

A Progress Report for Research on

EXPERIMENTS IN HIGH VOLTAGE ELECTRON MICROSCOPY

for the period October 31, 1976 to August 1977

Conducted in

The Department of Metallurgy and Materials Science

Case Western Reserve University

Cleveland, Ohio 44106

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

in co-operation with

The United States Energy Research and Development Administration

Contract No. E(11-1)-2119

T. E. Mitchell, L. W. Hobbs, D.G. Howitt, R. Barnard and H. Ro.

July, 1977

EB

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Abstract

High voltage electron microscopy (HVEM) is being used to study the effects of irradiation on a variety of materials. The vacancies and interstitials produced by displacement can aggregate to form dislocation loops and voids, annihilate at sinks, or enhance various diffusion processes such as precipitation and recrystallization. Threshold displacement energies, E_d , have been determined for a number of fcc, bcc and hcp metals and for various oxides. In MgO, E_d is less along $\langle 100 \rangle$ than $\langle 110 \rangle$; also, E_d decreases with increasing temperature, possibly due to thermally activated escape of interstitials from recombination volumes or softening of saddle points. The effects of electron irradiation on precipitation in Al-Cu, Al-Si and Ni-Al alloys have been investigated. Precipitation respectively of θ' , Si and γ' is enhanced and growth rates are explicable in terms of theories of radiation-enhanced diffusion, with $D_{rad} \sim 10^{-15} \text{ cm}^2 \text{ sec}^{-1}$. In oxides, damage gives rise to interstitial dislocation loop nucleation and growth in all cases, perfect $\{110\}$ loops in MgO faulted basal and prismatic loops in Al_2O_3 . Quantitative analysis of loop growth rates in MgO gives a migration energy of 3.3 eV for anion vacancies. Other radiation effects include sublimation of MgO and decomposition of MgAl_2O_4 and Mg_2SiO_4 into MgO plus other phases.

1. Introduction

The advantages of HVEM over conventional 100kV microscopy are well-known. (See for example, reviews by Mitchell⁽¹⁾ and Cosslett⁽²⁾ and the various International Conferences on HVEM⁽³⁾). The experiments described in this report concentrate on the application of HVEM to *in situ* electron irradiation studies. However, other aspects of HVEM-increased penetration, decreased aberrations, improved selected area diffraction - are being used routinely in the investigations, as described previously⁽⁴⁾.

The ability to perform radiation damage studies is important in its own right and to simulate damage produced by neutrons in nuclear reactors and various radiation effects in nuclear waste storage media. Very high displacement rates in the 10^{-3} dpa/sec range are available in the HVEM. Displacements produce vacancy-interstitial pairs which can subsequently annihilate each other, annihilate at sinks, cluster to form dislocation loops, voids, or other aggregates or enhance various diffusion controlled processes such as precipitation and recrystallization. All of these effects occur under neutron irradiation and have significant effects on the properties of nuclear materials. Thus void formation causes swelling in structural materials of fast reactors⁽⁵⁾. The effect can be simulated by both heavy ion and electron irradiation⁽⁵⁻¹¹⁾. Irradiation in the HVEM clearly has the advantage of continuous observation and monitoring of the processes involved, but has the disadvantage of the uncertain influence of the foil surfaces. Such effects have been characterized by our investigations⁽¹²⁾ and others, (13,14) and the important influence of dislocations in void formation has been confirmed.

Strong effects of neutrons on precipitation have been observed. (For example, see Hudson⁽¹⁵⁾ and Rosenbaum⁽¹⁶⁾.) An example is the precipitate induced in 316 stainless steel⁽¹⁷⁾ which only occurs under the influence of irradiation. Ion irradiation has also been found to influence precipitation in Ni-base alloys⁽¹⁷⁾. A few studies have been made using the HVEM^(15,8,19). Our own investigations of Al alloys^(20,21) and Ni-base alloys are described in the report.

