78

/

Nne /\f/’

O O
% %ﬂ‘\ SR

L7N 15.3800

REFERENCE MANUAL FOR
THE SDS-910 CROSS-ASSEMBLER

Brobst,

Kent R.
Leonard . “C... Moon, -and
Barbara J. Helland

AMES LABORATORY, USERDA
IOWA STATE UNIVERSITY
AMES, IOWA

Date Transmitted: January 1976

UNDER CONTRACT W-7405.eng-82

PREPARED FOR THE U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



REFERENCE MANUAL FOR THE SDS-910 CROSS-ASSEMBLER

By

Kent R. Brobst, Leonard C., Moon,
and Barbara J. Helland

orice .
This report was prepared as sn account of work | |
! | sponsored by the United States Government. Neither i
the United States nor the United Ststes Energy
R and Devel Ad mini: ion, nor any of !
- | their employees, nor any of their contractors, ;
subcontractors, or their employees, makes any
warrgnty, express or implied, or assumes any legal |
Liability or responsibility for the N
! | or usefulness of any inf i productor | |
process disclosed, or represents that its use would not | -
" | infringe privately owned rights. . }
]
|

L e e e

Ames Laboratory, ERDA
Iowa State University

Ames, Iowa 50011

Date Transmitted: January 1976

PREPARED FOR THE U.S. ENERGY RESEARCH AND
DEVELOPMENT ADMINISTRATION UNDER CONTRACT NO. W-7405-eng-82

@?‘STR‘BU'.F\ON OF THIS DOCUMENT (S UNLIMITE!

15-3800



LG

L

ii

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Fnergy Re-
search and Development Administration, nor any of

' their employees, nor any of their contractors, sub-

contractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, com--
pleteness, or usefulness of any information, apparatus,
product or process disclosed, or represents that.

its use would not infringe privately owned rights.

- Avail_able from; National Technic¢al Information Service

U. S. Department of Commerce
P.O. Box 1553 .
Springfield, VA 22161

Price: Microfiche $2.25
Paper Copy $5.00




i

iii

TABLE OF CONTENTS

ABSTRACT
INTRODUCTION
METHOD OF SOLUTION FOR ASM
FLOWCHARTS FOR ASM
SOURCE LISTING FOR ASM
VARIABLE DICTIONARY FOR ASM
METHOD OF SOLUTION FOR XREF
FLOWCHART FOR XREF
SOURCE LISTING FOR XREF
VARIABLE DICTIONARY FOR xﬁEF
APPENDIX A: USAGE

SAMPLE RESULTS

APPENDIX B: EXTENSION TO ANOTHER ASSEMBLY LANGUAGE

PAGE

iv

26
34
35
36
39
40
42

44



iv

ABSTRACTA
An IBM-360 cross-assembler for a SDS-910 computer system wés
broken down into two méjor programs, The first program asseﬁbles
SDS-910 Assembly Language code, and the second program uses
informa;ion suppliéd by the first to produce a reference list of
all'identifiers used in the source SDS-910 Assembly Language program.
Listings, documentation, and éample_results are given for fhe two

programs.



Distribution List:

Chicago Patent Office
USERDA-TIC

Ames Laboratory Library
Kent Brobst

Leonard Moon

Barbara Helland

Total

27

15
15

66



e e o Mo Ca e .

Introduction

To effectively use the SDS-910 computers at the Ames Lab
Research Reactor and the X-ray diffraction facility, a procedure

was needed to translate programs into SDS-910 executable code.

"It was decided that a cross-assembler run on an IBM-360 would be

the most appropriate translator for this situation. This would

free the SDS-910 from translaping the programs it mﬁst execute,
allowing it to devote itself entirely to execution. The handling

of programs that the SDS-910 system would do is therefore simplified,
aﬁd thg limited amount of core would be more‘éffectively utiliied.

In addition, this would allow the assembler package to be written in

.a higher level language (PL/I), greatly aiding the writing, debugging,

and undgrstandability of the assembler.

Using assembly language for programs to Be executed on the
ALRR SDS-910 has certain advantages. The time and effort needed to
write a compiler for a higher level language over the time needed to
write .an assembler would be saved. To this saving cbuld be added the
saving of defining a language, since the SDS-910}Assemb1y Language had
already been defined. Much of the programming that would use the
SDS-910 involves the handling of interrupts,.and assembly language is
especially well-suited to this taék. Since the programs that would
use this system would be fairly short and would run in a static
environment, the lack of flexibility.of the stofage structures

available in assembly language would present little difficulty. It



)

was felt that these advantages of using aséembly language outweighed
the difficulties of writing assémbly language programs.
The’available card readers for the SDS-910 dictated the formats
of the object deck prodﬁced by the assemsler. Column binary and
Hollerith formats could read by the card réaders in use at the time

these programs were written. For this reason the user of the assembler

can specify in which.of these two formats he wants his object deck.

Column binary format is generally preferred because it packs the

code more densely on a card, making it less expensive. Column binary -

" format has been used exclusively on the Ames Lab SDS-910 since the

Hollerith format card reader broke down. As a result, requesting the
reference listing generating program automatically specifies that the
column Binary format for the object deck will be used.

The reference listing generating routine, along with error
messages generated by the assembler, have been included in this
package to aid the user iﬁ debugging hisfprograms. The reference
listing can save the user from needing to scan an entire prograﬁ
searching for referehces té identifiers. It can also show the user
identifiers that he is declaring but no longer referencing due to
changes he's made in the program. Use of this routine is optional.

The qross-assembler (ASM) and the reference listing generator
(XREF), if desired, are run as a single proéeduré; Information éassed
from the assembler to tﬁe reference listing generator is then completely

independent of and invisible to the user, simplifying his work.



The two programs, documentation, and sample results are all
given in this report.

Method of Solution for ASM

A two-pass technique is used to assemble the sourcé program. The
program treats each source inst;uction individually in sequence,

In the firét pass each instruction is checked for a label and for
a special macro operator. If a valid label is found, it ‘and its
address of occurrence are entered in the symbol table. If a macro
operator (AORG, BSS, BéD, BOOL, EQU, POPD, OPD, or PAGE) is encountered,
modifications commanded by the operator will be performed, such as
chaﬁging the relative address coﬁnter (PCB) or creating a special
teméorary Operaﬁor. |

After each source instruction has been examined, it is put on an
extérnal-file (PROG) fér processing during the second pass of the
assembler. When the source instructions héve been exhausted, the symbol
table is sorted alphabetically ana checkéd.for'multiply defined labels.

In the second pass each source instruction is retrieved from the

.external file (PROG). 1Its operator is checked and control passes to an

" appropriate section of code for the particular operator. The object

code for the statement is génerated and put into an external file (CB)
for ‘punching in the desired fermat (either Hollerith or column binary).
If an identifier is found in the operand af the source instruction and
a cross-reference listing is requested, the name of the identifier and

the address of .the particular reference are entered in the external



file SORTIN for proceésing by the cross-reference generating program.
Of course, no object code is generated for comment stateaents.

After the source instruction has been processed, it is printed,
along with any'érrors found in the statement. When the éOurce program
ié completely translated and printed, the word 'DONE' is printed,
followed by the number of errors found in the program aﬁd the statemenﬁ

numbers in which -they occurred.



ydl

GET AN
INSTRUCTION

A COMMENT
NO
~BOES . .
INSTRUCTION~, YES
HavE A
LABEL ?
~ [Ino CHECK LABEL
FOR INVALID
CHARACTERS
ENTER
IDENTIFIER
IN SYMBOL
TABLE
T
1S
OPERATORN,YES
A MACRO
N
NO MACRO
HANDLING
CODES
WRITE INSTRUCTIONS
INTO FILE (PROG)
TO BE USED IN

PASS 2

ND OF
PROGRAM

YES

SORT SYMBOL

TABLE ALPHABETICALLY
AND CHECK FOR
MULTIPLY OCFINED
LABELS

A CROSS-
REFERENCE
TABLE TO -
PE M_:DE

PUT THE
SYMBOL TABLE .
ON AN EXTERNAL
FILE (SORTIN)

J

FLOWCHART FOR ASM THE
SDS-910 CROSS-ASSEMBLER,
- FIRST PASS



€

(START)

GET AN
INSTRUCTION
FROM FILE
(PROG)

STATEMENT
YES

GENERATE THE
OBJECT CODE
FOR THE PARTI-

CULAR INSTRUCTION

DOES
THE OPERAND . YES
CONTAIN AN
IDENTIFIER
~

NO r

FIND ADDRESS
, OF DECLARATION
‘ OF IDENTIFIER

(‘PUNCH THE

INSTRUCTION'S .
OBJECT CODE

PRINT THE,
INSTRUCTION

PRINT ANY
ERRORS IN THE

OF _PROGRAM ?>

INSTRUCTION

NO END YES

IS
NO CROSS-
~—— REFERENCE TABLE
TO BE MADE ?

