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DEFINITION OF THE PHYSICAL PARAMETERS
radial coordinate
azimuthal coordinate
axial coordinate
time
radial component of velocity
azimuthal component of velocity
axial component of velocity
radial component of the divergence of the viscous stress tensor
azimuthal component of the divergence of the viscous stress tensor
axial component of the divergence of the viscous stress tensor
density
gravitational potential
pressure
instantaneous angular velocity of rotating frame
entropy variable
specific internal energyy
ratioc of specific heats
bulk viscosity woefficient
kinematic viscosity coefficient
second viscosity coefficient; only in Eq. (II-9)
free-scaling parameter
normalization parameter
dimensionless stability parameter
radius of toroid from central axis
characteristic cross-sectional radius of toroid

free-fall time



total mass

interpolatnd maximum density

radial positior of Pax

maximum cell density
radial position of Prax
total gravitational potential energy

total kinetic energy of radial and axial motion
total internal energy

total rotational kinetic energy

total energy

total angular momentum

temperature

polytropic index
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ABSTRACT
Three-Dimensional Dynamics of Protostellar Evolution
by
Thomas Lercy Cook

A three-dimensional finite difference numerical methodology has
been developed for seif-gravitating, rotating gaseous systems. The
fully nonlinear equations for time-varying fluid dynamics are solved
by high-speed computer in a cylindrical coordinate system rotating
with an instantaneous angular velocity, selected such that the net
angular momentum relative to the rotating frame is zero.

The time-dependent adiabatic collapse of gravitationally bound,
rotating, protostellar clouds is studied for specified uniform and
nonuniform initial conditions. Uniform clouds can form axisymmetric,
rotating toroidal confiqurations. If the thermal pressure is hign,
nonuniform clouds can also collapse to axisymmetric toroids. For Tow
thermal pressures, however, the collapsing cloud is unstable to initial
perturbations.

The fragmentation of protostellar ciouds is investigated by study-
ing the response of rotating, self-gravitating, equilibrium toroids to
non-axisymmetric perturbations. The detailed evolution of the frag-
menting toroid depends upon a non-dimensional function of the initial
entropy, the total mass in the toroid, the angular velocity of rotation,
and the number of perturbation wavelengths around the circumfirence of

the toroid. For low and intermediate entropies, the configuration
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develops into co-rotating components with spiral streamers. In the
spiral regions retrograde vortices are observed in some exampies. For
high levels of entropy, barred spirals can exist as intermediate states

of the fragmentation.

7
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I. INTRODUCTION
A. BINARY STARS
1. Historical Background

The Greek equivalent of the term double star was first used by

1

Ptolemy to describe the appearance of v Sagittarii.’ Many double

stars are optical pairs rather then true binary systems. In 1767
Rev. John Michell read a paper2 vefore the Royal Society in London in
which he presented a statistical argument suggesting that many of the
double stars then known were the result of physical rather tharn optical
association. His controversial paper prompted astronomers to intensify
their search for double stars. In an address to the Royal Society in
1802, Sir William Herschel first used the term binary star to designate
the physical union of two stars in one system.3

The first known observation of a close binary (e.g., component
separation comparable in magnitude to component dimensions) may date
back to the days of nomadic 1ife in the Arabian pen‘insu]a.4 The second
brightest star in the constellation of Perseus was given the name
Al_gggl, which means "changing spirit.” Although it is questionabie
whether one should assign any specific significance to the name, it is
appropriate because Algol, as it is now called, is an eclipsing binary.
In 1783 John Goodrizke, Junior, made the first observations of a
minimum of Algol and successfully measured its periodicity. He even

conjectured that it migh'. be an eclipsing double star system in which

the components were physically bound.



2. Significance

Conservative estimates indicate that 30 to 50% of the total star
population in the vicinity of the solar system occurs in double or
multiple systems.6 Approximately .2% of these stars are eclipsing
binaries.’ If one considers the random distribution of orbital
inclinations, approximately 1% of the stars may be in close binary
systems. This argument imglies that if a similar ratio holds for our
7 galactic system as a whole, one might expect it to contain some 10
close binaries.

The astrophysical data that can be deduced from a study of
eclipsing binary systems provide the theoretician with a method for
looking into the very heart of stars. For a single star one has no
way of gauging its external gravitational field or of lezrning any-
thing about the distribution of its surface brightness. 1In close
binaries, however, the properties of the combined yravitational field
can be deduced from the characteristics of the motion. Knowing the
gravitational field one can then check calculational models of inter-
nal pressure and density distributions. The variation of brightness
caused by axial rotation of the distorted components or exhibited
during their mutual eclipses permits one to measure the distribution
of surface brightness. Non-radial tidal oscillations can demonstrate
whether stellar configurations behave like perfect fluids.8 These
considerations and others demonstrate the important role that multiple
star systems play in our understanding of astrophysical phenomena.

The theoretical complexities associated with the interpretation
of data produced from such cbservations are non-trivial. Previous

work has employed complicated models of the material properties and e
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and transport processes believed to be operative and has generally made
extremely simplifying assumptions regarding the dynamics of the motion.
The present work emphasizes the solution of the nonlinear dynamics
while using less detailed models of the other physical processes. In
the following chapters a fully three-dimensional finite difference
methodology is developed specifically for application to rapidly
rotating, highly distorted, self-gravitating binary systems.
B. PROTOSTARS
1. Early Stages of Star Formation

In 1692 Newton suggested that stars might form through gravita-
tional condensation of diffuse matter in space. Although Newton's
idea is widely accepted as being basically correct, many details of
star formation remain highly speculative and controversial. The
earliest stages of the star formation process are less well undarstood
than the intermediate collapse stages. Thermal and magnetic instabil-
ities as well as large scale galactic shock have been proposed as
possible mechanisms through which interstellar clouds are formed of
sufficient mass and density to be gravitationally bound..IO Once a
cloud is gravitationally boqu it is called a protostar. It is at
this point in the evolution that our investigation begins. A compre-
hensive review of this theory of the early stages of star formation

1, 12 and shorter discussions are provided by

is given by Spitzer,
Field3 and Penston. 1% A somewhat different point of view is pre-

sented by McNaHy.]5
If a cloud is to condense into a star or a cluster of stars,
jts self-gravity must exceed the forces working to disperse it. The

principle dispersive mechanisms include



1) thermal gas pressure

2) magnetic pressure

3) centrifugal force if the cloud is rotating

4) the effects of internal turbulent motions
For simplicity one generally neglects the magnetic pressure and
includes the turbulent effects as an added thermal pressure.

16 states and derives the Jeans criterion in a number of ways;

Spitzer
however, Larson]7 proposes the following succinct statement:
"In essence, the Jeans criterion simply states that in order for

collapse to occur, the gravitational potential energy of a cloud must
be comparable to or greater than the kinetic energy of thermal or

turbulent motions within the cloud."
For a rotating cloud cne makes a modification in the above state-
ment to allow for the inclusion of the rotational kinetic energy as a
dispersive mechanism.
2. Collapsing Protestars
a. Spherical models

In recent years a large number of authors have calculated the

early stages of the collapse of a spherically symmetric, nonrotating

18-22 4 prief review of these studies is given by Penston. 23

gas cloud.
Although the various calculations are based upon assumptions that are
considerably different from one another, there is remarkable agreement
on the qualitative features of the collapse. For example the collapse
is always found to be very nonhomologous, and the density distribution
becomes very rapidly peaked at the center.24

To better understand the nature of the collapse one can consider

- the free fall time of a uniform density, zero pressure spheroid given



be]ow.25

_f 3r s
te = <3zep> (1-1)

The free fall time varies inversely as the square root of the density.

Therefore, as the local density increases, its free fall time de-
creases; and the collapse around a local center of condensation
proceeds more rapidly than in the more diffuse regions of the cloud,
producing a separation of the material into a central condensed region
that is well separated from the outer regions of the cloud. If the
system were not spherically symmetric, the resulting configuration
would be strongly unstable, leading therefore to fragmentation,
b. Axisymmetric models

If the system is rotating, the most restrictive assumption in the
above is the spherical symmetry constraint. In 1972 Larson26 reported
two-dimensional calculations in which he imposed only axial symmetry
on the collapse. For the purposes of this present investigation it is
useful to emphasize two of his conclusions. First, since one does noct
know what initial conditions and boundary conditions are appropriate
for a condensing protostar, it is reassuring that Larson finds the
qualitative features of the late time collapse to be insensitive to
these detai'ls.z7 Second, Larson finds that in the presence of rapid
rotation the central portion of the cloud always appears to condense
into a rotating toroid with a density minimum at the center,

The formation of such a ring is physically reasonable, as demon-
strated by the following scenario. Depending on the rate of rota-
tion, central densities may or may not increase at f rst as the

collapse proceeds. In either case conservation of angular momentum



requires that the azimuthal velocity of the material falling toward
the axis of rotation increase; and eventually, the centrifugal forces
exceed the forces of gravity. In the central regions the equatorial
collapse near the axis of rotation ceases. Collapse along the axis

of rotation continues unimpeded toward the center and finally rebounds
outward into the equatcrial plane. At the same time material from the
outer part of the cloud continues to fall inward and to accumulate in
a ring-shaped torois around the central region where collapse has been
halted. Once the ring has formed, it becomes a center of accretion
for the remaining inward falling material.

Subsequent to Larson's pioneering work two similar two-dimensional
numerical studies have been published. Tscharnuter29 has repeated the
work of Larson using a different numerical scheme, and he has not
found ring formation. His results indicate that for rapid rotation
the cloud reexpands after the initial collapse. Black and
Bodenheimer,30 on the other hand, have also published calculations
treating rapidly rotating collapsing protostars, and they obtain
rotating toroids gualitatively similar to those of Larson.

To follow the collapse further one must study the fragmentation
of these rotating toroids. The full three-dimensional equations of
motion must therefore be solved. It is this aspect of protostellar
evolution that forms the central theme of this research.

c. Additional models

The numerical work described above has not been the only source
nor has it been the primary source suggesting the existence of rings
in the universe. Modern observations show that rings commonly cccur

in spiral galaxies of both the ordinary and barred types.3]’ 32
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Minkowski and Usterbrock33 have observed rings in certain planetary
nebulae. Underhi]134 mentions rings as possible models for the
extended atmospheres of early-type stars, and Maltby and Moffet35
suggest ring models in their extragalactic radio source studies.

The earliest work36 on the theory of equilibrium rings dates back
to Laplace {1789). Contributions have also been made by Maxwe]]37 and
Poincaré.38 The comprenensive treatment of the equilibrium and stabil-
ity of fluid rings by Dyson39 in 1893 essentially completes this class
of studies, which can be characterized by the following assumptions.

1) slender rings; i.e., minor axis < < major axis
2) uniform rotation
3) homogeneous liquid rings

40 replaces the

In his 1964 study of equilibrium rings Ostriker
third and most restrictive assumption (liquid rings) with the require-
ment that the fluid be a polytropic gas. He finds that for certain
mass~to-length ratios stable toroidal configurations should exist.
Larson and Black and Bodenheimer find values of this ratio in their

respective works that agree fairly well with the predictions of

Ostriker.

C. THE PRESENT THREE-DIMENSIONAL MODEL
1. Basic Approach
The next improvement one might naturally make in the numerical
studies of collapsing protostars is the extention to large amplitude
non-axisymmetric motions. Most of the authors cited above comment
that nothing definitive can really be concluded until one has inves-
tigated the stability of rotating toroids subjected to large non-

axisymmetric perturbations. As is often the case, however, the most



cbvious improvement is not always the easiest to implement. In this
situation one must have access to the largest, fastest computers
available today; and in addition one must develop a methodology
made possible only through modern techniques in numerical fluid
dynamics.

In order to facilitate the development of a fully three-
dimensional numerical fluid dynamics capability for application to
rotating, self-gravitating bodies, one chcoses, at least initially,
to simplif' the models of the physical processes to the greatest
possible degree while maintaining contact with reality. Such an
approach also allows one to develop a thorough understanding of the
methodology, which wiil prove useful as the complexity of the physical
model1ling progresses. With this motivation in mind, the following
assumptions are made in the work described in this text.

1) adiabatic fluid motions

2) negligible physical viscosity
3) polytropic gases

4) no radiation effects

5) no e'ectromagnetic erfects

The first assumption permits one to avoid solving an energy
equation. In the absence of strong sources and sinks, as is the case
for the early stages of protostellar evolution, it is a reasonable
constraint. The negligible physical viscosity assumption is Tikewise
reasonable for the diffuse distributions involved here. Polytropic
gas squations of state have been used rather successfully in many
astrophysical applications over a wide range oi densities. For a

N

general discussion one is referred to texts such as those by Clayton

-



and Chandr‘asekhar.42 Larson and Black and Bodenheimer include radia-
tion pressure in their respective calculations and find that this term
is negligible over the range of densities occuring in this phase of
protostar development. Each of the above assumptions can be replaced
by more complicated modelling of the physical processes.