Radiation damage in non-metals has received much less attention than metals. Neutron damage in some ceramic oxides has been reviewed by Wilks⁽²²⁾, and the available information is not very definitive. HVEM studies of MgO at room temperature have been reported by Sharp and Rubmsy⁽²⁵⁾. However, as with metals, we have found that it is much more instructive to irradiate at higher temperatures where point defects can cluster into identifiable loops. Results on MgO, Al₂O₃, MgAl₂O₄ and Mg₂SiO₄ are presented in the report.

Since many of the results obtained over the past years have been published^(12,20,21,24-29), the rest of the progress report will mostly consist of summaries of the most important data and their interpretation.

2. Results and Discussion

2.1. Experimental Techniques

Various experimental techniques which have been developed for the HVEM over the past few years, have been reported previously⁽⁴⁾. Some of the important techniques are as follows:

- (a) High flux irradiation, giving displacement rates in the range 10^{-3} dpa/s (30).
- (b) Monitoring of the specimen temperature rise due to beam heating (31).
- (c) Preparation of ceramic foils by ion bombardment thinning.

Foils are also annealed to remove the damage and carbon coated on one side to avoid charging effects.

(d) Adaptation of the weak-beam method of imaging to the HVEM (32) for high resolution pictures of small defect clusters. In addition we have recently been able to use the high resolution Siemens 102 to obtain lattice fringe images of dislocation loops produced by electron irradiation in Al_2O_3 (Figure 1). This is a very exciting discovery since it points to the possibility of imaging and identifying small defect clusters in a variety of materials.

As described in the last proposal, a completely new side-entry stage system has been designed and ordered from Gatan for the HVEM. The basic modification and environmental cells are being paid for under a grant from NSF and the goniometer and heating/tilting specimen holder from the present contract. (Similar modifications are being made to the Oak Ridge, U. S. Steel and HEDL microscopes.) The basic modification, goniometer stage and tilt control have already been installed and have been found to be a remarkable improvement in our capabilities. The rest of the system is due to be installed in August 1977.

2.2. Threshold Displacement Energies

Threshold energy measurements are generally performed using electron accelerators with the specimen at a low temperature and by measuring some physical property such as resistivity (for review, see Lucasson (33)).

HVEM measurements have the advantage that specimen orientation is easy to control, but have the disadvantage that measurements are usually

made at room temperature, so that the threshold for the production of interstitials which can escape from their vacancies is determined (as in replacement collision sequences), rather than the threshold for close-pair formation. Nevertheless, the HVEM measurements are in many respects more relevant for practical radiation studies. Accordingly, the threshold displacement energy, E_d , has been determined by high voltage electron microscopy for a wide variety of fcc, bcc and hcp metals as a function of orientation^(8,29). The easy displacement direction is generally <110> for fcc metals and <100> for most bcc metals, as expected for replacement collision sequences. A good correlation is found to exist between the threshold energy and cohesive energy.

E_d has also been determined as a function of orientation for MgO and Al_2O_3 . In MgO E_d is found to be less along <100> than <110>. This is not surprising since <100> is the closest-packed direction for anions and cations together and has the largest "windows"; however, <110> is the closest repeat direction, showing that replacement collision sequences along rows of like ions may not be so important as in other systems.

2.3. Effects of Irradiation on Precipitation

Irradiation can influence precipitation through enhanced diffusion, enhanced nucleation, dissolution, disordering and re-ordering of precipitates, formation of new or unexpected phases, transmutation products and interaction with voids⁽⁹⁾. Some of these effects are illustrated by our experiments on aluminum and nickel alloys.

Results on Al-Cu alloys have already been described^(20,21). Growth of G. P. Zones and θ'' precipitates is inhibited but precipitation of θ'' is enhanced by irradiation. Quantitative analysis shows that growth follows radiation-enhanced diffusion kinetics due to annihilation of point defects at precipitates.

is enhanced but the great variety of precipitate size and shapes (circular, triangular, hexagonal, needle, plate) make quantitative analysis very difficult.

