 



2 I P T  I 
In the situation 1 - 1  - > >  1 the population is 

P 6 

completely inverted in passing throughthe first crossing.~y 

using slowly growing pulses which are terminated abruptly 

it may be possible to have situations where T is nearly unity 

at a first crossing and small compared with unity at a 

second. In such a circumstance one should be able to produce 

very large populations of meta~tablo atoms in elements such 

as those in the second column of.the periodic table. Such 

a possibility might be of interest as a way to produce very 

short but intense pulses of metastable atoms for crossed 

beam scattering experiments. 

E .  CROSSING EFFECTS DUE TO TIME OF PASSAGE ACROSS 

TIGHTLY FOCUSED LASER BEAMS 

In this section we consider two counter propagating 

cw laser beams at frequencies w; and w;. The beams are 

brought to a common focus in a small cell occupied by a low 

, concentration o f  atoms having enerqy levels similar to those 

described in Section A of the present chaptex,If thelaser at 

W1 is much more powerful as well as more tightly focused, we 

have a situation in which two-photon excitation is only pos- 

sible in the region of space where both laser fields are 

strong. This region can be as small in radius as ~ 1 0 - 4  cm; 

so that at thermal equilibrium the time of passage of atom 

across the high field region is s 10-*second. Thus, .in such 

a situation every atom moving through the beam sees a pulsed 



field of very high intensity. With the most powerful tun- 

able cw dye lasers, the peak power density may reach a 

6 level L 10 w/cm2 at the beam center. 

We begin by assuming that the laser at wi is much 

less tightly focused so that in the region of overlap its 

amplitude can be taken as a constant given by E20. The 

laser beams propagate parallel to the Z axis and the radial 

dependance of the amplitude of the laser at wi is 

2 
~ ~ ( t )  = E~~ exp I- /2a121. 

Thus, an atom approaching the beam sees El(t) given by 

where b .is the distance of closest approach to the beam axis 

and Vx is the component of velocity perpendicular to the Z 

axis. Obviously the probability of.being in )2> at time t, 

if initially in lo>, can be obtained by solving Eqo. (37) with 

the present interpretation of Ellt) and E2(t) Further, here 

we can have 1 pr I > >  1 but 1 a / p  1 c < 1 so that the method of 

isolated curve crossing can be applied. The same restric- 

tions (for permitting the derivation of Eqs. (37)) apply here 

as in the previous sections of the present chapter. 

The number of phot.ons emitted per second per unit 



length of the laser beam is given by (using collisionless 

kinetic theory and assuming thermal equilibrium) 

.where No is the atom concentration,m is the mass of an 

atom, T is absolute temperature, k is the ~oltzmann's con- 

stant and bm is the maximum value of b, p(Vx,b,E20,E10~01,~2~ 

26) is the probability that a passage at Vx and b will lead 

to the emission of a photon with the laser parameters EZ0, 

E1O'al 
and 2 6  and with the spontaneous decay rate. Here we 

have assumed that photoionization does not occur. It re- 

mains for us to find p and to use it in Eq. (68) ., Using the 

same considerations as in Section D of this chapter we find 

P and obtain 

/ 2kT R = 4No - nl 1/2 u1 (an-) m A 

where 



K1 1/2 (3 Y201 ( ~ n  T )  , note 'C = 1 r = 1 /m - /E 
m m 

Note that we have assumed that there is a single dominant 

virtual state and klV, and k2VB in A1 and A2 are ignored; and 
- - 

2 
also note that v =  K1 exp(-b2/012) and 1 a ] = -  exp (-b /2012) , 

[ udu 



i f  t h e  spontaneous decay f e e d s  t h e  ground s ta te  immediately 

( c a s e  1) and 

i f  t h e  spontaneous decay does n o t  app rec i ab ly  r epopu la t e  

10> s t a t e  d u r i n g  t h e  d u r a t i o n  o f  t h e  l a s e r  p u l s e  ( ca se  2 ) .  