YES

‘| PUT THE IDENTIFIER
AND ITS ADDRESS
- OF REFERENCE ON

(SORTIN)

AN EXTERNAL FILE |

PRINT ERRORS

AND THEIR STOP

LOCATIONS

FLOWCHART FOR SD§-910
CROSS-ASSEMBLER, SECOND PASS



Source Listing for ASM

"ASM: PROC OPTICNS (MAIN);
DCL 1 XTEMP, ‘
2 XNAM CHARI(6),
2 XADDR FIXED BIN3
DCL (I1IJelLeMaIL(0210),IU(0210)) FIXED BIN STATIC;
DCL 1 T STATIC, 2 TN CHAR(6), 2 TA FIXED BIN;
DCL 1 TT STATIC, 2 TTN CHAR(6), 2 TTA FIXED BIN;
DCL ADR1.FIXED BIN(31,0);
DCL 1 INST STATIC,
2 CARD CHAR (80),
: 2 ERR FIXED BIN INIT(0):
DCL LOC CHAR(6) DEFINED CARD. 0P CHAR (4) DEF CARD
.AND CHAR{10) DEFINED CARD POS(16):

POS(8),

DCL L AB CHAR(6) DEF CARD, OPC CHAR(4) DEF CARD
' POS(8), OPER CHAR (10) DEF CARD POS (16);

DCL TOPC CHAR(6) DEF CARD POS(8):
DCL OPER! CHAR(6) DEF CARD POS (16);

OCL OPERA(10) CHAR (1) DEF CARD POSITION (16);

DCL PNUM BIT (32) STATIC;S
DCL PC1(5) BIT(3) DEF PNUM POSITION(18);
ODCL CODE (9) LABEL INIT

(AORG+RES+BCD»BOOL +EQUsPOPDPCPD, PAG,NUN) 3

. DCL BNUMB CHAR(1) DEF CARD POS (16);
ER ' DCL COM CHAR(1) DEF CARD:
DCL PROG FILE RECORD SEQUENTIAL;
DCL DUMMY CHAR(8) STATIC:
DCL PNAME CHAR(75);
DCL 1 SYM(400) STATIC, 2 NAM CHAR(6), 2 ADDR FIXED
DCL SP FIXED BIN STATIC INIT(O):
DCL TMP FIXED BIN (31,0) STATIC:
DCL PCB FIXED BIN (31,0) INIT(-1) STATICS
DCL 1 TOPER STATIC,
2 TOP (30) CHAR(E),
2 TMAX FIXED BIN INIT(O),
2 TCODE (30) BIT(24);

BIN;

ASM00010
ASM00020.
ASM00030
ASM00040
ASM00050
ASM00060
ASMCO0O70
ASM00080
ASM00090
ASMO00100
ASMO00110
ASM00120
ASM00130
ASM00140
ASM00150
ASM00160
ASM00170
ASM00180
ASM00190
ASM00200
ASM00210
ASMQ0220
ASM00230
ASM00240
ASM00250
ASM00260
ASM00270
A5M00280

. ASMD0290

ASM00300
ASM00310
ASM00320
ASM00330
ASM00340
ASM00350



DCL ©

DCL
DCL
DCL

OCL

NUM Blf (32) STATIC, ONUML BIT(Z@) DEF ONUM POSITION(9);

DCL OCON ENTRY (CHAR(10)) RETURNS (FIXED BIN (31,0)

DCL SEARCH ENTRY (CHAR(6),FIXED BIN(31.,0))
RETURNS(FIXED BIN (31,0));
' DCL 0PC1(8) CHAR(4) INIT
(*AORG's 'BSS *,¢*BCD *,'8B00L", *EQU ',*PDOPD"','0OPD
DCL TEMP BIT(24) STATIC; s

DCL FIVFOR BIT(Z4) STATIC INIT('lOllOOlOllOOlOllOOlOllOO'B)o

DCL ENDFLG BIT(1) STATIC INIT('0*B);

DCL EFLG BIT(1) STATIC INIT (*0'8);

DCL KK FIXED BIN STATIC;

DCL PFLG BIT(1) STATIC INIT('0'B), PARM CHAR(S);

DCL ADCON CHAR(10) STATIC; '

DCL ERRCTR FIXED BIN INIT(0) STATIC:

OCL NFLG BIT(1) INIT (*0*B) STATYIC;

DCL FLG BIT(1) INIT (*1°'8B);

DCL OB_PTR FIXED BIN INIT (16) STATIC;

CB FILE RECORD. OUTPUT;
PUNCH ENTRY,SEQ ENTRY;

1 ‘ FIXED BIN STATIC INIT(O);

DCL BLNK BIT(8) INIT (?00000000°B);

DCL BLNK1 BIT(6! DEF BLNK POS (3):

DCL OB_MAX FIXED BIN INIT(144) STATIC;S

DCL SEQ_NO FIXED BIN INIT (0) STATIC;

DCL 0B BIT (24);

DCL 0B6(4) BIT (6) DEF CB:

DCL 083(8).BIT(3) DEF 0B;

B(160) BIT(8) STATIC INIT((160)(8)*0'B);

DCL CHR_CBL(0:63)BIT(8)STATIC INIT( ‘
*00000000'8,*00100100°'8B,°'00100010°B,°*00100001°*8,
*00100000'B8,°00100000°*8,°00100000°8,'00100000°'8,
*00100000°B+*00100000°'B,'00010100°'8,+,°00010010"8B,
*00015001'8,'00010000°'B, *00010000°"8,*00010000°8,
*00010000°8,700010000°'8,*0001000078,'00001010°8,
*00001CC1'84+100001000°B+*00001000'8,°00001000°8.,

} I

s "PAGE*);

/% ABCx/
7 *DEFG*/
/%HIJK*/
/%L MNO* /
/EPQRS*/
7RTUVE*/

ASMO00360
ASM00370
ASM00380
ASM00390
ASM00400
ASM00410
ASM00420
ASM00430
ASM00440
ASM00450
ASM00460
ASM00470
ASM00480

ASM00490 .

ASMO00500
ASM00S5S10

ASM00520 -

ASM00530
ASM00S40
ASMO00SS50

ASM0O0S60

ASM0O0570
ASM00580
ASM00590
ASM00600
ASMQ0610
ASM00620
ASMO00630
ASM00640
ASMQ0650
ASM00660
ASM00670
ASM00680
ASM00690
ASM00700

Y



'OOOOIOOO'Bc'OOOOIOGO'Bo'00001000'8.'00100010'8.

/7XXYZ %/ ASMOO0O710
'00010000°'B+?C0010010*B+°00001010*8,°00001000°*8B, /%~ —_*/ ASM00720
*00000000°B,*00100000'B,*00000000'8B,+°00000001*'8B, /%D |"#x/ ASMO00O730
"00010001°B,'C0001000°'B,'00100000°'B,00000000'8B, /*x$%E*¥/ ASM00740
*00100000'8,'00010000°B,*00010000'B,'00100000%B,s /*()*+%/ . ASM00750
*00001001°'8,'00010000"8,°00100001'8+°00001100%8Bs /¥k,=e/%/ ASMOO760 -
*00001000'8,'00000100t'B,*00000010°'8,°'00000001°B, /%0123%/ ASM00770
*00000000'8,*00000000°*B,*00000000°'8,'00000000°B,» /*4567%/ ASM0OO780
*0N000C00"B, '00000000°'8, *00000010*B+'00010000°*B, /%893 %/ ASM00790
*00100000°*B,+*00000000'B,*00001000'B»*00001000°B);/*<=>2%/ ASMO00800

DCL CHR_CBR(0:63)BIT(8)STATIC INIT( ASM00810
1000000008, 000000008, 000000008, ¢00000000*'B, /% ABC*/ ASM00820
*00100000'B,'00010000°B,°00001000°B,*00000100°*'B, /*DEFG*/ ASM00830
*00000010'8B, *00000001°*B,*00000000°B, 000000008, /*xHI UK%k/ ASM00840
*00000000'8,'00100000°B,*'00010000'B+°00001000'8B,» /*LMNO*/ ASM00850
*00C00100°'B,'00000010'8,*00000001°'B,*00000000°*8, /%xPQRS*/ ASM00860
*00000000'8,'00100000°*8,*'00010000°*B,*00001000°*8B, /%xTUVWX/ ASM00870
*00000100°8, '00000010'8,'00000001*8B,*00000010*8B, /%XYZ */ ASMO0880
'00000110°'B,*00000010°*B,+°00000010'B+*00010010*B, /%~ —_%*/ ASM00890
'00100010°'8,'00000110*8B,'00000110*B+°00000010°*B, /% |"#*k/ ASM00900
*00000010°8,°00100010°8,°00000000°8,°00010010*8B, /%SXE® %/ ASM00910
'00010010'8,'00010010"B,.,*00100010°8,'000010108, /%()*+%x/ ASM00920

1000000108, *00000000°B, ' 00000010°'B,*'00000000°Bs /*ke—e/%*/ ASM00930
*00000000°*B,*00000000'8B,'00000000*B,°00000000°*B, /%0123%/ ASM00940
*00100C00°B, *D0010000°B+°00001000'84+*00000100'8B,s /*4567%/ ASM00950
*00000010°*°B, *00000001°8,*00000010°'B+*00001010°Bs /*89: %/ ASM00960
'00100010'8,°00001010°8,°00001010°8,°00000110°'B);/*<=>2%/ ASM00970

DCL (I11,JsK+MM) FIXED BIN; ' ASM00980
DCL (SWeSW1) BIT(1): ASM00990
_ «/ASM01000

- _ __%®/ASM01010

ON ENDFILE (SYSIN) GO TO SGRT; ASM01020
OPEN FILE (PROG) QUTPUT; ASM01030
GET EDIT (PARMPNAME) (A(5),A(75)); ASMO01040

IF PARM ~=' ® THEN PFLG=*1°'B; ASM010S0



/% o - ‘ #/ASM01060

/% . e */ASM01070
/% GET AN INSTRUCTICN. %/ E - ASM01080
. A ASM01090
LOOP: GEY EDIT (CARD) (A(80));: . ASMO01100
' SW='0'8B; : ' ) ASMO1110
S _ A : . ASMO1120

/% IF THE STATEMENT IS A COMMENT, PUT IT IN THE FILE (PROG) AND ASMO1130
GET THE NEXT INSTRUCTION, x/ . ASMO01140

. ’ . ‘ ASM011S5S0

IF COM=*%°* THEN GO TO NUN; - ASMO1160
PCB=PCB+1; : : ASM01170"