In Ni-Al alloys, irradiation-enhanced growth of γ' precipitates occurs in both the aged and solution-treated conditions at temperatures up to 750°C (thermal aging is dominant at higher temperatures). Again quantitative analysis shows that growth follows radiation-enhanced diffusion kinetics, $D^{\text{rad}} \sim 4 \times 10^{-15} \text{ cm}^2/\text{s}$ at a displacement rate of $2 \times 10^{-3} \text{ dpa/s}$. In the solution-treated condition, the formation and growth of faulted interstitial Frank loops is observed to accompany γ' precipitation. In the overaged condition, interfacial dislocations are induced to climb away from the interface but loops are then nucleated at the resulting coherent interface.

2.4. Radiation Damage in Oxides

(a) MgO. Damage has been observed at temperatures from ambient to 800°C .⁽³⁴⁾ In the higher temperature range, the damage is identifiable as interstitial dislocation loops on $\{110\}$ planes with perfect $1/2 <110>$ Burgers vectors. At the highest temperature, the loops become elongated in the $<100>$ direction, as in the alkali halides⁽³⁵⁾, due presumably to anisotropic nucleation and migration of jogs. Loop growth rates have been analysed by adapting theories developed for metals⁽³⁶⁾, and it is found that the migration energy for oxygen vacancies is $\sim 3.3\text{eV}$. In addition, pits are observed on the undersurface of the foils, indicating that sublimation is induced by irradiation; polycrystalline MgO diffraction rings are also induced on the single crystals.

(b) Al_2O_3 . Interstitial dislocation loops are also produced.

At $\sim 600^\circ\text{C}$, the loops lie on the (0001) basal plane with partial $1/3$ [0001] Burgers vectors; at 800°C , the same loops are produced plus loops lying on $\{10\bar{1}0\}$ prismatic planes with partial $1/3 <10\bar{1}0>$ Burgers vectors. Stacking fault contrast is observed, corresponding to a fault in the cations, but not in the anion sub-lattice. It was discovered that it was possible to image these loops by lattice fringes in the Siemens 102 high resolution microscope (4.3\AA (0003) Bragg planes). This important observation is being pursued to see if very small ($\sim 10\text{\AA}$) defect clusters can be imaged and identified.

(c) MgAl_2O_4 . A variety of defect clusters are observed which have yet to be identified. Importantly, it is observed that polycrystalline MgO rings are produced in the diffraction patterns, showing that phase decomposition into MgO plus Al_2O_3 - rich spinel is induced by irradiation.

(d) Mg_2SiO_4 . As with spinel, forsterite decomposes under irradiation into MgO plus one or more phases, possibly enstatite (MgSiO_3) for example. However, very strong streaking in the diffraction pattern shows that a plate-like precipitate is being produced which also gives rise to Moiré-fringe contrast in the image.

Figure 1

- (1) Basal dislocation loops in Al_2O_3 irradiated in the HVEM at 700° C.
- (2) Basal and prismatic dislocation loops in Al_2O_3 irradiated in the HVEM, showing stacking fault contrast.
- (3) Elongated dislocation loops in MgO after extended irradiation in the HVEM at 800° C.
- (4) Weak-beam dark-field images of perfect {110} dislocation loops in MgO at an early stage of HVEM irradiation at 800° C.

