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The separa ted-pai r  independent p a r t i c l e  model and t h e  

genera l ized  B r i l l o u i n  theorem: ab i n i t i o  - 

c a l c u l a t i o n s  on t h e  d i s s o c i a t i o n  of polyatomic molecules 

Kenneth Randall Sundberg 

Under t h e  supervis ion  of  Klaus Ruedenberg 
From the  Department of Chemistry . . 

Iowa S t a t e  Univers i ty  

A method i s  developed t o  optimize t h e  separa ted-pai r  . ' 

independent p a r t i c l e  (SPIP) wavef unct ion;  it i s  a s p e c i a l  

case  o f  t h e  separa ted-pai r  theory obta ined  by us ing  two-term 

n a t u r a l  expansions of t h e  geminals. The o r b i t a l s  a r e  ,opti-  

mized by a theory based on t h e  genera l i zed  B r i l l o u i n  ' theorem ' ' 

. . 

and i t e r a t i v e  conf igura t ion  i n t e r a c t i o n  ( C I )  c a l c u l a t i o n s  i n  

t h e  space of t h e  SPIP funct ion  and i t s  s i n g l e  e x c i t a t i o n s .  . . 

The geminal expansion c o e f f i c i e n t s  a r e  optimized by s e r i a l  

2 x .  2 C I  c a l c u l a t i o n s .  'Formulas a r e  der ived  f o r  t h e  matr ix  . . 

elements.  An a lgor i thm t o  implement t h e  method i s  presented ,  

and t h e  work needed t o  e v a l u a t e  t h e  molecular i n t e g r a l s  i s  

discussed.  

The SPIP model is  used t o  c a l c u l a t e  t h e  ene rg ies  rel 'eased 

by t h e  formation o'f two types o f  dimers. The f i r s t ,  two mon- 

omers joined by a sigma bond, is  exemplif ied by t h e  c i s  and , - 

USERDA Report IS-T-699. This  work was performed under con- 
t r a c t  W-7405-eng-82 with t h e  . Energy ~ e s e a r c h  and Develop- 
ment Administration. 
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+ t r a n s  isomers of g lyoxal ,  (NO)  2 ,  and (02) 2 . The geometries 

a r e  determined by t h e  Hartree-Fock (HF) approximation, and a  

S P I P  c a l c u l a t i o n  recovers  t h e  r i g h t - l e f t  c o r r e l a t i o n  energy 

i n  t h e  bond jo in ing  t h e  dimers. For g lyoxal  t h i s  ' c o r r e l a t i o n  

energy is  -9 .5  kcal/mole i n  a  r e a c t i o n  energy o f  -72 .5 .  kcal /  

mole. I n  ( N O )  2 t h e  c o r r e l a t i o n  energy i n v e r t s  t h e  HF energy 

o r d e r  and i s  r e l a t e d  t o  t h e  geometry of t h e  d i m e r t s  isomers. 

+ The O 2  dimer .is metas table  ,. bu t  i t s  geometry conforms t o  

t r e n d s  s e t  b y  t h e  r e s t  of t h e  s e r i e s .  The second type,  two. 

monomers joined by two sigma bonds i n  a  f o u r  membered r i n g ,  

is  exemplif ied by 1,2-dioxetane and trans-(HNO) 2 .  The geom- 

e t r i e s  a r e  c a l c u l a t e d  by t h e  HF appro~:imation, and t h e  S P I P  

model recovers  r i g h t - l e f t  c o r r e l a t i o n  i n  t h e  sigma bonds . ,  

j o in ing  t h e  dimer and t h e  p i  'bonds of t h e  separa ted  mononers. - 
  his c o r r e l a t i o n  energy i s  important ( 1 2 . 2  kcal/mole o u t  of a  

f i n a l  r e a c t i o n  energy of  6 9 . 4  kcal/mole f o r  l ,2 -d ioxetane  and 

18.6 ,kcal/mole ou t  of  62.1 kcal/mole f o r  t r ans -  (HNO) 2 )  . 
The themolysis of 1,2-dioxetane is  s t u d i e d  to determine 

i t s  a c t i v a t i o n  energy. The work focuses ,  on t h e  e l e c t r o n s .  
I 

d i r e c t l y  involved i n  t h e  d i s s o c i a t i o n .  The o r b i t a l s  d iv ide  

i n t o  a s e t  of core o r b i t a l s  (c losed  s h e l l s  n o t  e f f e c t e d  by 

t h e  r eac t ion)  and r e a c t i o n  o r b i t a l s .  (RMO I s ,  o r b i t a l s  descr ib-  

ing the e l e c t r o n s  e f f e c t e d  by t h e  r e a c t i o n )  . The R M O ' s  gen- 

e r a t e  a l l  t h e  conf igura t ions  of proper  symmetry and mult ip l ic -  \ 

i t y  t o  descr ibe  t h e  r e a c t i o n  and form the  complete configura- 

. . 



t i o n a l  r e a c t i o n  space (CCRS) . I t  i s  shown t o  be i n v a r i a n t  

under or thogonal  t ransformations of t h e  RMO's ;  which l e t s  t h e  
. . 

R M O ' s  be n a t u r a l  o r b i t a l s .  .The l e a s t  motion reac t ion  pa th  is  

optimized by a  one-geminal SPIP funct ion .  The d i s s o c i a t i o n  

.is .examined with a  two-geminal SPIP funct ion  and t h e  CCRS by 

an MCSCF procedure. The d i s soc ia t ion  has a  b a r r i e r .  of 27.5 

kcal/mole, an'd t h e  t r a n s i t i o n  s t a t e  is  molecular.  



P RE FACE 

Over the ' last  decade t h e o r e t i c a l  chemists .  have per-  

f e c t e d  s e v e r a l  mathemat ical  s t r u c t u r e s  w i t h i n  which w e  can 

concep tua l i ze  and a r t i c u l a t e  o u r  n o t i o n s  about  t h e  n a t u r e  

and behavior  o f  t h e  chemical  bond; and concomitant  wi th  

t h i s  e f f o r t ,  t h e  very  r a p i d  rise i n  t h e  a v a i l a b i l i t y  and 

speed o f  t h e  modern d i g i t a l  computer h a s  p e r m i t t e d  these 

t h e o r i e s  t o  become v a l u a b l e  t o o l s  t o  accompany t h e  expe r i -  

m e n t a l i s t  i n  h i s  r e s e a r c h .  A s  ev idence  o f  t h i s  p r o g r e s s  

one need on ly  count  t h e  number o f  ab  i n i t i o  c a l c u l a t i o n s  - 

r e p o r t e d  i n  t h e  community ' s major  r e s e a r c h  organs  ; n o t a b l y  . . 

t h e  " Jou rna l  o f  t h e  American Chemical Soc ie ty . ' '  

Most of t h e s e  l a t e r  e f f o r t s  have been Hartree-Fock (HF) 

s e l f - c o n s i s t e n t  f i e l d  (SCF) s t u d i e s  of i s o l a t e d  molecules  

o r  chemical  s y s t e m s  ,which can be addressed  i n  t h i s  manner. 

Notable  c o n t r i b u t i o n s  a r e  due,  i n  p a r t i c u l a r ,  t o  t h e  minimal 

gauss i an  b a s i s  set  s t u d i e s  i n i t i a k e d , b y  Pople  and h i s  co- 

workers (Lathan,  Hehre and Pople ,  1971) . 
The HF-SCF approach,  however, is  w i t h  some excep t ions  

l i m i t e d  t o  s t r u c t u r a l  problems. Most r e a c t i o n s  a r e  accom- 

pan ied  by changes i n  e l e c t m n i c  s t r u c t u r e  t h a t  cannot  be 

d e s c r i b e d  by t h i s  s i n g l e  c o n f i g u r a t i o n a l  t heo ry .  Tha 

t h e o r e t i c i a n ' s  t a s k  w a s  t h u s  def ined :  Develop a mul t icon-  

f i g u r a t i o n  s e l f - c o n s i s t e n t  f i e l d  (MCSCF) approximat ion t h a t  



embodies t h r e e  e s s e n t i a l  . f e a t u r e s  : (1) it 'must i nvo lve  

en'ough. c o n f i g u r a t i o n s  . t o  p r o p e r l y  account f o r  t h e  changes 

experiericed by .  a  molecule i n  ch.emica1 re .ac t ion ;  (2 )  t h e  

number o f  c o n f i g u r a t i o n s  must be  sma l l  enough t h a t  t h e  

t heo ry  r e m a i n s o i n t e l l i g i b l e ,  and ( 3 ) ,  it should  fie n e a r l y  a s  

economical  a s  t h e  HF-SCF approach.  

S e v e r a l  t h e o r i e s  have been d i r e c t e d  a t  t h i s  problem. 

The f i r s t  such h i g h l y  op t imized  f u n c t i o n s  w e r e  t h e  s epa ra t ed -  

p a i r  (Hurley , Lennard-Jones and Pople  , 1953) c a l c u l a t i o n s  by 

M i l l e r  and Ruedenberg (1968a,b ,c)  and Mehler, Ruedenberg 

and S i l v e r ,  (1970) .  Other  developments a r e  t h e  bonding 

s t u d i e s  by Goddard and h i s  c o l l e a g u e s  (Hay -- e t  a l .  , 1972a,b ,  c) , 
t h e  MCSCF t h e o r i e s  by B e r t o n c i n i ,  Das, and Wahl (1970) and 

by Hinze and Roothaan (1967) .  L a s t l y ,  an MCSCF theo ry  devel-  

oped by Grein  and Chang (1971) has  been modif ied by Cheung 

and Ruedenberg ( t o  be  pub l i shed )  and h o l d s  g r e a t  p o t e n t i a l  

f o r  f u t u r e  a p p l i c a t i o n s .  

The p r e s e n t  i n v e s t i g a t i o n  deve lops  some new t cchniqucs  

and concepts  r e l e v a n t  . t o  app ly ing  t h e  MCSCF method t o  t h e  

s tudy  o f  chemical  r e a c t i o n s .  .The a p p l i c a b i l i t y  o f  t h e  

g e n e r a l  t heo ry  i s  extended by developing an e f f i c i e n t  l i m i t e d  

procedure  t h a t  accomplishes much o f  t h e  o r b i t a l  o p t i m i z a t i o n  

ob ta ined  from a  f u l l  MCSCF c a l c u l a t i o n ;  t h u s  a  l i m i t e d  theo ry  

a l l ows  one t o  r e s e r v e  t h e  g e n e r a l  method f o r  the recovery  o f  

s u b t l e  e f f e c t s  ( such  as e l a b o r a t e  c o r r e l a t i o n s ,  s p i n  recou- 
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p l i n g ,  o r  s m a l l  o r b i t a l  adjustments.) by proyiding it wi th  a 
. . 

very re f  i.ned i n i t i a l  wavef unction'. W e  have' developed such 

a method', t h e  separa ted-pai r  independent p a r t i c l e  (SPIP) 

model. I t  is  r e l a t e d  t o  ' the work by Goddard and t h e  work by 

,Ruedenberg and by t h e i r  coworkers mentioned .above. A d e t a i l e d  

development of t h e  theory i s  presented i n  P a r t s  I ,  11, and a 

d i scuss ion  of the  t h e o r y ' s  economy and implementation i s  

pre'sented, i n  P a r t  111. ~ 6 r  some problems, t h e  SPIP model 

can be used alone t o  produce r e s u l t s  not  ob ta inab le  

wi th  t h e  HI?-SCF approximation by i t s e l f ,  f o r  example t h e  

r e a c t i o n  ene rg ies  a s soc ia ted  wi th  t h e  d i s s o c i a t i o n  of t h e  

dimers discussed i n , P a r t  IV. I n  o t h e r  a p p l i c a t i o n s ,  t h e  

SPIP.mode1 can be combined with t h e  genera l  MCSCF method t o  

s tudy a complex r e a c t i o n  which, a t  t h e  p r e s e n t  s t a t e  of  t h e  

a r t ,  canno t  be handled otherwise.  Such an a p p l i c a t i o n  is 

o u r  s tudy of t h e  thermolys is  o f  1 ,2-dioxetane i n  P a r t  V; 

t h e r e  we a l s o .  introduce'  s e v e r a l  new concepts concerning t h e  

conf igura t iona l  and o r b i t a l  spaces i n  which t h e  chemical 

r e a c t i o n  can be meaningfully discussed'.  



PART I: ' THE SEPARATED-PAIR INDEPENDENT PARTICLE 
. . 

MODEL AND THE GENERALIZED B.RILLOUIN THEOREM 



INTRODUCTION 

Chemistry is a,study of atoms and the chemical bonds that 

hold them together in molecules. A. chemical reaction is the 

formation . . or cleavage of one or more of these bonds, so .to 

understand a chemical reaction we need to know about its 

reactants and products: the systems joined or parted by form- 

ing or cleaving bonds. More than this, we need to understand 

any metastable combinations produced during the course of a 

reaction. The most common quantum mechanical description of 

a molecule is the linear combination of atomic orbital (LCAO) 

molecular orbital (MO) theory of Hund (1928) and Mulliken 

(1928, 1935). The basic feature of this method is its emph.a- 

sis on independent particles; in MO theory, the electrons 

independently move over the whole molecule. And it is j'ust 

this essential feature of the theory that keeps it from 
. . 

giving us what' we want: a description of the cleavage or 

formation of a chemical bond. The independent electron 

motions assure us that two electrons in a bond wlll spend 

time together on a single nuclear center. Such.an arrange- 

ment of the electrons is an appropriate element in a picture 
. . 

of a bond near the molecular equilibrium. But it is unsuit- 

able for a description of the atoms or radicals produced by 

dissociation. If we are to understand how molecules dis- 

sociate to atoms, then our theory must let the electrons 

co.rrelate one another. 



FORMULATION.OF THE WAVEFUNCTION 

SCF-MO Wavefunction . 

The most powerful  f o r c e  a c t i n g  between e l e c t r o n s  i s  t h e  

coulombic r e p u l s i o n .  I n  t h e  MO approach,  it e n t e r s  t h e  poten- 

t i a l  f o r  each o r b i t a l  i n  an average  way. H a r t r e e  (1928a,b) 

f i r s t  f o r m u l a t e d . t h i s  i n  h i s  a tomic s e ' l f - c o n s i s t e n t  f i e l d  

. (SCF) method, and Fock (1930) d e r i v e d  t h e  r i g o r o u s  e q u a t i o n s  

f o r  a tomic and molecular  o r b i t a l s  from t h e  v a r i a t i o n  p r i n c i p l e .  

Roothaan (19 51) adapted  t h e  Fock e q u a t i o n s  f o r  u s e  w i t h .  t h e  

LCAO-MO expansion.  While t h e  SCF-MO theo ry  r e s t r i c t s  t h e  

o r b i t a l s  t o  be  doubly occupied ,  it y i e l d s ' t h e  b e s t  p o s s i b l e  

M O ' s ;  and it i s  t h e r e f o r e  t h e  p o i n t  of d e p a r t u r e  f o r  f u r t h e r  

d i s c u s s i o n s .  The d e f e c t s . r e m a i n i n g  i n  the .  m o d e l ' a r e  c o l l e c -  

t i v e l y  . c a l l e d '  t h e  c o r r e l a t i o n  e f f e c t  (Lowdin, 1959) . 
An M-electron .MO wavefunct ion '  has  t h e  form 

. . 

N 
N 

m (1, * *  M )  = AN {[TI $ .  (2 i -1)  $ i ( 2 i )  0 ( 2 i - l 1 2 i ) l  x 
1 - 

i=l 

H e r e  $i is an MO; a and f3 a r e  t h e  u s u a l  s p i n  up and s p i n  down 

s p i n o r s  ( P a u l i ,  1925) ,  and 



i s  an an t i symmetr ize r  f o r  t h e  ' i n d i c e s  1 , 2 ,  ,.M. The summa.-. 

t i o n  i n  equa t ion  2 ex t ends  o v e r  a l l  t h e  permuta t ions  i n  t h e  . ' 

symmetric group of  o r d e r  M ,  and N i s  t h e  number of symmetric 

space  f u n c t i o n s  o r  c lo sed  s h e l l s  (Mull iken,  1928) i n  equa- 
. . 

t i o n  1-1. The M O ' s  are r e a l  and o r thogona l ,  

s o  t h e  an t i symmetr ize r  i n  equa t ion  .2 normal izes  t h e  wave- ' '  

f u n c t i o n .  .. 
. . 

The o r b i t a l s  gi  w i t h  l < i L N .  a r e  c a l l e d  c l o s e d  s h e l l s ; :  

w e ' l l  r e s e r v e  t h e  i n d i c e s  (i) and (j) f o r  c l o s e d  s h e l l s .  

S i m i l a r l y ,  t h e  o r b i t a l s  O k  w i t h  2N + l l k  <_M are c a l l e d  

s i n g l e s ;  w e ' l l  r e s e r v e  t h e  i n d i c e s  ( k )  , ( 2 )  , and (m) f o r  

s i n g l e s .  Looking ahead,  w e ' l l  r e s e r v e  t h e  i n d i c e s .  ( a )  and 

(b) f o r  unoccupied o r  v i r  l u a l  u r b i t a l s  . ~ e ~ a r t u r e s ,  from . . 

t h e s e  convent ions  w i l l . b e  e x p l i c i t l y -  d e f i n e d  o r ' c l e a r  from 

c o n t e x t .  

Each c l o s e d  s h e l l  can be  a s s o c i a t e d  w i t h  some chemical  

n o t i o n  l i k e  a n  i n n e r  s h e l l ,  l o n e  p a i r ,  o r  bond (Coulson, 

1961; Edminston and Ruedenberg, 1963) .  L e t ' s  suppose t h a t  

m N  r e p r e s e n t s  a bond; w e  can rewrite t h e  MO wavefunct ion as  



where 

N - 1  W e  u s e  t h e  o r d e r  of  t h e  f a c t o r s  i n  t h e  produc t  Fc $N$NO-Fo 

t o  determine t h e i r  arguments; w e  j u s t  compare f a c t o r s  t e ' r m  by 

term t o  e q u a t i o n s  1 - 1 , 2 .  

R igh t -Lef t  C o r r e l a t i o n  i n  t h e  Independent P a r t i c l e  Model 

The c o n f i g u r a t i o n  i n t e r a c t i o n  ( C I )  method ( H y l l e r a a s ,  1928) 

can be used t o  i n t r o d u c e  c o r r e l a t i o n  t o  a bond. For  e x a m p l e f i n  

t h e  bond r e p r e s e n t e d  by $N i n  equa t ion  4 ,  an e f f e c t i v e  way t o  

inkcoduce c o r r e l a t i o n  i s  by a  two-term C I  . (Mull iken,  19 32 ;- 

Longuett-Higgins,  1948; Mehler -- e t  a l . ,  1970) .  Such a .  f u n c t i o n  

can be w r i t t e n  a s  



. . 

By an appropriate choice of the orbitals 4 .  and $N1 we can. . 

.No 

introduce co'rrelation into the electron motion, along. the ' bond 

represented by @N in equation 4; these effects are called 

right-left correlation. The functionsQ and A N  are called 
N 

spin and space geminals (Shull, 1959). 

Additionally, equations 6-1,5 give more freedom to our 

description. of the.dissociation. continuously varying 

the orbitals 4 and 4 and the coefficients f and f 
No N 1 No N1 

along 'the reaction path, we can slowly change from an MO , - , 

description,. near the molecular equilibrium, to a superposi- 

tion of separated atoms, at'the dissociation limit (Coulson, 

1961). . 

Separated-Geminals and the SPIP model 

An extension of equations 6-1,5 is given by. 



This, function replaces' several 'closed shells by two term 

geminals . 
Equation 7-1 illustrates some conventions. When we 

write an antisymmetrized product of closed shells, geminals, 

and singles, we will always put' the closed shells first, the . . 
. . 

geminals second, and the singles last. Moreover, we'll reserve 

the double. index notation @ and @Xv for orbitals in 
K1.1 

the geminals. 
@K 1.1 

is the p (th) orbital. in the natural expan- 

sion (Lowdin, 1955) of the K (th) geminal. 

The orthogonality relations in equations 7-4,5 imply 

that 

identically for all K # X and all values of the coordinates 

of partic1.e 1. This is the strong orthogonality condition 

of Hurley, Lennard-Jones, and Pople (1953). Aria (1960) and 



and Lowdin (1961). have shown, t h a t  s t r o n g  o r t h o g o n a l i t y  impl ies ,  

t h e  s e p a r a t i o n  e v i d e n t  i n  e q u a t i o n s  7-3,s : n o .  o r b i t a l  can, 

appear  i n  t h e  n a t u r a l  expansion of more t h a n  one geminal .  

Thus wavefunct ions  l i k e  e q u a t i o n s  7-1,6 are c a l l e d  sepa ra t ed -  

' p a i r  (SP) approximat ions .  

An a l t e r n a t i v e  form of  t h e  geminal  is  ob ta ined  from t h e  

t r a n s f o r m a t i o n  (Coulson and F i s c h e r ,  1949) 

S u b s t i t u t i o n  of  e q u a t i o n s  9-1,3 i n t o  e q u a t i o n ' 7 - 3  g i v e s  

Hay, . H l ~ n t ,  and Goddard (1972a,b ,o)  exp lo red  equa t ion  7-1 

' u s ing  t h e  p a i r  f u n c t i o n  form of  t h e  geminal i n  equa t ion  1 0 .  

T h i s  formula c l o s e l y  resembles  t h e  Heitler-London (1927) 

va l ence  bond wavefunct ion f o r  a  two e l e c t r o n  bond. So Hay, 

Hunt, and Goddard c a l l e d  t h e i r  method t h e  g e n e r a l i z e d  va l ence  

bond (GVB) theory .  



W e  made a s tudy  of  equa t ion  7-1 us ing  t h e  two-term 

n a t u r a l  expansion of  t h e  geminal  i n  equa t ion  7 - 3 .  W e  empha- 

s i z e d *  t h e  s i m i l a r i t y  o f  t h e  geminal  and MO p i c t u r e s ,  and w e  

d e f e r r e d  t o  t h e  major premise  of  t h e  MO t heo ry ;  w e  cal le 'd 
. . 

e q u a t i o n s  7-1,6 t h e  s e p a r a t e d - p a i r  independent  p a r t i 6 1 e  

(SPIP) model. 



DETERMINATION OF THE WAVEFUNCTION 

Variational Equations of the SPIP Model 

The SPIP wavefunction @r is an approximation to the true 

solution of the time-independent Schrodinger equation 

E is the total energy of the molecule in a state corresponding 
A 

to the wavefunction Y (l,***,M). H is the Hamiltonian opera- 

tor (Born and'oppenheimer, 1927); in atomic units (Eyring 

et al., 1944) it is given by -- 

A is the total number of atoms in the molecule; Za is the 

atomic number of nucleus (a); and RabI Rsar and r , are the 
st 

distances between nuclei (a) and (b), between nucleus (a) and 

electron (s) , and between electrons ( s )  and (t) respectively. 

V *  is the Laplacian operator for the coordinates of electron 
S 

(s) 



A common technique to approximate solutions to eigenvalue 

proble'ms is to appeal to the variation theorem (Courant and 

Hilbert, 1953) : 

where 6 !P is the first-order variation of Y .    qua ti on 13, 

unlike equation 11, can be satisfied by an approximation like 

r the SPIP function @ . We systematically examine all the 

parameters in @', and we select their values to satisfy the 

variation theorem and. produce as low an energy as possible. , 
' ' 

That particular function is the best separated-pair independent 

particle model of the true wavefunction Y. 

r The first-order variation of @ with respect to the geminal 

expansion coefficients and MO' s 'is . , 

The double sum over K and y covers.all the coefficients in the 
. . 

two term geminals, and the starred sum over r covers all the 

occupied orbitals: closed shell, geminalland single. The 

variation theorem holds for arbitrary variations, so it must 
. . 

hold for the yen~lirlal and orbital variations separately; Thus 
. <  , 



and 

Equations 15-1,2 are the variational equations to be satisfied 

r by the SPIP function 0 . 

Optimization of the Geminal Expansion Coefficients 

Minimizing the total energy with respect to the geminal. 

expansion coefficients under the constraint of equation 7-6 ' 

leads to a 'set of coupled eigenvalue problems (Kutzelnigg, 

Given a set of MO's and an initial guess of the.expansion 

coefficients f equations 16-1,3 can be solved by serially 
KlJ' 

executing the 2 x 2 CI problem in equation 16-1, for every 

r geminal in 0 . The solution is found when the expansions are 
. . 

self-consistent (Miller and Ruedenberg, 1968a). 



The Generalized ~rillouin 'Theorem 

It has been shown that the variational conditions in 

equation 15-2 and the orthogonality constraints in equations 

7-4,5 lead to a set of coupled integrodifferential equations. 

Their form (Kutzelnigg, 1964; ~iller and Ruedenberg, 1968a; 

Silver .et al., 1970) is essentially given by -- 

h 

F is an integrodifferential operator, and A .  is a Lagrange 
V Y  . Fc 

multiplier. 

These equations were inspected by Kutzelnigg (1964), and 

they were treated with coupling operators (Roothaan, 1960) by 

Huzinaga (1964) 'and Krauss and Weiss (1964). .Silver, Mehler, 

and Ruedenberg' (1970) unified equation 17 to a single opera- 

tor equation determining all the orbitals; but in application 

to some diatomic hydrides (Mehler et -- al., 1970) they used a 

generalization (Raffenetti and Ruedenberg, 1970) of Miller and. 

Ruedcnbcrg's (19G8a) direct optimization method, and they 

calculated their orbitals by direct minimization on the energy 

surface. Hay, Hunt, and Goddard (1972a,b,c) expanded their' 

PD's in terms of a basis set contained to eliminate the off- 

diagonal Lagrange multipliers from equation 17 (Hunt et al., 

1969). 



We borrowed the orbital variation method of Lefebvre 

and Moser (Lefebvre and Ploser, 1956; Lefebvre, 19573; the 

first-order variations of the Mots are expanded in the 

"complete space" of the Mots themselves: 

Here C .+ is a numerical coefficient, and the sum extends 
over all the virtual orbitals and all the .occupied orbitals 

except Qr. The orthogonality constraints in equations 7-4,5 
. . 

are maintained to first order in C by the relation r + s  

Substitution of equati'ons 18 and 19 into equation 14 

defines the first-order variation of the SPIP function @r with 

respect to the, occupied orbitals. We have . 

r .  I' for r in geminal, 
@ s ) -  (s-tr) 

s occupied 

for r occupied, s virtual (20-2) 

or r double, s not doubler 



r and (r+s) is the wavefunction obtained by singly exciting 

orbital br in mr to orbital bs. The differences appearing in 

equation 20-2 are created by the orthogonality cons'traint in 

equation 19. . . 

The variational conditions in equation 15-2 thus take 

the form . . 

r S> (r) 

. . 

It can readily be seen that all the mrrs appearing in equations 

20-1,2 are linearly independent, so equation 21 clearly implies 

that 

The self-consistent orbitals satisfy equation 22 and the 

variational conditions in equation 15-2, 

Levy and Berthier (1968) established equation 22 for'the 

single excitations connectirlg orthogonal orbitals for any super- 

position of orthogonal configurations.   he^ called their. 
result the generalized Brillouin theorem.. If the wavefunction 

is the simple closed shell specialization of the $PIP function 

r @ , then equation 20r2 specializes the generalized Brillouin 

theorem to the classical Brillouin theorem (Brillouin, 1934). 

It has been shown (Hirao and Nakatsuji, 1973) that equation 22 



must be  cons idered  i n  fo rmula t ing  any . . g e n e r a l  SCF o p e r a t o r  

to- c o r r e c t l y  u n i f y  t h e  o p e r a t o r s  i n  equa t ion  17 .  

S i n g l e  E x c i t a t i o n s  o f  t h e  SPIP Wavefunction 

'r To produce an a c t u a l  v a r i a t i o n  of  a SPIP f u n c t i o n  @ , 

w e  need t o  know. t h e  e x p l i c i t  forms o f  i ts s i n g l e  e x c i t a t i o n s  

i n  equa t ion  20-2. Our f i r s t  t a s k  i s  t o  enumerate t h e  
@ rs 

e x c i t a t i o n s  w e  need. 

S ince  a c l o s e d  s h e l l  can be thought  of a s  a geminal  w i th ,  

c o e f f i c i e n t s  u n i t y  and ze ro ,  t h e  t y p e s  o f  e x c i t a t i o n s  a r i s i n g  

from g e m i n a l s ' i n c l u d e  t h o s e  a r i s i n g  from c l o s e d  s h e l l s .  There- 

f o r e ,  w e  cons ide r  Q O  i n s t e a d  of m r .  @' d e f i n e s  t h r e e  k i n d s  

o f  MO's: t h e  M O 1 s  O K P  i n  t h e  n a t u r a l  expansions  o f t h e  geminals  

, A ;  t h e  MO s O k  t h a t  are s i n g l y ,  occupied i n  t h e  produc t  

Fo; and t h e  unoccupied o r  v i r t u a l  o r b i t a l s  $a . Simple 

count ing  r e v e a l s  s i x  k inds  o f  e x c i t a t i o n s :  i n t r a g e m i n a l ,  

geminal  t o  s i n g l e ,  @Ki+$ i , ;  i n t e rgemina l ,  OK, ,+  O A y ,  
@ K O  + @ K /  

geminal  t o  v i r t u a l ,  OK,, + Oa ; s i n g l e  t o  geminal ,  Ok+$Ao, and 

s i n g l e  t o  v i r t u a l  $I k +  @a. 

We can d i s c o v e r  what t h e s e  e x c i t e d  f u n c t i o n s  look l i k e  by 

s tudy ing  a s u f f i c i e n t l y  compl ica ted  f u n c t i o n .  A l l  s i x  k inds  

of . e x c i t a t i o n s  appear  f o r  t h e  f u n c t i o n  



and a  s i x t h  v i r t u a l  o r b i t a l  $a. G e n e r a l i z a t i o n  of t h e  remarks 

by Levy and B e r t h i e r ( l . 9 6 8 )  l e a d s  t o  t h e  fo l lowing:  . . 

