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This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase
flows that does not require the use of flow regime maps, This model is intermediate between the..l._.)c,'fl
instantarteous and the averaged two.fluid model, It solves the Euterian continuity, momentum, and energy
equations tor each liquid control volume, and the Lagrangian mass, momentum, energy, _d tx_sitionequations
for each bubble. The bubbles ,are modeled individually using a lmge representative number of bubbles thus
avoiding the numerical diffusion associated with Euleri',mmodels, DISCON has tx_,enused to calculate the
bubbling of air through a column of water and the subc_led boiling of water in a flow channel. The results of
these calculations me presented.

1, INTRODUCTION

There are complex and challenging problems in the modeling and numerical simulation of two-phase flow.
The Navier-Stokes equations with internal interfaces are intractable in ali but the simplest cases. The averaged
two..fluid rnodel is the present state..of-the-art in two-phase flow. This paper describes a model that is
intermediate between the Navier-Stokesdescription arid the averaged two-fluid model. Tt+edispersed phases ++e
modeled using a Lagrangian description, and the continuous phases are modeled using ata Eulerian description,
This approach: (a) models the statistical features of the dispersed phase. (b) models the flow regime transiti,on,s,
and (c) eliminates the numerical diffusion associated with purely EulerJan de,_riptions. Similar m(xlels have

,,, been used to model fuel sprays [1, 2, 3. and 4]. The extension of these models to t,vo-phase flow presents an
a additional challenge because the volume occupied by the dispersed phase is no longer small compared to the
? computational cell size. JAYCOR has developed a similar model h:>rbubbles in a continuous liquid phase [5] in
li which they addressed many of these additionalchallenges. However, the JAYCOR model did not solve the time-

i dependent mass, rnomentum, and.energyequations for thecontinuous liquid phase, but used instead quasi-steady-stateequations.

| .A computer c_xle, DISCON, was written to implement this model. The mcxh.'ldescribes the moticm of a

I dispersed phase using a Lagrar_giar_description. The main motivation is to be able to predict fh3w regimetransitions and represent a spectra of bubble sizes. However, inorder for the continuous and discrete phases to
| interact, it is neces,_aryto relate the twodescriptions. This interaction takes piace through three mechanisms:

i l. Phase coupling, because et_,chphase occupies a volume not available to the other phase(void fractioncoupling)
II,_

i 2. Interface dragbetween the ph;tses(momentumcoupling)
i

" 3, Interface energy,andmass transfer(energy and masscoupling)J

!
Phase coupling was the most difficult to implement.

i.

_i Section 2 describes the discrete phase Lagrangian model equations, Section 3 describes the continuous phase
'! Eulerian model equations, Section 4 describes the phase coupling mc,xlels, Section 5 describes some additional
li
mm
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models, Section 6 corttains a surnrnary of the basic equations, Section 7 describes test problem calculations thai
have been pert0nned, and Section 8 contains some conclusions. The references are in Section 9.

In this paper, we only discuss the case of a single discrete phase and a single continuous phase, but work is
progressing on the case of two discrete phases and two continuous phases. The results of this work will be
reported in due course.

2. DISCRETE PHASE LAGRANGIAN MODEL EQUATIONS

The mass, momentum, energy, and position equations for each bubble are based on the average properties of
that bubble. Because each bubble is individtally tracked, the bubble consen, ation equations are ordinary.
differential equations governing the time evolution of mass, momentum, energy, and position of each bubble.
Each of the first three equations includes appropriate interaction terms with the liquid continuous phase through
which the bubble is moving.

In the numerical implementation, time derivatives of pr_tucts are expanded into products of derivatives, and
first-order forward differences are used with the coefficients evaluated at the old time level. The conse_,ation

equations are written in a partially discretized form that shows the time levels of ali the source terms. Terms
that contain an n+l superscript are evaluated at the new time level, and any undifferentiated terms without a time

dB

level explicitly shown are evaluated at the old or nth time level. Iri addition, _ is understood to mean
B "'1 -B"

. where B stands for any variable or combination of variables.
At

2,1. Bubble Mass Equation __

The mass conservation equation for bubble b is,

=-r;"
dt

where Fbr, is the mass transfer rate from the bubble to the liquid. Becau_ the description of each bubble is
Lagrangian, the bubble density, Pb, and volume, Vb, are functions of time only.

2.2. Bubble Momentum Equation

The momentum balance for bubble b is,

dt¢ b

p_V_ _t = P_'_g - F_ (2)

where the two terms on the right.hand.side are the gravitational twJdyforce and the force that the bubble exerts on
the continuous phase, Fbi. This latter force is the sum of (a) the interphase drag force, (b) the added mass force,
and (c) the interface force due to the mean pressure gradient around the bubble,

,, _, ,] I,,/3p/r _
v (d_'--{_:i',,}_)+ . L_J. (3)'t.,

Whc.:re

}, (4)
is the interface drag coefficient, and the overbar signifies an average quantity. The bubble vekx:ity is evaluated
implicitly in the interface drag term, which removes the need for small time steps when the interface drag
coefficient.f/_/, is large.
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" 2,3. Bubble Energy Equation

Th'e energy conservation equation for bubble b is,

= _T"',)J(p_ey_ ) -e_r';;' + -_ (5)
dt ON

which is written in terms of the bubble's entropy, eh. The two terms on the fight-hand-side are the energy gain
from the liquid phase as a result of mass transfer and heat transter. The bubble-liquid interface temperature, Ohi,

is set to the saturation ternperature at the location of the bubble,

2.4. Bubble Position Equation

The position equation for bubble b is,

CL_'b ...* 1
-- = ub (6)
dt

Equations (1) -- (6) are solved for each bubble. Simulations with up to 10,000 bubbles have been made with
DISCON on a SGI workstation.