/x__ _— - . ' L ___*/ASM01180
Vg ' : */ASM01190
/% IF YHE INSTRUCTION HAS A LABEL, CHECK IT FOR INVALID CHARACTERS ASMO01200
AND ENTER IT IN THE SYMBOL TABLE. */ ASMO1210

: ' ASMO1220

IF LOC~=? * THEN 0DO; : ASM01230
sSw=v1'83; . : " ASMO1240

IF SP=400 THEN DO: PUT SKIP LIST ('#*%x%xT0OO MANY SYMBOLS®); ASMO01250

GO TO SORT; END; ASM01260

IF COM > *Z' THEN DQO; ERR=10; GO TO LOOP; END; /*ERR.10 */ ASMO1270
M=INDEX(LOC,* *): IFf M=0 THEN M=7; ; ' ASM01280

DO 1=1 TO M-13 . ASM01290

IF .SUBSTR{LOC,1,1) .< *A' THEN DO; ERR=10: GO TO LOOP: END; ASMO1300

END} ' , * ASMO1310

SP=SP+1; NAM(SP)=LOC; ADDR(SP)=PCB; END; ASMO01320

7% e __%/ASMO1330
/% - v _ _ __%®/ASM01340
/% IF THE OPERATOR IS5 A MACRO, USE THE APPROPRIATE MACRO-HANDL ING ASMO1350
INSTRUCTICNS . %/ . ASMO01360

4 . ASM01370

DO I=1 YO 8 WHILE (OP-~= OPC1(1))3 END; GO TO CODE(I);- ASM01380

AORG: TMP=0OCON(AND)}; PC3=TMP-1; GO TO NUN3 : ' ASMO01390

EQU: PCB=PCB~1; DO I=1 TO SP-1 WHILE (NAM(I)-=AND); END; ASM01400

01



RES:
BCD:
T PAG:
BOOL :

POPD:

/%
/%

IF I=SP THEN ERR=3: /% ERR 3 %/

SWw=1'0'83

ADDR(SP)=ACDR(I); GO TO NUN3

PCB=PCB+AND-1; SW="0"B; GO YO NUN;

IF BNUMB > '4' THEN PCB=PCB+1; SW='0*B;: GO TO NUN;
PCB=PCB-1; SW='0'B; GO TO NUN3; o

PCB=PCB-13; ADDR(SP)=0CON(AND);

IF ADDR(SP)=-1 THEN ADDR(SP)=03 SW=*0'8; GO TO NUN;
TMAX=TMAX +13

PCB=PCB-1; : :

IF TMAX>30 THEN DO@; ERR=83 GO TO NUN: END;:

TOP( TMAX)=LQC;

ONUM=UNSPEC(OCON{AND));

TCODE( TMAX)=0ONUM1 ; '

SW='0°'8;

ASMO01410
ASMO1420
ASMO01430
ASM01440
ASM0 1450
ASM01460
ASM01470
ASM01480
ASM01490
ASM01500
ASM01510
ASMO01520
ASMO01530
ASM01540
ASMO01550

_*/ASM01560

*/ASMO1570

%

NUN?

PUT THE XNSTEUCTION IN THE FILE (PROG) FOR USE DURING THE

SECOND PASS. x/

WRITE FILE(PROé) FROM {INST) S
IF Sw THEN ADDR(SP)=PCB; '
ERR=03: GO TO LOOP:

ASM0O1580
ASM01590
ASM01600

ASMO1610 -

ASM01620
ASM01630

__*/ASM01640

*/ASMO01650

/.  SORT:
L1:
L1_1:

SORY THE SYMBOL TABLE ALPHABETICALLY AND CHECK FOR MULTIPLY

DEF INED LABELS. */

SW1='1'8B; J=SP 3 I11=13 MM=0; GO TO La4&;

[IJ=(1I+4J)/23 T=SYMIIIJ)3 K=I1; L=J3
IF NAM(II) > TN THEN DO;
SYM(IIJ)=SYM(II); SYM(II)=T{ T=SYM(IIJ): END;
IF  SW1 THEN DO; IF NAM(J)<TN THEN DO
SYMC(TIIJ)=SYM(J)3 SYM(JII=T;
T=SYM(IIJ); SW1=*0'8B; GO TO L1_1: END;

ASM0 1660
ASMO01670
ASM01680
ASMO16930
ASMO1700
ASM01710
ASMO1720
ASM01730
ASMO01740
ASMO17S0

11



END Swl=*1'83

END s

ASMO01760

ASMO1770

ASMO1780
ASMO1790
ASMO01800
ASMO01810
ASM01820
ASM01830

-ASM01840

ASM01850
ASM01860
ASM01870
ASM01880
ASM01890
ASM01900
ASMO01910
ASM01920
ASM01930

__®/ASM01940
_%/ASM01950

DCL CHA CHAR(*);

DCL IADR FIXED BIN (31,0)3%

DCL  (N1,LL) FIXED BIN3

DCL CARDI CHAR (10):

OCL OPR(10) CHAR (1) DEF CARDI;
CARDI=CHA;

[ADR=0:

M=INDEX(CARDI,* *):

L2: L=L-1; [IF NAM(L)> TN THEN GO TO L2; TT=SYM(L);
L3: K=K+13 IF NAM(K) < TN THEN GO TO L3;
IF K<L THEN DO: SYM(L)=SYM(K)3; SYM(K)=TT; GO.TO L2; END;
IL(MM)=K; TLU(MM)=J; J=L3; MM=MM+1;
T ra IF J-I1 > 10 THEN GO TO L1 )
IF TI=1 THEN TI=I1+413; o
DO II=II VYO Ji: T=SYM(II): K=I1-13
IF NAM(K) > TN THEN DO; ' :
LS: SYM{K+1)=SYM(K); K=K-13 IF K=0 THEN GO TO LS5_13
IF NAM(K) > TN THEN GC TO LS;
IF NAM(K) = TN THEN :
PUT SKIP LIST(®**%&MULTIPLY DEFINED LABEL"NAM(K)).
LS_1: SYM(K+1)=T; GO YO L63 END;
IF NAM(K) = TN THEN PUT SKIP EDIT
(" #EEMULTIPLY DEFINED LABEL ®4NAM(K)) (A(25) ,X(5)+A(6));
L6 END:
MM=MM-1; IF MM>=0 THEN DO: II=IL(MM)3: J=TU{MM); GO TO Lé&;
/% : ' ” L
/% L
/% START THE SECOND PASS. x/
CLOSE ‘FILE (PROG);
. CALL PASS2;
7%_
/% L
OCON: PROC (CHA) RETURNSA(FIXED BIN (31,0))3

ASM01960
ASM01970
ASM01980
ASM01990

®/ASM02000
_*/ASMO2010

ASM02020
ASM02030
ASM02040
ASM02050
ASM02060

ASM02070

ASM02080
ASM02090
ASM02100

4!



DO LL=I1 TO M-13

N1=INDEX( *01234567" ,OPR(LL))-13

IF N1<O THEN DOS ERR=2; RETURN(~-1); END;
N1=0PRI{LL )

IADR=IADR*8+N1;

/7% ERRO2 %/

END ;

RETURNIIADR) : .

END . OCON;
/7 *x_ — _
/*

SEARCH: PROCILABL,PCA) RETURNS(FIXED BIN(31,0));
DCL LABL CHAR(%);
DCL N FIXED BIN;
DCL PCA FIXED BIN (31,0)3
DCL A FIXED BIN (31,0) STATIC: .
DCL.  (ULIMIT,L,LLIMIT) FIXED BIN STATIC:
‘DCL 1 A, .
2 NN CHAR(6),
2 ADDR1 FIXED BIN (31,0),
2 FILLER (4) FIXED BIN (15,0)3%
IA = 03
ULIMIT=SP; LLIMIT=1}
~ IF PARM=*XREF ' THEN DO; .
/7% THIS CODSE CREATES THE CRDERED PAIRS (LOCATION IN SYMBOL TABLE,
ADDRESS OF REFERENCE %/
NN=LABL 3
A.ADDRI1=PCA;
WRITE FILE- (SORTIN) FROM (A);
END3 4
SLOOP: IF (ULIMIT=LLIMIT) THEN DO3 N=ULIMIT;
IF LABL=NAM(ULIMIT) THEN GO TO DONE;
END3
N=(ULIMITHLLIMIT)/ 2
IF LABL=NAM(N) THEN GO TO DONE;
IF LABL<KNAM(N) THEN ULIMIT=N-1;

ELSE RETURN (IA);

ASM02110
ASM02120
ASM02130
ASM02140
ASM02150
ASM02160
ASM02170
ASM02180

_*/ASM02190
*/ASM02200

ASM02210
ASM02220
ASM02230
ASM02240
ASM02250
ASM02260

ASMQ02270

ASM02280
ASM02290
ASM02300
ASM02310
ASM02320
ASM02330
ASM02340
ASM02350
ASM02360
ASM02370
ASM02380
ASM02390
ASM02400
ASM02410
ASM02420
ASM02430
ASM02440
ASM02450

€T



ASM02460

{F PFLG THEN DO ID=1 TO 43

ASM02800

71

ELSE LLIMIT=N+1}

IF ULIMIT < LLIMIT THEN RETURN (1A)3 ASM02470

GO TO SLOOP; . ASM02480

OONE: TA=SYM.ADDR(N); ASM02490
RETURN(IA); ASM02500

END SEARCH; ASM02510

/% —— e */ASM02S520
% : ; 4 - */ASM02530
SEQ: PROC: /% NAME FIELD IS ALREADY SET UP %/ ~ ASM02540
/% INSERT SEQUENCE NUMBER AND PUNCH CARD %/ ASM02550