. . 
. A 

Equation 24-3  f o r  @ ( K O +  2) i s  n o t  i n  t h e  form w e  want; t h e  
. . 

o r b i t a l  $e i s  doubly occupied,  so w e ' l l  move it forward wi th  

t h e  o t h e r  doubles .  Rewri t ing t h e  o r b i t a l  p roduct  s l i g h t l y  w e  

f i n d  



Here (if j) denotes the permutation interchanging (i) and (j) . 
An expansion of the spin function shows 

. (2,5)0-0-a = 4 0-0-a + "other spin 

functions 'orthogonal to 0 0 a". (27) - - 

The "other spin functions" must be symmetric with respect'to 

the permutation of the'electrons in at least one geminal 

(Salmon -- et al., 1972). Since the geminals are symmetric in 

their electrons, the wavefunctions the "other spin functions" 

generate must be symmetric with respect to the permutation of 

' , .  at least two electrons. The antisymmetrizer annihilates these 

functions, and equation 24 becomes 

This result holds for the corresponding excitations. of any 

. SPIP wavefunction. . . 

Equations 24 and 28 give us enough information to write 

equations for the differences, O rs, in equation 20-2. Only 

we cornbine'the differences to a single normalized function 

0 . For the M-electron SPIP function we have 'rs 





. . @ r , , , @ ~ ~  are i n  t h e  geminals  $2. 
K ','A 

O k ,  O Q  are s i n g l e s  i n  Fo .' 
Oa i s  a  v i r t u a l  o r b i t a l .  

Each f u n c t i o n  i n  e q u a t i o n s  28-1,6 i s  i t se l f  an a n t i -  

symmetrized produc t  of s e p a r a t e d  geminals .  T h i s  means t h a t  

t h e  u s u a l  s epa ra t ed -pa i r  energy formula ( S i l v e r  -- e t  a l . ,  1970) '  

. a p p l i e s  t o  each Y O s . epa ra t e ly .  Equat ions  28-1,.6 do ho ld  
s 

f o r  a p a r t i a l l y  c l o s e d  SPIP f u n c t i o n  a ' .  

C a l c u l a t i n g  t h e  .O.rbital  V a r i a t i o n s ,  t h e  

"Super CI" ,  t h e  Densi ty '  ~ a t r i x ,  and t h e  Na tu ra l  O r b i t a l s  

Suppose w e  ca l cu . l a t e  t h e  CI .wavefunc t ion  

r S> (r)  

by s o l v i n g  t h e  a p p r o p r i a t e  s e c u l a r  e q u a t i o n s  f o r  t h e  c o e f f i -  

r c i e n t s  Do and Drs.  H e r e  Q i s  t h e  SPIP f u n c t i o n ,  and yrrs 

are t h e  f u n c t i o n s  from e q u a t i o n s  28-1,6 gene ra t ed  w i t h  t h e  

optimized SPIP o r b i t a l s .  Between t h e s e  f u n c t i o n s  ' the  gene ra l -  ' .  

i z e d  B r i l l o u i n  theorem, e q u a t i o n  22, ho lds .  T h i s  r e l a t i o n  

, gua ran tees  t h a t  t h e r e  i s  no i n t e r a c t i o n  between t h e  SPIP 

f u n c t i o n ,  Q1 , and t h e  f u n c t i o n s  'tirs ; and it f o l l o w s  t h a t  t h e  

lowes t  energy f u n c t i o n  from equa t ion  29 i s  t h e  SPIP f u n c t i o n  

i t s e l f .  This  f a c t  s u g g e s t s  t h a t  t h e  C I  f u n c t i o n ,  equa t ion  29, 

might be u s e f u l  i n  deducing a set  o f  op t imized  M O ' s  f o r  t h e  

r SPIP f u n c t i o n  Q . 



The f i r s t  e f f o r t  o f  t h i s  n a t u r e  was (Grein  and Chang, 

1971) a  s e l f  c o n s i s t e n t  f i e l d  t heo ry  f o r  a  g e n e r a l  mult icon- 

r f i : gu ra t ion  (MC) f u n c t i o n ,  n o t  t h e  SPIP f u n c t i o n  @ . These 

a u t h o r s  f i r s t e x e c u t e d a  " l i t t l e "  C I  c a l c u l a t i o n  t o  f i n d  t h e  

MC f u n c t i o n  O r  t hen  they  executed  a C I  c a l c u l a t i o n  corres:pon- 

d ing  t o  equa t ion  2 9 .  The c o e f f i c i e n t s ,  DrS,  of  this second 

C I  wavefunction w e r e  renormal ized t o  y i e l d  t h e  v a r i a t i o n a l  

c o e f f i c i e n t s ,  C r , p ,  i n  e q u a t i o n . 1 8 .  From t h e r e  an improved 

se t  of o r b i t a l s  can be c a l c u l a t e d ,  and t h e  whole procedure  

be r epea t ed  a g a i n  and a g a i n  u n t i l  self  -cons i s tency  i s  ob ta ined .  

Equat ion 18 ,  however, on ly  p r e s e r v e s  o r b i t a l  o r t h o g o n a l i t y  t o  

t h e  f i r s t - o r d e r  i n  C r + s  . Thus t h e  M O ' s  a r e  o r thogona l i zed  

a f t e r  each i t e r a t i o n  of  t h e  Grein-Chang method. This  d e s t r o y s  

t h e  s tr ict  a p p l i c a t i o n  o f  t h e  v a r i a t i o n  t h e o r e m . t o  ' the  ca lcu-  

l a t i o n ,  and it could  cause  convergence problems. 

Cheung and Ruedenberg ( t o  be  pub l i shed )  have d e r i v e d  a  

d i f f e r e n t  procedure  t o  deduce improved M O ' s  from t h e  "super  

C I "  c o e f f i c i e n t s ,  D o 0  and Drs of  equa t ion  29,, by making use 

of n a t u r a l  o r b i t a l s  ( N O ' S )  (Lowdin, 1955) . A t  each  i n t e r a t i o n  

t h e  N O ' S ,  of t h e  MC f u n c t i o n , @ , ,  o b t a i n e d  by d i a g o n a l i z i n g  

i t s  f i r s t - o r d e r  d e n s i t y  m a t r i x ,  a r e  r e l a t e d  t o  t h e  occupied 

M O 1 s ,  by an o r thogona l  t r a n s f o r m a t i o n  

T h i s  e q u a t i o n ' s  i n v e r s e  i s  



A 

In general T~~ is not unity; i-e., the NO'S are not identical 

with the MO's. As long as the "super CI" function Y of equa- 

tion 29, obtained from the lowest root of the "super..CI" 

.problem generated from the occupied and unoccupied orbitals 

of that iteration, is different than the MC function @, then 

it must have a lower energy, and the NO'S, $;, for the "super 

CI" Y, are improvements over the MC-NO'S, $,- Hence, improved 

. - MO's, $;, are obtained by inserting $ $ in equation 30-2;.i.e., 

Here Tst is unchanged from equation 30-1. Given the new MO's 

, a new wavefunction @, is obtained by solving the "little" 

MC-CI, and the process is repeated to self consistency. 

The restricted form of the SPIP function, a r ,  allows us 

to make a special version of the Cheung-Ruedenberg multicon- 

figuration self-consistent field (MCSCF) theory. Rather than 

using equation 29 to optimize all orbitals at once, we solve 

a series of "super CI" problems of the form 

sL (r) 



r one for each occupied orbital in @ . The optimized NO'S are 

recovered from the first-order density matrix of the "super 
h 

CI" Yr. The first-order density matrix of the SPIP function 

r 
@ is diagonal in its own MO's (Shull, 1959; Lowdin, 1955; 

Kutzelnigg, 1964) , and it is given by 

.So we oily need to identify the MO's among the various natural 
A 

orbitals generated by the wavefunction Y . This is done with 
. . r 
a maximum overlap criteria. 

The first-order density matrix of Yr in equation 32-1 

could be calculated from an explicit,formula (Ruedenberg and 

Poshusta, 1972). But it can also be obtained from the coeffi- 

cients of the one-electron Hamiltonian integrals i-n the 

Hamiltonian matrix used to define the "super CI" problem; 

An exhaustive treatment of the matrix elements in equa- 

tion 34, see Parts I1 and 111, shows that of all the molecular 

electron repulsion integrals, 



on ly  t h e  i n t e g r a l s  [ r s l p p ]  and [ r y l s p ]  where $ i s  an occupied 
IJ 

o r b i t a l  i n  m 0  are needed.  hi& r e d u c t i o n  i n  t h e  number of 

i n t e g r a l s  l e a d s  t o  an  a lgo r i t hm t h a t  i s  u s u a l l y  f a s t e r  than  t h e  

f i . f  t h  o r d e r ,  methods (Tang and Edminston, 1970; Diercksen,  1974)' 

needed t o  c a l c u l a t e  a l l  t h e  i n t e g r a l s  i n  e q u a t i o n  35. D e t a i l e d  

a s p e c t s  of  t h i s  economy are d i s c u s s e d  i n  P a r t  111. 

Beyond t h i s ,  Lowdin and S h u l l  (1956) and Coleman (1963) 

have shown t h a t  t h e  NO expansion of  a two-elect ron f u n c t i o n ,  

such as t h e  geminal A i s  t h e  most r a p i d l y  convergent  o f  a l l  
K 

p o s s i b l e  expansions  i n  o r thogona l  o r b i t a l s .  Thus t h e  i d e n t i -  

f i c a t i o n  of  t h e  SPIP MO, ' s  w i t h  t h e  N O I S  ,of a r e l a t e d  and . . 

v a r i a t i o n a l l y  more op t ima l  f u n c t i o n  bodes w e l l  f o r  'our theory .  



PART XI: MATRIX ELEMENTS FOR THE SEPARATED-PAIR 

INDEPENDENT PARTICLE MODEL 



INTRODUCTION 

I 

The.separated-pair independentparticle (SPIP) model 

discussed in Part I posed two configuration interaction (CI) 

problems. The optimization of the geminal expansion coeffi- 

cients generated the secular equations shown in equations 

16-1,3, which we called the "little CI". The'orbital 

optimization produced the secular .equations shown in equa- 

tion 34, which we call the "-super CI" 'eigenvalue . . problem. 
. . 

The solution of these CI problems requires the evaluation of . . . . 

.many matrix elements of the Hamiltonian operator of equa-. . .  . 

tion 12, which will be discussed 'in this chapter., To ' 

accomplish this objective we start out by writing the SPIP. . .  .. 

in separated-geminal function s r ,  and its excitations, Y rs, 

form..' Using this formulation, it then becomes possible to 
I 

express all the, matrix e1ements.h terms' of. three. formulas 

involving geminal integrals. Introducing the pertinent 

orbital expansions into these general expressions, we finally 

.obtain the makrix elements in terms of orbital integrals. 

It is convenient to first evaluate the "little CI" matrix 

because certain energy quantities (collections of integrals) 

occurring there also simplify the formulas for the diagonal 

elements of the "super CI" matrix. 



"SUPER CI" MATRIX IN GEMINAL FORM 

. . Geminal Form of the SPIP Wavefunction and 

Its "Super CI" Basis 

For a derivation of the matrix  element.^, it is convenient 

to first consider the case of an even number of electrons 

( M =  2M). and to write the SPIP function, as well as its 

O resulting from the single "super CI" basis functions, Y rs, 

excitations, in geminal form. This can be accomplished with 

the help of the following two-term geminals (Silver -- et al., 

1970) 

(fKOBKo9Ko + f K l  

singlet, 

2+(O O . -  OKIOKo I @ + ,  triplet, (36) 
K O  K1 

where the orbitals form an orthonormal set, and the spin 

functions are given by 

0+ = aa. (37) 

In this way one obtains the SPIP.,function; . 

m o  = ~ , ~ a ~ ~ ' = ~ n ~ ~ ,  
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Reduction of the "Super CI" Matrix by 

Geminal Orthogonality Diagrams 

In forming the "super CI" matrix arising from.the exci- 

tations of - one orbital, twenty-seven types,of matrix elements 

can occur. These are systematically enumerated in column 1 

of Table 1. There, the previous conventions about orbital 

indices are used: namely, 
@KP 

and @ X v  are in geminals; 

and 6, are in For and @ and Ob are virtual orbitals. a 

It is readily .seen that our.one-at-a-time orbital optimiza- 

tion method produces matrix elements between products that 

differ in at most three geminals. A critic.al factor in 

calculating such matrix elements is any orthogonality relation 

that exists between these two sets of three geminals. In 

fact, the twenty-seven matrix elements can be expressed in 

terms of three general forms; each of which is characterized 

by an "orthogonality diagram". 

The simplest matrix element whose diagrams displayall 

the features that ever occur is < Y O 1 H 1 >. From equa- 
K 0 l, 

tions 7-1,6; 28-1,6; and 36, this integral is given by the 

two-term sum 



We diagram t h i s  ma t r ix  e1emen.t a s  

' Here t h e  two f i g u r e s  r ep resen t  t h e  f i r s t  and second i n t e g r a l s  

i n  equat ion 42, and they.  a r e  i n t e r p r e t e d  a s  fol lows.  We 

concen t ra te  our  a t t e n t i o n  on, and i n d i c a t e  i n  the 'd iag ram,  

. only those  geminals t h a t  a r e  "a f fec ted"  by t h e  two e x c i t a -  

t i o n s  i n  t h e  matr ix  element; t h e  upper p a r t  of t h e  diagrams 

r e f e r s  t o  t h e  "af fec ted"  geminals i n  t h e  l e f t  funct ion  sf  

t h e i r  i n t e g r a l  and t h e  bottom r e f e r s  to '  t h e  r i g h t .  The 

p o i n t s  on t h e  t o p  and bottom of t h e  diagram appear i n  t h e  

same i e f t  t o  r i g h t  o r d e r  a s  t h e  "a f fec ted"  geminals i n  t h e  

integrals of equat ion 4 2 .  There a r e  two k inds  of  l i n e s :  

(a) v e r t i c a l  l i n e s ,  and they  i n d i c a t e  o r thogona l i ty  between 

geminals i n  t h e  same p o s i t i o n  i n  t h e  l e f t  and r i g h t  products ,  

one l i n e  i n d i c a t i n g  weak o r t h o g o n a l i t y ,  a double l i n e  ind i -  



cating strong orthogonality; (b) slanted lines, -and they 

indicate that the connected geminals (being, in different 

positions)' are not s'trongly' o'r'th0g:o'n'al. Underlying this is 

the assumption' that geminals .in corresponding positions and 

not connected by a line are nonorthogonal, and geminals in 

noncorresponding positions and not connected by'a line are 

strongly orthogonal. 

The diagonal elements of the "super CI" matrix are in 

a class by themselves. Such an element is explicitly'.given 

and we diagram it as 

where each bar represents a geminal. The upper'bars corre- 

spond to .the left function, and the lower bars correspond 

to the right. 

With some rearrangement, the twenty-seven matrix 

elements in column 1 of Table 1 can be diagramed as shown 

in column 2 o f ~ a b l e  1. The notations near the appropriate 

points 'indicate the orbitals occupied in the geminals. At 

this juncture, one can examine all the orbital products in 



0 each matrix element and see that the SPIP function 0- and 

the excitations Yrs O for fixed (r) form an orthogonal set. 

~learl'~, given the expression for the integral repre- 

sented by one diagram, we can specialize it to yield the 

formula for any other diagram resulting from the addition 

of a vertical line or the erasure of a slanted line. This 

specialization is possible because .the operations involved 

only strengthen and never weaken the orthogonality relations. 

One must approach this specialization with caution, however. 

Since the diagrams do not distinguish between the singlet 

and triplet geminals shown in equation 36, we must evaluate 

the integral expressions for the general diagrams using the 

general geminal 

before making any specializations. 

An'inspection of column 2 of Table 1 then shows that 

all diagrams can be obtained from three general forms and 

two sequences of. specialization: namely 

- - - 
Diagram 1 = ... t - - - 



- 
N - 

. . 

Diagram 3 = \ 
1M 

(47-3) 

A l l  t hese  diagrams appear i n  column 2 of Table 1, and t he r e  

we make use of t h e  abbreviat ions 

<a ,b> = 2-'(ab + b a ) ,  

-+ 
(a,'b) = 2 (ab - ba) ;  

(a,) = ( , a )  = a .  



Table 1. Matrix elements and orthogonality diagrams 

-- 

Matrix Element Orthogonality Diagrams 
I 



Table 1, (Continued) 

Matrix Element Orthogonality Diagrams 



Table 1, (Continued) 

Matrix Element Orthogonality Diagrams - -- - - 

I 



Table 1. (Continued) 

Matrix ~.l.emen t Orthogonality Diagrams 

, . 

( 3 )  

A 

<yo O .  > 
K ~ X ~  1'1' ~~h~ 

[ O , t X  1 1  K . O >  < K O  r A ~ >  [ X I . I O I  

I r - - - J  - 
[ O r X o I  < X ~ ~ K O >  [ ~ l r o I  < K O ~ X ~ >  

< K O I X ~ >  1 x 0  101 < X O ~ K ~ > .  . [ K . ~ ~ o I  - 
'.f f 2 f  1 + f 2 ' f  f 

K i  X O  K o ' .  K 1  10 1 1  1 .  - 1; 
I ~ l r o I  < K O I X O >  < X ~ I K O >  [ K ~ I O I  . 

< A 0  - , K O >  [ O I X l l  - 
l/(f2 f2 + f 2  f2 ) (£2 f2 

K O  X i  K i  X O  K O  X i  - - 

[ O l A l l  < X o 1 K o >  - [ O t K ' i ]  - 
- 2 f  f f f 1 1  + f 2 f 2  

K O  X i  K i  X O  K 1  X O  - - 1 
[ O l ~ l l .  



T a b l e  1. ( C o n t i n u e d )  



Table 1. (Continued) 



T a b l e  1. (Cont inued)  



Table 1. (Continued) 



Table 1. (Continued) 

Matrix Element .O.rthogonali t.y .D.i.agrams 



Table  1. (cont inued)  

Mat r ix  Element 0.r thog.ona1 i . t y  Di.ag rams 



Table 1. (Continued) 
. . . . . . .  . 

. , Matrix E.lement Orthogonality Diagrams 



45 

Geminal Form of  t h e  Hamiltonian 

S ince  w e  a r e  c a l c u l a t i n g  m a t r i x  e lements  between 

separated-geminal  wavefunct ions ,  it i s  convenient  t o  e x p r e s s  

t h e  Hamiltonian o p e r a t o r ,  e q u a t i o n  12 ,  a s  a  sum o f  p a i r  

i n t e r a c t i o n s .  This  form i s  

where 



The quantities Zat Rabl Ria' rij, and 0; were defined in 

Part I in connection with equation 12. 

Integral Expressions for the Three General Diagrams 

The standard transformation of the antisymmetrizer 

(Eyring et al., 1944) gives -- 

Here we introduced the notation 

and we will keep it from now on unless it creates confusion. 

Equation 50 will be simplified by .the antisymmetry of 

the gemlnals, equation 40, and any orthogonality among the 

geminals in the two products. The. diagrams in equa- 

tion 47-1,3 show us that even the most complicated cases 



. s t i l l  have many o r t h o g o n a l i t y  r e l a t i o n s ,  s o  t h e  m a t r i x  

element problem is r e a l l y  n o t  ' too l a r g e .  

Diagram - 1 

This  diagram corresponds t o  t h e  energy o f ' a  s epa ra t ed -  

p a i r  wavefunction.  The s t r o n g  o r t h o g o n a l i t y  and antisymmetry 

of t h e  geminals  reduce equa t ion  50 t o  

W e  can w r i t e  ( M i l l e r  and Ruedenberg, 1 9 6 8 ~ )  

Where G ( 1 , 4 )  i s  t h e  geminal  subgroup of  S (1 ,4 )  and C i s  t h e  

set  o f  l e f t  c o s e t  g e n e r a t o r s  of S ( 1 , 4 )  from G ( 1 , 4 )  . With 

equa t ion  40 



. . . . 

- ( 2 , 3 ) - ( 2 , 4 ) + ( 1 , 3 ) ( 2 , 4 )  l/,fllflJ> .. (54) 

The one-cycles  i n  C a r e  r e l a t e d  by s i m i l a r i t y  t ransforma-  

t i o n s  from G ( 1 , 4 ) .  W e  can see t h a t  

and t h e  f a c t  t h a t  G ( 1 , 4 )  commutes w i t h  g ( 1 , 2 , 3 , 4 )  combine 
IJ 

t o  g i v e  

The term cor responding  t o  ( 1 , 3 ) ( 2 , 4 )  from C i s  e l i m i n a t e d  

because fl and flJ a r e  s t r o n g l y  o r t h o g o n a l  f o r  I<J. Equa- I 

t i o n  56 i s  j u s t  t h e  s e p a r a t e d - p a i r  energy i n  terms of  t h e  

geminals  ( ~ u r l e y  -- e t  a l . ,  1953; Pa rks  and P a r r ,  1958; McWeeny, 

1959; M i l l e r  and Ruedenberg, 1968a; S i l v e r  e t .  a l . ,  19701.. - - 
The d e r i v a t i o n  w a s  p r e sen ted  i n  some d e t a i l  t o  i n t r o d u c e  t h e  

t o o l s  needed t o  e v a l u a t e  t h e  o t h e r  diagrams.  



Diagrams 2 and 3 - - -  

These diagrams represen t  mat r ix  elements between 

orthogonal  funct ions .  This t o t a l  o r thogona l i ty , .  t h e  remain- 

ing  s t rong  o r thogona l i ty ,  and geminal antisymmetry can reduce 

equat ion 50 t o  

Here we assume t h a t  S2 Q 2 ,  fi 3 ,  S2\, R I ,  and S2'3 a r e  t h e  " a f fec ted" ,  . ' ' 

geminals. The symmetric groups .S (1 ,6 )  and S (1 ,8 )  can be 

w r i t t e n  a s  d i r e c t  products  of  l e f t  c o s e t  genera to r s  and 

geminal s'ubgroups t o  g ive  



where C is given in equation 53-2. As with diagram 1, the 

geminal antisymmetry, strong orthogonality, and the cornmu- 

tation relations 

unify the summations over symmetric groups in equation 57 

.Lo summation's over left coset. generators, giving 



This,equation now has to be specialized for diagrams 2 

" and 3. We use similarity transformations from G(1,6) 

and G (1,8) and the commutation relations in 'equations 59-1,2 

to collect the nonzero terms. The results are 



and 

. . 

S i m p l i f i c a t i o n  of  t h e  General  

I n t e g r a l  Expres s ions  

Equa t ions  56, and 61-1,2 need t o  be  f u r t h e r  s i m p l i f i e d .  

W e  can expand t h e  p a i r  i n t e r a c t i o n s  by us ing  equa t ion  49-2, 

and t h e  d e f i n i t i o n  

[ Y d v 2 * * - d v  n A1( l12 )A2(3 ,2 )  = * * A 3 ( n + l I n )  , n = even 

1 2  d ~ ~ * . * d ~ ~ A ~ ( 1 , 2 ) A r  ( 1 , 2 )  * e * h . ~ ( l ~ r q + l ) ,  n =  odd ,  (62) 5 
where A I  i s  t h e  space  geminal '  i n  equa t ion  7-3, a l l ows  u s  t o  

i n t e g r a t e  over  any v a r i a b l e s  n o t  e x p l i c i t l y  appea r ing  i n  t h e  



two-body interactions. The results of these manipulations 

and substitutions are shown below: 



and 



Here 

and p (i-j***t) is the matri'x element of the permutation 

(ij-*-2) between the'spin functions of the geminals asso-' 

ciated with electrons i,jte**,R. 

Simplifications for the Special Cases 

Equations 61-1,3 generate all the diagrams we need. 

However, a great simplification occurs when we observe that 

- 
in the diagrams Mh, , U\ , and - the gemi- 

nals O 3  and 52; are always singlet geminals of the first type 



. . 

shown i n  equa t ion  36. Th i s  means t h a t  f o r  t h e s e  diagrams 

This  r e s u l t  i s  t r u e  because f o r  t h e  above diagrams R 3  and Q'3 

are i n  t h e i r  n a t u r a l  expans ions  (Lowdin, 1955) .  

A l l  t h e  diagrams i n . t h e  sequence of  equa t ion  47-2 are 

-. ' s i m p l i f i e d '  by equa t ion  65; i n  f a c t  w e  have 

and from e q u a t i o n  66-1 



The last diagram in this sequence comes from either equa- 

. . tion 66-1 or 66-3, and it is given by 

Two of the diagrams in the.sequence of equation 47-3 

cannot be simplified by equation 65; they.must be calculated 

from equation 62-3. We find 

By using equation 65 we can .simplify the formula for dia- 



j .  

gram 3 i n  e q u a t i o n s  47--3 and 63-3 ,  s o  t h e  second sequence 

' o f  diagrams i s  g iven  by 



. . 

To go from equations 62-1 and 66-1,10 to 'the orbital 

. form of the matrix elements requires that we. introduce.some 

more notations and definitions. ~ o s t  of this :can be done b y  
. . 

considering a simpler problem. 



"LITTLE 'CI" MATRIX IN ORBITAL FORM 

Matrix Elements 

The "little CI" problems in equation 16-3 determine the 

geminal expansion coefficients. From equations 16-2,3, 

and. 37, the explicit form of the matrix elements is. seen to 

be 

andhspection shows that they correspond to the following 
. . 

diagrams 

Equation 68-1 is just the separated-pair cnepgy, did- 

gram 1 or equation 63-1, and we find using equation 49-3 

that 
A 

HK PU. = <@Kp@KU'- Ihl @KU@KIJO-> 



Equation 68-2 i s  a s p e c i a l  case of di.agram 3 an.d from equa- 

t i o n  66-10, we f i n d  

. . "K The matr ix  elements H have many terms i n  common. 
I-II-I 

Since  t h e y  a r e  t h e  diagonal  elements o f  a " l i t t l e  C I "  mat r ix ,  

. . 
' .  we,can  d i s c a r d  t h e  common':terms without  a f f e c t i n g  t h e  eigen- 

vec tors .  The. o r b i t a l  expansions from equat ions  7-3,6 can be 

introduced i n t o  t h e  remaining terms, and t h e  r e s u l t  i s  t h e  
. . 

. . .  new ' l i t t l e  CI" problem' 



Here we made use of the permutation matrix element 

<O-O- 1 (13) 10 - O - > = 4 , ( 72.) 

. . 

and the definitions 

. . 

= 2,[rs 1 tu1.- [rul ts] , grs,tu , 

where [rs 1 tu] .is the molecular electron repulsion integral 



in equation 30. The summation indices used in equa- 

tions 72-.3,5 conform to the conventions we agreed to for 

distinguishing geminally from singly occupied orbitals as 

,. discussed in the text before equation 42. 

"Little CI" Eigenvalues . 

.An eigenvalue of the."little CI" in equation 70-1 can 

be expressed as 

This result holds for either of the eigenvalues of the 
I 

"little CI" matrix, but for the most part we'll 'be interested 

K in the lowest eigenvalue. E is the energy of the ~ ( t h )  
! 

geminal in the field of the electrons. As we'll see later, 

this expression of the eigenvalue can be used to simplify 

some of the. diagona2 matrix elements of the."super CI" matrix. 
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Table 2 .  Permutat-ion. ma t r ix  'elements 



"Super C I "  Ma t r ix  Elements 

With t h e s e  r e s u l t s ,  t h e  s e p a r a t e d - p a i r  energy is  

. ( S i l v e r  e t  a l . ,  1970) -- 

and t h e  m a t r i x  e lements  become t h e  fo l lowing :  
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Equations 76-1,27 complete o u r  c a l c u l a t i o n  of  t h e  "super  CI" 

matr ix  elements f o r  the  SPIP funct ion  m O ,  b u t  some extens ions  

a r e  poss ib le .  A c losed  s h e l l  i s  obta ined  from a geminal by 

s e t t i n g  one expansion c o e f f i c i e n t  t o  un i ty  and t h e  o t h e r  t o  

zero ,  s o  t h e  r e s u l t s  a l s o  cover the  "super  C I "  mat r ix  f o r  a  

SPIP funct ion  made of both geminals and c losed  s h e l l s .  Be- 

yond t h i s ,  an examination of equat ions  76-1,27 r e v e a l s  t h a t  

t h e i e  is nu formal r e s t r i c t i o n  t h a t  we cons ider  only  systems 

wi th  an ever1 rlumber of e l e c t r o n s .  Assuming t h a t  we have 

a n  M = 2M e l e c t r o n  system, suppose t h a t  o r b i t a l  2 M  i s  a  

s i n g l y  occupied o r b t i a l ' ,  and t h a t  it i s  allowed t o  become 



. . 

i n f i n i t e l y  d i f f u s e .  Such an o r b i t a l  makes no c o n t r i b u t i o n  

t o  any of t h e  m a t r i x  e l e m e n t s  i n  t h e  " l i t t l e  CI" o r  t h e  

" s u p e r  CI" problems,  so w e  a r e  i n  f a c t  t r e a t i n g  a  2M-1 

e l e c t r o n  sys tem.  The s y s t e m ' s  matr ix e l e m e n t s  a r e  mere ly  

g i v e n  by equa t ' i ons  76-1,27, where w e  s u b s t i t u t e  z e r o  v a l u e s  

f o r  a l l  t h e  i n t e g r a l s  o v e r  ' t h e  d i f f u s e  o r b i t a l ;  t h e  r e s u l t  

i s  t h e  ,same as '  f o r m a l l y  u s i n g  e q u a t i o n s  76-1,27 f o r . a l l  t h e  

MO's e x c e p t  . o r b i t a l  2M.  Thus w e  have  a c t u a l l y  c a l c u l a t e d  

t h e  " l i t t l e  C I "  and " s u p e r  C I "  matrices f o r  t h e  general"SP1P 

f u n c t i o n  m r  i n  e q u a t i o n  7-1. 



P A R T  111. ALGORITHM AND IMPLEMENTATION 



INTRODUCTION 

. In Parts I and I1 of this work,, we developed a general 

' mathematical theory for determining optimized wavefunctions 

of the separated-pair independent particle (SPIP) type. We 

shall now outline a concrete algorithm which implements ' .  

this approach. First, we'll discuss the overall flow of the 

calculation, then we'll examine in some detail several 

specific problems that deserve special attention in the 

c.ourse of this procedure. 



OVERALL PROCEDURE 

Flow Diagram 

The complete o p t i m i z a t i o n  of  a S P I P  wavefunct ion accord- 

i n g  t o  t h e  preced ing  mathemat ical  ana . ly s i s  of  t h i s  work 

i n c 1 u d e s . a  sequence of  c a l c u l a t i o n s  b e s t  d e s c r i b e d  by a f low 

diagram. This  diagram i s  shown i n  F igu re  1, where w e  a l s o  

i n d i c a t e  equa t ion  numbers t h a t  r e f e r  t o  t h e p e r t i n e n t  r e s u l t s  

from t h e  e a r l i e r  d i s c u s s i o n .  

