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I) DEFINITION OF THE PHYSICAL PARAMETERS

r radial coordinate

e azimuthal coordinate

z axial coordinate

t time

u radial component of velocity

v azimuthal component of velocity

w axial component of velocity

V radial component of the divergence of the viscous stress tensor

V azimuthal component of the divergence of the viscous stress tensor

V axial component of the divergence of the viscous stress tensor

0 density

ty gravitational potential

p pressure

w instantaneous angular velocity of rotating frame

A entropy variable

1 specific internal energy

Y ratio of specific heats

u bulk viscosity coefficient

v kinematic viscosity coefficient

A second viscosity coefficient; only in Eq. (II-9)

A free-scaling parameter

A normalization parameter

r dimensionless stability parameter

R radius of toroid from central axis

a characteristic cross-sectional radius of toroid

t. free-fall time



xn

M total mass

P' interpolated maximum densitymax
R , radial position of p'
pmax max

P , maximum cell densitymax

R radial position of p
pmax

W total gravitational potential energy

KE total kinetic energy of radial and axial motion

I) total internal energy

T total rotational kinetic energy

E total energy

J total angular momentum

9 temperature

n polytropic index
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h ABSTRACT

Three-Dimensional Dynamics of Protostel lar Evolution

by

Thomas Leroy Cook

A three-dimensional f in i te difference numerical methodology has

been developed for self-gravitating, rotating gaseous systems. The

ful ly nonlinear equations for time-varying f lu id dynamics are solved

by high-speed computer in a cylindrical coordinate system rotating

with an instantaneous angular velocity, selected such that the net

angular momentum relative to the rotating frame is zero.

The time-dependent adiabatic collapse of gravitationally bound,

rotating, protostellar clouds is studied for specified uniform and

nonuniform in i t i a l conditions. Uniform clouds can form axisymmetric,

rotating toroidal configurations. I f the thermal pressure is high,

nonuniform clouds can also collapse to axisymmetric toroids. For low

thermal pressures, however, the collapsing cloud is unstable to in i t i a l

perturbations.

The fragmentation of protostellar clouds is investigated by study-

ing the response of rotatiny, self-gravitating, equilibrium toroids to

non-axisymmetric perturbations. The detailed evolution of the frag-

menting toroid depends upon a non-dimensional function of the i n i t i a l

entropy, the total mass in the toroid, the angular velocity of rotation,

and the number of perturbation wavelengths around the circumference of

the toroid. For low and intermediate entropies, the configuration
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develops into co-rotating components with spiral streamers. In the

spiral regions retrograde vortices ara observed in some examples. For

high levels of entropy, barred spirals can exist as intermediate states

of the fragmentation.
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I. INTRODUCTION

A, BINARY STARS

1. Historical Background

The Greek equivalent of the term double star was first used by

Ptolemy to describe the appearance of Y Sagittarii. Many double

ctars are optical pairs rather than true binary systems. In 1767

Rev. John Michel 1 read a paper before the Royal Society in London in

which he presented a statistical argument suggesting that many of the

double stars then known were the result of physical rather than optical

association. His controversial paper prompted astronomers to intensify

their search for double stars. In an address to the Royal Society in

1802, Sir William Herschel first used the term binary star to designate

the physical union of two stars in one system.

The first known observation of a close binary (e.g., component

separation comparable in magnitude to component dimensions) may date
4

back to the days of nomadic life in the Arabian peninsula. The second

brightest star in the constellation of Perseus was given the name

Al Gnul, which means "changing spirit." Although it is questionable

whether one should assign any specific significance to the name, it is

appropriate because Algol, as it is now called, is an eclipsing binary.

In 1783 John Goodri^ke, Junior, made the first observations of a

minimum of Algol and successfully measured its periodicity. He even

conjectured that it might be an eclipsing double star system in which

the components were physically bound.



2. Significance

Conservative estimates indicate that 30 to 50% of the total star

population in the vicinity of the solar system occurs in double or

multiple systems. Approximately .2% of these stars are eclipsing

binaries. If one considers the random distribution of orbital

inclinations, approximately 1% of the stars may be in close binary

systems. This argument implies that if a similar ratio holds for our
9galactic system as a whole, one might expect it to contain some 10

close binaries.

The astrophysical data that can be deduced from a study of

eclipsing binary systems provide the theoretician with a method for

looking into the very heart of stars. For a single star one has no

way of gauging its external gravitational field or of learning any-

thing about the distribution of its surface brightness. In close

binaries, however, the properties of the combined gravitational field

can be deduced from the characteristics of the motion. Knowing the

gravitational field one can then check calculational models of inter-

nal pressure and density distributions. The variation of brightness

caused by axial rotation of the distorted components or exhibited

during their mutual eclipses permits one to measure the distribution

of surface brightness. Non-radial tidal oscillations can demonstrate
o

whether stellar configurations behave like perfect fluids. These

considerations and others demonstrate the important role that multiple

star systems play in our understanding of astrophysical phenomena.

The theoretical complexities associated with the interpretation

of data produced from such observations are non-trivial. Previous

work has employed complicated models of the material properties and



and transport processes believed to be operative and has generally made

extremely simplifying assumptions regarding the dynamics of the motion.

The present work emphasizes the solution of the nonlinear dynamics

while using less detailed models of the other physical processes. In

the following chapters a fully three-dimensional finite difference

methodology is developed specifically for application to rapidly

rotating, highly distorted, self-gravitating binary systems.

B. PROTOSTARS

1. Early Stages of Star Formation

In 1692 Newton suggested that stars might form through gravita-

tional condensation of diffuse matter in space. Although Newton's

idea is widely accepted as being basically correct, many details of

star formation remain highly speculative and controversial. The

earliest stages of the star formation process are less well understood

than the intermediate collapse stages. Thermal and magnetic instabil-

ities as well as large scale galactic shock have been proposed as

possible mechanisms through which interstellar clouds are formed of

sufficient mass and density to be gravitationally bound. Once a

cloud is gravitationally bound it is called a protostar. It is at

this point in the evolution that our investigation begins. A compre-

hensive review of this theory of the early stages of star formation

11 12is given by Spitzer, ' and shorter discissions are provided by

Field and Penston. A somewhat different point of view is pre-

sented by McNally.15

If a cloud is to condense into a star or a cluster of stars,

its self-gravity must exceed the forces working to disperse it. The

principle dispersive mechanisms include



1) thermal gas pressure

2) magnetic pressure

3) centrifugal force if the cloud is rotating

4) the effects of internal turbulent motions

For simplicity one generally neglects the magnetic pressure and

includes the turbulent effects as an added thermal pressure.

Spitzer states and derives the Jeans criterion in a number of ways;

however, Larson proposes the following succinct statement:

"In essence, the Jeans criterion simply states that in order for
collapse to occur, the gravitational potential energy of a cloud must
be comparable to or greater than the kinetic energy of thermal or
turbulent motions within the cloud."

For a rotating cloud one makes a modification in the above state-

ment to allow for the inclusion of the rotational kinetic energy as a

dispersive mechanism.

2. Collapsing Protostars

a. Spherical models

In recent years a large number of authors have calculated the

early stages of the collapse of a spherically symmetric, nonrotating

gas cloud. " A brief review of these studies is given by Penston.

Although the various calculations are based upon assumptions that are

considerably different from one another, there is remarkable agreement

on the qualitative features of the collapse. For example the collapse

is always found to be very nonhomologous, and the density distribution
24becomes very rapidly peaked at the center.

To better understand the nature of the collapse one can consider

the free fall tirre of a uniform density, zero pressure spheroid given



p below.25

"f \32Gp/ v* "

The free fall time varies inversely as the square root of the density.

Therefore, as the local density increases, its free fall time de-

creases; and the collapse around a local center of condensation

proceeds more rapidly than in the more diffuse regions of the cloud,

producing a separation of the material into a central condensed region

that is well separated from the outer regions of the cloud. If the

system were not spherically symmetric, the resulting configuration

would be strongly unstable, leading therefore to fragmentation,

b. Axisymmetric models

If the system is rotating, the most restrictive assumption in the

above is the spherical symmetry constraint. In 1972 Larson reported

two-dimensional calculations in which he imposed only axial symmetry

on the collapse. For the purposes of this present investigation it is

useful to emphasize two of his conclusions. First, since one does not

know what initial conditions and boundary conditions are appropriate

for a condensing protostar, it is reassuring that Larson finds the

qualitative features of the late time collapse to be insensitive to
07

these details. Second, Larson finds that in the presence of rapid

rotation the central portion of the cloud always appears to condense

into a rotating toroid with a density minimum at the center.

The formation of such a ring is physically reasonable, as demon-

strated by the following scenario. Depending on the rate of rota-

tion, central densities may or may not increase at f'rst as the

collapse proceeds. In either case conservation of angular momentum



requires that the azimuthal velocity of the material falling toward

the axis of rotation increase; and eventually, the centrifugal forces

exceed the forces of gravity. In the central regions the equatorial

collapse near the axis of rotation ceases. Collapse along the axis

of rotation continues unimpeded toward the center and finally rebounds

outward into the equatorial plane. At the same time material from the

outer part of the cloud continues to fall inward and to accumulate in

a ring-shaped torois around the central region where collapse has been

halted. Once the ring has formed, it becomes a center of accretion

for the remaining inward falling material.

Subsequent to Larson's pioneering work two similar two-dimensional

29numerical studies have been published. Tscharnuter has repeated the

work of Larson using a different numerical scheme, and he has not

found ring formation. His results indicate that for rapid rotation

the cloud reexpands after the initial collapse. Black and
30Bodenheimer, on the other hand, have also published calculations

treating rapidly rotating collapsing protostars, and they obtain

rotating toroids qualitatively similar to those of Larson.

To follow the collapse further one must study the fragmentation

of these rotating toroids. The full three-dimensional equations of

motion must therefore be solved. It is this aspect of protostellar

evolution that forms the central theme of this research.

c. Additional models

The numerical work described above has not been the only source

nor has it been the primary source suggesting the existence of rings

in the universe. Modern observations show that rings commonly occur
31 32in spiral galaxies of both the ordinary and barred types. *



Minkowski and Osterbrock have observed rings in certain planetary

nebulae. Underfill! mentions rings as possible models for the
or

extended atmospheres of early-type stars, and Maltby and Moffet

suggest ring models in their extragalactic radio source studies.
The earliest work on the theory of equilibrium rings dates back

37to Laplace (1789). Contributions have also been made by Maxwell and
* 38Poincare. The comprehensive treatment of the equilibrium and stabil-

39ity of fluid rings by Dyson in 1893 essentially completes this class

of studies, which can be characterized by the following assumptions.

1) slender rings; i.e., minor axis < < major axis

2) uniform rotation

3) homogeneous liquid rings

In his 1964 study of equilibrium rings Ostriker replaces the

third and most restrict ive assumption (l iquid rings) with the require-

ment that the f lu id be a polytropic gas. He finds that for certain

mass-to-length ratios stable toroidal configurations should exist.

Larson and Black and Bodenheimer find values of this ratio in their

respective works that agree fa i r ly well with the predictions of

Ostriker.

C. THE PRESENT THREE-DIMENSIONAL MODEL

1. Basic Approach

The next improvement one might naturally make in the numerical

studies of collapsing protostars is the extention to large amplitude

non-axisymmetric motions. Most of the authors cited above comment

that nothing definitive can really be concluded until one has inves-

tigated the stability of rotating toroids subjected to large non-

axisymmetric perturbations. As is often the case, however, the most
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obvious improvement is not always the easiest to implement. In this

situation one must have access to the largest, fastest computers

available today; and in addition one must develop a methodology

made possible only through modern techniques in numerical fluid

dynamics.

In order to facilitate the development of a fully three-

dimensional numerical fluid dynamics capability for application to

rotating, self-gravitating bodies, one chooses, at least initially,

to simplif' the models of the physical processes to the greatest

possible degree while maintaining contact with reality. Such an

approach also allows one to develop a thorough understanding of the

methodology, which will prove useful as the complexity of the physical

modelling progresses. With this motivation in mind, the following

assumptions are made in the work described in this text.

1) adiabatic fluid motions

2) negligible physical viscosity

3) polytropic gases

4) no radiation effects

5) no electromagnetic effects

The first assumption permits one to avoid solving an energy

equation. In the absence of strong sources and sinks, as is the case

for the early stages of protostellar evolution, it is a reasonable

constraint. The negligible physical viscosity assumption is likewise

reasonable for the diffuse distributions involved here. Polytropic

gas equations of state have been used rather successfully in many

astrophysical applications over a wide range of densities. For a
41general discussion one is referred to texts such as those by Clayton
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and Chandrasekhar. Larson and Black and Bodenheimer include radia-

tion pressure in their respective calculations and find that this term

is negligible over the range of densities occuring in this phase of

protostar development. Each of the above assumptions can be replaced

by more complicated modelling of the physical processes.