DCL 1B FIXED BIN STATIC: ASM02560
SEQ_NO=SEQ_NO + 13 i . ASM02570
KK=SEQ_NO/100+48; B(155)=CHR_CBL(KK); B(156)=CHR_CBR(KK); ASM02580
KK=MOD(SEQ_ND,100)/10+48} ' : -ASM02590
B(157)=CHR_ CBL(KK)' 'B(158)=CHR_CBR(KK) ; ASM02600

KK= MDD(SEO NO»10)+48; - ‘ ASM02610
B(159)=CHR_CBL(KK); B(160)=CHR_CBRI{KK) ; ASM02620

/% PUNCH CARD %/ - ASM02630
WRITE FILE(CB) FROM(B); ASM02640

DO IB=1 TO 160: B(IB)='00000000°*8; END; ASM02650

RETURN; . ' ASM02660

END; ASM02670°

Ix__ */ASM02680
/% _ : . - */ASM02690
PUNCH: PROC;: ASM02700
DCL ID FIXED BIN STATIC; ASM02710

IF FLG THEN DO; FLG='0'8; GO TO PUTADD; END; ASM02720

/7* SEQUENCE CARD AND PUNCH PUT NEW ADDR ON NEXT CARD */ " ASM02730
IF 0B_PTR >= 0B8_MAX THEN DO; ASM02740

CALL SEQ: OB_PTR=163 ASM02750
PUTADD: TEMP=0B; 0B=(24)°0'B; ASM02760
IF ~ENDFLG THEN ( ASM02770
SUBSTR(0OB+3,22)=SUBSTR(PNUM,11,22) 3 ASM02780

ELSE 0B=F IVFOR; ASM02790



BLANK1=086(1D) 3 B(12+10)=BLNK; . ASM 02810

END; _ ‘ ‘ o : ASM02820
ELSE DO ID=1 YO 8; : ASM02830
KK=0B83(1ID) +48; , ASM02840
B(ID%2-1)=CHR_CBL (KK) ; ' ASM02850
B(ID%2)=CHR_CBR(KK); END; ‘ : ASM02860
OB=TEMP; o ' : , ASM02870 :
END ; : o ASM02880 N
IF EFLG THEN GO TO ENDP; ASM02890
IF PFLG THEN DO 1ID=1 TO 4; ‘ - ASM02900
DB_PTR=08_PTR+1; ' ASM02910
BLNK1=0B6(ID);: B(OB_PTR)=BLNK; o ASM02920
END ; - . ‘ : ASM02930
ELSE DO ID=1 TO 8;: S » ASM02940
KK=0B3(1D)+48; : o : i " ASM02950
OB_PTR=0B_PTR+1; B(0B_PTR)=CHR_CBL{KK); _ ASM02960
0B8_PTR=0B_PTR+1; B(OB_PTR)=CHR_CBR(KK); END; ) ASM02970 .
ENDP: RETUPRN; ‘ , ASM02980 s
END ; , - : : : ASM02990
/% _ o */ASM03000
VA I - ___%/ASM03010
PASS2: PROC; - o - = ASM03020
7% SECOND PASS OF 910 ASSEMBLER ®/ : ASM03030
DCL INSTR BIT (24) STATICS . _ ASM03040
DCL INSTRO(8) BIY (3) DEF INSTR; ' » ASM03050
DCL (INDIRECT BIT (24) INIT(*000000000100000000000000'8), ASM03060
ZERO1S5 BIT(15) INIT(*000000000000000°'8), ASM03070
ZERQO24 BIT(24) INIT(*000000000000000000000000°8), ASM03080
BLANK. CHAR(1G) INIT (¢ ')) STATIC; - ASM03090
OCL (ADR FIXED BIN(31,0), BNUM BIT(32)) STATIC: “ASM03100
DCL ADR1 FIXED BIN(31,0)3 ' ASMO3110 .
DCL BNUM1 BIT (24) DEF BNUM POSITION(9) ; : ASM03120
DCL FWD BIT (24) STATIC INIT (*000000000000000110000000*B) ; ASM03130
DCL OVRF BIT(24) STATIC INIT(*100000000000000000000000°'8); ASM03140

DCL X BIT(24) INIT('010000000000000000000000'B)STATIC: ASM03150



DCL
DCL
DCL
oCL
DCL
DCL

DCL

(*RCB"*,

DCL

DCL

DCL

PC FIXED BIN (31,0) INIT(-1) STATIC;:
(CONST CHAR(6), OPCODE CHAR(3)) STATIC:
FACT FIXED BIN STATIC:
ADRONE BIT (24) STATIC INIT (*'000000000011111111111111°8);
DIGIT CHAR(10) STATIC INIT (*0123456789");
OPA{0:71) CHAR (3) STATIC INIY
(*LDA' s "STA® 4L DB*4*STB*, "LDX* ,*STX? ,*EAX® 4*ADD*, *MIN®,
YMDE?' . "SUB? ,*ETR' 4 *MRG' , "EOR® , *BRU', 'BRX", *BRM?®, 'BRR?*,
YSKGY s YSKM® 3 VSKA' g *SKN' 4 "PIN® s'POT® 5, *MIW® , *MIY*, " WIM',
TYIMYy *MUS ', 9DIS?, YEXU®, *RSH® s "RCY ', *LSH', *LCY*,*NOD"'
TEQM® 4 "SKS' s "NOP®  "HLT ' 3 *EIR® ,*DIR* , *IET*, * IDT*, YAIR",
TOVT' 4 *ROV' +* XAB® 4 *BAC® s *ABC®* 3 "CLR?* ,ALC®*,*DSC*+,°*TOP"*,
YASC's 'BRT*,"BET?,'SRC®,*CRT? ,*FCT*,*CFT*,*'0CT*,*8B00",
*DEC*, *EQU® +*BCD* ,*PAG"®, 'BSS' ,* AOR" , "PZE"* ,"OPD ", * POP*
) :
IOP(0:6) CHAR (3) STATIC INIT
TRCD* 4 'RKBY ,*TYP' ,*RPT*,*PPT*, 'PTL") ;
IOP2 (0:6) BIT (24) STATIC INIT
(*000000010000011000000110°'8, *000000010000010000000110°8B,
*000000010000010000000001°*8,*000000010000010000100001*8B,
*0C0000010000010000000100°8,°000000010000010000100100°B,
'0000000100000000001001oo'e
)3
0PB(0:30) BIT (9) STATIC INIT
('000111110'B,*000011101°* e.-000111101'8.-000011110 B
*000111001°'B,'000011111°8,°000111111'8,°000101101'8,
*00011.0001*8,'000110000°B,°'000101100°*8+°000001100°'8B,
*000001110°'8B,'000001111'8,'000000001°B,°000100001°'8,
*000100011°8,°000101001'B,*000111011°'8,°000111000°'8,
'"000111010'8,'000101011'8,'000011011'8,'000001011°'8,
* 000001010°'8,'000001000°8,°000011010'8,°*000011000°*83,
*000110100'8,°000110101°8,'000010011'8)3
OPB2(0:29) BIT (24) STATIC INIT
(*'000110110000000000000000°8, *000110110010000000000000°8,
*000110111000000000000000*B,'000110111010000000000000*8,

ASM03160
ASM03170
ASM03180
ASM03190
ASM03200
ASM03210
ASM03220
ASM03230
ASM03240
ASM03250
ASM03260

ASM03270

ASM03280
ASM03290

‘ASM03300

ASM03310
ASM03320
ASM03330
ASM03340
ASM03350
ASM03360
ASM03370
ASM03380
ASM03390
ASM03400
ASM03410
ASM03420
ASM03430
ASM03440
ASM03450
ASMO03460
ASM03470
ASM03480
ASM03490
ASM03500

91



*000110111001000000000000°B, *000000010000000000000000°8B, ASM03510

*0001C000000C000000000000*8, '000010000000000000000000°8, ASM03520

) *00000000000C000000000000°'B+*000000010010000000000010°*B., ASM03530
*00000001001C000000000100°B, '000100000010000000000100°8, ASM03540
*000100000013000000000010*B, *000000010010000000010000°B, ASM03550
'*00010000001C0C0000000001°'B,+*000000010010000000000001°.8, ASM03560
*000100110000000000000000°*8, *000100110001000000000000°*8, ASM03S70
100010011001C000000000000*8B,*'000100110011000000000000°8., ASM03580
*000000010101000000000000°*B, *000000010000000000000000°8, ASM03590
*000000010001100000000000°*B,°*000000010001010000000000°*8, ASM03600

. *000100000010001000000000°B+ *000100000010000000010000°8, ASM03610
*000000010001010000000110'8,*000100000001010000000110*8, ASM03620
*000100000010100000000110"8,°000100000001001000000110°*8B ASM03630

)3 ' , ASM03640

DCL (IC,IM,IP,JJ,N2) FIXED BIN; , ASM03650

DCL OPL({11) LABEL INIT : ASMO03660
(80C,BOUTA,DECM,EQUA,BCDT ,PAGES,RESV, AORG,0UTPUT,BOUT,BOUT) ; ASM0 3670

DCL VAL1 BIT(6) DEF BNUM POSITION (27); ASM03680

DCL CHARSET CHAR(€&4) STATIC INIT( ASM03690
‘0123456789 #1:>V+ABCDEFGHI?.) < -JKLMNOPQR $* 3 /STUVWXYZ ,( *); ASMO0O3700
DCL ERRTAB(20) CHAR(20) STATIC INIT _ ASM03710
(*#«*x[LLEGAL ORG ADD *,****xILLEGAL OCT NUM ', ASM0O3720