I n  t h e  subsequent  s e c t i o n s  w e  s h a l l  comment i n  more 

d e t a i l  on t h r e e  p a r t i c u l a r  p o i n t s  o f  t h e  g e n e r a l  p rocedure :  

namely, t h e  cho ice  of t h e  i n i t i a l  o r b i t a l s ,  t h e  bases  f o r  t h e  

" s u p e r  CI" c o n f i g u r a t i o n  spaces ,  and. some s p e c i a l  problems 

connected w i t h  t h e  execu t ion  o f  t h e  molecu la r  e l e c t r o n  re- 

. p u l s i o n  i n t e g r a l s  t r ans fo rma t ion .  

) .  I n i t i a l  O r b i t a l s  

I n  any geminal  of a  SPIP f u n c t i o n  l i k e  e q u a t i o n s  7-1,6, 

we n'ormally have two o r b i t a l s ;  one w i l l  have an occupa t ion  

number on ly  s l i g h t l y  less t h a n  two, and t h e  o t h e r  w i l l  have 

an occupa t ion  number on ly  s l i g h t l y  g r e a t e r  t han  zero .  We 

c a l l  t h e s e  o r b i t a l s  t h e  major  and minor Mots r e s p e c t i v e l y ,  
. .- 

and w e  must f i n d  a f.<.rst appro~r imat ion  -to them ( ~ o x  It 1" i n  

F i g u r e  1). 

The major  MO w i l l  b e  c l o s e l y  r e l a t e d  t o  an o r b i t a l  i n  

t h e  space  of  o r b i t a l s  occupied  i n  t h e  Hartree-Fock wavefunc- 



Determine t h e  i n i t i a l  major and 
.-minor o r b i t a l s .  

I 
I 

l ~ r a n s f o r m  i n t e g r a l s  from A 0  t o  , I 1 MO b a s i s .  I 
+ 

Calcula te  " l i ' t t l e  CI" matr ix  f o r  
geminal being optimized. 

I 
t E q .  16-1,3 

l ~ a l c u l a t e  expansion c o e f f i c i e n t s  
l f o r  geminal being optimized. 1 

I 

Has a " l i t t l e  C I "  been 
made f o r  each 'geminal? 

Yes 

A r e  t h e  geminals s e l f -  'zQYes. c o n s i s t e n t ?  

Calcula te  "super  CI" matr ix  f o r  # 4  
o r b i t a l  being optimized. Eq .  76-1,27 

I - 

Find t h e  lowest energy eigenfunc- 
t i o n  of "super  CI" matr ix .  . . Eq. 3 4  

I 
- 
Find No's of t h e  "super  CI" 
eigenfunct ion.  

.- 

I 
.- ... 

Find t h e  new M O ' s  among NO'% by 
, o v e r l a p  wi th  t h e  o l d  M O 1 s .  

1 
Has "super  CI" been 
made f o r  each o r b i t a l ?  

Yes 

Are t h e  o r b i t a l s  self- 
c o n s i s t e n t ?  

Figure 1. Flow diagram.of  t h e  SPIP algorithm. 



t i o n ,  b u t  it i s  probably much more l o c a l i z e d  t h a n  t h e  

canon ica l  Mots u s u a l l y  produced by a  Hartree-Fock c a l c u l a t i o n  

(Al len  and S h u l l ,  1962; McWeeny and S u t c l i f f e ,  1 9 6 3 ) .  Thus, 

p a r t i c u l a r l y  i n  t r y i n g  t o  c o r r e l a t e  an  o r b i t a l  among many 

. c l o s e d  s h e l l  o r b i t a l s  of  s i m i l a r  energy,  it i s  r easonab le  t o  

l o c a l i z e  t h e  Hartree-Fock M O ' s  by one o f  t h e  v a r i o u s  methods 

a v a i l a b l e  (Boys, 1960; Edminston and Ruedenberg, 1 9 6 3 ) ,  and 

then  t a k e  one of these l o c a l i z e d  Mots as d e f i n i n g  an i n i t i a l  

guess  t o  t r u e  major SPIP o r b i t a l .  

To most e f f e c t i v e l y  c o r r e l a t e  t h e  e l e c t r o n s  i n  t h e  s h e l l  

be ing  cons ide red ,  t h e  minor MO must be, l o c a l i z e d  i n  t h e  same 

p h y s i c a l  r eg ion  and h a v e ' a  node through t h e  r eg ion  of t h e  

bond'presumably de f ined  by t h e  major MO. Perhaps  t h e  e a s i e s t  

way t o  do t h i s  is  t o  use  t h e  Boys l o c a l i z a t i o n  c r i te r ia  t o  

l o c a l i z e  a f u n c t i o n  i n  t h e  Hartree-Fock v i r t u a l  MO s p a c e  i n t o  

t h e  r eg ion  covered by t h e  major o r b i t a l ,  a l t hough  maximizing 
I 

t h e  exchange i n t e g r a l  between a f u n c t i d n  i n  t h e  Hartree-Fock 

v i r t u a l  space  and t h e  major  MO may be an e f f e c t i v e '  and s imple  

a l t e r n a t i v e .  A rather. d i f f e r e n t  approach i s  t o  p r o j e c t  a  

model of t h e  c o r r e l a t i o n  o r b i t a l  on to  t h e  Hartree-Fock v i r -  

t u a l  space.  

Our expe r i ence  has  i n d i c a t e d  t h a t  symmetry, i f  it i s  

p r e s e n t ,  can be  used t o  f i n d  t h e  lowest  energy Hartree-Fock 

v i r t u a l  ' o r b i t a l  which p r o p e r l y  f i x e s  t h e  node r e q u i r e d  f o r  

t h e  c o r r e l a t i o n  e f f e c t .  One c a l c u l a t i o n  of t h e  SPIP pro- 



cedure ' s  "super C I "  problem f o r  t h e  minor ' o r b i t a l  i s  enough 

t o  produce an adequate i n i t i a l  guess t o  t h i s  MO. 

"Super CI" Configurat ion Spaces 

According t o  equat ions  32-1,2 each i t e r a t i o n  of t h e  

algori thm diagramed i n  Figure 1 c o n s i s t s  of so lv ing  a  

sequence of "super  CI" problems ("box 4" i n  Figure 1) corre-  

sponding t o  each occupied MO @ 
Fc- 

The "super  C I "  configura- 

t i o n  space corresponding t o  t h e  MO + c o n s i s t s  of t h e  
Fc 

funct ion  0' and i t s  e x c i t a t i o n s  Y I' where t h e  index (s)  u s  
is  l i m i t e d  by t h e  fol lowing c o n s t r a i n t s :  

r 
(a) 6,  cannot be doubly occupied i n  O . 

r 
(b )  @,u, and @s, cannot both, be s i n g l y  occupied i n  0 . 
( c )  According t o  equat ions  32-1,2 we must have s > ~ .  

Assuming t h a t  m r  con ta ins  r c losed  s h e l l s ,  n o r b i t a l s  

i n  two-term geminals ( T T G ' s ) ,  and M-r-n s i n g l y  occupied 

o r b i t a l s  ( M  i s  t h e  t o t a l  number of occupied o r b i t a l s ) ,  and 

assuming t h a t  i n  m r  t h e  c losed  s h e l l s  come f i r s t ,  t h e  gem- 

i n a l s  second, and t h e  s i n g l e s  l a s t ,  then t h e  "super  CI" 

spaces corresponding t o  t h e  var ious  o r b i t a l s  a r e  spanned by 

t h e  "super  CI" conf igura t ions  shown below: 

r r 
$1 

@ , Y ;. s = r + l , * - -  , I ' + r i , r + n t l , - - -  
I S ,MI v i r t u a l . ,  

. r  r ( b 2 %  0  , Y ;, s = r+l,*--,r+n,r+n+l,*-• 
2 S , M I  v i r t u a l ,  



I' s =  ~+1,-*-,r+n,r+n+l,***,~, virtual, 4Jr"J@ t ' rlSt 
r r  

@r+1"' @ ' r+i+ ; s = r+2,~*-,r+n,r+n+l,***,MI virtual, 

r r 
@r+zl @ ' r+2,~ ; s = ~ + 3 , ~ o e , ~ + n , ~ + n + l , * * * , M ,  virtual, 

r r s = r+n+l,***,M, virtual, @r+nZ@ ' r+n,s; 
r r 

@r+n+~ " J @  1 .  ' r+n+l,s; s = virtual, 

Note that the spaces .involved in each of these "super 

CI" calculations becomes smaller as one progresses through 

the algorithm diagramed in F i g u r e  1. As we'll see, this 

fact has important consequences with respect to the amount 

of computer time required to make one iteration of the &IP 

method. 



I n t e g r a l s  Transformat ion 

I t  i s  an u n f o r t u n a t e  b u t  w e l l  known f a c t  t h a t  t h e  com- 

p . le te  t r ans fo rma t ion  of  a l l  two-elect ron r e p u l s i o n  i n t e g r a l s  

i s  a  ve ry  t i m e  consuming process .  I t  t h e r e f o r e  can c r e a t e  

a real b o t t l e n e c k  i n  any procedure  which, l i k e  t h e  p r e s e n t  

one,  i s  based on a  sequence of  i t e r a t i o n s ,  each of  which 

, r e q u i r e s  a r e c a l c u l a t i o n  of  t h e s e  i n t e g r a l s  because t h e  

o r b i t a l s  change from i t e r a t i o n  t o  i t e r a t i o n  ( n o t e  t h e  pos i -  

t i o n  of  "box 2" i n  t h e  f low diagram o f  F igu re  1). Fortu-  
. . 

n a t e l y ,  t h e  c a l c u l a t i o n  o f  t h e  m a t r i x  e lements ,  i n d i c a t e d  i n  

"box 3" and "box 4" of  t h e  f low diagram, r e q u i r e s  t h e  

e l e c t r o n  r e p u l s i o n  i n t e g r a l s  on ly  i n  c e r t a i n  combinat ions ,  

and t h i s  c i rcumstance can be used t o  g r e a t l y  s i m p l i f y  t h e  

i n t e g r a l  t r ans fo rma t ion .  The r e s u l t  i s  a  c o n s i d e r a b l e  

s av ing  o f  computer t i m e .  

To see t h i s  w e  have t o  go back t o  t h e . e x p 1 i c i . t  m a t r i x  

e lement  formulas  i n  equa t ions  76-1,27 o f  P a r t  11. An 

examination of  t h e s e  formulas  r e v e a l s  t h a t  t h e  e l e c t r o n  

r e p u l s i o n  i n t e g r a l s  appear  i n  j u s t  two ways. One way i s  i n  

t h e  sums d e f i n i n g  t h e  m a t r i x  G i n  equa t ion  73-3. G is  t h e  

two e l e c t r o n  p a r t  of  a  m a t r i x  r e p r e s e n t a t i o n  of a  Fock 

o p e r a t o r  (Fock, . 1930) a n d  can be c a l o u l ~ t e d  by s Lal~ddrd 

p.rocedures u s ing  ,bond-order matrices. The o t h e r  way i s  

through t h e  s p e c i f i c  i s o l a t e d  coulomb and exchange i n t e g r a l s  

[ r s  1 pu] and [ r p  1 s p  1 where t h e  MO + must s a t i s f y  two condi-  
IJ 



t i o n s :  i t s  occupation number i s  non-zero i n  t h e  S P I P  

funct ion  @' and l e s s  than two i n  a t  l e a s t  one of t h e  "super  

CI" b a s i s  func t ions  a r  and y r  f o r  f i x e d  ( p ) .  
u s  

Let Is c a l l  t h e  i n t e g r a l s  [rs 1 pp] and [ rp  1 s p ]  where ( r )  

and (s)  run over  a l l  t h e  M O ' s ,  t h e  " i n t e g r a l  block" f o r  $ . 
1.I 

How many such blocks have t o  be c a l c u l a t e d  f o r  one i t e r a t i o n  

of our  procedure? I t  i s  t o  be noted t h a t ;  f o r  t h e  "super 

C I "  problem of  each o r b i t a l  occurr ing  during t h e  i t e r a t i o n ,  

c e r t a i n  of t h e s e  blocks,  bu t  no t  a l l  of them, have t o  be 

c a l c u l a t e d .  This  i s  i l l u s t r a t e d  i n  Table 3, where it i s  

assumed t h a t  we have I' closed  s h e l l s  and n  o r b i t a l s  i n  two- 

t e r m  geminals (TTG' s )  . Each .row lists t h e  $ " i n t e g r a l  
1.I 

b.locksN needed f o r  t h e  "super  CI" problem of t h e  o r b i t a l  

i n d i c a t e d  i n  t h e  f i r s t  column. A c ross  o r  a  c i r c l e  i n  t h e  

1 ~ .  ( t h )  column of t h e  K ( t h )  row i n d i c a t e s .  t h a t  " i n t e g r a l  block" 

[rsl pp] and [ r p l s p ]  is  needed t o  so lve ,  t h e  "super  CI" problem 

f o r  o r b i t a l  $K.  

L e t ' s  cons ider  f i r s t  t h e  "super  CI" problem correspond- 

ing  t o  a  c losed  s h e l l  o r b i t a l  ( i=l , -*** . Since Q i  

cannot be e x c i t e d  i n t o  another  c losed  s h e l l  o r b i t a l , '  then 

a l l  t h e  closed s h e l l  o r i b t a l s  $ wi th  j f i  have an occupation 
j 

number of t w o  i n  - a l l  t h e  " s u p e ~  CI" basis func t ions  and, 

hence, do n o t  correspond t o  any i s o l a t e d  " i n t e g r a l  blocks".  

The o r b i t a l  Qi  i t s e l f  i s  s i n g l y  occupied i n  t h e  e x c i t a t i o n s  

y1 is, and t h e  o r b i t a l s  i n  t h e  T T G ' s  have occupation numbers 



r l e s s  than  two i n  t h e  unexci ted func t ion  ; as  a  r e s u l t ,  

i s o l a t e d  " i n t e g r a l  blocks" e x i s t  f o r  , t h e s e  o r b i t a l s .  The 

blocks a r e  ( n + l )  i n  number, and they a r e  ind ica ted  by c r o s s e s  

i n  t h e  appropr ia t e  columns of row K of  Table 3;  a l l  t h e  rows 

corresponding t o  closed s h e l l s  have t h e s e  f e a t u r e s .  There 

a r e  I' closed  s h e l l s ,  s o  we have t o  c a l c u l a t e .  ( n + l ) r  i s o l a t e d  

" i n t e g r a l  blocks" i n  t h e  course of  t h e  opt imiza t ion  of t h e s e  

o r b i t a l s .  

L e t ' s  now cons ider  t h e  "super  CI" problem corresponding 

t o  a  s p e c i f i c  o r b i t a l ,  i n  one of t h e  TTG' s  r e f e r r e d  t o  

i n  t h e  l a s t  n  rows of Table 3 .  I f  an o r b i t a l ,  i s  a  

c losed  s h e l l  i n  t h e  unexcited func t ion  m r ,  then it i s  a l s o  

a  closed s h e l l  i n  a l l  of t h e  "super  CI" b a s i s  func t ions  

and consequently t h e r e  i s  no corresponding " i n t e g r a l  
K S '  

block". However, 'an " i n t e g r a l  block" i s  requi red  f o r  a l l  t h e  

o r b i t a l s  i n  t h e  T T G : s i f  only because they a r e  n o t  c losed  

r s h e l l s  i n  @ ; t h i s  s i t u a t i o n  is  i n d i c a t e d  by t h e  c rosses  and 

c i r c l e s  i n  t h e  l a s t  n  rows of Table 3.  

The c r o s s e s  and c i r c l e s  i n d i c a t e  a  d i f f e r e n c e  which 

r e s u l t s  from a  s p e c i f i c  f e a t u r e  of t h e  choice of t h e  sequen- 

t i a l  "super  CI" conf igura t ion  spaces j u s t  d iscussed;  namely, 

t h e  "super C I "  problem corresponding t o  o r b i t a l  OK con ta ins  

only "forward excitations";  i - e . ,  func t ions  Y ,, with S > K .  

Thus t h e  o r b i t a l s  @ A  wi th X = l , * m * t ( ~ - l )  a r e  n o t  involved i n  

t h e s e  e x c i t a t i o n s .  The form of t h e  $PIP func t ion  then  



guarantees  t h a t  t h e y ' w i l l  reappear  a s  n a t u r a l  o r b i t a l s  ( N O ' S )  

of t h e  "super  CI" dens i ty  matr ix .  Hence, they a r e  n o t  

changed by t h i s  "super  CI" problem, which 'implies t h a t  i n  

t h e  i n t e g r a l s  [rs 1 A X ]  and [ rh  1 s h ]  only t h e  o r b i t a l s  g r  and 

qs can be changed, This s i t u a t i o n  l eads  t o  a  s i m p l i f i c a t i o n  

of t h e  t ransformat ion  needed t o  c a l c u l a t e  such i n t e g r a l s  f o r  

the  " s u p e r . C I W  problem , a s soc ia ted  wi th  t h e  next  o r b i t a l .  

Wherever t h i s  s i m p l i f i c a t i o n  i s  p o s s i b l e  i s  marked by a .' 

c i r c l e  r a t h e r  than a  c ross .  . 

The sirnplif  i c a t i o n  j u s t  mentioned becomes' ev iden t  from 

t h e  e x p l i c i t  express ions  f o r  t h e  i n t e g r a l s  i n  an " i s o l a t e d  

i n t e g r a l  block".  Assuming a  b a s i s  of L atomic o r b i t a l s '  

( A O ' s )  , x 1 ,  - , xL, it i s  we l l  known t h a t  t h e  i s o l a t e d  

" i n t e g r a l  blocks" can be w r i t t e n  a s  

1-I ' where tart P ab, [ab ( cd] , and Acd a r e  def ined  by 



Acd = [ (78-4) 
1 c f d .  

C a l c u l a t i o n  o f  t h e  sums o v e r  c2d i n  e q u a t i o n  77-1 f o r  

a l l  neces sa ry  a and b   inbi bin at ions r e q u i r e s  approximately  %L' 

m u l t i p l i c a t i o n s .  subsequent  c a l c u l a t i o n  of  t h e  s i m i l a r i t y  : 

t r ans fo rma t ion  impl ied  by t h e  remaining 'sums.  o v e r  a  and b  

r e q u i r e s  a t  most 2L3 m u l t i p l i c a t i o n s  f o r  a l l  r and s com- 

b i n a t i o n s , '  Exac t ly  t h e  same can be s a i d  conce rn ing  equa- 

t i o n  77-2. I t  i s  apparen t  t h a t  whenever t h e r e  i s  a  c i r c l e  

i n  Table  3, t h e  sums of  c l d  can be  t aken  ove r  from t h e  pre-  

ced ing  " s u p e r  CI" problem, and t h e  r e c a l c u l a t i o n  of t h a t  

" i n t e g r a l  b lock" r e q u i r e s  on ly  t h e  4 L 3  m u l t i p l i c a t i o n s  of 

t h e  sums o v e r  a and b. However, wherever w e  have a c r o s s  

i n  Table 3 ,  t h e  e v a l u a t i o n  of t h e  i n t e g r a l s  [ r s l p p ]  and 

[ r u l s u l  requires % L ~  + 4 L 3  % $ 5 ~ "  m u l L i p l i c a t i o n s ,  s o  t o  

h i g h e s t  o r d e r  i n  L, t h e  b lock  d e f i n e d  by circles can be  

n e g l e c t e d  a s  r e g a r d s  computation t i m e .  Counting t h e  number 

o f  c r o s s e s  i n  Table  3, w e  f i n d  t h a t ,  t o  h i g h e s t  o r d e r  i n  L ,  

t h e  t o t a l  number of  m u l t i p l i c a t i o n s  needed t o  c a l c u l a t e  a l l  

t h e  i s o l a t e d  " i n t e g r a l  b locks"  f o r  one complete SPIP i n t e r a -  

t j o n  is  g iven  by 



# = + ' L ~  { ( n + l )  (M- % . n + l )  -21, (79) 

where L i s  t h e  number o f  A 0  b a s i s  f u n c t i o n s ,  n i s  t h e  number 

of o r b i t a l s  i n  TTG' s ,  and M i s  t h e  t o t a l  number o f  occupied 

r o r b i t a l s  i n  t h e  SPIP f u n c t i o n  @ . 
B y  c o n t r a s t ,  t h e  complete $-index t r a n s f o r m a t i o n  used 

t o  c a l c u l a t e  a l l  t h e  molecu la r  e l e c t r o n  r e p u l s i o n  i n t e g r a l s  

r e q u i r e s  8L ' /3  m u l t i p l i c a t i o n s  (Diercksen ,  1974) .  

To compare t h i s  l oad  t o  t h a t  r e q u i r e d . b y  ou r  method, 

w e  form t h e  r a t i o  R 'between t h e  expre .ss ion i n  equa t ion  79 

a and 8L5/3. I t  can be  w r i t t e n  as 

where 

The f r a c t i o n  (M/L) is  t h e  r a t i o  of  t h e  number of  occupied 

o r b i t a l s  t o  t h e  number of  b a s i s  o r b i t a l s ;  a f a i r l y  t y p i c a l  

va lue  f o r  t h i s  r a t i o  i s  about  +. On t h e  o t h e r  hand, ( n / ~ )  

i s  t h e  r a t i o  of  t h e  number of o r b i t a l s  i n  two term geminals  

t o  t h e  t o t a l  number of .  occupied o r b i t a l s ;  it can va ry  between 

i 0 f d r  a  l a r g e  molecule wi th .  a . smal l  number of  o r b i -  

t a l s  i r i  two t e r m  geminals ,  t o  (n/M) =1, f o r  a  molecule  w i t h  

no c l o s e d  s h e l l  o r b i t a l s  a t  a l l .  F igu re  2  shows t h e  f a c t o r  

f ( n , t )  i n  equa t ion  80-1 p l o t t e d  a g a i n s t  n  ' f o r  s e v e r a l  v a l u e s  



of th.e parameter (n/M) . The curves corresponding t o  t h e  

two extreme cases  menti.oned a r e  

f (n ,  0) = 3 (n+1) /16 f o r  n/M = , O  , (81-1) 

and they  de f ine  t h e  two s o l i d  curves i n  Figure 2 .  

To use Figure 2 t o  a s s e s s  t h e  e'conomy of t h e  SPIP pro- 

cedure compared t o  t h e  genera l  method, do t h r e e  t h i n g s :  f i n d  

t h e  .value of n ,  t h e  number of open s h e l l s ,  and, i t s  r a t l o  , . 
. . 

(n(M) t o  t h e  number of occupied o r b i t a l s ;  l o c a t e  t h e  curve' - . 

corresponding t o  the  given value of n/M and f i n d  t h e  p o i n t  

d i r e c t l y  above t h e  value of n on t h e  h o r i z o n t a l  a x i s ;  t h i s  

.is t h e  p o i n t  ( f  , n ) ,  and t h e  value of  f can be read  from 

t h e  v e r t i c a l  a x i s  of Figure 2.  Suppose M/L = 0 . 4 1 ,  n = 4 ,  : 

M =  18, 'and L =  4 4 ;  f o r  such a case we have n/M= 0.22, and 

f = 0.86. This impl ies  t h a t  t h e  SPIP i n t e g r a l s  c a l c u l a t i o n  

r e q u i r e s  fM/L=0.35 of t h e  t ime needed f o r  t h e  f u l l  4-index 

t ransformation.  



Table 3.  Enumeration of t h e  i n t e g r a l s  needed t o  f u l l y  optimize a genera l  SPIP 

func t ion  @l' 

Occupied o r b i t a l s  i n  @ 
r 

0 0 X ' X  X X X X 

0 . 0  0 X X ' X X X 

0 0 0 0 X X . X  X 



R =  # open shell drbitals 

Figure 2. Relat ion of t h c  gain of Lhe S P I P  method 
a s  a  funct ion  of t h e  number of open s h e l l  
o r b i t a l s  f o r  s e v e r a l  va lues  of t h e  r a t i o  
of t h e  number of open t o  closed s h e l l  
o r b i t a l s .  



IMPLEMENTATION 

This algorithm was implemented in a set of FORTRAN 

computer programs for.use on the IBM 360/65. The programs 

were designed to use the BIGGMOLI integrals system.deve1oped 

by R. C. Raffenetti (1973a,b), and the integral files these 

later programs create match very well with .the transforma- 

tions in equations 77-1,2. Since the BIGGMOLI integral 

files contain no zero values, we expect the performance of 

our algorithm to be somewhat enhanced over the.predictions 

of Figure 2. . . 

We have checked this program 0n.a number of polyatomic 

molecules, and. it worked very satisfactorily. Some of these 
. . 

results are reported.in Parts IV and V of this dissertation. 



PART I V :  REACTION ENERGY FOR THE D I S S O C I A T I O N  .OF. DIMERS . . 

TO FREE RADICAL AND MOLECULAR PRODUCTS 



INTRODUCTION 

Reaction Energ ies  and Two Types 
. . 

of Di s soc ia t ion  

To c a l c u l a t e  t h e  energy.change accompanying t h e  d i s so -  

c i a t i o n  of  a  dimer w e  'need t o  know t h e  energy of t h e  dimer 

and i t s  sepa ra t ed  monomers; t h e  d imer i za t ion  energy,  A ,  

. . .  being t h e  d i f f e r e n c e  between t h e  e n e r g i e s  o f  t h e s e  systems;  

A = E (dimer) - E(monomers).. 

To . accura t e ly  c a l c u l a t e  t h i s  d i f f e r e n c e  w e  must p rope r ly  

. . match our 'models  o f  t h e  v a r i o u s  components o f  t h e  t o t a l  
. ,. 

"system; t h a t  i s ,  o u r  theory  must e x p l i c i t l y  a l low f o r  t h e  

f a c t  t h a t  c e r t a i n  p h y s i c a l  e f f e c t s ,  such a s  e l e c t r o n  cor re-  

l a t i o n ,  may be d i f f e r e n t  a t  t h e  two ends of  t h e  r e a c t i o n ,  

and w e  must c o n s t r u c t  our  models s o  t h a t  any e r r o r s  i n h e r e n t  

i n  them cance l  when'we t a k e  t h e  d i f f e r e n c e  shown, i n  ,equa- 

t i o n  82. ' . 

For t h e  corre1,at ion e r f e c t ,  Uiis matching can be 

i l l u s t r a t e d  wi th  two types  o f  r e a c t i o n s .  F i r s t , ,  w e  examine 

s i x  c a s e s  i n  which a  dimer d i s s o c i a t e s  t o  f r e e  r a d i c a l s  by 

t h e  c leavage of  a  s . ing le  bond; w e  c a l l  t h e  r e a c t a n t s  t h e  

rad ica l -d imers  and t h e  products  t h e  r a d i c a l  monomers. 



glyoxal ,  

..These r e a c t i o n s  w i l l  show . a  c o r r e l a t i o n  con t r ibu t ion  t o  t h e  

r e a c t i o n  energy, and t h e  f a c t  t h a t  t h e  r e a c t i o n s  d i s s o c i a t e  

t h e  cis and t r a n s  forms of a molecule w i l l  g ive  us some - 

i n s i g h t  a s  t o  how molecular geometry a f f e c t s  e l e c t r o n  corre-  

l a t i o n .  The second type o f  r e a c t i o n  i s  t h e  d i s s o c i a t i o n  of a 

c y c l i c  dimer t o  molecules by t h e  rearrangement of  two bonds, 



0-0 9 
t -HNO dimer - L 2 N . 

These r e a c t i o n s  i l l u s t r a t e  how c o r r e l a t i o n  e f f e c t s  balance 

when w e  c a l c u l a t e  A by t a k i n g  t h e  d i f f e r e n c e  i n  equat ion  81. 

The l a t e r  r e a c t i o n s  have i m p l i c a t i o n s  wi th  r ega rd  t o  t h e  

chemiluminescence of 1 ,2-dioxetanes  i n  g e n e r a l  (Turro and 

Lechtken, 1973) and tetramethyl-1,2-dioxetane i n  p a r t i c u l a r  

(Turro and Lechtken, 1972) , and a  d e t a i l e d  s tudy  of one 
0 

mechanism f o r  t h e  r e a c t i o n  i n  equat ion  83-1 w i l l  be  d i s -  

cussed i n  P a r t  V of t h i s  work. 

C o r r e l a t i o n  Defect  

The r e a c t i o n s  i n  equa t ions  83-1,3 a r e  c h a r a c t e r i z e d  by 

t h e  c leavage 0 f . a  s i n g l e  bond, s o  ou r  f i r s t  p e r s p e c t i v e  i n  

t h e  s tudy  of  t h e s e  systems i s  t o  focus ou r  a t t e n t i o n  on t h e  

two e l e c t r o n s  i n  t h e  bond, broken by t h e  r e a c t i o n .  . L e t ' s  

assume t h a t  t h e  e f f e c t s  of bond 'breakage a r e  of  secondary 

importance f o r  t h o s e  p a r t s  of t h e  system away from t h e  

c e n t r a l  bond of t h e  dimer o r  t h e  unpai red  e l e c t r o n s  i n  t h e  

sepa ra t ed  r a d i c a l s .  Co l l ec t ing  t h e s e  undis turbed  s p i n  

o r b i t a l s  i n , t o  a yene ra l i zed  co re  f u n c t i o n ,  F, w e  can w r i t e  

t h e  MO wavefunction f o r  t h e  rad ica l -d imers  an'd t h e i r  sepa- 

r a t e d  monomers a s  



. . 

where a i s  a  molecular  o r b i t a l  (MO) l o c a l i z e d  i n  t h e  reg ion  

of t h e  c e n t r a l  bond of  t h e  rad ica l -d imer ;  0 - is  t h e  s i n g l e t  

s p i n  f u n c t i o n ,  

and. A is  an antisymrnetrizer .  a  and b  a r e  op t imized  M O ' s  

on t h e  s e p a r a t e d  systems (SMO's) , each be ing  on one of  t h e  

s e p a r a t e d  free r a d i c a l  monomers and each  c o n t a i n i n g  an 

unpaired e l e c t r o n .  For  g l y o x a l  t h e  g e n e r a l i z e d  c o r e  func- 

t i o n  F i s  a produc t  o f  c l o s e d  s h e l l  MO p roduc t s  r e p r e s e n t i n g  

t h e  i n n e r  s h e l l s ,  oxygen lone  pairs, carbon-oxygen sigma 

and pi bonds, and t h e  carbon-hydrogen sigma bonds. Fo r  t h e  

o t h e r  systems i n  equa t ions  83-1,2 an analogous i n t e r p r e t a -  

t i o n  o f  F ho lds .  A; u s u a l ,  w e  u se  t h e  l e f t  t o  r i g h t  o r d e r  

of  t h e  f a c t o r s  i n  a produc t  t o  determine t h e i r  ai-guments. 