The fifth assumption can not be so easily dismissed. Because of
the mathematical complexities involved, the possible rcle of frozen-in
magnetic fields in collapsing clouds remains one of the principal
unsclved problems in the theory of star formation.43 During ea: 1y
stages of the collapse the field is thought to be frozen into the gas
because of the ionization produced by high energy cosmic rays. However,
as the density increases the cloud becomes optically thick to such
radiation; and the icnization decreases, decoupling the cloud from the
ragnetic fie]d.44 Observations of magnetic field strengths in inter-
stellar clouds are generally consistent with the hypothesis of ihe
frozen-in fie]d.45 However, some dense clouds have magnetic fields

46

that are much weaker than one would expect; - and in the dense Taurus

dust cloud. a region of active star formation, no magnetic field has

yet been detected.47

2. Numerical Solution of the Model Equations
KORYO is a three-dimensional Eulerian computer code designed to
solve the equations of motion for rotating, self-gravitating fluids.
The equations are written in cylirdrical coordinates, and the plane
at z = 0 is assumed to be a plane of symmetry. Densities and pressi
are treated implicitly. Donor-cell fluxes are used throughout with

the fluxes in the azimuthal direction being convected relative to a
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frame rotating with an instantaneous angular velocity selected so that
the net angular momentum relative to it is zero. A central core
boundary region avoids pie-shaped cells and the resulting severe time
step restrictions. Mass is allowed to leave the system through the
outer radial boundary. To obtain the gravitational potential at each
instant in time, Poisson's equation is relaxed iteratively. These
characteristics of the methodology and others are developed in detail

in Chapter III.
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IT. THEORY AND PROCEDURE
A. EQUATIONS OF FLUID DYNAMICS
1. Equation of Continuity
The motion and general behavior of the fluid are governed by the

fundamental laws of mechanics and thermodynamics. The equation of conti-
nuity is developed by applying the law of conservation of mass to a small

volume element within a moving f1uid.® For a compressible fluid this

equation takes the following form in cylindrical coordinates.49
dp , 1 3pur . 1 3pv . dow _ -
sttty e tyae Tz T 0 - (11-1)

2. Equations of Motion

a. MNon-conservative form
The equations expressing the conservation of momentum are derived in

>0 For a fluid system moving under its own self-

a similar fashion,
gravity, the components of the body forces in the equations are the re-
spective gradients of the gravitational potential. Incorporating these
and the other forces the equations in cylindrical coordinates5] for a

rotating, seif-gravitating fluid system are customarily written

2
au, du , vou ou _ v \. _ .9y _3p -
Pag * P (“ or T v T YVE T Y ) e otV (11-2)
v vV vV ., 9v,uwl\_ p3dy_ 13p .
P T P (” ar Trse Ve Ty ) r3e roao T Vo (11-3)
au L vow, B\ w2, i
Pt t P (“ T Y ) i T P (11-4)

The viscous stress components will be discussed below in conjunction with

the physical viscosities.
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b. Conservative form

The convective parts of the momentum equations given above are not
sritten in conservative form. They should be expressed such that if one
integrates cver the _,tal volume of the fluid, the change with time of
any conserved quantity is just equal to the net gain or loss of that
quantity through the boundaries. Multiplying Eq. (II-1) by the radial

velocity and adding the result to the momentum equation, one obtains

2 2
dpu , 1 3pur 1 dpuv , dpuw _ pv- 3 _3p _
5t Ty ar v ee Taz v T Pur At Vo (11-5)

This expression is the form of the radial momentum equation that furnish-
es the basis for the calculations presented in this paper. Equaticns

(I1-3) and (I1-4) can be altered in an exactly analogous fashion to yield

2 2
dov , 1 douvr” , 1aov_ dows . _p 2 _12p, -
at+r’ T Y 3% "r3e " Ve (11-6)
and
2
opv , 1 dpuwr 1 3pvw , 3pv” _ _ 3y _ 3p -
ot r o ar r 99 32 P oz ~ 3z * Vz * (11-7)

The specific form of Eq. (II-6) combines the coriolis and convective
terms in a manner that is conservative of angular momentum as discussed
in Appendix B.
c. Viscous stress component

If adjacent layers of a fluid are in relative motion, a shear stress

can develop. The cons*ant of proportionality between the shear stress
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and the velocity gradient is called the first viscosity. Since the
Tluid is compressible another viscous stress, which is proportional to
the volumetric change, can arise, The proportionality coefficient for

52 The viscous

this stress is called the second or the bulk viscosity.
stress components for a compressible fluid are expressed in cylindrical

coordinates as follows .23

r o\or T r T ros 39 r
+ 2 [u(g—‘zi+ g::’)] (11-8)
no B[R B R i g
i [ 3] AL b))
*%%[”U(%*%&)}*%%[h’ (%%*%)] (11-10)

The viscosity effects are negligible in the physical systems that
are studiad in this work. Nevertheless, for the incorporation of ade-
quate dissipation in the numerical solutions, one has used a simplified
model for the viscous stress components. The basis for the particular

farm is discussed in the numerical stability section of Chapter III. In
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differential form these components are the following

o2 (paruy, 1 2 ( auy_ Zeav, a [ au )
Vr“’[ar(r ar)J’rz = (¢ %) R TIMFY: (" az)] (11-11)
_ ‘ 1 9 2 {dv v 119 oV Jpu 2 v )

y = LI oy _ ¥ 2. oV opu 2o oy
’e“"zrz o7 ["r (ar r)JJ’:?[ae (p ae)+2 ae]J'az (" az))
(11-12)

c [l fpawy, 1o oawy, 2 [ Bw .
Vz“’[r ar (pr ar)+r2 36 (p 36)+82 (p 32)} (11-13)

It is important to note that the density has been put into Eq. (1I-12) in
such a way as to maintain the conservative form; so that linear and an-
gular momentum are reither gained nor lost.
3. The Equation of State

Contained within the four conservation equations, Eqs. (II-1)},
(11-2), (1I1-3), and (II-4), one has six unknowns. Two more equations are
therefore needed to solve the system. One additional equation is pro-
vided by the equation cf state of the fluid. The equation of state is
usually expressed as some function relating pressure, density, and tem-
perature. For an adiabatic system one has merely to connect the pressure

and the density as for example in the polytropic eauaticn of state.
p=Ap (11-14)

For the reasons discussed in Chapter I one uses this very simplified de-

scription of the material in the present study.
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B. GRAVITATIONAL POTENTIAL
Self-gravity provides the "container" for the fluids of astrophys-
ics. The final equation needed to form a complete set is provided by
Poisson's equation relating the gravitational potential to the fluid con-

figuration. In cylindrical coordinates one has
%.i(r E‘J’)+.12.§_‘21’_+§.‘2=4ﬁ(;p . (11-15)
r

Many attempts have been made to construct models of rotating, self-
gravitating bodies. In cases deaiing with compressible masses almost
every attempt has involved a series expansion of y in Legendre polyno-
mials to account for departures from spherical symmetry.54 These methods
suffer from the unceftainties of truncating series and produrts of series
after a finite number of terms.

The present work uses a finite ditference approach, but avoids ma-
trix inversion complexitie555 by relaxing Poisson's equation iteratively
(Chapter III} subject to the boundary conditions at each boundary point
(rl, 62, 22), calculated by performing a numerical integration over all

mass points (rm, 0, zm).

-p{r , 6,2z )r drdodz
Wrgs 6, 2,) //[ T ;
2 2|*
2

2 L -
L ZrZrmcos]eZ-eml r(zl zm) ]

(11-16)



16

C. ROTATING REFERENCE FRAME
1. Coordinate Transformations =
The evolution of rapidly rotating asymmetric self-gravitating bodies
can be mosf accurately studied with numerical techniques in a reference
frame that is itself rotating with the average angular velocity of the
system. Otherwise one would have a high mass transport through the cal-
culational grid, resulting in the introduction of large diffusional ef-
fects. In a properly selected rotating frame thes transport due solely to
the rotation of the system is minimized. A further reason for choosing
to wek in a rotating frame is suggested by the nature of the iterative
method used to relax Poisson's equation for the gravitational potential.
If the mass motion relative to the calculational mesh is small, the con-
vergence of the numerical solution is much more efficient.
The transformations to a frame {indicated by primes) rotating with

the instantaneous angular velocity, w, are given as follows.

(11-17)

so that

2=

)
T 9t T ¥aeT

[o¥]
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9 . 3

9z  2z!
where

w = w(t)

In the following section the primes are dropped from the independ-
ent variables. The value of & is determined so that the instantaneous
angular momentum of the system is zero in the rotating frame.

2. Transformed Equations

The transformations must now be applied to the equation of continu-
ity, the momentum equations, and the Poisson equaticn. Using Eq. (II-18)
to transform Eqs. (II-1), (I1I-5), (II-6)}, and (II-7) and rearranging so

that the resulting expressions are conservative, one has

3p . 1 3pur . 1 3p(v-rw) . dpw _ }
ot * r oar ¥ r 3 * 9z v (11-19)
2 2

opu . 1 dpu”r 1 3pufv-rw) . Spuw _ pv= 3y _3p, y
ot r2 or r 20 92 r Par T o r

(11-20)
20V . _L_apuvr2 s 13ov{v-ry)  Bpvw . _pdy _13p, v
ot I,‘2 or r a0 oz r a8 r a8 8]

(T1-21)
dpW + 1 3puwr N l_Spw(v-ruQ + QQEE.: _ 9 gg_+ v (11-22
at  r  ar r 90 3z P3z "%z "z ~22)
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Poisson's equation and the viscous stress terms remain unchanged un-
der the transformation. It is important to emphasize that the azimuthal
velocity appearing above is referred to the rest frame. Nevertheless
the azimuthal convection takes place at a rate proportional to the net
velocity of the fluid relative to the rotating frame, thereby reducing
the net convection of the fluid to a minimum.

D. LIMITATIONS OF THE COORDINATE SYSTEM

For solving problems in a rotating frame it is valuable to use a
fully three-dimensional cylindrical coordinate system. To visualize the
restrictions imposed on the studies by such a coordinate system, one can
first imagine that the investigations are confined to a cylindrical an-
nulus; that is, a central Core region has been excluded from the coovrdi-
nate system along the z-axis. For such a region it is of course neces-
sary to supply boundary conditions at every point on the confining sur-
face. In contrast, the investigation of the dynamics in a Cartesian sys-
tem would be free from the specification of bounsary conditions along the
inner region defined by the core. As a result the Cartesian calculations
would allow for a general class of motions (e.g., those passing through
the axis) that are precluded by the choice of a cylindrical system. Al-
though this limitation is sorewhat restrictive, it will become evident
that for the large class of problems of interest in this research efiort,
the advantages of the cylindrical coordinate system are decissive.

In the discussion of the numerical solution techniques, it will
emerge that the definition of a small central core is of great conven-
jence with 1ittle resulting sacrifice of physical reality. In addition,
we have chosen a class of problems at this stage of the investigation

for which there is perfect symmetry across the equatorial plane. The L
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boundary conditions that represent the configuration of our domain of
study are described as follows:
i) On the equatorial plane and on the core boundary, the normal
velocity vanishes; and the normal derivative of any velocity
is calculated from the requirement of vanishing viscous stress.
2) On the top and lateral boundarjes the normal derivatives of the
velocities are also determined by the condition of vanishing
viscous stress. The normal component of velocity, however, is
specified in such a way as to allow for the convective loss of
mass in those circumstances in which appreciable mass loss re-
sults from explosive expansion and/or the necessity to expel

excess angular momentum.



20

ITI. NUMERICAL METHODOLOGY
A. INTRODUCTION

The equations of motion are solved by the finite difference tzch-
niques developed in this chapter. To proceed one must decide on
1) the appropriate finite difference approximation to the equations
of motion
2) the proper representation of the fluid within the context of
these finite difference approximations
3) the establishment of a logical procedure for developing the ap-
propriate solutions from prescribed initial conditions.
The first quescion is handled in the discussions that follow of how to
represent various terms in the equations. The second question is answer-
ed by defining the calculational mesh. The third point is discussed in
terms of a subdivision of time into a sequence of steps counted by the
index n and of each step into a sequence of phases treating different
parts of the necessary logic for the time advancement, Phase 2 of each
cycle consists of an itesrative process that requires an initial guess
and that uses a corrective process to lead to convergence. Because of
the way tne variables appear in the equations of motion, the finite dif-
ference formulation can be termed implicit, and it is because of this
impiicit formulation that an iterative solution procedure is required.
These ideas are further developed and expanded in tne remainder of this
chapter.
B. CALCULATIONAL MESH
KORYO is designed for the study of three-dimensional problems in
cylindrical coordinates. The calculational mesh is described graphical-
ly by the two mutually perpendicular planes in Fig. 1. In Fig. la, one

sees an r-0 slice perpendicular to the z-axis. The inner boundary



21

consists of a core of cells removed from the mesh to avoid the radial
singularity as r-»0. Figure 1b is a representation of an r-z plane.
The cell size along any given coordinate is constant. The integer in-
dices (i, Jj, k) define the cell centers while the half-integer indices
(i+, j*%, k#k) denote cell interfaces. The i index increases with in-
creasing r; the J index, with increasing 0; and the k index, with in-
creasing z.

A typical zone is enlarged in Fig. 2, and the centering of the var-
iables is indicated. Densities, pressures, and scalar gravitational po-
tentials are cell-centered quantities. The radial, azimuthal, and axial

velocities and the r, 8, and z coordinates are interface variables.
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CALCULATIONAL MESH

.XOUTER BOUNDARY

r-© Plane

UPPER BOUNDARY

-l §r o’
8z OUTER
CORE ik] ¥ BOUNDARY

Z=0

LOWER BOUNDARY
“o r-z Plane

"
T

FIGURE 1



23

VARIABLE CENTERING

FIGURE 2
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C. CALCULATIONAL SEQUENCE

The manner in which the variables are advanced in value from one
computational cycle to the next is summarized schematically in Fig. 3.
The gravitational potential for each cell to be used in advancing the
other dependent variables to time cycle number n+l are calculated at the
beginning of each cycle, based on the mass distribution at time n.

Given the scalar potential field at time n, the phase 1 portion of the
calculation is commenced. 1In this sesction the so-called "bar" quantities
are calculated. The "bar" quantities serve as initial guesses, when the
pressure gradients are added, for the iterative solution of the axial,
azimuthal and radial momenta of each cell at the next time level. In
phase 2 of the calculation one solves for the pressures, the densities,
and the three components of momentum by an iterative procedure.

Finally, in phase 3 the axial, azimuthal and vadial velocities are
seperated from their respective momenta. The new average angular veloci-
ty of the system is determined in such a way as to reduce the average an-
gular momentum relative to a rotating frame to zero. The entire cycle is

then repeated.
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D. DIFFERENCE TECHNIQUE
1. Donor-Cell Fluxes
Donor-cel]wf1uxing of the mass and momentum convective fluxes can

help ensure numerical stability for proolems in which violent disconti-

nuities are present either jnitially or at various stages of the calcula-

tion.56 In the present methodology the convection terms are written so
that one may weight the donor-cell averages by varying the parameter a.