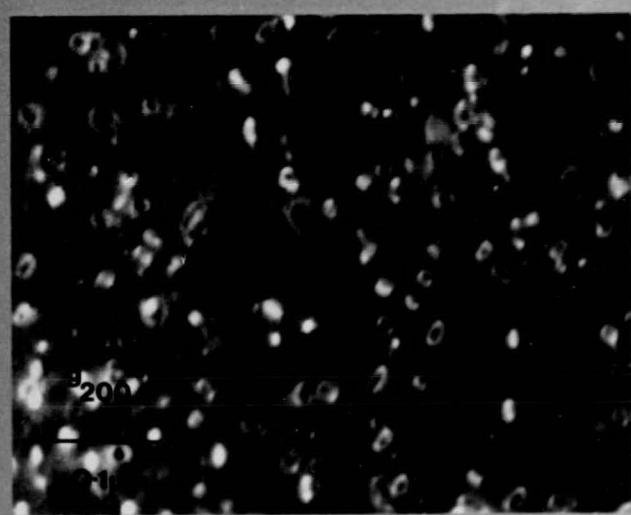
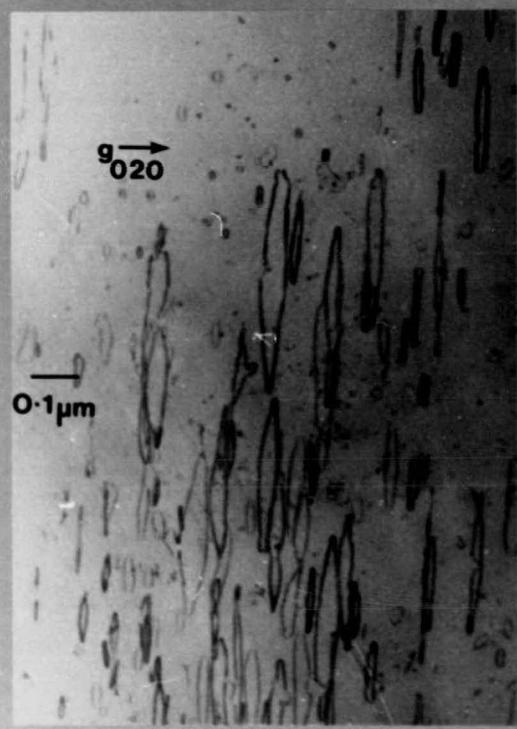
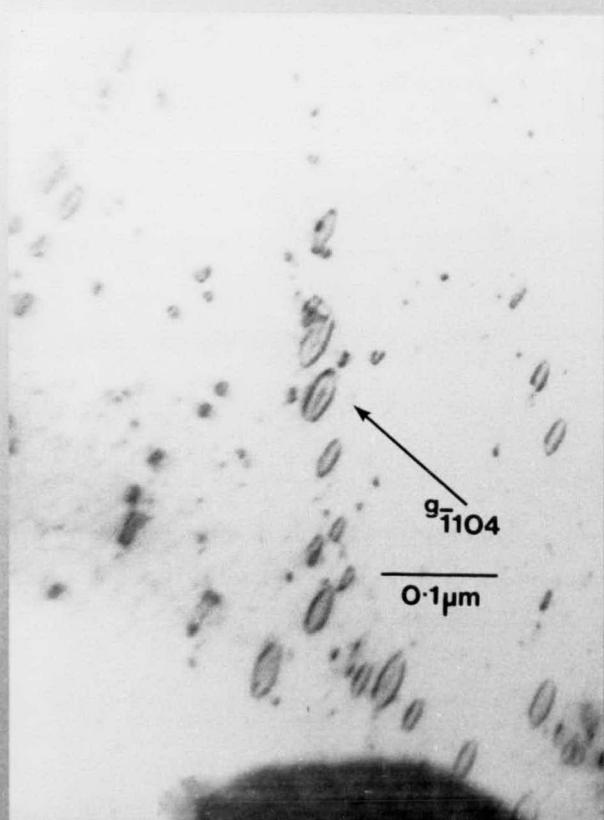