The fifth assumption can not be so easily dismissed. Because of

the mathematical complexities involved, the possible role of frozen-in

magnetic fields in collapsing clouds remains one of the principal

unsolved problems in the theory of star formation.' During ea:ly

stages of the collapse the field is thought to be frozen into the gas

because of the ionization produced by high energy cosmic rays. However,

as the density increases the cloud becomes optically thick to such

radiation; and the ionization decreases, decoupling the cloud from the
44

magnetic field. Observations of magnetic field strengths in inter-

stellar clouds are generally consistent with the hypothesis of the
45frozen-in field. However, some dense clouds have magnetic fields

that are much weaker than one would expect, and in the dense Taurus
dust cloud, a region of active star formation, no magnetic field has

47yet been detected.

2. Numerical Solution of the Model Equations

KORYO is a three-dimensional Eulerian computer code designed to

solve the equations of motion for rotating, self-gravitating fluids.

The equations are written in cylindrical coordinates, and the plane

at z = 0 is assumed to be a plane of symmetry. Densities and pressi

are treated implicitly. Donor-cell fluxes are used throughout with

the fluxes in the azimuthal direction being convected relative to a
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/ frame rotating with an instantaneous angular velocity selected so that

the net angular momentum relative to it is zero. A central core

boundary region avoids pie-shaped cells and the resulting severe time

step restrictions. Mass is allowed to leave the system through the

outer radial boundary. To obtain the gravitational potential at each

instant in time, Poisson's equation is relaxed iteratively. These

characteristics of the methodology and others are developed in detail

in Chapter III.



11

II. THEORY AND PROCEDURE
A. EQUATIONS OF FLUID DYNAMICS

1. Equation of Continuity
The motion and general behavior of the fluid are governed by the

fundamental laws of mechanics and thermodynamics. The equation of conti-

nuity is developed by applying the lav; of conservation of mass to a small

volume element within a moving fluid. For a compressible fluid this

49equation takes the following form in cylindrical coordinates.

3t r 3r r 38 3z u

2. Equations of Motion

a. Non-conservative form

The equations expressing the conservation of momentum are derived in

a similar fashion. For a fluid system moving under its own self-

gravity, the components of the body forces in the equations are the re-

spective gradients of the gravitational potential. Incorporating these
51and the other forces the equations in cylindrical coordinates for a

rotating, self-gravitating fluid system are customarily written

p

9F+f30 + W 3 I " T ] - • p 9F"^-+ V

3V + / u 3 v + v 3 v 3 v + U V \ = - £ . 3 i _ 1 3 £ v
P3t p \ dr r 98 " 32 r ) r 38 r 36 V6

+ D u 3 i _ 3 £ + v (n_4)

3t p \ 3r r 30 3z / p 3z 8z vz ' v ;

The viscous stress components will be discussed below in conjunction with

the physical viscosities.
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b. Conservative form

The convective parts of the momentum equations given above are not

written in conservative form. They should be expressed such that if one

integrates over the jtal volume of the fluid! the change with time of

any conserved quantity is just equal to the net gain or loss of that

quantity through the boundaries. Multiplying Eq. (II-l) by the radial

velocity and adding the result to the momentum equation} one obtains

St ' r 3r " r 30 " dz r " p dr " 3r + Vr * ^JI"5^

This expression is the form of the radial momentum equation that furnish-

es the basis for the calculations presented in this paper. Equations

(II-3) and (I1-4) can be altered in an exactly analogous fashion to yield

r 39 3z r 39 r 30 9 K D;3t 2 3r r 39 3z r 39 r 30

and

.22
3pw . 1 9puwr . 1 9pvw . 3pw

The specific form of Eq. (11-6) combines the coriolis and convective

terms in a manner that is conservative of angular momentum as discussed

in Appendix 8.

c. Viscous stress component

If adjacent layers of a fluid are in relative motion, a shear stress

can develop. The constant of proportionality between the shear stress
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and tho velocity gradient is called the first viscosity. Since the

fluid is compressible another viscous stress, v/hich is proportional to

the volumetric change, can arise. The proportionality coefficient for

this stress is called the second or the bulk viscosity. The viscous

stress components for a compressible fluid are expressed in cylindrical

coordinates as follows.^

V r 3 r [ ^ p 3 r H r S r r 3 6

i n /3JL iL l 3 v \ + l A . r u / 3 v + ifUL
r \ 8 r r r 39 / r 89 | p \ 8 r r 30

=1.1-Fiji i^. +1 /i^iy. + Liy +
8 r 36 [ r 30 | r 3r r 30" 3z

8 f /1 aw , 3v\\ . d f /3v , 1 8u v\1
37 [y \F 89" 8T/J a7 [ yUF r acf " r /J

+ +
dr r 86 r/ r2 36

3z L p 32 M r 8r r 38 8z

. 1 d f /I 3w . 8V\1 ,TT

The viscosity effects are negligible in the physical systems that

are studied in this work. Nevertheless, for the incorporation of ade-

quate dissipation in the numerical solutions, one has used a simplified

model for the viscous stress components. The basis for the particular

form is discussed in the numerical stability section of Chapter III. In
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differential form these components are the following

f
(11-12)

V - « P 9 / y 3W\ + ] 9 / 9W\ 4. 3 / 9W

vz = v [F aF (pr 9?) + 7 ae (p 3e) + dl (p sF

It is important to note that the density has been put into Eq. (11-12) in

such a nay as to maintain the conservative form; so that linear and an-

gular momentum are neither gained nor lost.

3. The Equation of State

Contained within the four conservation equations, Eqs. (II-l),

(II-2), (II-3), and (II-4), one has six unknowns. Two more equations are

therefore needed to solve the system. One additional equation is pro-

vided by the equation cf state of the fluid. The equation of state is

usually expressed as some function relating pressure, density, and tem-

perature. For an adiabatic system one has merely to connect the pressure

and the density as for example in the polytropic equation of state.

p = A p y (11-14)

For the reasons discussed in Chapter I one uses this very simplified de-

scription of the material in the present study.
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B. GRAVITATIONAL POTENTIAL

Self-gravity provides the "container" for the fluids of astrophys-

ics. The final equation needed to form a complete set is provided by

Poisson's equation relating the gravitational potential to the fluid con-

figuration. In cylindrical coordinates one has

Many attempts hava been made to construct models of rotating, self-

gravitating bodies. In cases dealing with compressible masses almost

every attempt has involved a series expansion of ip in Legendre polyno-
54mials to account for departures from spherical symmetry. These methods

suffer from the uncertainties of truncating series and products of series

after a finite number of terms.

The present work uses a finite difference approach, but avoids ma-

trix inversion complexities55 by relaxing Poisson's equation iteratively

(Chapter III) subject to the boundary conditions at each boundary point

(r0, 6 , z 0 ) , calculated by performing a numerical integration over all

mass points (rm, 6m, z m).

(11-16)
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C. ROTATING REFERENCE FRAME

1. Coordinate Transformations

The evolution of rapidly rotating asymmetric self-gravitating bodies

can be most accurately studied with numerical techniques in a reference

frame that is itself rotating with the average angular velocity of the

system. Otherwise one would have a high mass transport through the cal-

culational grid, resulting in the introduction of large diffusional ef-

fects. In a properly selected rotating frame the transport due solely to

the rotation of the system is minimized. A further reason for choosimj

to wr-k in a rotating frame is suggested by the nature of the iterative

method used to relax Poisson's equation for the gravitational potential.

If the mass motion relative to the calculational mesh is small, the con-

vergence of the numerical solution is much more efficient.

The transformations to a frame (indicated by primes) rotating with

the instantaneous angular velocity, w, are given as follows.

r = r1

e = e1 + iot'
(11-17)

z = z1

t = t1

so that

JL
at ~

JL = -JL_
3r ~ 9r'

(11-18)

ae 3Ql
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8 _ 3
3z' 3z*

where

W 5 U)(t)

In the following section the primes are dropped from the independ-

ent variables. The value of w is determined so that the instantaneous

angular momentum of the system is zero in the rotating frame.

2. Transformed Equations

The transformations must now be applied to the equation of continu-

ity, the momentum equations, and the Poisson equation. Using Eq. (11-18)

to transform £qs. (II-l), (II-5), (11-6), and (II-7) and rearranging so

that ths resulting expressions are conservative, one has

3p 1 Spur 1 aP(v - ru) 3pw . (11-191
3t r 3r r 3 3z { '

2 2
3pu J_ 3pu r 1 3pu(v -rm) , 3puw _ £V_ d± 3£ v

3t r2 3r r 36 3z " r ~ p 3r " 3r r
(11-20)

2
3pV . J_ 3puvr ]_ 3pv(v - ru) 3pvw _ £. ̂i. 1 3p ... »
3t 2 3r r 38 3z " " r 36 " r 39 ie

(H-21)

2
3pw , 1 3puwr 1 3pw(v -ro.') 3J2W_ 3̂ _ 3£ u
3t r 9r r 38 3z " p 3z " 3z z
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Poisson's equation and the viscous stress terms remain unchanged un-

der the transformation. It is important to emphasize that the azimuthal

velocity appearing above is referred to the rest frame. Nevertheless

the azimuthal convection takes place at a rate proportional to the net

velocity of the fluid relative to the rotating frame, thereby reducing

the net convection of the fluid to a minimum.

D. LIMITATIONS OF THE COORDINATE SYSTEM

For solving problems in a rotating frame it is valuable to use a

fully three-dimensional cylindrical coordinate system. To visualize the

restrictions imposed on the studies by such a coordinate system, one can

first imagine that the investigations are confined to a cylindrical an-

nul us; that is, a central core region has been excluded from the coordi-

nate system along the z-axis. For such a region it is of course neces-

sary to supply boundary conditions at every point on the confining sur-

face. In contrast, the investigation of the dynamics in a Cartesian sys-

tem would be free from the specification of bounjary conditions along the

inner region defined by the core. As a result the Cartesian calculations

would allow for a general class of motions (e.g., those passing through

the axis) that are precluded by the choice of a cylindrical system. Al-

though this limitation is sor.ewhat restrictive, it will become evident

that for the large class of problems of interest in this research efVort,

the advantages of the cylindrical coordinate system are decissive.

In the discussion of the numerical solution techniques, it will

emerge that the definition of a small central core is of great conven-

ience with little resulting sacrifice of physical reality. In addition,

we have chosen a class of problems at this stage of the investigation

for which there is perfect symmetry across the equatorial plane. The
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A boundary conditions that represent the configuration of our domain of

study are described as follows:

1) On the equatorial plane and on the core boundary, the normal

velocity vanishes; and the normal derivative of any velocity

is calculated from the requirement of vanishing viscous stress.

2) On the top and lateral boundaries the normal derivatives of the

velocities are also determined by the condition of vanishing

viscous stress. The normal component of velocity, however, is

specified in such a way as to allow for the convective loss of

mass in those circumstances in which appreciable mass loss re-

sults from explosive expansion and/or the necessity to expel

excess angular momentum.
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III. NUMERICAL METHODOLOGY

A. INTRODUCTION

The equations of motion are solved by the finite difference tech-

niques developed in this chapter. To proceed one must decide on

1) the appropriate finite difference approximation to the equations

of motion

2) the proper representation of the fkiid within the context of

these finite difference approximations

3) the establishment of a logical procedure for developing the ap-

propriate solutions from prescribed initial conditions.

The first quescion is handled in the discussions that follow of how to

represent various terms in the equations. The second question is answer-

ed by defining the calculationai mesh. The third point is discussed in

terms of a subdivision of timo into a sequence of steps counted by the

index n and of each step into a sequence of phases treating different

parts of the necessary logic for the time advancement. Phase 2 of each

cycle consists of an iterative process that requires an initial guess

and that uses a corrective process to lead to convergence. Because of

the way the variables appear in the equations of motion, the finite dif-

ference formulation can be termed implicit, and it is because of this

implicit formulation that an iterative solution procedure is required.

These ideas are further developed and expanded in the remainder of this

chapter.

B. CALCULATION MESH

KORYO is designed for the study of three-dimensional problems in

cylindrical coordinates. The calculational mesh is described graphical-

ly by the two mutually perpendicular planes in Fig. 1. In Fig. la, one

sees an r-0 slice perpendicular to the z-axis. The inner boundary
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consists of a core of cells removed from the mesh to avoid the radial

singularity as r-+0. Figure 1b is a representation of an r-z plane.