Equation (III-1) defines the basic donor-cell nomenclature.

<uQ >'i+1/2jk = u'i"‘l/zjk [(]/2 + g) Q]Jk + (]/2 = E) Q'H‘]J'k] (III"])

wha

“s
m

£ =o sign (ui+%jk)
and

O0<o=1l/2

In the above expression Q is the physical quantity being convected
by the velocity u. In the rotating conrdinate system where the convec-
tion is controlled by the quantity v-rw, it is this net quantity that
determines the sign of Z and that appears as the coéfficient in Eq.
(III-1). It is the use of this net gquantity in the donor-cell terms that
minimizas the artificial diffusion. For full donor-cell differencing one
would choose o =1/2.

Donor-cell fluxing provides a means by wnich a weighted average that

depends on the direction and magnitude of the fluid flow can be perfurmad
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on the physical variables. If a physical quantity to be fluxed appears
in a product with a coordinate, the coordinate should be taken out of
the brackets along with the convecting velocity. That is, there is no
logical reason for performing a flow-weighted average on a variable that
is not moving with the fluid. If, however, the physical quantity being
convected contains a coordinate within its definition (such as angular
momentum), the quantity should not be decomposed, and the donor-cell av-
erage is applied to the product. These rules are exhibited for some se-
lected donor-cell terms, which are specifically expanded in Appendix B.
From an examination of Eq. (III-{), one sees that the donor-cell
flux is not space-centered uniess ¢=0. As a result low order trunca-

57, 58 These terms provide

tion errors in &r, 66, and §z are introduced.
a positive diffusion that tends to automatically stabilize the numerical
calculations. The advantage of the donor-cell technique can also be
its disadvantagye because the magnitude of the positive diffusion can in
certain circumstances be significant enough to obscure real diffusive
effects.
2. Averaging Schemes

In numerical calculations one must often perform simple averages to
obtain values of the physical variables at the mesh locations demanded
by the difference equations. This requirement is independent of the ac-
tual differencing scheme (i.e., donor-cell, space-centered, ZIP,59 etc.)
used. For example, if two quantities occur in a product such that nei-
ther quantity appears as it is naturally centered, one can either average
the products or take the product of the respective averages. Except

where specifically indicated, the latter technique is employed throughout

chis rethadcology. )
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E. PHASE 0: GRAVITATIONAL POTENTIAL
1. Tilde Notation

Given p w1jk’ and the new values for ¢ on the outer and upper

ijk?
boundaries and in the central core region, one relaxes Poisson's equation

-

iteratively. To simplify the representations, one can develop a tilde

notation to indicate iterated values. One.can write

Qi = Qige ¥ 94k (111-2)
with the convention that this statement is not an equation but rather an
expression for the way in which the new value on the left is calculated
from the old value on the right.

2. Relaxation of Poisson's Equation

One can represent the finite difference version of Eq. (II-15) by

means of the statement tijk = 0, in which

'l ~ ~ ~ ~
ijk = T2 [”i+% (¢i+1jk - wijk) IR (Wijk - ¢i-1jk)}
1

'l (~ ~
—— (P +oYs. - 2. )
ri2692 ij+lk iJ-1k ijk

1 ~ ~ n
+ E;?'(wijk+l + P51 - 2V13L) -6 Mog - (111-3)

Given a first approximation to a root of the equation Eijk = 0, one can

obtain an improved value by employing Newton's Iterative Method.60
L..
v LAk (111-4)
b =
ijk” al. .
ik
el



where .
/
Ligk _ 2( 1,11 )
~ 2 2 .2 2
awijk ér r &6 §z

The updated potential follows

Yisk T Yigk T i - (111-5)

With the improved scalar potential, one now recalculates tijP and tests

for convergence according to the following prescription.

[0s 5|

T AR ijk

L..,y <A 4st o + (111-6)

, ijk! ( max 6r2+-r12682+~622)
[ 4

where A is & constant that caontrols the tightness of the convergence and
hence the accuracy of the root.
F. PHASE 1: THE BAR QUANTITIES
1. Axial Equation
In this section and the subsequent one, the equations developed in
the previous chapter are presented in difference form. In Phase 1 the
"bar" quantities are calculated. Beginning with the axial momentum equa-

tion one first calculates the z-component of the viscous stress tensor,

Eq. (II-13).

n - 1 nf \ n _n
(72 1o “Iror? [ (oo (Vg = ™3y
1

o0, (n, o ) ;ib
O hictggikrss \ Wigkss = Yi-15key '
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1

n nw - n\rl )
2 552 Pijhgkty | ij+1k+y 13kHs
i

n n, _n, )
Pigmukrss \ Migkns T Mig-Tkens

PR B " - My )
572 Pijk+1 \ Yijk+3/2 ijkts

n n n
T Pijk ( Wik T w-ijk-l/z)]% . (111-7)

The initial guess for the new axial momentum of each cell follows direct-

ly from the Vz's and from the y's. Deleting the pressure term in Eq.

(11-22), one defines

|

— _n n
(p").ijk_l_li = (pw)i\]k'l"l/z + 6t{ri 51 ( <pqu‘>_i-1/2jk+l/2

n . 1 n -
- <0bﬂr>i+%jkﬂi) + riae ( <pu(v rw)>ij-%k+g
n T {n 2 2
- <°W("""‘°)>1j#/2k+1/2)+ a“z'( SO gk TS W >ijk+1)
np
ik (n _n Ney y. .
tgr o L gk Vi) V2 ke (111-8)

2. Azimuthal Equation

The 8-component of the viscous stress from Eq. (11-12) is

n( r2\
| 2 T Tinggrgk  fn, _n
sr i+1 545 ijHsk




31

n, 2
n e )ik

n
T g Vingn o

n

n n
. - V. g + . s -
( Vijask V]-]J+%k) (pr)1-%a+%k V1-%J+%k

n n

1 n n n
T 242 [ Pij+1k ( VijHasox " "ijv/zk) T Pijk ( Vigeak
1

-
n 2 i n
N "ij-a—k)J N t {oudj a1k - (pu)ijk:‘

ri 80
+ 1 n nv _ nV
o2 | Pigndks | Yignsken ij+gk
M. y.. -y ] (I111-9)
ik | Vigegk 13851 s

Omitting the pressure terms from Eq. (II-21) and using Eq. (III-C), one
defines the explicit part of the azimuthal momentum equation in differ-

ence form.

n,— _n 1 n 2
P igmge = (W) igmac ¥ 00 7 ( S PUVIT ek
i

2

n n
- . . + o—_— < - . .
< puvr >1+‘/23+‘/2k) v %5 ( ov (v m)>13k

n - 1 n
< pv(v-rw,>_ij+.lk) + 57 ( < pvw>ij+15k—‘/2

X

O -
n_ o gtk (my M )
< pvw >'ij+l/2k+lz‘) + ri 36 ( w’ijk 11)'1‘]+'”(
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+"W9hi%kz : (111-10)

3. Radial Equation

For the r-component of the viscous stress one has from Eq. {I11-11),

n ‘ 1 | _"itljk ( n _ n )
V)i = v (g;?'[ Py \Ti3/2 Yieazzgk T Ting Uik
n
- iuﬁ( n Ce My ) _1
1 -1 =L
rs its Jk i-% Ti-Ljk r§i4‘682

n
n ) o, Ditsik (n n, )
i+sj-1k %# 50 i j+4k i+ -4k
i+

|

n n
'( Usayik ~ ”i+1/2jk-])h . (111-11)

From Eqs. (II-20) and (III-11) one has for the explicit portion of the

radial momentum equation again witn the pressure terms absent

n
(pu)jygx + S

t

(ou) 44,5k '{ri+l/z or ijk
- < puzr > + L "< oulv- n.,)>
+13k Y., 50 p § 455 =Lk
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1

n
- - T L + o
< pulv m)>1+!5J+’/2'k) 8z

n
( < puw > ik

o J
n | ithjk [ n -n
< puw >"i+1/2.]k+15) + Sr ( w’ijk ‘pi+]jk)
e M |
itsik  Tithjk n
+ + V). . . ~12
Fia ( r)1+%Jk j (Hi-12)

4, The Difference Equations
From all of the segments introduced and definad in this section we
are how in a position to exhibit the full finite difference version of

the equations used for the calculations.

n+1 n

ijk , 1 (n+] < pur > T >1_ij)
X

1 n+l n+l
+ 58 ( < p(v-rw) > i 545k - < p(v-ruo) > 'ij-lék)

1 h+1 ntl _
+ 37 ( < pw > gkt T < pw > i 5k-1 ) =0
(I11-13)
n+l, e st [n+] _ n+l )
() g1y = ()50, * 57 ( Pijk Pijk+1 (111-14)
n+l = (= st (n+l _ n+l )
(V)50 = (OV)i5um * - 69 ( Pijk Pii41k (111-15)

N+l - (5T st [n+ _n#]
CONNRENCHNUNES  (L pi+1jk) (111-16)

—_—
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G. PHASE 2: [ITERATIVE RFIAXATION OF THE MASS
AND MOMENTUM FQUATIONS

1. Initialization
During this phase of a computational cycle, the continuity equation
and the momentum equations are solved simultaneously using an iterative
relaxation scheme. At the beginning of phase z the components of axial,
azimuthal and radial momentum are initialized using the newly obtained

"bar" quantities and the pressure field at time n. Using the tilde nota-

tion developed in the gravitational potential section,

(o) 510, = (P g5, * 55 ( Pisk pijkﬂ) (111-17)
~ I Sews 5t n _n i
(Dv)ij.f.l/zk - (pv)i‘jﬂik + '*-—'—'ri %) ( Pijk pij"‘]k) (I11-18)
- = (o7 8t (n _n i
(W) iz = (PWiaggn * &7 ( Pijk ijk) ‘ (1I1-19)

2. Calculating Mew Pressures and Densities
One now commences the implicit portion of the phase by defining a
function Bijk that goes to zero when the equation of continuity is sat-

jsfied. From Eq. (I11-13)

1
[N

Cae
=~

(=)}

-ij£ '! ~ _ ~
+ riSP (< pur >i+%jk <pur >i-%jk)

ijk = ot

-+

] o~ P~ Lo, ]
F;§§ (< pﬁ/-ru)>ij+%k < po/'rw)>ij-%k)

- < oW >,

ijk-%

+

\
.dlz. (< B > 4o, ) . (i11-20)
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The procedure used to obtain the roots of D is again that of flewton,

although the process is somewhat more involved here than in the solution
of Poisson's equation described earlier. One must form the partial de-
rivative of Dijk
derivative, one can define a function Eijk that is identical to the func-

with respect to Bijk' To avoid a fairly complicated

~

tion Dijk except for the replacement of the donor-cell fluxes with simple

cell-centered fluxes.

~ n
- Pigk T Pk
ijk 3 rs ér

=
m

[(pu Y‘)'i"'l/zjk - {pu Y‘)l—%_\]k]

] ~ A~ ~ ~
o ["("'m) ik~ Plv-ro) 1‘j-1/2k}

-+

] ~ v )
-57? [(pw)ijk'pfé = (p”)]\]k"%] (III 2])

Forming the partial derivative of ﬁijk

7 . ST a(pu): | .
Bisk _ 1 Pigk, [‘”-p Mo inge 2 )1-1/23k]

1 [a(pv)ijﬂgk i a(pv)ij—‘/gk]
09 L 905 30y 5k

(111-22)

+'8’~z o5

1 [a(&‘()ijk'*'l{z _ a(pw)'ijk--li]
P55k ik

in which the derivative of the w terms has been neglected. From the

equation of state, Eq. (11-14) )
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~ 'Y ~
. ap'l\]l\ - = A a(i]jk) - 'YA ('r‘)' )'Y"] ap]jk
Py ik Py jk 12k 3P4 jk
or
3% -
ik .1 = (111-23;
Pigk  vA G5

From Eqs. (III-14), (III-15), and (11I-16) with the pressures at time *I

replaced by the "tilde" pressurcs Eq. (III-22) becomes

Pk 1 1 st et
HJK = Tt s [T ae T iy o
BPTJk 6t~{A(lek) 1 2

1 st st 1 et , st
T v 80 [rjae +r.59]*§z‘[7+8“]

or
5P. . .
Lk T e R (111-24)
The new dﬁijk's follow from Eqs. (I1I-20) and (III-24)
) B
8Pi5k T " = - (111-25)
oD 5k
9P ik
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Once the solution has converged it will not matter that the equa-
tions have been relaxed substituting the approximate expression, Eq.

ol -
(I111-24), for the exact EELES° In addition to being less complicated,

ijk

Eq. (I111-24) tends to relax the system in fewer iterations than the cor-
aD: sy,

responding expression for ;FLUL. From Eq. (III-25) one seces that this
P4 ik

latter conclusion is reasonable because, as shown in a subsequent sec-
tion, the approximate derivative is always smaller than the exact one.
If, however, the equations do not converge, the correct derivative or a
closer approximation reflecting more of the nature of the fiuid flow can

serve as a remedy. For certain situations it is necessary to use this

more nearly correct expression. A detailed discussion of — is re-
i]
served for the section of this chapter entitled Special Methodological

Developments.

From Eq. (I11-25) the new pijkls follow directly.

p'ijk = pijk + (Sp_ijk (111-26)

With these new pressures and the equation of state, the new densities are

ol

51_ /Yy
ik = ("A’L) (111-27)

3. Momentum Equations

The "bar"® quantities and the new pressures allow one to solve for

the momentum components.