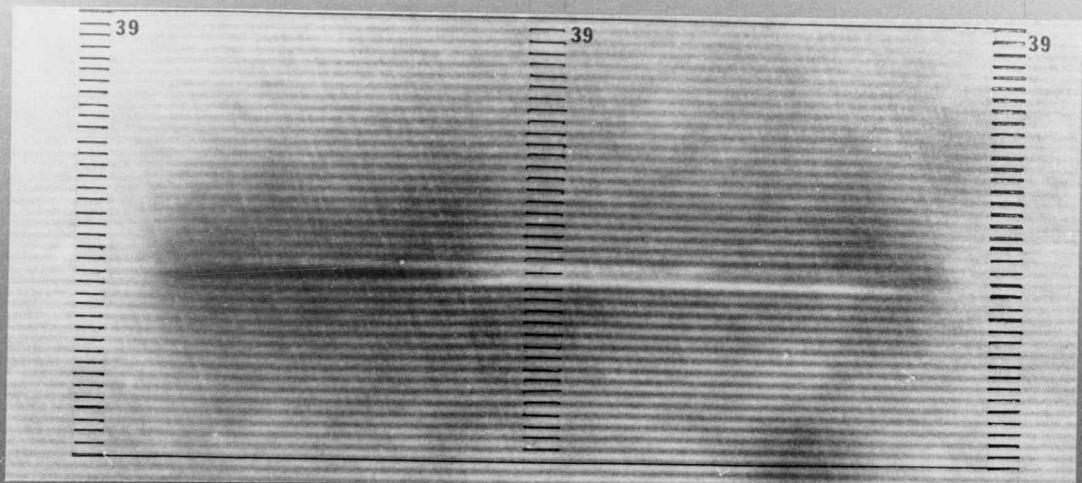
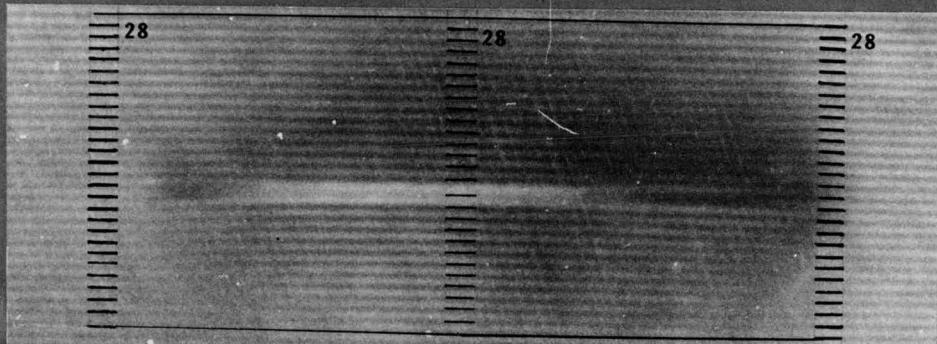
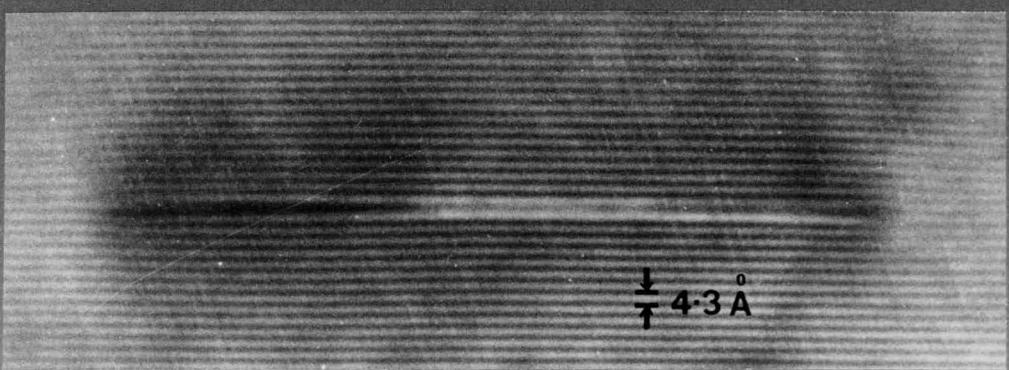