The cell size along any given coordinate is constant. The integer in-

dices (i,j,k) define the cell centers while the half-integer indices

(i±h, j±k, k±h) denote cell interfaces. The i index increases with in-

creasing r; the j index, with increasing 0; and the k index, with in-

creasing z.

A typical zone is enlarged in Fig. 2, and the centering of the var-

iables is indicated. Densities, pressures, and scalar gravitational po-

tentials are cell-centered quantities. The radial, azimuthal, and axial

velocities and the r, 8, and z coordinates are interface variables.
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VARIABLE CENTERING

FIGURE 2
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C. CALCULATIONS! SEQUENCE

The manner in which the variables are advanced in value from one

computational cycle to the next is summarized schematically in Fig. 3.

The gravitational potential for each cell to be used in advancing the

other dependent variables to time cycle number n+1 are calculated at the

beginning of each cycle, based on the mass distribution at time n.

Given the scalar potential field at time n, the phase 1 portion of the

calculation is commenced. In this section the so-called "bar" quantities

are calculated. The "bar" quantities serve as initial guesses, when tha

pressure gradients are added, for the iterative solution of the axial,

azimuthal and radial momenta of each cell at the next time level. In

phase 2 of the calculation one solves for the pressures, the densities,

and the three components of momentum by an iterative procedure.

Finally, in phase 3 the axial, azimuthal and radial velocities are

sep?"atcd from their respective momenta. The new average angular veloci-

ty of the system is determined in such a way as to reduce the average an-

gular momentum relative to a rotating frame to zero. The entire cycle is

then repeated.
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D. DIFFERENCE TECHNIQUE

1. Donor-Cell Fluxes

Donor-cell fluxing of the mass and momentum convective fluxes can

help ensure numerical stability for proolems in which violent disconti-

nuities are present either initially or at various stages of the calcula-

tion. In the present methodology the convection terms are written so

that one may weight the donor-cell averages by varying the parameter a.

Equation (III-l) defines the basic donor-cell nomenclature.

< u Q > i t y k S u 1 + y k [(1/2 • c) Qijk + (1/2 - O q,+ljJ (III-l)

where

sign

and

0 < a < 1/2 .

In the above expression Q is the physical quantity being convected

by the velocity u. In the rotating coordinate system where the convec-

tion is controlled by the quantity v-rw, it is this net quantity that

determines the sign of % and that appears as the coefficient in Eq.

(III-l). It is the use of this net quantity in the donor-cell terms that

minimizes the artificial diffusion. For full donor-cell differencing one

would choose a =1/2.

Donor-cell fluxing provides a means by which a weighted average that

depends on the direction and magnitude of the fluid flow can be performed
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on the physical variables. If a physical quantity to be fluxed appears

in a product with a coordinate, the coordinate should be taken out of

the brackets along with the convecting velocity. That is, there is no

logical reason for performing a flow-weighted average on a variable that

is not moving with the fluid. If, however, the physical quantity being

convected contains a coordinate within its definition (such as angular

momentum), the quantity should not be decomposed, and the donor-cell av-

erage is applied to the product. These rules are exhibited for some se-

lected donor-cell terms, which are specifically expanded in Appendix B.

From an examination of Eq. (III-l), one sees that the donor-cell

flux is not space-centered unless £=0. As a result low order trunca-

tion errors in 6r, 66, and &z are introduced. ' These terms provide

a positive diffusion that tends to automatically stabilize the numerical

calculations. The advantage of the donor-cell technique can also be

its disadvantage because the magnitude of the positive diffusion can in

certain circumstances be significant enough to obscure real diffusive

effects.

2. Averaging Schemes

In numerical calculations one must often perform simple averages to

obtain values of the physical variables at the mesh locations demanded

by the difference equations. This requirement is independent of the ac-

tual differencing scheme (i.e., donor-cell, space-centered, ZIP, etc.)

used. For example, if two quantities occur in a product such that nei-

ther quantity appears as it is naturally centered, one can either average

the products or take the product of the respective averages. Except

where specifically indicated, the latter technique is employed throughout

chis nethodology.
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E. PHASE 0: GRAVITATIONAL POTENTIAL

1. Tilde Notation

Given np... , %• .., and the new values for i> on the outer and upper

boundaries and in the central core region, one relaxes Poisson's equation

iteratively. To simplify the representations, one can develop a tilde

notation to indicate iterated values. One .can write

with the convention that this statement is not an equation but rather an

expression for the way in which the new value on the left is calculated

from the old value on the right.

2. Relaxation of Poisson's Equation

One can represent the finite difference version of Eq. (11-15) by

means of the statement I ... = 0, in which

ri &r

Given a first approximation to a root of the equation L... = 0, one can

obtain an improved value by employing Newton's Iterative Method.

:
1J
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where

8Lijk . 9( 1 , 1 , 1 \
* I j J + K p- + —-*• j

6r r. se 6z /

The updated potential follows

With the improved scalar potential, one now recalculates L... and tests
1JK

for convergence according to the following prescription.

where A is o constant that controls the tightness of the convergence and

hence the accuracy of the root.

F. PHASE 1: THE BAR QUANTITIES

1. Axial Equation

In this section and the subsequent one, the equations developed in

the previous chapter are presented in difference form. In Phase 1 the

"bar" quantities are calculated. Beginning with the axial momentum equa

tion one first calculates the z-component of the viscous stress tensor,

Eq. (11-13).

i-Wk^ (\ik«, " Vljk+J]
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+ r

2 f iQ2
" Wijk+W

(V.

1 f n / n n \
1 ? L Pl"jk+1 ' W i J k + 3 / 2 " w"""Jk+!2'

n /n n
- p i j k ( w

(IH-7)

The initial guess for the new axial momentum of each cell follows direct-

ly from the V 's and

(11-22), one defines

ly from the V 's and from the ij/s. Deleting the pressure term in Eq.

W (" <pw(v ~

^ ( n <PW2>ijk

*4^K,k-%I *ijk

2. Azimuthal Equation

The 8-cornponent of the viscous stress from £q. (II-12) is

(III-8)
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n, 2,(pr h
6r

(n
V i j

nw
V 1 - y

1
7 2

n n,
vij+3/2k "

\ n /n
k/ " p i jk \

1 n /n

, ( " *
(III-9)

Omitting the pressure terms from Eq. (11-21) and using Eq. ( I I I - 9 ) , one

defines the expl ici t part of the azimuthal momentum equation in di f fer-

ence form.

6t puvr

^ (n <pvw>1 j

< pvw >
\ . pij+%k (n. n \

ij+Jsk+%/ TT6e"\ * i jk " ^i j+lk/
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(111-10)

3. Radial Equation

For the r-component of the viscous stress one has from Eq. (11-11),

<5r
n.. _ n.

i • I I •i+3/2 ui+3/2jk

r i 2 2

/n

~ 2

Sz

/n n \ n
\ i-Bsjk+1 " i+%jk/ "

"(""
(III-ll)

From Eqs. (11-20) and (III-ll) one has for the explicit portion of the

radial momentum equation again with the pressure terms absent

< P u r > i j k
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i + % j + % k ) + -L ( n

In (V ) \ . (111-12)
ri+Jg

4. The Difference Equations

From al l of the segments introduced and definsd in this section we

are now in a position to exhibit the fu l l f in i te difference version of

the equations used for the calculations.

n+1 n
Pijk " p i j

6t
i j k + _ ] _ . (n+1 _ n+1 \

r1 5r \ < p u r > i+^.jk < p U r > i-Jgjjk/

7^6e \ ^ M l ' I U ' " ij+%k

(111-13)

f

"+1 (pv)ijt,k - W i J t , k • ^ ("+1Pijk - n + \ 1 t J (HI-IS)
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G. PHASE 2: ITERATIVE RELAXATION OF THE MASS

AND MOMENTUM EQUATIONS

1. Initialization

During this phase of a computational cycle, tne continuity equation

and the momentum equations are solved simultaneously using an iterative

relaxation scheme. At the beginning of phase c the components of axial,

azimuthal and radial momentum are initialized using the newly obtained

"bar" quantities and the pressure field at time n. Using the tilde nota

tion developed in the gravitational potential section,

i (ir (V

(111-18)

2. Calculating New Pressures and Densities

One now commences the implicit portion of the phase by defining a

function [)... that goes to zero when the equation of continuity is sat-

1JK

isfied. From Eq. (II1-13)

Di jk - 5t + r. 6r l< pu r > *•"-••- ^ pu r

+ - 1

( i n" 2 0 )
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The procedure used to obtain the roots of D is again that of Newton,

although the process is somewhat more involved here than in the solution

of Poisson's equation described earlier. One must form the partial de-

rivative of D... with respect to ?--(,• To avoid a fairly complicated

derivative, one can define a function {5... that is identical to the func-

tion D-.. except for the replacement of the donor-cell fluxes v/ith simple

eel 1-centered fluxes.

ijk - <5t

, 1
r. 69

• Sf [̂ 'ilk* " <* W

Forming the partial derivative of 0..

_ + _ 1
9Pijk « ^

r.,, — ~ —— r

iSQ

(pv).. j. "1

i. p ( p w )ijk^ (111-22)

in which the derivative of the w terms has been neglected. From the

equation of state, Eq. (11-14)
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or

(111-23)

From Eqs. (II1-14), (111-15), and (111-16) with the pressures at time «-l

replaced by the "tilde" pressures Eq. (II1-22) becomes

i-J5 6r

6 t ++
69 [ri 60 r

fit 1 + J_ [fit 6t
. 69 J 6z [6z 6z

or

, 26t + _2ot_ .,.251

6/ r i
2 6 8 2 6z2

The new <5prk's follow from Eqs. (If 1-20) and (111-24)

D..,,
(111-25)
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Once the solution has converged it will not matter that the equa-

tions have been relaxed substituting the approximate expression, Eq.

(II1-24), for the exact -^— . In addition to being less complicated,
8p j

Eq. (111-24) tends to relax the system in fewer iterations than the cor-
3D • i k

responding expression for ~ J . From Eq. (111-25) one sees that this
3pTjk

latter conclusion is reasonable because, as shown in a subsequent sec-

tion, the approximate derivative is always smaller than the exact one.

If, however, the equations do not converge, the correct derivative or a

closer approximation reflecting more of the nature of the fluid flow can

serve as a remedy. For certain situations it is necessary to use this
3D-j-jk

more nearly correct expression. A detailed discussion of • ~ is re-
Spijk

served for the section of this chapter entitled Special Methodological

Developments.

From Eq. (II1-25) the new p-^'s follow directly.
1 J K

With these new pressures and the equation of state, the new densities are

£ = ( A 1 ) (111-27)

3. Momentum Equations

The "bar" quantities and the new pressures allow one to solve for

the momentum components.
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6t

W " »i +yk
+ f (Pijk" Pi-uk) (I!I-30>

One now tests for convergence according to the simple prescription

The quantity p is a maximum density obtained at each iteration level,
lliUA

and e is a factor controlling the tightness of the convergence. If any

D... fails to satisfy the criterion defined by Eq. (111-31), the calcu-
1JK

lation returns to Eq. (111-20) and the whole process begins again. When

the convergence test has been satisfied the tilde quantities become the

n+1 quantities.

H. PHASE 3: VELOCITY COMPONENTS AND

THE NEW FRAME

One can now separate the velocity components from their respective

momenta. The following equations are used.

n+1

n+1

n+1
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The angular velocity of the rotating frame to which the variables are re

ferred is selected by requiring the net angular momentum relative to it

be zero.

ijk

Solving for w

P 3 n+l
Ijk

I. REPRESENTATION OF THE VARIABLES

In order to follow the general evolution of the physical system and

to isolate significant characteristics, one must have a way to represent

the field variables in a useful and convenient fashion. The difficulties

attendent to the successful analysis of three-dimensional results are

non-trivial. The approach taken in this work utilizes two types of

printout and three types of graphical representation to exhibit system

properties.

A short print summarizing certain aspects of the problem at each

cycle is used to provide a frequent monitoring of the evolution. Quan-

tities presented in the short print include the cycle number, the prob-

lem time, the current time step, the number of iterations in the gravita-

tional potential and in the phase 2 calculation respectively, the central

pressures, densities, and velocities, the angular velocity of the rota-

ting frame and its variation with time, the total gravitational, kinetic, -̂

rotational and internal energies, the total angular momentum relative to
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both fixed and rotating frames, and the total mass. At selected edit

times a long print yields the value of all dependent variables at every

mesh point.