" xxxMISSING LABEL ', xxx[LLEGAL OPERAND *, : ASM03730
'xxx[LLEGAL INDIRECT *,*#%xILLEGAL INDEX ', ASM03740

"% &XxNUMBER TOO BIG ~ *,'%*%%xT00 MANY TEMP OPS®', ASM03750

'xx%[LLEGAL OP CODE *,"*%*[LLEGAL LABEL I ASM03760

(10) " %%x% ") . ASM0O3770

DCL ERRLINE (50) FIXED BIN (31,0)3 ASM03780
DCL 'BLANKSO CHAR(50) STATIC INIT : ASM03790

C* ' : ‘ ') " ASM03800

T /% ' e _%/ASMO03810
/¥ , ___%/ASM03820
ON CONVERSION GO TO CUTPUT; « ASM03830

_ON ENDFILE (PROG) GO TO FINI; v ASM03840

OPEN FILE (PROG) INPUTS : ASM03850

LT



/%

/% _
/% GET AN INSTRUCTION. *x/

LOOP: READ FILE (PROG) INTO (INST);

1C=D: ‘
NFLG='0"8B3;
INSTR=ZERO24; PC=PC+1}

Wi .
/% _ —— __ e _
/% IF THE STATEMENT IS A COMMENT, PRINT IT, x/

IF INDEX{(LAB,'#')=1. THEN GO TO COUTPT;
OPCDDE=SUBSTR(OPC+1+3)3
/% , . _ ——
/% .
/% IF IT*S AN 'END® STATEMENT, GENERATE THE APPROPRIATE OBJECT
CODE, PUNCH THE CODE, AND PRINT THE STATEMENT, ®/
IF DPCODE = *END' THEN DO3
0O8B_PTR=1443; .
ENDFLG="1'8;
IF OPER = BLANK THEN EFLG='1'B;}
'ELSE DO; ‘ ‘
ADR=SEARCH(OPER1,PC); IF ADR = 0 THEN DO} ERR=3; GO TO EOUT;
' - END3 '
BNUM=UNSPEC(ADR); INSTR=INSTR|BNUM1}
OB=INSTR; END; )
CALL PUNCH;
EQUT: CALL "SEQ; _ .
PUT SKIP EDIT (CARD) (X(25),A(80));
GO TO ERRCHK; :

. END;

/% . _ _—

I

*/ASM03860
*/ASM03870
ASM03880
ASM03890
ASM03900
ASM03910
ASM03920

ASM03930.

%x/ASM03940
2/ASM03950
- ASM03960
ASM03970
ASM0 3980
ASM03990
®/ASM04000
*/ASM04010
ASM04020
ASM04030
ASM04040
ASM04050
ASM04060
ASM04070
ASM04080
ASM04090
ASM04100
ASM04110
ASM04120
ASM04130
ASM04140
ASM041S0
ASM04160
ASMO04170
ASM04180

_%/ASM04190

*/ASM04200

81



/7%

/7 *
/x

BEGIN?

GENERATE THE OBJECT CODE FOR THE PARTICULAR INSTRUCTION.

00 TI=0 TO 71 WHILE (OPCODE -—~= OPA(I)): END;
IF I < 72 THEN GO TO BEGIN;
DO I=0 YO 6 WHILE (OPCODE == 1I0P(I)); END3J
IF T < 7 THEN GG 7TO ICHDLR;S
DD I=1 TO TMAX WHILE (TOPC —~= TOP(1)); END:

IF I>TMAX THEN D03 ERR=9; ADR=SEARCH(OPER1,PC);

END3 . INSTR=TCODE (1)
IF INSTR £ *001C0CC00000000000000000*B.
THEN GO TO OPATGl: ELSE GC TO OPTG:

*/

GO TO OourPuT;

/% PEES NOT CHECKED FOF INDEX OR INDIRECT BIT

IF I>37 &€ 1<=60 THEN DO; INSTR=0PB2(I-31);
IF OPER -~= BLANK THEN GO TO OPATG1;.
GO TO OUTPUT: END3; ‘
IF I > 60 THEN GO TO OPL(I-60):
N=INDEX(OPER,* *};

IF N-~=0 THEN IF SUBSTR(OPER,N)-~=* ' THEN DO:;
"ERR=43 GO TO OUTPUT: . END; ' /% ERRO4 %/
IF '1<=30 -THEN GO TO OPATAG; :

INSTR=0PB2(I-31);

IF SUBSTR{OPC,&4)="%" THEN Dd: ERR=S; GO TO OUTPUT: END: /*EO0S%/

IC=INDEX(OPER,'4%);

IF OPERA(1)<'0*' THEN DO: ERR=43 GO TO OUTPUT;
IF 1=36 | 1=37 THEN

IF IC ~= 0 THEN GC .TC ERRT;

ELSE DO; ADR =0CCN(OPER): GO TO BINSTS END3
IF IC-~=0 THEN IF CPERA(IC+1)=12"

x/

‘END §

/*¥EQ4%/

-THEN DO3; INSTR=INSTR|X; DUMMY=SUBSTR(OPER,1,sIC~1)3

ADR=DUMMY; END;
ELSE GO TO ERRT;
ELSE ADR=0PER;

ASM04210
ASM04220
ASM04230
ASM04240
ASM04250

ASM04260
ASM04270 °
ASM04280

ASM04290
ASM04300

ASM04310 .
x/ASM04320
*/ASM04330

ASM04340

ASM04350. °

ASM04360
ASM04370
ASM04380
ASM04390
ASM04400
ASM04410
ASM04420
ASM04430
ASM04440
ASM04450
ASM04460
ASM04470
ASM04480
ASM04490
ASM04S00
ASM04510
ASM04520
ASM04530
ASM04540
ASM04550

61



IF ADR>63 THEN DO ERR=7; GO TO OUTPUT; END3; /¥E07%/
GO YO BINST;
ERRT: ERR=6; GO TO OUTPUT;

/%
OPATAG: INSTR=0PB(I)||ZERO15;" -
09TG: IF SUBSTR(OPC,4)='%' THEN INSTR=INSTR|INDIRECT;
ICsM=INDEX(OPER,"*,%):
1F M==0 THEN
IF OPERAIM+1)='2' THEN INSTR=INSTR]| X:
ELSE IF OPERA(M+1)='4°" THEN INSTR=INSTR|OVRF;
ELSE DO ERR=6; GO TO OUTPUT: END;

OPATG1: IF OPERA(1)='%* THEN DO;
- M=INDEX(OPER.* *); :
IF M=2 THEN DO; ADR=PC; GO TO BINST; END3
IF IC=0 YTHEN ADCON=SUBSTR{OPER,3,M-3);
ELSE ADCON=SUBSTR(OPER, 3,1C-3)3
ADR=0OCON(ADCON); ’
IF OPERA(2)='-' THEN ADR=PC-ADR; _
ELSE IF DPERA(2)='+4+* THEN ADR=PC+ADR;
_ ELSE DD: ERR=4; GO TO OUTPUT; END: /* EQ4 */
GO TO BINST; '

END;
se___ _ .
/% .
7% IF THE OPERAND CONTAINS AN IDENTIFIER, FIND ITS ADDRESS OF
DECLARATICN, %/

IF OPERA(1) >=%A* £ OPERA(1) < *"0°' THEN DO3
M=1IC3
IP=INDEX(OPER,* +*);
IM=INDE X(OPER,s*—-*)3;
IF IP~=0 THEN M=1P;
IF IM=0 THEN M=1IM;

ASM04560
ASM04570

. ASM04580
_%/ASM04590
*/ASM04600

ASM04610
ASM04620
ASM046€630
ASM04640
ASM04650

ASM04660

ASM04670
ASM04680
ASM04690
ASM0AT700
ASMO04710
ASM04720
ASM04730
ASM04740
ASM04750
ASM04760
ASM04770
ASM04780
ASMQ04790

¥/ ASM04800
*/ASM04810

ASM 04820
ASM04830
ASM04840
ASM04850
ASM04860
ASM04870
ASM04880
ASM04890
ASM04900

0¢



IF M=0 THEN M=73 ASM04910
CONST=SUBSTR(OPER,1sM-1); ASM04920
ADR=SEARCH (CONST,PC); IF ADR=0 THEN DO; ERR=3; GO TO QUTPUT; ASM04930

END: ASM04940

IF IP=0 & IM=0 THEN GO TO BINST: ASM04950

IF 1C=0 THEN IC=INDEX(OPER,* *); ASM04960

IF IC=0 THEN IC=26; ASM04970
IC=IC-(M+1)3 "ASM04980

IF IC <=0 THEN DO; ERR=4; GO TO OUTPUT; END; /% ERRO4 */ ASM04990

IF VERIFY(SUBSTR(OPER,M+1,1IC).DIGIT)~=0 THEN DO; ASM0S000

ERR=11; GO TO OQUTPUT; END; /% ERRI11 %/ ASM05010
ADCON=SUBSTR(OPER,M+1, IC); ADR1=0CON(ADCON) 3} ASM05020

IF IP=0 THEN ADR=ADR-ADR1; ELSE ADR=ADR+ADR13; ASMO05030

GO TO BINST; _ _ ASM05040

END; ~ : L . ASM05050
IR . : : __ */ASMOS5060
/% __%*/ASM0S070
IF (OPERA(1) >= '0' & OPERA(1)<='9') | OPERA(1)='-' THEN DO; ASM05080