The SMO's a and b  are wel l -def ined  f u n c t i o n s  f o r  t h e  

s e p a r a t e d  r a d i c a l  monomers, and they  can be used t o  d e f i n e  

t h e  M O ' s  



Using o  and o*, w e  can w r i t e  equa t ion  85-2 i n  t h e  a l t e r n a t i v e  

form 

On t h e  o t h e r  hand,  t h e  MO d e s c r i p t i o n  o f  t h e  r a d i c a l  dimer 

is  improved by us ing  s e p a r a t e d - p a i r  independent  p a r t i c l e  

, (SPIP) wavefunction 

i n s t e a d  of  equa t ion  85-1. The c o e f f i c i e n t s  f,  and f o *  d e f i n e  

t h e  o r b i t a l  occupa t ibn  numbers 

which corresponds t o  t h e  number of e l e c t r o n s  t h e  SPIP 

f u n c t i o n  a s s i g n s  t o  o r h i , t a l  4 . 
K 

Equat ions  89-1,3 d e f i n e  a wavef una t ion  t h a t ,  when 

f u l l y  op t imized ,  d e s c r i b e s  t h e  d i s s o c i a t i o n s  i n ' e q u a -  

t i o n s  83-1,3 f o r  t h e  f u l l  cou r se  o f  t h e  r e a c t i o n :  it reduces  



t o  t h e  separa ted  r a d i c a l  monomer wavefunction, equat ion 85-2, 

a t  i n f i n i t e  sepa ra t ion ,  provides a  modified MO d e s c r i p t i o n  

of t h e  bond nea r  . t h e  molecular  equili 'brium, . and recovers  t h e  

r i g h t - l e f t  c o r r e l a t i o n  energy.  l o s t  by t h e  MO theory.  I t  i s  

apparent  from t h e  equal  weights  given t h e  two conf igura t ions  

i n  equat ion 88, t h a t  c o r r e l a t i o n  is  an important a spec t  of 

t h e  separa ted  r a d i c a l  monomer wave.function; accordingly,  i t s  

absence from t h e  MO theory of t h e  radical-dimer. is c a l l e d  

t h e  c o r r e l a t i o n  de fec t .  

Cor re la t ion  S h i f t  

The d i s s o c i a t i o n  of t h e  c y c l i c  dirners i n  equa- 

t i o n s  84-1,2, unl ike  t h e  d i s s o c i a t i o n s  j u s t  considered,  

involve t h e  rearrangement of two bonds r a t h e r  than t h e  

cleavage of one. A s  a  ' r e s u l t ,  we have t o  examine t h e  reac- 

t a n t  and product  systems focusing on t h e  f o u r  e l e c t r o n s  

, involved '  i n  t h e  rearrangement. Accordingly, we w r i t e  t h e  
'i 

MO theory wavefunctions f o r  t h e  r e a c t a n t  ( t h e .  c y c l i c  dimer)  

and t h e  product  mol.eci?les as 

For 1,2-dioxetane,  see  equat ion 84-1, a ,  and a, a r e  Mots 

rep resen t ing  t h e  oxygen-oxygen and carbon-carbon sigma bonds 

r e s p e c t i v e l y ;  the  Mots L and R r ep resen t  t h e  carbon-oxygen 



&.bonds i n  t h e  l e f t  and r i g h t  s epa ra t ed  formaldehyde mole- 

c u l e s  r e s p e c t i v e l y .  The g e n e r a l i z e d  co re  func t ion  F 

r e p r e s e n t s  ' a l l  t h e  c losed  s h e l l s  i n  t h e  MO pro'duct func t ion  

t h a t  a r e  n o t  much d i s t u r b e d  by t h e  bonding rearrangement.  

S i m i l a r  M0,wavefupctions can be w r i t t e n  f o r '  t -HNO dimer and 

HNO i n  equat ion  84-2. 

C lea r ly  n e i t h e r  equat ion  90-1 n o r  equat ion  90-2 c o n t a i n s  

any c o r r e l a t i o n  c o r r e c t i o n ;  s o  i f  t h e  c o r r e l a t i o n  d e f e c t  

j u s t  d i scussed  i s  o f  comparable magni tude . in  both  wavefuqc- 

t i o n s ,  then t a k i n g  t h e  d i f f e r e n c e  of t h e i r  e n e r g i e s  r e s u l t s  
* '  

i n  a  cance la t ion  of  e r r o r  c a l l e d  t h e  c o r r e l a t i o n  balance.  

This  ba lance  depends on t h e  f a c t  t h a t  t h e  oxygen-oxygen 

and carbon-carbon o r  n i t rogen-n i t rogen  sigma bonds have t h e  

same c o r r e l a t i o n  d e f e c t ' a s  t h e  carbon-oxygen o r  n i t rogen-  

oxygen @ bonds: a  con jec tu re  which can be t e s t e d  by p u t t i n g  

r i g h t - l e f t  c o r r e l a t i o n  i n t o  e.ach of t h e s e  bonds and .calcu-  ,. 

l a t i n g  t h e  energy d i f f e r e n c e  i n  equat ion  82 us ing  t h e s e  

improved wavefunctions.  The necessary  g e n e r a l i z a t i o n  of 

equa t ions  90-1,2 i s  a f fo rded  by t h e  SPIP f u n c t i o n s  

H e r e  a: a n d  a: a r e  M O ' s  an t ibonding  i n  t h e  r eg ions  of t h e  

oxygen-oxygen ahd carbon-carbon o r  n i t rogen-n i t rogen  sigma 



bonds r e s p e c t i v e l y ,  and L *  and R* a r e  carbon-oxygen o r  

. nitrogen-oxygen - p i  antibonds.  

The d i f f e r e n c e  between t h e  r e a c t i o n  .energies  f o r '  t h e  

. d i s s o c i a t i o n s  i n  equat ions  84-1,2 a s  c a l c u l a t e d  by . t h e  

wavefunctions i n  equat ions  90-1,2 a i d  91-1,2 i s  a  test  of 

how wel l  t h e  c o r r e l a t i o n  e n e r g i e s  balance.  This  parameter 

i s  c a l l e d  t h e  c o r r e l a t i o n  s h i f t  because .it measures t h e  

d i f f e r e n c e  i n  t h e  c o r r e l a t i o n  d e f e c t s  a s s o c i a t e d  wi th  

d i f f e r e n t  molecules. 



GEOMETRIES OF. THE REACTANTS AND PRODUCTS 

U s e  o f  t h e  Hartree-Fock 'MO Theory 

Although t h e  Hartree-Fock approximation cannot g e n e r a l l y  

be used t o  d e s c r i b e  chemical d i s s o c i a t i o n s ,  it is t h e  most 

op t imal  MO theory ,  and it can n e v e r t h e l e s s  be used t o  c a l -  

c u l a t e  t h e  equ i l ib r ium geometry of  molecules.  For dia tomic 

molecules ,  many Hartree-Fock c a l c u l a t i o n s  have f a i t h f u l l y  

reproduced experimental  i n t e r n u c l e a r  d i s t a n c e s  (Cade 'et a l . ,  -- 
1966; Matcha, 1967a,b, 1968a,b; McLean and Yoshimine, 1967).  

For t r i a t o m i c  systems s i m i l a r  r e s u l t s  have been ob ta ined :  

E r m l e r  and K e r n  ( 1 9  71) reproduced t h e  oxygen-hydrogen bond 

d i s t a n c e  i n  H 2 0 ,  b u t  s e v e r a l  c a l c u l a t i o n s  on CH2 ( F o s t e r  and 

Boys, 1960; Harr i son  and Al len ,  1969; Bender and Schae fe r ,  

1970; O'Neil  -- e t  a l . ,  1971) i n d i c a t e  t h a t  f o r  some systems 

c o r r e l a t i o n  e f f e c t s  can make important  c o n t r i b u t i o n s  t o  t h e  

angular  geometry v a r i a b l e s .  

For l a r g e r ,  polyatomic systems,  1es.s exper ience  i s  a v a i l -  

a b l e ,  b u t  work by Pople and h i s  coworkers ( D i t c h f i e l d  e t  a l . ,  -- 
1972) on s e v e r a l  smal l  molecules and by Bardo and Ruedenberg 

(1974a,b) f o r  s e v e r a l  molecules con ta in ing  carbon,  hyd'rogen 

and oxygen atoms, i n d i c a t e s  t h a t  t h e  Hartree-Fock approxi-  

mation can indeed r e l i a b l y  p r e d i c t  t h e  geometr ies  of c losed  

s h e l i .  molecules.  Accordingly,  s i n c e  t h e  molecules be ing  

examined he re  have , e l e c t r o n i c  s t r u c t u r e s  r a t h e r  c l o s e l y  



r e l a t e d  t o  some o f  t h e  'systems t r e a t e d  by Bardo and 

Ruedenberg, w e  c a r r i e d  o u t  o u r  geometry o p t i m i z a t i o n s  u s ing  

t h e  Hartree-Fock wavefunction.  

Opt imiza t ion  Method 

T h e o r e t i c a l  geomet r ies  ' o f ,  c i s -  and t r ans -g lyoxa l  were - 
determined a t  t h e  - ab i n i t i o  Hartree-Fock l e v e l  by Sundberg 

and Cheung (1974) .  The method used t h e r e  w a s  a s imple  

q u a d r a t i c  f i t t i n g  procedure .  The geometry parameters  w e r e  

grouped i n t o  p a i r s ,  and f o r  each p a i r  t h e  t o t a l  m o l e c u ~ a r  

energy was. c a l c u l a t e d  f o r  s i x  p o i n t s  on t h e  energy s u r f a c e  

d e f i n e d  by t h e s e  paramters .  Using a good i n i t i a l  guess  o f  

t h e  molecu le ' s  geometry, w e  can u s u a l l y  " b r a c k e t "  t h e  l e a s t  

energy by s e l e c t i n g  s i x  p o i n t s  i n  t h e  p a t t e r n  shown below: 

H e r e  P and P2 denote  t h e  parameters  be ing  op t imized ;  t h e  

p o i n t  (0,O) corresponds t o  t h e  i n i t i a l  geometry and i d e a l l y  

has  t h e  lowest  energy of any of t h e  p o i n t s  shown. A 



q u a d r a t i c  equa t ion  can be f i t t e d  t o  t h e s e  p o i n t s  and, s imple  

d i f f e r e n t i a t i o n  used t o  l o c a t e  t h e  minimum on t h i s  approxi-  

mate s u r f a c e ;  t h e  v a l u e s  of t h e  parameters  P I  and P2 a t  t h e  

q u a d r a t i c  minimum then  d e f i n e  o u r  n e x t  geometry. .Using 

t h e s e  op t imized  parameters ,  t h e  procedure  i s  executed  f o r  

each p a i r . o f  parameters  u n t i l  a l l  t h e  sys t em ' s  s t r u c t u r a l  

v a r i a b l e s  have been opt imized.  . I f  t h e r e  is. an odd number 

of 'parameters ,  t h e n  a s i m i l a r  p rocedure  i s  used t o  op t imize  

t h e  l a s t  v a r i a b l e  by f i t t i n g  a p a r a b o l a  t o  t h r e e  p o i n t s .  

The e n t i r e  procedure  can be  r e p e a t e d  f o r  s e v e r a l  c y c l e s  t o  

remove any secondary e f f e c t s  t h a t  t h e  a l t e r a t i o n  of  one 
. . 

parameter  may have on t h e  o t h e r s .  

I n  p able 4 w e  l is t  o u r  molecu les ,  t h e  way w e  p a i r e d  

t h e i r  s t r u c t u r a l  parameters  f o r  t h e  o p t i m i z a t i o n  j u s t  

d e s c r i b e d ,  and the .  number of  c y c l e s  made t o  produce t h e  

f i n a l  geometry. 

Atomic O r b i t a l  B a s i s  S e t s  

The wavefuact ions  w e r e  a l l  c a l c u l a t e d  us ing  even- 

tempered c o n t r a c t e d  gauss i an  a tomic o r b i t a l  (ETCGAO) b a s i s  

s e t s  (Ruedenberg -- e t  a l .  , 1972) , b u t  d i f f e r e n t  bases  w e r e  

used t o  op t imize  t h e  geometry than  w e r e  used, f o r  t h e  f i n a l  

energy c a l c u l a t i o n s .  For  t h e  energy c a l c u l a t i o n ,  g r e a t e r  

c a r e  was g iven  t o  t h e  b a s i s  set  s e l e c t i o n ;  t h e  a toms .need  

t o . b e  d e s c r i b e d  by a set  o f  f u n c t i o n s  op t imized  t o  r e f l e c t  



T a b l e  4.  P a r a m e t e r i z a t i o n  on ex t en t  of g e o m e t r y  

o p t i m i z a t i o n a  

1 

a 
Rum l l is  t h e  l e n g t h  6f t h e  bond u o  l fi in t h e  m o l e c u l e  

, indica ted .  $ ABC i s  t h e  angle b e t w e e n  t h e  a t o m s  A ,  B ,  

and C. 

M o l e c u l e  
. . 

HCO 

C- , t- (HCO) 2 

NO 

C-,  t - ( N O )  2 

02+ 

+ 
c - , t - ( 0 2 ) 2  

H 2 C 0  

( H 2 C 0 )  2 

HNO 

t- (HNO) 2 

P a r a m e t e r  p a i r s  and odd p a r a m e t e r s  

RC=O, RC-H; SOCH 

RC=Ot RC-c; RC-H , t CCO i S CCH 

%=o 

t NO0 %=o, %-N; 

Ro=o 

ROZOl R0-o; $000 , . 

2 .  8, :  , . 
RC=Ot RC-H ; SOCH 

.RC-0 '0-0; RC-Of RC-H; ~ C C H ,  ~ O C H  

%=", - SoNH 

Ro-ot %I-N; %-0' %-H ;. ~ N N H ;  SONH, E 

N u m b e r  of 
cycles 

2 

2 

2 ' .  

2 

2 

.2 

2 

3 

2 

2 



. . . . 

t h e  bonding environment near  them, s o  we a r e  no t  genera l ly  

ab le  t o  use a  un ive r sa l  b a s i s  set t o  d e s c r i b e  t h e  dimer and 

i t s  separa ted  monomers. 

We attempted t o  achieve some of t h e  b e n e f i t s  of an 

independent opt imiza t ion  of t h e  r e a c t a n t , a n d  product bases  

by- s e l e c t i n g  f o r  t h e  var ious  atoms b a s i s  sets .which had been 

optimized i n  s impler  molecules wi th  an analogous bonding 

s t r u c t u r e .  I n  Table 5 w e  l is t  t h e  molecules being s t u d i e d  

and t h e  Appendix and Table numbers conta in ing  t h e  b a s i s  s e t s  

used f o r  t h e  geometry op t imiza t ions  a s  w e l l  a s  t h e  f i n a l  

energy c a l c u l a t i o n s .  Those tabmles a l s o  conta in  information 

about t h e  o r i g i n s  of t h e  var ious  bases .  

Optimized Geometries 

The r e s u ' l t s  o f  our  geometry op t imiza t ions  a r e  repor ted  

i n  Tables 6 and 7. The meaning of ' t h e  geometr ical  parameters 

l i s t e d  t h e r e '  i s  i l l u s t r a t e d  i n  ~ i g u r e s  3 and 4 .  A l l  t h e  

t h e o r e t i c a l  geometries except  those  f o r  g iyoxa l  were calcu- . 

l a t e d  i n  t h i s  work; the ylyoxal  geometries had been " 

c a l c u l a t e d  e a r l i e r  by t h e  methods o u t l i n e d  here.  

S e v e r a l  remarks should be ,made 'about t h e s e  c a l c u l a t i o n s .  

The smal l  [3s/2p] b a s i s  f o r  H2C0 shown i n  Appendix A., 

Tables 20, 2 1 ,  and 22 is  a  t runca ted  ve r s ion  of t h e  [4s/3p] 

b a s i s  used by Bardo and Ruedenberg (1974a ,b) t o  c a l c u l a t e  

t h e  geometry of t h i s  molecule. Thei r  opt imiza t ion  method 



Table 5. Appendix. and table numbers of the bases used, 
. . for the geometry optimization and final energy 

. calculation 

Molecule 

HCO 

C-, t- (HCO) 2 ' 

NO 

C- , t- (NO) 2 

+ 
O2 . , 

+ 
(02 1 2 ,  

H2CO 

( H 2 c o )  2 

HNO 

t- (HNO) 

Appendix and table numbers 

geometry 
optimization 

. . 

A-26,27,28 

A-26,27,28 

A-24,25 

A-24,25 

A-29 

A-29 . 
C 

A-20,21,22 

~ - 2 ~ ~ 2 1 ~ 2 2  

A-23,24,25 

A-23,24,25 

final energy 
calculation 

A-26,27,28 

A-26,27,28 . .  

B-36,37 

B-36,37 

B-40 

B-40 

' A-20, B-30,31 

B-32, 33,34 
. +  ' 

B-35, 36,37 

B-38,39,3,4 



(Shah e t  a l . ,  1964) was more e l a b o r a t e  t han  o u r  f i t t i n g  
7- 

procedure;  and though it d i d  use  a , p a i r w i s e  p a r t i t i o n  o f  

t h e  parameter  space ,  t h e  p a r t i t i o n  was d i f f e r e n t  t han  t h e  

one w e  advocate  i n  Table 4 .  The f a c t  t h a t  w e  were a b l e  t o  

reproduce t h e i r  r e s u l t s  p rov ides  a j u s t i f i c a t i o n  of  o u r  

parameter  p a r t i t i o n s ,  o u r  b a s i c  o p t i m i z a t i o n  method, and 

o u r  u se  o f  t h e  t r u n c a t e d  b a s i s  sets shown i n  Appendix A. 

The geomet r ies  of t h e  r a d i c a l  (13C0,NO) and molecu la r  

(H2 CO ,HNO) monomers a r e  i n  e s s e n t i a l l y  q u a n t i t a t i v e  agreement 

w i t h  t h e  microwave s p e c t r a  s t r u c t u r e s  ( ~ u s t l n  e t  a l . ,  1974; -- 
Halmann and L a u l i c h t  , 1965; Takagi and Oka, 1963; Dalby , 

1958) a l s o  shown i n  ~ a b l e s .  6 and .7. The agreement i s  always 

t o  a t  l e a s t  two s i g n i f i c a n t  f i g u r e s ,  s o  o u r  u se  o f  t h e  

Hartree-Fock approximation ' in  t h i s  c o n t e x t  i s  j ' u s t i f  i e d .  

A s  s een  i n  Table  6,  t h e  agreement of  t h e  t h e o r e t i c a l ,  

and expe r imen ta l  g lyoxa l  s t r u c t u r e s  i s  encouraging;  the .  

major  geomet r ic  changes a s s o c i a t e d  w i t h  t h e  c i s - t r a n s  i s o -  . - 
m e r i z a t i o n ,  t h e  angu la r  v a r i a b l e s ,  a r e  s i q n i f i c a n t l y  repro- 

duced. The t r a n s  exper imenta l  s t r u c t u r e  (Kuchi tsu  e t  a l . ,  -- 
1968, 1969) was an e l e c t r o n  d i f f r a c t i o n  s t u d y ;  b u t  t h e  c is '  - 

geometry . ( C u r r i e  and p am say, 1971; Ramsay and Zaul i  , 1974) 

w a s  determined by microwave methods, s o  t h e s e  s t u d i e s  a r e  n o t  

complete ly  comparable. The f a c t  t h a t  t h e  expe r imen ta l  and 

t h e o r e t i c a l  r e s u l t s  a l l  ag ree  on t h e  d i r e c t i o n  of  t h e  changes 

i n  t h e  a n g u l a r  v a r i a b l e s  conf i rms t h a t  such an e f f e c t  does  occur. 



Figure 3 .  Geometry of t h e  radical-dimers  
and t h e i r  r a d i c a l  monomers 



T a b l e  6 .  T h e o r e t i c a l  a d  e x p e r i m e n t a l  geometries of the s i n g l y  b o n d e d  dimers a n d  
their free r ~ d i c a l  monomers a 

. . . . . . . . . . . .  . . . ' . . . . . . . . .  . . 

a b c a B 
m o l e c u l e  t h e o r y  expt. t h e o r y  expt .  t h e o r y  e x p t .  t h e o r y  e x p t .  t h e o r y  expt. ref.  

. . 

HCO 2 .2164  2 . 2 1 3 1  2 . 0 6 6 5  2 . 0 9 7  1 2 7 . 8  1 2 7 . 4  1 
C-(HC0)2 2 .8802  2 . 8 4 4  2 . 2 6 2 6  2 . 2 8 6  2 .0479  2 . 1 0 7  1 2 1 . 8  1 2 0 . 7  1 2 2 . 2  1 2 3 . 8  2  
t - (HCO)2 - 2 . 8 6 0 7  2 . 8 8 3  2 . 2 6 7 5  2 . 2 9 0  2 . 0 4 7 3  2 . 1 2 0  1 2 3 . 4  1 2 6 . 6  1 2 0 . 8  1 2 1 . 2  

. . 
3  

. . 

NO 2 . 1 8 0 7  2 . 1 7 4 6  
. . 

4  
C- ( N O )  2 3.,0501. 4 .12  2 . 2 2 7 5 '  2 . 1 1  , 1 1 1 . 4  . . 5  
t- (NO) 2 . 8 2 5 6  2 -2.4 1 6  . 1 0 9 . 4  P 

0 
w 

02+ 4 . 1 2 3 1  
~ - ( 4 + ) ,  2 . 9 9 7 3  2 . 2 1 0 1  126 .2  

A l l  b o n d  distances a r e - i n  a . u .  a n d  angles i n  degrees. The e x p e r i m e n t a l  r e f e r e n c e s  
w e r e  b y  (l)., A u s t i n  e t  a l .  ( 1 9 7 4 ) ;  ( 2 ) ,  C u r r i e  a n d  Ramsay (1 .9711,  Ramsay a n d  

- 2 a u l i  , ( 1 9  74) ; ( 3 )  , K c h i t s u  e t  a l .  ( 1 9 6 8 ,  1 9 6 9 )  ; ( 4 )  , H a l m a n n  a n d  L a u l i c h t  -- 
( 1 9 6 5 )  ; ( 5 )  , Lipscomb,  ef a l .  ( 1 9 6 1 ) .  -- 



Figure 4 .  Geometry parameters  of  t h e  c y c l i c  dimers 
and molecular  monomers (a )  1 ,2-dioxetane 

I 

and formaldehyde (b)  t - H N O  dimer and 
n i t r o s y l  hydr ide  



T a b l e  7. T h e o r e t i c a l . a n d  ex e r i m e n t a l  g e o m e t r i e s  f o r  the c y c l i c  d i m e r s  a n d  t h e i r  
' m o l e c u l a r  monomers % 

d  e f  9 Y 6 E 

m o l e c u l e  t h e o r y  t h e o r y  t h e o r y  e x p t .  t h e o r y  e x p t .  t h e o r y  e x p t .  t he .o ry  t h e o r y  r e f .  

HNO 2 .2823  2.2.884 1 . 9 3 7 2 '  2.0068 110 .5 '  1 0 8 . 5  2  

a 
A l l  bond  d i s t a n c e s  are i n  a . u .  and  a n g l e s  i n  d e g r e e s .  ~ e e f e r e n c e  1 is T a k a g i  
a n d  Oka 1(19Eq3), r e f e r e n . z e  2  i s  Dalby ( 1 9 5 8 ) .  



The experiment bond l eng ths  i n  cis-(NO) 2 were taken - 
from an x-ray s tudy (Lipscomb -- e t  a l . ,  1961) which a c t u a l l y  

i n d i c a t e d  t h a t ' t h e  molecule .is s l i g h t l y  t r apezo ida l .  The 

dimer is. a t  b e s t  deakly bound, s o  it i s  n o t  s u r p r i s i n g  t o  

f i n d  a . l a r g e  discrepancy i n  one v a r i a b l e ,  t h e  ni t rogen-  

n i t rogen  bond l eng th ,  between t h e  t h e o r e t i c a l  i s o l a t e d  . . 

. . 
molecule and experimental  s o l i d  s t a t e  s t r u c t u r e s .  A minimal 

exponent ia l  b a s i s  s e t  s tudy (Williams and Murre l l ,  1971) 

explored t h e  t r a p e z o i d a l  geometry, b u t  it repor ted  t h a t  t h e .  

t r a n s  isomer was t h e  lowest energy form; a d d i t i o n a l l y , '  it 
. . 

repor ted  s t r u c t u r a l  d i f f e rences ,  between t h e  cis and t r a n s  - 
forms t h a t  conform t o  o u r  . r e s u l t s  a s  regards  d i r e c t i o n  b u t  

no t  magnitude. Another s tudy (Skanke and Boggs, 1.973) used 

a con t rac ted  gaussian b a s i s  t o  produce an optimized c i s  - 
geometry s i m i l a r  t o  the  one we r e p o r t  i n  Table 6.  

+ 
The l a s t  of t h e  c i s - t r a n s  forms a r e  t h e  0 2  dimers. 

.There is  no experimental  information f o r  t h e s e  systems, b u t  
. . 

t h e  dimers a r e  a t  most o n l y - s l i g h t l y  metas,table.  They . . 
, . 

r ep resen t  a completion of t h e  isoelectronic-isostructural 

s e r i e s  e s t a b l i s h e d  by g lyoxal  and NO dimer. Add i t iona l ly ,  

it may prove u s e f u l  t o  acqu i re  information concerning t h e  

p r o p e r t i e s  of k l ~ e  t r i p l y  ,bonded oxygen ion.  

I n  Table 7 Lhe geometry parameters o f  t h e  c y c l i c  dimers 

are c l o s e  t o  s t andard  model values (Pople and  ordo don, 1967) ,  

al though a l l  t h e  bonds i n  both r i n g s  a r e  s l i g h t l y ,  lengthened. 



Our 1 ,2-d ioxe tane  geometry is  s i m i l a r  ' t o  t h e  Hartree-Fock 

geometry by ~ a r n e t t  (1974) ; t h e  most impor t an t  s i m i l a r i t y  

be ing  t h e  f a c t  t h a t  he a l s o , p r e d i c t s  a p l a n a r  r i n g .  

t- (HNO) 2 has  n o t  p rev ious ly  been s t u d i e d ,  expe r imen ta l ly  

o r  t h e o r e t i c a l l y ,  b u t  it i s  a  c o n j e c t u r a l  and perhaps  

p o s s i b l e  molecule.  



SPIP CALCULATIONS AND THE 

SPIP C a l c u l a t i o n  

Having o b t a i n e d  t h e  r a d i c a l  and molecu la r  geomet r ies  i n  

Tables  6 and 7 ,  it i s  a s imple  .ma t t e r  t o  execu te  t h e  ~ a r t r e e -  

Fock c a l c u l a t i o n s  f o r  a l l  t h e s e  s p e c i e s  u s ing  t h e  f i n a l  b a s i s  

sets i n d i c a t e d  i n  Table 5 , a n d  shown i n  Appendices A and B. 

The r e s u l t i n g  f u n c t i o n s  are d e p a r t u r e  p o i n t s  f o r  t h e  'SPIP 

c a l c u l a t i o n s  desc r ibed  below. 

The Hartree-Fock (HF) wavefunct ions  f o r  t h e  s e p a r a t e d  

r a d i c a l  and molecu la r  monomers, e q u a t i o n s  85-.2 and 90-2,  a r e  

ant isymmetr ized p roduc t s  of  t h e  HF p roduc t s  f o r  the .  i s o l a t e d  

monomers; t h e  t o t a l  energy o f  t h e  s e p a r a t e d  monomers i s  t w i c e  

t h e  energy of one i s o l a t e d  monomer, and t h u s  w e  r e a l l y  on ly  

need t h e  r a d i c a l  monomer f u n c t i o n  

and t h e  molecu la r  monomer f u n c t i o n  .. 

IIere a  and E a r e  a s  p r e v i o u s l y  d e f i n e d ,  and F' r e p r e s e n t s  

t h e  a p p r o p r i a t e  c o r e  f u n c t i o n  f o r  t h e  system be ing  cons ide red .  

'S ince  w e  never  i n t roduce  any c o r r e l a t i o n  i n t o  t h e  r a d i c a l  

monomers, no f u r t h e r  c a l c u l a t i o n s  u s ing  equa t ion  92-1 a r e  



needed. For the molecu la r  monomers, however, w e  need t o  

determine ' t he  SPIP f u n c t i o n  

t o  a s s e m b l e . t h e  wavefunction i n  equa t ion  91-2. To do t h i s  
I 

r e q u i r e s  t h a t  w e  choose i n i t i a l  gues ses  o f  t h e  o r b i t a l s  i n  

equa t ion  93  and execute  t h e  SPIP procedure  developed i n  

P a r t s  I t o  I11 of t h i s  work. 

The i n i t i a l  o r b i t a l s  f o r  t h e  co re  f u n c t i o n ,  F a ,  i n  

equa t ion  93 a r e  t aken  d i r e c t l y  from t h e  HF f u n c t i o n  i n  

equa t ion  92-2. The i n i t i a l  o r b i t a l  L i n  equa t ion  93 i s  a  - p i  

bond, and it i s  a l s o  taken  d i r e c t l y  from e q u a t i o n  92-2 ,  t h e  
* 

: ant ibonding  @ o r b i t a l ,  L. , i s  t h e  lowes t  energy '  HF v i r t u a l  

o r b i t a l  of  t h e  p rope r  symmetry; f i n a l l y  t h e s e  o r b i t a l s  a r e  

a s s igned  t h e  i n i t i a i  geminal expansion'  c o e f f i c i e n t s  f L  =',1.0 

and f L *  = 0.0, and t h e  r e s u l t  i s  taken t o  d e f i n e  o u r  i n i t i a l  

guess  o f  t h e  SPIP f u n c t i o n  i n  equa t ion  93. A l l  t h a t  remains 

?.s t o  apply t h e  a n a l y s i s  i n  t h e  p reced ing  t o  i t s  o p t i m i z a t i o n .  