F ig .  1 3  and F ig .  18 show H ( I z ~ ~ ~ , I ' )  f o r  t h e  two 

cases .  F igs .  14-17 and F igs .  19-22 show some of  t h e  examples of 

~ / ' ( 4 ~ ~ o ~ m m )  v e r s u s  A/K1 f o r  v a r i o u s  v a l u e s  of  

- u / m m  and Z = ~ K ~ u ~ /  m. The g e n e r a l  l i n e  roo - Y2 1 00 

shapes  a r e  s i m i l a r ,  t o  t h e  one which was observed by Liao and 

Bjorkholm. 
7 

Fig .  1 4  and F ig .  1.9 show an i n t e r e s t i n g  a s p e c t  

which w a s  d i s c u s s e d  e a r l i e r  i n  S e c t i o n  D of  t h i s  c h a p t e r .  

With l a r g c  Zoo and omall  l' a l a r g c ' p o p u l a $ i o n  invc ro ion  
00 

o c c u r s  a t  the f i r s t  c r o s s i n g ,  a  sma l l  decay occurs  between 

c r o s s i n g s  and 12> popu la t ion  becomes n e a r l y  n u l l  a t  t h e  

second c r o s s i n g ,  t he reby  l eav ing  a lmost  no th ing  t o  decay 

t h e r e a f t e r .  With s m a l l e r  Zoo ( bu t  n o t  t o o  s m a l l ) ,  t h e r e  

remains  more upper s t a t e  popula t ion  j u s t  a f t e r  t h c  second 

c r o s s i n g .  Thus, t h e  l a t t e r  case produces more f l uo recence  

t h a n  t h e  former case. 
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Figure 1 3 .  H ( 1 Zo 1 *, r ) . Spontaneous decay f eeds  1 0, state 
without t i m e  de lay  . ( c a s e  1 ) .  
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0.4 

Figure 14. Fluorescence (case 1 with roo = 0.05 and Zoo = 
0.01 - 10). 



-63- 
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Figure 15. Fluorescence (case 1 with roo = 0.5 and Zoo = 
'0.01 - 10). 
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Figure  1 6 .  Fluorescence (case  I w i t h  Too = 1 . 0  and Zoo = 
0 . 0 1  - 10). 



ORNL-DWG 76-15986 

Figure 17. Fluorescence (case 1 with roo = 1.5 and Zoo = 
0.01 - 10). 
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Figure 1 8 .  H ( ( Zo 1 2 ,  1 ) . Spontaneous decay does  not  repopulate 
) o >  s t a t e  [ c a s e  2 ) .  



Figure 19. 

-67- 
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Fluorescence (case 2 with roo = 0.05 and Zoo 
0.01 - 10). 



ORNL-DWG '76-45994 

0.6 

Figure 20. Fluorescence (case 2 with roo = 0.5 and Zoo = 
0.01 - 10). 
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Figure 21. Fluorescence (case 2 with roo = 1.0 and Zoo = 
0.01 - 10). 
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- ~ - -  - 

F i g u r e  22.  F luo re scence  ( c a s e  2 with Too = 1 . 5  and Zoo = 
0.01 - 10). 



CHAPTER I V  

TWO-PHOTON RESONANCE IONIZATION WITH PULSED LASERS 

W e  c o n s i d e r  a  problem s o l v e d  e a r l i e r  by Beers and 
2 4  

Armstrong f o r  a  f u l l y  q u a n t i t i z e d  s i n g l e  mode e l e c t r o -  

magnet ic  f i e l d  of t h e  s q u a r e  p u l s e  t y p e .  I n  t h e  p r e s e n t  

work t h e  atom i s  t r e a t e d  quantum mechan ica l ly  b u t  t h e  EM 

f i e l d  i s  t r e a t e d  c l a s s i c a l l y .  T h i s  approx imat ion  s h o u l d  
I 

b e  v a l i d  f o r  t h e  h i g h  power l e v e l s  t h a t  w i l l  be  emphasized 

h e r e  and which w e r e  emphasized i n  Ref.  2 4  . The p r e s e n t  

work allows f o r  t h e  more g e n e r a l  p u l s e s  o f  t h e  form 

+ 
E = f i e l d  i n t e n s i t y  a t  ( x O l y o , z O )  a t  t i m e  t 

= E o i  g (Sit) cos (Wt - kzo + 6) . 