IF OPERA(1)=*-* THEN [=2; ELSE I=13 ASM0S090

M=1IC3 ASMO0S100

IF M=0 THEN M=INDEX(QOPER,' %) ASM(05110
1€ VERIFY (SUBSTR(OPER+I+M-1),DIGIT)~=0 THEN DO} ASM0S120

ERR=43; GO TO OQUTPUT: END; /* ERRO4 */ ASMOS5130
ADCON=SUBSTR(OPER s M-1)3 ASM0S5140
ADR=0CON(ADCON); ASM0S150
IF I=2 THEN ADR=-ADR; ASMO05160
GO TO BINST; ASMO0S5170

END o  ASM05180

ERR=4; GO TGO OUTPUT; /% ERRO4 %/ ASM05190
/% : _ - L _*/ASM0S5200
.<___ oo */ASM05210
TOHDLR: M=INDEX (OPERs®,')} ‘ ASM05220
INSTR=I0P2(1); ASM05230
IF OPERA(M+1)=%4% THEN INSTR=INSTR|FwD; ASM05240

GO TO OUTPUT; ASM05250

1¢



-~

7% _ L %*/ASM05260
/% L o */ASM05270
BOC: ADR=OCCN(OPER); IF ADR=-1 THEN GO TO OUTPUT: ASM05280
BOC1: BNUM=UNSPEC(ADR); ASM05290
INSTR=INSTR|BNUMI ; ASM05300

GO TO OUTPUT; ASM0S310

DECM: M=INDEX(OPER,*' ')3 ' ASM05320
IF VERIFY (SUBSTR(OPER.1¢M—1)'DIGIT)ﬂ=0 THEN DO; ASM05330
ERR=4; GO TO OUTPUT; END: /% ERRO4 *x/ ASM05340

ADR= SUBSTR(OPER,I-M 1) ASM05350

GO TO BOC1; ASMO05360

EQUA: ADR=SEARCH(LAB,PC); IF ADR=0 THEN DO; ERR=3; GO TO OUTPUT; END: ASMO0S5370
GO TO BOUT; ‘ ' ASM05380
PAGES: PUT PAGE; PC=PC~13 GO TO LOOP; ASM05390
7% - ' _ _ _*/ASM05400
/% - */ASM0S5410
BCOT: JJu=23% ASM05420
B8CDY2: DO I=0 TO 3; o ASM05430
ADR=INDEX(CHARSET,OPERA(I+JJ+1)): ASM05440
BNUM=UNSPEC(ACR-1)3 ASMO05450
SUBSTR(INSTR.I*6+1,6)‘VAL1. ASM05460

END; ASM05470

PNUM= UNSPEC(PC). ’ ASM05480

IF JJ>2 THEN CARD=BLANKSO; - ASM05490

PUT SKIP EDIT(PC1l, INSTRO,CARD) ASM05500

(5 F(1)eX(S5)e8 F(1)+4X(7),A(80)) ASM05510.
OB=INSTR; CALL PUNCH; ASM05520

IF JJ=2 €& OPERA(1)>'4* THEN DQ; JJ=63; PC=PC+1; ASM0S5530

GO TO BCDT2; END; ASM05540

GO TO LOOP; : ASM0S5550

/% _ ‘ L ___*/ASM05560
7 % _*/ASMOS5570
RESV: M=INDEX(OPER,? v); ASM05580
IF VERIFY (SUBSTR({OPER,1,M-1),DIGIT)~=0 THEN DO} ASM05590

ERR=4; GO TO OQUTPUTS END; /7% ERRO4 */

ASM05600

44



ADR=SUBSTR(OPER,1 4M-1); ’ : ASM05610

NFLG=*1'83 . : ASM05620
[F PFLG THEN FACT=43 ELSE FACT=163 ‘ASM0S5630

IF ADR¥FACT+08_PTR < OB_MAX THEN OB_PTR=08_PTR+ADR%*FACT; . ASMO05640

: ELSE DB_PTR=144; ASM0S5650

GO YO BINST; ' ASM05660
I _ e ' e %/ ASM0S5670
/% : B ' */ASM05680
BOUT:, PC=PC-1; NFLG='1'8; : ASM05690
PUT SKIP EDIT (CARD) (COL(26),A(80)); ASM0S700

GO TO ERRCHK; _ : ASM0S5710
BOUTA: PC=PC—-1; NFLG='1°8B; : ‘ ASM0OS720
ADR=0OCON(OPER); IF ADR=-1 THEN GO TO OUTPUT; ASM0OS5730
BNUM=UNSPEC (ADR) ; A , l . ASM0S740
INSTR=INSTR|BNUM1; ' ASMO0S750

PUT SKIP EDIT (INSTRO, CARD) ASM0S760
(X€10), B8 F{1)+X(7),AL80)): ASMO05770

GO TO ERRCHK; , ASM0S5780

/% . L _ ___%®¥/ASMO05790
/% . - ‘ __®/ASM0S800
AORG: ADR=0OCON(OPER): IF ADR=-1 THEN GO TO OUTPUT: PC=0; - . ASM05810
IF ~FLG THEN OB_PTR=1443% - 4 . ASMO0S820
NFLG=*1'B3; B _ ASM05830
BINST: BNUM=UNSPEC(ADR);: ASM0S840
" INSTR=INSTR | (BNUM1 & ADRGNE); ASM05850
QUTPUT: PNUM=UNSPEC(PC); ASM05860
/% IR */ASM0S870
/x__ - &®/ASM05880
/% PRINY THE INSTYRUCTION,. %/ _ . ASM05890
. . : . ASM05900
PUT SKIP EDIT(PC1,INSTRO,CARD) ASM05910

(S FU1)+X(5)+8 FL1)aX(T7)sA(B0)); ’ ASM05920

IF 1=67 THEN PC=PC+ADR-1: . ASM05930

IF 1=68 YHEN PC=ADR-1; : ASM0S940

IF NFLG THEN GO TO ERRCHK; ASM0S5950

£¢



(COL(10)+AC10),F(4)sX(2),A(22))3

rx__ _ L _*/ASM05960
Ve, : _ */ASM05970
/% PUNCH THE INSTRUCTICN®'S OBJECT CODE. x/ ASM05980
ASM05990

OB=INSTR; CALL PUNCH; ASM06000
ERRCHK: IF ERR=0 THEN GO TO LOOP: ASM06010
7% e _ */ASM06020
7% _ , : o */ASM06030
7% PRINT ANY ERRORS IN THE INSTRUCTION. x/ ASM06040
_ ASM06050

PUT SKIP(2) EDIT (ERRTAB(ERR))(A(20)); ASM06060
ERRCTR=ERRCTR+1 ; .ASM06070

ERRL INE (ERRCTR) =PC+ADR; ASM06080

GO TO LOOP; _ ASM06090

/% 2 */ASM06100
/% ,- e ____®/ASM06110
COUTPT: PUT SKIP EDIT (CARD) (X(25),A(80)); ASM06120
PC=PC-1; ASM06130

GO TO LOOP; ASM06140

/E__ L */ASM06150
/% A L */ASM06160
FINI: CLOSE FILE {PROG); ASM06170
IF ~ENDFLG THEN DO3 ASM06180
0OB_PTR=144; ENDFLG='1'8; EFLG='1'8; ASM06190

CALL PUNCH;: CALL SEQ; ASM06200

PUT SKIP EDIT(*'#*%%xEND STATEMENT MISSING, END GENERATED®) ASM06210

END3; ASM06220

PUT SKIP EDIT (*DONE') (A): ASM06230

7% : _ e */ASM06240
/% » _ . . */ASM06250
/% PRINT THE NUMBER OF ERRORS AND WHERE EACH DOCCURRED. x/ ' ASM06260
, : ASM06270

PUT SKIP (&) EDIT : . ASM06280

(* THERE ARE *,ERRCTR,*ERRORS IN THIS LISTING®) ASM06290

ASM06300

%7t



/%

DO -I=1 YO ERRCTR
PNUM=UNSPEC(ERRLINE(I))]

‘PUT SKIP EDIT('ADDRESS®,PC1) (CGL(IO)oA(?)'X(Z)-S F(l)). END;

END PASS2;
CLOSE ILE(SORTIN) S

/x

- /%

IF A CROSS—REFERENCE TABLE IS DESXRED. PUT THE SYMBOL TABLE
ON FILE (SYMX). X/

- IF PARM='XREF?' THEN DO I=1 TO SP;

XTEMP=SYM(I); :
WRITE FILE (SYMX) FROM (XTEMP) -
END )
END ASM;

ASM06310
ASM06320
ASM06330
ASM0634C
ASM06350

__%/ASM06360

*/ASMO06370
ASM06380
ASM06390
ASM06400
ASM06410
ASM06420
ASM06430
ASM06440
ASM06450

5z



26

Variable Dictionary for ASM

A - a structure used to create the file SORTIN. A contains
the name of an identifier and an address of
reference for it. Element NN contains the name of the
identifier, ADDRl contains the address of reference, and
FILLER is unused space necessary to make A 18 bytes long,
which is the minimum record length for IHESRTA.

ADCON - contains an address constant glven in the operand field
of an instruction.

ADDR - see SYM.

ADDR1 - see A,

ADR - an address used in generating éhe object code.

ADRll- the fixed binary equivalent of ADCON,

ADRONE - the bit string constant ('000000000011111111111111'B).

AND - the ten character operand field of an instruction.

B ~ array of 160 8-bit strings representing the object code to
be punched on cards. :

BLANK - string of 10 blanks.
BLANK50 - string of 50 blanks.

BLNK - string of 8 bits which contains column-binary code to be -
transferred to an element in B (one of B(12) through B(19)).

BLNK1 - the last 6 bits of BLNK.

BNUM - 32-bit string which contains the bit-string representation
of the address of declaration of an identifier.

BNUML - the last 24 bits of BNUM.
BNUMB - the first character of the operand of an instruction.

CARD - see INST.