The i n i t i a l  o r b i t a l s  f o r  t h e  r ad i ca l -d imer  SPIP func- 

t i o n s  a r e  chosen i n :  t h e  same manner a s  t h e  o r b i t a l s  f o r  t h e  

molecu la r  monomers. The. o r b i t a l s  f o r  t h e  c o r e  f u n c t i o n  and 

c e n t r a l  sigma bond i n  equa t ion  89-1;3 are t aken  from t h e  HF 

f u n c t i o n  i n  equa t ion  85-1; t h e  an t ibonding  o r b i t a l ,  a*, i s  

t h e  lowest  energy HF v i r t u a l ' o r b i t a l  o f  t h e  p rope r  symmetry, 



and t h e s e  o r b i t a l s  a r e  a s s igned  t h e  i n i t i a l  expansion 

c o e f f i c i e n t s  f u  = 1.0 and f a *  = 0.0 .  The r e s u l t i n g  i n i t i a l  

SPIP f u n c t i o n  i s  t o  be op t imized  by t h e  methods of P a r t s  I 

t o  111. 

Choosing i n i t i a l  o r b i t a l s  f o r  t h e  c y c l i c . d i , m e r ' s  two 

geminal SPIP func t ion  i s  a  more d e l i c a t e  t a s k .  Rather  than 

r i s k  any convergence problems c r e a t e d  by s imul taneous ly  

op t imiz ing  t w o  crude i n i t i a l  o r b i t a l s ,  w e  e l e c t e d  t o  f i r s t .  

c a l c u l a t e  t h e  SPIP f u n c t i o n  

I ts  i n i t i a l  o r b i t a l s  a r e  chosen by e x a c t l y  t h e  procedure  

d e s c r i b e d  above: t h e  o r b i t a l s  i n  F and t h e  o r b i t a l s  a1  

and a2  a r e  taken from t h e  H F  f u n c t i o n  i n  equa t ion  90-1 ; t h e  

* 
o r b i t a l  a1 is  t h e  lowest  energy H F  v i r t u a l '  o r b i t a l  o f  t h e  

p rope r  symmetry, and t h e  geminal  expansion c o e f f i c i e n t s  a r e  

chosen t o  be f  = 1 . 0  and f  * = 0.0. This  f u n c t i o n  i s  
a  1 a  1 

t hen  op t imized  us ing  the SPIP procedure, and i t s  opt imized  

o r b i t a l s  a r e  used i n  an i n i t i a l  guess  o f  t h e  two-geminal 

f u n c t i o n  i n  equa t ion  91-1. A s  one might suppose,  t h e  a n t i -  

bonding o r b i t a l  a: is  t h e  lowest  energy SPIP f u n c t i o n  v i r t u a l  

o r b i t a l  of  t h e  p rope r  symmetry; and t h e  i n i t i a l  geminal  

expansion c o e f f i c i e n t s  are f  = 1.0 and f  * = 0.0. This  
a2 a2 

i s  t h e  i n i t i a l '  approximation t o  t h e  two-geminal SPIP func- 

t i o n  i n  equa t ion  91-1. 



A l l  o f  t h e s e  SPIP c a l c u l a t i o n s  w e r e .  execu ted  keeping 

t h e  i n n e r  s h e l l s  (K s h e l l s )  o f  th.e carbon,  n i t r . ogen ,  and 

oxygen atoms f i x e d  a t  t h e i r  HF va lues .  The' o t h e r  o r b i t a l s  

w e r e  opt imized u n t i l  t h e y  s a t i s f i e d  t h e  g e n e r a l i z e d  

B r i l l o u i n  theorem (Levy and B e r t h i e r ,  1'96 8) and they  produced 

an energy s t a b l e  t o  e i g h t  decimal  p l a c e s .  A l l  t h e  occupied 

o r b i t a l s  i n  t h e  Hartree-Fock f u n c t i o n s  f o r  t h e  r a d i c a l  mon- 

omers and t h e  SPIP fun.c t ions  f o r  t h e  r ad i ca l -d imer s  a r e  

shown i n  Appendix C ,  Tables  4 1  t o  49.  The occupied o r b i t a l s  

f o r  t h e  Hartree-Fock and SPIP wavefunct ions  o f  t h e  molecular  

. monomers and t h e  Hartree-Fock,  one-geminal SPIP ( equa t idn  :94) , 

and two-geminal SPIP f u n c t i o n s  f o r  t h e  c y c l i c  dimers  a r e  

shown i n  Appendix D;  Tables 50 t o  59. 

C o r r e l a t i o n  Defec t  i n  t h e  ~ a d i c a l - ~ i m e r k  

The ~ a r t r e e - F o c k  and SPIP wavefunct ' ions f o r  t h e  s i x  . . 

r ad i ca l -d imer s  and t h r e e  r a d i c a l  monomers shown i n  equa-" 

t i o n s  83-1,3 y i e l d  t h e  a b s o l u t e  e n e r g i e s  shown i n  Table  8. 

The HF r e s u i t s  f o r  t h e s e  systems a r e  i n  e s s e n t i a l  con- 

fo rmi ty  t o  o n e ' s  i n t u i t i v e  e x p e c t a t i o n :  t h e  c i s  form o f  a 
. - 

dimer w i l l  have a h i g h e r  energy than  t h e  t r a n s  form. W e  

obse rve ,  however, t h a t  a t  t h e  SPIP l e v e l , .  t h e  t r a n s  form ' 

of  NO dimer i s  t h e  h i g h e r  energy  form, Such a r e s u l t .  i s  

s u r p r i s i n g ,  b u t  t h e  NO dimer system h a s  caused confus ion  

b e f o r e ;  w e  remarked t h a t  Wil l iams and M u r r e l l  (1971) made 

a c a l c u l a t i o n  e s t a b l i s h i n g  t h e  , t r a n s  isomer a s  t h e  lower --- 



Table 8. Absolute energies of the radical-dimers and radical-monomersa 

.monomer cis-dimer cis-dimer trans-dimer trans-dimer 

molecule 
(HF) (HF) ( SP IP.) (HF) . . (SPIP) 

. ... . . - -- 
glyoxal -113.1083-.- 

NO dimer -129.1778 

- 
' . -  

- . . - - 

a 
Energy in s . ~ .  



energy form; however, a  subsequent gaussian b a s i s  s e t  calcu- 

l a t i o n  (Vladimeroff, 19721 a t  t h e  Williams and Murrel l  

geometry i n v e r t e d  the  c is>t r .ans  energy order .  I t  i s  p o s s i b l e  
. . 

t h a t  an examination of t h e  c o r r e l a t i o n  d e f e c t  and geometry 

changes'concerned with t h i s  system can e l u c i d a t e  t h e  o r i g i n s  

of t h i s  invers ion .  

I n  Table 9 ,  we show t h e  r e a c t i o n  ene rg ies  an'd c o r r e l a t i o n  

d e f e c t  f o r  s i x  r e a c t i o n s  i n  equat ions  8 3 - 1 , 3 .  Along wi th  

t h e s e  e n e r g i e s ,  we show t h e  occupation numbers ' assoc ia ted  

wi th  t h e  o r b i t a l s  i n  t h e  geminal d e s c r i b i n g  t h e  c e n t r a l  sigma 

bond of t h e  radical-dimers .  These energy d i f f e r e n c e s  show 

two t h i n g s  c l e a r l y :  (1) we s e e  t h a t  t h e  c o r r e l a t i o n  d e f e c t  

is  important ,  amounting t o  roughly 15% of t h e  d i s s o c i a t i o n  

energy o f  g lyoxal ;  ( 2 )  t h e  d e f e c t .  always s t a b i l i z e s  t h e  - c i s  

more than t h e  t r a n s  isomer of  a  given . . system. Here is  t h e  

mechanism t o  i n v e r t  t'he H F  c i s > t r a n s  energy o rde r :  I n  a l l  

t h e s e  systems, t h e  c o r r e l a t i o n  d e f e c t  s t a b i l i z e s  t h e  - c i s  

more than t h e  t r a n s  isomer, b u t  i n  NO dimer t h j s  f a v o r i t i ~ m  

1s g r e a t e r  than t h e  d i f f e r e n c e  i n  t h e  HF energ ies  of t h e  two 

isomers. To s e e  t h i s ,  look a t  Table 10 where we d i s p l a y  t h e '  

t r a n s - c i s  - s p l i t t i n g  f o r  t h e  radical-dimers  , i n  t h e  HF and SPIP. 

approximations; we a l s o  record  t h e  d i f f e r e n c e s  between. t h e  

c o r r e l a t i o n  d e f e c t s  ( t r a n s - c i s )  , t h e  c o r r e l a t i o n  s h i f t .  

f Observe t h a t  t h e  s h i f t  i n  NO dimer and 0 2  dimel; i s  about t h e  

same; s o  t h e  inver s ion  i n  NO'dimer is  c rea ted  by t h e  nea r  



T a b l e  9 .  O c c u p a t i o n  number s ,  r e a c t i o n  e n e r g i e s ,  and  
c o r r e l a t i o n  d e f e c t  f o r  t h e  r a d i c a l - d i m e r s a  

SP IP A E A E 

m o l e c u l e  d e f e c t  

"a n * 
0 

(HF) (SPIP) 

c- (NO) 2 1 . 9168  . 0.0832 ' 0.0747 0 .0352 -0 .0395 
. . 

t- (NO)  2. 1 .9463  0 .0537  0 .0687  0 .0360 -0 .0327 

a E n e r g y  i n  a . u .  ' o n e  a . u .  = 627.0 k c a l / m o l e .  



T a b l e  1 0 .  Trans . - . c i s  s p l i t t i n g  a n d  t h e  c o r r e l a t i o n  s h i f t s  

f o r ' .  t h e  radical-.dimersa 
- 

t r a n s - c i s  s p l i t t i n g  correl. 
m o l e c u l e  

H F  SP I P  s h i f t  

g l y o x a l  -0 .0075  -0 .0074 . .  . O . O Q O l  

NO d i m e r  - 0 . 0 0 6 1  . 0 .0009  . O .  0 0 6 8  

+ 
0 2  dimer -0 .0160 -0 .0087  0 .0072  , ' 

a G i v e n  are t h e  d i f f e r e n c e s  t r a n s - c i s  . 



degeneracy of i t s  c i s  and t r a n s  isomers;  on ly  t h e  r a t h e r  -. 

+ 
l a r g e  s p l i t t i n g  i n  O2 dimer p r e v e n t s  an. i n v e r s i o n  t h e r e .  

Having i s o l a t e d  t h i s  e ' f f e c t ,  w e  a sk  about  a mechanism 

t o  e x p l a i n  i t s  o r i g i n .  An exp lana t ion  emerges from an 

examinat ion o f  t h e  geomet r ies  i n  Table 6. There w e  see t h a t ,  

on go ing  from t h e  cis  t o  t r a n s  isomer o f  any molecule  t h e  - 
major s t r u c t u r a l  changes concern t h e  l e n g t h  o f  t h e  c e n t r a l  

bond and t h e  maynitude o f  t h e  CCO, NNO, and 000 ang le s .  W e  

s e e ,  however, t h a t  t h e  change i n  t h e  NNO ang le  i s  r a t h e r  

s m a l l ;  a lmost  a l l  t h e  geomet r ic  response  t h i s  molecule makes 

t o  t h e  i s o m e r i z a t i o n  i s  a change i n  t h e  NN sigma bond l eng th .  

This  s t r u c t u r a l  change produces  a s h i f t  i n  t h e  c o r r e l a t i o n  

d e f e c t ;  and w i t h  t h e  n e a r  degeneracy o f  t h e  - .  c i s  and t r a n s  

i somers ,  it i n v e r t s '  t h e i r  energy o r d e r .  

The r e l a t i v e  s t r e n g t h  of t h e  c e n t r a l  sigma bond i n  t h e  

v a r i o u s  rad ica l -d imers  is p l a i n  from t h e  d i m e r i z a t i o n  

e n e r g i e s  i n  Table 9 ,  b u t  F i g u r e s  5 t o  7 p rov ide  a g r a p h i c  

i l l u s t r a t i o n  o f  t h e  bonding c h a r a c t e r .  W e  show cont.onr p l o t s  

of t h e  two n a t u r a l  o r b i t a l s  i n  t h e  geminal  o f  e q u a t i o n s  89-1,3 

f o r  each  of  t h e  rad ica l -d imers .  W e  a l s o  show one o f  . the 

s i n g l y  occupied  GVB (Hay, Hunt, and Goddard, 1972a,b ,c ) 

o r b i t a l s  gene ra t ed  by t h e  t r a n s f o r m a t i o n  i n  e q u a t i o n s  9-1,3. 

The GVB o r b i t a l s  become t h e  f r e e  r a d i c a l  SMO's on i n f i n i t e  

s e p a r a t i o n ,  s o  t h e  e x t e n t  t o  which t h e y  l o c a l i z e  on one 



Figure  5. Major and minor n a t u r a l  o r b i t a l s  and  GVB o r b i t a l s  f o r  g lyoxa l .  
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Figure 6 .  Major and minor n a t u r a l  o r b i t a l s  and GVB o r b i t a l s  f o r  NO dimer. 
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Figure 7.  Major  and minor na tu r a l  o r b i t a l s  and GVB o r b i t a l s  f o r  02 dimer. 
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fragment is  a  r e f l e c t i o n  o f  the weakness o f  t h e  bond; c l e a r l y  

t h e  bond i n  NO dimer i s  ve ry  weak., and t h e  bond i n  0: dimer 

h a r d l y  e x i s t s  a t  ' a l l .  

C o r r e l a t i o n  S h i f t  i n  t h e  C y c l i c  D i m e r s  

The HF and SPIP f u n c t i o n s  ( e q u a t i o n s  91-1 and 93) f o r  

t h e  c y c l i c  dimers and molecu la r  monomers shown i n  equa- 

t i o n s  84-1,2 y i e l d  t h e  a b s o l u t e  e n e r g i e s  shown i n  Table  11. 

These v a l u e s  can be  combined t o  y i e l d  t h e  r e a c t i o n  

e n e r g i e s ,  and by t a k i n g  t h e  d i f f e r e n c e  between t h e  r e a c t i o n  

e n e r g i e s  o f  t h e  HF and SPIP wavefunct ions  w e  o b t a i n  t h e  

c o r r e l a t i o n  s h i f t .  1 t . i ~  a r e f l e c t i o n  of  t h e , f a c t  t h a t  t h e  

e l e ' c t r o n s  i n  d i f f e r e n t  bonds o f  a molecule  c o r r e l a t e  one 

ano the r  d i f f e r e n t l y .  For  1 ,2-dioxetane it is  approximately  

t h e  d i f f e r e n c e  between t h e  c o r r e l a t i o n  e n e r g i e s  of an 

oxygen-oxygen'and a  carbon-carbon s igma'bond and 

o f  'two carbon-oxygen & bonds. A p o s i t i v e  o r  n e g a t i v e  v a l u e  

i n d i c a t e s  g r e a t e r  o r  lesser c o r r e l a t i o n  i n  t h e  molecu la r  

monomers t han  i n  t h e  r i n g .  These v a l u e s  a r e  shown i n  

Table  12;  Table  1 3  d i s p l a y s  t h e  occupa t ion  numbers o f  t h e  

S P I P  f u n c t i o n s .  These d a t a  conf i rm one ano the r ;  t h e  c o r r e -  

l a t i o n  s h i f t  i s  i n  f a v o r  of  t h e  molecu la r  monomers, and f o r  

bo th  systems t h e  mirmr o r b i t a l  occupa t ion  numbers f o r  t h e  
* 

pi o r b i t a l s  i n  t h e  molecu la r  monomers is  g r e a t e r  t han  e i t h e r  

minor o r b i t a l  .occupa t ion  number i n  t h e  c y c l i c  dimers.  



Table 11. Abs,olute e n e r g i e s  o f  th.e c y c l i c  dimers. and 

.molecular .  monomers a 

. . 

r e a c t i o n  monomer dimer monomer dimer 

system (HF). (HF) (SPIP) . . . . . . (SPIP) . ' 

a Energy i n  a.u. 

Table 1 2 .  Reaction e n e r g i e s  and the  c o r r e l a t i o n  s h i f t  
f o r  t h e  c y c l i c  dimersa 

r e a c t i o n  A A 

system (HF! (SPIP) s h i f t  

a Energy i n  a.u. I 



Table  13 .  Occupat ion  nlrmbers of t h e  ' o r b i t a l s  i n  the gemina l s  of t h e  ' m o l e c u l a r  
xr.onomer a n d .  c y c l i c  d imer  SPIP f ~ n c t i ~ n s  

r e a c t  i o n  
n n * n n * n * sys tem L L al. . . ' . . .a . . . . a 2 "a 



The r e a c t i o n  energy f o r  t h e  thermal  d i s s o c i a t i o n  

o f  1 ,2 -d ioxe tane  has  been thermochemically e s t i m a t e d  (OtNeal 

and Richardson. 1970, 1971) t o  be 53 kcal/mole;  a s imple  

combination o f  s t a n d a r d  bond e n e r g i e s  ( C o t t r e l l ,  1958) 

g i v e s  43 kcal/mole. These estimates are more i n  l i n e  w i t h  

o u r  HF e s t i m a t e  of 5 7  kcal/mole than  o u r  SPIP va lue  of  70 

kcal/mole,  b u t  t h e  energy f o r  t h e  d i s s o c i a t i o n  o f  t e t r a -  

methyl-1,2-dioxetane t o  ace tone  has  been measured (Lechtken 

and Hoehne, 1973) and i s  70 kcal/mole f o r  t h e  s o l i d  and 61 

.kcal/mole i n  a s o l u t i o n ,  s o  w e  a r e  l e f t  i n  a quandry. How- 

e v e r ,  t h e  bond energy e s t i m a t e  f o r  t h e  d i s s o c i a t i o n  o f  

t - ( H N 0 ) 2 ,  t o  HNO is  110 kcal/mole;  a va lue  f a ' r  more exothermic 

than  e i t h e r  t h e  HF o r  SPIP p r e d i c t i o n ;  s o  it seems, a t  l e a s t  

f o r  t- (HNO) 2 ,  t h a t  o u r  SPIP wavefunct ion does  n o t  o v e r e s t i -  -- 
mate t h e  c o r r e l a t i o n  s h i f t  i n  f a v o r  o f  t h e  s e p a r a t e d  system. 

Accordingly,  w e  accep t  t h e  beyond Hartree-Fock sepa ra t ed -  

p a i r  independent  p a r t i c l e  r e a c t i o n  e n e r g i e s ,  b u t  a cal .cula-  

t i o n  on t e t r ame thy l -1  ,2-dioxetane i s  needed t o  sett le t h e  

i s s u e .  Beyond q u e s t i o n ,  however, i s  t h e .  f a c t  t h a t  t h e  

c o r r e l a t i o n  s h i f t  can make a n o n t r i v i a l  c o n t r i b u t i o n  t o  t h e  

r e a c t i o n  energy.  

. . 

Zero P o i n t  Energy 

Although o u r  primary concern up t o  t h i s  p o i n t  has  been 

a s s o c i a t e d  w i t h  t h e  e f f e c t  of e l e c t r o n  c o r r e l a t i o n  on 

r e a c t i o n  e n e r g i e s ,  t h e r e  a r e  o t h e r  phenomena t h a t  can make 



a n o n - t r i v i a l  c o n t r i b u t i a n  t o  these q u a n t i t i e s .  Among t h e  

most impor tan t  such c o n s i d e r a t i o n s  i s  any change i n  t h e  zero  

p o i n t  v i b r a t i o n a l  energy:  t h e  ground s t a t e  - ene rgy  a s s o c i a t e d  

w i t h  t h e  o s c i l l a t o r y  motions of  t h e  heavy n u c l e i  on t h e  

a d i a b a t i c  p o t e n t i a l  s u r f  ace  (London, 1929) defiried by t h e  

molecu la r  e l e c t r o n i c  wavefunct ion.  

Like t h e  c o r r e l a t i o n  e f f e c t ,  t h e  ze ro  p o i n t  energy 

a s s o c i a t e d  wi th  t h e .  r ad i ca l -d imer s  c r e a t e s  a d e f e c t ,  and 

t h e  ze ro  p o i n t  energy a s s o c i a t e d  w i t h  t h e  c y c l i c  dimers 

becomes. involved  i n  a ba lance .  

For  t h e  r ad i ca l -d imer s ,  t h e  v i b r a t i o n a l  degree  o f  

freedom a long  t h e  r e a c t i o n  c o o r d i n a t e  h a s  a p o s i t i v e  z e r o  

p o i n t  energy which goes t o  ze ro  a t  i n f i n i t e  s e p a r a t i o n  

( G l a s s t o n e . e t  -- a l . ,  1941) .  This  produces a d e f e c t  i n  t h e  . 

r e a c t i o n  energy 

where A i s  t h e  r e a c t i o n  energy c a l c u l a t e d  w i t h  t h e  e l e c t r o n i c  

wavefunct ions;  h i s  P l a n k ' s  c o n s t a n t ,  and vr i s  t h e  funda- 

mental  v i b r a t i o n a l  f requency f o r  s t r e t c h i n g  t h e  dimer a long  

t h e  c e n t r a l  bond, 

S i m i l a r  arguments show t h e  z e r o  p o i n t  s h i f t  f o r  1,2-diox- 

e t a n e  t o  have t h e  form 

A' = A + )r h {v + vcc + 2vc0 - 2vco1 1 , 
00 



where V o o t  V c c ,  and ,  v r e p r e s e n t  t h e  fundamental .  s t r e t c h -  
CO 

i n g  f r e q u e n c i e s  f o r  the oxygen-oxygen , carbon-carbon , and 

carbon-oxygen s'igma bonds i n  ,1,2-dioxetane , and v ' . r ep re -  
CO 

s e n t s ' t h e  fundamental  s t r e t c h i n g  f requency f o r  t h e  carbon- 

oxygen double bond i n  formaldehyde. 

The fundamental  f requency v a r i e s  i n v e r s e l y  as t h e  

squa re  r o o t  of  t h e  v i b r a t i n g  masses, s o  w e  e x p e c t  t h e  

v i b r a t i o n  energy a s s o c i a t e d  w i t h  massive o s c i l l a t o r s  t o  be  

s m a l l e r  than t h a t  f o r  l i g h t e r  , ones .  .For H 2  (Schwartz and 

Schaad, 1967) t h e  ze ro  p o i n t  energy i s  6.3  kcal/mole,  b u t  

f o r  Lip (Herzberg,  1950) it i s  0.5 kcal/mole. The r e l a t i o n -  

s h i p  i s  n o t  p e r f e c t  because d i f f e r e n t  bonds are a s s o c i a t e d  

w i t h  d i f f e r e n t  f o r c e  c o n s t a n t s ;  b u t  b road ly  speaking ,  w e  can 

.. e x p e c t  t h e  z e r o  p o i n t  energy f o r  bonds between second row 

atoms t o  be  less than  3.1 kcal/mole. Using t h e  fundamental  

s t r e t c h i n g  f r e q u e n c i e s  from Rober ts  and C a s e r i o  ( 19 6 4 )  w e  

f i n d  ze ro  p o i n t  e n e r g i e s  f o r  t h e  carbon-carbon and carbon- 

oxygen sigma bonds 'And t h e  carbon-oxygen double  bond t o  be 

about 0.6 kcal/mole,  1 .2  kcal/mole,  and 2.5 kcal/mole 

r e s p e c t i v e l y .  Using t h e  same ze ro  p o i n t  energy f o r  t h e  

n i t rogen -n i t rogen  and oxygen-oxygen s i s m a  bonds and f o r  t h e  

carbon-oxygen and nitrogen-oxygen double  bonds,  w e  i n f e r  

t h a t  n e g l e c t  o f  t h e  ze ro  p o i n t  energy l e a d s  us  t o  ove re s t ima te  

t h e  r e a c t i o n  energy f o r  t h e  d i s s o c i a t i o n  o f  t h e  rad ica l -d imer3  

by about  0.6 kcal/mole;  f o r  t h e  d i s s o c i a t i o n  o f  t h e  c y c l i c  



dimers ,  w e  expec t  t o  underes t imate  t h e  r e a c t i o n  energy by 1.2 

kcal/mole.' So, n e g l e c t i n g  the.  ' z e ro  p o i n t  energy complete ly  

w i l l  be  a second-order e r r o r .  



PART.  V: A S P I P  AND MCSCF STUDY O F  THE THERMOLYSIS O F  . 



INTRODUCTION 

The the rmolys i s  o f  1 ,2 -d ioxe tane .  t o  formaldehyde i s  an 

i n t e r e s t i n g  and c o n t r o v e r s i a l  reac t ion , '  t h e  major source  o f  

t h e  exc i tement  be ing  t h e  f a c t  . t h a t  s e v e r a l  1-, 2-dioxetanes 

are known t o  thermoly ize  t o  chemiluminescent p roduc t s  (Tur ro  

and Lechtken,  1972, 1973.; Lechtken e t  a l . ,  1973; Turro  -- 
e t  a l . ,  1974; Wilson e t  a l . ,  1973; S t e inme tze r  e t  a l . ,  1974; -- -- -- 

Yang and Car r ,  1974; Dar l ing  and Foote ,  1974) .  S ince  t h e  

mechanisms o f  t h e s e  decomposit ions a r e  r a t h e r  s p e c u l a t i v e ,  

t h e  1 ,2-d ioxe tane  system i s  a  v a l u a b l e  t o p i c  on which theo- 

r e t i c i a n s  and e x p e r i m e n t a l i s t s  can i n t e r a c t .  

Both conce r t ed  &d b i r a d i c a l  pathways have been sugges ted  

f o r  t h e s e  r e a c t i o n s ,  and t h e  mechanisms have been suppor t ed  

w i t h  c o r r e l a t i o n  diagrams (Kearns,  1971; McCapra, 1968; 

Turro  and Lechtken,  1973; B a r n e t t ,  1974) and semiempir ica l  

c a l c u l a t f o n s  (Ev le th  and F e l e r ,  1973; Rober t s ,  1974) . These 

c a l c u l a t i o n s  used minimal beyond Hartree-Fock (HF) methods 

t o  c a l c u l a t e  a c t i v a t i o n  e n e r g i e s  f a r  above t h e  25  kcal/mole 

sugges ted  by experiment (Kopecky and Mumford, 19 69 ; 0 'Neal  

and Richardson,  1970, 1971; Richardson -- e t  a l . ,  1972; Wilson 

and Schaap,  19 71; Turro  and Lechtken,  1973) . This  discrepancy. .  

can be  a s s igned  t o  c o r r e l a t i o n  e f f e c t  n e g l e c t e d  by t h e  wave- 

f u n c t i o n s ,  o r  it can be a t t r i b u t e d  t o  un re f ined  geomet r ies  

a long  t h e  r e a c t i o n  pa ths .  



D e w a r  and Ki rschner  (1974) approached t h i s  problem us ing  

a  MIND0/3-configuration i n t e r a c t i o n  (Bingham -- e t  a l .  , 19 75a ,b ,  

c , d ;  Bingham and Dewar, 1972) s tudy  of  t h e  molecu le ' s  s i n g l e t  

and t r i p l e t  energy s u r f a c e s .  They found t h a t  t h e s e  s u r f a c e s  

i n t e r s e c t e d  3 8 . 3  kcal/mole above t h e  molecu la r  ground s t a t e ,  

and t h e i r  c a l c u l a t i o n s  would imply d i s s o c i a t i o n  t o  e x c i t e d  

p roduc t s  f r 0 m . a  molecular  t r a n s i t i o n  s ta te .  Eaker and Hinze 

(unpubl ished)  used a  semiempir ica l  m u l t i c o n f i g u r a t i o n  s e l f -  . 

c o n s i s t e n t  f i e l d  (MCSCF) method (Eaker and ~ i n z e ,  1974) t o  

s tudy  a  s i m i l a r  r e a c t i o n  path., They found an a c t i v a t i o n  

energy of  2 4  kcal/mole, and us ing  t h e  O ' N e a l  and Richardson 

(1970, 1971) thermochemical d i s s o c i a t i o n  energy o f  55 k c a l /  

mole, they  p r e d i c t e d  no chemiluminescence. I n  c o n t r a s t ,  t h e  

c a l c u l a t i o n  o f  Rober ts  (1974) p r e d i c t e d  , d i s s o c i a t i o n  t o  

chemi.1uminescent p roduc ts  from a b i r a d i c a l  i n t e r m e d i a t e .  

I n  an e f f o r t  t o  e l u c i d a t e  t h e  s t r u c t u r e  o f  t h e  transi- 

t i o n  s t a t e  and e v a l u a t e  t h e  a c t i v a t i o n  energy ,  we;began an 

ab  i n i t i o  s tudy  of  t h e  t he rmolys i s  o f  1 ,2-dioxetane.  Here . . - 
w e  r e p o r t  'some o f  o u r  r e s u l t s  f o r  t h e  d i s s o c i a t i o n  of  t h e  

molecular  ground s t a t e  t o  t h e  ground s t a t e  o f  t h e  s e p a r a t e d  

formaldehydes. The s tudy  was made us ing  wavefunct ions  can- 

s i d e r a b l y  beyond t h e  H F  approximat ion,  .and t h e i r  p r e s e n t a t i o n  

a f f o r d s  us t h e  oppor tun i ty  t o  expound s c v c r s l  fundamental 

i d e a s  t h a t  may be useful i n  t h e  s tudy  o f  o t h e r  r e a c t i o n s .  



ORBITAL AND CONFIGURATIONAL 

REACTION SPACES 

Core and Reaction O r b i t a l  Spaces 

A s  we remarked i n  P a r t  I V ,  t h e  thermolys is  of 1,2-diox- 

e t a n e  i s  a  rearrangement of two sigma bonds t o  two @ bonds. 

This  rearrangement involves  f o u r  e l e c t r o n s ,  and i t s  

d e s c r i p t i o n  i s  f a c i l i t a t e d  by a  decomposition of t h e  space of 

occupied molecular o r b i t a l s  i n t o  two sets: 

(1) "Generalized core o r b i t a l s  " ( C M O ' s )  t h a t  

d e s c r i b e  those  c losed  s h e l l s  n o t  much d i s -  

turbed  by bonding rearrangement and used t o  

make up t h e  genera l i zed  c o r e .  funct ion  F t h a t  

we used ' i n  P a r t  I V ,  equat ions  90-1  ,'2 Bnd 

9 1 - l t 2 . '  

( 2 )  "Reaction molecular o r b i t a l s "  ( R M O 1 s )  t h a t  

a r e  l i n e a r  combinations of  those  minimal 

b a s i s  s e t  r e a c t i o n  hybr id  o r b i t a l s  (RHO'S) 

t h a t  undergo e s s e n t i a l  phys ica l  deformations 

during t h e  r e a c t i o n .  