where g ( S l t )  i s  a f u n c t i o n  o f  t h e  t y p e  d e s c r i b e d  (and'named 

t h e  same way) i n  S e c t i o n  A o f  C h a p t e r  11. The atoms t h a t  

i n t e r a c t  w i t h  t h e  l a s e r  beam are assumed t o  b e  v e r y  d i l u t e  

i n  d e n s i t y  ( s o  t h a t  p r o p a g a t i o n  e f f e c t s  and a t t e n u a t i o n  can  

b e  n e g l e c t e d )  and t o  have no component of  v e l o c i t y  p a r a l l e l  

t o  t h e  d i r e c t i o n  o f  p r o p a g a t i o n  o f  t h e  l a s e r  beam. The 

atoms a r e  i n i t i a l l y  i n  t h e  ground s t a t e  ( i . e .  l o > )  and Fiu 

is  n e a r l y  r e s o n a n t  f o r  e x c i t a t i o n  o f  a s t a t e  Il>, and a 



second photon can photoionize state (1> as in Fig. 23. In 

the latter situation, I$(t)> is approximately of the form 

where 

<Oil> = Ot<Ec,pI~6,pt> = 6(EcE;)6  IJ I U ' , < i ~ ~ ~ , p >  = 0. 

NOW, 

where 

A A A 'il 
H = Ho - P x E 0 g(slt) cos (wt-kzo+f3) - ifi - 2 11><11, 

A 

and Ho is the electronic Hamiltonlan of the isulatrd aLum, 
A 

P is the x compurie~it ul: Llie electric dipola opcrator and 
X 

2 is plane-polarized parallel to the x-axis. We do not 

follow Beers and Armstrong in including other states which 

are far off resonance by an effective Hamiltonian method. 

This will, of course, lead to errors on the far wings of 

the line shape for photoionization. 



ORNL-DWG 76-16601 

Figure 23. Energy Level Diagram of 2-Photon Transition with 
the Laser at w. 



Using the rotating wave approximation [i.e., keeping 

only the low frequency oscillating part when cos x = (e ix + 

- 
e ix)/2 combines with the complex exponentials] , we find 

dao i (w-w + wo) t 
-I iW g(llt)e 1 
dt P ' 

dal * -i (w-w + wo) t 
= - -  'I + w g(Slt)e 1 .  
dt 2 al P 

( 7 3 )  
i(wl-wc+w)t * 

+ i 1 dEcc, (E,, t) e au (Ec) g (sit) . 
P 

where w = <olB II>E,/~~, a (E~)= <ec , p 1 Bx 1 1 > E ~ / M .  chaos- 
P X P 

ing A such that a (EcO + * A )  - a (EcO) where EcO=IiwO + M w  
P - v 

and 1 A 1 >>  idal/dt 1 , we show that C (Ec, t) can be elimi- 
P 

nated. 

TO eliminate C (Ec,t), we integrate the last of 
\ I  



W e  now c o n s i d e r  lwc-w -w 1 2 A.  With t h e  r e s t r i c t i o n s  1 

I d a l ( t ) / d t ( < <  A and Sl/A<< 1 w e  can  i n t e g r a t e  by p a r t s  

and n e g l e c t  t h e  remaing i n t e g r a l .  

if Iwc-wl-w I 2 A.  When Iwc-wl-w( < A w e  can  t r e a t  a (Ec) 
lJ 

as a c o n s t a n t  g i v e n  by a (EcO).  W e  have u 

On s u b s t i t u t i n g  Eqs. (75)  and (76)  i n t o  second Eq. (73)  

t h e  term involvi i iy  C ' (c,, t )  becomes 
lJ 



where means to delete the region of Ec implied by f 
Iwc-wl-w 1 <A. Since a (E ) is extremely constant over the 

P c 

f latter interval, can be replaced by a principal value 

integration. Thus, 

2 i' -i (wco-wl-w) (t-t' ) 
+ 2 i n  E ~ ~ , , ( E ~ ~ ) I  g(Slt) g(S1t')al(t8)e (78) 

IJ -OD 

x sin ~(t-t') dt, 
t-t ' 

with 

With the assumptions that 1 6 1 ~ ~ ~  (6 = wcO-w1 -w) and that 

(t-tl)-' sin  A (t-t') behaves like a Dirac delta function 

with its peak at t '= t, we, find 

-ib(t-to) sin A(t-t') IT 1 g(Sltl)al(tv)c at8  = ri g ( " t t ) ~ ~ ( t ) .  
t-t ' 

Thus, 

2 2 I = ijg (slt)al (t) + iPOg (Slt)al (t) t (80) 



where 

In several other problems in the previous chapter 

we were faced with the inclusion of continuum states. A 

procedure which is completely analogous to the one described 

above was used to eliminate the continuum amplitude in each 

case. 