3. CONTINUOUS PHASE EULERIAN MODEL EQUATIONS

The continuous phase equations are di_retized using a staggered Eulerian mesh as shown in Figure 1. Mass
and energy are conserved in each continuity cell, and momentum is conseLwed in each momentum cell. The ends
of continuity cells _u'ecalled junctions and zue at the centers of the momentum eel.Is. The ends of the momentum
cells are at the centers of the continuity cells. Discrete values of density, pressure, and energy are located at the
center of the continuity cells, and discrete values uf velocity are located at the centers of the momentum cells..=_!n
what follows, continuity cells use the index k and momentum cells u_ the index j. As noted earlier, bubbles
use the index b. In the finite difference equations, some variables ,are needed at locations where they are not
defined. Averaging and/or donofing techniques are used to compute these values.

3.1. Liquid Phase Mass Equation

The liquid phase mass conservation equation for volume, Vk, is,
bubb!e.t

)+, ,",'"'- Z{,7+r;;'} ,7>
dt "'" b

where the average liquid phase velocity at junction j is uj. The v::u-iablerl,t.& is the fraction of bubble b that is
in cell k and is defined in the Volume Fraction Coupling ,,'+" "....._.tJon in terms of the bubble volume, V/_, and

location, +rb. In Equation (7), the second term on the left-hand-side represents the net flux of mass out of cell k.
As in the bubble equations, the time derivatives are expanded, and first-order forward time differences are used
with the coefficients evaluated at the old time level.

To avoid a convective instability due to centered mass [lux ten'ns, _he fluxed liquid densities in Equation (7) are
donored if the velocity is not zero. Because the bubbles are tracked in a Lagrangian manner, there are no
instabilities associated with the liquid volume fraction, akl, and they are not donored,

3.2. Liquid Phase Momentum Equation

The liquid phase momentum con_rvation equation is,

I Idl_;t Ud l_-tJ _"] li,,1 _d F]_ + Otjt19_Vjg 18)-- + tl ip d V j ttd ="- Ctit - -_tjIPJll'' dt Ax" Ax

where the four terms on the right-har_d-side are the pressure gradient force, the v,,all friction force, the bubble-
liquid interphase drag force, and the gravitational body for_ce.
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The bubble.liquid interphase force, Fjbl, is defined as,
bubblea

J_cell j

F_+'l= - Z r/JbFt'I (9)
b

where Fbl is defined in Equation (3). Consistency between the bubble and the liquid phase momentum
interphase force terms must be maintained.

The continuity cell variables with aj subscript are simple averages of neighboring continuity cell values. The
convective acceleration terms are evaluated using a one-sided upwind spatial gradient (i.e., donoring to make the
convective terms stable). The pressure gradient in the morner,turn equation and the velocity in the mass equation
are both evaluated at new time which makes this scheme implicit in the terms responsible for sound wave
propagation. In contrast, explicit ,schemes have a time step limitation based on sound speed.

3.3. Liquid Phase Energy Equation

The energy conservation equation for the liquid phase in cell k is,
bubblt_

ou¢ (.)'_'_ I A _^celll+

: +r')t T.,l: b
(10)

+ _ rhl' 6+Nb

which is written in re,Tns of the liquid entropy, etl. The second term on the left-hand-side is the net liquid
entropy flux out of cell k through its two junctions. ---

The first term on the right-hand-side is the direct entropy addition rate to the continuous liquid phase from wall
heat transfer.

"Ilae second term on the right-hand-side is the entropy transfer rate associated with mass transfer from ali the
bubble.liquid interfaces in cell k to the continuous liquid phase.

The third term on the right-hand-side is the heat transfer rate from ali the bubble-liquid interfaces in cell k to
the continuous liquid phase. The heat transfer coe.+fficler_ton the outside of the bubble is hlb. The liquid
temperature in cell k varies from the wall temperature to an average bulk temperature. The bubble-liquid heat
transfer can occur between the average bulk liquid, which iis at the average liquid temperature, Tkl, or the wall
liquid, which is at the wall temperature, Twk. The weighting factor, Wtb' allows us to use a linear combination
of these two temperatures to account for bubbles that start on the wall and are later released into the bulk liquid.
When Wlb ' is zero, the bubble is surrounded by wall temperature liquid, and when Wlb, is one, the bubble is
surrounded by average temperature liquid. The subcooled boiling model makes use of this feature,

4. PHASE COUPLING MODELS

"I'hecoupling of the discrete Lagrangian and continuous Eulerian phases proved to be the most difficult pan of
the modeling and numerical algorithm development. This section de_ribes the coupling models under three
headings: (4.1) volume fraction coupling, (4.2) momentum transfer coupling, and (4.3) energy transfer coupling.

4.l. Volume Fraction Coupiing

In two-phase bubbly flow, the bubbles can become quite large due to co',de,_ence, merging to form extended
cylindrical bubbles that have transverse diameters approaching the pipe diameter. For this reason, the volume
occupied by the bubbles can not be neglected as it frequently is in modeling liquid sprays [41.

The volume of a bubble located at .rb is clearly discrete in space. The volume fraction, rxt:l,in the continuous

liquid phase equations results from these spatially discrete bubble volumes. However, in the continuous phase

ii
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' equations, the volume fraction is a continuous field variable with a spatially smooth distribution+ as in classical
two-fluid models like RELAP5 [6] and TRAC [7, 8].