W e  assume, without  l o s s  of general i ty ' ,  t h a t  t h e  CMOks  and, 

R M O t s  a r e  two orthogonal  sets, and we furthermore make t h e  

reasonable assumption t h a t  t h e  C M O 1 s  a r e  or thogonal  t o  t h e  , 

R M O ' s .  



I n  1,2-dioxetane t h e  RMO's  a r e  o r b i t a l s  i n  t h e  f o u r  

dimensional space spanned by f o u r  A O ' s  ( o r  RMO's)  , one on 

each of t h e  heavy atoms; and they a r e  schemat ica l ly  i n d i c a t e d  

below : 

The a c t u a l  o r b i t a l s  a r e  more complicated than t h e  simple 

f i g u r e s  above; f o r  example, o r thogona l i ty  w i l l  make each RHO 

a  mul t i cen te r  funct ion  l o c a l i z e d  p r imar i ly  n e a r ,  r a t h e r  than 

wholly on, one of t h e  heavy atoms. Giving each RHO a  name 

corresponding t o  t h e  atom i t ' s  l o c a l i z e d  around, we c a l l  

them,Lot  L C ,  rot and rc (I, means l e f t ,  r means r i g h t ,  o  

means oxygen, and c means carbon) . .Since t h e  ground s t a t e  

of 1,2-dioxetane has C .symmetry, from P a r t  I V ,  t h i s  f o u r  
2 v  

dimensional space can be broken i n t o  two subspaces which 

t ransform l i k e  t h e  A1 and B 2  i r r e d u c i b l e  r e p r e s e n t a t i o n s  of 

C ; and accordingly i n  t h i s  space we can f i n d  f o u r  symmetry 
2v 

adapted RMO ' s 

and 



where to, t;, tcl t;, sot "A. Set and s; a r e  expansion 

coe f f i c i en t s . '  With an appropr ia t e  choice of t h e  o r b i t a l s  

r and rc and t h e  expansion c o e f f i c i e n t s ,  t h e  MO1s  L o ,  L C ,  

al, a2,  b l ,  and b2 span t h e  RMO space;  and t h e  b e s t  p o s s i b l e  

choice de f ines  t h e  mul t i conf igura t ion  s e l f - c o n s i s t e n t  f i e l d  

(MCSCF) v a r i a t i o n a l l y  optimized o r b i t a l s .  To f i n d  t h e s e .  

o r b i t a l s ,  however, we must make- a  s tudy of t h e  space of 

con£ igu , ra t ion  func t ions  needed t o  desc r ibe  t h e  r e a c t i o n .  

"Complete Conf igura t ional  Reaction Space" 

Having d iv ided  t h e  space of occupied M O 1 s  i n t o  CMO1s 

and R M O ' s ,  w e  can form a  s p e c i a l  set of  conf igura t ions  by 

choosing each member t o  be an antisymmetrized product  of 

t h e  CMO c losed  s h e l l s ,  t he  genera l i zed  core func- 

t i o n  F, and one of t h e  p o s s i b l e  RMO o r b i t a l  products  t imes 

a  s p i n  funct ion .  A l l  t h e s e  conf igura t ions  span t h e  "complete 

c o n f i g u r a t i o n a l  r e a c t i o n  space" (CCRS). I n  t h e  p r e s e n t  case 

a l l  t h e  conf igura t ions  must have A l  symmetry and be s i n g l e t  

func t ions ;  consequently each conf igura t ion  must con ta in  an 

even number of b-type o r b i t a l s ;  each RMO o r b i t a l  product  

must be combined wi th  one o r  both of t h e  s p i n  func t ions  



where a and a r e  t h e  u s u a l  s p i n o r s ,  and t h e  l e f t  t o  r i g h t  

o r d e r  o f  t h e  f a c t o r s  i n  a . p r o d u c t  o f  f u n c t i o n s  de te rmines  

t h e i r  arguments. These l i m i t a t i o n s  and t h e  P a u l i  exc lus ion  

p r i n c i p l e  combine t o  r e s t r i c t  t h e  CCRS f o r  t h e  symmetric 

d i s s o c i a t i o n  ( C  o r  C symmetry) o f  1 ,2 -d ioxe tane  t o  t h e  
2v . 2 

fo l lowing  twelve c o n f i g u r a t i o n s :  



which a l s o  in t roduces  two shorthand n o t a t i o n s  f o r  t h e  o r b i t a l  

products  i n  t h e  conf igura t ions  and shows our  convention of 

w r i t i n g  t h e  a-type o r b i t a l s  before  t h e  b-type. The con- 

f i g u r a t i o n s  1 a> and 1 2 , 2 > correspond t o  t h e  Hartree-Fock 

d e s c r i p t i o n s  of 1,2-dioxetane and t h e  separa ted  formaldehyde 

molecules r e spec t ive ly .  

The f i r s t  e leven conf igura t ions  a r e  s i n g l e t  coupled; 

they j o i n  two s i n g l e t  products  toge the r  t o  make a  s i n g l e t ;  

b u t  t h e  l a s t  conf igura t ion  i s  t r i p l e t  coupled; it j o i n s  two 

t r i p l e t  products  t o  form a  s i n g l e t .  Taken t o g e t h e r  they 

make t h e  ."complete conf igura t iona l  r e a c t i o n  space" (CCRS) 

appropr ia t e  f o r  our  d i scuss ion ,  and t h e  wavefunction f o r  1 , 2 -  

d ioxetane a t  any s t a g e  of i t s  symmetric d i s s o c i a t i o n  is  

approximated by t h e  conf igura t ion  i n t e r a c t i o n  (CI) func t ion  



I n v a r i a n c e  of  t h e  

"Complete Conf igu ra t iona l  React ion Space" 

L e t ' s  be g iven  a  set  of  MCSCF o r b i t a l s  a l ,  a 2 ,  b l ,  

and b2 and t h e  t r a n s f o r m a t i o n  

A r ea sonab le  q u e s t i o n  is  : w h a t  i s  t h e  t r a n s f o r m a t i o n  connec- 

t i n g  Y l , * * * , Y J 1 2  t o  t h e  c o n f i g u r a t i o n s  Y I , * * * . , Y ~ ~  which a r e  
- 

formed from t h e  o r b i t a l s  ; ? I ,  a2, 61 and 6 2  . in a manner 

analogous t o  e q u a t i o n s  98-1,12. I t  i s  r e a d i l y  s een  t h a t  t h e  

l a s t  t h r e e  o f  t h e s e  e q u a t i o n s  ,are  . i n v a r i a n t :  

.To f i n d  t h e  t r ans fo rma t ion  o f  t h e  f i r s t  n i n e  c o n f i g u r a t i o n s  . , 

w e  proceed s t epwise .  F i r s t ,  d i r e c t  s u b s t i t u t i o n  shnws t h a t  

t h e  "hybr id"  conf i g u r a t i o n s  

(102). 1 i3, k t >  = n{r ZiEjbkbQ O--1 
. . 

are r e l a t e d  t o  t h e  o r i g i n a l  c o n f i g u r a t i o n s  by t h e  fo l lowing  

o r thogona l  t r ans fo rma t ion  



c o s 2 a  s i n 2 a  s i n  (2a)  /J2 llk!L> 

c o s 2 a  s i n  (2ct)  I- 'Ik2) 1 0 3 )  

- s i n ( 2 & )  /JF s i n ( 2 a ) / J F  cos  (2a)  i Z k ~ >  . 

Employing o u r  second c o n f i g u r a t i o n a l  shor thand  n o t a t i o n ,  

e q u a t i o n s  9 8-1,2, w e  rewrite t h e  t r a n s f  ormat ion i n  equa- 

t i o n  103 a s  

3  
lit k> = I D 7 (a) 13, k> I (104) 

. i J  
j=1 

where t h e . c o e f f i c i e n t s  Di are o b t a i n e d  by comparison w i t h  
. . 

equa t ion  103. An analogous t r e a t m e n t  o f  t h e  second p a i r  o f  

i n d i c e s  g i v e s  t h e  f i n a l  t r a n s f o r m a t i o n .  

- 
and w e  see t h a t  Y 1 , * = *  , Y g  and v 1 , * - -  , Y g  a r e  r e l a t e d  by t h e  

Rronecker p roduc t  of  two o r thogona l  t r a n s f o r m a t i o n s .  s i n c e  

t h i s  t r a n s f o r m a t i o n  i s  i t s e l f  o r thogona l ,  w e  have a t  once 
- 

t h a t  t h e  c o n f i g u r a t i o n s  T I , * - =  , Y 1 2  span e x a c t l y  t h e  same 

space  a s  Y l r * * * r Y 1 2 r  and a s  a r e s u l t  t hey  t o o  are a b a s i s  

o f  t h e  "complete c o n f i g u r a t i o n a l  r e a c t i o n  space" (CCRS) . 



Natural  Reaction O r b i t a l s  

The CCRS invar i ance  j u s t  d iscussed  r e v e a l s  .an a r b i -  

t r a r i n e s s  i n  t h e  o r b i t a l s  produced by an MCSCF c a l c u l a t i o n  

o f  a  genera l  funct ion  from t h i s  space;  namely, t h e  RMOVs 

a r e  determined t o  wi th in  only an or thogonal  t ransformat ion .  

A . s i m i l a r  a r b i t r a r i n e s s  e x i s t s  among t h e  doubly.occupied 

CMO's ;  b u t  here ,  a s  with a  HF wavefunction, t h e  a r b i t r a r i n e s s  

i s  r a t h e r  s u b t l y  d i f f e r e n t .  A HF f u n c t i o n ' s  f i r s t  o rde r  

d e n s i t y  ma t r ix  i s  p r o p o r t i o n a l  t o  a  u n i t  ma t r ix  i n  t h e  space 

of i t s  occupied M O ' s  a s  i s  t h e  f i r s t - o r d e r  dens i ty  matr ix  

of our  MCSCF funct ion  i n  t h e  space of  i t s  C M O V s ;  however, 

t h e  f i r s t  o r d e r  dens i ty  matr ix  of an MCSCF func t ion  is  i n  

genera l  n o t  diagonal  i n  t h e  space of i t s  RMOVs. Rather 

t h i s  p o r t i o n  o f  t h e  matr ix  con ta ins  p r e c i s e l y  a s  many o f f  

diagonal  elements a s  t h e r e  a r e  a r b i t r a r y  parameters i n  t h e  

or thogonal  t ransformat ion  spec i fy ing  t h e  R M O ' s ,  s o  we can 

r e q u i r e  t h a t  o u r  MCSCF func t ion  from t h e  CCRS produce a  

diagon.al d e n s i t y  ma t r ix ,  and a s  a  r e s u l t  we produce unique 

MCSCF o r b i t a l s .  These o r b i t a l s  a r e  s p e c i a l  n 'a tura l  o r b i t a l s  

(Lowdin, 1955), which we c a l l  t h e  " n a t u r a l  r eac t ion"  o r b i t a l s  

o r  N R O ' s .  

For f o u r  &O'S we should s p e c i f y  s i x  dondi t ions  t o  f i n d  

t h e  N R O ' s ,  bu t  t h e  C o r  C symmetry o f  1,2-dioxetane 
. . 2 .  2v 

reduces t h i s  problem t o  t h a t  of  de te rd in ing  t h e  angles  ( a )  

and' ( B )  shown i n  equat ion 100. The f i r s t - o r d e r  d e n s i t y  



m a t r i x  f o r  1 ,2 -d ioxe tane  can be  shown t o  be  

where t h e  bon'd-order inatrices a r e  r e l a t e d  t o  t h e  expansion 

c o e f f i c i e n t s  C l l * * * , C 1 2  of  t h e  f u n c t i o n  i n  equa t ion  9 9  i n  

terms o f  t h e  c o n f i g u r a t i o n s  i n  e q u a t i o n s  98-1,12 by t h e  

fo l lowing  



It  i s  apparent  t h a t  t h e  d e n s i t y  matr ix  i s  d iagonal  i f  

C = C = C = C = 0: i . .e . ,  i f  t h e  conf igura t ions  i n  .which 
6 7 8 9 . . 

t h e  a-type o r b i t a l s  are ' .doubles  and t h e  b-type o r b i t a l s  a r e  

s i n g l e s  and v ice  'versa  a r e  e l iminated .  The space of t h e  . . ' 

remaining e i g h t  conf igura t ions  i s  n o t  i n v a r i a n t  t o  t r a n s f o r -  

mations among t h e  N R O 1 s ,  and - i t s  MCSCF o r b i t a l s  a r e  unique. 

A s  w e ' l l  s e e ,  they  a r e  s i m i l a r  t o  t h e  N R O ' s  o f  t h e  CCRS 

because  i n  f a c t  C , C , C 8 ,  and C t u r n  o u t  t o  be small .  
. 6 7 9 



AN AP.PROXIMATION TO THE RMO' S 

FOR 1,2-DIOXETANE 

SPIP Models of t h e  Reactant and Products  

A s  w e  have seen from P a r t  I V ,  a . r .easonable  approxima- 

t i o n  t o  t h e  wavefunction f o r  1,2-dioxetane is  t h e  separa ted-  

p a i r  independent p a r t i c l e  (SPIP) model 

where 

and t h e  M O ' s  ao,  bo, a c t  and bc a r e  t h e  bonding and a n t i -  

bonding o r b i t a l s  l o c a l i z e d  i n  t h e  regions  of t h e  oxygen-oxygen 

and carbon-carbon sigma bonds re spec t ive ly .  I t  i s  expedient  

t o  make t h e  i d e n t i f i c a t i o n  

' a  = a 
0 

a = a c t  b = bc,  b 2  = bo 
1 2 1 

(110.)  

and use t h e s e  o r b i t a l s  t o  w r i t e  t h e  C I  expansion of @. , U s i n g  

equat ions  ,108, 109-1,2 and 98-1,12 w e  f i n d  



On t h e  o t h e r  hand, t h e  most g e n e r a l  wavefunction f o r  two 

s e p a r a t e d  formaldehyde molecules  i n  t h e  CCRS i s  of t h e  form 

* * 
where L , L  , R , R .  a r e  t h e  bonding and an t ibonding  p i  o r b i t a l s  , - 
on t h e  l e f t  and r i g h t  formaldehyde molecules  r e s p e c t i v e l y .  

These o r b i t a l s  can be  r e l a t e d  t o  a  set o f  symmetry adapted  

o r b i t a l s  by 

The i d e n t i f i c a t i o n  

-a l lows  us  t o  use  equa t ions .98-1 ,12  t o  w r i t e  t h e  C I  expansion 

S ince  Y C I  Y 7 ,  Y 8 ,  and Y 9  do n o t  occu r  i n  t h e  wavefunc- 

t i o n  @ , ' w e  i n f e r  t h a t  t h e y  make no e s s e n t i a l  c o n t r i b u t i o n  t o  

t h e  CCRS wavefunction a t  t h e  molecu la r  equ i l i b r ium.  S ince  

fur thermore ,  t h e s e  c o n f i g u r a t i o n s  a r e  a b s e n t  f o r  t h e  sepa- 

r a t e d  molecules ,  even i n  t h e  CCRS, we c o n j e c t u r e  t h a t  t hey  



can be  omi t t ed  a long  . t h e  whole r e a c t i o n  p a t h  w i thou t .  a f f e c t -  

i n g  t h e  q u a l i t y  o f  t h e  wavefunction.  The RMO's  r e s u l t i n g  

from such a s i m p l i f i e d  wavefunct ion should  be  good approxi-  

mation t o  t h e  N R O ' s  o f  t h e  t o t a l  CCRS. An MCSCF c a l c u l a t i o n  

o'f t h i s  t ype  i s ,  however, s t i l l  i m p r a c t i c a l '  i n  o u r  l a b o r a t o r y  

a t  t h e  p r e s e n t  t i m e .  F o r t u n a t e l y  a f u r t h e r  approximation i s  

r easonab le .  

SPIP Model o f  t h e  RMO's  

It  i s  e v i d e n t  t h a t  t h e  SPIP f u n c t i o n  an ,  cannot  g i v e  

any r ea sonab le  d e s c r i p t i o n  o f  1 ,2 -d ioxe tane  n e a r  i t s  molecu- 

l a r  e q u i l i b r i u m ;  a m  g i v e s  s i g n i f i c a n t  and i n a p p r o p r i a t e  

weight  t o  t h e  c o n f i g u r a t i o n s  i n  t h e  b r a c e s  o f  equa t ion  115. 

The SPIP f u n c t i o n  0, however, can p rov ide  a r ea sonab le  

approximation t o  t h e  molecu la r  wavefunct ion a t  t h e . d i s s o c i -  

. a t i o n  l i m i t ;  can g i v e  prominence t o  t h e  c o n f i g u r a t i o n  

1 2 , 2 >  which is  t h e  HF wavefunct ion f o r  t h e  s e p a r a t e d  f o r -  

maldehyde molecules .  

Therefore ,  w c  choose to riiildktf a SPIP, c a l c u l a t i o n  a long  

t h e  r e a c t i o n  p a t h  t o  g e n e r a t e  t h e  N R O ' s  shown i n  equa t ion  110. 

Having found t h e s e  N R O ' s  w e  t hen  make a f u l l  MCSCF c a l c u l a -  

t i o n  u s i n g  - a l l  twelve c o n f i g u r a t i o n s  i n  e q u a t i o n s  98-1/12 

b u t  l i m i t  t h e  o r b i t a l  v a r i a t i o n s  t o  occu r  o n l y  i n  t h e  o r b i t a l  

space  spanned by t h e  CMO's  and N R O ' s .  Th i s  p rocedure  p l a c e s  



a r e s t r i c t i o n  on t h e  MCSCF o p t i m i z a t i o n ,  b u t  by keeping t h e  

number o f  M O 1 s  s m a l l ,  it is. an economical  method; and n e a r  

t h e  e q u i l i b r i u m  it is  a good approximation.  A s  w e ' l l  see, 

t h e  space  o f  R M O 1 s  gene ra t ed  by t h e  SPIP f u n c t i o n  i s  a l s o  

an e x c e l l e n t  approximation a t  t h e  d i s s o c i a t i o n  l i m i t .  

S imples t  SPIP Model o f  t h e  React ion 

. The two-geminal SPIP f u n c t i o n  @ o f  equa t ion  108 is  n o t  
. . 

t h e  s i m p l e s t  model f u n c t i o n  which embodies a cont inuous  

d e s c r i p t i o n  ' f o r  t h e  t r a n s i t i o n  from t h e  1 ,2-d ioxe tane  mole- 

c.ule t o  t h e  s e p a r a t e d  formaldehydes. The s i m p l e s t  wavefunc- 

t i o n  which' does t h i s  i s  t h e  one-geminal SPIP f u n c t i o n  

By making t h e  i d e n t i f i c a t i o n s  

a o = a ,  a = a , b o = b  
1 C . 2 .  2 

w e  can w r i t e  it as t h e  C I  e x p a n s i o n ,  , 

. A 

C l e a r l y  t h e  ' f u n c t i o n  @ d e s c r i b e s  t h e  t r a n s i t i o n  f rom.  a 

modestly c o r r e l a t e d  model o f  1 ,2 -d ioxe tane  t o  a s l i g h t l y  

c o r r e l a t e d  Hartree-Fock mode l ' o f  t h e  s e p a r a t e d  formaldehyde 

molecules.  Although t h i s  f u n c t i o n  does  n o t  p rov ide  enough 



in format ion  t o  approximate  a l l  f o u r  RMO' s , it i s  adequa te  

t o  op t imize  t h e  r e a c t i o n  p a t h ,  and i t s  s i m p l i c i t y  and 

economical  c a l c u l a t i o n  make it a n a t u r a l  cho ice  f o r  t h i s  

purpose . 



DETERMINATION OF THE REACTION PATH 

Atomic O r b i t a l  B a s i s  S e t s  

A s  w i t h  t h e  geometry o p t i m i z a t i o n s  i n  P a r t  I V ,  w e  use  

a r a t h e r  r e s t r i c t e d  b a s i s  t o  op t imize  a l l  t h e  v a r i a b l e s  

needed t o  d e f i n e  a r ea sonab le  r e a c t i o n  pa th .  Th i s  b a s i s  set  

i s  a c t u a l l y  t h e  sma l l  formaldehyde b a s i s  -shown in .Appendix  A 

Tables  20, 2 1 ,  and 22. A f t e r  t h e  o p t i m i z a t i o n s  are completed 

w e  ' 11 r e c a l c u l a t e  t h e  wavefunct ion f o r  p o i n t s  a long  t h e  

r e a c t i o n  'path u s ing  t h e  l a r g e r  formaldehyde b a s i s  shown i n  

Appendices A and B ,  Tables  20, 30, and 31. 

C a l c u l a t i o n  of  t h e  One-Geminal SPIP Func t ion  

The d i s s o c i a t i o n  is  examined p r e s e r v i n g  t h e  C 
2 v 

symrne'try o f  t h e  molecule ,  and w e 1  11 c a l c u l a t e  t h e  r e a c t i o n  

p a t h  u s i n g  t h e  carbon-carbon sigma bond l e n g t h  as t h e  reac- 

. . t i o n  parameter .  The o p t i m i z a t i o n s  a r e  made w i t h  t h e  one- 
A 

geminal SPIP f u n c t i o n  @ from e q u a t i o n  116,  and t h i s  f u n c t i o n  

i s  determined by t h e  fo l lowing  procedures .  
. , 

(1) The HF ' f u n c t i o n s  o f  t h e  t y p e  1 a? and 1.2 1 2 >  

from e q u a t i o n s  98-1,12 a r e  c a l c u l a t e d .  

(2 )  The o r b i t a l s  from 1 a >  and 1 2  2 >  are then  

used t o  assemble an i n i t i a l  approximat ion 
.A. 

t o  t h e  SPIP f u n c t i o n  a ;  t h e  t echn ique  i s  

e s s e n t i a l l y  t h a t  o u t l i n e d  i n  P a r t  I V  e x c e p t  

t h a t  s p e c i a l  c a r e  is  g iven  t o  t h e  s e l e c t i o n  



o f '  t h e  CMO's  f o r  t h o s e  p o i n t s  on t h e  

r e a c t i o n  pa th  n e a r e s t  t o  t h e  

energy maximum. A t  t h e s e  p o i n t s  w e  

select t h e  A ,  t ype  MO' s from' t h e  HF 

f u n c t i o n  1 a >  and t h e  o t h e r  M O ' s .  from t h e  

HF f u n c t i o n  1 2 , 2 >  . 
A 

( 3 )  The SPIP f u n c t i o n  @ can then  be  found ,  by 

apply ing  t h e  a n a l y s i s  o f  P a r t s  I t o  I11 t o  

t h e  o p t i m i z a t i o n  of  o r b i t a l s  a , , .  a , ,  and .b,. . 

Opt imiza t ion  o f  t h e  React ion P a t h  
A 

The f u n c t i o n  @ i s  used t o  op t imize  t h e  s t r u c t u r a l  v a r i -  

a b l e s  of t h e  molecu,le ( t h e  oxygen-oxygen and carbon-oxygen 
. . 

bond l e n g t h s  .and t h e  carbon-carbon-hydrogqn and hydrogen- 
. . 

carbon-hydrogen ang le s )  as f u n c t i o n s .  o f  t h e  r e a c t i o n  param- 

et'er ( t h e  carbon-carbon bond l e n g t h ) .  One v a r i a b l e ,  t h e  

carbon-hydrogen bond l e n g t h ,  w a s  k e p t  f i x e d  a t  t h e  molecu la r  

v a l u e  f o r  t h e  whole c a l c u l a t i o n .  The o p t i m i z a t i o n  procedure  

is s imply t h e  q u a d r a t i c  f i t t i n g  method d i s c u s s e d  i n  P a r t  I V ,  

and it can be  a p p l i e d  i n  t h e  fo l lowing  .way: 

(1) , A t  t h e  molecu la r  e q u i l i b r i u m  w e  accep t  

t h e  Hartree-Fock geometry from Park  IV; 

(2) For  a  l a r g e  s e p a r a t i o n  ( a  carbon-carbon . 

bond l e n g t h ,  RCC, o f  8 .8754  a .u . )  t h e  

s t r u c t u r a l  v a r i a b l e s  are op t imized  u s i n g  



t h e  one-geminal SPIP f u n c t i o n  i. A f t e r  

one o p t i m i z a t i o n  c y c l e  t h e  geometry was 

found t o  be t h a t  o f  two s e p a r a t e d  formalde- 

hyde molecules ,  s o  t h i s  geometry was . 

accepted  wi thout  f u r t h e r  re f inement .  

( 3 )  The method of  geometry o p t i m i z a t i o n  f o r  a l l  

t h e  o t h e r  p o i n t s  w a s  t h e  same a s  t h a t  used 

i n  s t e p  2; namely, u s ing  t h e  SPIP f u n c t t o n  
h . The p o i n t s  on t h e  r e a c t i o n  p a t h  are 

chosen by c reep ing  i n . s m a l 1  increments  from 

t h e  p o i n t  determined i n  s t e p  1 outward,  and 

from t h e  p o i n t  determined i n  s t e p  2 inward. 

I n  t h i s  manner changes i n  t h e  r e a c t i o n  param- 

e t e r  remain s m a l l ,  and each o p t i m i z a t i o n  
. . 

r e q u i r e s  on ly  one"'cyc1e through t h e  f i t t i n g  

procedure  o u t l i n e d  i n  P a r t  I V .  

The r e s u l t  o f  t h i s  e f f o r t  is  l i s t e d  on Table  1 4 ,  where 

w e  s e e . t h e  op t imized  geomet r ies  of  1 ,2 -d ioxe tane  f o r  t e n  . . 

v a l u e s  o f  t h e  r e a c t i o n  parameter .  The major v a r i a b l e s ,  t h e  

carbon-oxygen d i s t a n c e  (RCO) and t h e  oxygen-oxygen d i s t a n c e  

( R O O ) ,  a r e  shown as f u n c t i o n s  o f  t h e  r e a c t i o n  parameter  i n  

F igurg  8. ' Thc minor v a r i a b l e s ,  t h e  oxygen-carbon-hydrogen 

angle (YOCH) and t h e  hydrogen-carbon-hydrogen ang le  

(SHCH) a r e  s i m i l a r l y  shown i n  F i g u r e  9 .  Two dramat lc  a s p e c t s  



of t h e  d i s s o c i a t i o n  a r e  e v i d e n t ,  t h e  r a p i d  shr inkage of t h e  

carbon-oxygen bond and t h e  r a p i d  opening of t h e  oxygen- 

oxygen bond. 



Table  1 4 .  Geometries of  1 ,2 -d ioxe tane  a long  t h e  r e a c t i o n  . 

. .  p a t h  parameter ized  by t h e  carbon-carbon sigma 
bond d i s t a n c e  RCCa 

. . 

p o i n t  R~~ R~~ Roo ~ H C H  ~ O C H  

a Bond d i s t a n c e s  i n  a.u. and R C i  = 2.0287 a .  u. 

' \  ' ,  



Figure  8. Major bond l e n g t h s  a long  r e a c t i o n  path 



Figure  9 .  ' Bond a n g l e s  a long  t h e  r e a c t i o n  p a t h  
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CALCULATION OF THE DISSOCIATION 

C a l c u l a t i n g  t h e  SPIP Funct ions  

Having obta ined  t h e  r e a c t i o n  path.  shown i n  Table 1 4 ,  w e  

can r e f i n e  t h e  e n t i r e  curve us ing  t h e  l a r g e r  . cont rac ted  

o r b i t a l  formaldehyde b a s i s  set  shown i n  Appendices A and B ,  

Tables  20, 30, and 31. The execut ion  o f  t h e  one-geminal 

SPIP c a l c u l a t i o n  fo l lows  t h e  g e n e r a l  o u t l i n e  o f  t h e  l a s t  

s e c t i o n .  However, having made t h e  prev ious  c a l c u l a t i o n ,  w e  

a r e  a b l e  t o  make a  more ' j ud ic ious  choice  of t h e  co re  o r b i t a l s  

f o r  t h e  func t ions  d e s c r i b i n g  t h e  p o i n t s  n e a r e s t  t h e  

b a r r i e r  maximum: namely, f o r  t h e  two p o i n t s  n e a r e s t  t h e  

energy maximum, w e  choose t h e  Bi o r b i t a l s  from .the: HF func- 

t i o n  1 2 2 > and t h e  o t h e r  o r b i t a l s  from 1 a> . 
The two-geminal SPIP  func t ion , .  @, see equat ion  108, can 

be approximated by. s e l e c t i n g  t h e  i n i t i a l  o r b i t a l s . . a ,  ,' a p t  
A 

and b, from t h e  one-geminal func t ion  @, and us ing  lowes t  

energy v i r t u a l  o r b i t a l  of t h e  p rope r  symmetry a s  an i n i t i a l  

b MO. Wi th .  i n i L i a l  expansion c o e f f i c i e n t s  o f  f  = 1.0 a i 

and fb2  = 0.0,  we can opt imize  t h e  o r b i t a l s  a  , a , b , 
2 1 1 

and b, i n  @ us ing  t h e  a n a l y s i s  o f  P a r t s  I t o  111 of t h i s  work. 