~ = §—‘L_ ~ o
) ges = 5510, * 35 (igic = Pigien) (111-2¢)
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N - (o I o
(OV)i5mk = (PV) g0 v 88 (pijk pij+]k) (111-29)

~ - (= 8t (-~ ~ )
(pu)i+‘/2jk - (pu)i+1/2‘jk + r (p'ijk - p'i'*']jk) (111-30)

One now tests for convergence according to the simple prescription

~ & pmax
Dijk < ST (I11-31)

The quantity p is a maximum density obtained at each iteration levei,

max
and € is a factor controlling the tightness of the convergence. If any

~

Ds 5k

Tation returns to Eq. (I11-20) and the whole process begins again. When

fails to satisfy the criterion defined by Eq. (I1I1-31), the calcu-

the convergence test has been satisfied the tilde quantities become the

n+l quantities.

H. PHASE 3: VELCCITY COMPONENTS AND
THE NEW FRAME

One can now separate the velocity components from their respactive

momenta. The following equations are used.

"1 (ou)
n+1 - ithik )
Uisseik = T (111-32)
Pitljk

+1 _ ..+1/2k

n+ o PGk
ijk+ks n+l
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The angular velocity of the rotating frame to which the variables are re-

ferred is selected by requiring the net angular momentum relative to it

be zero.
n+l n+1 _

Solving for w

b r.z n+](Dv)

_ igk 1 1+ek i
w = RS (I71-36)
BN Pk

I. REPRESENTATION OF THE VARIABLES

In order to follow the general evolution of the physical system and
to isolate significant characteristics, one must have a way to represent
the field variables in a useful and <onvenient fashion. The difficulties
attendent to the successful analysis of three-dimensional results are
non-trivial. The approach taken in this work utilizes two types of
printout and three types of graphical representation to exhibit system
properties. |

A short print summarizing certain aspects of the problem at each
cycle is used to provide a frequent monitoring of the evolution. Quan-
tities presented in the short print include the cycle number, the prob-
lem time, the current time step, the number of iterations in the gravita-
tional potential and in the phase 2 calculation respectively, the central
pressures, densities, and velocities, the angular velocity of the rota-
ting frame and its variation with time, the total gravitational, kinetic,

rotational and internal energies, the total angular momentum relative to
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beth fixed and rotating frames, and the tctal mass. At selected edit
times a long print yields the value of all depasndent variables at every
mesn point.

The graphical display of such a conplicated system is also desir-
able in analyz{ng the results. At selected edit times contour plots of
density, pressure, gravitational potential, and angular velocity relative
to the fixed frame are plotted in mutually perpendicular planes. The r-~8
plots are in the z=0 plane. The r-z contours are along a ray through
the most massive regions of the fluid. Velocity vector plots are also
provided in these planes. OCne of the most useful forms of graphical re-
presentation is the computer movie. A movie allows the researcher to ob-
serve the tctal system in continuous stages of evolution, making it less
easy to overlook significant developments and perturbations. HMovies are
therefore made to follow the progress of selected prohlems.

J. SPECIAL METHODOLOGICAL DEVELUPMENTS
1. Symmetry

In order to gain confidence in the physical significance of the re-
sults produced by the methodology for general three-dimensional problems
for which it is either difficult or impossible to make direct ties to an-
alytic theory or to cbservation, one can make a series of calculations
that have simple symmetries and can check the conservation of symmetries
as the systems evolve. If, for example, one initiates a collapse problem
with an initial spherical configuration and no rotation, the system
should retain this symmetry throughout its evolution and the azimuthal
velocities should remain zerc. Several such studies have.been made, and
the results indicate that the convergence of the gravitational potential

must be rather tight (about 10 significant digits are required) if the
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symmetric characteristics of the problem are to be maintained at late
time. If the convergence criterion is relaxed, a substantial azimuthal
velocity field develops with velocities comparable in magnitude to radial
and axial collapse velocities. By requiring the same degree of accuracy
during the evolution of asymmetric self-gravitating systems, one ensures
that the observed dynamical phenomena are more likely to be real in the
sense that they result from natural physical processes rather than from
numerical inaccuracies.
2. Numerical Stability

a. Classical considerations

The next facet of special methodology concerns a difficulty with nu-
merical stability. To describe this difficuity one must first consider
the classical aspects of numerical instability as foliows. Three-dimen-
sional problems are very time consuming and expensive. O(ne reason that
these are slow arises from the fact that one is trying to resolve a vol-
ume of space in some detail with a discrete calculational mesh. Many
cells are utilized even for coarsely resolved problems. The three-dimen-
sional methodologies are more complicated because one is dealing with
more coupled nonlinear partial differential equations, and the added com-
plexities result in slower problem evolution. To speed the calculation
one must force the system to evolve using the largest possible time steps
subject to numerical stability requirements. The time step is controlled

by the condition

v___ 8t
E < (111-37)

oX
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Vinax is the maximum velocity component in the system at time n and é6x is
the corresponding coordinate zone size. For the azimuthal velocity, one

uses (v -rw) and ré6 for v and 6x, respectively. The above expres-

max
sion is a statement that the fluid canncc traverse more than one zone in
a given time step. To be cautious during the rather violent dynamical
stages of evolution of the fluid systems studied in this work, the left-
hand side of Eq. (II1-37) is restricted to baing 1/5 or less.

There are other constraints that must be considered in this discus-
sion of numerical instability. ihese constraints limit the magnitude of

61

the artificial viscosity. From stability analysis, ' one must satisfy

the following condition

(I11-38)

vt <

whereas the lower 1imit of the viscosity is constrained by the require-

ment

X

1.2 1 Vmax
Vv St by = (111-39)

where n is the number of cells necessary to defire the width of the gra-
dients. Typically, one selects an n of 2. The above three conditions
are not independent; and if 6x is selected appropriately, Eq. (11I-32) is
automatically satisfied when Eq. (III-37) is used to determine the time
step and when Eq. (1II-38) is used to obtain the kinematic viscosity.
Note that Eq. (III-38) illustrates the motivation for a central core in
the calculation, which excludes some zones which would otherwise be very
narrow in the vicinity of the axis. The corresponding small value of

r; 86 would introduce severe restrictions on the time step. Since
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calculations in three space dimensions are very time consuming with even
the fastest modern computers, the added time step restriction should be
avoidod.

b. Local viscasity instabilities

Despite adherence to the restrictions described in the preceding
paragraphs, difficulties can arise from a somewhat different type of
local viscosity instability. Density discontinuities in adjacent cells
can be many orders of magnitude in the regions of the mesh far removed
from a center of gravitational attraction. If in four adjacent cells one
cell has a relatively high density compared to that of the other three,
the average density required at the common nodal point by the viscous
stress components would be that of the high density cell if a straight
linear average of all four were used. The resulting momentum flux would
then be too great for the low density zones. Experience with this four-
cell-average approach shows indeed that the velocity at such interfaces
can grow catastrophically in magnitude, changing sign every time step.

A fairly simple solution to this difficulty can be implemented. One
forms a linear two-cell averaqe of the densities on either side of the
viscous flux direction and then selects the Tower value for use in the
viscous stress components. This procedure is conservative of momentum
because the value of density assigned to a node is the same when viewed
from either side of the flux. The fact that this technique is applied
througnhout all regions of the mesh is of no conseauence to this research
because the viscous stress components and the kinematic viscosity are not
used as physical properties of the fluid, but are instead numerical arti-

facts employed for stability.
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3. Partial Derivative of Dijk

For certain dynamical systems the equations may not converge using
9Py ik
9P 5k
convergence can be regained by using the correct expression, formed by

the approximation given in Eq. (117-24). 1In these instances the

the partial derivative of Eq. (I1I-20) rather than of Eq. (I1I1-21).
From £q. (I1I-20) one has

alD. . 9. -
ijk _ 1 ijk , 1 2 (< > <S>
—_ .—"‘_.,,\. Y ~ pur +1/'k" pur .31
api‘]!< 6t dpijk ry 8r 3 i3k 1+] i-kjk
ol 3 (< o(v - ru) > < p(v - rw) )
r; &6 aﬁij,, 1j+sk 1j-%sk
P - I (<pT«>.. - < pu>. . (111-40)
8§z asijk ijk+s ijk-%

The first term in Eq. (II1I-40) is simply Eq. (I11I-23). To obtain
the partial derivatives of the donor-cell terms, these must first be ex-

panded. Consider for example the < 6a'“>i+bjb term.
20

~ 1 o\~ ] ~
<eur >y 7t 91) Pijk * (? - 51) pi+1jk]

= (ur)

] ~ ~ ~ ~
iHsik (E (pijk * °1’+1jk) & (pijk - p1'+1jk)]

~

(DU Y‘)'H';i‘]-k + E] (ur)'i"‘;ijk (p'l\]!( - Di_,_-le) (III-4])

whare 51 = @ sign (a}+%jk) 0<a<1/2 . Therefore

a<pu1“>].+!§jk=

r ' a(pu)i’*'l/zjk N 9p.

i

P — R
13k 9P 5 Py ik
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~

ou. ., .
~ ~ itsjk
+ Se sy~ . . ——

From Eqs. (III-30) and (I1I11-23), Egq. (III-42) becomes

<pur>., . U,
o <pur >1+!5\]k = p ot E] r1+15u1*453k

3P4 1 i+; &r ~ Oyl
ijk YA (p'ljk)
N, s
~ e i+Hsik
t g (pijk p1‘+1jk) T

(111-42)

(I11-43)

To evaluate the one remaining partial derivative, one uses Eqs. {III-23)

and (I111-30) and the chain rule.

~

Pening _~  PPimgic, o Mgk
—— = E Uy e TR s .
apijk itk apijk 1k apijk
5t . O12(Pyjk *Pinge) 5 U5k
O =y, - T v
or 1+23k ap'le 1 ZJL‘ BDiJk
or
D T Ds - ~ -1
OPiik  Pivsik r 2 Y/\(Dijk)Y

Combining Eqs. (III-43) and (I1I-44) one has

a<pur >

itk _ st , o1 i Yingk
~ v-1

= pr.
D ity 6
Pk :

(I11-44)
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+

26y (043¢ = Pingi) Tisy (ét 1 itsik )
i3k * Pinrgd
(111-45)

By analogy the othar partial derivatives follow.

dEeur ik oo . st 2liatiagik
= ik 5T T T el
2 oy ygu ~ Pik) iy (§3_+ 1 Yok )
~ ~ 8 2 ~ y-1
(91-13k + p'iJk) YA (p'ljk)
{111-46)
where
£, = asign (Gi_,/zjk) 0 <a< 1/2
3<plv-ru) >i5pp st , o3 Vigek 283 (0441 = 055411
~ r. 49 ~ y-1 ~ ~
. ( st 1 Vijuk )- (1/2+&5)r.w
r. 80 2 ~ y-1 ~ v-1
1 YA (p‘ijk) YA (pijk)
(111-47)

where

£y = asign (V.

- <o s
i34 r'].w) 0<a<1/2
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j} d<olv-ro) >ai e EaVigaa %8 (g Pk
= r.d6 ~ Y- ~ ~
Pijk ! YA (51 (Pyj-1k * Pisk)
( st .1 Vijgak ) (172 - ‘54)"]“’
ry oo ZYA(D k)Y YA(p k)Y
(111-48)
where
&g = as1gn(v1j Lk rim) 0<ac<1/2

9 < pw>1\]k+1 = 8t Eo“1gk+/ + 255(pijk_ pijk+]) (QE

"z v-1 = ~ 5z
Vi,
- %‘—#ﬁ%‘;j‘) (111-49)
YA (p.le)

where

£ = as1gn(w13k+/) 0<a<1/2

D <O >y st Stk %6 Pigka ™ i) (G_t.
~ T8z T v-1 ~ ~ 8z
ap’ijk 'YA(D l’) (p.ijk_]+p.ijk)
LW,
] ijk-% )
PSRN 1] & S (111-50)
2 ya (p k)Y !
where
g = us1gn(w13k3é) 0<0<1/2
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As a first approximation to this improved form one may neglect the terms
involving density differences in Eqs. (I111-45), (I11-46), (111-47},
(111-48), (I11-49), and (II1-50) and substitute the resulting eipressions
into Eq. (III-40), arriving at a much closer approximation to 2211&

: L Pijk
without much additional complexity.

ik 1 L 26t , 28t 28t
StvA (o) o2 rileo? 62
5 5k YA 5k T
+ [ P adingi * £ TiogYiogge)
YA (p Y "3 o

ijk

r. 66 86 Y4

L B3 Vigug t B Vigog)  (EgtEp)e  (Egvy, 56“’1jk-’/z)]
1

(111-51)

Equation (III-51) is identical to Eq. (III-24) except for the terms in
brackets. These terms are all positive definite with the exception of
the w term, which can be positive, zero, or negative. In general the net
contribution of the additional terms is positive, serving to slow down
the relaxation of the equations and thereby improving the propensity for
convergence.
. 4, Velocity Zeroing

One may want to set the high velocities in the relatively rarefied
regions to zero. This procedure does little to effect the physics be-
cause of the low fluxes associated with the lower densities of the region;
and it does allow the problem to evolve using a greater time step, as well

as giving more detail in the velocity vector plots for the more dense

fluid arcas where the velocities are smalier.
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5. Pressure Halving

From Eq. (I11-27) one can anticipate a difficulty arising because
of possible negative pressure excursions during the phase 2 iterations
before convergence has been achieved. It turns out that negative pres-
sures only occur in conjunction with the velocity zeroing scheme de-
scribed in the preceding section. To avoid the difficulties arising from
the resulting negative densities, one simply tests the new pressures cal-
culated each iteration from Eq. (III-31) to determine if any are negative.

If a negative pressure occurs, the associated change in pressure is set

equal to half the former positive value.



-

50

IV. NUMERICAL ACCURACY
A. INTRODUCTION

Finite difference solutions of the partial differential equations
are never exact because of the presence of truncation and coarse con-
vergence errors. The truncation terms are generally the greatest source
of inaccuracy for calculations in which one is forced to use a coarsely
zonad mesh. To aid in determining the numerical accuracy of the three-
dimensional code, KORY0, a two-dimensional computer program, TAEBEK, has
been developed. Because KORYO and TAEBEK are based on the same funda-
mental equations, comparison ca]cu]atibns can be easily performed.