This dual character of the volume fraction means that some smoothing interpolation must be used when the
bubble volumes are combined to calculate the continuous phase volume fraction. This has been done in
DISCON using an extended bubble shape function. This should not be confused with the actual shape of the
bubble+ which is de_ribed irl Section 5.1. The continuous phase model represents the average phase properties
over a region of space comparable to the cell length, At'. Therefore, in order to smooth out this discrete bubble
induced continuous phase volume variation, the bubble volume is distributed over an arbitrary length. In the
present code, this length is set to the Eulerian cell length, At'. The code has also run successfully with this
arbitrary length set to two or three bubble diameters. Because the bubble locations are I.agrangian, this
smoothing does not introduce any artificial diffusion of the volume fraction. It is simply an interpolation of the
volume occupied by the discrete bubbles onto the continuous field volume fraction, which is itself an average
value over a cell.

The cross-sectional area occupied by an extended bubble at position x and time t is given by, Ab(x,t). lt will
be convenient when we extend the bubble's length to partition the cross-sectional area into the product of two
terms, the bubble's volume, Vb(t), and the bubble's shape, qb(X,t). Since, the integral of the cross-sectional area
occupied by a bubble, Ab(x,t), over its length is equ_ to the bubble's volume, Vb(t), the integral of the bubble's
shape over the same length is unity. We ,also require that the shape function not change as the bubble moves,
i.e., the (x,t) dependence of the shape function is only a function, qb, of the relative distance from the bubble's
current position, Xb,

rh,(x,t) = ,h,(q_,) = r/_,[.t.- x_,(t)] (11)

Thus, the bubble's cross-sectional area is,

Ab(x,t)= Vo(t)rlb[X- Xb(t)] (12)

Integrating Ob with respect to x over cell k, we get the fraction of bubble b located in cell k,

rh,t,(t) = I,.,,l, {r/[r - xt'(t)]} dr (13)

If ali of bubble b is in cell k, _Ib is equal Io unity.

The bubble's volume fraction, akb, in cell k is the integrN of its cross-sectional area over cell k times its
volume divided by the volume of cell k,

L {o[x- = v, j (14)

"The time derivative of the volume fraction with respect to time appears in the liquid phase continuity and
energy equations, therefore, we need the time derivative of Equation (14),

,. at JL""ST-tJ @ I

wl_ere the derivative of .rb(t) with respect to t is ti_e bubble velocity, Ub(t), arid the derivative of q -.t. --rr, with
respect to x is 1.

The integral in Equation (15) is written as the difference of the "out" minus the "in" values of r/at the two
junctions at either end of cell k. From Figure 1, cell k is Ngunded by junction./on the left and./+/on the right.

at L--V-TjL-a--T-- j u_(t) [.{.t.,+,-xh(t)}- r/{x, ,--x,.(t)}] (16)

A parallel development for a junction cell leads to a similar expression for ajb.

--_ .
......................... _....... ]p ........ _1r ..... _lN)t_,_lrI 1' 'lr ............. ,_rl pl,,, , ,,, ,i I...... . qlllJl_..... .' ',,,_lq, u, Ulpl,l' I1pil,, ,'l,'U .... ,,l11111'p,,,'_,1'[ ....
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Any function can be used for the bubble's shape, rlb(X,t), including its actual shape. We use a sm_)th quartic

function in DISCON that has zero first derivatives at both of its end points. This function reduces the
perttu'bationsin the liquid phase volume fraction as bubbles move between Eulerian conh'ol volumes.

4.2, Momentum Transfer Coupling

The momentum coupling between the bubbles ,andthe liquid is due to the interface force acting on the surface
of the bubbles. This force is modeled in the bubble momentum equation by the three terms: (a) interph_tsedrag

force, f_l[U_- {till'bi, (b)average pressure force, Vh_)P/Ox, and (c)the added mass term. The momentum
transfer due to mass transfer was neglected inEquation(8).

The interphase drag force is the classical drag force as measured on a bubble immersed in a liquid. This force
is formulated in terms of a drag coefficient, Cd, based on the extuivalent frontal area. The drag coefficient is
obtained from the data correlations of Peebles and Gather [9] and Harrnathy[10]. Peebles and Gather deterrnin_
the drag coefficient in the laminar and distorted bubble regime and use a four region D,rmula. Harmathy gives an
improved formula for the fourth region and adds a fifth formula for the fully turbulent Taylor cap region. These
drag coefficient formulas were summarized in a previous paper [11].

When using this formulation for a simulatie'_ with many bubbles of various sizes, the question arises of what
should be used for the liquid phase far field velocity. In the case of a single bubble rising in a uniform fluid, the
appropriate liquid phase far field velocity is clear and is easi.lydetermined. In the intermediate situations, the
appropriate far field reference velocity is notas well defined. For cylindricalbubbles that nearly fill the pipe, the
appropriate far field reference velocity is the liquid phase velocity far ahead of or far behind lhe bubble.
Neglecting compressibility effects, this is equivalent to using the mean volumetric flux as the far field reference _-
velocity. At the other extreme of a single small bubble rising in a large tank, the far field velocity is clearly the
liquid velocity far from the bubble, which in the limit of vanishing small bubble size is equivalent to the mean
volumetric flux.

In the intermediate cases, where there are many bubbles of various sizes present in the flow, it is necessary to
estimate ,anequivalent far field velocity for use in the drag correlations. Several papers have recently addressed
this problem, see Kowe [12] and Couet [13], A reasonable model for the interstitial far field velocity that takes
into account the added mass of the liquid phase displaced with the bubbles hasbeen developed in these reterences.
This model is applicable to low gas volume fraction dispersed flows. When the bubble number density becomes
small, the analysis becomes inappropriate. In DISCON, we consider a full range of bubble number densities and
bubble sizes including large cylindrical bubbles filling the pipe. We have chosen to use the mean volumetric
fluxas the far field reference velocity in ali situations.