O r b i t a l  Ene rg ie s ,  Hartree-Fock ~ n e r ~ i e s ,  SPIP Energ ies ,  

and t h e  Or ig ins  o f  t h e  Ac t iva t ion  Energy 

I t  is e v i d e n t  from t h e  form of  t h e  HF f u n c t i o n s  ( a >  and 

1 2 2 >  t h a t  1 a >  cannot p o s s i b l y  d i s s o c i a t e  in , to  1 , > ; i n  f a c t ,  



from t h e  con.6iderat ions  i n  P a r t  IV, w e  know t h a t  1 a >  d i s so -  

c i a t e s  t o  a  mix ture  o f  c o v a l e n t  and i o n i c  s ta tes  t h a t  

poor ly  d e s c r i b e  t h e  s e p a r a t e d  formaldehyde molecules . '  On 

t h e  o t h e r  hand, t h e  HF f u n c t i o n  1 2 , 2 >  c o r r e l a t e s  w i t h  an 

e x c i t e d  s t a t e  on a s s o c i a t i o n .  Thus a t  some i n t e r m e d i a t e  

va lue  o f  t h e  r e a c t i o n  parameter ,  t h e s e  cu rves  c r o s s ,  and 

t h e  r a p i d  change of  t h e  wavefunction from a  form dominated 

by la> t o  one dominated by 1 2 , 2 >  f o r c e s  t h e  system t o  "swi tch  . 

d i s s o c i a t i o n  s u r f a c e s "  'and the reby  avoid  t h e .  c r o s s i n g  c r e a t e d  

by Hartree-Fock approximat ion.  The one-geminal SP.IP f u n c t i o n  

is  t h e  s i m p l e s t  formula capable  o f  doing t h i s ,  'and it was . 

fo rma l ly  used f o r  t h i s  purpose i n  t h e  e a r l y  work o f  Evans and 

h i s  a s s o c i a t e s  (Evans and P o l a n y i ,  1938; Evans. and Warhurs t ,  

1938, 1939; Glass tone  -- et . .  a l . ,  1941) . 
I n  T a b l e  15 w e  show t h e  e n e r g i e s  of  . t h e  o r b i t a l s  a ,  

and b 2  i n  t h e  HF f u n c t i o n s  ( a>  and 1 2 , 2 > r e s p e c t i v e l y ,  and 

a long  w i t h  them w e  show t h e  t o t a l  mo lecu la r  energy of  t h e  

HF f u n c t i o n s .  The c r o s s i n g  o f  t h e  o r b i t a l  e n e r g i e s  is shown 

i n  F igu re  10 ,  and t h e  c r o s s i n g  o f  t h e  HF e n e r g i e s  i s  shown 

i n  F igu re  24. The t o t a l  e n e r g i e s  and occupa t ion  numbers o f  

t h e  o r b i t a l s  i n  t h e  one- and two-geminal SPIP f u n c t i o n s  a r e  

shown i n  T a b l e s  16 and 17  and d i s p l a y e d  i n  F i g u r e s  11, 1 2 ,  

and 2.4. From t h e s e  d a t a  we. can make s e v e r a l  i n f e rences ' :  

namely, 



(1) The b a r r i e r  maximum occurs  a t  RCC = 4 . 0 4  a .  u. 

which i s  q u i t e  c l o s e  t o  where t h e  H F  e n e r g i e s  

c r o s s :  i . e . ,  4.10 a .u .  The H F  o r b i t a l  e n e r g i e s  

('a 1 
from 1 a >  and cb from '1 2 , 2 > )  and t h e  

2 
! occupa t ion  numbers n a l  and nb2 i n  e i t h e r  SPIP 

f u n c t i o n  a l s o c r o s s  n e a r  RCC = 4.10 a .u .  

( 2 )  The e s s e n t i a l  changes i n  t h e  HF e n e r g i e s ,  i n  

e a l  and . E ~  , and i n  n  
2 

a1 ' and nb2 occu r  between 

RCC = 4.08 and RCC = 4.18 a .u . ;  d e f i n i t e l y  on 

t h e  s e p a r a t e d  formaldehyde s l o p e  of  t h e  b a r r i e r .  

( 3 )  References  t o  ~ i g u r e s  8 and 9 show t h a t  t h e  

dramat ic  geometr ic  changes. i n  t h e  system a l s o  occu r  

between RCC = 4.0.8 and 4.18 a. u. : aga in  on t h e  

s e p a r a t e d  f&rmalydehyde s l o p e  of  t h e  b a r r i e r .  

( 4 )  The two-geminal SPIP f u n c t i o n  r ecove r s  a 

c o r r e l a t i o n  . . e f f e c t  t h a t  i s  impor t an t  on ly  on t h e  

molecular  s i d e  of  t h e  a c t i v a t i o n  b a r r i e r ;  by 

c o n s t r u c t i o n ,  t h i s  e f f e c t  i s  r i g h t - l e f t  c o r r e l a -  

t i o n  of  t h e  carbon-carbon bond, and t h i s  bond on ly  

e x i s t s  on t h e  molecu la r  s i d e  o f  t h e  a c t i v a t i o n  

b a r r i e r .  I n  f a c t  t h e  two-geminal SPIP func t ion .  

r e c o v e r s  0.043 a. u. o f  c o r r e l a t i o n  energy i n  '1 ,2-  

d ioxe t ane  and on ly  0.015 a.u.  from t h e  s e p a r a t e d  

formaldehyde molecules ,  b u t  from ' t h e  work i n  P a r t  

P a r t  I V  w e  know t h a t  t h e r e  i s  0.081 a.u. of r i g h t -  

l e f t  c o r r e l a t k o n  t o  be  recovered  i n  t h e  pi bonds 

of  t h e  s e p a r a t e d  system. 

C l e a r l y ,  t h e  fundamental  a s p e c t s  o f  t h e  b a r r i e r  a r e  under- 

s t o o d  b u t  i t s  q u a n t i t a t i v e  f e a t u r e s  nee.d t o  be  r e f i n e d  t o  

c o r r e c t  t h e  c o r r e l a t i o n  imbalance.  



Table 15.  Ene rg i e s  o f  t h e  h i g h e s t  occupied o r b i t a l s '  ; 
. i n  and t o t a l  e n e r g i e s  o f  t h e  Hartree-Fock 
wavefunct ions  f o r  1,2-.dioxetane ( ( a > )  and.  
two formaldehyde molecules  ( 1 2 , 2  >)  a 

& ( a l l  & (b2) 
P o i n t  E f,roml a> E. from1 2 , 2 >  

from ( a> from1 2 , 2 >  

a Energ ies  i n  a.u.  and dashed l i n e  corresponds t o  c r o s s i n g  
of  o r b i t a l  e n e r g i e s .  



Figure 10. ' o r b i t a l  ene rg ies  from t h e  dimer and 
. . d i s s o c i a t i o n  product HF func t ions  



Table 16. Energy and occupation numbgrs of t h e  
one-geminal SPIP  func t ion  @ a  

Poin t  
occ # 

a1 

occ # 

b2 

A 

E from @ 



Table 17.  Energy and occupa t ion  numbers o f  t h e  
two-geminal SPIP funct i ,on @a 

occ # occ # occ #. occ # 
P o i n t  E from' @ 

a1 b2 a2 b~ . ,  

a Ene rg i e s  i n  a. u. 



. Figure  11. Occupation numbers f r o m  t h ~  
one-geminal S P I P  f u n c t i o n  @ 



Figure  1 2 .  Occupation numbers from th.e 
two-geminal SPIP f u n c t i o n  @ 



D i s s o c i a t i o n  as Descr ibed w i t h  t h e  CCRS 

To o b t a i n  t h e  c o r r e l a t i o n  ba l ance  w e  c a l c u l a t e  an  

MCSCF f u n c t i o n  i n  t h e  CCRS spanned by t h e  c o n f i g u r a t i o n s  

i n  equa t ion  98-1,12; however, as d i s c u s s e d  i n  t h e  second 

s e c t i o n  o f  t h i s  p a r t ,  w e  l i m i t  t h e  o r b i t a l  v a r i a t i o n s  - 

t o  occur  on ly  i n  t h e  o r b i t a l  space  spanned b y . t h e  r e a c t i o n  

molecu la r  o r b i t a l s  (RMO' s : a 1 , a2,  b  , and b2 ) and t h e  c o r e  

o r b i t a l s  ( C M O ' s )  o f  t h e  two-geminal SPIP f u n c t i o n  @. Using 

t h e  a n a l y s i s  of  t h e  preced ing  i n  connec t ion  w i t h  equa- 

t i o n  106 w e  f i n d  t h e  n a t u r a l  r e a c t i o n  o r b i t a l s  ( N R O ' s )  and 

.expand t h e  wavefunct ion i n  terms o f  c o n f i g u r a t i o n s  made up 

from N R O ' s .  

The o r b i t a l s  a r e  g iven  i n  Appendix E ,  Tab le s  61 t o  69 

and a r e  shown a s  f u n c t i o n s  o f  t h e  r e a c t i o n  parameter  i n  t h e  

contour  p l o t s  i n  F i g u r e s  1 3  t o  2 2 .  These p l o t s  g i v e  

i n s i g h t  i n t o  t h e  n a t u r e  o f  t h e  N R O ' s .  A t  t h e  e q u i l i b r i u m  

we have two symmetric h a l v e s  j o ined  by two sigma bo,nds; t h i s  

i s  c l e a r  from t h e  l e f t  p a n e l s  i n  F igu re  13 ,  where t h e  two 

h e a v i l y  occupied M O ' s  i ndeed  r e p r e s e n t  an oxygen-oxygen and 

a  carbon-carbon sigma bond. S i m i l a r l y ,  t h e  bonding a s s i g n -  

ment a t  i n f i n i t e  s e p a r a t i o n  i s  clear; t h e r e  a r e  two d i s t i n c t  

formaldehyde pi bonds d e l o c a l i z e d  between' t h e  carbon and 

oxygen atoms. 

The i n t e r m e d i a t e  p l o t s  i l l u s t r a t e  how t h e  o r b i t a l s  

change t o  c r e a t e  t h e  b a r r i e r .  A s  one d i s s o c i a t e s  t h e  mole- 



c u l e  it can be seen i n  t h e  upper l e f t  pariels o f  F i g u r e s  13  

t o  17 t h a t  t h e  o r b i t a l  r ep resen t ing  t h e  oxygen-oxygen. 

sigma bond d e l o c a l i z e s  t o  cover  a l l  f o u r  heavy atoms, b u t  

t h i s  d e l o c a l i z a t i o n  makes t h e  o r b i t a l  ant ibonding wi th  . 

r e spec t  t o  t h e  carbon-oxygen bonds. Such a process  causes 

an inc rease  i n  t h e  energy of t h e  system ( c r e a t e s  a b a r r i e r )  

s o  t h e  o r b i t a l  becomes depopulated a s  t h e  d i s s o c i a t i o n  pro- 

ceeds,  and t h e  o r b i t a l  r ece iv ing  t h i s  popula t ion  (upper 

r i g h t  panel  i n  Figures  1 3  t o  17 ) i s  n o t  only  bonding i n  

t h e  carbon-oxygen re'gion bu t  a l s o  it i s  ant ibonding i n  t h e .  

oxygen-oxygen : region.  Thus t h e  d i s s o c i a t i o n  i s  accompanied 

by a l a r g e  amount of r i g h t - l e f t  c o r r e l a t i o n ,  and a s  a conse- 

quence, r e f e r r i n g  t o  Figure 1 4 ,  t h e  b a r r i e r  i s  n e i t h e r  

s t e e p  nor  high. I n  c o n t r a s t ,  t h e  a s s o c i a t i o n  of  t h e  

separa ted  formaldehyde molecule can be seen by looking back- 

wards through Figures  2 2  t o  1 7 .  There we s e e  a ' s t r o n g  non- 

bonded repu l s ion  a s s o c i a t e d  wi th  t h e  antisymmetric combination 
. . 

o f  pi bonds i n  t h e  upper r i g h t  panel  of t h e s e  Figures ;  t h i s  

o r b i t a l  simply becomes ant ibonding i n  t h e  region between t h e  

two ha lves  of t h e  dimer, and a - b a r r i e r  t o  a s s o c i a t i o n  i s  

crea ted .  A n a t u r a l  response t o  such a s i t u a t i o n  would be 

f o r  t h e  upper r i g h t  o r b i t a l  t o  weaken i t s  bonds and s h i f t  

i t s  populat ion t o  another  o r b i t a l ;  we s e e ,  however, t h a t  t h e  

most favorable  o r b i t a l  a v a i l a b l e  t o  r ece ive  populat ion ( t h e  

oxygen-oxygen bond i n  t h e  upper l e f t  panel) .  i s  ,antibonding. 



* I a a i 0 0 )  -+ an ( C O )  , occ  # = 1.9277: b b ( 0 0 )  -c bn (CO) ,  occ  # = 0 .0726  

au(CC)  + an(COi), occ  4' = 1 .9810 ~ u * ( c c )  - b n * ( c 0 ) ,  occ  # = 0 .0187 

Figure 13. NRO's for 1.2-dioxetane at RcC = 2.8754 a.u. (molecular equilibrium). 
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Figure 14. NRO's for l,2-dioxetane at RCC = 3.3754 a.u. 

- 
.I 

au(O0)  -, an (CO), occ # = 1.8778 

\ 

b;(03) + b r ( C O ) ,  occ # = 0.1299 

. 

au(CC) - a?T(=O), occ # = 1.9496 bu* (CC)  A ~ T * ( c ' o ) ,  occ  # = 0.0497 



^_ .  . . 

* 
a ~ ( 0 3 )  4 an (CO), occ # = 1.7294 b u * ( 0 0 )  + tr7'r(CO), occ # = 0.2717 . . 

1 

P 
4 
h) 

. . 

au(CC) + an(CO), o c c . #  = 1.8887 ~ u * ( c c )  -, b$(co) ,  occ # = 0.1102 

Figure , 15. WRO's for 1,2-dioxetane at RCC = 3. 8754  a.u. 



Figure 16. NRO's for 1.2-dioxetane a t  RCC = 3.9872. a.u. 

* 
a u (  00 )  + av : C O ) ,  o c c  # = 1 .6565 

. '. \ --.-- - .---. . 

bcr* (00)  bT(CO), o c c  # = 0.3449 

. . . . . .  

aa(CC) + an(CO), o c c . #  = 1.8709 b a * ( c c )  + ~ ~ T * ( c o ) ,  o c c  # = 0.1278 



Figure  ' 17 .  NROP s for 1,2-dioxe.cane at R = 4.0369 a.u. ( b a r r i e r  maximum) 
CC 

* 
aa(OO;l -, an ( C O ) ,  o'cc # = 1.5635 

--. 

, . 
, . -_-.----_---' . - 

aa(CC;l - a n ( C O ) ,  occ  # = 1.8617 

* 
bu ( 0 0 )  + brr(CO), occ  # = 0.4412 

ba* ( C C )  -- ,tm* ( c o ) ,  occ '  # = 0 .1366  

4 



Figure18.  NRO's f o r  1 , 2 - d i o x e t q e a t R C C =  4 . 0 7 5 4  a .u .  

. .- 

* 
a a ( O O ) + a T  (CO), occ # = 1.3876 , 

. '- ..----/- 

aa(CC) - ar (CO) ,  occ f = 1.8560 

- 

~ u * ( o o )  + bT(CO), occ # = '0 .6138  

bu*!CC) - ~ T T * ( c o ) ,  occ # = 0.1426 

A 



* * 
aa(CC) - ar(CO), occ # = 1.9330 b a  ( C C )  + b7: (CO), occ # . =  0 .0852,  

h 

Figure 19. NRO's for 1,2-dioxetane at RCC = 4.1754 a.u. 



~ i ~ u r e  20. NROts for 1,2-dioxetane at RCC = 4.3754 a.u. 



Figure 21. NRO's for l,2-dioxetane a t  RCC = 5.8754 a.u. 

. 
* ' 

aa100)  - an ( C 3 ) ,  occ f = 0 .0970 
* 

b a . ( O O )  -- bT (CO) ,  occ # = 1.9026 

- .  

aa (CC)  - aTICOI ,  occ  2 = 1 .9131  b g ' ( ~ ~ )  -- b lTT (cO) .  occ P = 0.0873 



a a f C C J  - ar ; fCOJ.  occ  # = 1.9108 

. . 

a a 1 0 3 )  - an ( C O ) ,  3cc  4' = 0 . 0 9 0 2  

Figure 22 .  N R O 1 s f o r  1,2-dioxetaxie'at RCC = 8 . 8 7 5 4  a.u. 

bU ( 0 0 )  + b n ( C O ) ,  o c c  # = 1 .9097  



w i t h  r e s p e c t  t o  carbon-oxygen r e g i o n ,  s o  t h i s  o r b i t a l  i s  

a l s o  e n e r g e t i c a l l y  unfavorab le .  A s  a r e s u l t  t h e  carbon- 

oxygen p i  bonds cannot d i s a p p e a r  u n t i l  t h e  oxygen-oxygen - 
sigma bond i s  formed s o  t h a t  t h e  depopulated upper r i g h t  

o r b i t a l  can f avo rab ly  recover  c o r r e l a t i o n .  Consequently,  

t h e  a s s o c i a t i o n  b a r r i e r  is s t e e p  as w e l l  a s  h igh.  The 

carbon-carbon sigma bond ( t h e  lower l e f t  p a n e l  i n . F i g u r e  13) . . 

i s  always bonding,  and it i s  always h i g h l y  occupied ;  t r a c i n g  . . 

t h e  r e a c t i o n  from 1 ,2-d ioxe tane  t o  t h e  s e p a r a t e d  formalde- 

hyde m o l e c u l e s  w e  see t h a t  it r a p i d l y  de loca l ' i z e s  t o  become 

a symmetric combination o f  two - p i  bonds. 

The c o n f i g u r a t i o n a l  expansion c o e f f i c i e n t s  a r e  given i n  

Table  19; The MCSCF c o e f f i c i e n t s  f o r  two s e p a r a t e d  formalde- 

hyde molecules  a r e  given by equa t ion  112 o r  i t s  c o n f i g u r a t i o n  

i n t e r a c t i o n  expansion i n  equa t ion  115; t h e s e  c o e f f i c i e n t s  

can be  e v a l u a t e d  us ing  t h e  occupa t ion  numbers f o r  an i s o l a t e d  

formaldehyde molecules  from Table 1 3  o f  P a r t  IV', and they  

are shown as p o i n t  i n  Table  24.  One sees t h a t  p o i n t  10 

i n  Table  19 has  very n e a r l y  t h e  s a m e  MCSCF expansion as 

p o i n t  -, s o  o u r  wavefunction r e a l l y  does d i s s o c i a t e  t o  two 

s e p a r a t e d  formaldehyde molecules .  The energy and occupa t ion  

numbers a r e  shown i n  Table 1 8  and d i s p l a y e d  i n  F igu res  2 3  

and 24. W e  n o t e  t h a t . n n  d i s s o c i a t i o n ,  t h c  MCECF f u n c t i o n  

r ecove r s  0.079 a.u. o f  t h e  0.081 a . u .  of  r i g h t - l e f t  c o r r e -  

l a t i o n  energy i n  two formaldehyde p i  - bond systems.  A s  a 



Table 18. Energy and occupation numbers of the multicon- 
figuration self-consistent.field wavefunction Y 

occ # occ # occ # occ # 
Point E from Y 

a 1 b2 a2 b 1 



F i g u r e  23.  O c c u p a t i o n  numbers  f o r  t h e  MCSCF f u n c t i o n  Y 



Figure 24 .  To ta l  moiecular e n e r g i e s  f o r  s e v e r a l  wavefunctions 



Table  19. Expansion C o e f f i c i e n t s  o f  t h e  MCSCF wavefunction 

po in t .  1 ill>' 1 1 1 2 '  1 l r 3 >  ( 2 &  1 2 r 2 '  1.2 r  3 >  



Table 1 9 .  (Continued) 

p o i n t  1 . 3  1 > 1 3 1 2 '  1 3 1  3' l a> I b> I T > 



r e s u l t ,  o u r  .CCRS is a  very  r ea sonab le  approximation t o  t h e  

t r u e  one;  and a long  t h e  C d i s s o c i a t i o n  p a t h ,  w e  can. accep t  
2v 

t h e  MCSCF d i s s o c i a t i o n  - cu rve  a s  an e s s e n t i a l l y  f i n a l  ' r e s u l t .  

General  Conclusions and C r i t i c i s m s  

The MCSCF f u n c t i o n  p r e d i c t s  a  d i s s o c i a t i o n  energy 

o f  70.9 kcal/mole,  only  s l i g h t l y  g r e a t e r  t han  t h e  va lue  from 

P a r t . I V ,  s o  ou r  use  of a  l i m i t e d  o p t i m i z a t i o n  f o r  t h e  SPIP . . 

f u n c t i o n s  w a s  adequate .  The a c t i v a t i o n  energy ' i s  p r e d i c t e d  
. . 

t o  be  27.5 .kcal/mole,  and t h i s  i s  e s s e n t i a l l y  t h e  expec ted  

exper imenta l  va lue  (Kopecky and Mumford, 1969; O ' N e a l  and 

Richardson,  1970, 1971; Richardson e t  . a l .  , 1972; Wilson and -- 
Schaap , 19 71 ; Turro  and Lechtken , 19 7  3)  .. 

Other  a u t h o r s  (Dewar and Ki r schne r ,  1974) u s ing  a  s e m i - .  

e m p i r i c a l  approach,  two c o n f i g u r a t i o n  MIND0/3 (Bingham e t  a l .  ,. -- 

1975a,b , c , d ;  ~ i n ~ h a m  and Dewar, 1972) c a l c u l a t e d  an a c t i v a t i o n  

energy o f  45.0 kcal/mole a long  a re ' ac t ion  p a t h  uncons t r a ined  

as t o  symmetry o r  p l a n a r i t y  and invo lv ing  a puckered r i n g  

with a d i h e d r a l  a n g l c  o f ,  31.5". I n  conLr.ast t u  t h e  s e m i -  

emp-ir ical  r e s u l t s  t h e  q u a n t i t a t i v e  r e s u l t s  of  o u r  kwel've 

c o n f i g u r a t i o n  - ab i n i t i o  MCSCF,calculat ion a r e  i n  g r a t i f y i n g  

agreement w i th  t h e  exper imenta l  va lues .  1t t h e r e f o r e  s'eems 

q u e s t i o n a b l e  whether  a  d i s t o r t i o n  of  t h e  r i n g  would sub- 

s t a n t i a l l y  lower t h e  . . a c t i v a t i o n  ene rgy ,  a l though t h e s e  p a t h s  

dese rve  f u r t h e r  i n v e s t i g a t i o n .  



Using our  d i s s o c i a t i o n  energy of 0.113 a .  u. and th,e 
* 

formaldehyde t r i p l e t  n + IT e x c i t a t i o n  energy o f  0.115 a.u.  

(Herzberg , 1 9  66 ) t h e  energy d i f f e r e n c e  between t h e  

b a r r i e r  maximum and t h e  r e a c t i o n  products  is adequate t o  

c r e a t e  an e x c i t e d  formaldehyde molecule. But w e  have seen  

t h a t  t h e  energy of ground s t a t e  1 ,2-dioxetane is  s t r o n g l y  

dependent on ,  t h e  carbon-oxygen bond l e n g t h ,  and t h i s  parameter 

i s  a f e a t u r e  of t h e  t r i p l e t  s t a t e  s u r f a c e s  too .  On t h e s e ,  

e x c i t e d  s u r f a c e s ,  however, w e  must t a k e  c a r e  t o  l e t  t h e  two 

ha lves  of t h e  mo,lecule d i s s o c i a t e  t o  d i f f e r e n t  geometr ies  

because t h e  growid and e x c i t e d  s t a t e s  o f  formaldehyde do 

have d i f f e r e n t  s t r u c t u r e s ,  and t h e s e  s t r u c t u r e s  do d i f f e r  

g r e a t l y  i n  t h e  carbon-oxygen bond l e n g t h  (Herzberg , 1 9  6 6 )  . 
A s  a f i n a l  n o t e ,  t h i s  r e a c t i o n  i s  an example o f  a 

symmetry forb idden  r e a c t i o n  (Woodward and  Hoffmann, 19 70) , 

which means t h e  r e a c t i o n  must pass  through t h e  avoided 

c r o s s i n g  w e  have d iscussed .  An a t tempt  t o  avoid t h e  c r o s s i n g  

by d i s t o r t i n g  t h e  molecule from i t s  C symmetry t o  t h e  
2v 

lower C symmetry i s  f u t i l e ;  even f o r  t h e  r e a c t i o n  wi th  C, 
2 

symmetry, t h e  HF molecule must s t i l l  d i scon t inuous ly  c r o s s  

over  from a wavefunction w i t h  two doubly occupied A-type 

R M O ' s  t o  a wavefunction wi th  one doubly occupied A-type and 

one doubly occupied B-type RMO. This  p rocess  s t i l l  p r e s e n t s  

a c r o s s i n g ,  and avoiding t h e  c r o s s i n g  s t i l l  c r e a t e s  a 

b a r r i e r .  F u r t h e r  reduct ion  o f  symmetry cannot r e a l l y  avoid 



t h e  c r o s s i n g ;  t h e  d i s t o r t i o n  must be  g r e a t  enough t o  i n v e r t  

t h e  energy o r d e r  o f  t h e  1 a >  and ( 2 , 2 >  HF f u n c t i o n s ,  and a t  

t h e  molecu la r  e q u i l i b r i u m ,  t h e s e  f u n c t i o n s  a r e  176 kcal/mole 

a p a r t .  C l e a r l y ,  no symmetry a l lowed p a t h  i s  p o s s i b l e ,  and 

t h e  convent iona l  e x p e c t a t i o n  i s  t h a t  t h e  r e a c t i o n  proceeds  , .  

through an i n t e r m e d i a t e  b i r a d i c a l o i d  ( D e w a r  e t  a l .  , 1974) -- 

An i n t e r m e d i a t e  l i k e  t h e  one above can be  r e p r e s e n t e d  by . the  
A 

one- o r  two-geminal SPIP f u n c t i o n s  @ o r  @ where t h e  expansion 

c o e f f i c i e n t s  o f  t h e  f i r s t  geminal  a r e  a lmost  e q u a l  and 

o p p o s i t e  i n  s i g n :  

The t r ans fo rma t ion  i n  equa t ion  9-1,3 t hen  l e a d s  t o  t h e  

e x p r e s s i o n  

@ 2 ~ { ~ ( f i ~ r ,  + rofio) a: @ - - }  

w i t h  

< R  Ir > =  
0 0 

0 1 (121-2) 

which i s  t h e  b i r a d i c a l  i n t e r m e d i a t e  above. From t h e  d i s -  

c u s s i o n  o f  o r b i t a l  c r o s s i n g  shown i n  Table 15 it i s  appa ren t  



t h a t  t h e  b i r a d i c a l  s t r u c t u r e  occurs  a t  a 'carbon-carbon bond 

l eng th  about 0 .1  a .u .  longer  than t h a t  of  t h e  b a r r i e r  maxi- 

mum. A t  t h e  p o s i t i o n  of t h e  maximum i t s e l f  t h e  occupation 

numbers i n  Table 1 6  and 17 show t h a t  t h e  molecular H F  con- 

f i g u r a t i o n  ( a >  s t i l l  dominates i n  both SPIP  funct ions .  A t  

t h i s  p o i n t  t h e  one-geminal SPIP funct ion  can. be c a s t  i n  t h e  

form of  equat ion 121-1. . i f ,  . i n  c o n t r a s t  t o  equat ion , 1 2 1 - 2 ,  

. t h e  o r b i t a l s  ' lo and r o  a r e  permi t ted  t o  b e , t h e  nonorthogonal 

. . 
GVB o r b i t a l s  (Hay e t  a l .  ; 1972a,b, c) def ined  by , , -- 

The over lap  between u  and v i n d i c a t e s  t h a t  t h e  oxygen-oxygen 

bond has been s u b s t a n t i a l l y  weakened. The orbital, u,  i s  

shown i n  t h e  contour p l o t  of  Figure 25; t h e r e  we s e e  t h a t  

t h e  oxygen-oxygen band is  almost broken, bu t  t h e  e l e c t r o n  

d e n s i t y  does cover both atoms, s o  t h e  system i s  n o t  a  b i -  

r a d i c a l ,  al though it i s  wel1 ,on  i t s  way toward becoming one. 



A 

Figure  25. GVB o r b i t a l  f o r  t h e  one-geminal SPIP  func t ion  @ a t  t h e  b a r r i e r  maximum 
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BASIS SETS FOR THE 'GEOMETRY OPTIMIZATION 

The cho ice  of  a tomic o r b i t a l  b a s i s  s e t s  i s  an impor tan t  

s t e p  i n  t h e  execu t ion  o f  any molecular  c a l c u l a t i o n ;  accord- 

i n g l y ,  w e  used s e v e r a l  w e l l  t e s t e d  and op t imized  even-tern-. 

pered  c o n t r a c t e d  gauss ian  a tomic  o r b i t a l  (ETCGAO) b a s e s  

( R a f . f e n e t t i ,  1973c; .Ruedenberg - et' -. a l . ,  1973; Bardo and 

Ruedenberg, 19 74a,b) . The g e n e r a l  form of  t h e s e  f u n c t i o n s  

i s  g iven  by 

The even-tempered parameters  ( a ,  B )  a r e  op t imized  us ing  

uncon t r ac t ed  Hartree-Fock c a l c u l a t i o n s  t o  minimize t h e  energy 

o f  an a p p r o p r i a t e  molecule;  t h e s e  parameters  and t h e  molecule 

used t o  op t imize  them a r e  shown i n  Tables  20 t o  29 . The 

c o n t r a c t i o n  c o e f f i c i e n t s  ( C K )  i n  Tables  20 t o  2 5  a r e  unpub- 

l i s h e d  d a t a  from Lap M .  Cheung, f o r  H2C0, and Mary G .  Dombeck, 

f o r  HNO, u s ing  a  mod i f i ca t ion  (Cheung, 1975) o f  t h e  Bardo and 

Ruedenberg (19 74a) c o n t r a c t i o n  method. The 'pa rameters  and 



expansions  i n  Tab. les .26 t o  28  are from Bardo and Ruedenberg 
. . 

(1974b) . ru he ozone b a s i s  i n  r able' 29 is  an. unpubl ished 

c a l c u l a t i o n  by Lap M. Cheung. 



Table 20. ETCGAO b a s i s  f o r  hydrogen i n  formaldehyde 

p r i m i t i v e  s 



Ž able 21 .  ETCGAO basis  f o r  c a r b o n  i n  f o r m a l d e h y d e  

a ( s ) = 0 . 1 0 7 5 2 8 4  8 ( s ) = 4  . I 2 8 8 5 4 5  

p r i m i t i v e  s s ' s " 
. . 

P ' p r i m i t i v e  P 



  able 22. ETCGAO basis for oxygen in formaldehyde. 

primitive ' s s '  s " 

'a (p)=O.0599647 . B (p)=4.0108372 
primitive ' p ' P' 



T a b l e  2 3 .  ETCGAO b a s i s  f o r  h y d r o g e n ' i n  n i t r o s y l  h y d r i d e  
. . . .  . . .  . . .  . . . ,  . . 

p r i m i t i v e  s s ' 
. . .  