KORYO and TAEBEK are both capable of treating initial value prob-
Tems. Each can be run to a unique final steady state equilibrium con-
figuration. One can compare the final multi-dimensional steady state
solutions to a finely resolved one-dimensional hydrostatic equilibrium
calculation. 1If all three calculations agree, our confidence that the
numerical solution is in close agreement with the actual solution of the
partial differential equations is greatly increased.

B. PROOF TESTING OF TAEBEK
1. Two-Dimensional Time Relaxation to Steady State

Starting from an initial arbitrary non-equilibrium configuration,
the two-dimensional TAEBEK code has been used to follow the evolution of
a non-rotating, non-conducting, self-gravitating, polytropic fluid to
its steady state. From basic physical principles one expects the steady
state configuration to be spherical. For this reason the symmetry of the
final state provides a qualitative check on the accuracy of the solution.

For this calculation a coarse 10 x 10 mesh is used. An individual

cell is a toroid with a square cross section that measures 107 cm on each
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side. The mass is initially distributed in two regions of space. A uni-
form density of 1.34 g/cm3 is put into a cylindrical region that has a
radius and a half-height, respectively, of 7 x 107 cm. Everywherz else in
the mesh, the density is set to half this value. The resulting total

mass of the system is 5.65x 1024 g. Tne adiabatic-parameter, A, in the

polytropic equation of state is held at a constant value of 109 cm7/2/

g% 52, y is 3/2, and the kinematic viscosity is 10]2 cmZ/s.

Figures 4 and 5 are contour plots of the density and gravitational
potential at four selected times during the collapse. The r axis is her-
izontal; the z axis, vertical. The origin of the coordinate system and
the center of the fluid body is at the lower left of the plots at the in-
tersection of the axes. That is, one is looking at only the upper quad-
rant of the body. Z=0 is a plans o, symmetry; r=0, an axis of symmetry.

In Fig. 4a at t=0 s, the initial configuration is shown by the
single contour line. The circular segment that has been drawn over some
of the contours is present to allow one to better assess departuras from
spherical symuetry. Based on the decrease in total kinetic energy, the
system is assumed to be in equilibrium at t=26,000 s. The excellent
agreement with spherical symmetry at this time occurs despite the coarse-
ness of the zoning. The innermost contour at later times is a straight

line because of the coarseness of the zoning. The evolution of the grav-

itational potential in Fig. 5 is similar, although visibly less dramatic.
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2. One-Dimeiisional Hydrostatic Equilibrium
In steady state the self-gravitating fluid body of the preceding
section is spherically symmetric. Under such conditions one can solve
for spatial density and gravitational potential profiles in a straight-

forward manner. In steady state the radial momentum equation reduces to

the following simple form.

Lo, | (1v-1)

Since the adiabatic-parameter is assumed to be constant, the equation of
of state can be used to eliminate p from the above equation. After re-

arranging, the result is

-1
A éﬂ:l%.iiEL,__ (1v-2)

(5]
-

|

r ar

QL

Equation (IV-2) can be used in conjunction with the one-dimensional
Poisson's eguation for the gravitational potential to solve for p and ¢.

In spherical coordinates one has

1_3_(r2
;?'Br

Ye

) = 4nGp (1v-3)

Substituting Eq. (IV-2) into Eq. (IV-3) and rearranging

v-1
- lZ'g%‘ (Y‘Z -g-%r—*) =CyP (1v-4)
r .

where
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c. = 4r G(y-1)
1 YA
Equation (IV-4) is a nonlinear second order partial differential
equation that can be easily solved numerically. 1If one centers the vari-
ables as in the two-dimensional code; and if one defines an analcgous in-
dexing scheme, as depicted graphically in Fig. 6, the finite difference

form of Eq. (IV-4) is

. zrf% [EIR L CA Ll IR [T L O )Y"]f

FIGURE €
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Equation (IV-5) can be solved algebraically for Pig- The result is

- - 1/v-1
s r?_x [(p.)Y [ {p;_ )Y ]] - Grz r? Cq P; _
- i-% i i-1 i, (0:)Y 1
i+ ) 2 Py
. P,
(1v-6)
One now obtains y{r) from the finite-difference form of Eq. (IV-2)
A -1 -1
IP-H.] = ‘b]' + ?‘_‘Y]— [(91' )Y - (piﬂ )Y ] , (1v-7)

To generate the solution from Egs. (IV-6) and (IV-7) one needs the
central density (pc), the central scalar potential (wc), the constent
adiabatic-parameter, and boundary conditions that result from the assump-

tion of axial symmetry. That is,
Py = Pe 3 Yo T U3 Py T Ry (1v-8)

3. Comparison of the One- and Two-Dimensional Results

The one~ and two-dimensional calculations are compared graphically
in Fig. 7. The solution along the axis agrees very well with the one-
dimensional result. The solution along the radius agrees nearly as well,
The apparent asymmetry in the two-dimensional result is due to the coarse-
ness of the calculational mesh. In Fig. 7b one sees that for this series
of calculations the gravitational potential has been normalized to zero
at the center of the body.

Subsequent to the completion of this development for methodological

check purposes, a pubh‘cation62 has appeared that also addresses
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one-dimensional hydrostatic equilibrium with a finite difference scheme.
Although the detailed numerical techniques differ slightly, the solu-

tions produced by the respective schemes are virtually identical.

SOy
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4. Numerical Viscosity Parameter Study

In Chapter III, Sec. I th2 numerical stability constraints on the
kinematic viscosity have been described, There are also physical consi-
derations that can influence the selection of an appropriate viscosity.
In many applications one wiShes to begin with a self-gravitating body in
equilibrium and to study phenomena resulting from various perturbations
to steady state. In such cases the transient dynamic phases in the ap-
proach to equilibrium are not of interest, and one is free to select non-
pnysici viscosities merely to expedite the development of the desired
steady state.

Fluids can behave in ways analogous to harmonic oscillators. If the
kinematic viscosity exceeds a certain critical value, the system is over-
cdamped; and equilibrium is approached very slowly because of the Targe
frictional resistance to fluid flow. If on the other hand, the system is
severely underdamped, it will oscillate about the equilibrium configura-
tion essentially forever. The goal tnen is to select a viscosity that
does not prove overly restrictive on tne time step and that is not too
far removed from the critical value of the physical system,

For these reasons A study has been made to consider the effect of
viscosity on the self-gravitating fluid sphere described in Sec. IVB.
Each caiculation is made using a numerical viscosity that is constant
over the entire mesh. The viscous stress components assumed in this
study are those teken from the stress tensor appropriate for an incompres-
sible fluid (Eqs. (II-11), (11-12), and (II-13)).

One begins by perturbing the hydrostatic equilibrium configuration
with an angular momentum step function., The fluid is given a sudden solid

body distribution of angular momentum and is allowed to expand under the

J
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action of centrifugal force for 1300 seconds. The angular velocities are
then re-zeroed, and the now slightly oblated body is allowed to collapse
back to its original equilibrium configuration. To monitor the approach
to equilibrium, the total kinetic energy is studied as a function of
time. The process is repeated for four different viscosities.

The results of the study are summarized graphically in Fig. 8. The
plots begin at the time whan the rotation is turned off. 1In 1360 sec the
body has not reached rotational equilibrium. The initial decrease in
kinetic energies reflects the removal of the centrifugal force driving
the expansion and the subsequent deceleration of the fluid. Gravity
turns the velocities around and the now unstable mass distribution ac-
celerates toward the former equilibrium configuration. 1if the system is
rot overdamped, the fluid overshoots the equilibrium point because of the
newly acquired linear momentum and oscillates about it with an e-folding
time dependent on the magnitudc of the viscosity.

10 1 cmz/s) have the same

Figures 8a (v=5x10 cmz/s) and 8b (v=10
period of oscillation and have similar amplitude decay rates. The dash-
dot 1ine in Fig. 8b is a fit to the trace using the analytic form for a
damped Tinear harmonic osci]]ator.* The free parameters in the fit are

the decay rate and the frequency. The agreement is comforting, although

* The equation of motion of a damped linear harmonic oscillator is

2

¥ = - k© x~2ax

where k2 is the spring constant; A, the frictional term; and x, the dis-
placement. Solving, one has for the real part

M2(t - )

o cosw (t - to)

1
where w = 1/(4k% - A2)*
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only qualitative agreement is to be expected. In Fig. 8c the viscosity

of 4x10

system to be overdamped at a viscosity of 10

11

cm2/s is approaching the critical value. Figure 8d shows the

12 cmz/s.

-
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C. PRCOF TESTING OF KORYO
1. Symmetry Considerations

The two-dimensional code, TAEBEK, and the three-dimensional code,
KORYQ, are based on very similar methodologies; and, when symmetry al-
Tows, they can be used to address identical problems. The methodological
checkout of TAEBEK has already been described in the preceding sections
of this chapter. To test KORYD, one compares it to its predecessor by
solving a problem with axial symmetry.

An obvious question regarding the methodology of KORYQO relates to
its ability to maintain axial symmetry if the nature of the problem de-
mands that it do so, This question has been addressed by two separate
parameter studies involving the tightness of convergence imposed, respec-

tively, on the iterative solution of Poisson's equation for the gravita-

tional potential and on the iterative solution of the equations of motion.

From these studies one concludes that the convergence criteria for the
former must be rather strict, and that for the latter it need not be so
severe.

The above result is fortunate because the iterative relaxation pro-
cess used to determine the gravitational potential is very fast, and the
increased fraction of time spent in this phase of the calculation due to
the required close convergence is minimal. One reason why this conver-
gence restraint on the potential does not require a large number of ad-
ditional iterations has already been discussed in Chapter II, Sec. D;
i.e., the initial quess to the gravitational potential is very good in a
rotating frame. For the iterative relaxation of the equations of motion,
the number of iterations required is, of course, a strong function of the

dynamics of the system. Since this phase of each calculational cycle is

3
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one of the most time consuming parts, it would have been costly in total
problem running time had the axial symmetry been overly sensitive to the
convergence of the phase 2 solutions.

2. Three-Dimensional Time Relaxation to Steady State

A natural choice for a comparison calculation is the problem already
described. The outer dimensions of the problems are the same; however,
because of the central boundary core in the three-dimensional mesh, the
specific zoning in KORYO must be somewhat different. A 5x12x5 mesh
with 6r=5/3x10" cm, 66=21/12, and 6z=2x10" cm has been selected.
The calculations are started with different initial conditions from those
used in the TAEBEK calculation. No artificial axial symmetry censtraints
have been imposed on KORYO, i.e., the calculation is fully three-dimen-
sional.

In Fig. 9 KORYD density contours in both the r-¢ awui the r-z planes
are presented at very early times. The initially uniform mass distribu-
tion has bagun to collapse under self-gravity. The concentration of con-
tours near the outer boundaries indicates that the mass in these regions
is being drewn rapidly inward. At the late time represented in Fig. 10
the contours are evenly distributed throughout the mesh, and the body has
reached a symmetric steady state.

Figures 11 and 12 summarize the evolution of the gravitational po-
tential. When the mass becomes more centrally concentrated, the poten-
tial well deepens as one would expect. The influence of the core on the
gravitational potential is very clearly demonstrated by the contour plots
in the r-z plane. The effect of the core is more pronounced at the ori-
gir of the coordinate system than it is farther up the z-axis. The im-

plication is that the influence of the core is configuration dependent
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and that the greatest effe.t results when the body is concentrated near

the origin. This peint is discussed in a subsequent part of this section.
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3. Comparison of the Two- and Three-Dimensional Results

A more quantitative comparison of the two- and three-dimensional
calculations is provided by the profiles of density and gravitational po-
tential presented in Figs. 13, 14, and 15. The comparison of TAEBEK with
the one-dimensional hydrostatic equilibrium calculation presented earlier
in this chapter is for a 10x 10 mesh. The KORYO calculation discussed in
this section uses much coarser zoning. For these reasons Figs. 13 and 14
include a comparison between a TAEBEK calculation that employs a 5x5
mesh and one that uses a 10x 10 mesh. The resulting profi]e; are in ex-
cellent agreement; therefore, the zoning differences do not ente:~ signif-
icantly into the interpretation given below.

The density and gravitational potential profiles calculated with
KORYQ are in fairly good agreement with those produced with TAEBEX. The
lower central density predicted by KORYD is a result of the massless core
and the resulting higher gravitational potential in proximity tc it.
Naturally, the worst agreement results when one looks up along the z-axis
in zones immediately adjacent to the core. In Fig. 15 the gravitational
potentials are compared for a rotating self-gravitating body tc demon-
strate that as the system becomes less centrally condensed, the effect of
the core is reduced. For the class of physical systems, that this method-
ology is specifically designed to address, the effect of a central mass-
less core seems to be of relatively minor consequence.

The effect of the central core is related to the fraction of the to-
tal mass excluded from the system by its presence. The magnitude of the
effect is therefore inversely proportional to the number of radial zones.
That is, the influence of the massless core in a calculation using 10

radial zones instead of the 5 described in these check cases is reduced
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by about a factor of twe. A1l of the protostar models reported in Chap-

ter V and VI do in fact use the finer radial zoning. The effect of

truncation errors and the convergence of the numerical solutions are

discussed in more detail in Appendix C.