With Eqs. (73) and (80) 

with 6 = w - (wl - wO), Thus, we now have an effective 
L 

two-state problem. Let al(t) = bl(t)exp[iW g (Slt')dt11, -1'- 
-OD 

and 



The coupling terms W g exp[i6t + 
P 

have the property that the oscillating exponential is in- 

effective in decreasing the effectiveness of the coupling 

- 2 if Iwpg1>>16 + Wg I.  Essentially, this means that I W  gl 
P 

is so big that a. and bl,can be changed by large amounts 

in a time which is small compared with the time for 

exp[idt + iw g (Slt8)dt81 to oscillate once. Thus. if 1' 
I W  l>>lW( the a.c. Stark shift due to coupling with the 
P 

continuum states can be neglected for all 6. We note fur- 

ther that unles '0 1 l> is extremely small we will have , 

both I W  > >  and I w ~ ~ > > P ~  in any problems of this type. 
P 

We also take the peak power to be very large so that 

I ~ ~ l > > y ~  and I W  I/sl?>l. In this c i . t ~ ~ a t i o n  t h e  faotoriza- 
P 

tion method of Chapter I1 can be used as follows: 

with 

dg2 2 2 Y1 2 Y1 d 2 g1g2+af- = 1 wp 1 g +i6 (T + Pog ) - (T + pOg2! %ng + P 3 
dt odt 

If Y ~ / I w ~ ~  <<  1 and P ~ / ~ w ~ ( < <  lwe can neglect some of the 

terms and use 



With our assumptions the following gl and g2 are adequate 

for good accuracy (we take yl/S1 < <  1 for simplicity) 

where 

Eq. (15) of Chapter I1 yields 

The ionizationprobability R is given by 



where r = l/S1, V = tS1. R can be put in the form 

R = 1 - exp [-POrLg ( 16/ (2Wp) 1) I, 

where; assuming g (-V) = g (V) , 

Any smoothly varying function having a single maximum of 

unit amplitude at t = 0  and approaching zero sufficiently 

2 - 3 / 2  rapidly at t++- can be used. We take g(v) = [1+V ] 

and tabulate L (x). A graph of (-~~r)-ll!nll-~) versus 
4 

1 6/(2wF) I is a graph of the function L 
$'  

For our choice 

of g a graph of L is given in Fig. 2 4 .  We note that 
FI 

Lg(0) = 3n/R and for X <; 6 we have L ( x )  = 0 . 3 8 6 6 / x 2 .  ~ h u s ,  
'3 

at high power levels the entire line shape has been cal- 

culated accurately by the factorization method. 

With the same approximations and a square pulse 
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Figure 24. 'Photoionization Probability, g(t) = [l + 
(t/~)2]-3/2, 2-Photon Transition. 



where 

I f  x >> 1, w e  o b t a i n  an asympto t ic  s o l u t i o n  

I n  t h e  square  p u l s e  c a s e ,  1 
and Po can be inc luded  wi thout  

t h e  approximat ion yl/ I w I and po/ 1 w I <<1 [ s e e  E ~ S .  (91)  , P P 
Appendix B ] .  

I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  i f  P T >> 1, then  bo th  
0 

t h e  s m ~ o t h  p u l s e  and t h e  square  p u l s e  - y i e l d  s i m i l a r  l i n e  

shapes- R be ing  = 1 f o r  bo th  c a s e s  i f  x < <  e, wi th  t h e  

smooth p u l s e  R dropping a Bit faster on t h e  Iar. wirig. Alsoi 

w e  n o t e  t h a t  when Par >> 1 w e  can use  t h e  asymptot ic  forms 

of  Eqs. ( 8 7 )  and (89) f o r  a l l  6. 



APPENDIX A 

TABULATION OF THE H FUNCTION 

In Section C of Chapter I11 we have derived analyti- 

cal expression for photoionization probability 

6 a 
R = 1 - exp [-PorH (-;, 1 ;) ] , 

where 

and E '  = 6p/16l~I. 