Table 24.  -ETCGAO b a s i s  f o r  n i t r o g e n  i n  n i t r o s y l  hyd r ide  

p r i m i t i v e  s S '  s " . ' .  
. . . .  . .  

p r i m i t i v e  P  P '  



T a b l e  25. ETCGAO b a s i s  f o r  oxygen  i n  n i t r o s y l  h y d r i d e  

. . 
a ( s ) = 0 . 1 1 0 9 3 9 6  f3 ( s )=4 .1552987 

p r i m i t i v e  s S '  s," . 
. . 

, p r i m i t i v e  P  P '  



Table 26. ETCGAO b a s i s  f o r  hydrogen i n  formaldehyde 
. . 

. , . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  . .  

p r i m i t i v e  s 



T a b l e  27. ETCGAO b a s i s  f o r  c a r b o n  i n .  c a r b o n  monoxide 
. . . . . . . .  . .  . . ,  . . . . . . . . . . . .  . .  . , . . . .  . . . ,  . 

. . 

a ( s )=0 .05 .43828  B(s)=4.3195748 

p r i m i t i v e  s 

p r i m i t i v e  P  P '  . . 



T a b l e  2 8 .  ETCGAO basis  f o r  o x y g e n  i n  c a r b o n  m o n o x i d e  

'. a ( s ) = 0 . 0 7 2 5 2 7 5  B ( s ) = 3 . 2 3 3 7 0 9 7  

p r i m i t i v e  s S' s" 

. a (p )  = O  . 0 7 8 4 0 1 1  B (p)  = 3 . 2 2 2 5 5 0 4  

' p r i m i t i v e  . , p P  '. 



Table 29. ETCGAO basis for oxygen in ozone 

a (s)=0.1594857 f3 (s)=4.2541016 

primitive s s '. 
. . 

a(p)=0.0643795 f3 (p)=3.9815829 

primitive P P' 



APPENDIX B': BASIS SETS FOR THE FINAL CALCULATIONS 



BASIS SETS FOR THE FINAL CALCULATIONS 

The b a s i s  sets used t o  perform t h e  f i n a l  c a l c u l a t i o n s  

a r e  an extended v e r s i o n  of  t h e  b a s i s  sets used t o  op t imize  

t h e  molecu la r  geometr ies .  They a r e  a l l  even-tempered con- 

t r a c t e d  gauss i an  atomic o r b i t a l  b a s e s ,  and a d i s c u s s i o n  o f  

t h e  meaning o f  t h e i r  parameters  and c o e f f i c i e n t s  i s  con ta ined  

i n  Appendix A. A l l  of  t h e  o p t i m i z a t i o n s  and c o n t r a c t i o n s  i n  
. . 

t h e  fo l lowing  t a b l e s  a r e  unpulbished r e . s u l t s  by Lap M. Cheung 

us ing  h i s  c o n t r a c t i o n  method (Cheung, 1975) .  



~ a b . l e '  30. ETCGAO b a s i s  f o r  carbon i n  formaldehyde 
. . .  . . . . .  . . . .  . . . .  . . . . . . .  

p r i m i t i v e  s s ' S. I' 
. . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  

p r i m i t i v e  P :  P '  
. . . .  . . . . . . . . . . .  



Table 31. ETCGAO b a s i s  f o r  oxygen i n  formaldehyde 

p r i m i t i v e  s s ' 

p r i m i t i v e  P  P '  



T a b l e  32.  .ETCGAO b a s i s  for h y d r o g e n  i n  e t h y l e n e  

a ( s )=  0 . 0 3 9 0 6 2 2  f3 ( s ) =  4 . 3 1 9 9 9 4 0  

. p r i m i t i v e  s s '  



Table 33. ETCGAO basi's for carbon in methane 

primitive s s ' s " 
. . . .  . . . . . . . . . 

a (p) =0.0263207 B (p)=2.9985940 
primitive P p ' 



T a b l e  3 4 .  ETCGAO b a s i s  for oxygen  i n  h y d r o g e n  p e r o x i d e  

a ( s ) = 0 . 0 7 3 3 7 3 0  B { s ) = 3 . 2 2 7 0 9 4 0  

p r i m i t i v e  s s ' s " 

, . 

a (p)=O . 0 5 8 6 3 5 0  6, ( p ) = 3 . 0 6 8 7 0 9  

p r i m i t i v e  , P  P '  



Table  35. ETCGAO b a s i s  f o r  hydrogen i n  n i t r o s y l  hyd r ide  
. . . . . .  . . .  . . 

, i 

p r i n i  t i v e  . s s ' 



Table 3 6 .  ETCGAO b a s i s  f o r  n i t r o g e n  i n  n i t r o s y l  h y d r i d e .  
. . . . .  . . . . . .  . . .  . . .  

p r i m i t i v e  s s '  s 
. . . . . . . . . .  . . . . . . . . . . .  

p r i m i t i v e  . p  P' 



2 2 3  

Table 37. ETCGAO b a s i s  f o r  oxygen i n  n i t r o s y l  hyd r ide  

p r i m i t i v e  s 

p r i m i t i v e  P P' 



Table 38. ETCGAO basis for hydrogen in ammonia 

primitive s s ' 



Table 39. ETCGAO b a s i s  f o r  n i t rogen . . in.ammonia 

s t  s"' p r i m i t i v e  s 
. . . , . . .  , , . . .  

P' . ' 
p r i m i t i v e  P  



T a b l e  4 0 .  ETCGAO b a s i s  for oxygen i n  o z o n e  
. . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

p r i m i t i v e  s S '  s I' 

c ~ ( ~ ) = 0 ' . 0 5 9 2 1 3 9  B ( p ) = 3 . 0 6 3 4 7 7 3  

p r i m i t i v e  P .  P '  

. . 

1 0 . 2 4 3 3 1 7 0  0 . 9 6 9 3 9 7 0  





MOLECULAR ORBITALS FOR THE 

RADICAL-DIMER SYSTEMS 

I n  P a r t  I V .  o f  t h i s  work w e  c a l c u l a t e d  wavefunct ions  

f o r  t h e  dimers and monomers shown i n  e q u a t i o n s  83-1,3. I n  

t h e  fo l lowing  t a b l e s  w e  p r e s e n t  t h e i r  MO's and occupa t ion  

numbers c a l c u l a t e d  us ing  t h e  Hartree-Fock method and t h e  

SPIP procedure  o u t l i n e d  i n  P a r t s  I .  t o  I11 of  t h i s  work. The 

b a s i s  sets w e r e  t aken  from t h e  even-tempered c o n t r a c t e d  bases  

(ETCGAO) i n  Appendices A and B ,  and t h e -  s p e c i f i c  b a s i s  f o r  

each  wavefunction i s  s p e c i f i e d  i n  Table 5 of  P a r t  I V .  



Table 4 1 .  Hartree-Fock o r b i t a l s  fo r  formyl radical  

- - -  - 

(13 )  (2a)  (33) (ga )  ( 5 4  ' ( 6 5 )  . ( 7 s )  ( 1 5 )  

ETCGAO 2.000000 2.000000 2.0'00000 2.000300 2.000000 2.000050 1 .003030  2.CC00'13 
. . 



Table 42.  SPIP MO's and occupation numbers for trans-glyoxal 

ETCGAO 2 .000000 2 .000000 2 . 0 0 0 0 0 0  2.000000 2.000000 2.000000 1 .983770 2 .000000 2 .000000 



- 
Table 42.  ( C o n t i n u e d )  

0b2) (UbZ) (5b2) , (6b2) (7b2) ( l b l )  ( l a 2 1  

ETCGAO 2 .000000 , 2 . 0 0 0 0 0 0  2 .000000 2 .000000 0 .016230 2.000C30 2 .000000 



Table 13. SPIP MO's and occupation numbers for cis-glyoxal 

(lal) (2al) (3al) .(4al) (5al) (6a 1) (7al) (lb2) (2b2) 

ETCGAO 2.000000 2.000003 2.000000 2.000000 2.000000 2.000000 1.983350 2.000000 2.000000 



Table 4 3 .  (Continued) 

ETCGAO 2.000000 2.000000 2.000000 2.000000 0.016650 2.000000 2.000000 



Table 4 4 .  Hartree-Fock o r b i t a l s  fo r  n i t r i c  oxide 



Table  4 5 .  S P I P  M O ' s  and occupat ion  numbers for trans-NO dimer 

ETCGAO 2.00U000 2.000.000 2.000000 2.000000 2.000005 2.000000 1.946250 2.000000 2.000000 



Table 4 5 .  (Continued) 

(35 2 )  (ub2) (5b2) (6b2) (7b2) . [lbl) (la21 

ETCGAO 2.000000 2.000000 2.000000 2.000000 0.053750 2.000000 2.000000 

0.012981 0.011639 
-0.018501 -0.015547 
-0.00723U 0.002467 
0.0 0.0 
0.0 0.0 
0.464578 0.240272 

-0.011783 -0.319171 
0.368805 0.011771 
0.009125 -0.005472 
0. 325724 -0.256762 

-0.462891 0.349831 
0.109332 0.013L10 
0.0 0.0 
(i.O 0.0 
0.104052 -0.835310 

-0.025808 -0.097698 
-0.295925 -0.094371 
-0.011708 -0.029326 
-0.323724 0.256752 
0; 462891 -0.3U9881 

-0.109332 -0.013210 
0.0 0.0 
0.0 (i. 3 
0.104052 -0.835010 

-0.025808 -0.097698 
-0.295925 -0.094971 
-0.011708 -0.029326 
-0.012Y81 -0.011639 
0.018501 0.015547 
0.0C7234 -0.002467 
0.0 0.0 
0.0' 0.0 
0,464578 0.240272 

-0.011783 -0.019771 
0.368805 0.01 1771 
0.009125 -0.005472 



T a b l e . 3 6 .  S P I P  MO's and o c c u p a t i o n  numbers for cis-NO dimer 

( l a 1 1  ( 2 a l )  ( 3 a I )  (Ira11 ( 5 a l  I '(63 1) ( 7 a l )  ( lb21  (2b21 

ETCGAO 2.000OUC 2.0000CO 2.000000 2 .000000  2 .000000 2 .003000 1 .916780  2 .000000  2 .000030 



Table 4 6 .  (Continued) 



Table 4 7 .  ~a'rtree-~ock orbitals for oxygen molecule i o n  (+') 



Table 48. SPIP MOB s and occupation numbers for trans-0; dimer 



Table 4 8. (Continued) 

(3b21 (4b2) (5b2) (6b2) (7b2) (lbl) (la21 

ETCGAO 2.000000 2.000000 2-000000 *2.030900 0.196393 2.003000, 2.000000 



Table  49 .  SP IP  M O ' s  and occupa t ion  numbers f o r  c is-01 dimer 

( l a 1 1  (231 )  (33 1) (43 1) ( 5 a l )  ( 6 a l )  ( 7 a l )  (i b2)  (2b2)  

ETCGAO 2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 9  2 .000000  2 . 0 0 3 0 0 0  2 .333133  2 . 0 0 3 0 0 0  1 . 7 4 8 2 3 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  



Table 49.  (Con t inued)  



A P P E N D I X  D: MOLECULAR O R B I T A L S  F O R  T H E  CYCLIC 
. . 

D I M E R  S Y S T E M S  



MOLECULAR ORBITALS' FOR THE CYCLIC'DIMER SYSTEMS - 

I n  P .a r t  I V  of  t h i s  work w e  c a l c u l a t e d  wavefunc t ions  

f o r  t h e  c y c l i c  d imers  and monomers shown i n  e q u a t i o n s  84-1,2. 

I n  t h e  fo l l owing  t a b l e s  w e  p r e s e n t  t h e i r  M O ' s  and occupa t i on  

numbers c a l c u l a t e d  u s i n g  t h e  Hartree-Fock method and t h e  

SPIP procedure  o u t l i n e d  i n  P a r t s  I t o  I11 o f  t h i s  work. The 

b a s i s  sets are t a k e n  from t h e  even-tempered c o n t r a c t e d  

o r b i t a l  (ETCGAO) b a s i s  i n  Appendices A and B ,  and t h e  s p e c i -  

f i c  b a s i s  io r  each  wavefunct ion i s  s p e c i f i e d  i n  Tab le  5 o f  

P a r t  I V .  



Table 5 0 .  Hartree-Fock o r b i t a l s  for formaldehyde 



Table 51. SPIP  MO's and occupation numbers f o r  formaldehyde 

-- 

(12 11 (2a 1) (311) (431) (5311 (lb2) (2b2) (1 bl) (2bl) 

ETCGAO 2.000000 2.000000 2.000100' 2.003033 2.333333 2.333300 2.333303 1.900142 0.099858 



Table 52.  Hartree-Fock o r b i t a l s  f o r  1 .2 -d ioxe tane  



Table 52. (Continued) 

EPCGAO 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 



Table 53. MO's and occupation numbers foYl(st) SPIP model of' l,2-dioxetane 
' 



m
 0
 

m
 3

 
m

 0
 

m
 t
 

0
 w

 
m

 t
 

0
 @

 
m

 3
 

U
N

*
N

W
N

\
O

N
 

N
W

 
N

 f-
 

w
r

w
r

w
-

w
c

 
m

- 
m

 r
 

'0
 m

 
m

 w
 

0
0

,
 

N
N

N
N

N
N

N
N

 

t
m

 
t
 m

 
03 w

 
w

3
w

t
w

3
 w

3
 

o
 3

 
o
 J

 
m

m
m

m
m

m
n

m
 

O
O

O
~

O
O

O
O

O
O

O
O

-
O

O
O

O
O

O
O

O
P

-
0

0
0

0
0

0
0

'
0

r
-

O
O

O
O

O
N

O
N

o
N

o
N

o
 

..... 
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
o
d
o
o
o
o
 

I 
I 

I 
I 

I 
I

I
 

N
w

 
N

 w
 

m
m

 
m

 m
 

m
 3

 
m

 3
 

w
 N

 
3

m
t

m
3

m
3

m
 

f
-
 m

 
- m

 
rD

 N
 

N
3

N
J

N
3

N
3

 

w
 0

 
w

o
 

m
e

 
m

 f
 

p
.
 m

 
I-
 m

 
m

m
m

m
m

m
m

m
 

m
m

 
m

 m
 

m
 - 

m
 r
 

m
t

m
e

 m
t

m
t

 
N

O
N

O
N

O
N

O
 

0
0

0
f

0
0

0
0

0
0

0
0

3
0

0
0

0
0

0
0

O
N

O
O

O
O

O
O

O
O

N
O

O
O

O
O

N
O

N
O

N
O

N
O

 

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

 
I
 

I 
I

I
I

I
 

trim
 

L
n
 DD 

m
m

 
V

IN
m

N
V

)N
y

)N
 

m
 t
 

m
 m

 
m

 3
 

n
 3

 
m

t
 

r
 w

 
- .a 

f
t
t
t
t
t
t
t
 

m
f
-
 

m
 m

 
m

m
 

m
 t- 

w
 t
 

9
-

m
f-

m
r

-
n

l-
 

m
 r
 

m
 r
 

a
 3

 
t

m
=

r
m

t
m

3
m

 
3
 !
-
 

C
C

r
c

C
7

C
r

 
O

O
O

N
O

O
O

O
O

O
O

O
N

O
O

O
O

O
O

O
0

m
O

O
O

d
O

O
O

O
=

I
~

O
O

O
O

N
O

N
O

N
o

N
o

 
............................... 
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
O
O
O
O
O
O
O
O
O
O
d
d
d
d
d
d
d
d
d
d
d
~
d
 

I 
I 

I 
I 

I 
I 

I 
I 

m
m

 
w

-
 

m
 m

 
w

-
 

r
 N

 
0
 w

 
- N

 
0
 \O

 
f-

m
r
-
m

f-
m

f-
m

 
r
 n

 
- m

 
N

 m
 

O
Ip

.m
-m

P
-o

?
f- 

,
m

r
 

m
 - 

r
m

 
N

 m
 

r
m

 
3

w
*

w
 3

w
e

w
 

m
0

 
In
 
0
 

I- 
N

 
f
 m

t
m

3
 ln

'tm
 

m
-

m
r

m
r

m
r

 
o

o
o

m
o

o
o

o
o

o
o

o
m

o
o

o
o

o
o

o
o

r
n

o
o

o
o

o
o

o
o

%
2

o
o

o
o

~
o

C
o

r
o

~
o

 
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
 

I 
I 

I 
I 

t
a

-
 

m
-

m
-

t
t

r
 

m
 

m
m

w
w

 
m

t
m

m
o

n
o

m
o

m
o

m
 

m
 

m
m

-
m

f
-

a
m

 
m

~
t

-
m

o
m

o
 

w
~

~
m

o
m

o
 

O
N

I
-

~
~

N
-

N
~

N
~

N
 

0
 

N
W

m
O

m
O

O
 

N
W

n
O

-
f
-

m
 

N
t

m
m

-
r

-
m

 
N

t
m

m
r

N
r

N
r

N
r

~
 

o
 

m
n

t
w

.
n

\
O

O
 

n
m

e
w

m
m

o
 

m
m

w
m

m
m

n
 

m
m

m
m

m
r

m
r

m
-

m
r

 
0

0
0

 
0

0
3

0
0

0
0

 
0

0
b

O
-

W
t

 
\

~
m

m
O

r
m

f
 

w
m

u
?

o
-

o
r

o
r

o
r

o
 

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

m
~

~
~

~
m

~
~

~
m

~
~

~
~

m
~

~
~

~
~

~
~

o
o

o
o

 
............................................ 

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

 
I 

I 
I 

I 
1

1
1

1
 

I
l

l
 

I 
I 

I 
I 

I 

m
 

m
e

 
f

t
-

~
m

m
-

m
 

m
o

m
 m

~
-

m
o

w
o

'
w

o
\

~
o

w
o

 
m

 
3

.-m
m

tn
m

- 
0

-
m

m
-

0
-

 
t

N
m

r
-

-
t

*
 

t
N

r
n

I
.
N

t
N

3
N

J
N

3
 

m
m

~
 

r
N

m
w

W
m

N
 

r
N

m
-

f
m

t
 

W
-

m
U

~
b

m
t

 
m

r
m

m
r

m
r

m
r

m
r

m
 

N
J

O
 

o
m

m
1

-
~

3
0

 
O

~
~

I
-

O
-

N
 

s
-

O
~

O
O

P
N

 
r

o
t

o
m

t
m

e
m

b
m

t
 

f
m

O
 

r
O

O
N

O
t
m

O
 

W
O

N
O

W
m

r
 

N
m

w
r

m
m

t
 

N
m

~
r

0
0

0
0

0
0

0
0

 
O

O
O

O
O

O
O

~
O

O
O

O
O

O
O

O
~

O
.

-
o

~
~

~
~

o
~

o
~

o
o

o
o

~
o

~
o

~
~

c
o

~
~

c
~

 
............................................ 

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

 
I 

I 
I 

I 
I

1
1

1
1

1
 

I
l

l
 

I
1

 
I

I
 

I 
I 

I 

-
o

m
 

3
n

 
m

m
m

 
N

m
 

m
m

e
 

m
f- 

*
O

N
 

e
m

 
e

m
0

 
m

r
 

~
o

o
o

q
~

o
 

.... 
0

0
0

0
0

0
0

 
I 

3
 

-
G

i
m

r
3

\
O

t
 

r
r

o
 

r
m

o
m

r
r

o
 

m
m

o
 

N
P

O
C

~
~

O
 

O
N

O
a

O
O

a
r

a
o

N
O

 

0
-

m
 

3
-

3
 

m
m

r
 

m
o

m
 

-
0

-
 

0
-
0

 
... 

0
 0

 0
 

I 
I
 

m
m

o
m

-
m

w
 

m
m

o
m

f
f

t
3

t
f

t
t

 
m

m
w

o
m

-
o

 
m

m
e

.
o

-
~

~
e

-
3

r
t

 
t

-
O

~
f

r
m

 
3

-
0

-
-

3
r

3
r

J
r

f
 

e
m

r
m

f
-

.
-

m
 

3
m

r
m

N
N

N
N

N
N

N
N

 
R

O
m

-
m

In
-
 

b
O

W
r

m
r

m
r

m
r

w
r

 
O

O
O

O
O

N
~

O
O

o
O

O
O

O
~

O
.

-
O

r
O

~
o

 
...................... 

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

 
I

l
l

 
I

1
 

I 
I

I
I

I
 

m
r-m

 
t

m
o

 
r

m
m

 
-

*
m

 
m

 r- 0
 

r
n

N
0

 
... 

0
0

0
 

I 
I 



Table 54. M08s and occupation numbers for 2(nd) SPIP model of 1,2-dioxetane 



Table 54 .  (Continued) 



T a b l e  5 5 .  H a r t r e e - F o c k  o r b i t a l s  f o r  n i t r o s y l  hydr ide  



à able 5 6 .  SFIP MO's and o c c u ~ a t i o n  n u h e r s  f o r  n i t r o s y l  h y d r i d e  



Table 5 7 .  Hartree-Fock o r b i t ~ l s  for HNO dimer 

(la) (2a) (3a) (ua) (5a) (63) (7a) (8a) (9a) 

ETCGAO 2.000000 .2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 



Table 5 7 .  ( C o n t i n u e d )  

'( 1.b) (2b)  (3b)  (4b)  (5b)  (6b)  ( 7  b) 

ETCGAO 2.000000 2.000000 2.000000 ' 2 . 0 0 0 0 0 0  2.000000 2 .003000 2 .000000 



T a b l e  5 8 . .  MO's and  o c c u p a t i o n  numbers  f o r  (1st) SPIP moee l  o f  HNO d i m e r  

( l a )  (2a)  (3a)  (4a )  (5a )  (6a)  ( 7 a )  (8a )  i9a)  

ETCGAO 2.000000 2.000000 2.000000 2.00G000 2.000300 2.003000 2.000000 2.000000 1.894562 



Table 58. (Continued) 

ETCGAO 2.000000 2.000000 2.000000 2.000000 2.000000 2.003000 2.000000 0.105438 



Table 5 9 .  M O ' s  a n d  o c c u p a t i o n  n u m b e r s  f o r  2  ( n d )  SPIP m o d e l  o f  HIJO d i m e r  

( l a )  (2a)  - ( 3 4  . ( u a )  ( 5 a )  (63)  ( 7 s )  ( 8 a )  (9.3) 

ETCGAO 2 .000000 2.000000 2 . 0 0 0 0 0 0  2 .000000 2.000000 2 .000000 2 . 0 0 0 0 0 0  1 .9720  14 1.896004 



Table 59. (Continued) 

ETCGAO 2.000000 2.000000 2.000000 2.000000 2.300000 2.000000 2.03G000 0.103996 0.027986 



APPENDIX E : NATURAL REACTION ORBITALS FOR THE 

THERMOLYSIS OF 1,2-DIOXETANE 
. . 



NATURAL REACTION ORBITALS FOR THE 

THERMOLYSIS OF 1,2-DIOXETANE 

In Part V of this work we calculated several wavefunc- 

tions for 1,2-dioxetane along an optimized reaction path. 

We developed the concept of reaction molecular orbitals and 

natural reaction orbitals (NRO's) in Part V, and in' the 

following tables we display the core molecular orbitals, 

the NRO's, and their occupation numbers for 1,2-dioxetane 

as determined with a multiconfiguration self-consistent 

field wavefunction for each point on the reaction path. 



Table 60. CllO's and URO's for 1,2-dioxetane at RCC = 2.8754 a.u. 

(la11 (2al) (3al). (ua 1) (5al) (6a 1) (7al) (lb2) (2b2) 
. . 

ETCGAO 2.000000 2.000000 2.000000 2.000000 2.000000 1.927700 1.981000 2.000000 2.000000 



Table 60. (Continued) 

ETCGAO 2.000000 2.000000 2.000000' 0.018800 0.07250G 2.C00000 2.000000 2.000000 2.000000 



Table 61. C R O ' s  and NRO's for 1,2-dicxetane at R = 3.374 a.  u. 
CC 



T a b l e  6 1 .  (Continua d )  . . 

(3b2) (4b2) ( sb?)  (6b2) (7b2)  . ( t b l )  ( 2 b l )  ( l a 2 1  (2a2) 

ETCGAO 2 . 0 0 0 0 0 0  2 .000000 2 .000000 0 . 0 4 9 7 0 0  0 .122900 2 . 0 0 3 0 0 0  2 .000000 2 .000000 2 .000000 .. . 



T a b l e  62. C l O ' s  a n d  N E O 1 s  for 1,2-dioxetane a t  RCC = 3.8754 a.u. 

ETCGAO 2.300000 2.000000 2.000000 2.000000 2.000000 1.729400 1.888700 2.000000 2.000000 



T a b l e  6 2 .  ( C o n t i n u e d )  

( 3 b 2 )  (4b2)  (5b2)  (6b2)  (7b2)  I l b l )  ( 2 b l )  ( l a 2 1  (2a2)  

ETCGAO 2.OC0000 2 .00C000  2 . 0 0 0 0 0 0  0 . 1 1 0 2 0 0  0 . 2 7 1 7 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 .000C00  



Table 63. CNO's and BBO's for 1,2-dicxetane at RCC = 3.9872 a.u. 

ETCGAO 2.000000 2.000000 2.000000 2.000000 2.000000 1.656500 1.870800 2.000000 2.000000 



Table 6 3 .  (Continued) 

( 3 b 2 )  ( 4 b 2 )  1 5 b 2 )  ( 6 b 2 )  (7 b2 ( l b l )  ( 2 b l )  ( l a 2 )  (2a  2) 

. ETCGAO 2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 . C 0 0 0 0 0  0 . 1 2 7 8 0 0  0 . 3 4 4 9 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 .000C00  



T a b l e  6 4 .  CIO's and URO's for 1 , 2 - d i o x e t a n e  a t  RCC = 4 . 0 3 6 9  a.u. 

- - -- 

. . 
( l a  1) ( 2 a f )  (Ual )  . ( S a l ) .  . ( 6 a l )  ( T a l l  ( l b 2 )  - (2b2) 

ETCGAO 2 . 0 0 0 0 0 0  2 .000000 2 . 0 0 0 0 0 0  2 .000000 2 .000000 1 .560500 1 .861700 2 .000000 2 .000000 



T a b l e  6 4 .  ( C o n t i n u e d )  

(3b2)  (4b2)  ( 5 b 2 )  (6b2)  (7b2  I ( l b l )  ( Z b l )  ( l a 2 )  ( 2 a 2 )  

ETCGAO 2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  0 . 1 3 6 6 0 0  0 . 4 4 1 2 0 0  2 . 0 0 0 0 0 0  2 . 3 0 0 0 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  



Table 65. ClO's and NRO's for 1.2-dicxetane at RCC = 4.0754 a.u. 

ETCGAO 2.000000 2.000000 2.000000 2.000000 2.000000 1.387600 1.856000 2.000000 2.000000 



Table 65. (Continued) 

(3b2) (4 bi) (5 b2 (6b2). (7b2) (lbl) (2bl) (la21 (2a 2) 

ETCGBO 2.000000 2.000000 2.000000 0.142600 0.613800 2.000000 2.00C000 2.000000 2.000000 



. . 

Table 66,. CIO1s  and N601s  f o r  1 . 2 - d i o x e t a n e  a t  RCC = 4, .1754 a.u. 

-- 

( l a  1) ( 2 a l )  V a l )  (ua 1) ( ~ a  1) ( 6 a l )  V a l )  (1 b2) (2b2) 

ETCGAO 2.000000 2 .000000 2.OC0000 2 . 0 0 0 0 0 3  2 .000000 0 . 1 5 9 8 0 0  1 .908000 2 .000000 2 .000000 



T a b l e  6 6 .  (Cont inued)  . . 

(3b2)  (4b2) (Eb2) ( i b  2) (7b2) ( l b l )  ( 2 b l )  ( l a 2 )  (2a2) 

ETCGAO 2 . 0 0 0 0 0 0  2 .000000 2 . 0 ~ 0 0 0 0  0 . 0 8 5 2 0 0  1 .847000 2 .000000 2 .000000 2 .000000 2.,000000 



T a b l e  6 7 .  CNO's and N R O ' s  for 1 , 2 - d i c x e r a n e  a t  RCC = 4 . 3 7 5 4  a.u. 

( l a  1) ( 2 a l )  ( 3 a l )  ( 4 a l )  (5.al 1 ( 6 a l )  ( 7 a l )  ( l b 2 )  (2b2) 

ETCGAO 2.000000 2 .000000 2. .000000 2 . 0 0 0 0 0 0  2 .000000 0 . 1 1 4 1 0 0  1 .920400 2 . 0 0 0 0 0 0  2.00G000 



T a b l e  6 7. ( C o n t i n u e d )  

( 3 b 2 )  (4bZ) (5b2)  (6b2)  ( 7 b 2 )  ( l b l )  ( 2 b l )  ( l a 2 1  (2a 2) 

ETCGAO 2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 3  2.0000GO 0 . 0 7 4 1 0 0  1.891UCO 2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  



T a b l e  6 8 .  CEO's and N R O 1 s  for 1 , 2 - d i o x e t a n e  a t  RCC = 5 . 8 7 5 4  a . u .  

( l a 1 1  ( 2 a l )  V a l  ( u a l )  ( 5 a l )  (6a 1  (7a  1) (1b2)  ' (2b2) 

ETCGAO 2.000000 2 .000000 2 . 0 0 0 0 0 0  2 .000000 2.0.00000 0 . 0 9 7 0 0 0  1 .913100 2 . 0 0 0 0 0 0  2 . 0 0 0 0 0 0  



Table 68. ( C o n t i n u e d )  

ETCGAO 2.000000 2.000000 2.000000 0.087300 1.902600 2.000000 2.000000 2.000000 2.000000 



T a b l e  6 9 .  ClO's  and NRO's f o r  1 , 2 - d i o x e t a n e  a t  R& = 8 . 8 7 5 4  a-u. 

(131)  ( 2 a l )  (3a 1) ( U a l ) .  ( 5 a l )  ( b a l l  ( t a l l  (1 t 2 )  (2b2) 

ETCGAO 2 . 0 0 0 0 0 0  2 .000900 2 . 0 0 0 0 0 0  2 .000000 2 .000300 0 . 0 9 0 2 0 0  1 .910800 2 .000000 2 .000000 



T a b l e  6 9 .  (Continued) 

- 

(3b2) (4b2) (5b2) (6b2) (7b2) ( l b l )  ( 2 b l )  (1.32) (2a2) 

ETCGAO 2 .000000 2 .000000 2 .000000 0 . 0 8 9 3 0 0  1 .909700 2 . 0 0 0 0 0 0  2 .000000 2 . 0 0 0 0 0 0  2 .000000 




