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ABSTRACT 

A value y for a uniform variable on (0,1) is generated and a table 

of 96 percent points for the (0,1) normal distribution is interpolated 

for a value of the normal variable x(O,l) on 0.02 ~ y ~ 0.98. For 

the tails, the inverse normal is computed by a rational Chebyshev 

approximation in an appropriate variable. Then X = xcr + ~ gives 

the X(~,cr) variable. 
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introduction 

This document provides ·the ana.i.ytical basis for a cnc66oo subroutine 

for values of a normally distributed random variable X(u,a), ·Where U and a 

are "the mean .and standard deViation of X. Analytically, X values are obtained 

·a.s ·aoiutioii.s of the equation 

:F(x) = Y (1) 

where y is a. ·v=aiue of ·a. 'i:iili.:fonniy · distributed variable and F is the cumm.ula-

tive norma! distribution with mean u and standard deviation cr~ 

RVNORM(RMU.;Srcn for_:Vaiues oLa_Normal Random Variable .x(u.a) 

:The irie'thods employed below use .t.he normal distribution F for a (0,1) .. 
normal var"j.a.ble x. :X(u,cr.) is tl!en ·coinputcd by means of 

X =ax + u 

First ·a value y; o ~ y < 1; for a uniform variable is obtained from 

the systems random nfunber generator RANF. The scheme is to invert (1) over 

96% of the range, o.o2 :5 y ~ 0.98, by a table look-up of percent points 

followed. oy linear ·interpoiation. For the other 4%, o < y < o.o2 or 0.98 < y < 1 

we use a low accuracy rational Chebyshev approximation of Hastings [2] which 

is as nearly consistent with the accuracy,of t~e.linear interpoiatiqn as we can 

get;. · The percent point table; ·labeied PeT for ".y = o. 01 ( o. 01) o ~51, was . 

obtaine·a :f.fom ·(1) using subroutine NORM described in [1]. Only 51 values 
• I ' 

are needed because y is always reduced· to .the interval 0 <. y !5 0. 5 by making 

use of the synnnetry ofF about X= 6, F(x) = 1 ;... F(-x)' putting· (1) in the form . . . . 

F(±x) - l y 
- l;..y 

0 '< y ~ 0.5 

0.5 < y < 1 



This combination of' table lookup, linear interpolation and Chebyshev 

approximation were selected primarily f'or speed of' execution with an accuracy 

consistent with most statistical applications. 

Error Ana1ysis f'or Linear Interpolation 

The error E(y) in the interpolation 

(2) 

. is given by 

and the relative error E(y)jx can 'be bounded by 

where 

h·= y2 - yl = 0.01 

1 sx -t2/2 y = F(x) = -- e dt 
,J2;T -<X) . 

(3) 

dX 1 = ~-· ex_a. /'rl. 
dy = F '(x) ,.;err 

. . ' 

d.Ox 
dyz' (0.5) ~ 0 ' n=l,2, • • • 
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Then, 

' where I Xa I > I x1 I > 0 

and x1 ,Xa corresponds to y1 ,y2 , respectively. For y2 = 0.98, Xa = 2.0537, 

y1 = 0.97, ·x1 = 1.8808 this gives a relative error bound; 

1¥1 ~ 0.0058 or 0.58% 

For x close to zero (or y ·close .to 0.5) .the accuracy is higher s.ince 

(y-0.50) '(y-0.51) 
X 2 

where Y.-O. 50 < 1 by virtue of the expansion 
X -

.,d2xl dy2 ' 

X = 
r ':l- \ala 

(y-0.50) + ~ (y-0.50)3 + .• • • . 

for y ~ 0.50 and the results in (3). 

Error Analif.sis for the Inverse Normal Approximation 

In [2], the inverse of 1-y = F( -x), 0 < y ~ 0.5 is given .bY' the rational 

Chebyshev approximation 

X= W-

a1 = 2.30753 ' bl = 0.99229 

~ = o •. 21061 b2 = o. o4481 

with a uniform error bound IE(y)l ~ 0.003. In order to get th~ largest relative 

error, we want lxl to be as small as possible. Therefore, at the upper range 

where y = 0.02 and x = -2.0537 we get 
5 
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l~x I· :S o.003 = o .. ool5 
2.0537 

or . 0.15% 

Thus, the overall error can be expected to be no more than 0.6%, occurring. 

near the end of the linearly interpolated range. 

Testing 

A 
In order to pick up any ~ro~s errors, 3000 random numbers y were generated 

A A · A 
by RANF and X(O,l) was computed for each y. Then y was recomputed by y = F(X) 

'llsi:ng t.hP. library subroutine FNORM, (labeled ~O'RM in [1 ]) fo~· the cummulative 

normal F. The results showed errors consistent with expected values. 

In addition, x was t:ompul;ed for eaeh of the y va.lues O.OOJ (0.001) 0.999 

and compared with the inverse normal from the relations 

x = ~-J2 ierfc (2y) 

J2 ierfc (2(1-y)) 

0 < y :S 0.5 

0.5 < y ~ 1 

where ierfc(x) is the inverse coerror function [1]. A maximum relative 

error of 0.37% was computed near the ends of the interpolatory interval at 

y :;:: 0.025 o.nd y .. 0.975. Rel.a.t.:i.v~ er.rors near x = 0 were on the_.order of 

0.002%." Relative errors for y < 0.02 were on the order.of 0.077'/o. These 

errors are consistent with the error analysis above. 
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