N
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V. COLLAPSE OF A ROTATING INTERSTELLAR CLOUD

A. INTRODUCTION
As a first step in the study of the dynamics of protostellar evo-

lution, we have examined the formation of toroids from uniform and from
nonuniform distributions of interstellar gas. As discussed in Cnap-
ter I, several other workers have studied the same problem and have
come to contradictory conclusions. In every case the calculations,
upon which the conclusions are based, have been two-dimensional, with
forced“axiaﬁgsyﬁmetny. Our goals with the fully three-dimensional cal-
culations have been
1) to investigate whether or not stable toroidal rings can
be formed from the coliapse of a three-dimensional con-
figuration
2) to see if the formation of such rings can be inhibited
or prevented by the existence of perturbations in the
initial gaseous distribution
In selecting injtial conditions one uses the Timited observational
guidance available. The assumption is made that the early protostar
can be modelled by a cylindrical region of space, characterized by an
average uniform density. The dinensions of the cylinder are chosen to
be consistent with the size of observed dark globules and other dense
interstellar c]ouds.63 The primordial cloud is assumed to be initially
in solid body rotation with a ccunterclockwise sense. In choosing a
rate of rotation one is guided by the observation that neither the
stellar rotation axes nor the axes of binary systems show any preferred
orientation relative to the galactic plane. This random orientation
implies that the rotational motions originated in random turbulent

motions in the interstellar medium and that the rotational velocities

——y
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of protostellar clouds are comparable to the neasured translational
velocities.64 One therefore chooses angular velocities greater than
or approximately equal to galactic rotation rates.

The collapse calculations have been performed in a grid that has
10 radial, 12 azimuthal and 5 axial cells resolving the space above an
equatorial plane across which symmetry has been assumed. The 12 azi-
muthal zones divide the region into 30° segments. In an r-z plane the
cell surfaces are rectangles. The axial dimension of a zone is
1.4 x ]0]6 c¢m; the radial dimension is exactly one-half the =xial value.
The upper boundary is 7.0 x ]0]6 cm above the reflecting plane. The
inner radial boundary required by the central core and the outer radial
boundary are 7.0 x 10]5 cm and 7.7 x ]0]6 cm, respectively, from the
axis of rotation.

The results are summarized using contour plots of densfty, gravi-
tational potential, and angular velocity in both the r-6 and the r-z
planes. The r-6 plane contours represent conditions in the equatorial
plane. Plots in the r-z plane are selected to pass through the most
massive azimuthal ray of the system. Velocity and momentum-density
vector fields in the r-8 and r-z planes, as referred to both the Tab-
oratory and the rotating frames, are used to summarize fluid motions.
A1l vectors originate at cell centers; so the tails can be easily iden-
tifieg‘either by visual inspection or by using a straight edge to line
them up. The r-6 plane vector plots contain linearly interpolated
additional azimuthal rays of two different lengths to fill in the di-
verging areas, facilitating pattern identification.

A density, called the maximum interpolated density, and a radius,

called the position of maximum interpolated density, are used to
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summarize the time evolution of a system. These variables are given
the symbols péax and R , , respectively. They are obtained from a
three-point parabolic f?ixto the maximum cell density and the two
adjacent densities. Except where specifically indicated, all quanti-

ties are reported in the cgs system of units.

B. RING CHARACTERIZATION
1. Assumptions and Constraints

The literature on equilibrium rings, as well as the generally re-
strictive assumptions upon which these works are based, is summarized
in Chapter I. We continue to assume that a polytropic gas equation of
state is valid. One is constrairad by the calculational mesh to study-
ing rings that have dimensijons comparable to or greater than the dimen-
sions of an individual cell. The viscosity chosen for the calculations
is 1imited to that amount necessary for numerical stability; therefore,
the systems are not significantly constrained from rotating differen-
tially. Examples of the patterns of differential rotation that develop
in the various calculations are presented in the form of angular veloc-
ity contours referred to the laboratory frame.

The only symmetry constraint imposed on the system is the reflec-
ting plane at z = 0. This assumption limits the problems one can ad-
dress to a specific, but rather large, class. The reflecting plane can
be easily removed at the expense of increased computing times or of re-
duced spatial resolution.

We reemphasize the three-dimensionality of the calculations. With
the finite difference tcinniques used throughout, the potential sur-

faces and the mass configurations of highly distorted objects can be

| S—

)
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more accurately determined than with any analytical solutions that are
currently available. The distortion scales of interest must, however,
be comparable to or greater than the computational zone size if they

are to be resolved.

2. Geometric Properties

To describe the structural appearance of a ring, one needs to con-
sider two separate geometric features. The radius of the toroid, de-
fined as the distance from the axis of rotation to the maximum density
contour, is the first of these features. Figure 16 graphically illus-
trates this concept. The second feature depends on the cross-sectional
characteristics of the region of high mass concentration in the ring.
If the configuration is that of a circular toroid, one can characterize
the cross section by a single Tinear dimension, the radius of the cir-
cular cross section. In general, rotating rings are flattenad into the
equatorial pliane; so the cross sections can not even be accurately rep-
resented as ellipses with well-defined major and minor axes. One
therefore defines an average dimension, which in all subsequent sec-
tions is called the characteristic cross-sectional radius, a, of the
ring. To determine a for distorted toroidal systems one measures the
diameter of the ring in the equatorial plane, divides by two, and aver-
ages this result with the measured axial radius. The cross-sectional
radius of a ring section is graphically illustrated in Figure 16.

The radius, R, of a toroid is a uniquely and well-defined concept
if one uses the definition given above. The characteristic cross-
sectional radius, on the other hand, requires that one know the loca-

tion of the ring surface. As a matter of convention we define the
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surface of ihe ring to lie on the contour that represents one order of
magnitude decrease from the maximum density in the ring.

Both of the geometric features described above depend in a compli-
cated way on the partitioning of enerqgy in the system. The radius of
the toroid is most sensitive to the gravitational potential energy and
to the kinetic energy of rotation. The characteristic cross-sectional
radius of the ring is likewise influenced by these energies; but in
addition, the area and shape of the ring depend very strongly on the
thermal pressure.

The geometric characteristics of rotating toroids result from a
very complicated interaction of centrifugal and gravitational forces
with forces arising from the internal thermal pressures of the ring.

As a means for estimating the characteristic cross-sectional radius,
one assumes that a section of the toroid can be represented by an infi-
nite cylinder; and one non-dimensionalizes the cylindrical equation

of hydrostatic equilibrium. Combining Eqs. (II-14), (IV-1), and the
one-dimensional form of Eq. (II-15) and expanding the inner radial

derivative, one has

BRI ( roY? ﬂ’-) = 4nGo (v-1)

(V-2)

Substituting Eq. (V-2) into Eq. (V-1) and rearranging, one obtains

)
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f {(v-3)

B (x f*“zﬁ) _ e 22T

X YA My—Z

The dimensionless quantity above can be scaled by writing

3y-4
4G a . 4u _
YA g2y . (V-4)

where A is a free scaling factor. Setting y = 5/3 and solving for a,

one has

a = — (V-5)

Once the free scaling parameter is chosen, Eq. (V-5) provides a
very convenient and surprisingly consistent means for predicting the
characteristic cross-sectional radius of a self-gravitating system.

The selection of the free-scaling parameter, A, is discussed in Section
G of Chapter VI.

In the following discussions, systems are classified as dispersed,
intermediate, or compact purely as a matter of convenience. A dis-
persed gas is characterized by thermal pressures that significantly
resist local self-gravity. For a fixed ratio of specific heats the
designation cen be qualitatively defined in terms of the entropy vari-
able, A. Systems with higher values of A are more dispersed than those
having lower values. Dispersed teroids are those for which the charac-
teristic cross-sectional radius, a, of the ring is comparable to the
radius, R, of the toroid. Compact toroids are those for which a is

much less than R. Intermediate toroids lie in between.
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CHARACTERIZATION OF ROTATING TOROIDS

FIGURE 16
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C. RING FORMATION
1. The Collapse of a Uniform Cloud

18

An initial density of 1.38 x 10"~ is distributed uniformly over

the calculational grid. The total mass in the system is 1.81 soler
masses. The entropy variable, A, is assigned the value of 1.5 x 1020.
The azimuthal velocity is initially that of a solid body rotating with

']3. The radial and axial velocities

an angular velocity of 6.0 x 10
are initialized to zero. For these assumed initial conditions the
cloud satisfies the Jeans criterion and begins to collapse under its
own seif-gravity.

Figures 17 - 22 summarize the early-time configuration and flow
of the fluid. Although the variation is only about 20%, the r-o plane
density contours of Fig. 17a show that a toroidal buildup of mass has
already begun. The lowest-density contour ir that plane is greater
than the initial density of the system. The net increase results from
the gas in the upper regions of the cloud collapsing down toward the
equatorial plane unimpeded by the action of centrifugal forces, as
shown in the r-z plane contours of Fig. 17b. The toroidal structure
is also evident in both the r-6 and r-z plane angular velocity contours
of Fig. 19a, b. One notices that patterns of differential rotation
have begun to develop. The ring itself shows the highest angular ve-
locities, while the fluid elements near the axis of rotation and those
near the lateral boundary lag behind. The gravitational potential con-
tours in Fig. 18a, b do not visually indicate the ring configuration.
In the r-8 plane the potential well is centered on the axis of rotation

rather than on the ring circumference.



83

The velocity and momentum~-density vector fields summarize the
fluid motion. The accretion onto the ring is best illustrated in the
rotating-frame plots shown in Fig. 2la, b. The largest radial veloc-
ities occur in the fluid outside of the region of ring formation. This
velocitly pattern is consistent with the axis-centered gravitational
potential contours of Fig. 18a. The picture one has of the accretion
process is that of gas in the upper and outer regions of the cloud
falling toward a toroidal core that has begun to form at a radius where
centrifugal and gravitational forces are in balance.

The r-z velocity and momentum-density vector fields of Fig. 22a, b
illustrate the collapse toward the equatoriél plane. The vectors higher
up the z-axis have a slight positive radial component. Two independent
mechanisms contribute to produce this outward motion. First, since
there is less mass near the axis in the upper regiorns of the cloud, the
radial gravitational potential gradient is small; and the certrifusal
forces resulting from the assumed initial conditions can dominate.

This effect increases with time as the upper regions become more and
more rarefied near the axis. Second, the downward falling gas en-
counters a pressure gradient that accelerates the material outwards as
it impacts the spherical surface of the high pressure toroidal core.
As a result of these processes, the system loses mass out the lateral
boundary during the early and intermediate phases of the collapse.

Figure 23a, b illustrates the configuration of the system in terms
of its density contours at a time near the point of maximum compression.
The toroidal structure is still evident in both the r-6 and r-z planes;
but in addition, the latter shows a disc-like structure. The linear

momentum developed during the collapse has caused the system to be
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compressed beyond the point of equilibrium, and the elevated thermal
rvessures subsequently re-expand the ring. Figure 30 summarizes the
oscillation of the toroid about equilibrium.

The cloud configuration is illustrated at late time in Figs. 24 -
29.- In the density contours of Fig. 24a. b, a well-defined toroidal
structure is present. The minimum density contour in the r-g plane is
now about 24% of the maximum value in the ring. The density gradient
is greater on the outer edge of the ring than it is on the inner edge.
In fact, it is difficult to define an inner edge. Near the axis the
density is 85% of the maximum. This system is a disc with a toroidal
bulge. The maximum density at this time is reduced from the value at
maximum compression; and the ring is less flattened into the equatorial
plane, as shown in Fig. 24b. In Fig. 25a, b, one observes that even
at late time the gravitational potential well of a toroidally bulging
disc is centered on the axis of rctation, rather than on the ring it-
self.

The differential rotation is shown in the angular velocity con-
tours o7 Fig. 26a, b. The ring structure is no longer visible in this
variable. The average angular velocity of the late-time system is
greater than that assumed for the initial cloud. As the protostar has
become more concentrated the conservation of angular momentum has
worked to spin it faster. The angular velocity decreases away from the
axis of rotation. The sharp gradient in the axial direction shown in
the r-z plane of Fig. 26b is due to the numerical technique of zeroing
the velocities in very low density regions.

The vector fields are summarized in Figs. 27 - 29. 1In the r-8

plane, the laboratory velocity and momentum-density vector fields are
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shown in Fig. 27a, b. The positive radial component indicates that the
system is still Tosing mass. The momentum density representation re-
flects the concentration of mass in the toroidal system. In the rotat-
ing frame of Fig. 28a, b, the vector fields emphasize the mass 1oss in
the outer regions. 1In Fig. 29a the r-z plane velocity vector field
shows the high residual collapse velocities in the less dense regions
of the protosta: The accompanying momentum density representation in-
dicates a small positive radial flow in the equatorial plane.

Figure 30 is a plot of the maximum interpolated density and of the

radius of that density as functions of time. The maximum ring density

18

is oscillating about an average value of 6 x 10° One would estimate

the average toroidal radius to be about 2.9 x 10]6. The characteristic
cross-sectional radius of this ring as measured from the graphs is

4.11 x 1016. At this time the system has lost 31% of the mass in the

original cloud.
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2. The Collapse of Nonuniform Clouds
a. Initial conditions
Two collapses have been followed that start from a nonuniform
cloud. One system is identical io the dispersed uniform cloud dis-
cussed in the preceeding section, except for the perturbation applied
initially to its azimuthal velociiy field. The following prescription

defines the mode 2 perturbation applied.

v>vy 1+ Bsin (2¢) (v-6)

B is the amplitude of the perturbation; and for all cases described in
this work, it has a value of 1/100. The perturbation is applied only
at t = 0. The second system is an intermeciate cloud having an A of

9.0 x 1019, but is otherwise identical.

b. Dispersed cloud

The collapse for the dispersed cloud is summarized in the r-o
plane density and angular velocity contours of Figs. 31 and 32, respec-
tively. The perturbation, evident in both density and angular velocity
contours at early times, decays as the system evolves. No significant
visible expression of the original asymmetry remains in the late time
density contours of Fig. 31b. The angular velocity contours in Fig. 32
are siightly elliptical, indicating the presence of the still decaying

initial perturbation.
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c. Intermediate cloud

The response of the intermediate cloud to the perturbation at
very early times is virtually identical to that of the dispersed cloud
described above. The late-time configuration of the intermediate cloud
is presented in Figs. 33 - 37. The r-0 plane density contours shown in
Fig. 33a indicate the cloud has collapsed to a binary system. The bina-
ry confiquration is also reflected in the gravitational potential con-
tours of Fig. 34a, b and in the angular velocity contours of Fig. 3ba,
b. The detailed interpretation of such patterns is differed to the
next chapter.