The graphical display of such a complicated system is also desir-

able in analyzing the results. At selected edit times contour plots of

density, pressure, gravitational potential, and angular velocity relative

to the fixed frame are plotted in mutually perpendicular planes. The r~6

plots are in the z = 0 plane. The r-z contours are along a ray through

the most massive regions of the fluid. Velocity vector plots are also

provided in these planes. One of the most useful forms of graphical re-

presentation is the computer movie. A movie allows the researcher to ob-

serve the total system in continuous stages of evolution, making it less

easy to overlook significant developments and perturbations. Movies are

therefore made to follow the progress of selected problems.

J. SPECIAL METHODOLOGICAL DEVELOPMENTS

1. Symmetry

In order to gain confidence in the physical significance of the re-

sults produced by the methodology for general three-dimensional problems

for which it is either difficult or impossible to make direct ties to an-

alytic theory or to observation, one can make a series of calculations

that have simple symmetries and can check the conservation of symmetries

as the systems evolve. If, for example, one initiates a collapse problem

with an initial spherical configuration and no rotation, the system

should retain this symmetry throughout its evolution and the azimuthal

velocities should remain zero. Several such studies have been made, and

the results indicate that the convergence of the gravitational potential

must be rather tight (about 10 significant digits are required) if the
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symmetric characteristics of the problem are to be maintained at late

time. If the convergence criterion is relaxed* a substantial azimuthai

velocity field develops with velocities comparable in magnitude to radial

and axial collapse velocities. By requiring the same degree of accuracy

during the evolution of asymmetric self-gravitating systems, one ensures

that the observed dynamical phenomena are more likely to be real in the

sense that they result from natural physical processes rather than from

numerical inaccuracies.

2. Numerical Stability

a. Classical considerations

The next facet of special methodology concerns a difficulty with nu-

merical stability. To describe this difficulty one must first consider

the classical aspects of numerical instability as follows. Three-dimen-

sional problems are very time consuming and expensive. One reason that

these are slow arises from the fact that one is trying to resolve a vol-

ume of space in some detail with a discrete calculational mesh. Many

cells are utilized even for coarsely resolved problems. The three-dimen-

sional methodologies are more complicated because one is dealing with

more coupled nonlinear partial differential equations, and the added com-

plexities result in slower problem evolution. To speed the calculation

one must force the system to evolve using the largest possible time steps

subject to numerical stability requirements. The time step is controlled

by the condition

v <5tmax
ox < 1 {III-37)
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v is the maximum velocity component in the system at time n and Sx is
max
the corresponding coordinate zone size. For the azimuthal velocity, one

uses (v - rw) and r5d for vm=v/ and 6x, respectively. The above expres-
iiiax

sion is a statement that the fluid canno- traverse more than one zone in

a given time step. To be cautious during the rather violent dynamical

stages of evolution of the fluid systems studied in this work, the left-

hand side of Eq. (111-37) is restricted to being 1/5 or less.

There are other constraints that must be considered in this discus-

sion of numerical instability, fhese constraints limit the magnitude of

the artificial viscosity. From stability analysis, one must satisfy

the following condition

2 —p + —
\6r r/S9 Sz

whereas the lower limit of the viscosity is constrained by the require-

ment

where n is the number of cells necessary to define the width of the gra-

dients. Typically, one selects an n of 2. The above three conditions

are not independent; and if 6x is selected appropriately, Eq. (111-39) is

automatically satisfied when Eq. (111-37) is used to determine the time

step and when Eq. (111-38) is used to obtain the kinematic viscosity.

Note that Eq. (II1-38) illustrates the motivation for a central core in

the calculation, which excludes some zones which would otherwise be very

narrow in the vicinity of the axis. The corresponding small value of

r. 69 would introduce severe restrictions on the time step. Since



43

calculations in three space dimensions are \/ery time consuming with even

the fastest modern computers, the added time step restriction should be

avoided.

b. Local viscosity instabilities

Despite adherence to the restrictions described in the preceding

paragraphs, difficulties can arise from a somewhat different type of

local viscosity instability. Density discontinuities in adjacent cells

can be many orders of magnitude in the regions of the mesh far removed

from a center of gravitational attraction. If in four adjacent cells one

cell has a relatively high density compared to that of the other three,

the average density required at the common nodal point by the viscous

stress components would be that of the high density cell if a straight

linear average of all four were used. The resulting momentum flux would

then be too great for the low density zones. Experience with this four-

cell-average approach shows indeed that the velocity at such interfaces

can grow catastrophically in magnitude, changing sign every time step.

A fairly simple solution to this difficulty can be implemented. One

forms a linear two-cell average of the densities on either side of the

viscous flux direction and then selects the lower value for use in the

viscous stress components. This procedure is conservative of momentum

because the value of density assigned to a node is the same when viewed

from either side of the flux. The fact that this technique is applied

throughout all regions of the mesh is of no consequence to this research

because the viscous stress components and the kinematic viscosity are not

used as physical properties of the fluid, but are instead numerical arti-

facts employed for stability.
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3. Pa r t i a l Der iva t ive of D...
IJK

For certain dynamical systems the equations may not converge using

the -,J •- approximation given in Eq. (111-24). In these instances the
9pijk

convergence can be regained by using the correct expression, formed by

the partial derivative of Eq. (111-20) rather than of Eq. (111-21).

From Eq. (111-20) one has

The first term in Eq. (111-40) is simply Eq. (111-23). To obtain

the partial derivatives of the donor-cell terms, these must first be ex

panded. Consider for example the < pur>^+^.,< term.

r- h)

\\

whsre ?1 = a sign (^ +1, -k) 0 < a < 1/2 . Therefore
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j

From Eqs. (111-30) and (111-23), Eq. (111-42) becomes

To evaluate the one remaining partial derivative, one uses Eqs. (111-23)

and (111-30) and the chain rule.

_

" 1

6r 1+y

or

6t

Combining Eqs. (111-43) and (111-44) one has

6t ,

^ 6 r
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"•!+!-- l&t 1
| • O J *-• l# I

I J \

(111-45)

By analogy the other partial derivatives follow.

" "

where

C2 = a sign ( u ^ ^ ^ ) 0 <a< 1/2

fit

(111-47)

where

C3
 = asign ( v ^ . ^ - r.u) 0<a< l /2
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£) 9 -̂  p(v-rhi) > 1 j , j s k = _ 6t _ ^4 vij-igk . _ ^4 ( p i j - l k " p i j k }

6t ,

(111-43)

where

= a sign (v^ . i ^ - r^u) 0 < a < 1/2

ap1 j l c

(IH-49)

where

0 < a < 1/2

§t

* 7 ~^'l-i (HI-50)

where

C6 = a sign (wi j ^ ) 0 < a. < 1/2
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As a first approximation to this improved form one may neglect the terms

involving density differences in Eqs. (111-45), (111-46), (111-47),

(II1-48), (111-49), and (111-50) and substitute the resulting expressions

into Eq. (111-40), arriving at a muc

without much additional complexity.

3D i i kinto Eq. (111-40), arriving at a much closer approximation to ̂  s>- •
3 p i j k

3 D i j k w 1 + 2<St + 23t + 26t

Dp o t Y A f p ) ^ 1 fi? r.26Q2 1?

r. 66 <5G
ijk-^+WiWi

<5z J

(111-51)

Equation (II1-51) is identical to Eq. (II1-24) except for the terms in

brackets. These terms are all positive definite with the exception of

the to term, which can be positive, zero, or negative. In general the net

contribution of the additional terms is positive, serving to slow down

the relaxation of the equations and thereby improving the propensity for

convergence.

4. Velocity Zeroing

One may want to set the high velocities in the relatively rarefied

regions to zero. This procedure does little to effect the physics be-

cause of the low fluxes associated with the lower densities of the region;

and it does allow the problem to evolve using a greater time step, as well

as giving more detail in the velocity vector plots for the more dense

fluid areas where the velocities are smaller.
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5. Pressure Halving

From Eq. (II1-27) one can anticipate a difficulty arising because

of possible negative pressure excursions during the phase 2 iterations

before convergence has been achieved. It turns out that negative pres-

sures only occur in conjunction with the velocity zeroing schema de-

scribed in the preceding section. To avoid the difficulties arising from

the resulting negative densities, one simply tests the new pressures cal-

culated each iteration from Eq. (111-31) to determine if any arc ney-ative.

If a negative pressure occurs, the associated change in pressure is set

equal to half the former positive value.
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IV. NUMERICAL ACCURACY

A. INTRODUCTION

Finite difference solutions of the partial differential equations

are never exact because of the presence of truncation and coarse con-

vergence errors. The truncation terms are generally the greatest source

of inaccuracy for calculations in which one is forced to use a coarsely

zoned mesh. To aid in determining the numerical accuracy of the three-

dimensional code, KORYO, a two-dimensional computer program, TAEBEK, has

been developed. Because KORYO and TAEBEK are based on the same funda-

mental equations, comparison calculations can be easily performed.

KORYO and TAEBEK are both capable of treating initial value prob-

lems. Each can be run to a unique final steady state equilibrium con-

figuration. One can compare the final multi-dimensional steady state

solutions to a finely resolved one-dimensional hydrostatic equilibrium

calculation. If all three calculations agree, our confidence that the

numerical solution is in close agreement with the actual solution of the

partial differential equations is greatly increased.

B. PROOF TESTING OF TAEBEK

1. Two-Dimensional Time Relaxation to Steady State

Starting from an initial arbitrary non-equilibrium configuration,

the two-dimensional TAEBEK code has been used to follow the evolution of

a non-rotating, non-conducting, self-gravitating, polytropic fluid to

its steady state. From basic physical principles one expects the steady

state configuration to be spherical. For this reason the symmetry of the

final state provides a qualitative check on the accuracy of the solution.

For this calculation a coarse 10 x 10 mesh is used. An individual

cell is a toroid with a square cross section that measures 10 cm on each
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side. The mass is initially distributed in two regions of space. A uni-
3

form density of 1.34 g/cin is put into a cylindrical region that has a

radius and a half-height, respectively, of 7x10 cm. Everywhere else in

the mesh, the density is set to half this value. The resulting total

mass of the system is 5.65x10 g. The adiabatic-parameter, A, in the

polytropic equation of state is held at a constant value of 10 cm ' /
1 0 T O O

g"2 s , y is 3/2, and the kinematic viscosity is 10 cm /s.

Figures 4 and 5 are contour plots of the density and gravitational

potential at four selected times during the collapse. The r axis is hor-

izontal; the z axis, vertical. The origin of the coordinate system and

the center of the fluid body is at the lower left of the plots at the in-

tersection of the axes. That is, one is looking at only the upper quad-

rant of the body. 1 = 0 is a plane Oi symmetry; r = 0, an axis of symmetry.

In Fig. 4a at t=0 s, the initial configuration is shown by the

single contour line. The circular segment that has been drawn over some

of the contours is present to allow one to better assess departures from

spherical symmetry. Based on the decrease in total kinetic energy, the

system is assumed to be in equilibrium at t=26,000 s. The excellent

agreement with spherical symmetry at this time occurs despite the coarse-

ness of the zoning. The innermost contour at later times is a straight

line because of the coarseness of the zoning. The evolution of the grav-

itational potential in Fig. 5 is similar, although visibly less dramatic.
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2. One-Dimensional Hydrostatic Equilibrium

In steady state the self-gravitabing fluid body of the preceding

section is spherically symmetric. Under such conditions one can solve

for spatial density and gravitational potential profiles in a straight-

forward manner. In steady state the radial momentum equation reduces to

the following simple form.

Since the adiabatic-pararneter is assumed to be constant, the equation of

of state can be used to eliminate p from the above equation. After re-

arranging, the result is

Equation (IV-2) can be used in conjunction with the one-dimensional

Poisson's equation for the gravitational potential to solve for p and ty.

In spherical coordinates one has

^2 9r \ dr)

Substituting Eq. (IV-2) into Eq. (IV-3) and rearranging

where
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_ 4TTG(Y-1)

Equation (IV-4) is a nonlinear second order partial differential

equation that can be easily solved numerically. If one centers the vari-

ables as in the two-dimensional code; and if one defines an analogous in-

dexing scheme, as depicted graphically in Fig. 6, the finite difference

form of Eq. (IV-4) is

Hll

r\ c, p. (IV-5)

FIGURE 6
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Equation (IV-5) can be solved algebraically for P-+1- The result is

r i - % [ ( p i } - ( pi-l } ] - 6 r ri Cl pi + , .Y-

-j + (P. V

(IV-6)

One now obtains iji(r) from the finite-difference form of Eq. (IV-2)

To generate the solution from Eqs. (IV-6) and (IV-7) one needs the

central density (pJ, the central scalar potential (t/>_), the constantc c

adiabatic-parameter, and boundary conditions that result from the assump-

tion of axial symmetry. That is,

P2 = pc ' *2 = ^c ' pl = P2

3. Comparison of the One- and Two-Dimensional Results

The one- and two-dimensional calculations are compared graphically

in Fig. 7. The solution along the axis agrees very well with the one-

dimensional result. The solution along the radius agrees nearly as well.