Figure 2


(1), (2) and (3) High-resolution dark-field lattice images from three pure edge dislocation loops in HVEM-irradiated Al_2O_3 . The lattice images are formed by combining the $(11\bar{2}6)$ and $(11\bar{2}3)$ reflections. Burgers circuits through the centers of these loops do not confirm their character at this specimen thickness (about 500 Å).

1

2

3

4. Publications

The following publications have resulted from the research supported by ERDA

G. Das and T. E. Mitchell, "Radiation Damage of Type 304 Stainless Steel by High Voltage Electron Microscopy", Proc. El. Mic. Soc. Am., 1972, p. 678.

T. E. Mitchell, "High Voltage Electron Microscopy for Microstructural Analysis", in "Microstructural Analysis: Tools and Techniques", (Plenum Press), p. 125 (1973) - Report No. C00-2119-4.

E. A. Kenik and T. E. Mitchell, "Loop and Void Formation in Copper during High Voltage Electron Microscope Irradiation", Proc. El. Mic. Soc. Am., p. 22 (1973) - Report No. C000211-6.

G. Das and T. E. Mitchell, "Electron Irradiation Damage in Quartz", Radiation Effects, 23, 49 (1974) - Report No. C00-2119-7.

E. A. Kenik and T. E. Mitchell, "Co-operative Growth of Dislocation Loops and Voids under Electron Irradiation", Radiation Effects, 24, 155 (1974) - Report No. C00-2119-8.

P. S. Sklad and T. E. Mitchell, "Radiation-enhanced Precipitation in Al-4% Cu by High Voltage Electron Microscopy", Scripta Met., 8, 1113 (1974) Report No. C00-2119-9.

G. Das and T. E. Mitchell, "Recrystallization Induced by Electron Irradiation of Deformed Nickel", Scripta Met., 8, 1135 (1974) Report No. C00-2119-10.

G. Das and T. E. Mitchell, "Irradiation Damage in Nickel in a High Voltage Electron Microscope", J. Nucl. Mater., 56, 297 (1975) - Report No. C00-2119-11.

P. S. Sklad and T. E. Mitchell, "Efforts of Electron Irradiation on Precipitation in Al-3.5% Cu", Acta Met., 23, 1287 (1975) - Report No. C00-2119-14.

E. A. Kenik and T. E. Mitchell, "Orientation Dependence of the Threshold Displacement Energy in Copper and Vanadium", Phil. Mag., 32, 815 (1975) - Report No. C00-2119-13.

T. E. Mitchell, G. Das and E. A. Kenik, "Determination of Threshold Displacement Energies by High Voltage Electron Microscopy", in "Fundamental Aspects of Radiation Damage in Metals" (U.S. ERDA - Conf. 751006-P1), p.73 (1975) - Report No. C00-2119-16.

D. G. Howitt, R. S Barnard, L. W. Hobbs and T. E. Mitchell, "Defect Aggregation in Irradiated Oxides", Int. Conf. on Defects in Insulating Crystals; Gatlinburg, Tn., Oct. 1977. Report No.C00-2119-18

L.W. Hobbs, "Ceramics in Radiation Environments", Invited paper, American Ceramic Society Meeting on Ceramics in Severe Environments, NASA-Lewis, Cleveland, Ohio, March 18, 1977.

L.W. Hobbs, "Radiation Damage in Ceramics", Invited paper, Basic Science Division Seminar on Application of Electron Microscopy to Engineering Practice in Ceramics, 79th Annual Meeting, American Ceramic Society, Chicago, Illinois, April 23-28, 1977, Am. Ceram. Soc. Bull., 56, 295 (1977); to be published in J. Amer. Ceram. Soc., 1978.

L.W. Hobbs, D.G. Howitt and T.E. Mitchell, "Electron Microscopy and Electron Diffraction of Electron-Sensitive Materials", 50th Anniversary of the Discovery of Electron Diffraction, London, September 19-21, 1977.