The laboratory velocity vector field of Fig. 36a indicates that
this system has almost ceased to Tose mass. At this time the system
has lost 11% of the original cloud mass. The momentum~density repre-
sentation of Fig. 36b shows the extent of the bodies, as well as their
orbital motion. In the velocity vector field referred to the rotating
frame, one observes well-defined vortices centered at angles of approx-
imately 97° and 277°, respectively. The vortex motion is counterclock-
wise. The initial perturbation favors binary component formation at
105° and 285°, respectively, as shown in Fig. 3Ta. The drift of the
fragments to the 165° and 345° Tocations shown at this time induces
spin in the outer envelope through the viscous coupling. Each body
has a spiﬁ angular velocity eque: to its orbital angular velocity, and
the velocity field near the axis indicates that momentum is being trans-

ferred between the bodies by the vortices.
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d. . Comparison

It is apparent that a cloud must be sufficiently intermediate in
order to collapse into a stable toroidal ring, but more work will be
required before a precise criterion can be given for this type of
coliapse. Although the intermediate cloud proygressed directly from
a uniform-cdansity configuration with a perturbed azimuthal velocity
field to a condensed binary system without forming an intermediate
toroidal stage, it is never-the-less useful to investigate the stabil-
ity of toroidal systems as a means for understanding the overall sta-
bility of protostellar collapse. Indeed, this investigation is the

central theme of the next chapter.
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VI. NON-AXISYMMETRIC PERTURBATION OF ROTATING RINGS
A. INTRODUCTION
It has been demonstrated in Chapter V and in the publications dis-

cussed in Chapter 1 Fhat'under certain reasonable conditions rotating
toroids may exist as én intermediate stage in protostellar evolution.

It has also been demonstrated in Chapter V that initial asymmetries

can either grow or decay during collapse of the cloud. In this chapter,
we develop a quantitative theory of the fragmentation processes in
collapsing protostars.

The prediction of protostellar cloud stability can be addressed
from two different viewpoints. The most direct approach wouid be to
perform a series of collapse calculations, in which the initial condi-
tions and the initial perturbations are systematically varied. There
are, however, serious difficulties with this direct method. If a cloud
is in a nonequilibrium state, the initial conditions almost surely can
not be characterized by a single dimensionless parameter; so that there
are a virtually Timitless number of initial conditions to be considered.

The indirect approach involves understanding the response of a
set of initially unperturbed toroids to applied pertuirhations. These
calculaticns are performed for six different representative examples
and the dynamics of the fragmentation process are described and i1lus-
trated in detail. We develop a theoretical stability curve, which is
normalized to the numerical results and allows one to predict the proo-
able modes of fragmentation of arbitrary toroidal systems in terms of
a dimensionless parameter characterizing the initial equilibrium con-
ditions. The resulting stability diagram and its interpretation are

discussed in Section G of this chapter.
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In all problems discussed in this chapter the mass is initially
concentrated in toroidal configurations. The initial conditions fer
each calculation are produced by a preliminary calculation through
which a rather coarse set of prescribed conditions is allowed to relax
to an equilibrium state. The initial cross section of the rings is
approximated by a square region of the calculational mesh, which con-
sists of two radial zones above the plane of symmetry. This study
uses systems having three solar masses and an initial angular velocity
of 2.45 x 10']2 S—]. For such toroids the gravitational and centrif-
ugal forces are balanced. To vavry the properties of the toroids, one
changes the entropy variable, A. Throughout this chapter the value of
A is expressed in fﬁe cgs system of units. These units are omitted in
the text for convenience. Depending on the value of A, the forces due
to the thermal pressures in the toroid inay or may not be in balance
with the forces of self-gravity. The initial toroidal configuration
is therefore allowed to expand to an equilibrium state before the
application of the perturbation. If the gas expands to form a more
diffuse ring with a larger cross-sectional area, the average angular
velocity of the system decreases and differentig] rotaﬁion develops.

By this means one obtains the six unique toroidal configurations that
are used in the subsequent fragmentation studies and stability analyses.
In all discussions below it will be these toroids that are defined as
initial conditions at the time of perturbation. It should be noted
that the location of the objects relative to the rotating frame can
drift from that favored by the initial perturbation because the average

orbital angular velocity of the system must change as the mass con-

figuration adjusts itself during approach to steady state. QJ



112

In the calculations a 10 x 12 x 5 grid is used. The 12 azimuthz]
zones divide the upper region into 30° segments. In an r-z plane the
cell surfaces are squares 7.0 x ]0]5 cm on a side. The upper boundary
is 3.5 x 10]6 cm above the symmetry pfane. The inner radial boundary
required by the central core and the outer radial boundary are

15

Z.O x 10" cmand 7.7 x 10]6 cm, respectively, from the axis of rota-

tion.

B. THE PERTURBATIONS
In order to develop a thorough understanding of the response of
rotating toroids to non-axisymmetric perturbations, one must charac-
terize not only the toroidal fluid system as previously described but
the perturbation as well.
The binary perturbation is applied to the system through the azi-

muthal velocities in a manner described by the following prescription
Vv, 1 + B sin (26)]

B is the amplitude of the perturbation; and for all cases described in
this work, it has a value of C.01. If the system is unstable, the asym-
metry is rapidly amplified and fragmentation results; however, if the
system is stable, the amplitude of the disturbance quickly decays and
axial symmetry is restored.

Two higiher mode perturbations have been used in developing the
stability diagram described subsequently in this chapter. The mode 3

perturbation is given by

v vy 1 + B sin (3¢)
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The mode 6 perturbation is

v>v. |1+ Bcos (66)

0

C. COMPACT RINGS
1. Case I
a. Initial conditions
The center of the rotating toroid used in Case I is located

2.77 x 10]6 cm from the axis of rotation and has a characteristic

cross-sectional radius, a, of 1.0 x 10]6 cm. The entropy variable, A,

has a value of 5 x 1019. This toroid is the most compact of any sys-
tem studied. Other salient properties of the system are summarized in
Table I. The initial conditions are graphically represented in Figs.
38 - 41. In Fig. 38a, b the compactness of the ring is evident in both
the r-6 and vr-z planes. The high concentration of contour 1ines at the
inner and outer circ mferences, respectively, indicates sharp density
gradients between the toroid and its surroundings. In Fig. 38b one
sees that the density in the second computational zone above the re-
flecting plane is down by a factor of 5 from that in the center of the
ring. The gravitational potential well is centered on the ring itself
(Fig. 39a) and is the deepest initial well of any toroid used in this
study.

The angular velocity distribution in this compact ring does not
differ very much from that which would occur if the system were in
sotid body rotation. The high concentration of contour lines on the
inner and outer edges of the ring, shown in Fig. 40a, result because
of a numerical technique that sets the velocities in the very low den-

sity external regions to zero.
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The condition of the toroid can also be surmised from the labora-
tory velocity vector plots in Fig. 4la. The orbital motion is in a
positive sense as one can see by 1ining up the tails of the vectors.
A11 velocities are contraction velocities that imply the toroid is de-
creasing in cross-sectional area. In fact it is questionable that a
body this compact can be accurately resolved by the calculational mesh.
Nevertheless we include this very compact system because of the quali-
tative information that can be derived from it. The large-scale bal-
ance between centrifugal and gravitational forces is illustrated in the
momentum-density plot of Fig. 41b. The momentum vectors display no net

radial mass motion either toward or away from the axis of rotation.

Table I

Initial Conditions

Case I

Aent/e?/3 2y 5.00 x 10° M(y) 5.91 x 10°°
a(cm) 1.00 x 10'® W(ergs) -5.00 x 1073
péax(g/cm3) 1.94 x 10710 KE (ergs) 1.71 x 10%
R, (cm) 2.77 x 10'° U(ergs) 1.36 x 1043

max-— 3 -16 43
Prax(9/cm’) 1.75 x 10 T(ergs) 1.46 x 10
R, (cm) 2.45 x 1016 E(ergs) -2.15 x 16%3

max 5 2 55
tf(yrs) 0.05 x 10 J(g em™/s) 1.19 x 10

w(s-]) 2.46 x 10712 e(°K) 18.8



115

b.  Evolution of the system

In Figs. 42 - 50 the subsequent evolution of the fragmenting to-
roid is sunmarized. In Figs. 42a, b the density contours of the frag-
menting toroid are displayed for two intermediate times. The short
time scale on which the break-up occurs indicates the high degree of
instability present in the initial system. The low thermal pressures
can not effectively impede the fragmentation, and the initial pertur-
bation is quickly amplified. Rapid evolution of the system can also
be related to the Tocal free-fall time estimate given by Eq. (I-1).
Since collapse phenomena seem to occur in a few numbers of free-fall
times and since the free-fall time for a density of this magnitude is
about 0.05 x ]05 yrs, it is not surprising that the toroid has frag-
mented into well-defined components in about 0.76 x 105 yrs. In fact,
all of the calculations reported indicate that unstable toroids have
come to a stage of complete fragmentation by about fifteen free-fall
times.

In Fig. 42b one sees the presence of a higher mode in the density
contours at a time of 0.60 x 105 yrs. Although the original perturba-
tion is a pure mode 2, the higher mode has appeared. There are two
explanations that one gives to explain the coupling to higher modes.
One argument is physical; the other, numerical. First, the nonlinear
nature of the equations of motion favors the excitation of a spectrum
of modes. Second, the coarseness of the calculation grid can excite
higher modes through the presence of truncation errors. Because of the
coarseness of resolution, no particular physical significance can be
placed on the appearance of the higher mode for this system; and in

fact, at the still later time shown in Fig. 47a, b, the fluid has
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reverted to the more dominant binary configuration. Figures 43a, b
and 48a, b illustrate the corresponding evolution ¢~ the gravitational
poitential. At a time of 0.76 x 105 yrs the well depth of the compg-
nents .s almost twice that of the initial ring.

The interpretation of the angular velocity sequence for thig case
is Tess clear than for the more extended, and hence better reso]Jéd,
components. In Fig. 44a, b the angular velocity of gas falling from
the perturbed toroid toward the axis of rotation has increased due to
the conservation of angular momentum. Regicns of high angular velocity
also occur behind the newly formed components as the residual gas in
the toroid accclerates toward these new centers of attraction.

The laboratory velocity plots shown at intermediate times in Fig.
45a, b show the details of the velocity field during fragmentation.

The velocity vectors on the leading edge (leading in the sense of posi-
tive orbital motion) of the components are shortened and turned around
by the gravitational attraction of the trailing fragments. The toroidal
remnant behind a component now moves in the increased force field of
the new center of gravity, and the azimuthal velocities, already large
due to the original orbital motion of the ring, are increased. Figure
46a, b shows the same sequence in a momentum density representation so
that one can determine patterns of mass transport.

In Fig. 50a, b the late-time velocity fields relative to the
laboratory and to the rotating frame, respectively, are shown. In both
representations one observes a large posjtive radial component of ve-
lTocity. The binary fragments in this system are separating. In Fig.
50b vortices are apparently developing from the complex interplay of

frictional and gravitational forces in the wake of the outward moving
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components. At these late times the rate and extent'of separation of
the bodies must be questioned because of the poor resolution of the
compact components by the calculational grid. Such a situation can
introduce inaccuracies in the solution of the partial differential
equations, which accumulate with time.

A manifestation of the inaccuracy in the late time solution for
Case I is the lack of energy conservation. The models assume that
the processes in protosteliar clouds proceed adigbatica]]y. Since no
energy balance eguation is solved, one does not include the heating
effects due to the irreversible viscous dissipatioﬁ%‘ Therefore, al-
though the total energy should not be precisely conserved, it should
be approximately a constant, especially for the collapse of the more
dispersed toroids. In most of the other cases described in this
chapter the energy conservation is 1 - 2%. At the last time reported

in this calculation, however, the total energy of the system has in-

creased by almost 50%.
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2. Case II
a. Initial conditions

19

The toroid used in Case II, having an A of 7.5 x 107, is a more

dispersed body than the one used in Case I. The Case II ring has a
characteristic cross-sectional radius of 1.60 x 10]6 cm.  This radius
encompasses about 2 linear zone dimensions; so the resolution of the
body is greatly improved. The maximum- density contour is 2.85 x 10]6 cm
from the axis of rotation. Table Il presents a summary of the physical
properties of the Case II initial conditions.

Figure 5la, b shows the density contours of the system at the time
of perturbation. The density in the r-6 plane decreases from a maximum
central value of 9.47 x 10717 g/cm3 to a value of 4.74 x 10'18 g/cm3,

a factor of 20, in a distance of about 2} radial zones. The gradient

is therefore fairly well resolved by the calculational grid. The cross-
sectional area of the toroid is shown in Fig. 51b to be nearly circular.
The gravitational potential for the initial configuration is illustrated
in Fig. 52a, b. The well is centered on the inner edge of the ring and
is broader and less deep than in Case I. The potential contours in the
r-z plane are similar to those in Fig. 39b, but are more diffuse, re-
flecting the more extended and less dense toroid.

During the initialization calculation the larger toroid of Case II
develops more differential rotation than its more compact predecessor,
as displayed in Fig. 53a, b. In the r-8 plane one sees sharp gradients
only on the outer edge of the ring. The density of the gas near the
axis of rotation is high enough for the numerical scheme to have turned
on the velocities in this region; and because of conservation of angu-

lar momentum, the orbiting mass originally in the nonequilibrium toroid
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moves with higher angular velocities as it falls toward the z-axis.
In the r-z plane the toroid appears to be very nearly in solid body
rotation at Teast in the high density regions.

The Tlaboratory velocity and momentum-density vector fields of
Fig. 54a, b support the interpretation of the angular velocity con-
tours given above. In Fig. 54a the velocity field suggests that the
toroid will not contract to as poorly a resolved configuration as for
Case I. These velocities have almost no radial component except a“
the outer edge of the toroid where some accretion is indicated. The
ring has expanded from its nonequilibrium state, has overshot the steady
state configuration due to the linear momentum gained during expansion,
and is now slightly recontracting at the outer edge. In the mo.zentum-
density vector field, one has a graphic representation of the mass con-

centration as it is spread over four radial zones.