From Equation (17), the volumetric flux at jtmction j, is,
bubbles bubblea

incell 1' m cell j

,_ b l, V j

The volumetric far field velocity defined inEquation (18) is independentof position when the liquid and bubble
phases are incompressible and there is no mass transfer. In the numerical sirnulations, it is important to
represent this far field velocity with a spatially smooth function independent of the Lagrangian nature of the
bubbles. The velocity in Equation (18) is consistent with the far field velocities used when the conelations were
developed and gives the spatially smooth reference velocityneeded in the drag force czdculation.

The far field velocity defined above is not the entire story. Each bubble can also be influenced by the w_e of
preceding bubbles. A trailing bubble can be "trapped" in the wake of a leading bubble. When a trailing bubble
is rising in a liquid and is in the wake of a leading bubble, the trailing bubble is rising in a flow field that has a
velocity more nearly equal to that of the leading bubble, in addition, it is rising due to buoyancy in this
modified flow field. This is the primary mechanism by which trailing bubbles catch up and coalesce with
leading bubbles. This effect is modeled by modifying the far field liquid vel_ity in Equation (18) by the wake
velocity of an appropriate leading bubble when making the drag calculation.
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The velocity in the wake of a solid object has been discussed in several texts, see for example Batchelor [14]
and Schlichting [15]. In general, for turbulent flow, the wake-induced flow at any position x behind ,an object
can be expressed as,

r 1u,_k, = u,_(x)exp -- "-'7"7 (19)
t, Lr.,_x)a

where trw(x) is the centerline wake velocity, and rw(x) is a scale for the radial distribution of tile wake velocity.
A standard integral momentum balance gives the following relationship between Uw(X)and rw(x),

T JLr_-J-:7 c. (20)

where ur is the velocity of the wake producing object relative to the fluid, and rb is the equivalent radius of the
object based, upon a spherical shal_ consistent with the calculation of Cd.

Using Equations (19) and (20), the velocity at any location behind an object caused by its wake can be found if
we know Uw(X)or rw(x). Stuhmiller [5] has carried out a preliminary correlation of wake centerline velocity data.
from several sources and gives the following formula for Uw(X),

= a_, +b_ + (21)

where aw = 0.20, bw = 0.12, Cw= 0.01, andRb is the actual radius of the objech

To complete the wake model, the wake velocity of every bubble leading a trailing bubble is calculated. T._o
wake models are used in the DISCON code. The "maximum" wake model uses the maximum of ali the leading
bubble wakes for the trailing bubble, and the "closest" wake model u_s the wake of the closest leading bubble
for the trailing bubble. In both cases, the leading bubble's wake velocity is used to calculate the modified far

field velocity, {_'_}b ' for tlae trai:ing bubble.

The second momentum coupling term, V baP/Ox, represents the pressure force on the bubble's surface due to
the mean pressure gradient in the liquid phase. This is the .source of the buoyancy term for a bubble in a
stagnant fluid under the action of gravity. In the present version of DISCON, this effective mean pressure
gradient in the liquid phase is modeled using the gravity head and inertial acceleration of the far field continuous
liquid phase flow,

i ax ax

,., where {_'_}_, is the liquid density at the location of bubble b.

The third momentum coupling tenn, added mass, is modeled in the conventional manner using an added mass
coefficient of 0.5.

4.3. Energy Transfer Coupling

The energy transfer between the bubble and liquid is due to heat transfer and mass transfer. Since there can be
no accumulation of energy in the bubble-liquid interface, the sum of the energy entering and leaving the interface
must equal zero.

) ( -'[w,bT,b + 'T"._ 1)-_ r,..l hhAbl(a"*l_b_--7""*_b _ r..i + hl_a_ _a""t " "'; (1- wlb/ ,,. = 0 (23)_'b" bl + + "lb--bl
Ob1 Ob1
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where the first two terms are for the inside of the bubble, and the lasl two terms are for the outside of the bubble.

The first term is the entropy addition rate from the inside of the bubble to the bubble-liquid interface ,'tsa result
of mass transfer. The second term is the entropy addition rate from the inside of the bubble to the bubble-liquid
interface as a result of heat transfer. The third term is the entropy addition rate to the interlace from the
surrounding liquid as a result of rnass transfer. The last term is the entropy addition rate from the surrounding
liquid to the interface as a result {_fheat transfer. As in Equation (10). the surrounding liquid can be at any
temperature between the wall temperature and the bulk liquid temperature.

In Equation (23), we introduced three new vaxiables, elb, Fib, and TwO. "r'hese define the average liquid

entropy, average liquid temperature, and average wall liqui_l temperature surrounding bubble b in cell k,
ceils

containing
bubble b

e,b = _.,[rl,be.,t ] (24)
k

Analogous equations define T/b and T,,b.

5. ADDITIONAL MODELS

Bubble coalescence requires a model tbr computing the bubble shapes. In addition, models are nce0ed for
-_ bubble turbulence and bubble-liquid heat transfer. We need film heat transfer coefficients on the inside and

outside of the bubble-liquid interface.
31

| 5.1 Bubble Shape Modeli
1

So far in the development, the actual shape of the bubble has not been a factor in the model. While the drag
| coefficient depends the shape of the bubble, the shape of the bubble is determined by the volume of the bubble.

I Therefore, the drag correlations were based upon the frontal area of an equivalent sphere having volume Vb, and _"

the actual shape was not needed. In general, bubbles take on a vaxiety of shapes depending upon their size. The
sequence of shapes shown in Figure 2 is generally characterized in increasing volume as a sphere, oblate
spheroid, Taylor cap, and cylindrical bubble or slug.