CARDI - the 10 character string containing the number to be converted

to octal by OCON.

CB - the output file which receives the generated object code.



27

CHA - the formal parameter (character string) for OCON.

CHARSET - the array of characters allowed by the SDS-910 assembler
language.

CHR CBL - an array of 64 8-bit strings representing the allowed
~  characters. The first two bits of each element are 0, and
the last 6 are the first half of the Hollerith representation
of the character.

CHR _CBR - an array of 64 8-bit strings representlng the allowed characters.
The first two bits of each element are 0, and the last 6 are the last

half of the Hollerith representation of the character.

CODE - array of nine labels, each referring to a section of code
to handle the occurrence of a macro corresponding to the
label name. NUN, CODE (9), corresponds to the absence or
completion of a macro.

COM - the first character of an instruction.

CONST - the name of an identifier in the operand of an instruction.

DIGIT - the character string '0123456789'.

DUMMY ~ the part of an operand preceding a comma.

EFLG - a bit that is set to 'l' when the operand of an END
statement 'is blank,

ENDFLG - a bit that is set to 'l' when the END statement is encountered.

ERR - see INST.

ERRCRT - a counter of the numbet of errors in the assembler language
program. :

ERRLINE - an array containing the addresses of statements in which
errors occurred.

ERRTAB ~ an array containing diagnostic messages for errors.

FACT - a multiplier for determining values of OB _PTR, 4 when using
column-binary code and 16 when using Hollerith object code.

FILLER - see A.

FIVFOR - the bit string '101100101100101100101100’ which is used to
indicate the end of a program ‘



28

FLG - a bit that is '1' uﬁtil\PUNCH is called, then is reset to '0’.
FWD - the bit string '000000000000000110000000'. |

I - a counter for DO statements and other loops.

IA - the address of declaration of an identifier found in SEARCH.
IADR - the decimal equivalent to thé octal argument of OCON.

IB - countér used to reinitialize B to '000...0'.

IC - the position of the first comma (or blank) in the operand
field of an instruction.

ID - a counter for DO statements.

II - the position of the first element in a sublist of the
symbol table.

1J - indicates the midpoint position in a list to be sorted.

IL - an array of size 11 containing the positions of the first
elements of sublists to be sorted.

IM - the position of the first '-' in the operand field of an
’ instruction. ' )

INDIRECT - the bit string '000000000100000000000000'.

INST - a structure COntaiﬁiﬁg CARD, an 80 character instruction
from the program to be assembled; and ERR, -which contains an
integer indicating the type of error that occurred in the
statement (0, if no error). '

INSTR - the object code translation of an instruction.

INSTRO - array of the 8 3-bit segments of INSTR.

IOP - array of 7 3-character input-output operators.

I0P2 - array of the 7 object code bit strings corresponding to
the elements of IOP. ‘

IP - the position of the first '+' in the operand field of an
instruction.



29

IU ~ an array of size 11 containing the positions of the last
elements of sublists to be sorted.

J - the position of the last element in a sublist of the symbol
table.

JJ - an integer used to create code for the macro BCD,

K - an indicator of the position of an element in the symbol
table as it is sorted.

KK - indicates which element of the Hollerith representation of
the character set is to be put in a column of a card.

L - an indicator of the position of an element in the symbol
table as it is sorted. ‘

LL - counter for a DO statement.
LAB - the label field of an instruction (firstisix characters).

LABL - a formal parameter of SEARCH, the identifier whose address
of declaration is being sought. '

LLIMIT - -the lower bound of the area of the symbol table being
searched for an identifier.

LOC - the first six characters of an instruction.

M - the position of the first blank (or comma) in a specified field
~of an instruction.

MM - indicates which sublist of the symbol table is currently being
created or sorted.

N - the position of an element of the symbol table being compared
to the argument of SEARCH. ‘

N1 - the value of an octal digit in the operand field of an instruction.

N2 - the position of the first blank in the operand field of an
instruction.

NAM - see SYM.

NFLG - a bit that is 'l' if the current instruction (involving a
macro) is to be punched on the object deck.



30

NN - see A,

OB - stores the address and instruction to be punched on the
object deck.

OB3. - array of the 8 3-bit segments of OB.
0B6 - array of the 4 6-bit segments of OB.

OB _MAX - 144, the first position of B that cannot contain information
from OB. ' ‘

"OB_PTIR - indicates the element of B that the current object code is
to be stored in.

ONUM - the 32-bit string of code for a temporary operator.
ONUM1 - the last 24 bits of ONUM.
OP - the first four characters of the operator of an instruction.

OPA - a.72 element array of the first three 1etters of the
possible operators

OPB - an array of the 9-bit object codes corresponding to the first
31 elements of. OPA.

~OPB2 - an array of the 24- b1t object codes corresponding to elements
32 through 61 of OPA.

OPC - the f;rst four characteré of the oéerator of an iﬁstruction.

OPC1 -‘arraonf fhe 8 4-~character macro operators.

OPCODE - the first three characters of the operator ot an instruction.
OPER - the.first ten:chargéters of thg oﬁerand field of an instruction.
OPER1 - the first si# charaéters of the operand fiei& of an instruction.
OPERA - an afray of the first ten characters of ;he operand field.

OPL - an array of 11 labels used to d1ctate branching when certain
operators are encountered.

OPR - an array of the ten characters of CARDI.

OVRF - the bit string '100000000000000000000000'.



31

PARM - the first five characters of the first card of the assembly-

language deck. If PARM='XREF ' a cross-reference listing will
be printed. ‘ -

PC - a counter which gives the address of the current instruction.
PCl - an array of the last five 3-bit segments of PNUM.

PCA - a formal parameter of SEARCH which is an address of reference
for the identifier whose address of declaration is being sought.

PCB - a counter from which the addresses of declaration for the symbol
table are taken. '

PFLG - a bit that is 'l' if the object code is to be in column-binary
form and '0' if the object code is to be in Hollerith form.

-PNAME - the name of the assembler language program.

PNUM - the 32-bit string representation of the address of the
' current instruction.

PROG - an external file on which the instructions are written
during the first pass of the assembler and from which they are
read during the second pass.

'SEQ_NO ~ a counter used for putting sequence numbers on the punched

object deck.

SORTIN - an external file which contains the list of identifiers
and all their addresses of ‘reference; it is used when a
cross-reference listing is requested.

SP - a counter for the number of declarations of 1dent1f1ers
encountered

SW - a bit that is 'l' if a new identifier is being added to the
symbol table and '0' otherwise. e

SW1 - a bit that is 'l' if comparisons against the top element of
a list are necessary during a particular phase of sorting.

SYM - an array of 400 structures which contains the symbol table
of the program. NAM cofritains the name of an identifier and
ADDR contains the address of declaration of the identifier.

SYMX - an external file that passes the symbol table to the program

that generates a cross-reference 1ist1ng



32

T - a structure used as tempérary storage for an element of the
symbol table while it is being sorted into alphabetical order.
IN contains the name of the identifier, and TA contains its
address of declaration.

TA - see T.
TCODE - see TOPER.

TEMP - a 24-bit string that temporarily stores an object code
instruction while its address is being put into array B.

TMAX - see TOPER.

TMP -~ the octal equivalent of the address in an AORG statement,
. It is used to update the location counter.

TN - see T.

TOP - see TOPER.

TOPC - contains the name of a temporary or illegal operator.

TOPER - a structure which contains information about temporary
operators. TCODE is an array of 30 24-bit strings which
represent the object code for the temporary operators.
TMAX 1s the number of -temporary operators in the program.
TOP is an array of the names assigned to the temporary
operators. '

TT - a structure used as temporary storage for an element of the
symbol table while it is being sorted ‘into alphabetical order.
TTN contains the name of an identifier, and TTA contains its
address of declaration..

TTA - see TT.

TIN - see TT. - 4 oo

ULIMIT - the ﬁpper bound on the area of the symbol table being
searched for an element during SEARCH.

VALl - the last six bits of BNUM.
X - the bit string '0100000000000000000000000" .
XADDR - sec XTEMP. '

XNAM - see XTEMP.



33

XTEMP - a structure used to transfer the symbol table into the
file SYMX. XNAM contains the name of.an identifier and
XADDR contains its address of declaration.

ZERO15 - the bit-string '000000000000000'.

ZERQ24 -.the bit-string '000000000000000000000000'.



34

Method of Solution for XREF

IHESRTA, the PL/I interface to IBM'S sort-merge program is
used to put the ordered pairs of identifier names and addresses of
reference into alphabe;icél order according to the identifier names.
Entries with the'same‘identifier namé are ordered numerically
according to the addresé of reference. The external file SORTIN,
which is constructed in ASM is used as input to IHESRTA.

The symbol Eable is also constructed in ASM and is transferred
to XREF by the external file SYMX. Each élement of the symbol table
is printed along with its address of declaration. The identifier
name is‘compared with the name field of the address of reference
ordered pairs ahd the addressés of reference paired witﬁ,an

identifier name are then printed along with it,



35

(START)
!

