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ABSTRACT
A value y for a uniform variable on (0,1) is generated and a table
of 96 percent points for the (0,1) normal distribution is interpolated
for a value of the normal variable x(0,1) on 0.02 <y < 0.98. For
the tails, the inverse normai is computed by a rational Chebyshev
approximation in an appropriate variable. Then X = X0 + u gives

the X(u,0) variable.
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Introduction
This deocduliént provides thé analytical basis’for a CDC6600 subroutine
£6F velues of a ho¥mally distributed random variable X(u,0), where i and o
a¥e the Tean and standard deviation of X. Analytically, X values are obtained
‘a8 80lutions of the equation
F(x) =y : (1)
Where y is'a'véiﬁe of & ﬁhifofﬁiy'diétributed variable and F is thé cummule-

tive normal distribution with mean y and Standard deviation g.
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‘The fiethods émployed below use the nofmal distribution F for a (0,1) §33.5-328k
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normal variable x: X(u,;5.) is then -computed by means of =§a:§,,§ S
: ' gogeggs f
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process disclosed, or represents that its use would not

infringe prvately owned rights.

First -a value y; 0%y <1, fof a uniform variable is obtained from
the Systems random nimber generator RANF. The scheme is to invert (1) over
96% of the range; 0.02 < ¥ < 0,98, by a table look-up of percent points
folldwed by linéaf interpolation. For the other 4%, 0 <y < 0.02 or 0.98 <y < 1
we use a 10w 'aééh”i;é.éy rational Chebjshev approximation of Hastings [2] which
is as hearly cori§istent with the accu'x‘a"cy,of the. linear interpolation as we can
get, The perceiit poiht table, 1abeie& Péf‘for ¥y = 0.01 (0.01) 6;51, was
obtained from ‘(1) using §Ubr6utine<ﬁ6ﬁﬁ déséribediin tl].‘ Only 51 values
are needed because y is 'always redt'léeé't’o ,the' interval 0 < y < 0.5 by making

use of the §ymmetry of F about X = 0; F(k) = 1 = F(~x), putting' (1) in the form

_ i Yy . O0O<y<o0.5 L .
1=~y 05<y<1 . %&%‘EE@
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This combination of table lookup, linear intérpolation and Chebyshev

approximation were selected primarily for speed of execution with an accuracy

consistent with most statistical applications.

Error Analysis for Linear Interpolation

The error E(y) in the interpolation

-X, ) . ' .
= l‘a_x.ya;yl (¥y-v1) + %+ E(y), N<YSY | (2)

.is given by

B(y) = & y‘),(ay y"’—) 5 8 5 m<peyn

and the relative error E(y)/x cen ‘be bounded by

1| <

—8-yl<y<yl l

where

(3)
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Then,

%l

% “where |x| > |x | >0

E_(I).‘<Trh2
b 4 =L

and x, ,x, corresponds to y,,y,, respectively. For y, = 0.98, x, = 2,0537,

¥y, = 0.97, %, = 1.8808 this gives a relative error bound,

|§¥£91 < 0.0058 or 0.58% .
For x close to zero (or y close to 0.5) the accuracy is higher since

1B} _ (§-0.50) (y-0.51)

X 0~ X 2

d2x
dy?

. max : s 0.50 < y < 0.51

0=<x=<x

1 \ 2 '
%ﬁ =< 2[&(0.02507)9‘(0'02507)] <'0.00079 or 0.07%
where ngizgfs 1 by virtue of the expansion

a/e ~
x = (y-0.50) + 1%%1 (y=0.50)8 + »e

for y = 0.50 and the results in (3).

Error Analysis for the Inverse Normal Approximation

In [27], the inverse of 1-y = F(-x), O < y < 0.5 is given by the rational

Chebyshev approximation

a)+a, W | ! :;f;
X=w- [1+blw+bbw3 *Ey), w=4m2lny
2.30753 , by
0.27061 -, by

8y

ay

]
I

0.99229
0.04L81

with & uniform error bound |E(y)| < 0.003. In order to get the largest relative
error, we want |x| to be as small as possiblé. Therefore, at the‘upper range

where y = 0,02 and x = -2.0537 we get



0.00
Y < 2.0527 = 0.0015 - or . 0.15% . .

‘E(y)

Thus, the overall error can be expected to be no more than 0.6%, occurring N

near the end of the linearly interpblated range.

Testing

R :
In order to pick up any gross errors, 3000 random numbers y were generated -

; A A : .
by RANF and X(0,1) was computed for each y. Then y was recomputed by 9 = F(X)

using the library subroutine FNORM: (labeled NORM in [17) for the cummulatix}e
normal F. The results showed errors consistent with expecteld V‘aiues.
In addition, x was compuled for each of the vy values 0.00) (0.001) 0.999

and compé.red with the inverse nofmé.l from the relations

-vy2 ierfe (2y) 0<y=< 0.5

J2 ierfe (2(1-y)) 0.5<y<1l .

where iderfc(x) is the inverse coerror function [1]. A meximum relative

error of 0.37% was computed near the ends of the interpolatory interval at
y =-0,025 and y = 0.975. Relative errofs nea.,t" x = 0 were on the,.order'of
0.002%. Relative errors for y < Q.O2 were on the oi‘der,of 6.077%. These

errors are consistent with the error analysis: above.
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