DISCON uses the formulas given by Stuhmiller [5] to characterize these shapes. These formulas _e based
upon the bubble volume, Vb, the pipe radius, R, and the E0tv0s number, Eo, which is defined as,

13k>= gr;,_ (25)

where req is the equivalent spherical radius of a bubble having volume Vr,.

These shapes ,are explicitly used at two places in the model and in ali visual output from a DISCON
simulation. The txxly or actual radius of the bubble, Rb, is used in the wake centerline velocity calculation,
Equation (21). Both the bubble body radius, Rb, and the actual vertical height of a bubble are used in the bubble

coalescence model.

,,,,.

5.2. Bubble Coalescence 'dodel

If two bubbles overlap in the radial and axial directions by more than a prescribed overlap fraclion, they are
merged or coalesced. The bubble shapes are used in the computation of this overlap fraction, which is an input
parameter. In most simulations, the overlap fraction is zero, i.e., the two bubbles merge when they just touch.
When two bubbles ,are merged, the sum of theix masses, momenta, and entropies are preserved. The merged
bubble i,,;placed at the center of mass of the two original bubbles. Only bubbles in the free stream are merged.
Ali bubbles attached to the wall, i.e., nucleating bubbles from subcooled boiling, retain their identity even if
the), overlap another bubble. They are only merged after they grow large enough to be released from the wall.

|1
'll
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5.3. Wall Heat Transfer Model

WNI heat transfer rnodels were developed for forced convection, subcooled boiling, and saturated boiling. The
forced convection and saturated boiling models are conventional, but the subccx)led boiling model is new and will
be explained in more detail.

In subcooled boiling, the average liquid temperature is less than the saturation temperature, so in theory, no
boiling can take place. However, ii' the wall heat flux is large enough, the wall temperature will be above the
saturation temperature, the liquid adjacent to the wall will be above the saturation temperature, and subcooled
boiling can take piace. The subcooled boiling model partitions the heat flux into two parts: (a) thai driven by
the difference in the wall temperature and the bulk liquid temperature, and (b) that driven by the difference in the
wall temperature and the liquid saturation temperature. In the subcooled boiling model, a portion of the heat
goes into heating up the liquid phase, and the remainder goes into creating and growing bubbles that are attached
to the wall. Once the bubbles reach a critical size, they are released into the bulk liquid phase where they can
either grow or condense.

For the wall heat flux to the liquid, we have,

a"'_ fT ".' 7',,,/'P"+__] h IT"+_- 7""+_,_j = t%,,_L '_'j'- ' _, ._ LI+ kl.,,_L "1, - J,l ] (26)

where the heat transfer coefficients are taken ft'ore the Chen correlation [16]. In DISCON, the wall heat flux is
an input quantity, so Equation (26) is used to determine the wall temperature.

5.4. Inside the Bubble-Liquid Heat Transfer Model

The bubble-liquid heat transfer model consists of two models: (a) one for the inside of the bubble and (b) one
for zhe outside of the bubble. The outside heat transfer model is further modified when the bubble is attached to
the wall at a boiling nucleation site.

Inside the bubble, we use a relaxation model to compute the heat transfer coefficient, ".....

Hb (27)
L--6_-,_J=L ,r_JLaTj,,

where "qzbis the relaxation time constant for the bubble temperature. The relaxation time constant is the time it
takes the bubble temperature to come within about 63% of its final value after a step change in the bubble-liquid
interface temperature. After about five relaxation time constants, the bubble temperature is within 99% of the
bubble-liquid interface temperature. This relaxation time constant is input and in most calculations is set to
20% of the time step to assure that the bubble temperature stays close to the saturation temperature at each time
step.

55. Outside the Bubble-Liquid Heat Transfer Model

Outside the bubble, when it is in the free stream, i.e., not attached to a wall nucleation site, we use a heat
transfer model from Whitaker [17] for heat transfer to a sphere in a flowing fluid,

" H'b [L j 2 + (0.4Re°5+0.06Re_dV)Pr_, ]°" (28)

where Reb, is the bubble's Reynolds number that is based on bubble's relative velocity and Prb, is the bubble's
Prandl number.

When the bubble is attached to a wall nucleation site, we compute an equivalent heat transfer coefficient from a
combination of Lahey's model [18] for subcooled boiling, Saha and Zuber's correlation [19] for the critical
enthalpy for net generation of vapor, and the Chen correlation [16].

The partitioning of the heat transferred from the wall into the growing of bubbles and heating of liquid is taken
from Lahey's model [18] for subcooled boiling. The mass transfer rate from the liquid adjacent to the wall lo a
bubble on the wall is given by,

,, - Jl :..... __ IIII . I IIIII



t"

10

Q_kl&kM_l (29)
]

where Mk! is a multiplier that gives the fraction of the wall heat flux that goes to ma'_ng bubbles. The
multiplier involves thermodynamic quantities and a net generation critical enthalpy that is given by the Saha-
Zuber model [19].

We can now modify the Chen correlation for the film heat transfer coefficient on the liquid side ff_rbubbles on
the wall, hkl,mic, so that we get the mass transfer rate given in Equation (29). This way, the code will
automatically compute the correct amount of mass to transfer from file liquid phase to the bubbles attached to the
wall. For this special case_ the conservation of energy at the bubble-liquid interface, Equation (23), can be
simplified to,

where we set Wlb to zero because the bubble is on the wall, and fb to Ohi because the bubble is small so its
internal temperature cannot differ very much from its interface temperature, Obl. We also combined three
variables, hlbAbl/Obl, ._nto one variable, Hlb.

Substituting Equation (29) for Fwkb into Equation (30) for Fbi, we get,

Q.,_,,A_,Mk,(eh - e,b)
=H,b(O_,-T.+ ) (31)

where Nkl is the number of bubbles attached to the wall in cell k. By dividing by Nkl, we assumed that the
bubbles attached to the wall have equal fights and get an equal share ..gfthe wall heat flux.