SORT THE LIST
OF IDENTIFIERS
AND CORRESPONDING
ADDRESSES OF
REFERENCE

l

PRINT THE ADDRESS
OF DECLARATION, NAME,

AND ADDRESSES OF
REFERENCE FOR EACH
~ IDENTIFIER

FLOWCHART FOR XREF THE SDS-9I0
CROSS-REFERENCE LISTING PROGRAM




Sou

rce Listingﬁfof XREF

XR
/ %

/%
/*
/¥

/%
/%
/%

EF: PROC OPTICNS (MAIN);
SORYS ODORDERED PAIRS SO THEY CAN BE LISTED. */
DCL 1 SYM,
2 NAM CHAR{6),
. 2 ADDR FIXED BIN}
DCL FNUM BIT (32) STATIC;
DCL PC1(5) BIT(3) DEF PNUM POS(2);
DCL PNUM1 BIT (32) STATIC;
DCL PC2(S) BIT(3) DEF PNUM! POSITION(18):
DCL THESRTA ENTRY(CHAR(33),CHAR(27)+FIXED BIN (3140},
FIXED BIN (31,0)), RETURN_CODE FIXED BIN(31,0);
DCL 1 A, ' : -
2 NN CHAR(6), :
2 ADDR1 FIXED BIN (31,0),
2 FILLER (4) theo BIN (15,0);
DCL K FIXED BIN;
DCL J BIT(1) INIT(*0°'8B);
ON ENDFILE (SYMX) GO TO ENDSORT;

SORT THE LIST OF IDENTIFIERS AND CORRESPONDING ADDRESSES OF
REFERENCE.' */

CALL IHESRTA(' SORT FIELDS=(1:,6+sCHsAs7+4.,FL,A) *,
* RECORD TYPE=F,LENGTH=(18) 's 4000+,RETURN_CODE) ;
IF RETURN_CODE=16 THEN DC;
PUT SKIP EDIT (°*SORT FAILED') (A)3
GO 7O ENDSORT; END;
ON ENDFILE (SORTOUT) GO TO TESTI;
PUT PAGE EDIT(*'CROSS REFERENCE LISTING') (A);

PRINT THE ADDRESS OF DECLARATION, NAME, AND ADDRESSES OF
REFERENCE FOR EACH IDENTIFIER. */

XREF 0010

XREF0020
XREF 0030
XREF0040
XREF0050
XREF0060
XREF0070
XREF 0080
XREF0090
XREF0100
XREFO110
XREF0120
XREF 0130
XREF0140
XREF 0150
XREF0160
XREF0170
XREF 0180

*/XREF0190
_%/XREF0200

XREFO0210
XREF0220
XREF 0230
XREF0240

" XREF0250

XREF 0260
XREF0270
XREF0280
XREF 0290
XREF0300

_%/XREF0310
_*/XREF0320

XREF0330
XREF0340
XREF0350

9¢



READ FILE (SYMX) INTO (SYM):
LOOP: READ FILE (SORTOUT) INTO (A)3
PNUM1=UNSPEC(A.ADDR1); ~
LOOPER: PNUM=UNSPEC(SYM.ADOR);
DO WHILE (NN>SYM,NAM);
IF ~J THEN
PUT SKIP(2) EDIT (PC1,SYM.NAM)
(S F(1)sX(3)4A(6)+sX(4))3
J=*0'8B}
READ FILE (SYMX) INTO (SYM);
PNUM=UNSPEC(SYM,ADOR);
END; :
PNUM=UNSPEC(SYM.ADCR) ;
IF NN=SYM.NAM THEN DO;
IF ~J THEN DO} -
/% PRINT NAME FIRST */

PUT SKIP(2) EDIT(PC1+SYMcNAM,PC2) (S F(1)sX(3)+A(6)eX(4)+5 F(1))3

K=13%
J='1'8; GO TO LOOP;: END;
K=K+13
IF MGD(K,17)=1 THEN DC;
PUT EDIT (*',%) (A(C1)); _
PUT SKIP EDIT (PC2) (COLUMN(19),S F(1))3
GO TO LOOP; ‘ :
END . .
PUT EDIT(*,',PC2) {A(1),5 F(1))3 GO TO LOOP; END;
7% IGNORE RECORD, SYNTAX ERROR RECORD #/
GO TO LOOP;: .
7%

/7 %

TESTI @ .
DO WHILE (*1'8B);
READ FILE (SYMX) INTO (SYM);
PNUM=UNSPEC(SYM.ADDR) ; :
PUT SKIP(2) EDIT(PC1,SYM.NAM) (5 F(1).X(3).,A(6))3

XREFO0360

XREF0370
XREF 0380
XREF0390
XREF 0400
XREF0410
XREF 0420
XREF0430
XREF0440
XREF0450
XREF0460
XREF0470
XREF 0480
XREF0490
XREF0S500
XREF0S510
XREF0520
XREF 0530
XREF0540
XREF 0550
XREF 0560
XREFQS70
XREF 0580
XREF 0590
XREF0600
XREF 0610
XREF0620
XREF0630

*x/XREF 0640
*/XREF0650

XREF 0660
XREF0670
XREF0680

XREF 0690

XREFO700

Le



END3
ENDSORT: END

XREF 3

XREFO710
XREFOQ720

8¢



i«

39

Yariable Dictionary for XREF

A - a structure that receives elements from the sorted list of
identifiers and their addresses of reference. NN contains the
name of the identifier, ADDRl contains an address of reference,
and FILLER is unused space necessary to make A 18 bytes long
which corresponds to the length of records in the file SORTOUT.

ADDR - see SYM.

" ADDR1 - see A.

FILLER - see A,

. J - a bit that is 'l' if the identifier's name has already been

printed and is '0' otherwise.

K - a counter that determines when a printed line is filled
(17 addresses).

NAM - see SYM,
NN - see A.

PCl - an array of the five digits of-the address of declaratlon
of an identifier.

PC2 - an array of the five dlgits of an address of reference of
an 1dent1f1er

PNUM - a 32-bit string containing the address of declaration of
an 1dent1f1er

RETURN_CODE - an actual parameter returned by IHESRTA, the built-in
PL/I interface with IBM's sort-merge program. RETURN_CODE=0
if the sort worked and 16 if the sort. failed.

SORTOUT - the alphabetically and numerically sorted list of identifiers’
and their corresponding addresses of reference whlch is generated
by IHESRTA. SORTOUT is an external file.

SYM - a structure that contains an entry.of the symbol table. NAM
contains the name of an identifier and ADDR contains its address

of declaration. : : . ’

SYMX - an external file used to pass the symbol table from ASM to XREF,



40

Appendix A

Usage

Accessing the cross-assembler'refergnce'generating package
reduirés only three control cards. - If the uée of the reference
generating routine is not desired, the JOB card must be followed
by these two JCL cards: |

//$1 EXEC SDSASM
//ASM,SYSIN DD *

and the next card must contain a blank in the first column if

Hollefith format punched object code is desired, or any character

in the first column if column-binary format pdnchéd object code

is desired. - Columns six through eighty afe reserved for the

program's name. This éard is followed by thé»program to be assembled.
The control cards necéssary if the use of the referénce generating

routine is desired are similar. Following the JOB card must be:

//S1 EXEC SDSXREF
//ASM.SYSIN DD * .-

and the next card must contain XREF in the first four columns. Again,

columns six through eighty of.this card are reserved for the program's

" name. The assembler language program is placed after this card.

The first part of the output of this package is a list of
muitip1§ defiﬁed labels (if ahy). . This is.immediatély followea by
the listing of the source pfogram. 'Eachlline of this listing contains
the address of the instrucﬁion, the octal object code for the

instruction, and the assembler language source instruction itself.



41

Error messages appear under the instruction in which the assembler

de;eqted the error(s). These are mafked‘by tﬂree astérisksJ The
source listing of the program is followed by a-étatement of the
number of errors in the program and a list of the addresses at which
these errors occufredﬁ

If'the cross-reference listing is réquestedz the next page will
cohtéin meséages~genérated by IHESRTA. F@r more information see

pp. 189-205 of the IBM System/360 Operating System PL/I (F)

Programmer's Guide. These messages are followed by a blank page

and the cross-reference listing itself. Each entry first contains

the address of declaration of the identifier, followed by the
idgntifiers name, and then a lisﬁ of.the addresses at which the

identifier is referenced.



Sample Results

exXMULTIPLY DEFINED LABEL

00000 00000000
00001 00000002

c0002 00000000

%% [LLEGAL OCT NUM
00003 07600000

***MISS[NG LABEL

00004 041005000
00000 00005450

. 05450 01300000

*%*MISSING LABEL

05451 07500001
05452 01400002
05453 00232301

05454 . 00000000

x*%x% JLLEGAL 0P CODE’

05455 04305456
05456 20347001

DONE

THERE ARE
ADDRESS
ADDRESS
ADDRESS
ADDRESS

4

- 00001 -

00003
05450
05454

z
* . L -
* THIS RCUTINE ILLUSTRATES. THE USE OF THE SDS 910 ASSEMBLER.
XX ocr 0
Y ocyY "2
z ocT A
LDA XX
 BRX *—4
AORG 5450
‘POT ccc
_LDB. Y
ETR y4
z EOM 32301
XYZ Y+2
BRM SYS -
<YS . DCT 20347001
END

ERRORS. IN THIS LISTING |

(44



CROSS REFERENCE LISTING

05456
00000
00001

'Qoqoz

05453

SYS

XX

Y

05455

00003

05451

05452

£y



44

Appendix B

Extension to another Assembly Language

With certain ch;nges,'this package could be used to assemble
pfograms written in other assembiy languages. In the main procedure
ASM it would be necessary to change the definitions of some variables
to reflect the ‘assembly 1anguage'$ format fbr the cards containing
the source program. The lengths'of the va;iables that contain .all or
part of the object code would also have to be changed to correspond
" to the word length of the particuiar computer. In addition, the list
of.macro-instfuctions,‘along with the section of code which performs
the modifications commanded by them, woul& have to be altered.

In the intérnal subprocedure PASS2, tﬁe'list of acceptable
operators and the objéctchde representations for them would h;ve
to be changed to fit the.set of operators in the assembly language.
Finally, the bit string constants which are used in the generation
of the object code would also have to be éltered,

.The proce&ure XREF requires no changes to function fof'a¢

different assembly language.