References

-10-

1. T. E. Mitchell, in "Microstructural Analysis: Tools and Techniques" Academic Press), p. 125 (1973).
2. V. E. Cosslett, Proc. R. Soc., Lond. A 338, 1 (1974).
3. Conferences on "High Voltage Electron Microscopy", (a) Micron 1, 222 (1969); (b) Jernkont, Ann, 155, 391 (1971); (c) J. Microscopy, 97, 1 (1973); (d) Academic Press (1974); (e) Microscopic Electronique a Haute Tension (SFME, Paris), 1976.
4. "Experiments in High Voltage Electron Microscopy", Technical Progress Reports, AEC Nos. COO-2119-2, 5, 12 and 15, (1972, 1973, 1974, 1975).
5. D. I. R. Norris, Radiation Effects, 14, 1 and 15, 1 (1972).
6. S. F. Pugh, M. H. Loretto, and D. I. R. Norris, eds., Proc. Conf. on "Voids Formed by Irradiation of Reactor Materials", (Brit. Nucl. En. Soc.), 1971.
7. J. W. Corbett and L. C. Ianniello, eds., "Radiation-induced Voids in Metals", (USAEC Conf. 710601), 1972.
8. "Effects of Radiation on Substructures and Mechanical Properties of Metals and Alloys", (ASTM), STP529 (1973).
9. R. S. Nelson, ed., "The Physics of Irradiation Produced Voids", (H. M. Stationery Office), AERE-R7934, 1975.
10. "Properties of Reactor Structural Alloys after Neutron or Particle Irradiation", ASTM, STP570 (1976).
11. M. T. Robinson and F. W. Young, eds., "Fundamental Aspects of Radiation Damage in Metals", (U.S. ERDA: Conf. 751000-P1), 1975.
12. E. A. Kenik and T. E. Mitchell, Radiation Effects, 24, 155 (1974).
13. F. A. Garner and L. E. Thomas, Ref. 8, p. 303, (1973).
14. D. I. R. Norris, Phil. Mag., 23, 135 (1971).
15. J. A. Hudson, J. Br. Nucl. Energy Soc., 14, 127 (1975).
16. N. S. Rosenbaum, "Microstructures of Irradiated Materials", (Academic Press), 1975.
17. H. R. Brager and J. L. Straalsund, J. Nucl. Mater., 46, 134 (1973).
18. S. B. Fisher and K. R. Williams, Phil. Mag., 25, 371 (1972).
19. R. W. Carpenter, Ref. 3(a), p. 221.
20. P. S. Sklad and T. E. Mitchell, Scripta Met., 8, 1113 (1974).

21. P. S. Sklad and T. E. Mitchell, *Acta Met.*, 23, 1287 (1975).
22. R. S. Wilks, *J. Nucl. Mater.*, 26, 137 (1968).
23. J. V. Sharp and D. Rumsby, *Radiation Effects*, 17, 65 (1973).
24. G. Das and T.E. Mitchell, *Proc. El. Mic. Soc. Am.*, p. 678 (1972).
25. G. Das and T. E. Mitchell, *Radiation Effects*, 23, 49 (1974).
26. G. Das and T. E. Mitchell, *Scripta Met.*, 8, 1135 (1974).
27. G. Das and T. E. Mitchell, *J. Nucl. Mater.*, 56, 297 (1975).
28. E. A. Kenik and T. E. Mitchell, *Phil. Mag.*, 32, 815 (1975).
29. T. E. Mitchell, G. Das and E. A. Kenik, Ref. 11, p. 73.
30. E. A. Kenik, Ph.D. Thesis, Case Western Reserve University (1974).
31. S. B. Fisher, *Radiation Effects*, 5, 239 (1970).
32. G. Welsch, L. Hwang, A. H. Heuer, and T. E. Mitchell, *Phil. Mag.*, 29, 1371 (1974).
33. P. Lucasson, *J. de Microscopie*, 16, 183 (1973).
34. D. G. Howitt, R. S. Barnard, L. W. Hobbs and T. E. Mitchell, *Proc. Int. Conf. in Insulating Crystals*, Gatlinburg, Tn. Oct. (1977).
35. L. W. Hobbs in *Surface and Defect Properties of Solids*, ed. M.W. Roberts and J. M. Thomas (Chem Soc. Lond) 4, 152 (1975).
36. M. Kiritani et al. *J. Phys. Soc. Jap.* 38, 6 (1975).