The apparent asymmetry in the two-dimensional result is due to the coarse

ness of the calculational mesh. In Fig. 7b one sees that for this series

of calculations the gravitational potential has been normalized to zero

at the center of the body.

Subsequent to the completion of tin's development for methodological

check purposes, a publication has appeared that also addresses
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one-dimensional hydrostatic equilibrium with a finite difference scheme.

Although the detailed numerical techniques differ slightly, the solu-

tions produced by the respective schemes are virtually identical.
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4. Numerical Viscosity Parameter Study

In Chapter III, Sec. I the numerical stability constraints on the

kinematic viscosity have been described. There are also physical consi-

derations that can influence the selection of an appropriate viscosity.

In many applications one wishes to begin with a self-gravitating body in

equilibrium and to study phenomena resulting from various perturbations

to steady state. In such cases the transient dynamic phases in the ap-

proach to equilibrium are not of interest, and one is free to select rton-

physici viscosities merely to expedite the development of the desired

steady state.

Fluids can behave in ways analogous to harmonic oscillators. If the

kinematic viscosity exceeds a certain critical value, the system is over-

damped; and equilibrium is approached very slowly because of the large

frictional resistance to fluid flow. If on the other hand, the system is

severely underdamped, it will oscillate about the equilibrium configura-

tion essentially forever. The goal then is to select a viscosity that

does not prove overly restrictive on the time step and that is not too

far removed from the critical value of the physical system.

For these reasons a study has been made to consider the effect of

viscosity on the self-gravitating fluid sphere described in Sec. IVB.

Each calculation is made using a numerical viscosity that is constant

over the entire mesh. The viscous stress components assumed in this

study are those taken from the stress tensor appropriate for an incompres-

sible fluid (Eqs. (11-11), (11-12), and (11-13)).

One begins by perturbing the hydrostatic equilibrium configuration

with an angular momentum step function. Tha fluid is given a sudden solid

body distribution of angular momentum and is allowed to expand under the
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action of centrifugal force for 1300 seconds. The angular velocities are

then re~zeroed, and the now slightly oblated body is allowed to collapse

back to its original equilibrium configuration. To monitor the approach

to equilibrium, the total kinetic energy is studied as a function of

time. The process is repeated for four different viscosities.

The results of the study are summarized graphically in Fig. 8. The

plots begin at the time whan the rotation is turned off. In 1300 sec the

body has not reached rotational equilibrium. The initial decrease in

kinetic energies reflects the removal of the centrifugal force driving

the expansion and the subsequent deceleration of the fluid. Gravity

turns the velocities around and the now unstable mass distribution de-

celerates toward the former equilibrium configuration. If the system is

not overdamped, the fluid overshoots the equilibrium point because of the

newly acquired linear momentum and oscillates about it with an e-folding

time dependent on the magnitude of the viscosity.

10? 112

Figures 8a (v=5xl0 cm/s) and 8b (v = 10 cm /s) have the same

period of oscillation and have similar amplitude decay rates. The dash-

dot line in Fig. 8b is a fit to the trace using the analytic form for a
*

damped linear harmonic oscillator. The free parameters in the fit are
the decay rate and the frequency. The agreement is comforting, although

* The equation of motion of a damped linear harmonic oscillator is

x = - k x - Ax
2

where k is the spring constant; A, the frictional term; and x, the dis-
placement. Solving, one has for the real part

-A/2(t- tn) ,. . ,
x = xQ e o' cosu(t-t Q)

2 2 *3
where to = IT/(4k - A )
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only qualitative agreement is to be expected. In Fig. 8c the viscosity
11 2of 4x10 cm /s is approaching the critical value. Figure 8d shows the

1? 2system to be overdamped at a viscosity of 10 cm /s.
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C. PROOF TESTING OF KORYO

1. Symmetry Considerations

The two-dimensional code, TAEBEK, and the three-dimensional code,

KORYO, are based on very similar methodologies; and, when symmetry al-

lows, they can be used to address identical problems. The methodological

checkout of TAEBEK has already been described in the preceding sections

of this chapter To test KORYO, one compares it to its predecessor by

solving a problem with axial symmetry.

An obvious question regarding the methodology of KORYO relates to

its ability to maintain axial symmetry if the nature of the problem de-

mands that it do so. This question has been addressed by two separate

parameter studies involving the tightness of convergence imposed, respec-

tively, on the iterative solution of Poisson's equation for the gravita-

tional potential and on the iterative solution of the equations of motion.

From these studies one concludes that the convergence criteria for the

former must be rather strict, and that for the latter it need not be so

severe.

The above result is fortunate because the iterative relaxation pro-

cess used to determine the gravitational potential is very fast, and the

increased fraction of time spent in this phase of the calculation due to

the required close convergence is minimal. One reason why this conver-

gence restraint on the potential does not require a large number of ad-

ditional iterations has already been discussed in Chapter II, Sec. D;

i.e., the initial guess to the gravitational potential is very good in a

rotating frame. For the iterative relaxation of the equations of motion,

the number of iterations required is, of course, a strong function of the

dynamics of the system. Since this phase of each calculational cycle is
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one of the most time consuming parts, it would have been costly in total

problem running time had the axial symmetry been overly sensitive to the

convergence of the phase 2 solutions.

2. Three-Dimensional Time Relaxation to Steady State

A natural choice for a comparison calculation is the problem already

described. The outer dimensions of the problems are the same; however,

because of the central boundary core in the three-dimensional mesh, the

specific zoning in KORYO must be somewhat different. A 5 x 1 2 x 5 mesh

with 6r = 5/3x10 cm, 69 = 2IT/12, and 6z = 2xlO cm has been selected.

The calculations are started with different initial conditions from those

used in the TAEBEK calculation. No artificial axial symmetry constraints

have been imposed on KORYO, i.e., the calculation is fully three-dimen-

sional .

In Fig. 9 KORYO density contours in both the r-8 a*:-'} the r-z planes

are presented at wery early times. The initially uniform mass distribu-

tion has begun to collapse under self-gravity. The concentration of con-

tours near the outer boundaries indicates that the mass in these regions

is being drawn rapidly inward. At the late time represented in Fig. 10

the contours are evenly distributed throughout the mesh, and the body has

reached a symmetric steady state.

Figures 11 and 12 summarize the evolution of the gravitational po-

tential. When the mass becomes more centrally concentrated, the poten-

tial well deepens as one would expect. The influence of the core on the

gravitational potential is very clearly demonstrated by the contour plots

in the r-z plane. The effect of the core is more pronounced at the ori-

gir of the coordinate system than it is farther up the z-axis. The im-

plication is that the influence of the core is configuration dependent
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and that the greatest effe X results when the body is concentrated near

the origin. This point is discussed in a subsequent part of this section.
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3. Comparison of the Two- and Three-Dimensional Results

A more quantitative comparison of the two- and three-dimensional

calculations is provided by the profiles of density and gravitational po-

tential presented in Figs. 13, 14, and 15. The comparison of TAEBEK with

the one-dimensional hydrostatic equilibrium calculation presented earlier

in this chapter is for a 10x10 mesh. The KORYO calculation discussed in

this section uses much coarser zoning- For these reasons Figs. 13 and 14

include a comparison between a TAEBEK calculation that employs a 5 x 5

mesh and one that uses a 10x10 mesh. The resulting profiles are in ex-

cellent agreement; therefore, the zoning differences do not enter signif-

icantly into the interpretation given below.

The density and gravitational potential profiles calculated with

KORYO are in fairly good agreement with those produced with TAEBEK. The

lower central density predicted by KORYO is a result of the massless core

and the resulting higher gravitational potential in proximity to it.

Naturally, the worst agreement results when one looks up along the z-axis

in zones immediately adjacent to the core. In Fig. 15 the gravitational

potentials are compared for a rotating self-gravitating body to demon-

strate that as the system becomes less centrally condensed, the effect of

the core is reduced. For the class of physical systems, that this method-

ology is specifically designed to address, the effect of a central mass-

less core seems to be of relatively minor consequence.

The effect of the central core is related to the fraction of the to-

tal mass excluded from the system by its presence. The magnitude of the

effect is therefore inversely proportional to the number of radial zones.

That is, the influence of the massless core in a calculation using 10

radial zones instead of the 5 described in these check cases is reduced
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by about a factor of two. All of the protostar models reported in Chap-

ter V and VI do in fact use the finer radial zoning. The effect of

truncation errors and the convergence of the numerical solutions are

discussed in more detail in Appendix C.
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V. COLLAPSE OF A ROTATING INTERSTELLAR CLOUD

A. INTRODUCTION

As a first step in the study of the dynamics of protostellar evo-

lution, we have examined the formation of toroids from uniform and from

nonuniform distributions of interstellar gas. As discussed in Cnap-

ter I, several other workers have studied the same problem and have

come to contradictory conclusions. In e\/ery case the calculations,

upon which the conclusions are based, have been two-dimensional, with

forced axia"! symmetry. Our goals with the fully three-dimensional cal-

culations have been

1) to investigate whether or not stable toroidal rings can

be formed from the collapse of a three-dimensional con-

figuration

2) to see if the formation of such rings can be inhibited

or prevented by the existence of perturbations in the

initial gaseous distribution

In selecting initial conditions one uses the limited observational

guidance available. The assumption is made that the early protostar

can be modelled by a cylindrical region of space, characterized by an

average uniform density. The dimensions of the cylinder are chosen to

be consistent with the size of observed dark globules and other dense

interstellar clouds. The primordial cloud is assumed to be initially

in solid body rotation with a counterclockwise sense. In choosing a

rate of rotation one is guided by the observation that neither the

stellar rotation axes nor the axes of binary systems show any preferred

orientation relative to the galactic plane. This random orientation

implies that the rotational motions originated in random turbulent

motions in the interstellar medium and that the rotational velocities
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of protostellar clouds are comparable to the measured translational
64velocities. One therefore chooses angular velocities greater than

or approximately equal to galactic rotation rates.

The collapse calculations have been performed in a grid that has

10 radial, 12 azimuthal and 5 axial cells resolving the space above an

equatorial plane across which symmetry has been assumed. The 12 azi-

muthal zones divide the region into 30° segments. In an r-z plane the

cell surfaces are rectangles. The axial dimension of a zone is

1.4 x 10 cm; the radial dimension is exactly one-half the .-xial value.

The upper boundary is 7.0 x 10 cm above the reflecting plane. The

inner radial boundary required by the central core and the outer radial

boundary are 7.0 x 10 cm and 7.7 x 10 cm, respectively, from the

axis of rotation.

The results are summarized using contour plots of density, gravi-

tational potential, and angular velocity in both the r-e and the r-z

planes. The r-e plane contours represent conditions in the equatorial

plane. Plots in the r-z plane are selected to pass through the most

massive azimuthal ray of the system. Velocity and momentum-density

vector fields in the r-e and r-z planes, as referred to both the lab-

oratory and the rotating frames, are used to summarize fluid motions.

All vectors originate at cell centers; so the tails can be easily iden-

tified either by visual inspection or by using a straight edge to line

them up. The r-e plane vector plots contain linearly interpolated

additional azimuthal rays of two different lengths to fill in the di-

verging areas, facilitating pattern identification.

A density, called the maximum interpolated density, and a radius,

called the position of maximum interpolated density, are used to
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summarize the time evolution of a system. These variables are given

the symbols p1 and R , , respectively. They are obtained from a
max pmax

three-point parabolic fit to the maximum cell density and the two

adjacent densities. Except where specifically indicated, all quanti-

ties are reported in the cgs system of units.

B. RING CHARACTERIZATION

1. Assumptions and Constraints

The literature on equilibrium rings, as well as the generally re-

strictive assumptions upon which these works are based, is summarized

in Chapter I. We continue to assume that a polytropic gas equation of

state is valid. One is constrained by the calculational mesh to study-

ing rings that have dimensions comparable to or greater than the dimen-

sions of an individual cell. The viscosity chosen for the calculations

is limited to that amount necessary for numerical stability; therefore,

the systems are not significantly constrained from rotating differen-

tially. Examples of the patterns of differential rotation that develop

in the various calculations are presented in the form of angular veloc-

ity contours referred to the laboratory frame.

The only symmetry constraint imposed on the system is the reflec-

ting plane at z = 0. This assumption limits the problems one can ad-

dress to a specific, but rather large, class. The reflecting plane can

be easily removed at the expense of increased computing times or of re-

duced spatial resolution.