Substituting for the wall heat flux to the liquid, Qwkl from Equation (26), and noting that the saturation

temperature in this equation, Tsar, is the same as the interface temperature, Ohi, and for small bubbles, the
temperature of the liquid surrounding a bubble, Twb, is close to the wall temperature, Twk, we carl write

,li Equation (31) as,

|41 IAwkMkI(Et'-F'Ib)I{ - Obl]+hkt_ac[Twk-Tkl]}=Hlb(Obt-'1"wk) (32)
I. J

Solving this equation for Hlb, we get,

When this value for Hib, is used for a bubble attached to a wall nucleation site, sufficient energy and mass
will be transferred from the liquid to the bubble such that the same void fraction will be created as would have

been produced by the original set of correlations.

While this subcooled boiling model for Hlb is somewhat unconventional, it is used here because we have not
found any appropriate correlations for the heat transfer coefficient on the outside of bubbles attached to wall
nucleation sites. However, the DISCON code is certainly capable of using such correlations if and when they
become available.

6. SUMMARY OF BASIC EQUATIONS

For the bubbles, the basic conservation equations are for mass, (1), momentum. (2). and energy, (5), along
wilh the bubble position equation, (6). For the liquid, the basic conservation equations are for mass, (7),
momentum, (8), and energy, (10). In addition, there is the energy transfer coupling equation, (23). These eight

ii-I equations (per bubble, per cell) are the basic extuations to be solved for the eight new time variables, Vb, Ub, eb_

.rb, Pk, Ujl, ekl, and Fbr. The fom_ulas of Section 4.1 are used to express the volume fraction, akl, in tenns of
the bubble volume, Vb. The new time value of the bubble density, Pb, is a function of the independent state

i
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variables, Pk, Tb, arid new tirne value of the liquid density, Pkl, is a function of the independent slate variables,
Pk and Tkl. The present version of the code neglects any pressure difference between the phases; therefore, Pk,
when interpolated to a bubble position, forms an independent state variable for the bubb!e phase. All state
relationships are linearized over a time step.

An examination of the finite difference equations reveals the following:

• The equations are linear in the new time variables. Hence, each time advancement only
requires the solution of a linear system of equations. This is a very complicated linear
system due to the mixed Lagrangian and Eulerian features of the equations and the implicit
coupling between the bubbles and the liquid phase caused by the time derivatives of.ak in
Equations (7) and (10). This linear system of equations is solved using Gaussial,
elimination.

• The acoustic terms i.e., velocities in Equation (7) and pressure gradient in Equation (8), are
evaluated implicitly; hence, there is no stability restriction on the time step size due to
acoustic wave propagation.

• The drag term in the bubble momentum equation is evaluated implicitly in Ub. Hence, the
short time constant associated with a large drag force on the bubble does not lead to a
stability restriction on the time step size.

Because of the explicit evaluation of the convective terms in the continuous liquid phase, there is a stability
restriction on the time step size, which is the material Courant limit. In addition _,, this, the time step size.,

must be chosen small enough to accurately resolve the important physics of the process.

7. TEST PROBLEMS

This section contains comparisons of DISCON calculations of three experiments: (a) Crabtree and Bridgwater
bubble coalescence experiment, (b) JAYCOR bubbly air-water flow experiment, and (c) Carl St. P_'6"-rte
subcooled boiling experiment.

7.1. Crabtree and Bridgwater Experiment

Crabtree and Bridgwater [20] conducted experiments in which they bubbled air into the bottom of a large tank
containing a viscous liquid and studied the coalescence of a trading bubble with a leading bubble. They
measured the relative motion of vertically aligned bubble pairs, each having volumes from 10 cm3 to 40 cm 3.
in a 67 % by weight solution of sucrose in water. The Reynolds numbers based on bubble diameters were in
the range of 40-90. The Cmbtree and Bridgwater experimental data were used to check the drag coefficient model
for single bubbles and for evaluating the wake velocity model for two successive bubbles.

DISCON was used to calculate one Crabtree and Bridgwater experiment in which a leading 30 cm3 bubble was

trailed by a 25 cm3 bubble. The rise of the leading bubble is essentially unaffected by the trailing bubble, and
hence, has a constant velocity as seen in Figure 3. Figure 3 also shows a plot of distance vs. time for the
trailing bubble from the experiment.

.,. Using Equation (21) with aw = 0.2.0 as recommended by Stuhmiller [5], we see from Figure 3 that the
DISCON calculation of the trailing bubble's path deviates from the experimental data as it approaches the leading
bubble. With aw = 0.20, we predict that the trailing bubble merges with the leading bubble at 0.65 s.
However, in the experiment, the time at which the two bubbles merged was closer to 0.8 s. We then modified
the centerline wake induced velocity correlation given in Equation (21) for small separation distances by
increasing aw from 0.20 to 0.45. With this change, we obtained much better agreement with the experimental
data.

There was a wide scatter in the data points that were used by Stuhmiller in obtaining his original centerline
wake velocity correlation. When the modified correlation was plotted over the data, it appears to fit the data
about as well did the original correlation. Ali further calculations were made with aw = 0.45.
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7.2. JAYCOR Bubbly Air.Water Experi_;Tenr

The model embodied in DISCON i,sinherently stadsti,cal. Becat:.,;eindi,.,iduaibubbles are u-acked,two different
simulalions with different bubble volume and velt_ity distributions can have similar average values for the
volume fraction, mean bubble velocity, etc. Every simulation with DtSCON is in effect a new experiment
when the bubble distribution is re+initialized,even ff the mean values o+fthe new ini:tializationare identical with

the original. Man,,, experiments have been perfo.rmedon bubbly air-water tlov,,r;,but almost ali report only
selected mean values.