6 a 2 - 3  We have tabulated H(-, l y l  1 for g(v) = (1+V 1 
lJ 

and the results are given in the following table in the 

order 6 a 6 a 
Ir ' [-;I and H(-, l;l!- 

lJ 



TABLE 1 

0,10000 COD 0 1 

0 ,92000 C O D  00  





0.76 000  COD 

0,7600000D 

0,7600000D 

0.7600000D 

0,76000COD 

0.7600000D 

0,76000OOD 

u, 5 6 0 0 0 0 0 ~  

0,72000COD 

0,7200000D 

0,72000COD 

0 , 7 2 0 0 0  00D 

0,72000COD 

0 , 7 2 0 0 0  00D 

0,72000COD 

0 ,72000  COD 

n. f i A f l f l O  O O D  

0.68000 ?on 

0 . 6 8 0 0 0 0 0 ~  

0 .68000 00D 

0,680000OD 

0 ,68000  000 

0.68000COD 

0,68000 O O D  







0.UOOOOOOD 0 0  0, lOOOOOOD 00 0.9137US7D 00 

0.U0000COD 0 0  0.2000000D 00 0.8660309C 00 

0.4000000D 0 0  0.3000000D 00 0.8606046D 00 

0. U O O O O C O D  0 0  0.UOOOOOOD C O  0.8674847D 00 

0.4OOOOOOD 0 0  0,5000000D 00 0.8778U73D G O  

0. U O O O O C O D  0 0  0.6OOOOOOD 00 0.88093360 00 

0. U O O O O  C O D  0 0  0- 7000000D 00 0- 89976 17D 00 

0, U O O O O a O D  0 0  C.8000000D C O  0,90998S3C 00 

0,3600000D 0 0  0.1000000C 00 0 ,11077 12D 0 1  





0,1600000D 0 0  

0,1600000D 0 0  

0,16000COD 0 0  

0,16000COD 0 0  

0.16OOOOOD 0 0  

0,1600000D 0 0  

0,1600000D 0 0  

0,1600000D 0 0  

0 ,12000  C O D  0 0  

0- 12000COD 0 0  

-0- 12OOOOOD 0 0  

0,12000COD 0 0  

0,12000OOD 0 0  

0,12000COD 0 0  

0,120OOCOD 0 0  

0.12000COD 0 0  

0,8000000D-01 

0,8000OCOD-01 

0,8000000D-0 1 

0,8000OOOD-01 

0 , 8 0 0 0 0  00D-0 1 

0,8000OCOD-01 

0 ~ 8 0 0 0 0 0 0 b 0 1  

0,8000OOOD-01 









APPENDIX B 

EXACT SOLUTIONS FOR SQUARE PULSES, AND FOR THE 

GENERAL PULSES WITH 6=0 AND y2=0 

0 

Eqs.(39) f o r  s q u a r e  p u l s e s  can be w r i t t e n  a s  

dAo - -  
d t  - i a A 2  exp [ i  (26-p) t ]  , 

* 
- -  dA2 - -yA2 + i a  A. exp  [ - i  (26-p) t ]  . 
d t  

Y2 where y = - 
2 + Po . 

With t h e  boundary c o n d i t i o n s  A ( 0 )  = 1 and A2(0)  = 0 w e  
0 

s o l v e  t h e  second o r d e r  d i f f e r e n t i a l  e q u a t i o n  and f i n d  t h e  

exact  ~ o l u t i o n s  

where 

and w e  choose such  t h a t  i t s  r ea l  v a l u e  i s  p o s i t i v e .  



If y < <  la/, then we can make an approximation and find 

7- -2 * - cos 41al +(26-p) tl. 

1f Y (26-~).r < <  1, (0 r t 5 r), then cosh y(26-~)t 
h l a 1 ~ + ( 2 6 - p ) ~  74 1 u 1 2+ (26-p)2 

eldropping 2nd order smallness. 

In the case of the pulse shape g(t) with y2 = 0 

and 6 = 0 and with the substitution U = Eq. (39) 

-OD becomes 

dAo - 
dU = ia A2 exp ( -  ipU), 

dA2 E -  * 
dU PoA2 + i a  A. exp ( i u ~ )  , 

which is the same type as Eqs. (90). 
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