We reemphasize the three-dimensionality of the calculations, with

the finite difference tL-hniques used throughout, the potential sur-

faces and the mass configurations of highly distorted objects can be
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more accurately determined than with any analytical solutions that are

currently available. The distortion scales of interest must, however,

be comparable to or greater than the computational zone size if they

are to be resolved.

2. Geometric Properties

To describe the structural appearance of a ring, one needs to con-

sider two separate geometric features. The radius of the toroid, de-

fined as the distance from the axis of rotation to the maximum density

contour, is the first of these features. Figure 16 graphically illus-

trates this concept. The second feature depends on the cross-sectional

characteristics of the region of high mass concentration in the ring.

If the configuration is that of a circular toroid, one can characterize

the cross section by a single linear dimension, the radius of the cir-

cular cross section. In general, rotating rings are flattened into the

equatorial plane; so the cross sections can not even be accurately rep-

resented as ellipses with well-defined major and minor axes. One

therefore defines an average dimension, which in all subsequent sec-

tions is called the characteristic cross-sectional radius, a, of the

ring. To determine a_ for distorted toroidal systems one measures the

diameter of the ring in the equatorial plane, divides by two, and aver-

ages this result with the measured axial radius. The cross-sectional

radius of a ring section is graphically illustrated in Figure 16.

The radius, R, of a toroid is a uniquely and well-defined concept

if one uses the definition given above. The characteristic cross-

sectional radius, on the other hand, requires that one know the loca-

tion of the ring surface. As a matter of convention we define the
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surface of the ring to lie on the contour that represents one order of

magnitude decrease from the maximum density in the ring.

Both of the geometric features described above depend in a compli-

cated way on the partitioning of energy in the system. The radius of

the toroid is most sensitive to the gravitational potential energy and

to the kinetic energy of rotation. The characteristic cross-sectional

radius of the ring is likewise influenced by these energies; but in

addition, the area and shape of the ring depend very strongly on the

thermal pressure.

The geometric characteristics of rotating toroids result from a

very complicated interaction of centrifugal and gravitational forces

with forces arising from the internal thermal pressures of the ring.

As a means for estimating the characteristic cross-sectional radius,

one assumes that a section of the toroid can be represented by an infi-

nite cylinder; and one non-dimensionalizes the cylindrical equation

of hydrostatic equilibrium. Combining Eqs. (11-14), (IV-1), and the

one-dimensional form of Eq. (11-15) and expanding the inner radial

derivative, one has

Defining the following change of variables

r = ax

(V-2)

• w
Substituting Eq. (V-2) into Eq. (V-l) and rearranging, one obtains \
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The dimensionless quantity above can be scaled by writing

= 4u
Y

where A is a free scaling factor. Setting y = 5/3 and solving for a>

one has

a = A — ! ^ (V-5)

Once the free scaling parameter is chosen, Eq. (V-5) provides a

very convenient and surprisingly consistent means for predicting the

characteristic cross-sectional radius of a self-gravitating system.

The selection of the free-scaling parameter, A, is discussed in Section

G of Chapter VI.

In the following discussions, systems are classified as dispersed,

intermediate, or compact purely as a matter of convenience. A dis-

persed gas is characterized by thermal pressures that significantly

resist local self-gravity. For a fixed ratio of specific heats the

designation cen be qualitatively defined in terms cf the entropy vari-

able, A. Systems with higher values of A are more dispersed than those

having lower values. Dispersed toroids are those for which the charac-

teristic cross-sectional radius, a, of the ring is comparable to the

radius, R, of the toroid. Compact toroids are those for which a_ is

much less than R. Intermediate toroids lie in between.
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C. RING FORMATION

-18An in i t i a l density of 1.38 x 10 is distributed uniformly over

1. The Collapse of a Uniform Cloud

isity of 1.38 x 10" ]8 is distributed

the calculational grid. The total mass in the system is 1.81 solar
20masses. The entropy variable, A, is assigned the value of 1.5 x 10 .

The azimuthal velocity is i n i t i a l l y that of a solid body rotating with

an angular velocity of 6.0 x 10" . The radial and axial velocities

are in i t ia l ized to zero. For these assumed in i t i a l conditions the

cloud satisfies the Jeans criterion and begins to collapse under i ts

own self-gravity.

Figures 1 7 - 2 2 summarize the early-time configuration and flow

of the f lu id . Although the variation is only about 20%, the r-e plane

density contours of Fig. 17a show that a toroidal buildup of mass has

already begun. The lowest-density contour in that plane is greater

than the in i t i a l density of the system. The net increase results from

the gas in the upper regions of the cloud collapsing down toward the

equatorial plane unimpeded by the action of centrifugal forces, as

shown in the r-z plane contours of Fig. 17b. The toroidal structure

is also evident in both the r-e and r-z plane angular velocity contours

of Fig. 19a, b. One notices that patterns of differential rotation

have begun to develop. The ring i tse l f shows the highest angular ve-

loc i t ies, while the f lu id elements near the axis of rotation and those

near the lateral boundary lag behind. The gravitational potential con-

tours in Fig, 18a, b do not visually indicate the ring configuration.

In the r-e plane the potential well is centered on the axis of rotation

rather than on the ring circumference.
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The velocity and momentum-density vector fields summarize the

fluid motion. The accretion onto the ring is best illustrated in the

rotating-frame plots shown in Fig. 21a, b. The largest radial veloc-

ities occur in the fluid outside of the region of ring formation. This

velocity pattern is consistent with the axis-centered gravitational

potential contours of Fig. 18a. The picture one has of the accretion

process is that of gas in the upper and outer regions of the cloud

falling toward a toroidal core that has begun to form at a radius where

centrifugal and gravitational forces are in balance.

The r-z velocity and momentum-density vector fields of Fig. 22a, b

illustrate the collapse toward the equatorial plane. The vectors higher

up the z-axis have a slight positive radial component. Two independent

mechanisms contribute to produce this outward motion. First, since

there is less mass near the axis in the upper regions of the cloud, the

radial gravitational potential gradient is small; and the centrifugal

forces resulting from the assumed initial conditions can dominate.

This effect increases with time as the upper regions become more and

more rarefied near the axis. Second, the downward falling gas en-

counters a pressure gradient that accelerates the material outwards as

it impacts the spherical surface of the high pressure toroidal core.

As a result of these processes, the system loses mass out the lateral

boundary during the early and intermediate phases of the collapse.

Figure 23a, b illustrates the configuration of the system in terms

of its density contours at a time near the point of maximum compression.

The toroidal structure is still evident in both the r-9 and r-z planes;

but in addition, the latter shows a disc-like structure. The linear

momentum developed during the collapse has caused the system to be



84

compressed beyond the point of equilibrium, and the elevated thermal

pressures subsequently re-expand the ring. Figure 30 summarizes the

oscillation of the toroid about equilibrium.

The cloud configuration is illustrated at late time in Figs. 24 -

29. In the density contours of Fig. 24a. b, a well-defined toroidal

structure is present. The minimum density contour in the r-e plane is

now about 24% of the maximum value in the ring. The density gradient

is greater on the outer edge of the ring than it is on the inner edge.

In fact, it is difficult to define an inner edge. Near the axis the

density is 85% of the maximum. This system is a disc with a toroidal

bulge. The maximum density at this time is reduced from the value at

maximum compression; and the ring is less flattened into the equatorial

plane, as shown in Fig. 24b. In Fig. 25a, b, one observes that even

at late time the gravitational potential well of a toroidally bulging

disc is centered on the axis of rotation, rather than on the ring it-

self.

The differential rotation is shown in the angular velocity con-

tours of Fig. 26a, b. The ring structure is no longer visible in this

variable. The average angular velocity of the late-time system is

greater than that assumed for the initial cloud. As the protostar has

become more concentrated the conservation of angular momentum has

worked to spin it faster. The angular velocity decreases away from the

axis of rotation. The sharp gradient in the axial direction shown in

the r-z plane of Fig. 26b is due to the numerical technique of zeroing

the velocities in very low density regions.

The vector fields are summarized in Figs. 2 7 - 2 9 . In the r-8

plane, the laboratory velocity and momentum-density vector fields are
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shown in fig. 27a, b. The positive radial component indicates that the

system is still losing mass. The momentum density representation re-

flects the concentration of mass in the toroidal system. In the rotat-

ing frame of Fig. 28a, b, the vector fields emphasize the mass loss in

the outer regions. In Fig. 29a the r-z plane velocity vector field

shows the high residual collapse velocities in the less dense regions

of the protosta • The accompanying momentum density representation in-

dicates a small positive radial flow in the equatorial plane.

Figure 30 is a plot of the maximum interpolated density and of the

radius of that density as functions of time. The maximum ring density
-1ft

is oscillating about an average value of 6 x 10" . One would estimate

the average toroidal radius to be about 2.9 x 10 . The characteristic

cross-sectional radius of this ring as measured from the graphs is

4.11 x 10 1 5. A

original cloud.

4.11 x 10 . At this time the system has lost 31% of the mass in the
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2. The Collapse of Nonuniform Clouds

a. Initial conditions

Two collapses have been followed that start from a nonuniform

cloud. One system is identical to the dispersed uniform cloud dis-

cussed in the preceeding section, except for the perturbation applied

initially to its azimuthal velocity field. The following prescription

defines the mode 2 perturbation applied.

v •* v0 [l + B sin (2e) 1 (V-6)

B is the amplitude of the perturbation; and for all cases described in

this work, it has a value of 1/100. The perturbation is applied only

at t = 0. The second system is an intermediate cloud having an A of

9.0 x 10 , but is otherwise identical.

b. Dispersed cloud

The collapse for the dispersed cloud is summarized in the r-9

plane density and angular velocity contours of Figs. 31 and 32, respec-

tively. The perturbation, evident in both density and angular velocity

contours at early times, decays as the system evolves. No significant

visible expression of the original asymmetry remains in the late time

density contours of Fig. 31b. The angular velocity contours in Fig. 32

are slightly elliptical, indicating the presence of the still decaying

initial perturbation.
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c. Intermediate cloud

The response of the intermediate cloud to the perturbation at

very early times is virtually identical to that of the dispersed cloud

described above. The late-time configuration of the intermediate cloud

is presented in Figs. 33 - 37. The r-6 plane density contours shown in

Fig. 33a indicate the cloud has collapsed to a binary system. The bina-

ry configuration is also reflected in the gravitational potential con-

tours of Fig. 34a, b and in the angular velocity contours of Fig. 35a,

b. The detailed interpretation of sucn patterns is differed to the

next chapter.

The laboratory velocity vector field of Fig. 36a indicates that

this system has almost ceased to lose mass. At this time the system

has lost 11% of the original cloud mass. The momentum-density repre-

sentation of Fig. 36b shows the extent of the bodies, as well as their

orbital motion. In the velocity vector field referred to the rotating

frame, one observes well-defined vortices centered at angles of approx-

imately 97° and 277°, respectively. The vortex motion is counterclock-

wise. The initial perturbation favors binary component formation at

105° and 285°, respectively, as shown in Fig. 31a. The drift of the

fragments to the 165° and 345° locations shown at this time induces

spin in the outer envelope through the viscous coupling. Each body

has a spin angular velocity equc.: to its orbital angular velocity, and

the velocity field near the axis indicates that momentum is being trans-

ferred between the bodies by the vortices.
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d. Comparison

It is apparent that a cloud must be sufficiently intermediate in

order to collapse into a stable toroidal ring, but more work will be

required before a precise criterion can be given for this type of

collapse. Although the intermediate cloud progressed directly from

a uniform-tensity configuration with a perturbed azimuthal velocity

field to a condensed binary system without forming an intermediate

toroidal stage, it is never-the-less useful to investigate the stabil-

ity of toroidal systems as a means for understanding the overall sta-

bility of protostellar collapse. Indeed, this investigation is the

central theme of the next chapter.
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VI. NON-AXISYMMETRIC PERTURBATION OF ROTATING RINGS

A. INTRODUCTION

It has been demonstrated in Chapter V and in the publications dis-

cussed in Chapter I that under certain reasonable conditions rotating

toroids may exist as an intermediate stage in protostellar evolution.

It has also been demonstrated in Chapter V that initial asymmetries

can either grow or decay during collapse of the cloud. In this chapter,

we develop a quantitative theory of the fragmentation processes in

collapsing protostars.

The prediction of protostellar cloud stability can be addressed

from two different viewpoints. The most direct approach would be to

perform a series of collapse calculations, in which the initial condi-

tions and the initial perturbations are systematically varied. There

are, however, serious difficulties with this direct method. If a cloud

is in a nonequilibrium state, the initial conditions almost surely can

not be characterized by a single dimensionless parameter; so that there

are a virtually limitless number of initial conditions to be considered.