Stuhmiller from JAYCOR in connection with the development of their BUBBLE ct-'xleperformed an air-water
experiment in which fairly detailed st__tisti,-:+Idata ,,,,,er_gathered. In this experiment, air was }'.ubbledup a
vertical v,,_ter.filledpipe, and movies were taken at varioas axial elevations. At each elevation, I,_evolume and
velocity of e.a.chpassing bubble w_ measured and rexo.rf_ed.These volumes ,andvelocities were then grouped
into a set of bins. For example, ali bubbles having velocities between 20 cm/s anti 22 cm/s were included in
the 21 cm/s velocity bin, and ali bubbles having volumes between 1_,cm3 and 12cm 3 were included in the
I i vm3 volume bin. Since the raw data was not available, the clarafrom the plots that ,,,,,erepublished in the
EPRI report (10] v,,_tsdigilized amt used for ou.rconaparisons with the DISCON c_cutations. The JAYCOR
experiment consisted of a 1.27 cm radius circuit' pipe having a length of 140cre. The top of the pipe was
open, an,d air was bubbled into the bottom at a _ow rate of _ cm3/il.

The pipe was modeled with DISCON using 17 volumes. A time _tep of 10 ms was used. With this size
time step, a bubble mo',,ing at 50orals, which is ata upper Iimit, would lake about 16 time steps to move
through a cell. Becaut.+eoi"the slati.,-m,c.'flnature of the DISCON m¢i_ci,we u_d an initial u'ansient peritxt of
100 s, and then gathered I|umerical data du.r_ngthe following I(_ s.

Figure 4 shows a series of frames, spaced every 5 time steps, of the simulated DISCON calculation in the
entire pipe. The first frame is tm the left. and fntme numbers increa_ across the page, This figure illustrates the
bubble merging that occurred in this experiment ....

The bubble volume data for a typical JAYCOR experiment and the corresl_nding DISCON calculation are
shown in Figure 5. This figure _,_howsboth lhe mean bubb}evolume and standard deviation, sigma, at various
elsevation._,

The expenmental data .,+howa systematic evolution of the ilo,,,,,regimes with elevati.on, As the bubbles move
tip the pipe, they merge causing the mean of the volume distribution to shift to larger and larger v_ues. This is
sh,own in Figures 4 and 5. As can t_ seen from Figure 5. the experimental data show an increasing spread in the
bubble volume, i.e., standard cl,eviation, with el.evation+C!¢_._."to theorifice, l'mbblesare ali the same size, while

' at the higher elevations, some bubbles have merged to give larger bubbles while other bubbles remain at their
+ origir_alsize. which results in a larger spread m the bubble volttmes.

The numeri.c_d,;imulation shows fairly gcxxlag:reementwith a slight underprediction of bubble volume at the
" lower el_evationsand a slightly higher bubble volume predicted at the higher elevaticms. There must be more

merging t_cur'ring in the middle of the pipe in our sinaulation than in the experiment, lt should t_ n,otedthat
- D1SC'ONpredicted a gt'owth in (t_e,+tandardde','mtion that p_+ralle_sthe data trend quite accurately given the

statistical nature of tla,e data _d simulation.

Figure 6 _.ffowsthe mean arid slant.larddevmtionof the bubble vel.t_'itiesfor _th lh,e ria,ta from the experiment
and tJ'_eda.tafrom _ DISCON calcuL.'mon.The mean bubbl,: _,ekx:itiesare slightly overpredicted by DISCON,
which is co.nsistent with the.volume _ta. "l'helarge mean bubble veltx:itiesat tt_elov,'erelevations i,sdue to the
wake model. A trailing b,ubble in the w',_e of a le_,dmg bubble can move 2-3 times faster than the leading
bubble.

i ii sh,o,uldI:,,en.o,tedlh.at while the initial bub,bles h_'+vean ¢_.blatesphcrc_tdalshape, they quickly me_rgeto form aTayl,t',rcap sh.apt'.,and then merl_eagata to fo.n'ncyli+ndric_,bubbles or slu_.s, Slugs in this size pipe move at a
• constant velocity efrabo,ut 18 cm/s. This s_ingular_'e_(x_ityof a slug is evident in the asymptotic character of

the mean velocity curves at higher elevatio,n,s.The m,e:a_'_vel_cilydecream_swith in,creasingaxml elevation in the
pipe. From this f_gure, we can see, that there are still some sn'talie_bubbles or Taylor caps a_ tt_e higher

| elevations of th,epipe. The s,pre,_din th,ebubble veh×':.ltyis almost constant with a slight decrease v,,ithelevation
a because of the constant ,_,el,_ttvof the slug. The c',dculatedstanda.rddevi,atio,n m hubble velocity is _,mewhat

.i
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7.3, St. Pierre Subcooled Boiling E,_Teriment

For his Ph,D. thesis [21], Carl St. Pierre made measurements of the void distribution at numerous elevations
, in a rectangular channel that was electrically heated. Water flowed up the clmnnel, and subcooled tx_iling

occurred on the walls, St. Pierrecomputed the average void fraction from his void distribution data.