Table II

Initial Conditions

Case II
A(crnz"/gz/3 52) 7.50 x 1019 M{g) 5.91 x ]033
a(cm) 1.60 x 10'° W(ergs) -4.09 x 10
ot lg/en’) 9.93 x 1077 KE(ergs ) 1.50 x 107!
R! (em) 2.85 x 10'° U(ergs) 1.05 x 1073
/e 9.47 x 10717 T(ergs) 1.23 x 10%3
omax(g/cm ) .47 x ergs .23 x
R, (em) 3.15 x 1010 E(ergs) -1.80 x 10%3
max 5 2 55
te(yrs) 0.07 x 10 J(g cm®/s) 1.19 x 10
w(s™ ") 2.06 x 10712 o(°K) 18.7
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b. Fragmentation of the toroid

The time scale for the evolution of this system is greater by
almost a factor of 3 than the time scale for Case I. The local free-
fall time estimate is 0.07 x 105 yrs, and is therefore only greater
by some 40%. It is, however, expected that more compact systems will
evolve on shorter time scales, since the thermal pressures tending
to impede contraction are lower.

In Fig. 55a, b the density contours at t = 1.10 x 105 yrs and at
t=1.27 x 105 yrs summarize the intermediate stages of mass accretion
from the toroid onto the newly formed fragments. The thermal pressures
are sufficient to delay the accretion and to produce moderately well-
resolved extended binary ~omponents. The gravitational potential at
these times is shown in Fig. 56a, b. The contours display the evolu-
tion and deepening of the new centers of gravitational attraction. The
apparent secondary modes in Fig. 56b are artifacts of the interpolation
scheme used to obtain the contour lines since the potential field can
not respond to instabilities more rapidly than the mass configuration
and since the density contours show only the mode 2 perturbation at

this time.

C. Spinning components

At the second of the intermediate times reported, t = 1.27 x 105
yrs, the components are elongated. This configuration demonstrates
graphically one especially noteworthy aspect of the fragmentation dy-
namics. The perturbation is applied to the initial ring through the
azimuthal velocity field. On one side of 6 = 90° the velocities are

increased by 1% and on the other side they are retarded by 1%.
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Exactly the same perturbation is centered on 0 = 270°, but in the
following discussion it is only necessary to consider one of the favored
centers of accretion. The mass in the region where the velocities are
increased feels a greatér centrifugal force after the perturbation;

and therefore experiences a net outward radial motion. The centrifugal
force acting on the gas in the region where velocities have been de-
creased is reduced, and the mass can move radially inward. This effect
results not just because of the 1% change in the angular velocity that
arises from the original perturbation, but also because the continued
acceleration toward the binary centers of condensation enhance even
further the departure of angular velocities from tha unperturbed initial
values.

The extended body that is forming out of the toroid now encounters
more slowly moving mass on its leading edge at a smaller radial dis-
tance from the axis of rotation than the radial separation of the cen-
ter of the object from the axis. The result is a retardation of the
azimuthai velocities in regions on the axis side of its center. Exact-
ly the opposite mechanisms work to accelerate regions of the body on
the outward side. The fragmenting bodies begin therefore to spin in
a co-rotational sense relative to their orbital motion. Many multiple
star systems do in fact exhibit co-rotational spins. 1In a satellite
system such as our own solar system, one observes co-rotating bodies.
In fact, if retrograde motion is observed one generally hypothesizes
that the system resulted from a capture process rather than from frag-
rnentation.65 Further discussion of retrograde motion is deferred to

the next section.
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Centrifugal forces are not the only forces that directly influence
the development of spin in the fragments. Coriolis forces resist the
spin-up of the objects by increasing the angular velocity of the mass
segments moving inward and by decreasing the angular velocity of the
mass moving outward. In the rotating frame momentum-density vector
fields displayed in Fig. 5993_b one sees the co-rotation of the compo-
nents.

The angular velocity plots presented in Fig. 57a, b illustrate
the same phenomenon. In reference to these more complicated config-
urations it should be emphasized that the contour plots of angular
velocity can be somewhat deceptive unless interpreted very carefully.
A1l that these cow+n“v‘i;uggi exhibit are the locations of maximum and
minimum angular velocity, and they carry no information about the con-
current magnitudes and directions of radial velocity. As a result it
is not possible from these contours alone to determine the position of
vortices. Nevertheless, the angular velocity contours prove useful as
a means for showing the character of the spin field around the central
axis. In particular, they show sevieral consistent trends in (he rela-
tive angular phasing between the positions of maximum density and those
of maximum angular velocity. In the present case, for example, Fig. 57a
shows advancing fingers of high spin at the outer trailing edges of the
condensing objects. By comparing the coniours in this figure at these
two intermediate times one observes that the magnitude of the spin is
increasing.

Figure 53a, b summarizes the movement of the mass from the toroid
to the binary fragments in the momentum density representation of the

laboratory frame. In Fig. 60a, b one observes two laboratory momentum-



136

density vector fields in the r-z plane. At t = 1.10 x 105 yrs, most
of the momentum flux is radially outward; at t = 1.27 x 105 yrs the
field is split at the eguator, showing the bulging of the body as it

begins to spin.

d. Sp.rals and retrograde satellites

Figure 6la, b shows the density contours for Case II at a time
of 1.42 x 105 yrs after the perturbation. The central density of
gach component has increased to twice that of the initial toroid. In
the r-6 plane a spiral! structure has developed. The mass in the
streamers is gravitationally bound to the nearest component, and it is
possible that these regions provide an environment in which satellites
could form. Since the binary objects are increasing their spin in a
positive sense, it is to be expocted that dynamicai coupling to adja-
‘ cent regions of tluid would result in regions of negative spin as a
manifestation of conservation of overall angular momentum. The rotat-
ing-frame velecity vector field of Fig. 65a substantiates this specu-
lation, since clockwise vortices are developing at angles of 150° and
300° in the respective spirals. Spinning binaries with accompanying
mass streamers are therefore a possible alternative to capture pro-
cesses for initiating retrograde satellite motions. The phenomenon

of spirals is considered further in Section D of this chapter.

e. Equatoriai distortions

The r-z density contcurs in Fig. 61b demonstrate the oblate nature
of the components. The f]attening into the equatorial plane is the re-
sult of two physical processes. First, the spinning components bulge

equatorially under the action of centrifugal force. Second, the
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protostars are modelled as very compressibie fluids, which therefore
flow along the gravitational potential gradients rather freely. The

gas on the axial side of each object senses the field of the companion
more strongly than the gas on the outward side of the component centers.
The effect is a large tidal distortion. The gravitationa’l potential
contours of Fig. 62a, b also depict the tidal elongation of the compo-
nents toward one another. The angular velocity plots in Fig. 63a, b
show the accelerating and deaccelerating effects of accretion. The
laboratory velocity and momentum-density vector fields summarized in

Fig. 64a, b also illustrate this effect.
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D. INTERMEDIATE RINGS
1. Case III
a. Initial conditions

The entropy variable for Case III is 8.25 x 10]9, as compared
with 7.5 X 10]9 in Case Il. The ring has a characteristic cross-
sectional radius of 1.74 x 10]6 cm, approximately two and one-half
computational zones. The contour of maximum density lies at a distance
of 3.16 x 10]6 cm from the axis of rotation. The other physical prop-
erties of the initial configuration are presented in Table III.

Figures 66 - 69 graphically summarize the initial conditions of
the unperturbed system. The density contours in Fig. 66a, b iilustrate
the nature of the mass configuration. The original nonequilibrium
toroid has expanded under the action of thermal pressures to such an
extent that the inner edge has reached the central core of the calcu-
lational grid. The density in this region is a factor of 20 below
maximum ring density; so the inner boundary wall has minimal effect on
the subsequent evolution of the system. In Fig. 66b the r-z contours
display a non-circular cross section.

From Fig. 674, b one estimates that the depth of the gravitational
potential well is less than those observed in Cases I and Il by approx-
imately 20 percent. The breadth of the Case III well is also greater
and the gradients o.: the inner edge are more gradual. The picture
presented is consistent with the density contours described above.

The angular velocity contours of Fig. 68a, b show patterns of differ-
ential rotation that result because of the action of Coriolis forces
working to increase the angular velocity of the gas that falls inward

toward the axis of rotation and tn decrease the angular velocity of
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the gas that expands outward away from it.

With the laboratory velocity and momentum-density vector fields
as a monitor of the orbital equilibrium of the fluid, Fig. 69a, b
implies that the whole system is still moving slightly outward. It
is therefore not in as precise an orbital equilibrium condition as
the previous studies have been, but it is very close. Figure 69b

demonstrates the greater spatial extent of this ring, showing sig-

ni“icant momentum densities distributed over five radial zones.

Table I1I

Initial Conditions

Case III
Alent/g?/3 sy 8.25 x 1017 M(g) 5.91 x 10°°
a(cm) 4 1.74 x 1016 W(ergs) -3.63 x 1043
) 3 -17 41
pmax(g/cm ) 7.13 x 10 KE(ergs) 1.12 x 10
R, (cm) 3.16 x 1016 U(ergs) 8.98 x ]042
max
pmax(g/cm3) 7.13 x 1071/ T(ergs) 9.84 x 10%2
R (cm) 3.15 x 1010 E{ergs) -1.74 x 10%3
max 5 2 55
tf(yrs) 0.08 x 10 J(g ecm“/s) 1.19 x 10
w(s™ 1y 1.64 x 10712 o(°K) 17.0

b. Intermediate fragmentation and higher modes

The intermediate stages of the growth of the perturbation are
shown in Figs. 70 - 73. The time scale within which the dynamical
processes proceed is lengthened as expected by the increased thermal
pressures resisting fragmentation. At t = 1.45 x 105 yrs the density
contours of Fig. 70a show well-defined dual centers of attraction

associated with large toroidal remnants on both the leading and the
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trailing edges. By the time shown in Fig. 70b, t = 1.61 x 105 yrs,
each element of this structure has itself fragmented to form a two-part
system. The split configuration is only a transient intermediate state
that returns to the binary structure, as shown at a later time in

Fig. 74a. The split configuration is nevertheless significant because
it appears at a fairly advanced time in a well-resolved physical system.
Its appearance is the result of the nonlinear physical models rather

tt 3 of inaccuracies arising from coarse calculational zoning. The
elongation of the centers of gravity in Fig. 71b indicates the response
of the potential field to the quaternary configuration. The zuayuiar
velocity contours in Fig. 72a, b show the characteristic pattern de-
scribed previously in Section C.

In the rotating-frame momentum-density sequence of Fig. 73a, b,
one again observes the development of co-rotational spin in the compo-
nents. By comparing the configuration of the vectors in Fig. 73a and
Fig. 73b, one has a graphic illustration of the time dependent trans-
port of mass and momentum from the remnant regions at approximately

80° and 260° to the binary fragments.

c. Spirals

In Fig. 74a the density contours at t = 1.77 x 105 yrs show that
a spiral structure has developed from the residual toroidal gas. The
r-z contours in Fig. 74b indicate tidal bulging on the inner surfaces
of the components similar to that observed for Case II. The gravita-
tional potential contours in Fig. 75a, b are radially elongated, show-

ing the response of the field to the density distribution.
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The structure in the angular velocity contours discussed for
Case 11 is present in Fig. 76a, albeit not so dramatically. The
laboratory velocity and momentum-density vector fields are shown in
Fig. 77a, b. In the velocity vector field the regions in the trailing
spirals where accretion increases the already large orbital velocities
of the toroidal remnant are clearly contrasted with the regions on the
leading edge of the components where the gravitational attraction re-
duces the original orbital velocities of the residual gas. The momen-
tum density representation indicates the location of the binary frag-
ments and outlines the spiral structure of the system. The retrograde
velocity vortices at 99° and 270°, respectively, in Fig. 78a are simi-
lar to the ones discussed for the Case II binary spirals. The spin of

the components is shown at late time in Fig. 78b.
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2. Case IV
a. Initial conditions

The entropy variable for Case IV has a value of 9.0 x ]O]g. The

characteristic cross-sectional radius of the ring is 1.80 x 10]6cm,

and the maximum density contour is located at a distance of 3.01 x 1016

cm from the axis of rotation. Other relevant system parameters summa-
rizing the initial conditions are listed in Table IV.

The graphic representaticns of the properties of the Case IV ring
are presented in Figs. 79 - 82. The system is qualitatively similar

to that of Case III.

Table IV

Initial Conditions

Lase IV
Aent/g?® s?)y  9.00 x 107 M(g) 5.91 x 10°°
a(cm) 1.80 x ]0]6 W(ergs) -3.68 x 1043
, 3 .
Pmax 9/ 6.70 x 1077 KE (ergs) 1.17 x 104
R, (cm) 3.01 x 1016 U(ergs) 9.41 x 1042
‘max 3 -17 43
pmay(g/cm ) 6.65 x 10 T(ergs) 1.06 x 10
R (cm) 3.15 x ]016 E{ergs) ~-1.66 x 1043
Pmax 5 2 55
tf(yrs) 0.08 x 10 J(g em“/s) 1.19 x 197
w(s™ 1.75 x 10712 o(°K) 17.7
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b. Evolution of the system

The qualitative features of the evolution of this system under a
mode 2 perturbation are very similar to those described in the Case III
discussion. The dynamical time scale is not significantly longer for
Case IV. The free-fall time estimate for both cases is approximately
0.08 x ]05 yrs. The contour plots and vector fields summarizing the
evolution of the Case IV system are presented in Figs. 83 - 92. The
Case 1V:¢droid‘is the only system that has been subjected to mode 2,

mode 3, and mode 6 perturbatiocns, as will be discussed in a subsequent

section.
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