The indirect approach involves understanding the response of a

set of initially unperturbed toroids to applied perturbations. These

calculations are performed for six different representative examples

and the dynamics of the fragmentation process are described and illus-

trated in detail. We develop a theoretical stability curve, which is

normalized to the numerical results and allows one to predict the prob-

able modes of fragmentation of arbitrary toroidal systems in terms of

a dimensionless parameter characterizing the initial equilibrium con-

ditions. The resulting stability diagram and its interpretation are

discussed in Section G of this chapter.
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In all problems discussed in this chapter the mass is initially

concentrated in toroidal configurations. The initial conditions for

each calculation are produced by a preliminary calculation through

which a rather coarse set of prescribed conditions is allowed to relax

to an equilibrium state. The initial cross section of the rings is

approximated by a square region of the calculational mesh, which con-

sists of two radial zones above the plane of symmetry. This.study

uses systems having three solar masses and an initial angular velocity
12 s"1

of 2.45 x 10 . For such toroids the gravitational and centrif-

ugal forces are balanced. To vary the properties of the toroids, one

changes the entropy variable, A. Throughout this chapter the value of

A is expressed in the cgs system of units. These units are omitted in

the text for convenience. Depending on the value of A, the forces due

to the thermal pressures in the toroid inay or may not be in balance

with the forces of self-gravity. The initial toroidal configuration

is therefore allowed to expand to an equilibrium state before the

application of the perturbation. If the gas expands to form a more

diffuse ring with a larger cross-sectional area, the average angular

velocity of the system decreases and differential rotation develops.

By this means one obtains the six unique toroidal configurations that

are used in the subsequent fragmentation studies and stability analyses.

In all discussions below it will be these toroids that are defined as

initial conditions at the time of perturbation. It should be noted

that the location of the objects relative to the rotating frame can

drift from that favored by the initial perturbation because the average

orbital angular velocity of the system must change as the mass con-

figuration adjusts itself during approach to steady state.
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In the calculations a 10 x 12 x 5 grid is used. The 12 azimuth?!

zones divide the upper region into 30° segments. In an r-z plane the

cell surfaces are squares 7.0 x 10 cm on a side. The upper boundary

is 3.5 x 10 cm above the symmetry plane. The inner radial boundary

required by the central core and the outer radial boundary are

7.0 x 10 cm and 7.7 x 10 cm, respectively, from the axis of rota-

tion.

B. THE PERTURBATIONS

In order to develop a thorough understanding of the response of

rotating toroids to non-axisymmetric perturbations, one must charac-

terize not only the toroidal fluid system as previously described but

the perturbation as well.

The binary perturbation is applied to the system through the azi-

muthal velocities in a manner described by the following prescription

v -> vQ I 1 + B sin (2e)

B is the amplitude of the perturbation; and for all cases described in

this work, it has a value of 0.01. If the system is unstable, the asym-

metry is rapidly amplified and fragmentation results; however, if the

system is stable, the amplitude of the disturbance quickly decays and

axial symmetry is restored.

Two higher mode perturbations have been used in developing the

stability diagram described subsequently in this chapter. The mode 3

perturbation is given by

v -* vQ 1 + B sin (3e)
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The mode 6 perturbation is

v -> vQ 1 + B cos (6e)

C. COMPACT RINGS

1. Case I

a. I n i t i a l conditions

The center of the rotat ing toroid used in Case I is located

2.77 x 10 cm from the axis of rotat ion and has a character is t ic

cross-sectional radius, a, of 1.0 x 10 cm. The entropy var iable, A,

19

has a value of 5 x 10 . This toroid is the most compact of any sys-

tem studied. Other salient properties of the system are summarized in

Table I. The initial conditions are graphically represented in Figs.

3 8 - 4 1 . In Fig. 38a, b the compactness of the ring is evident in both

the r-0 and r-z planes. The high concentration of contour lines at the

inner and outer circ'mferences, respectively, indicates sharp density

gradients between the toroid and its surroundings. In Fig. 38b one

sees that the density in the second computational zone above the re-

flecting plane is down by a factor of 5 from that in the center of the

ring. The gravitational potential well is centered on the ring itself

(Fig. 39a) and is the deepest initial well of any toroid used in this

study.

The angular velocity distribution in this compact ring does not

differ very much from that which would occur if the system were in

solid body rotation. The high concentration of contour lines on the

inner and outer edges of the ring, shown in Fig. 40a, result because

of a numerical technique that sets the velocities in the very low den-

sity external regions to zero.
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The condition of the toroid can also be surmised from the labora-

tory velocity vector plots in Fig. 41a. The orbital motion is in a

positive sense as one can see by lining up the tails of the vectors.

All velocities are contraction velocities that imply the toroid is de-

creasing in cross-sectional area. In fact it is questionable that a

body this compact can be accurately resolved by the calculational mesh.

Nevertheless we include this yery compact system because of the quali-

tative information that can be derived from it. The large-scale oal-

ance between centrifugal and gravitational forces is illustrated in the

momentum-density plot of Fig. 41b. The momentum vectors display no net

radial mass motion either toward or away from the axis of rotation.

Table I

Initial Conditions

Case I

A(cm4 /g2 / 3 s2) 5.00 x 1019 M(y) 5.91 x 1033

a(cm) 1.00 x 1016 W(ergs) -5.00 x 1043

P1 (g/cm3) 1.94 x l O " 1 6 KE(ergs) 1.71 x l O 4 1

R , (cm) 2.77 x 1016 U(ergs) 1.36 x 1043

Pmax(g/cm3) 1.75 x l O " 1 6 T(ergs) 1.46 x l O 4 3

R (cm) 2.45 x 1016 E(ergs) -2.15 x 1O43

pmax c p cc
tf{yrs) 0.05 x 10° J(g cnT/s) 1.19 x 10 D

w (s " ] ) 2.46 x 10"12 O(°K) 18.8



115

b. Evolution of the system

In Figs. 42 - 50 the subsequent evolution of the fragmenting to-

roid is summarized. In Figs. 42a, b the density contours of the frag-

menting toroid are displayed for two intermediate times. The short

time scale on which the break-up occurs indicates the high degree of

instability present in the initial system. The low thermal pressures

can not effectively impede the fragmentation, and the initial pertur-

bation is quickly amplified. Rapid evolution of the system can also

be related to the local free-fall time estimate given by Eq. (1-1).

Since collapse phenomena seem to occur in a few numbers of free-fall

times and since the free-fall time for a density of this magnitude is

about 0.05 x 10 yrs, it is not surprising that the toroid has frag-
5

mented into well-defined components in about 0.76 x 10 yrs. In fact,

all of the calculations reported indicate that unstable toroids have

come to a stage of complete fragmentation by about fifteen free-fall

times.

In Fig. 42b one sees the presence of a higher mode in the density
5

contours at a time of 0.60 x 10 yrs. Although the original perturba-

tion is a pure mode 2, the higher mode has appeared. There are two

explanations that one gives to explain the coupling to higher modes.

One argument is physical; the other, numerical. First, the nonlinear

nature of the equations of motion favors the excitation of a spectrum

of modes. Second, the coarseness of the calculation grid can excite

higher modes through the presence of truncation errors. Because of the

coarseness of resolution, no particular physical significance can be

placed on the appearance of the higher mode for this system; and in

fact, at the still later time shown in Fig. 47a, b, the fluid has



116

reverted to the more dominant binary configuration. Figures 43a, b

and 48a, b illustrate the corresponding evolution c" the gravitational
5

potential. At a time of 0.76 x 10 yrs the well depth of the compo-

nents Is almost twice that of the initial ring.

The interpretation of the angular velocity sequence for thiŝ  case

is less clear than for the more extended, and hence better resolved,

components. In Fig. 44a, b the angular velocity of gas falling from

the perturbed toroid toward the axis of rotation has increased due to

the conservation of angular momentum. Regions of high angular velocity

also occur behind the newly formed components as the residual gas in

the toroid accelerates toward these new centers of attraction.

The laboratory velocity plots shown at intermediate times in Fig.

45a, b show the details of the velocity field during fragmentation.

The velocity vectors on the leading edge (leading in the sense of posi-

tive orbital motion) of the components are shortened and turned around

by the gravitational attraction of the trailing fragments. The toroidal

remnant behind a component now moves in the increased force field of

the new center of gravity, and the azimuthal velocities, already large

due to the original orbital motion of the ring, are increased. Figure

46a, b shows the same sequence in a momentum density representation so

that one can determine patterns of mass transport.

In Fig. 50a, b the late-time velocity fields relative to the

laboratory and to the rotating frame, respectively, are shown. In both

representations one observes a large positive radial component of ve-

locity. The binary fragments in this system are separating. In Fig.

50b vortices are apparently developing from the complex interplay of

frictional and gravitational forces in the wake of the outward moving
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components. At these late times the rate and extent of separation of

the bodies must be questioned because of the poor resolution of the

compact components by the calculational grid. Such a situation can ,

introduce inaccuracies in the solution of the partial differential

equations, which accumulate with time.

A manifestation of the inaccuracy in the late time solution for

Case I is the lack of energy conservation. The models assume that

the processes in protostellar clouds proceed adiabatically. Since no

energy balance equation is solved, one does not include the heating

effects due to the irreversible viscous dissipation. Therefore, al-

though the total energy should not be precisely conserved, it should

be approximately a constant, especially for the collapse of the more

dispersed toroids. In most of the other cases described in this

chapter the energy conservation is 1 - 2%. At the last time reported

in this calculation, however, the total energy of the system has in-

creased by almost 50%.
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2. Case II

a. Initial conditions

19
The toroid used in Case II, having an A of 7.5 x 10 , is a more

dispersed body than the one used in Case I. The Case II ring has a

characteristic cross-sectional radius of 1.60 x 10 cm. This radius

encompasses about 2 linear zone dimensions; so the resolution of the

body is greatly improved. The maximum-density contour is 2.85 x 10 cm

from the axis of rotation. Table II presents a summary of the physical

properties of the Case II initial conditions.

Figure 51a, b shows the density contours of the system at the time

of perturbation. The density in the r-e plane decreases from a maximum

17 3 1ft ^

central value of 9.47 x 1 0 ~ " g/cnr to a value of 4.74 x 10~'° g/cm ,

a factor of 20, in a distance of about 2k radial zones. The gradient

is therefore fairly well resolved by the calculational grid. The cross-

sectional area of the toroid is shown in Fig. 51b to be nearly circular.

The gravitational potential for the initial configuration is illustrated

in Fig. 52a, b. The well is centered on the inner edge of the ring and

is broader and less deep than in Case I. The potential contours in the

r-z plane are similar to those in Fig. 39b, but are more diffuse, re-

flecting the more extended and less dense toroid.

During the initialization calculation the larger toroid of Case II

develops more differential rotation than its more compact predecessor,

as displayed in Fig. 53a, b. In the r-e plane one sees sharp gradients

only on the outer edge of the ring. The density of the gas near the

axis of rotation is high enough for the numerical scheme to have turned

on the velocities in this region; and because of conservation of angu-

lar momentum, the orbiting mass originally in the nonequilibrium toroid
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moves with higher angular velocities as it falls toward the z-axis.

In the r-z plane the toroid appears to be very nearly in solid body

rotation at least in the high density regions.

The laboratory velocity and momentum-density vector fields of

Fig. 54a, b support the interpretation of the angular velocity con-

tours given above. In Fig. 54a the velocity field suggests that the

toroid will not contract to as poorly a resolved configuration as for

Case I. These velocities have almost no radial component except a'

the outer edge of the toroid where some accretion is indicated. The

ring has expanded from its nonequilibrium state, has overshot the steady

state configuration due to the linear momentum gained during expansion,

and is now slightly recontracting at the outer edge. In the mo.nentum-

density vector field, one has a graphic representation of the masf con-

centration as it is spread over four radial zones.

Table II

Initial Conditions

Case II

A(cm4 /g2 / 3 s2) 7.50 x 1019 M(g) 5.91 x 1033

a(cm) 1.60 x 1016 W(ergs) -4.09 x 1043

p' (g/cm3) 9.93 x 10"1 7 KE(ergs) 1.50 x 1041

R1 (cm) 2.85 x 1016 U(ergs) 1.05 x 1043

pmax o TJ /,,
p (g/cm3) 9.47 x 1 0 " " T(ergs) 1.23 x 104J

max
16 cfnvr,c\ i on ., in43R (cm) 3.15 x 10 ID E(ergs) -1.80 x 10

pmax c p
t f (y rs) 0.07 x 10° J(g crrT/s) 1.19 x 10

2.06 x 10"12 O(°K) 18.7
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b. Fragmentation of the toroid

The time scale for the evolution of this system is greater by

almost a factor of 3 than the time scale for Case I. The local free-

fall time estimate is 0.07 x 10 yrs, and is therefore only greater

by some 40%. It is, however, expected that more compact systems will

evolve on shorter time scales, since the thermal pressures tending

to impede contraction are lower.