DISCON was used to calculate Run 10 of Carl St. Pierre's experiment, Run !0 had the highest inlet
subcooling of 7,0 K, lt had a pressure of 4,14 MPa, and art inlet velocity, of 1,152 rh/s, The wall heat flux
was 2.88× 10.5'W/m2. Thz channel was rectangular and had dimensions of 1.11 x 4.445 cre. The heated length
was 125.7 cre, and the total length was 154.9 cre, A power supply that could outpu_ 100 V at 3000 A
supplied the heating, The void fraction measurements used the gamma-ray attenuation technique, St. Pierre

' estimated the error i:_the,:werage void frsction at less than 10%. Measuremer_tswere made at thirteenequidistant
locations along the channel, and in ali cases, the gamma.ray beam passed through the 4.445 cm depth of the
channel, Traversal of the channel in the n_'ow direction provided void fraction measurementsacross t'hechannel
at nine locations, These were averaged to get the average void fractiondata at each of the thirteen axial locations,
Due to small misalignments, only 80% of the cross section could be traversed. St, Pierre ,states that this
limitation would tend to give higher void fractions for the downstream portion of the test section where convex
void fraction distributions were present and lower fractions nea:u"the inlet whet _,concave dista-ibutionswere
present.

o We modeled the experiment with 10 cells in the heated section with 2 cells on either end for a total of
14 cells, Time steps of 5 ms were used. The water was initialized with _ uniform pressure and ternperature.

-" The wall heat flux was turned on at cycle 5 which was after the gravity head in the water had built up. The
tl calculation w_s 500 cycles long (2.5 s), and steady state was reached at 300 cycles (1.5 s), Bubbles were
,_ released ft'ore the wall when their radius exceeded I rnm_ Their initial radius was 0,001 mm. The runs were
| made with 10active nucleation sitesper cell on the wall. The wall nucleation sites were randomly selected.

I Figt_e 7 shows a comparison of the DISCON calculation with the experimental data. We added _+10%en-or

bars onto the experimental data, as recommended by St, Pierre. The data for the calculation are averaged over"the

last 100 cycles (0.5 s). The calculated void has a general tendency to be under the experimental data a_ the
higher elevations, This difference could be attributed to the fact that the average of the experimental data was

- higher th_ it should be as a result of not averaging in tt,e low void fractions near the wall. St, Pierre was able
to only measure the void fraction from the center to 80% of the channel width, The measured void fraction at
80% of channel width is half of the average, so the low void fractions near the wall at the higher elevations
wouldhave lowered th,e average,

Figure 8 shows the total number of bubbles in the channel at eac_ cycle of the calculation, Since we activated
I0 nucleation sites in each of the 10cells, 100 of these bubbles were on the wall at nucleation sites, That
leaves about 11130bubbles in the free stream after the initial peak of 2250 bubbles has subsided (after cycle 100)
None of the bubbles reteased ft'orethe wall collapsed in the free stream. Evidently, the subcooling was not large
enough, and they coalesced with existing bubbles in the free stream before they had time to coltapse. The
fluctuation in the number of bubbles gives an indication of the statistical nature of the calculation. A repeat of
this calculation with a different set of wall nucleation sites would result in a different number of bubbles at each
cycle.

Figure 9 shows the liquid, wall, and saturation temperatures for the DISCON calculation. Since the wall heat

'- flux is constant and the wall temperature is almost parallel to the saturation temperature, we see that the hmic

portion of tl_eChen correlation is the dominating ten'n in the wall temperature model, There is some slight
curvature of the wall tempera|ure at the entrance, which indicates that if the subcooling was larger, the hmac

portion of the Chert correlation would come into play and the wall temperature would parallel the liquid' temperature, (See Figure 5.I in Collier [22]).

i 8. CONCLUSIONSThe discrele-bubble two-phase flow model is able to dynamically predict the evolution of both the flow

topology and energy partitioning as the bubbles form on the wall and merge due to wake effects. Many moresimulations are required, however, including larger subcooling experiments and the transition front long

cylindrical bubbles to annular flow. Our goal is to be able to simulate a boiling experirnent that has subcooled
water at the entrance and superheated steam at theexit. However, before this simulation can be done, we neeA to

j add i he _,¢gcdid .... :............. _ ....... ;rh ;t,, ,a;_,-,rot_ ,Imp,:: Wo. al.__ nee.at to improve the heat transfer models
for bubbles atmcbed to wall nucleation sites. Work along these lines is inprogress.
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NOMENCLATURE

a= acceleration (m/s 2) Greek Symbols

aw = wake velocity fitting coefficient ct = volume fraction

A - area (m2) A = increment

bw = wake velocity fitting coefficient _ = enU'opy(J/kg-K)
I"= mass transfer rate (kg/s)

B = any variable or any combination of
variables r/= fraction of a bubble

cw = wake velocity fitting coefficient t'r= surface tension (N/m)

C = coefficient (added massor drag) r = relaxation time constant (s)

Ep = EOtvOsnumber 0 = interface temperature (K)

f= interface or wall drag coefficient (kg/s) p = density (kg/rn 3)

F = force bubble exerts on continuous phase (N) Subscripts

g = acceleration of gravity (mis 2) a = added m_s

h = film heat transfer coefficient (j/m2-s-K) b = bubble index or b_ly

H = hA/0 (J/s-K 2) d= drag

i = enthalpy (J/kg) eq = equivalent.

k = conductivity (J/s-m-K) f= frontal

M = multiplier g = gas

N = number J = momentum cell index

P = pressure (Pa) k = continuity and energy cell index

Pr = Prandl number / = liquid

q = x - Xb (m) nu_c = macroscopic (Chen correlation)

Q = heat flux per unit area(J/m2-s) mic = microscopic (Chert correlation)

r = radial or radius (m) P = particle or body

R = radius (m) sat = saturation

" Re = Reynolds Number w = wall or wake

t - time (s) wake = wake

T = temperature •(K) Superscripts

u = velocity (m/s) n = n'h time level

V = volume (m3) '; o ,erbar signifies an average

w = temperature weighing factor

x = distance (m)
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_ Bubbles in Crabtree and Bridgwater Comparison.
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