In Fig. 55a, b the density contours at t = 1.10 x 10 yrs and at
5

t = 1.27 x 10 yrs summarize the intermediate stages of mass accretion

from the toroid onto the newly formed fragments. The thermal pressures

are sufficient to delay the accretion and to produce moderately well-

resolved extended binary components. The gravitational potential at

these times is shown in Fig. 56a, b. The contours display the evolu-

tion and deepening of the new centers of gravitational attraction. The

apparent secondary modes in Fig. 56b are artifacts of the interpolation

scheme used to obtain the contour lines since the potential field can

not respond to instabilities more rapidly than the mass configuration

and since the density contours show only the mode 2 perturbation at

this time.

c. Spinning components
5

At the second of the intermediate times reported, t = 1.27 x 10

yrs, the components are elongated. This configuration demonstrates

graphically one especially noteworthy aspect of the fragmentation dy-

namics. The perturbation is applied to the initial ring through the

azimuthal velocity field. On one side of e = 90° the velocities are

increased by 1% and on the other side they are retarded by 1%.
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Exactly the same perturbation is centered on o = 270°, but in the

following discussion it is only necessary to consider one of the favored

centers of accretion. The mass in the region where the velocities are

increased feels a greater centrifugal force after the perturbation;

and therefore experiences a net outward radial motion. The centrifugal

force acting on the gas in the region where velocities have been de-

creased is reduced, and the mass can move radially inward. This effect

results not just because of the 1% change in the angular velocity that

arises from the original perturbation, but also because the continued

acceleration toward the binary centers of condensation enhance even

further the departure of angular velocities from the unperturbed initial

values.

The extended body that is forming out of the toroid now encounters

more slowly moving mass on its leading edge at a smaller radial dis-

tance from the axis of rotation than the "adial separation of the cen-

ter of the object from the axis. The result is a retardation of the

azimuthal velocities in regions on the axis side of its center. Exact-

ly the opposite mechanisms work to accelerate regions of the body on

the outward side. The fragmenting bodies begin therefore to spin in

a co-rotational sense relative to their orbital motion. Many multiple

star systems do in fact exhibit co-rotational spins. In a satellite

system such as our own solar system, one observes co-rotating bodies.

In fact, if retrograde motion is observed one generally hypothesizes

that the system resulted from a capture process rather than from frag-
65mentation. Further discussion of retrograde motion is deferred to

the next section.
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Centrifugal forces are not the only forces that directly influence

the development of spin in the fragments. Coriolis forces resist the

spin-up of the objects by increasing the angular velocity of the mass

segments moving inward and by decreasing the angular velocity of the

mass moving outward. In the rotating frame momentum-density vector

fields displayed in Fig. 59av b one sees the co-rotation of the compo-

nents.

The angular velocity plots presented in Fig. 57a, b illustrate

the same phenomenon. In reference to these more complicated config-

urations it should be emphasized that the contour plots of angular

velocity can be somewhat deceptive unless interpreted very carefully.

All that these coi'^^'r jj^ts exhibit are the locations of maximum and

minimum angular velocity, and they carry no information about the con-

current magnitudes and directions of radial velocity. As a result it

is not possible from these contours alone to determine the position of

vortices. Nevertheless, the angular velocity contours prove useful as

a means for showing the character of the spin field around the central

axis. In particular, they show several consistent trends in Lhe rela-

tive angular phasing between the positions of maximum density and those

of maximum angular velocity. In the present case, for example, Fig. 57a

shows advancing fingers of high spin at the outer trailing edges of the

condensing objects. By comparing the contours in this figure at these

tv/o intermediate times one observes that the magnitude of the spin is

increasing.

Figure 58a, b summarizes the movement of the mass from the toroid

to the binary fragments in the momentum density representation of the

laboratory frame. In Fig. 60a, b one observes two laboratory momentum-
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5
density vector fields in the r-z plane. At t = 1.10 x 10 yrs, most

5
of the momentum flux is radially outward; at t = 1.27 x 10 yrs the

field is split at the equator, showing the bulging of the body as it

begins to spin.

d. Spirals and retrograde satellites

Figure 61a, b shows the density contours for Case II at a time

of 1.42 x 10 yrs after the perturbation. The central density of

each component has increased to twice that of the initial toroid. In

the r-e plane a spiral structure has developed. The mass in the

streamers is gravitationally bound to the nearest component, and it is

possible that these regions provide an environment in which satellites

could form. Since the binary objects are increasing their spin in a

positive sense, it is to be expected that dynamical coupling to adja-

cent regions of fluid would result in regions of negative spin as a

manifestation of conservation of overall angular momentum. The rotat-

ing-frame velocity vector field of Fig. 65a substantiates this specu-

lation, since clockwise vortices are developing at angles of 150° and

300° in the respective spirals. Spinning binaries with accompanying

mass streamers are therefore a possible alternative to capture pro-

cesses for initiating retrograde satellite motions. The phenomenon

of spirals is considered further in Section D of this chapter.

e. Equatorial distortions

The r-z density contours in Fig. 61b demonstrate the oblate nature

of the components. The flattening into the equatorial plane is the re-

sult of two physical processes. First, the spinning components bulge

equatorially under the action of centrifugal force. Second, the
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protostars are modelled as very compressible fluids, which therefore

flow along the gravitational potential gradients rather freely. The

gas on the axial side of each object senses the field of the companion

more strongly than the gas on the outward side of the component centers.

The effect is a large tidal distortion. The gravitational potential

contours of Fig. 62a, b also depict the tidal elongation of the compo-

nents toward one another. The angular velocity plots in Fig. 63a, b

show the accelerating and deaccelerating effects of accretion. The

laboratory velocity and momentum-density vector fields summarized in

Fig. 64a, b also illustrate this effect.
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D. INTERMEDIATE RINGS

1. Case III

a. Initial conditions
I g

The entropy var iab le f o r Case I I I i s 8.25 x 10 , as compared
19

with 7.5 x 10 in Case II. The ring has a characteristic cross-

sectional radius of 1.74 x 10 cm, approximately two and one-half

computational zones. The contour of maximum density lies at a distance

of 3.16 x 10 cm from the axis of rotation. The other physical prop-

erties of the initial configuration are presented in Table III.

Figures 66 - 69 graphically summarize the initial conditions of

the unperturbed system. The density contours in Fig. 66a, b illustrate

the nature of the mass configuration. The original nonequilibrium

toroid has expanded under the action of thermal pressures to such an

extent that the inner edge has reached the central core of the calcu-

lational grid. The density in this region is a factor of 20 below

maximum ring density; so the inner boundary wall has minimal effect on

the subsequent evolution of the system. In Fig. 66b the r-z contours

display a non-circular cross section.

From Fig. 67a, b one estimates that the depth of the gravitational

potential well is less than those observed in Cases I and II by approx-

imately 20 percent. The breadth of the Case III well is also greater

and the gradients o.v the inner edge are more gradual. The picture

presented is consistent with the density contours described above.

The angular velocity contours of Fig. 68a, b show patterns of differ-

ential rotation that result because of the action of Coriolis forces

working to increase the angular velocity of the gas that falls inward

toward the axis of rotation and to decrease the angular velocity of
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the gas that expands outward away from it.

With the laboratory velocity and momentum-density vector fields

as a monitor of the orbital equilibrium of the fluid, Fig. 69a, b

implies that the whole system is still moving slightly outward. It

is therefore not in as precise an orbital equilibrium condition as

the previous studies have been, but it is wery close. Figure 69b

demonstrates the greater spatial extent of this ring, showing sig-

nificant momentum densities distributed over five radial zones.

a(cm)

(g/cm3)

R , (cm)
max 3

pmax ( g / c m ;

R (cm)
pmax
tf(yrs)

8.25

1.74

7.13

3.16

7.13

3.15

0.08

1.64

Table I I I

I n i t i a l Conditions

X

X

X

X

X

X

X

X

Case I I I

1019

1016

io-1 7

10 1 6

io-17

10 1 6

105

io-12

M(g)

W(ergs)

KE(ergs)

U(ergs)

T(ergs)

E(ergs)

J(g cm2/s)

0(°K)

5.91

-3.63

1.12

8.98

9.84

-1.74

1.19

17.0

X

X

X

X

X

X

X

10 3 3

10 4 3

io41

10 4 2

10 4 2

10 4 3

1O55

b. Intermediate fragmentation and higher modes

The intermediate stages of the growth of the perturbation are

shown in Figs. 70 - 73. The time scale within which the dynamical

processes proceed is lengthened as expected by the increased thermal

pressures resisting fragmentation. At t = 1.45 x 10 yrs the density

contours of Fig. 70a show well-defined dual centers of attraction

associated with large toroidal remnants on both the leading and the
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trailing edges. By the time shown in Fig. 70b, t = 1.61 x 10 yrs,

each element of this structure has itself fragmented to form a two-part

system. The split configuration is only a transient intermediate state

that returns to the binary structure, as shown at a later time in

Fig. 74a. The split configuration is nevertheless significant because

it appears at a fairly advanced time in a well-resolved physical system.

Its appearance is the result of the nonlinear physical models rather

tf I of inaccuracies arising from coarse calculational zoning. The

elongation of the centers of gravity in Fig. 71b indicates the response

of the potential field to the quaternary configuration. The znya'iar

velocity contours in Fig. 72a, b show the characteristic pattern de-

scribed previously in Section C.

In the rotating-frame momentum-density sequence of Fig. 73a, b,

one again observes the development of co-rotational spin in the compo-

nents. By comparing the configuration of the vectors in Fig. 73a and

Fig. 73b, one has a graphic illustration of the time dependent trans-

port of mass and momentum from the remnant regions at approximately

80° and 260° to the binary fragments.

c. Spirals

In Fig. 74a the density contours at t = 1.77 x 10 yrs show that

a spiral structure has developed from the residual toroidal gas. The

r-z contours in Fig. 74b indicate tidal bulging on the inner surfaces

of the components similar to that observed for Case II. The gravita-

tional potential contours in Fig. 75a, b are radially elongated, show-

ing the respor.se of the field to the density distributioii.
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The structure in the angular velocity contours discussed for

Case II is present in Fig. 76a, albeit not so dramatically. The

laboratory velocity and momentum-density vector fields are shown in

Fig. 77a, b. In the velocity vector field the regions in the trailing

spirals where accretion increases the already large orbital velocities

of the toroidal remnant are clearly contrasted with the regions on the

leading edge of the components where the gravitational attraction re-

duces the original orbital velocities of the residual gas. The momen-

tum density representation indicates the location of the binary frag-

ments and outlines the spiral structure of the system. The retrograde

velocity vortices at 90° and 270°, respectively, in Fig. 78a are simi-

lar to the ones discussed for the Case II binary spirals. The spin of

the components is shown at late time in Fig. 78b.
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2. Case IV

a. Initial conditions
19The entropy variable for Case IV has a value of 9.0 x 10 . The

characteristic cross-sectional radius of the ring is 1.80 x 10 cm,

and the maximum density contour is located at a distance of 3.01 x 10

cm from the axis of rotation. Other relevant system parameters summa-

rizing the initial conditions are listed in Table IV.

The graphic representations of the properties of the Case IV ring

are presented in Figs. 79 - 82. The system is qualitatively similar

to that of Case III.

Table IV

Initial Conditions

Case IV

A(crn4/g2/3 s2) 9.00 x i O l 9 M(g) 5.91 x 1033

a(cm) 1.80 x 1016 W(ergs) -3.68 x 1043

pmax*g/cm ) 6.70 x 10"17 KE(ergs) 1.17 x 1041

R i (cm) 3.01 x 1016 U(ergs) .9.41 x 1042

pmax
p (g/cni ) 6.65 x 1 0 " " T(ergs) 1.06 x 10

max
R (cm) 3.15 x 101 6 E(ergs) -1.66 x 104 3

pmax n 9 lf.
t f (yrs) 0.08 x 10 J(g crrT/s) 1.19 x 10

^(s"1) 1.75 x 10~12 e(°K) 17.7
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b. Evolution of the system

The qualitative features of the evolution of this system under a

mode 2 perturbation are very similar to those described in the Case III

discussion. The dynamical time scale is not significantly longer for

Case IV. The free-fall time estimate for both cases is approximately
5

0.08 x 10 yrs. The contour plots and vector fields summarizing the

evolution of the Case IV system are presented in Figs. 83 - 92. The

Case IV. toVoid is the only system that has been subjected to mode 2,

mode 3, and mode 6 perturbations, as will be discussed in a subsequent

section.
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